KR20240047765A - Combination treatment method of nanoparticle inducing ferroptosis having anticancer treatment effect and radiation - Google Patents

Combination treatment method of nanoparticle inducing ferroptosis having anticancer treatment effect and radiation Download PDF

Info

Publication number
KR20240047765A
KR20240047765A KR1020220127203A KR20220127203A KR20240047765A KR 20240047765 A KR20240047765 A KR 20240047765A KR 1020220127203 A KR1020220127203 A KR 1020220127203A KR 20220127203 A KR20220127203 A KR 20220127203A KR 20240047765 A KR20240047765 A KR 20240047765A
Authority
KR
South Korea
Prior art keywords
cancer
radiation
nanoparticles
cells
iron
Prior art date
Application number
KR1020220127203A
Other languages
Korean (ko)
Inventor
배채원
박기남
박민희
이강원
Original Assignee
주식회사 더도니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 더도니 filed Critical 주식회사 더도니
Priority to KR1020220127203A priority Critical patent/KR20240047765A/en
Publication of KR20240047765A publication Critical patent/KR20240047765A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본원에 따른 발명을 활용함으로써 항암치료에 내성을 가지는 종양, 더 구체적으로는 암세포만을 효과적으로 사멸시킬 수 있다. 더욱 나아가 암의 예방 또는 치료가 필요한 개체에 대해 종양을 표적 치료하는 새로운 항암 치료법을 제안할 수 있으며, 암 치료 효율을 극대화 시켜 새로운 암치료법으로 사용할 수 있다.By using the invention according to the present application, only tumors resistant to anti-cancer treatment, more specifically, cancer cells, can be effectively killed. Furthermore, it is possible to propose a new anti-cancer treatment that targets tumors for individuals in need of cancer prevention or treatment, and can be used as a new cancer treatment method by maximizing cancer treatment efficiency.

Description

항암 치료 효과 및 방사선 병용 치료 효과를 갖는 페로토시스를 유도하는 나노 입자의 병용치료 방법{COMBINATION TREATMENT METHOD OF NANOPARTICLE INDUCING FERROPTOSIS HAVING ANTICANCER TREATMENT EFFECT AND RADIATION}Combination treatment method of nanoparticles inducing ferroptosis with anticancer treatment effect and radiation combination treatment effect {COMBINATION TREATMENT METHOD OF NANOPARTICLE INDUCING FERROPTOSIS HAVING ANTICANCER TREATMENT EFFECT AND RADIATION}

본원은 페로토시스(ferroptosis)를 유도하는 나노 입자와 방사선 치료를 통한 항암 치료의 병용 요법에 관한 것이다.This study relates to combination therapy of anticancer treatment using nanoparticles that induce ferroptosis and radiation therapy.

기존의 항암제는 일반적으로 분열이 활발히 진행되고 있는 세포의 각종 대사경로에 작용하여, 핵산의 합성을 억제하거나, 세포 독성을 나타내어 항암 활성을 나타내는 약제가 대부분이었기 때문에, 암세포에만 선택적으로 작용하는 것이 아니라 정상세포, 특히 세포 분열이 활발한 조직의 세포에도 손상을 입혀 구토, 위장장애, 탈모증, 골수기능저하로 인한 백혈구 감소증 등 심각한 부작용을 초래하는 한계점을 가지고 있다.Existing anticancer drugs generally act on various metabolic pathways in actively dividing cells, inhibit nucleic acid synthesis, or exhibit cytotoxicity to show anticancer activity, so they do not act selectively only on cancer cells. It has the limitation of damaging normal cells, especially cells in tissues with active cell division, causing serious side effects such as vomiting, gastrointestinal disorders, alopecia, and leukopenia due to decreased bone marrow function.

따라서 이러한 한계점을 개선하기 위하여, 정상세포들 사이에서 암세포를 선별하여 공격하는 표적 치료제(target therapy)에 대한 연구가 활발히 진행되고 있다. 표적 치료제란, 암세포에서 발현이 증가되는 특정한 혈관 내피 성장 촉진 인자(Vascular Endothelial Growth Factor; VEGF), 상피 세포 성장 인자(Epidermal Growth Factor; EGF), 돌연변이 수용체(mutated receptor) 등의 생체물질을 표적으로 하여 선택적으로 공격하기 때문에 정상세포의 손상을 감소시킬 수 있다. 그러나 이러한 표적 치료제도 한계점들을 가지고 있다. 첫 번째로는 특정 생체물질을 표적으로 하기 때문에, 동일한 암으로 진단받은 환자라고 해도, 특정 생체물질을 가지고 있지 않은 환자라면 치료 효과를 나타내지 않는다. 일례로, 제피티닙(gefitinib)은 비소세포폐암 환자 중 일부 환자에서만 치료 효과를 나타내었는데, 이후 제피티닙이 상피 세포 성장 인자 수용체(EGFR) 돌연변이를 표적으로 하고 있기 때문에, 돌연변이를 가지고 있는 비소세포폐암 환자에게서만 치료 효과를 나타낸 것이 밝혀진 바 있다. 또한, 표적 치료제의 경우에도 지속적으로 사용하는 경우, 암세포가 치료제에 대한 내성을 가지게 되어 치료 효과가 현저히 감소되는 문제점들을 가지고 있다.Therefore, in order to improve these limitations, research is being actively conducted on target therapy that selects and attacks cancer cells among normal cells. Targeted therapy refers to a treatment that targets biomaterials such as specific vascular endothelial growth factor (VEGF), epithelial growth factor (EGF), and mutated receptors whose expression is increased in cancer cells. Because it attacks selectively, it can reduce damage to normal cells. However, these targeted treatments also have limitations. First, because it targets a specific biomaterial, it does not show a therapeutic effect in patients who do not have the specific biomaterial, even if they are diagnosed with the same cancer. For example, gefitinib showed therapeutic effects only in some patients with non-small cell lung cancer, but since gefitinib targets mutations in the epidermal growth factor receptor (EGFR), It has been revealed that the treatment was effective only in patients with cellular lung cancer. In addition, even in the case of targeted therapeutics, when used continuously, cancer cells develop resistance to the therapeutic agent, which has the problem that the therapeutic effect is significantly reduced.

