KR20240044631A - System for controlling power used in dc-dc converter employing hybrid parallel for increasing of generation quantity - Google Patents

System for controlling power used in dc-dc converter employing hybrid parallel for increasing of generation quantity Download PDF

Info

Publication number
KR20240044631A
KR20240044631A KR1020220123879A KR20220123879A KR20240044631A KR 20240044631 A KR20240044631 A KR 20240044631A KR 1020220123879 A KR1020220123879 A KR 1020220123879A KR 20220123879 A KR20220123879 A KR 20220123879A KR 20240044631 A KR20240044631 A KR 20240044631A
Authority
KR
South Korea
Prior art keywords
power
battery
voltage
buck
input
Prior art date
Application number
KR1020220123879A
Other languages
Korean (ko)
Inventor
김동완
Original Assignee
김동완
부산항만공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김동완, 부산항만공사 filed Critical 김동완
Priority to KR1020220123879A priority Critical patent/KR20240044631A/en
Priority to PCT/KR2023/014862 priority patent/WO2024072016A1/en
Publication of KR20240044631A publication Critical patent/KR20240044631A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/181Circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

실시예는 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 관한 것이다.
구체적으로, 이러한 구성은 먼저, 입력 전원으로 태양광 패널과 압전에너지 하베스팅 모듈로 구성되며, 출력단은 배터리가 연결되고, 최종적으로 배터리와 DC-AC 컨버터가 연결되어 모선으로 연결되는 것이다.
이를 위해서, 전력변환 장치는 DC-DC 컨버터로 만들며, 배터리 충전 및 방전 제어 기능을 포함하도록 한다. 이러한 상태에서, 전력변환기는 몇 가지 방식의 연계로 구성하고, 각 구성에 따른 장단점을 고려하여 만든 것이다.
구체적으로, 이러한 변환기는 별도의 배터리 충전회로가 없는 대신에, 각 개별 입력에 컨버터를 구성한다. 그리고, 광범위한 입력전압의 범위에 대해서도 안정적인 출력 제어가 가능한 벅-부스트 구조를 가진다.
이에 더하여, 출력은 병렬로 배터리에 연결하여 발전된 에너지를 충전하여 사용할 수 있도록 한다. 특히, 배터리 충전 제어를 위해 배터리 내부와 별도의 전류 경로를 사용하고, 이를 위해 두 개의 전력변환기를 교차 배선하여 배터리 충전 전류를 공유함으로써, 출력 전압을 제어하여 배터리의 최대 충전 전류를 함께 제한한다.
따라서, 이를 통해 실시예는 압전소자에 의한 전력의 발생이 미미하므로 발생전력의 손실을 최소화하고, 발생전력을 효율적으로 저장할 수 있는 승압컨버팅 시스템을 제공한다.
그리고, 이렇게 발생하는 전력을 최대화하고, 발생한 전력의 변환손실을 최소화하는 전력변환방식과 이를 효율적으로 저장 및 부하에 사용한다.
The embodiment relates to a hybrid parallel power conversion system for increasing power generation.
Specifically, this configuration first consists of a solar panel and a piezoelectric energy harvesting module as input power, the output terminal is connected to a battery, and finally the battery and DC-AC converter are connected to the busbar.
For this purpose, the power conversion device is made of a DC-DC converter and includes battery charging and discharging control functions. In this situation, the power converter is composed of several types of connection and is made by considering the pros and cons of each configuration.
Specifically, these converters do not have a separate battery charging circuit, but instead configure a converter for each individual input. Additionally, it has a buck-boost structure that allows stable output control even over a wide range of input voltages.
In addition, the output is connected to a battery in parallel so that the generated energy can be charged and used. In particular, to control battery charging, a current path separate from the inside of the battery is used, and for this purpose, two power converters are cross-wired to share the battery charging current, thereby controlling the output voltage and limiting the maximum charging current of the battery.
Therefore, through this, the embodiment provides a boost conversion system that minimizes the loss of generated power and efficiently stores the generated power because the generation of power by the piezoelectric element is minimal.
In addition, a power conversion method that maximizes the power generated in this way and minimizes conversion loss of the generated power is used for efficient storage and load.

Description

발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템{System for controlling power used in dc-dc converter employing hybrid parallel for increasing of generation quantity}Hybrid parallel power conversion system for increasing power generation quantity {System for controlling power used in dc-dc converter employing hybrid parallel for increasing of generation quantity}

본 명세서에 개시된 내용은 압전에너지 하베스팅의 전력변환 시스템에 관한 것이다. 보다 상세하게는, 이에 따른 전력변환기를 사용하여 전력변환을 할 경우, 해당 전력변환기의 전력변환 동작을 모선(grid power)에 따라 상이하게 제어하여 전력을 변환할 수 있도록 한다.The content disclosed in this specification relates to a power conversion system for piezoelectric energy harvesting. More specifically, when power conversion is performed using a power converter, the power conversion operation of the power converter is controlled differently depending on the grid power to convert power.

본 명세서에서 달리 표시되지 않는 한, 이 섹션에 설명되는 내용들은 이 출원의 청구항들에 대한 종래 기술이 아니며, 이 섹션에 포함된다고 하여 종래 기술이라고 인정되는 것은 아니다.Unless otherwise indicated herein, the material described in this section is not prior art to the claims of this application, and is not admitted to be prior art by inclusion in this section.

일반적으로, 친환경 녹색항만의 추진에 항만톨게이트용 스마트 압전에너지 시스템의 적용이 필요하다.In general, the application of a smart piezoelectric energy system for port toll gates is necessary to promote eco-friendly green ports.

구체적으로는, 항만에서 사용하는 전력에 의한 이산화탄소 저감을 위해 환경친화적이고, 기존 에너지 생산체계의 한계로 인해 중소형 에너지자립 및 근접지원형 친환경 발전과 같은 에너지 생산의 친환경ㅇ사회수용성 요구가 증가하는 실정이다.Specifically, in order to reduce carbon dioxide from the power used in ports, there is an increasing demand for eco-friendliness and social acceptability of energy production such as small and medium-sized energy independence and close support eco-friendly power generation due to the limitations of the existing energy production system. am.

그래서, 이러한 기존 신재생에너지의 한계를 극복하기 위하여 시간적ㅇ공간적 제약 및 민원 발생의 여지가 적은 압전발전이 있을 수 있을 것이다.Therefore, in order to overcome these limitations of existing renewable energy, there may be piezoelectric power generation with less time and space constraints and less room for civil complaints.

그런데, 이러한 압전소자에 의한 전력의 발생은 대체적으로 미미하고, 발생한 전력의 전력변환손실도 어느 정도 고려해야 할 것이기도 하다. 그래서, 이렇게 발전량이 적으므로 전력분야(소재분야와 시공분야 포함) 등의 협업을 통한 완성이 필요하다. 그리고, 발전량의 증대를 위한 손실을 최소화하는 최대전력변환방식도 있어야 할 것이기도 하다.However, the generation of power by these piezoelectric elements is generally insignificant, and the power conversion loss of the generated power must also be considered to some extent. Therefore, since the amount of power generation is small, it is necessary to complete it through collaboration in the power field (including the materials and construction fields). Additionally, there must be a maximum power conversion method that minimizes losses to increase power generation.