따라서 최근에는 새로운 방식인 나노 소재를 이용한 나노 의학(nano medicine)에 대한 관심이 증가되고 있는 추세이다. 나노 의학이란, 나노 크기의 소재를 의학에 접목시킨 기술로서, 나노바이오센서, 나노이미징, 나노약물전달체, 나노조직공학 등 다양한 분야에 적용이 가능하기 때문에, 암, 치매, 심혈관 질환 등 다양한 난치성 질환의 진단 및 치료의 난제를 극복할 수 있는 돌파기술(breakthrough technology)로서 기대되고 있다. 미국의 경우에는 1998년부터 연방정부 차원의 나노기술 개발 전략을 수립하여 12개의 연방기관이 참여하는 국가 나노기술 계획(National Nanotechnology Initiative; NNI)을 시작하였으며, 매년 10억 달러 이상을 투자하고 있다. 최근에는 나노 입자(nano particles)를 이용한 진단 키트, 치료제 등이 임상시험단계에 진입하거나, 미국 식약청에 이미 승인을 받은 상태로, 나노 의학에 대한 연구가 활발히 진행되고 있다. 국내에서도 2002년 나노기술개발촉진법을 재정하고, 나노기술종합발전계획에 따라 매년 지속적으로 투자가 이루어지고 있다. 나노 입자를 암 치료에 이용하고자 하는 시도도 활발히 이루어지고 있는데, 이러한 나노 입자는 대부분 정상세포에도 영향을 미치기 때문에 다양한 부작용을 초래할 수 있다. 이를 개선하기 위하여 수동 타겟팅(passive targeting), 능동 타겟팅(active targeting) 등 특정 표적을 지향하는 방법들이 연구되고 있으나, 암 치료에 실질적으로 사용될 수 있는 낮은 부작용과 높은 치료 효과를 나타내는 나노 입자의 개발은 아직 부족한 실정이다.Therefore, interest in nano medicine using nano materials, a new method, has recently been increasing. Nanomedicine is a technology that combines nano-sized materials with medicine. It can be applied to various fields such as nanobiosensors, nanoimaging, nanodrug delivery systems, and nanotissue engineering, and can be used to treat various intractable diseases such as cancer, dementia, and cardiovascular disease. It is expected to be a breakthrough technology that can overcome the difficulties of diagnosis and treatment. In the case of the United States, a nanotechnology development strategy at the federal government level was established in 1998 and the National Nanotechnology Initiative (NNI), in which 12 federal agencies participate, was launched and more than $1 billion is being invested every year. Recently, diagnostic kits and treatments using nanoparticles have entered the clinical trial stage or have already been approved by the U.S. Food and Drug Administration, and research on nanomedicine is actively underway. In Korea, the Nanotechnology Development Promotion Act was enacted in 2002, and investments continue to be made every year in accordance with the comprehensive nanotechnology development plan. Attempts to use nanoparticles for cancer treatment are also being actively made. Since these nanoparticles mostly affect normal cells, they can cause various side effects. To improve this, methods targeting specific targets, such as passive targeting and active targeting, are being studied. However, the development of nanoparticles that can be practically used in cancer treatment and that exhibit low side effects and high therapeutic efficacy is not possible. It is still insufficient.

한편, 페로토시스(ferroptosis)란 철 매개 지질과산화(iron-mediated lipid peroxidation)에 의한 세포사멸 방식으로서, 철이 활성 산소(reactive oxygen species; ROS)와 만나 펜톤 반응(Fenton reaction)이 유도되고, 이를 통해 지질과산화물이 세포 내에 축적되어 세포가 사멸하는 방식이다. 최근 이러한 페로토시스를 이용한 암세포 사멸 방법에 대한 연구가 보고된 바 있다("Nano Lett. (2017) 17(1): 284-291"참조). 보다 자세하게는, 산화 스트레스를 조절하는 p53을 발현하는 플라스미드와 펜톤 반응을 유도하는 금속-유기 네트워크(metal-organic network)를 결합시킨 나노 입자를 이용하여, 페로토시스(ferroptosis)/세포예정사(apoptosis) hybrid pathway를 통한 암세포 사멸을 유도하였는데, 상기 나노 입자에 사용된 폴리에틸렌이민(polyethylenimine; PEI)은 양이온성 중합체로서 유전자 전달체로서 많이 사용되고 있지만, 세포 독성을 가지고 있기 때문에 실질적으로 암의 치료에 사용하기에는 적합하지 않다.Meanwhile, ferroptosis is a cell death method caused by iron-mediated lipid peroxidation, in which iron meets reactive oxygen species (ROS) to induce the Fenton reaction, which This is a method in which lipid peroxides accumulate within cells and cause cell death. Recently, research on a method of killing cancer cells using ferroptosis has been reported (see "Nano Lett. (2017) 17(1): 284-291"). More specifically, using nanoparticles combining a plasmid expressing p53, which regulates oxidative stress, and a metal-organic network that induces the Fenton reaction, ferroptosis/cell programmed death ( It induced cancer cell death through a hybrid pathway (apoptosis). Polyethylenimine (PEI) used in the nanoparticles is a cationic polymer and is widely used as a gene carrier. However, because it is cytotoxic, it is actually used in the treatment of cancer. It is not suitable for this.

이에 등록특허 제10-2187362호는 다양한 암의 치료에 효과적으로 사용될 수 있는, 낮은 세포 독성을 가지며, 암세포 특이적으로 페로토시스를 통한 세포사멸을 유도할 수 있는 나노 입자를 완성한 바 있다.Accordingly, Registration Patent No. 10-2187362 has completed a nanoparticle that can be effectively used in the treatment of various cancers, has low cytotoxicity, and can specifically induce cell death through ferroptosis in cancer cells.

본원은 위 등록특허의 나노 입자를 더욱 효과적으로 사용할 수 있는 방법으로서, 본 출원인은 페로토시스를 통한 세포사멸을 유도할 수 있는 나노 입자와 방사능 치료를 병용하는 방법을 연구하였고, 이를 통한 뛰어난 암 치료 효과를 확인하였다. As a method to use the nanoparticles of the above registered patent more effectively, the applicant studied a method of combining radiation therapy with nanoparticles that can induce cell death through ferroptosis, and achieved excellent cancer treatment through this. The effect was confirmed.

이에 따라 본원은 낮은 세포 독성을 가지며, 암세포 특이적으로 페로토시스(ferroptosis)를 통한 세포사멸을 유도할 수 있는 나노 입자 및 방사선 처리를 병용함으로서 더욱 효과적으로 암세포를 사멸할 수 있는 방법을 제공하고자 한다.Accordingly, our aim is to provide a method that can kill cancer cells more effectively by combining radiation treatment with nanoparticles that have low cytotoxicity and can specifically induce cancer cell death through ferroptosis. .

나아가 나노 입자를 유효성분으로 포함하는 약학적 조성물의 투여 및 방사선 치료를 병용하여 암의 예방 또는 치료가 필요한 개체에 적용함으로써 나노 입자를 유효성분으로 포함하는 약학적 조성물의 투여 또는 방사선 치료를 단독으로 사용했을 때보다 더욱 효과적인 암의 예방 또는 치료가 가능한 방법을 제공하고자 한다.Furthermore, the combination of administration of a pharmaceutical composition containing nanoparticles as an active ingredient and radiation therapy is applied to an individual in need of cancer prevention or treatment, and the administration of a pharmaceutical composition containing nanoparticles as an active ingredient or radiation treatment alone We aim to provide a method for preventing or treating cancer that is more effective than before.

위 과제를 해결하기 위해 본원의 제1측면은In order to solve the above problem, the first aspect of this hospital is

암세포 사멸 방법에 있어서,In the method of killing cancer cells,

철 이온 및 암세포 표적 지향성 하이드로젤을 포함하는 나노 입자를 암세포에 처리하는 단계 및 Treating cancer cells with nanoparticles containing iron ions and a cancer cell-targeting hydrogel; and

방사선을 상기 암세포에 처리하는 단계를 포함하며,Including treating the cancer cells with radiation,

상기 나노 입자는 철의 양이온과 암세포 표적 지향성 하이드로젤의 음이온이 결합하여 응집된 형태인 것을 특징으로 하는 방법을 제공한다.A method is provided wherein the nanoparticles are in an aggregated form by combining cations of iron and anions of a cancer cell-targeting hydrogel.

또한 본원의 제2측면은In addition, the second aspect of this institution is

암의 예방 및 치료방법에 있어서,In the prevention and treatment of cancer,

철 이온 및 암세포 표적 지향성 하이드로젤을 포함하는 나노 입자를 유효 성분으로 포함하는 약학적 조성물을 인간을 제외한 개체에 처리하는 단계 및 Treating an object other than a human with a pharmaceutical composition containing nanoparticles containing iron ions and a cancer cell-targeting hydrogel as active ingredients; and

방사선을 인간을 제외한 개체에 처리하는 단계를 포함하며,Including the step of treating radiation to an entity other than a human,

상기 나노 입자는 철의 양이온과 암세포 표적 지향성 하이드로젤의 음이온이 결합하여 응집된 형태인 것을 특징으로 하는 방법을 제공한다.A method is provided wherein the nanoparticles are in an aggregated form by combining cations of iron and anions of a cancer cell-targeting hydrogel.