부가하면, 이러한 배경의 선행기술은 아래의 문헌이 나오는 정도이다.In addition, the prior art in this background is the extent to which the following documents appear.

(특허문헌 0001) KR101794615 B1(Patent Document 0001) KR101794615 B1

참고적으로, 이러한 문헌 1은 에너지 하베스팅 압전발전기에 있어서, 압전소자에 의한 전력을 승압하고, 승압 손실을 최소로 하는 것이다.For reference, Document 1 is an energy harvesting piezoelectric generator that boosts power by a piezoelectric element and minimizes boost loss.

이를 위해, 이차전지 충전에 필요한 전압까지 승압시키는데 콘덴서에 충전된 전압을 다른 콘덴서로 이동하고 적층하는 스위칭 방식으로 승압함으로써 승압 손실을 최소로 하도록 한다.To this end, the voltage required for charging the secondary battery is boosted using a switching method in which the voltage charged in the condenser is moved to another condenser and stacked, thereby minimizing boost loss.

개시된 내용은, 전술한 압전소자에 의한 전력의 발생이 미미하므로 발생전력의 손실을 최소화하고, 발생전력을 효율적으로 저장할 수 있는 승압컨버팅을 제공하도록 하는 발전량의 증대를 위한 하이브리드 병렬형 전력변환기의 전력제어 시스템을 제공하고자 한다.The disclosed content is the power of a hybrid parallel power converter for increasing power generation to minimize the loss of generated power and provide boost conversion that can efficiently store the generated power since the generation of power by the above-described piezoelectric element is minimal. We want to provide a control system.

그리고, 이러한 경우에 이렇게 발생하는 전력을 최대화하고, 발생한 전력의 변환손실을 최소화하는 전력변환방식과 이를 효율적으로 저장 및 부하에 사용할 수 있도록 한다.In this case, a power conversion method that maximizes the power generated and minimizes the conversion loss of the generated power and allows it to be efficiently used for storage and load.

실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환기의 전력제어 시스템은,The power control system of the hybrid parallel power converter for increasing power generation according to the embodiment is,

먼저, 전체적인 구성은 크게, 입력 전원으로 태양광 패널(PV Panel)과 압전에너지 하베스팅 모듈로 구성되며, 출력단은 배터리가 연결되고, 최종적으로 배터리와 DC-AC 컨버터가 연결되어 모선(grid power)으로 연결되는 것이다.First, the overall configuration largely consists of a solar panel (PV Panel) and a piezoelectric energy harvesting module as input power, the output terminal is connected to a battery, and finally the battery and DC-AC converter are connected to create grid power. It is connected to.

이를 위해서, 전력변환 장치는 DC-DC 컨버터로 만들며, 배터리 충전 및 방전 제어 기능을 포함하도록 한다. 이러한 상태에서, 전력변환기는 몇 가지 방식의 연계로 구성하고, 각 구성에 따른 장단점을 고려하여 만든 것이다.For this purpose, the power conversion device is made of a DC-DC converter and includes battery charging and discharging control functions. In this situation, the power converter is composed of several types of connection and is made by considering the pros and cons of each configuration.

다음, 이러한 변환기의 구성은 전술한 각 구성에 따른 장점과 단점을 고려하여, 별도의 배터리 충전회로가 없는 대신에, 각 개별 입력에 각각의 컨버터로 구성하여, 각 입력 전원에 가장 적합한 제어 방식이 만들어지는 구조이다.Next, the configuration of this converter takes into account the advantages and disadvantages of each of the above-mentioned configurations, and instead of having a separate battery charging circuit, it is configured with each converter for each individual input, so that the most suitable control method for each input power source is determined. It is a structure that is created.

먼저, 이러한 부스터형 DC-DC 컨버터 회로는 낮은 직류 입력단 전력원으로부터 태양광 인버터의 출력을 감안한 높은 직류 링크단 전압을 구현하기 위한 일반적인 전력변환 회로로 적용될 수 있다. 하지만, ESS(Energy Storage System)를 적용하기 위해서는 에너지 저장장치인 배터리를 적용하여 구성하여야 하고, 압전 하베스팅 모듈의 경우, 발전 전력이 매우 낮아서 직접적으로 높은 용량의 배터리를 충전하기 매우 어렵다. 따라서, 일반적인 가정용 태양광 패널 기준의 전력을 고려하면, 높은 직류단 링크 전압을 바로 전력원에서 출력하는 것은 어려우며, 배터리를 중심으로 회로를 만들어야 한다.First, this booster-type DC-DC converter circuit can be applied as a general power conversion circuit to implement a high DC link voltage considering the output of a solar inverter from a low DC input power source. However, in order to apply an ESS (Energy Storage System), it must be configured with a battery, which is an energy storage device, and in the case of a piezoelectric harvesting module, the generated power is very low, so it is very difficult to directly charge a high capacity battery. Therefore, considering the power of a typical home solar panel, it is difficult to output a high DC link voltage directly from the power source, and a circuit must be created centered around a battery.

그래서, 태양광 및 압전 하베스팅 모듈을 입력으로 하는 ESS(배터리) 연계형 전력변환 장치를(두 개의 하이브리드 병렬 전력변환기) 우선적으로 제공한다. 그리고, 각 컨버터는 입력단에 연결된 전력원(태양광 및 압전 하베스팅 모듈)에 따라, 최대 전력추종제어(MPPT, Maximum Power Point Tracking)를 수행할 수 있도록 구성한다. 또한, 출력단에 병렬로 배터리가 연결되어 출력 전압 및 전류를 배터리의 상태에 따라 제어하도록 한다.Therefore, an ESS (battery) linked power conversion device (two hybrid parallel power converters) with solar and piezoelectric harvesting modules as input is provided first. Additionally, each converter is configured to perform maximum power point tracking (MPPT) according to the power source (solar and piezoelectric harvesting module) connected to the input terminal. Additionally, a battery is connected in parallel to the output terminal to control the output voltage and current according to the state of the battery.

특히, 다양한 형태의 컨버터가 태양광 및 압전 하베스팅 모듈에 적용될 수 있지만, 입력 전압의 범위가 매우 광범위하게 변동할 뿐만 아니라, 출력전압이 입력전압 보다 높은 경우가 있으므로, 단순한 Buck 컨버터로는 배터리 충전 기능을 수행할 수 없다. 따라서, 광범위한 입력전압의 범위에 대해서도 안정적인 출력 제어가 가능한 벅-부스트(buck-boost) 컨버터 구조를 가진다.In particular, various types of converters can be applied to solar and piezoelectric harvesting modules, but not only does the input voltage range vary widely, but the output voltage is sometimes higher than the input voltage, so a simple buck converter is not suitable for battery charging. cannot perform its function. Therefore, it has a buck-boost converter structure that allows stable output control even over a wide range of input voltages.

또한, 배터리 충전 제어를 위해 배터리 내부와 별도의 전류 경로를 사용하고, 이를 위해 두 개의 전력변환기를 교차 배선하여 배터리 충전 전류를 공유함으로써, 출력 전압을 제어하여 배터리의 최대 충전 전류를 함께 제한한다.In addition, to control battery charging, a current path separate from the inside of the battery is used, and for this purpose, two power converters are cross-wired to share the battery charging current, thereby controlling the output voltage and limiting the maximum charging current of the battery.

이러한 상태에서, 일실시예에 따른 전력제어 방식은 기존의 전력제어 방식과 달리, 제안된 전력변환 회로에서는 각 개별 전력원이 상이하고, 그 특성도 다르며, 배터리의 충전 상태와 부하 전력 상태에 따라서 다르게 제어할 수 있도록 한다.In this state, the power control method according to one embodiment is different from the existing power control method. In the proposed power conversion circuit, each individual power source is different, its characteristics are different, and depending on the charging state of the battery and the load power state, Allows for different control.

구체적으로는, 전술한 입력 전력원의 즉, 컨버터에 연결된 전력원의 입력전압과 출력전압의 상호 관계에 따라 입력 전압이 출력전압보다 높은 경우에는 벅(buck) 모드로 입력 전압이 낮은 경우에는 부스트(boost) 모드로 동작한다. 그리고, 배터리가 방전상태에서는 각 입력 전력의 최대 점을 제어하는 MPPT 제어를 수행하고, 배터리가 충전 상태에서는 배터리의 전압 상태에서 따라서 정전류 제어 모드와 정전압 제어 모드를 적용한다. 즉, 전력원의 입력 상태와 배터리의 상태 및 부하 전류의 상태에 따라서 제어 모드를 상시적으로 변동하면서 제어함으로써, 전술한 변환기에 적절한 전력제어를 할 수 있도록 하는 것을 특징으로 한다.Specifically, according to the correlation between the input voltage and output voltage of the input power source described above, that is, the power source connected to the converter, when the input voltage is higher than the output voltage, buck mode is used, and when the input voltage is low, boost mode is used. Operates in (boost) mode. In addition, when the battery is in a discharged state, MPPT control is performed to control the maximum point of each input power, and when the battery is in a charged state, the constant current control mode and constant voltage control mode are applied according to the voltage state of the battery. That is, the control mode is constantly varied and controlled according to the input state of the power source, the state of the battery, and the state of the load current, thereby enabling appropriate power control to the above-described converter.

실시예들에 의하면, 압전소자에 의한 전력의 발생이 미미하므로 발생전력의 손실을 최소화하고, 발생전력을 효율적으로 저장할 수 있는 승압컨버팅 시스템을 제공한다.According to embodiments, since the generation of power by the piezoelectric element is minimal, a boost conversion system is provided that can minimize the loss of generated power and efficiently store the generated power.

그리고, 이렇게 발생하는 전력을 최대화하고, 발생한 전력의 변환손실을 최소화하는 전력변환방식과 이를 효율적으로 저장 및 부하에 사용한다.In addition, a power conversion method that maximizes the power generated in this way and minimizes conversion loss of the generated power is used for efficient storage and load.

도 1은 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템을 전체적으로 도시한 도면
도 2는 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 적용한 전력변환기를 개념적으로 설명하기 위한 도면
도 3은 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 적용한 전력변환기의 벅-부스트 동작을 설명하기 위한 도면
도 4는 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 적용한 전력변환기의 추가적인 DC-AC 컨버터의 구성을 도시한 도면
도 5와 도 6은 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환시스템에 적용한 태양광 패널과 압전 하베스팅 모듈의 전압-전류 특성(곡선)을 설명하기 위한 도면
도 7과 도 8은 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환시스템에 적용한 배터리 상태에 따른 전력제어를 설명하기 위한 도면
도 9는 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 적용한 압전 하베스팅 모듈 및 태양광을 적용한 배터리 제어 장치의 제어 방식을 설명하기 위한 도면
도 10과 도 11은 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 적용한 전체 제어 블록도
도 12는 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템의 동작을 순서대로 도시한 절차 흐름도
도 13은 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 적용한 전력변환기의 양방향 벅-부스트 컨버터를 설명하기 위한 도면
도 14 내지 도 18은 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 적용한 전력변환 알고리즘의 실험 결과를 나타낸 도면
1 is a diagram illustrating the overall hybrid parallel power conversion system for increasing power generation according to an embodiment.
Figure 2 is a diagram conceptually illustrating a power converter applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.
Figure 3 is a diagram illustrating the buck-boost operation of a power converter applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.
Figure 4 is a diagram showing the configuration of an additional DC-AC converter of a power converter applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.
Figures 5 and 6 are diagrams for explaining the voltage-current characteristics (curves) of solar panels and piezoelectric harvesting modules applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.
Figures 7 and 8 are diagrams for explaining power control according to battery status applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.
FIG. 9 is a diagram illustrating the control method of a battery control device using a piezoelectric harvesting module and solar energy applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.
Figures 10 and 11 are overall control block diagrams applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.
Figure 12 is a procedural flow chart sequentially showing the operation of a hybrid parallel power conversion system for increasing power generation according to an embodiment.
FIG. 13 is a diagram illustrating a bidirectional buck-boost converter of a power converter applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.
14 to 18 are diagrams showing experimental results of a power conversion algorithm applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.

도 1은 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템을 전체적으로 도시한 도면이다.Figure 1 is a diagram illustrating the overall hybrid parallel power conversion system for increasing power generation according to an embodiment.

도 1에 도시된 바와 같이, 일실시예에 따른 시스템은 크게, 입력 전원으로 태양광 패널(PV Panel)과 압전에너지 하베스팅 모듈로 구성되며, 출력단은 배터리가 연결되고, 최종적으로 배터리와 DC-AC 컨버터가 연결되어 모선(grid power)으로 연결되는 것이다.As shown in Figure 1, the system according to one embodiment largely consists of a solar panel (PV Panel) and a piezoelectric energy harvesting module as input power, the output terminal is connected to a battery, and finally the battery and DC- The AC converter is connected and connected to grid power.

이를 위해서, 전력변환 장치는 DC-DC 컨버터로 만들며, 배터리 충전 및 방전 제어 기능을 포함하도록 한다. 이러한 상태에서, 전력변환기는 몇 가지 방식의 연계로 구성하고, 각 구성에 따른 장단점을 고려하여 만든다.For this purpose, the power conversion device is made of a DC-DC converter and includes battery charging and discharging control functions. In this situation, the power converter is constructed by connecting several methods and considering the pros and cons of each configuration.