위 제1측면 및 제2측면에 공통되는 내용은 각 측면에 모두 공히 적용되며, 본원의 해결 수단은 위 기재내용에 한정되지 않고 이 분야의 통상의 기술자가 이해할 수 있는 범위의 모든 수단을 포함하는 것으로 해석되어야 할 것이다.Contents common to the first and second aspects above apply equally to each aspect, and the solution herein is not limited to the above description and includes all means within the range that a person skilled in the art can understand. It should be interpreted as

본원에 따른 발명을 활용함으로써 항암치료에 내성을 가지는 종양, 더 구체적으로는 암세포만을 효과적으로 사멸시킬 수 있다. 더욱 나아가 암의 예방 또는 치료가 필요한 개체에 대해 종양을 표적 치료하는 새로운 항암 치료법을 제안할 수 있으며, 암 치료 효율을 극대화 시켜 새로운 암치료법으로 사용할 수 있다.By using the invention according to the present application, only tumors resistant to anti-cancer treatment, more specifically, cancer cells, can be effectively killed. Furthermore, it is possible to propose a new anti-cancer treatment that targets tumors for individuals in need of cancer prevention or treatment, and can be used as a new cancer treatment method by maximizing cancer treatment efficiency.

도 1은 본원에 따른 철/히알루론산 나노 입자의 암세포 사멸 기작(a)과 철/히알루론산 나노 입자의 제조과정(b)를 나타낸 도면이다.
도 2a는 본원에 따른 철/히알루론산 나노 입자의 형태를 120kV의 가속 전압에서 작동하는 Energy-Filtering Transmission electron microscopy (TEM) (LIBRA 120, Carl Zeiss, Germany)에서 관찰한 도면이다.
도 2b는 본원에 따른 철/히알루론산 나노 입자의 표면을 전계 방출 주사 전자 현미경 (FE-SEM) (JSM-7800F Prime, JEOL Ltd., 일본)을 사용하여 분석한 도면이다.
도 2c는 본원에 따른 철/히알루론산 나노 입자의 크기를 Dynamic light scattering (DLS)는 zetasizer Nano ZS (Malvern Instruments, UK)를 사용하여 측정한 도면이다.
도 3은 실시예 3에 따라 유방암세포, 뇌암세포, 및 폐암세포에 대해 다양한 처리를 했을 때 colony 형성결과를 비교한 도면이다.
도 4는 실시예 4에 따라 폐암세포 A549에 본원에 따른 암세포 사멸 방법을 적용했을 때 방사선 처리에 의한 세포예정사(apoptosis)가 일어나는지 확인한 실험의 결과 도면이다.
Figure 1 is a diagram showing the cancer cell killing mechanism (a) of iron/hyaluronic acid nanoparticles and the manufacturing process (b) of iron/hyaluronic acid nanoparticles according to the present application.
Figure 2a is a diagram showing the shape of iron/hyaluronic acid nanoparticles according to the present application observed using Energy-Filtering Transmission electron microscopy (TEM) (LIBRA 120, Carl Zeiss, Germany) operating at an acceleration voltage of 120 kV.
Figure 2b is a view analyzing the surface of iron/hyaluronic acid nanoparticles according to the present application using a field emission scanning electron microscope (FE-SEM) (JSM-7800F Prime, JEOL Ltd., Japan).
Figure 2c is a diagram showing the size of iron/hyaluronic acid nanoparticles according to the present application measured using Dynamic light scattering (DLS) zetasizer Nano ZS (Malvern Instruments, UK).
Figure 3 is a diagram comparing the colony formation results when various treatments were performed on breast cancer cells, brain cancer cells, and lung cancer cells according to Example 3.
Figure 4 is a diagram showing the results of an experiment to confirm whether programmed cell death (apoptosis) occurs due to radiation treatment when the cancer cell killing method according to the present application is applied to lung cancer cells A549 according to Example 4.

아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. Below, with reference to the attached drawings, embodiments of the present application will be described in detail so that those skilled in the art can easily implement them. However, the present application may be implemented in various different forms and is not limited to the embodiments described herein. In order to clearly explain the present application in the drawings, parts that are not related to the description are omitted, and similar reference numerals are assigned to similar parts throughout the specification.

본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is said to be located “on” another member, this includes not only the case where the member is in contact with the other member, but also the case where another member exists between the two members.

본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification of the present application, when a part "includes" a certain component, this means that it may further include other components rather than excluding other components unless specifically stated to the contrary.

본원 명세서 전체에서 사용하는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용하는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.As used throughout the specification, the terms “about,” “substantially,” and the like are used to mean at or close to a numerical value when manufacturing and material tolerances inherent in the stated meaning are presented, and are used to convey the understanding of the present application. Precise or absolute figures are used to assist in preventing unscrupulous infringers from taking unfair advantage of stated disclosures. The term “step of” or “step of” as used throughout the specification does not mean “step for.”

본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination(s) thereof" included in the Markushi format expression means a mixture or combination of one or more selected from the group consisting of the components described in the Markushi format expression, It means containing one or more selected from the group consisting of the above components.

본원 명세서 전체에서, "A 및/또는 B"의 기재는 "A 또는 B, 또는 A 및 B"를 의미한다.Throughout this specification, references to “A and/or B” mean “A or B, or A and B.”

본원 명세서 전체에서, "페로토시스(ferroptosis)"는 지질 과산화(Lipid peroxidation)와 활성 산소 (Reactive Oxygen Species)에 의한 세포 사멸의 한 형태를 의미한다.Throughout this specification, “ferroptosis” refers to a form of cell death caused by lipid peroxidation and Reactive Oxygen Species.

본원은 철 이온 및 암세포 표적 지향성 하이드로젤을 포함하는 나노 입자 처리 및 방사선 처리를 이용한 암세포 사멸방법을 제공한다.The present application provides a method of killing cancer cells using nanoparticle treatment and radiation treatment containing iron ions and a cancer cell-targeting hydrogel.

본원의 일 구체예에 있어서, 상기 나노 입자(nano particles)는 바람직하게는 철의 양이온과 암세포 표적 지향성 하이드로젤의 음이온이 결합되어 응집된 형태로서, 추가적인 링커, 계면활성제, 화합물 등의 첨가 없이, 하이드로젤과 철 이온의 공동 침전(co-precipitation) 방법에 의해서, 하이드로젤 용액에 철 이온을 첨가한 후 교반시킴으로써 하이드로젤 및 철 이온이 공동침전되어 획득된 나노 입자일 수 있으며, 또는 프리-겔(pre-gel) 방법에 의하여 하이드로젤과 철 이온을 교반시킴으로써 물의 연속상(water continuous phase)에서 분산된 나노 크기의 결합체를 구성하는 방법에 의하여 획득된 나노 입자일 수도 있다. 상기 암세포 표적 지향성 하이드로젤의 음이온은 카르복시기(Carboxyl group)일 수 있으나, 음이온 작용기로서 철 이온과 2차 결합(secondary binding)할 수 있는 형태라면 이에 제한되지 않는다.In one embodiment of the present application, the nanoparticles are preferably an aggregate of iron cations and anions of a cancer cell-targeting hydrogel, without the addition of additional linkers, surfactants, compounds, etc. By co-precipitation of hydrogel and iron ions, the nanoparticles may be obtained by co-precipitating the hydrogel and iron ions by adding iron ions to the hydrogel solution and then stirring, or pre-gel It may be nanoparticles obtained by forming a nano-sized composite dispersed in a continuous phase of water by stirring hydrogel and iron ions using a (pre-gel) method. The anion of the cancer cell-targeting hydrogel may be a carboxyl group, but is not limited thereto as long as it is a form of an anion functional group capable of secondary binding to iron ions.

본원의 다른 일 구체예에 있어서, 상기 암세포는 암세포의 사멸이 필요한 개체로부터 유래된 것으로서 개체의 외부에 존재하는 암세포 뿐만 아니라 개체의 내부에 존재하는 암세포도 포함하는 것으로 해석되어야 한다. 구체적으로 상기 암세포는 상기 개체의 특정 장기, 바람직하게는 암이 발생한 장기에 존재하는 암세포일 수 있다.In another embodiment of the present application, the cancer cells are derived from an entity that requires death of cancer cells, and should be interpreted to include not only cancer cells existing outside the entity but also cancer cells existing inside the entity. Specifically, the cancer cells may be cancer cells present in a specific organ of the individual, preferably in an organ where cancer has occurred.

본원의 다른 구체예에 있어서, 상기 철(iron) 이온은 바람직하게는 철과 산소의 화합물인 산화철(iron oxide)일 수 있으며, 더욱 바람직하게는 Fe3O4일 수 있으나 이에 제한되지 않는다. 상기 철 이온은 체내에서 산소 수송, DNA 생합성, ATP 합성 등에 관여하는 세포 생존에 중요한 물질이며, 미토콘드리아에서 ATP 합성과 함께 활성 산소를 생성하기도 한다.In another embodiment of the present application, the iron ion may preferably be iron oxide, a compound of iron and oxygen, and more preferably Fe 3 O 4 , but is not limited thereto. The iron ion is an important substance for cell survival that is involved in oxygen transport, DNA biosynthesis, and ATP synthesis in the body, and also generates active oxygen along with ATP synthesis in mitochondria.

본원의 또 다른 구체예에서, 상기 암세포 표적 지향성 하이드로젤(hydrogel)은 암세포 표면에서 발현되는 분자 또는 수용체 등에 선택적으로 결합할 수 있는 임의의 하이드로젤을 총칭하며, 상기 암세포 표적 지향성 하이드로젤은 당해 기술분야에서 암세포 표면에서 과발현되는 분자 또는 수용체인 CD44, ESA, HER-2/neu, KRAS, ER(estrogen receptor) 등에 선택적으로 결합할 수 있는 것으로 공지되어 있거나, 미래에 발견될 수 있는 임의의 암세포 표적 지향성 하이드로젤일 수 있다. 상기 하이드로젤은 바람직하게는 히알루론산, 카르복시메틸 셀룰로오즈(carboxymethyl cellulose, CMC), 알지네이트(Alginates), 카르복시셀룰로오즈(carboxycellulose), 키토산, 콜라겐, 젤라틴 등일 수 있으며, 더욱 바람직하게는 히알루론산 또는 이의 유도체(derivatives)이다. 상기 히알루론산은 생분해성으로 생체 적합성이 뛰어나며, 생체 내 물질 중 하나로서 면역반응이 유발되지 않는 생체 유래 고분자 폴리머이다. 관절의 윤활액, 연골 및 피하조직과 같은 연결 조직의 기질뿐만 아니라 세포외 기질, 탯줄, 안구의 유리체에도 존재하는 글루크론산(Glucronic Acid)과 N-아세틸글루코사민(N-Acetylglucosamine)이 반복되는 구조로 적혈구를 제외하고는 거의 모든 조직 및 장기의 세포 표면에 존재한다. 또한, 암세포 표면에 과발현되어 있는 CD44의 수용체(receptor)를 가지고 있어서 암세포를 표적화하기 적합하다.In another embodiment of the present application, the cancer cell-targeting hydrogel refers to any hydrogel that can selectively bind to molecules or receptors expressed on the surface of cancer cells, and the cancer cell-targeting hydrogel is described in the present technology. Any cancer cell target that is known in the field to be capable of selectively binding to CD44, ESA, HER-2/neu, KRAS, ER (estrogen receptor), etc., which are molecules or receptors overexpressed on the surface of cancer cells, or that may be discovered in the future. It may be an oriented hydrogel. The hydrogel may preferably be hyaluronic acid, carboxymethyl cellulose (CMC), alginates, carboxycellulose, chitosan, collagen, gelatin, etc., and more preferably hyaluronic acid or a derivative thereof ( derivatives). The hyaluronic acid is biodegradable, has excellent biocompatibility, and is a bio-derived high molecular weight polymer that does not induce an immune response as one of the substances in living organisms. Red blood cells have a repeating structure of glucuronic acid and N-Acetylglucosamine, which exist not only in the matrix of connective tissues such as joint synovial fluid, cartilage, and subcutaneous tissue, but also in the extracellular matrix, umbilical cord, and vitreous body of the eye. It is present on the cell surface of almost all tissues and organs except for. In addition, it has the CD44 receptor overexpressed on the surface of cancer cells, making it suitable for targeting cancer cells.

본원의 또 다른 구체예에 있어서, 상기 나노 입자는 바람직하게는 직경이 50 내지 200 nm일 수 있으나, 암세포 내로 이동할 수 있는 나노 크기라면 이에 제한되지 않는다.In another embodiment of the present application, the nanoparticles may preferably have a diameter of 50 to 200 nm, but are not limited thereto as long as they are of a nano size that can move into cancer cells.

본원의 또 다른 구체예에 있어서, 상기 나노 입자는 페로토시스(ferrotosis)를 통하여 암세포의 사멸을 유도하는 것을 특징으로 하며, 상기 나노 입자는 암세포 내에 축적되어 암세포 내의 철 이온 농도를 높여 페로토시스를 유발할 수도 있다. 상기 페로토시스는 철 의존성 세포 사멸, 즉, 세포 내 철에 의존하는 세포 사멸의 한 형태로서, 철 의존적인 활성 산소종의 발생, 지질 과산화의 발생 및 축적에 의해 발생하는 세포 사멸을 지칭할 수 있다.In another embodiment of the present application, the nanoparticles are characterized in that they induce death of cancer cells through ferrotosis, and the nanoparticles accumulate in cancer cells to increase the concentration of iron ions in cancer cells, causing ferrotosis. may cause. The ferroptosis is iron-dependent cell death, i.e., a form of intracellular iron-dependent cell death, which may refer to cell death caused by the generation of iron-dependent reactive oxygen species and the occurrence and accumulation of lipid peroxidation. there is.

본원의 또 다른 구체예에 있어서, 상기 암은 바람직하게는 유방암, 대장암, 직장암, 폐암, 결장암, 갑상선암, 구강암, 인두암, 후두암, 자궁경부암, 뇌암, 난소암, 방광암, 신장암, 간암, 췌장암, 전립선암, 피부암, 설암, 자궁암, 위암, 골암, 혈액암 등일 수 있으나, CD44 receptor에 의하여 인식될 수 있는 암의 종류라면 이에 제한되지 않는다.In another embodiment of the present application, the cancer is preferably breast cancer, colon cancer, rectal cancer, lung cancer, colon cancer, thyroid cancer, oral cancer, pharynx cancer, laryngeal cancer, cervical cancer, brain cancer, ovarian cancer, bladder cancer, kidney cancer, liver cancer, It may be pancreatic cancer, prostate cancer, skin cancer, tongue cancer, uterine cancer, stomach cancer, bone cancer, blood cancer, etc., but is not limited thereto as long as it is a type of cancer that can be recognized by the CD44 receptor.