구체적으로는, 각 구성에 따른 장점과 단점을 고려하여, 별도의 배터리 충전회로가 없는 대신에, 각 개별 입력에 각각의 컨버터로 구성하여, 각 입력 전원에 가장 적합한 제어 방식이 만들어지는 구조이다.Specifically, taking into account the advantages and disadvantages of each configuration, there is no separate battery charging circuit, but instead, each individual input is configured with a separate converter, and a control method most suitable for each input power source is created.

먼저, 보다 상세하게는 부스터형 DC-DC 컨버터 회로는 낮은 직류 입력단 전력원으로부터 태양광 인버터의 출력을 감안한 높은 직류 링크단 전압을 구현하기 위한 일반적인 전력변환 회로로 적용될 수 있다. 하지만, ESS(Energy Storage System)를 적용하기 위해서는 에너지 저장장치인 배터리를 적용하여 구성하여야 하고, 압전 하베스팅 모듈의 경우, 발전 전력이 매우 낮아서 직접적으로 높은 용량의 배터리를 충전하기 매우 어렵다. 따라서, 일반적인 가정용 태양광 패널 기준의 전력을 고려하면, 높은 직류단 링크 전압을 바로 전력원에서 출력하는 것은 어려우며, 배터리를 중심으로 회로를 만들어야 한다.First, in more detail, the booster-type DC-DC converter circuit can be applied as a general power conversion circuit to implement a high DC link voltage considering the output of a solar inverter from a low DC input power source. However, in order to apply an ESS (Energy Storage System), it must be configured with a battery, which is an energy storage device, and in the case of a piezoelectric harvesting module, the generated power is very low, so it is very difficult to directly charge a high capacity battery. Therefore, considering the power of a typical home solar panel, it is difficult to output a high DC link voltage directly from the power source, and a circuit must be created centered around a battery.

그래서, 태양광 및 압전 하베스팅 모듈을 입력으로 하는 ESS(배터리) 연계형 전력변환 장치를(두 개의 하이브리드 병렬 전력변환기) 우선적으로 제공한다. 그리고, 각 컨버터는 입력단에 연결된 전력원(태양광 및 압전 하베스팅 모듈)에 따라, 최대 전력추종제어(MPPT, Maximum Power Point Tracking)를 수행할 수 있도록 구성한다. 또한, 출력단에 병렬로 배터리가 연결되어 출력 전압 및 전류를 배터리의 상태에 따라 제어하도록 한다.Therefore, an ESS (battery) linked power conversion device (two hybrid parallel power converters) with solar and piezoelectric harvesting modules as input is provided first. Additionally, each converter is configured to perform maximum power point tracking (MPPT) according to the power source (solar and piezoelectric harvesting module) connected to the input terminal. Additionally, a battery is connected in parallel to the output terminal to control the output voltage and current according to the state of the battery.

이를 위하여 각 컨버터의 구조는 동일하게 구성하되, 입력단의 전력원에 따라서 각 개별 컨버터가 서로 다른 제어 방식으로 구현될 수 있도록 프로그램에서 전력원을 식별하여 제어하는 하드웨어 및 펌웨어를 구현하고, 모니터링 시스템에서 입력전력 및 출력전력을 모니터링 하도록 RS-485 통신을 구성한다.To this end, the structure of each converter is the same, but hardware and firmware that identify and control the power source are implemented in the program so that each individual converter can be implemented with a different control method depending on the power source of the input terminal, and the monitoring system implements hardware and firmware that identifies and controls the power source. Configure RS-485 communication to monitor input power and output power.

특히, 다양한 형태의 컨버터가 태양광 및 압전 하베스팅 모듈에 적용될 수 있지만, 입력 전압의 범위가 매우 광범위하게 변동할 뿐만 아니라, 출력전압이 입력전압 보다 높은 경우가 있으므로, 단순한 Buck 컨버터로는 배터리 충전 기능을 수행할 수 없다. 따라서, 광범위한 입력전압의 범위에 대해서도 안정적인 출력 제어가 가능한 벅-부스트(buck-boost) 컨버터 구조를 가진다. 그리고, 이에 연계하여 제어 방식을 배터리 충전 상태에 따라서 MPPT 제어 및 배터리 충전 제어 모드를 구분하여 동작하도록 한다.In particular, various types of converters can be applied to solar and piezoelectric harvesting modules, but not only does the input voltage range vary widely, but the output voltage is sometimes higher than the input voltage, so a simple buck converter is not suitable for battery charging. cannot perform its function. Therefore, it has a buck-boost converter structure that allows stable output control even over a wide range of input voltages. And, in connection with this, the control method is operated by dividing into MPPT control and battery charging control mode according to the battery charging state.

아울러, 배터리 충전 제어를 위해 배터리 내부와 별도의 전류 경로를 사용하고, 이를 위해 두 개의 전력변환기를 교차 배선하여 배터리 충전 전류를 공유함으로써, 출력 전압을 제어하여 배터리의 최대 충전 전류를 함께 제한하도록 한다.In addition, to control battery charging, a current path separate from the inside of the battery is used, and for this purpose, two power converters are cross-wired to share the battery charging current, thereby controlling the output voltage to jointly limit the maximum charging current of the battery. .

부가적으로, 기존의 전력제어 방식과 달리, 제안된 전력변환 회로에서는 각 개별 전력원이 상이하고, 그 특성도 다르며, 배터리의 충전 상태와 부하 전력 상태에 따라서 다르게 제어해야 하는 어려움이 있다.Additionally, unlike existing power control methods, in the proposed power conversion circuit, each individual power source is different, its characteristics are different, and there is a difficulty in controlling it differently depending on the state of charge of the battery and the load power state.

이를 위해, 압전에너지 하베스팅 모듈과 태양광 패널 모듈의 각 특성곡선으로부터 최대 전력 추종 제어를 수행하기 위한 전압과 전류 특성이 결정될 수 있다. 각 전압-전류 특성곡선에서 전압의 최고점까지는 출력전류를 유지할 수 있지만, 전압이 감소하는 지점에서는 출력전류의 크기를 감소시켜 최대 전력점을 유지하는 제어 방식이 일반적이며, 이를 위해서 입력 전압 및 입력 전력의 변화를 순시적으로 판단하여 출력전류의 최대값을 변경한다.To this end, voltage and current characteristics for performing maximum power tracking control can be determined from each characteristic curve of the piezoelectric energy harvesting module and the solar panel module. The output current can be maintained up to the highest point of voltage in each voltage-current characteristic curve, but at the point where the voltage decreases, a control method that reduces the size of the output current to maintain the maximum power point is common. To achieve this, the input voltage and input power Changes are instantaneously determined and the maximum value of the output current is changed.