본원의 또 다른 구체예에 있어서, 상기 나노 입자의 처리와 함께 방사선을 처리할 수 있다. 방사선은 에너지를 가진 입자 혹은 파동의 흐름이 전파되는 것을 의미하며 가시광선, 적외선 등과 같은 자연 방사선과 가전제품, 진단용 X-선 장치, 암 치료 장비 등에서 발생하는 인공 방사선이 있다. 이중 방사선 치료에 이용되는 방사선은 대체로 고에너지 방사선을 의미한다. 본원에서 방사선이란 높은 에너지 입자 또는 전자기파로, 알파선(alpha ray), 베타선(beta ray), 감마선(gamma ray), X선(X-ray), 중성자선(neutron beam)을 포함한다. 방사선을 사용하여 암세포 치료 방법은 근접치료 (brachytherapy), 정위 방사선 수술 (Stereotactic radiosurgery; SRS), 수술중 방사선 요법 (intraoperative radiation therapy; IORT), 양성자 치료(Proton therapy), MRI 선형 가속기 (MRI linear accelerator), 정위 신체 방사선 요법(Stereotactic body radiation therapy;SBRYT)들을 사용해서 암세포에 피해를 주는 것을 포함한다. In another embodiment of the present application, radiation may be treated along with the treatment of the nanoparticles. Radiation refers to the propagation of energetic particles or waves, and includes natural radiation such as visible light and infrared radiation, and artificial radiation generated from home appliances, diagnostic X-ray devices, and cancer treatment equipment. Among these, the radiation used in radiation therapy generally refers to high-energy radiation. As used herein, radiation refers to high energy particles or electromagnetic waves and includes alpha rays, beta rays, gamma rays, X-rays, and neutron beams. Methods for treating cancer cells using radiation include brachytherapy, stereotactic radiosurgery (SRS), intraoperative radiation therapy (IORT), proton therapy, and MRI linear accelerator. ), which involves damaging cancer cells using stereotactic body radiation therapy (SBRYT).

방사선에 의해 암세포가 사멸되는 가장 잘 알려진 원리는 방사선의 고에너지에 의한 세포 내 DNA를 손상하는 것이다. 방사선 조사로써 DNA는 double-strand breaks 또는 single-strand break를 일으켜 유전자의 불안정성에 의한 손상을 유도하게 된다. 이렇게 DNA 손상이 일어나게 되면 세포예정사(apoptosis), mitotic catastrophe, radiation necrosis, senescence, autophagy 같은 여러 죽음의 형태가 일어나게 되어 결국 암세포가 사멸하게 된다.The most well-known principle of cancer cell death by radiation is damage to the DNA within cells by the high energy of radiation. Radiation irradiation causes double-strand breaks or single-strand breaks in DNA, leading to damage due to genetic instability. When DNA damage occurs in this way, various types of death such as apoptosis, mitotic catastrophe, radiation necrosis, senescence, and autophagy occur, ultimately leading to the death of cancer cells.

본원에 따른 암세포 사멸 방법은 암이 발병한 개체에 대해 위 나노 입자를 유효성분으로 포함하는 약학적 조성물을 투여하고, 방사선 치료를 병용하는 암의 예방 또는 치료방법에 사용할 수 있다.The cancer cell killing method according to the present application can be used in a cancer prevention or treatment method that involves administering a pharmaceutical composition containing gastric nanoparticles as an active ingredient to an individual with cancer and combining it with radiation therapy.

상기 개체는 인간뿐만 아니라 소, 말, 양, 돼지, 염소, 낙타, 영양, 개, 고양이 등의 포유동물일 수 있으나, 이에 제한되지는 않는다.The subject may be not only a human but also a mammal such as a cow, horse, sheep, pig, goat, camel, antelope, dog, or cat, but is not limited thereto.

위 약학적 조성물의 투여 경로는 이들로 한정되는 것은 아니지만 구강, 정맥내, 근육내, 동맥내, 골수내, 경막내, 심장내, 경피, 피하, 복강내, 비강내, 장관, 국소, 설하 또는 직장이 포함된다. 경구 또는 비경구 투하가 바람직하다. 본원에 사용된 용어 "비경구"는 피하, 피내, 정맥내, 근육내, 관절내, 활액낭내, 흉골내, 경막내, 병소내 및 두개골내 주사 또는 주입기술을 포함한다. 본원의 약학적 조성물은 또한 직장 투여를 위한 좌제의 형태로 투여될 수 있다.The route of administration of the above pharmaceutical composition is, but is not limited to, oral, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intracardiac, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or Includes workplace. Oral or parenteral administration is preferred. As used herein, the term “parenteral” includes subcutaneous, intradermal, intravenous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques. The pharmaceutical compositions herein can also be administered in the form of suppositories for rectal administration.

이하, 첨부된 도면을 참조하여 본원의 구현예 및 실시예를 상세히 설명한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되지 않을 수 있다.Hereinafter, implementation examples and examples of the present application will be described in detail with reference to the attached drawings. However, the present application may not be limited to these implementations, examples, and drawings.

실시예 1. 본원에 따른 암세포 사멸 원리Example 1. Principle of cancer cell death according to the present application

본원에 따른 암세포 사멸 방법은 철/히알루론산 나노 입자 및 방사선을 병용처리하여 사용한다.The cancer cell killing method according to the present application uses a combination of iron/hyaluronic acid nanoparticles and radiation.

철/히알루론산 나노 입자의 암세포 사멸 기작은 도 1의 (a)에 나타내었다. 철이온은 세포막에 존재하는 불포화지방산의 지질 과산화를 유도하고, 또 미토콘드리아에서 ATP 합성하는 과정에서 발생하는 활성 산소를 과하게 생성하도록 함으로써 산화적 스트레스(oxidative stress)가 증가되어 지질 과산화를 유도한다. 방사선 치료는 라디칼(radical)을 유도하고 DNA 절편화를 통한 세포예정사(apoptosis)를 유도하는 것으로 알려져 있다. 본원은 이와 같이 위 나노 입자 및 방사선의 병용처리에 의한 페로토시스(ferroptosis) 및 세포예정사(apoptosis)로써 암세포를 사멸시킬 수 있다.The cancer cell killing mechanism of iron/hyaluronic acid nanoparticles is shown in Figure 1 (a). Iron ions induce lipid peroxidation of unsaturated fatty acids present in cell membranes and also cause excessive production of reactive oxygen species generated during ATP synthesis in mitochondria, thereby increasing oxidative stress and inducing lipid peroxidation. Radiation therapy is known to induce radicals and apoptosis through DNA fragmentation. In this way, our clinic can kill cancer cells through ferroptosis and apoptosis by combined treatment of the above nanoparticles and radiation.

실시예 2. 철/히알루론산 나노 입자의 제조Example 2. Preparation of iron/hyaluronic acid nanoparticles

소듐히알루로네이트 5mg을 탈 이온 (DI) 수 50mL에 용해시켰다. 10 mL의 탈 이온수 중의 99.4 mg의 FeCl2 · 4H2O의 수용액과 10 mL의 탈 이온수 중의 149.1 mg의 FeCl3 · 6H2O 수용액을 서서히 첨가하고 전체 용액을 30분 동안 교반 하였다. 암모니아수를 첨가하여 pH 10으로 조절후 30분동안 교반하였다. 교반이 완료된 용액을 원심분리하여 탈 이온수로 세척한 후, 물 초음파 분산기(water sonicator)를 사용하여 재분산시켰다.5 mg of sodium hyaluronate was dissolved in 50 mL of deionized (DI) water. An aqueous solution of 99.4 mg of FeCl 2 4H 2 O in 10 mL of deionized water and an aqueous solution of 149.1 mg of FeCl 3 6H 2 O in 10 mL of deionized water were added slowly and the entire solution was stirred for 30 min. Aqueous ammonia was added to adjust the pH to 10 and stirred for 30 minutes. After the stirring was completed, the solution was centrifuged, washed with deionized water, and then redispersed using a water sonicator.