이러한 제어 방식은 배터리를 적용하지 않는 경우에는 매우 적합하지만, 배터리를 적용하는 경우에는 ESS의 배터리 상태에 따라서 서로 다른 제어 방식이 구현되어야 한다. 충전상태와 방전상태에 따라서 배터리의 전압 변동이 크게 발생하게 되므로, 배터리의 상태를 관측할 수 있으며, 배터리의 전압을 고려하여 정전류 제어(급속충전) 및 정전압 제어를 수행할 수 있다. 구체적으로는, 방전모드에서는 최대 방전점이 발생하지 않는 범위에서 지속적인 전력 공급이 가능하지만, 충전모드에서는 배터리에 충전을 위한 과전압이 인가되지 않도록 제한하는 것이 필요하다. This control method is very suitable when a battery is not applied, but when a battery is applied, a different control method must be implemented depending on the battery status of the ESS. Since the voltage of the battery changes significantly depending on the state of charge and discharge, the state of the battery can be observed, and constant current control (fast charging) and constant voltage control can be performed by considering the voltage of the battery. Specifically, in discharge mode, continuous power supply is possible as long as the maximum discharge point does not occur, but in charge mode, it is necessary to limit the application of overvoltage to the battery for charging.

도 2는 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 적용한 전력변환기를 개념적으로 설명하기 위한 도면이다.Figure 2 is a diagram for conceptually explaining a power converter applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.

도 2에 도시된 바와 같이, 일실시예에 따른 전력변환기는 압전에너지 하베스팅 모듈과 태양광 입력에 각 개별로 구성된 벅-부스트(buck-boost) 컨버터구조를 나타낸다. 즉, 먼저 별도의 배터리 충전회로가 없는 대신에, 각 개별 입력에 컨버터를 구성한다. 그리고, 광범위한 입력전압의 범위에 대해서도 안정적인 출력 제어가 가능한 벅-부스트 구조를 가진다.As shown in FIG. 2, the power converter according to one embodiment has a buck-boost converter structure composed of a piezoelectric energy harvesting module and a solar power input individually. That is, first, instead of having a separate battery charging circuit, a converter is configured for each individual input. Additionally, it has a buck-boost structure that allows stable output control even over a wide range of input voltages.

이에 더하여, 출력은 병렬로 배터리에 연결하여 발전된 에너지를 충전하여 사용할 수 있도록 한다. 특히, 배터리 충전 제어를 위해 배터리 내부와 별도의 전류 경로를 사용하고, 이를 위해 두 개의 전력변환기를 교차 배선하여 배터리 충전 전류를 공유함으로써, 출력 전압을 제어하여 배터리의 최대 충전 전류를 함께 제한한다.In addition, the output is connected to a battery in parallel so that the generated energy can be charged and used. In particular, to control battery charging, a current path separate from the inside of the battery is used, and for this purpose, two power converters are cross-wired to share the battery charging current, thereby controlling the output voltage and limiting the maximum charging current of the battery.

구체적으로는, 이러한 구성은 크게, 제 1 벅-부스트 컨버터(101)와 제 2 벅-부스트 컨버터(!02) 및 배터리(103)를 포함한다. 추가적으로, DC-AC 컨버터를 포함하며, 이에 대해서는 도 4를 참조하여 설명한다.Specifically, this configuration largely includes a first buck-boost converter 101, a second buck-boost converter !02, and a battery 103. Additionally, it includes a DC-AC converter, which will be described with reference to FIG. 4.

상기 제 1 벅-부스트 컨버터(101)는 제 1 직류전원 모듈에 즉, 압전에너지 하베스팅 모듈에 연결되어, 입력전압과 해당 출력전압을 비교하여 입력전압이 출력전압보다 낮은 경우 부스트 모드로서 승압한다. 그리고, 높은 경우에는 벅 모드로서 감압함으로써, 충전 제어용 전원으로 변환하는 것이다. 부가적으로, 상기 제 1 직류전원 모듈은 발전 전력이 설정 전력보다 임계값만큼 이하로 낮은 압전에너지 하베스팅 모듈이고, 이러한 유형인 경우에 사용한다.The first buck-boost converter 101 is connected to the first DC power module, that is, the piezoelectric energy harvesting module, compares the input voltage and the corresponding output voltage, and boosts the voltage in boost mode when the input voltage is lower than the output voltage. . And, when it is high, it is converted into a power supply for charging control by reducing the pressure in buck mode. Additionally, the first DC power module is a piezoelectric energy harvesting module whose generated power is lower than the set power by a threshold value, and is used in this type of module.

상기 제 2 벅-부스트 컨버터(102)는 상기 모듈과 상이한 제 2 직류전원 모듈에 즉, 태양광 패널 모듈에 연결되어, 마찬가지로 입력전압과 해당 출력전압을 비교하여 입력전압이 출력전압보다 낮은 경우 부스트 모드로서 승압한다 그리고, 높은 경우에는 벅 모드로서 감압함으로써, 충전 제어용 전원으로 변환한다. 마찬가지로는, 상기 제 2 직류전원 모듈은 설정 링크 전압보다 임계값만큼 높은 직류단 링크 전압을 출력하는 태양광 패널 모듈 등의 유형이다.The second buck-boost converter 102 is connected to a second DC power module different from the module, that is, to a solar panel module, and similarly compares the input voltage and the corresponding output voltage to boost when the input voltage is lower than the output voltage. The voltage is boosted as a buck mode, and when it is high, the voltage is reduced as a buck mode to convert it into a power supply for charging control. Likewise, the second DC power module is a type of solar panel module that outputs a DC link voltage that is higher than the set link voltage by a threshold value.

상기 배터리(!03)는 상기 제 1 벅-부스트 컨버터와 상기 제 2 벅-부스트 컨버터의 출력단에 각기 병렬로 연결되어, 각 충전 제어용 전원에 의한 출력 전압 및 전류를 배터리장치의 내부 상태에 따라 제어하도록 한다.The battery (!03) is connected in parallel to the output terminals of the first buck-boost converter and the second buck-boost converter, and controls the output voltage and current by each charging control power source according to the internal state of the battery device. Let's do it.

한편, 상기 제 1 벅-부스트 컨버터(101)와 상기 제 2 벅-부스트 컨버터(102)는 일실시예에 따라 각기 아래와 같다.Meanwhile, the first buck-boost converter 101 and the second buck-boost converter 102 are as follows according to one embodiment.

즉, 크게는 제 1 MOSFET와 제 1 다이오드, 인덕터, 제 2 다이오드, 제 2 MOSFET 및 커패시터를 포함한다.That is, it largely includes a first MOSFET, a first diode, an inductor, a second diode, a second MOSFET, and a capacitor.

상기 제 1 MOSFET는 해당 직류전원 모듈의 입력단에 소스 단자가 연결되어, 상기 벅 모드일 경우에 온하고 상기 부스트 모드일 경우에 오프하는 것이다.The first MOSFET has a source terminal connected to the input terminal of the corresponding DC power module, and is turned on in the buck mode and turned off in the boost mode.

상기 제 1 다이오드는 상기 제 1 MOSFET의 드레인 단자에 캐소드 단자가 연결되어, 상기 제 1 MOSFET가 온일 경우에 연동하여 오프하고 상기 제 1 MOSFET가 오프일 경우에 연동하여 온한다.The first diode has a cathode terminal connected to the drain terminal of the first MOSFET, so that it turns off in conjunction with the first MOSFET and turns on in conjunction with the first MOSFET in the off state.