도 1(b)에 나타난 바와 같이, 본원의 철/히알루론산 나노 입자(FHA NPs)는 히알루론산 나노 입자에 2가 철 이온 및 3가 철 이온을 혼합하여 반응시키면, 철 이온의 양이온과 히알루론산의 카르복실기(COO-)가 결합하며 응집되어 나노 크기의 결합체가 형성됨으로써 제조된다.As shown in Figure 1(b), the iron/hyaluronic acid nanoparticles (FHA NPs) of the present invention are made by reacting hyaluronic acid nanoparticles with divalent iron ions and trivalent iron ions, thereby forming cations of iron ions and hyaluronic acid. It is manufactured by combining the carboxyl group (COO - ) and aggregating to form a nano-sized conjugate.

도 2a는 본원에 따른 철/히알루론산 나노 입자의 형태를 120kV의 가속 전압에서 작동하는 Energy-Filtering Transmission electron microscopy (TEM) (LIBRA 120, Carl Zeiss, Germany)에서 관찰한 도면이다.Figure 2a is a diagram showing the shape of iron/hyaluronic acid nanoparticles according to the present application observed using Energy-Filtering Transmission electron microscopy (TEM) (LIBRA 120, Carl Zeiss, Germany) operating at an acceleration voltage of 120 kV.

도 2b는 본원에 따른 철/히알루론산 나노 입자의 표면을 전계 방출 주사 전자 현미경 (FE-SEM) (JSM-7800F Prime, JEOL Ltd., 일본)을 사용하여 분석한 도면이다.Figure 2b is a view analyzing the surface of iron/hyaluronic acid nanoparticles according to the present application using a field emission scanning electron microscope (FE-SEM) (JSM-7800F Prime, JEOL Ltd., Japan).

도 2c는 본원에 따른 철/히알루론산 나노 입자의 크기를 Dynamic light scatterintg (DLS)는 zetasizer Nano ZS (Malvern Instruments, UK)를 사용하여 측정한 도면이다.Figure 2c is a diagram showing the size of iron/hyaluronic acid nanoparticles according to the present application measured using Dynamic light scattering (DLS) using a zetasizer Nano ZS (Malvern Instruments, UK).

실시예 3. Clonogenic assayExample 3. Clonogenic assay

유방암세포(human breast adenocarcinoma cell (MCF7)), 뇌암세포(human brain carcinoma cell (U87MG)), 폐암세포(human lung carcinoma cell (A549))은 한국세포주은행(Korea Cell Line Bank; Seoul, Korea)에서 구입 하였다. 각 암세포군은 10% 페탈보빈세럼(fetal bovine serum; FBS) (Cellsera, NSW, Australia)과 1 % 페니실린 및 스트렙토마이신 (Welgene, Korea)으로 보충 된 Rosewell Park Memorial Institute (RPMI)에서 유지되었다. 모든 세포는 5 % CO2 배양기의 가습 대기에서 37 ℃에서 배양하였다.Breast cancer cells (human breast adenocarcinoma cell (MCF7)), brain cancer cells (U87MG), and lung cancer cells (human lung carcinoma cell (A549)) were obtained from the Korea Cell Line Bank (Seoul, Korea). Purchased. Each cancer cell population was maintained at Rosewell Park Memorial Institute (RPMI) supplemented with 10% fetal bovine serum (FBS) (Cellsera, NSW, Australia) and 1% penicillin and streptomycin (Welgene, Korea). All cells were cultured at 37°C in a humidified atmosphere in a 5% CO 2 incubator.

세포주를 24- 웰플레이트 (5 x 10³ 세포 /웰)에 1000㎕의 부피로 분주하고 24 시간 동안 배양 하였다. 세포 안정화 후, 세포를 Dulbecco's PBS (DPBS)로 1 회 세척하고, 나노 입자를 처리하지 않는 군, 200 μg/ml의 나노 입자를 처리한 군으로 분류하여 처리하였다. 방사선 치료는 엑스레이를 사용하였으며 엑스레이의 조사 강도에 따라서 0, 1, 3, 6 Gray로 조사하였다. 병용 치료 후, 37 ℃에서 24 시간 동안 배양후 세척하였으며 신선한 배지(media)를 주입하여 Colony 형성 유무를 한달간 관찰하였다.Cell lines were distributed in a volume of 1000 ㎕ in a 24-well plate (5 x 10³ cells/well) and cultured for 24 hours. After stabilizing the cells, the cells were washed once with Dulbecco's PBS (DPBS) and classified into a group not treated with nanoparticles and a group treated with 200 μg/ml nanoparticles. Radiation treatment used X-rays, and irradiation was performed at 0, 1, 3, or 6 Gray depending on the X-ray intensity. After the combination treatment, the cells were cultured at 37°C for 24 hours, washed, and fresh media was injected to observe colony formation for one month.

처리 방법에 따른 콜로니(colony) 개수(%)Number of colonies (%) according to processing method 유방암breast cancer 뇌암brain cancer 폐암lung cancer 음성대조군Negative control group 100.0 %100.0% 100.0 %100.0% 100.0 %100.0% 나노 입자 단독 처리Nanoparticle treatment alone 30.6 %30.6% 32.1 %32.1% 58.7 %58.7% 방사선 단독 처리 (6 Gray)Radiation treatment alone (6 Gray) 20.0 %20.0% 44.4 %44.4% 25.2 %25.2% 나노 입자-방사선 (6 Gray) 병용처리Nanoparticle-radiation (6 Gray) combined treatment 0.6 %0.6% 21.0 %21.0% 13.7 %13.7%

각 처리 방법에 따른 콜로니 개수를 측정했다. 음성대조군(control)의 콜로니 개수를 100% 기준으로 했을 때 처리 이후 남아있는 콜로니의 개수를 퍼센트로 수치화하여 나타내었다. 그 결과 모든 암세포 군에서 어떠한 처리라도 한 군의 콜로니 개수가 감소했지만, 특히 나노 입자-방사선 병용 처리군에서 나노 입자 단독 처리군, 방사선 단독 처리군에 비하여 높은 항암 효과를 확인할 수 있었다.The number of colonies according to each treatment method was measured. Based on the number of colonies in the negative control group (control) of 100%, the number of colonies remaining after treatment was expressed as a percentage. As a result, the number of colonies in the group treated with any treatment decreased in all cancer cell groups, but in particular, a higher anticancer effect was confirmed in the nanoparticle-radiation combination treatment group compared to the nanoparticle treatment group alone and the radiation treatment group alone.

따라서 본원에 따른 나노 입자 및 방사선 병용 처리 방법은 나노 입자 또는 방사선을 각각 처리했을 때보다 암세포 사멸에 더욱 효과가 있는 것으로 확인되었다.Therefore, the combined treatment method of nanoparticles and radiation according to the present application was confirmed to be more effective in killing cancer cells than when treated with nanoparticles or radiation separately.

실시예 4. TUNEL assayExample 4. TUNEL assay

폐암세포 A549를 사용하여 본원에 따른 암세포 사멸 방법이 얼마나 효과적으로 암세포를 사멸할 수 있는지 확인하기 위한 실험을 진행했다. DNA 절편이 발생하는지 여부로 세포의 사멸 여부를 확인했다.(도 4 참조)An experiment was conducted using lung cancer cells A549 to determine how effectively the cancer cell killing method according to the present invention can kill cancer cells. Cell death was confirmed by whether DNA fragments occurred (see Figure 4).