상기 인덕터는 상기 제 1 MOSFET의 드레인 단자에 일단이 연결된다.One end of the inductor is connected to the drain terminal of the first MOSFET.

상기 제 2 다이오드는 상기 인덕터의 타단에 애노드 단자가 연결된다.The anode terminal of the second diode is connected to the other end of the inductor.

상기 제 2 MOSFET는 상기 인덕터의 타단에 소스 단자가 연결되고 상기 다이오드의 애노드 단자에 드레인 단자가 연결되어, 상기 벅 모드일 경우에 상기 제 1 다이오드의 온과 연동하여 오프하고 상기 부스트 모드일 경우에 상기 제 1 다이오드의 오프와 연동하여 온하는 것이다.The second MOSFET has a source terminal connected to the other end of the inductor and a drain terminal connected to the anode terminal of the diode, so that in the buck mode, it turns off in conjunction with the on of the first diode and in the boost mode, it turns off. It turns on in conjunction with the off of the first diode.

상기 커패시터는 상기 제 2 다이오드의 캐소드 단자와 모선 측에 연결된다.The capacitor is connected to the cathode terminal of the second diode and the bus side.

그래서, 일실시예는 압전에너지 하베스팅 모듈과 태양광 입력에 각 개별로 구성된 벅-부스트 컨버터구조를 나타낸다. 그리고, 출력은 병렬로 배터리(103)에 연결하여 발전된 에너지를 충전하여 사용한다.So, one embodiment represents a buck-boost converter structure that is individually composed of a piezoelectric energy harvesting module and a solar power input. Then, the output is connected to the battery 103 in parallel to charge and use the generated energy.

한편, 배터리(103) 충전 제어를 위해 배터리(103) 내부와 별도의 전류 경로를 사용하고, 이를 위해 두 개의 전력변환기(101, 102)를 교차 배선하여 배터리(103) 충전 전류를 공유함으로써, 출력 전압을 제어하여 배터리(103)의 최대 충전 전류를 함께 제한한다.Meanwhile, to control the charging of the battery 103, a current path separate from the inside of the battery 103 is used, and for this purpose, the two power converters 101 and 102 are cross-wired to share the charging current of the battery 103, resulting in output The voltage is controlled to limit the maximum charging current of the battery 103.

먼저, 보다 상세하게는 배터리(103) 단독 운전이 아닌 계통 연계 운전일 때, 배터리(103)의 단독 전류의 측정이 불가능하여, 배터리(103)를 이용한 에너지 저장이 안되고, 병렬 부하 공유만 수행이 가능하기에 이를 반영하여 아래와 같이 만든다.First, in more detail, when the battery 103 is not operated independently but is connected to the grid, it is impossible to measure the independent current of the battery 103, so energy storage using the battery 103 is not possible, and only parallel load sharing is possible. Since it is possible, it is created as follows to reflect this.

구체적으로는, 배터리(103) 충전 제어를 위해 배터리(103) 내부와 별도의 전류 경로를 사용한다. 단, 부하 전류를 감지하지 않아, 부하 전류(

Figure pat00001
)을 공유할 수 없지만, 배터리(103) 충ㅇ방전 전류(
Figure pat00002
)은 제안된 전류 경로를 따르며, 각각의 전력변환기(101, 102)에서 이를 측정이 가능하다. 배터리(!03) 충전 전류를 공유하려면, 도면과 같이, 두 개의 전력변환기(101, 102)를 교차 배선해야 한다. 또한, 전력변환기(101, 102) 단일로 사용할 때는 단자 S(-)와 V(-)를 연결하여 즉, 배터리(103) 출력전압과 변환기(101, 102)의 출력전압을 연결하여 사용할 수 있다. 감지된
Figure pat00003
으로 각 전력변환기(101, 102)는 출력 전압을 제어하여, 배터리(103)의 최대 충전 전류를 함께 제한한다.Specifically, a current path separate from the inside of the battery 103 is used to control charging of the battery 103. However, it does not detect the load current, so the load current (
Figure pat00001
) cannot be shared, but the battery 103 charge/discharge current (
Figure pat00002
) follows the proposed current path, and can be measured in each power converter (101, 102). To share the battery (!03) charging current, two power converters (101, 102) must be cross-wired, as shown in the drawing. In addition, when using the power converters 101 and 102 alone, the terminals S(-) and V(-) can be connected, that is, the output voltage of the battery 103 and the output voltage of the converters 101 and 102 can be connected. . detected
Figure pat00003
Each power converter (101, 102) controls the output voltage and jointly limits the maximum charging current of the battery (103).

도 3은 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 적용한 전력변환기의 벅-부스트 동작을 설명하기 위한 도면이다.Figure 3 is a diagram for explaining the buck-boost operation of a power converter applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.

도 3에 도시된 바와 같이, 일실시예에 따른 벅-부스트 동작은 각 변환기의 입력 전압이 출력전압보다 낮으면 부스트 모드로 동작하여 전압을 승압시키는 것이다. 그리고, 입력 전압이 출력전압보다 높은면 벅 모드로 동작하여 전압을 감압시켜서 배터리 충전 제어에 적합한 전압 및 전류로 제어한다.As shown in FIG. 3, the buck-boost operation according to one embodiment operates in a boost mode to boost the voltage when the input voltage of each converter is lower than the output voltage. And, if the input voltage is higher than the output voltage, it operates in buck mode to reduce the voltage and control it to a voltage and current suitable for battery charging control.

구체적으로는, 벅 모드일 경우는 제 1 MOSFET를 온과 오프를 교대로 반복하며, 부스트 모드일 경우에는 제 2 MOSFET를 온과 오프를 교대로 반복함으로써, 벅-부스트 동작을 수행한다.Specifically, in the buck mode, the first MOSFET is alternately turned on and off, and in the boost mode, the second MOSFET is alternately turned on and off, thereby performing a buck-boost operation.

도 4는 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 적용한 전력변환기의 DC-AC 컨버터를 설명하기 위한 도면이다.Figure 4 is a diagram for explaining a DC-AC converter of a power converter applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.

도 4에 도시된 바와 같이, 일실시예에 따른 DC-AC 컨버터는 먼저, 배터리충전 및 부하 공유 기능을 담당하지만, 전력변환기의 출력 전원은 DC전원이므로 AC전원을 사용하는 계통에 연계가 불가능하다. 따라서, DC-AC 컨버터 구조가 필요하다.As shown in Figure 4, the DC-AC converter according to one embodiment is responsible for battery charging and load sharing functions, but since the output power of the power converter is DC power, it cannot be connected to a system using AC power. . Therefore, a DC-AC converter structure is needed.