세포주를 24- 웰플레이트 (5 x 10³ 세포 /웰)에 1000㎕의 부피로 분주하고 24 시간 동안 배양 하였다. 세포 안정화 후, 세포를 Dulbecco 's PBS (DPBS)로 1 회 세척하였다. 실험 조건에 따라서 아무것도 처리하지 않은 대조군(control), 200 μg/ml의 나노 입자를 처리한 군(NP), 방사선 6 Gray를 조사한 군(X-ray), 200 μg/ml의 나노 입자와 방사선 6 Gray를 조사하여 병용 처리한 군(NP + X-ray)의 총 4가지 시험군으로 실험을 진행하였다. Cell lines were distributed in a volume of 1000 ㎕ in a 24-well plate (5 x 10³ cells/well) and cultured for 24 hours. After cell stabilization, cells were washed once with Dulbecco's PBS (DPBS). Depending on the experimental conditions, the untreated control group (control), the group treated with 200 μg/ml nanoparticles (NP), the group irradiated with radiation 6 Gray (X-ray), the group treated with 200 μg/ml nanoparticles and radiation 6 The experiment was conducted with a total of four test groups, including the group treated with Gray (NP + X-ray).

invitrogen Click-iT Plus TUNEL Assay kit를 이용하여 실험을 진행하였으며 핵(DAPI 염색; 4', 6-diamidino-2-phenylindole). NA 절편(TUNEL) 및 미세섬유(actin filament)를 대조염색(counterstaining)하여 각 군의 결과를 확인하였다.The experiment was performed using the invitrogen Click-iT Plus TUNEL Assay kit and nuclei (DAPI staining; 4', 6-diamidino-2-phenylindole). The results of each group were confirmed by counterstaining NA sections (TUNEL) and microfibers (actin filaments).

이 중에서 DNA 절편과 관련된 TUNEL assay는 세포예정사(apoptosis)에 의한 세포사멸 여부를 확인할 수 있는 시험법이다. TUNEL assay는 deoxynucleotide transferase(TdT)가 3'-hydroxyl terminus의 DNA 절편에 부착되어 형광을 나타내는 점을 활용한다. 즉, TUNEL assay에 의한 초록색 형광이 확인된다면 이는 세포에서 세포예정사(apoptosis)가 일어났으며 DNA 절편이 만들어졌음을 의미한다. (도 3 참조)Among these, the TUNEL assay, which involves DNA fragmentation, is a test method that can check whether cell death occurs due to apoptosis. The TUNEL assay utilizes the fact that deoxynucleotide transferase (TdT) attaches to the DNA fragment at the 3'-hydroxyl terminus and produces fluorescence. In other words, if green fluorescence is confirmed by TUNEL assay, it means that apoptosis has occurred in the cell and a DNA fragment has been created. (see Figure 3)

음성 시험군(control)과 나노 입자를 단독 처리한 군은 초록색 형광이 보이지 않았다. 본원에서 나노 입자는 세포에서 페로토시스(ferroptosis)를 유발하지만 페로토시스(ferroptosis)는 DNA의 분해까지 야기하지 않기 때문에 형광이 보이지 않을 수 있다.The negative test group (control) and the group treated with nanoparticles alone did not show green fluorescence. Here, nanoparticles cause ferroptosis in cells, but since ferroptosis does not cause decomposition of DNA, fluorescence may not be visible.

음성 시험군과 방사선 단독 처리군을 비교했을 때, 방사선 단독 처리군에서 초록색 형광을 보였다. 이는 방사선을 처리할 경우 세포예정사(apoptosis)가 일어났기 때문이다.When comparing the negative test group and the radiation-only treatment group, the radiation-only treatment group showed green fluorescence. This is because apoptosis occurs when treated with radiation.

음성 시험군과 나노 입자-방사선 병용처리군을 비교했을 때, 병용처리군에서 초록색 형광을 보였다. 이는 나노 입자와 방사선에 의한 페로토시스(ferroptosis) 및 세포예정사(apoptosis) 2가지의 작용기전을 모두 보였기 때문이다.When comparing the negative test group and the nanoparticle-radiation combination treatment group, the combination treatment group showed green fluorescence. This is because it showed both ferroptosis and apoptosis caused by nanoparticles and radiation.

즉, TUNNEL assay를 통해 방사선에 의한 세포예정사 효과를 확인할 수 있었다. 나노 입자 또는 방사선을 각각 단독으로 처리했을 때에도 암세포의 사멸을 기대할 수 있으나, 나노 입자 및 방사선을 병용으로 처리할 경우 페로토시스(ferroptosis)와 세포예정사(apoptosis) 두 작용기전에 의해 암세포를 더욱 효과적으로 사멸시킬 수 있다.In other words, the effect of programmed cell death caused by radiation could be confirmed through the TUNNEL assay. Death of cancer cells can be expected when nanoparticles or radiation are treated alone, but when nanoparticles and radiation are treated together, cancer cells are killed more effectively through two mechanisms of action: ferroptosis and apoptosis. It can be killed.

Claims (13)