이러한 컨버터는 계통 연계를 위한 최대 전력변환기이며, 태양광 그리고 압전에너지 하베스팅 모듈에서 생성되는 전원을 개선된 최대 전력변환기를 통해 DC-DC 전력변환을 한 후, DC-AC 컨버터를 통해 계통 연계를 하는 것이다.These converters are maximum power converters for grid connection, and convert the power generated from solar and piezoelectric energy harvesting modules into DC-DC power through an improved maximum power converter, and then connect to the grid through a DC-AC converter. It is done.

구체적으로는, 이 DC-AC컨버터의 회로는 제어기가 예를 들어, TMS320F28065를 사용하며, IPM소자는 PM75B6L1C060으로, 풀 브릿지 스위칭 회로를 포함하며, 동시에 2ch Brake 회로도 포함하는 소자인 것이다. 그리고, DC-AC 컨버터의 출력과 입력측은 전류 센서를 통해 전류 감지를 하며, 출력 전원의 전압은 계측용 트랜스포머를 통해 측정하도록 한다.Specifically, the circuit of this DC-AC converter uses, for example, the TMS320F28065 controller, and the IPM device is PM75B6L1C060, which includes a full bridge switching circuit and also includes a 2ch Brake circuit. In addition, the output and input sides of the DC-AC converter detect current through a current sensor, and the voltage of the output power is measured through a measuring transformer.

도 5와 도 6은 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환시스템에 적용한 태양광 패널과 압전 하베스팅 모듈의 전압-전류 특성(곡선)을 설명하기 위한 도면이다.Figures 5 and 6 are diagrams for explaining the voltage-current characteristics (curves) of a solar panel and a piezoelectric harvesting module applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.

구체적으로, 도 5는 태양광 패널의 전압-전류 특성곡선이고, 도 6은 압전 하베스팅 모듈의 전압-전류 특성곡선이다.Specifically, Figure 5 is a voltage-current characteristic curve of a solar panel, and Figure 6 is a voltage-current characteristic curve of a piezoelectric harvesting module.

도 5과 도 6에 도시된 바와 같이, 일실시예에 따른 태양광 패널과 압전 하베스팅 모듈의 전압-전류 특성은 각 특성곡선으로부터 최대 전력 추종 제어를 수행하기 위한 전압과 전류 특성을 결정한다. 각 전압-전류 특성곡선에서 전압의 최고점까지는 출력전류를 유지할 수 있지만, 전압이 감소하는 지점에서는 출력전류의 크기를 감소시켜 최대 전력점을 유지하는 제어 방식이 일반적이며, 이를 위해서 입력 전압 및 입력 전력의 변화를 순시적으로 판단하여 출력전류의 최대값을 변경한다.As shown in Figures 5 and 6, the voltage-current characteristics of the solar panel and the piezoelectric harvesting module according to one embodiment determine the voltage and current characteristics for performing maximum power tracking control from each characteristic curve. The output current can be maintained up to the highest point of voltage in each voltage-current characteristic curve, but at the point where the voltage decreases, a control method that reduces the size of the output current to maintain the maximum power point is common. To achieve this, the input voltage and input power Changes are instantaneously determined and the maximum value of the output current is changed.

도 7과 도 8은 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환시스템에 적용한 배터리 상태에 따른 전력제어를 설명하기 위한 도면이다.Figures 7 and 8 are diagrams for explaining power control according to battery status applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.

구체적으로, 도 7은 배터리의 충/방전 곡선을 나타내며, 도 8은 배터리의 충전상태에 따른 제어 모드의 변화를 나타낸 것이다.Specifically, Figure 7 shows the charge/discharge curve of the battery, and Figure 8 shows changes in the control mode according to the charging state of the battery.

도 7과 도 8에 도시된 바와 같이, 일실시예에 따른 배터리의 충/방전은 충전상태와 방전상태에 따라서 배터리의 전압 변동이 크게 발생하게 되므로, 배터리의 상태를 관측할 수 있으며, 배터리의 전압을 고려하여 정전류 제어(급속충전) 및 정전압 제어를 수행한다. 도 7과 같이, 방전모드에서는 최대 방전점이 발생하지 않는 범위에서 지속적인 전력 공급이 가능하지만, 충전모드에서는 배터리에 충전을 위한 과전압이 인가되지 않도록 제한하는 것이 필요하다.As shown in Figures 7 and 8, the charging/discharging of the battery according to one embodiment causes large voltage fluctuations in the battery depending on the charging and discharging states, so the state of the battery can be observed, and the battery's state can be observed. Considering voltage, constant current control (fast charging) and constant voltage control are performed. As shown in FIG. 7, in discharge mode, continuous power supply is possible within the range where the maximum discharge point does not occur, but in charge mode, it is necessary to limit the application of overvoltage to the battery for charging.

그리고, 도 8과 같이, 배터리가 충전상태일 때 완전충전의 90%까지는 정전류 제어 모드를 수행하고, 그 이상에서는 최대 전압을 제한하여 정전압 제어 모드를 통해서 배터리에 과충전으로 인한 수명 단축이 발생하지 않도록 한다.As shown in Figure 8, when the battery is in a charged state, constant current control mode is performed up to 90% of full charge, and beyond that, the maximum voltage is limited to prevent shortening of battery life due to overcharging through constant voltage control mode. do.

도 9는 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 적용한 압전 하베스팅 모듈 및 태양광을 적용한 배터리 제어 장치의 제어 방식을 설명하기 위한 도면이다.FIG. 9 is a diagram illustrating a control method of a battery control device using a piezoelectric harvesting module and solar energy applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.

도 9에 도시된 바와 같이, 일실시예의 제어 방식은 먼저, 도 9와 같은 각 제어 모드는 배터리의 충전 및 방전상태를 나타내고 있는 Battery Voltage 곡선을 중심으로 각 입력 전력원의 입력전압(붉은색 점선)과의 상호 관계에 따라 동작한다. 즉, 입력 전압이 높은 경우에는 벅(buck) 모드로 입력 전압이 낮은 경우에는 부스트(boost) 모드로 동작한다. 배터리가 방전상태에서는 각 입력 전력의 최대 점을 제어하는 MPPT 제어가 수행되고, 배터리가 충전 상태에서는 배터리의 전압 상태에서 따라서 정전류 제어 모드와 정전압 제어 모드가 적용된다. 제안된 제어 방식은 전력원의 입력 상태와 배터리의 상태 및 부하 전류의 상태에 따라서 제어 모드를 상시적으로 변동하면서 제어한다.As shown in FIG. 9, the control method of one embodiment is: First, each control mode as shown in FIG. 9 controls the input voltage (red dotted line) of each input power source centered on the Battery Voltage curve indicating the charging and discharging state of the battery. ) operates according to the mutual relationship with the That is, when the input voltage is high, it operates in buck mode, and when the input voltage is low, it operates in boost mode. When the battery is in a discharged state, MPPT control is performed to control the maximum point of each input power, and when the battery is in a charged state, the constant current control mode and constant voltage control mode are applied according to the voltage state of the battery. The proposed control method constantly changes the control mode according to the input state of the power source, the state of the battery, and the state of the load current.

도 10과 도 11은 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 적용한 전체 제어 블록도이다.Figures 10 and 11 are overall control block diagrams applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.