암세포 사멸 방법에 있어서,
철 이온 및 암세포 표적 지향성 하이드로젤을 포함하는 나노 입자를 개체로부터 유래한 암세포에 처리하는 단계; 및
방사선을 상기 암세포에 처리하는 단계를 포함하며,
상기 나노 입자는 철의 양이온과 암세포 표적 지향성 하이드로젤의 음이온이 결합하여 응집된 형태인 것을 특징으로 하는, 방법.
In the method of killing cancer cells,
Treating cancer cells derived from an individual with nanoparticles containing iron ions and a cancer cell-targeting hydrogel; and
Including treating the cancer cells with radiation,
The method is characterized in that the nanoparticles are aggregated by combining iron positive ions and negative ions of the cancer cell-targeting hydrogel.
제1항에 있어서,
상기 철 이온은 산화철인 것을 특징으로 하는, 방법.
According to paragraph 1,
The method, characterized in that the iron ion is iron oxide.
제1항에 있어서,
상기 암세포 표적 지향성 하이드로젤은 히알루론산, 카르복시메틸 셀룰로오즈, 알지네이트, 키토산, 콜라겐, 젤라틴 및 카르복시셀룰로오즈로 이루어진 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는, 방법.
According to paragraph 1,
The cancer cell targeting hydrogel is characterized in that at least one selected from the group consisting of hyaluronic acid, carboxymethyl cellulose, alginate, chitosan, collagen, gelatin, and carboxycellulose.
제1항에 있어서,
상기 나노 입자는 페로토시스(ferroptosis)를 통하여 암세포의 사멸을 유도하는 것을 특징으로 하는, 방법.
According to paragraph 1,
A method wherein the nanoparticles induce death of cancer cells through ferroptosis.
제1항에 있어서,
상기 방사선은 세포예정사(apoptosis)를 통하여 암세포의 사멸을 유도하는 것을 특징으로 하는, 방법.
According to paragraph 1,
A method characterized in that the radiation induces death of cancer cells through apoptosis.
제1항에 있어서,
상기 방사선은 알파선(alpha ray), 베타선(beta ray), 감마선(gamma ray), X선(X-ray) 및 중성자선(neutron beam)으로 이루어진 군에서 선택되는 어느 하나 이상인 것인, 방법.
According to paragraph 1,
The method wherein the radiation is at least one selected from the group consisting of alpha ray, beta ray, gamma ray, X-ray, and neutron beam.
제1항에 있어서,
상기 암세포는 유방암, 대장암, 직장암, 폐암, 결장암, 갑상선암, 구강암, 인두암, 후두암, 자궁경부암, 뇌암, 난소암, 방광암, 신장암, 간암, 췌장암, 전립선암, 피부암, 설암, 자궁암, 위암, 골암, 및 혈액암으로 이루어진 군으로부터 선택된 어느 하나 이상의 암세포인 것을 특징으로 하는, 방법.
According to paragraph 1,
The cancer cells include breast cancer, colon cancer, rectal cancer, lung cancer, colon cancer, thyroid cancer, oral cancer, pharynx cancer, larynx cancer, cervical cancer, brain cancer, ovarian cancer, bladder cancer, kidney cancer, liver cancer, pancreatic cancer, prostate cancer, skin cancer, tongue cancer, uterine cancer, and stomach cancer. , a method characterized in that it is one or more cancer cells selected from the group consisting of bone cancer, and blood cancer.
암의 예방 및 치료방법에 있어서,
철 이온 및 암세포 표적 지향성 하이드로젤을 포함하는 나노 입자를 유효 성분으로 포함하는 약학적 조성물을 인간을 제외한 개체에 처리하는 단계; 및
방사선을 인간을 제외한 개체에 처리하는 단계를 포함하며,
상기 나노 입자는 철의 양이온과 암세포 표적 지향성 하이드로젤의 음이온이 결합하여 응집된 형태인 것을 특징으로 하는, 방법.
In the prevention and treatment of cancer,
Treating subjects other than humans with a pharmaceutical composition containing nanoparticles containing iron ions and a cancer cell-targeting hydrogel as active ingredients; and
Including the step of treating radiation to an entity other than a human,
The method is characterized in that the nanoparticles are aggregated by combining iron positive ions and negative ions of the cancer cell-targeting hydrogel.
제8항에 있어서,
상기 철 이온은 산화철인 것을 특징으로 하는, 방법.
According to clause 8,
The method, characterized in that the iron ion is iron oxide.
제8항에 있어서,
상기 암세포 표적 지향성 하이드로젤은 히알루론산, 카르복시메틸 셀룰로오즈, 알지네이트, 키토산, 콜라겐, 젤라틴 및 카르복시셀룰로오즈로 이루어진 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는, 방법.
According to clause 8,
The cancer cell targeting hydrogel is characterized in that at least one selected from the group consisting of hyaluronic acid, carboxymethyl cellulose, alginate, chitosan, collagen, gelatin, and carboxycellulose.
제8항에 있어서,
상기 나노 입자는 페로토시스(ferroptosis)를 통하여 암세포의 사멸을 유도하는 것을 특징으로 하는, 방법.
According to clause 8,
A method wherein the nanoparticles induce death of cancer cells through ferroptosis.
제8항에 있어서,
상기 방사선은 세포예정사(apoptosis)를 통하여 암세포의 사멸을 유도하는 것을 특징으로 하는, 방법.
According to clause 8,
A method characterized in that the radiation induces death of cancer cells through apoptosis.
제8항에 있어서,
상기 암은 유방암, 대장암, 직장암, 폐암, 결장암, 갑상선암, 구강암, 인두암, 후두암, 자궁경부암, 뇌암, 난소암, 방광암, 신장암, 간암, 췌장암, 전립선암, 피부암, 설암, 자궁암, 위암, 골암, 및 혈액암으로 이루어진 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는, 방법.

According to clause 8,
The above cancers include breast cancer, colon cancer, rectal cancer, lung cancer, colon cancer, thyroid cancer, oral cancer, pharynx cancer, larynx cancer, cervical cancer, brain cancer, ovarian cancer, bladder cancer, kidney cancer, liver cancer, pancreatic cancer, prostate cancer, skin cancer, tongue cancer, uterine cancer, and stomach cancer. , bone cancer, and blood cancer.

KR1020220127203A 2022-10-05 2022-10-05 Combination treatment method of nanoparticle inducing ferroptosis having anticancer treatment effect and radiation KR20240047765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220127203A KR20240047765A (en) 2022-10-05 2022-10-05 Combination treatment method of nanoparticle inducing ferroptosis having anticancer treatment effect and radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220127203A KR20240047765A (en) 2022-10-05 2022-10-05 Combination treatment method of nanoparticle inducing ferroptosis having anticancer treatment effect and radiation

Publications (1)

Publication Number Publication Date
KR20240047765A true KR20240047765A (en) 2024-04-12

Family

ID=90680095

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220127203A KR20240047765A (en) 2022-10-05 2022-10-05 Combination treatment method of nanoparticle inducing ferroptosis having anticancer treatment effect and radiation

Country Status (1)

Country Link
KR (1) KR20240047765A (en)

Similar Documents

Publication Publication Date Title
Li et al. Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo
Mirrahimi et al. Enhancement of chemoradiation by co‐incorporation of gold nanoparticles and cisplatin into alginate hydrogel
Mirjolet et al. The radiosensitization effect of titanate nanotubes as a new tool in radiation therapy for glioblastoma: a proof-of-concept
DK2300054T3 (en) Inorganic nanoparticles with high densistet to break down cells in-vivo
Zhong et al. Calcium phosphate engineered photosynthetic microalgae to combat hypoxic-tumor by in-situ modulating hypoxia and cascade radio-phototherapy
DK2451481T3 (en) METALLIC NANOPARTICLES, PREPARATION AND APPLICATIONS THEREOF
KR102187362B1 (en) Nanoparticles for the selective death of cancer cells through ferroptosis, method for preparing the same, and the use thereof
Zhang et al. Dual pH-responsive “charge-reversal like” gold nanoparticles to enhance tumor retention for chemo-radiotherapy
Gong et al. A nanodrug combining CD47 and sonodynamic therapy efficiently inhibits osteosarcoma deterioration
EP4072657B1 (en) Use of conductive nanoparticles along with tumor-treating alternating electric fields, and corresponding kit
EP2978423A1 (en) Stable nanocomposition comprising doxorubicin, process for the preparation thereof, its use and pharmaceutical compositions containing it
Mohammadi et al. The combination effect of poly (lactic-co-glycolic acid) coated iron oxide nanoparticles as 5-fluorouracil carrier and X-ray on the level of DNA damages in the DU 145 human prostate carcinoma cell line
Deng et al. Novel T7-modified pH-responsive targeted nanosystem for co-delivery of docetaxel and curcumin in the treatment of esophageal cancer
Chiang et al. Tumor cell-targeting radiotherapy in the treatment of glioblastoma multiforme using linear accelerators
Zhao et al. A nano-traditional chinese medicine against lymphoma that regulates the level of reactive oxygen species
Yin et al. A redox-activatable and targeted photosensitizing agent to deliver doxorubicin for combining chemotherapy and photodynamic therapy
CN111954519A (en) Liposomal system for drug delivery
Sohrabi et al. Recent advances in gene therapy-based cancer monotherapy and synergistic bimodal therapy using upconversion nanoparticles: Structural and biological aspects
CN110974804B (en) P53 messenger RNA nano particle, preparation method thereof and application thereof in preparing medicament for treating tumor
Zhang et al. Biomaterial-assisted tumor therapy: A brief review of hydroxyapatite nanoparticles and its composites used in bone tumors therapy
CA3008095C (en) A pharmaceutical composition comprising apatite-based matrix and surface modifying agent
Wang et al. Folate-modified erythrocyte membrane nanoparticles loaded with Fe3O4 and artemisinin enhance ferroptosis of tumors by low-intensity focused ultrasound
US11298428B2 (en) Nanocarrier for selective fluorescence labeling of cancer cell and preparation method therefor
KR20240047765A (en) Combination treatment method of nanoparticle inducing ferroptosis having anticancer treatment effect and radiation
Bureš et al. Signal protein-functionalized gold nanoparticles for nuclear targeting into osteosarcoma cells for use in radiosensitization experiments