구체적으로, 도 10은 이러한 제어 블록도이고, 도 11은 이 제어 블록도의 전류-전압 제어기를 나타낸 것이다.Specifically, Figure 10 is a control block diagram of this control, and Figure 11 shows the current-voltage controller of this control block diagram.

도 10과 도 11에 도시된 바와 같이, 일실시예에 따른 전체 제어 블록도는 입력단의 MPPT 곡선과 배터리의 상태 모니터링이 제어기에 내장하도록 한다. 그래서, 도 10과 같은 제어 알고리즘을 적용하는 것이다.As shown in Figures 10 and 11, the overall control block diagram according to one embodiment allows the MPPT curve of the input stage and battery status monitoring to be built into the controller. So, the control algorithm as shown in Figure 10 is applied.

도 12는 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템의 동작을 순서대로 도시한 절차 흐름도이다.Figure 12 is a procedural flowchart sequentially showing the operation of a hybrid parallel power conversion system for increasing power generation according to an embodiment.

도 12에 도시된 바와 같이, 일실시예의 전력제어 시스템은 먼저 기존과 같이, 입력단은 직류전원 모듈과 연결되고 출력단은 모선으로 연결되어, 직류전원 모듈에서의 입력 전원을 모선의 구동 전원으로 변환 제어함으로써, 모선별로 각기 맞는 전력을 제공한다.As shown in Figure 12, in the power control system of one embodiment, as before, the input terminal is connected to the DC power module and the output terminal is connected to the bus bar, and the input power from the DC power module is converted to the driving power of the bus bar. By doing so, it provides power suitable for each busbar.

이러한 상태에서, 상기 전력변환을 할 경우, 상기 전력 제어기는 상기 제 1 직류전원 모듈에 연결된 제 1 벅-부스트 컨버터의 입력전압과 해당 출력전압을 비교한다. 그래서, 입력전압이 출력전압보다 낮은 경우 부스트 모드로서 승압하고, 높은 경우에는 벅 모드로서 감압함으로써, 충전 제어용 전원으로 변환한다.In this state, when performing the power conversion, the power controller compares the input voltage of the first buck-boost converter connected to the first DC power module with the corresponding output voltage. Therefore, when the input voltage is lower than the output voltage, the voltage is boosted in boost mode, and when it is higher, the voltage is reduced in buck mode to convert it into a power supply for charging control.

그리고, 상기 제 2 직류전원 모듈에 연결된 제 2 벅-부스트 컨버터의 입력전압과 해당 출력전압을 비교한다. 그래서, 입력전압이 출력전압보다 낮은 경우 부스트 모드로서 승압하고, 높은 경우에는 벅 모드로서 감압함으로써, 충전 제어용 전원으로 변환한다.Then, the input voltage of the second buck-boost converter connected to the second DC power module is compared with the corresponding output voltage. Therefore, when the input voltage is lower than the output voltage, the voltage is boosted in boost mode, and when it is higher, the voltage is reduced in buck mode to convert it into a power supply for charging control.

다음, 상기 전력 제어기는 상기 제 1 벅-부스트 컨버터와 상기 제 2 벅-부스트 컨버터의 출력단에 각기 병렬로 연결된 배터리의 내부 상태를 확인한다. 즉, 상기한 각 충전 제어용 전원에 의한 출력 전압 및 전류를 배터리장치의 내부 상태에 따라 제어하도록 하기 위해, 먼저 그의 내부 상태를 확인한다.Next, the power controller checks the internal state of the battery connected in parallel to the output terminals of the first buck-boost converter and the second buck-boost converter, respectively. That is, in order to control the output voltage and current by each charging control power source described above according to the internal state of the battery device, its internal state is first checked.

상기 확인 결과, 상기 배터리의 내부 상태가 방전상태인 경우에 각 입력 전력의 최대 점을 제어하는 MPPT 제어를 수행한다.As a result of the confirmation, if the internal state of the battery is in a discharged state, MPPT control is performed to control the maximum point of each input power.

그리고, 상기 배터리의 내부 상태가 충전상태인 경우에는 완전충전의 설정값까지는 예를 들어, 90%까지는 정전류 제어 모드를 수행하고, 설정값보다 이상에서는 최대 전압을 제한하여 정전압 제어 모드를 수행한다.In addition, when the internal state of the battery is in a charged state, the constant current control mode is performed up to the set value of full charge, for example, 90%, and the constant voltage control mode is performed by limiting the maximum voltage above the set value.

이상과 같이, 일실시예는 먼저 입력 전원으로 태양광 패널과 압전에너지 하베스팅 모듈로 구성되며, 출력단은 배터리가 연결되고, 최종적으로 배터리와 DC-AC 컨버터가 연결되어 모선으로 연결되는 것이다.As described above, one embodiment first consists of a solar panel and a piezoelectric energy harvesting module as input power, the output terminal is connected to a battery, and finally the battery and DC-AC converter are connected to the busbar.

이를 위해서, 전력변환 장치는 DC-DC 컨버터로 만들며, 배터리 충전 및 방전 제어 기능을 포함하도록 한다. 이러한 상태에서, 전력변환기는 몇 가지 방식의 연계로 구성하고, 각 구성에 따른 장단점을 고려하여 만든 것이다.For this purpose, the power conversion device is made of a DC-DC converter and includes battery charging and discharging control functions. In this situation, the power converter is composed of several types of connection and is made by considering the pros and cons of each configuration.

구체적으로, 이러한 변환기는 별도의 배터리 충전회로가 없는 대신에, 각 개별 입력에 컨버터를 구성한다. 그리고, 광범위한 입력전압의 범위에 대해서도 안정적인 출력 제어가 가능한 벅-부스트 구조를 가진다.Specifically, these converters do not have a separate battery charging circuit, but instead configure a converter for each individual input. Additionally, it has a buck-boost structure that allows stable output control even over a wide range of input voltages.

이에 더하여, 출력은 병렬로 배터리에 연결하여 발전된 에너지를 충전하여 사용할 수 있도록 한다. 특히, 배터리 충전 제어를 위해 배터리 내부와 별도의 전류 경로를 사용하고, 이를 위해 두 개의 전력변환기를 교차 배선하여 배터리 충전 전류를 공유함으로써, 출력 전압을 제어하여 배터리의 최대 충전 전류를 함께 제한한다.In addition, the output is connected to a battery in parallel so that the generated energy can be charged and used. In particular, to control battery charging, a current path separate from the inside of the battery is used, and for this purpose, two power converters are cross-wired to share the battery charging current, thereby controlling the output voltage and limiting the maximum charging current of the battery.

그래서, 일실시예는 압전소자에 의한 전력의 발생이 미미하므로 발생전력의 손실을 최소화하고, 발생전력을 효율적으로 저장할 수 있는 승압컨버팅 시스템을 제공한다.Therefore, one embodiment provides a boost conversion system that minimizes the loss of generated power and efficiently stores the generated power because the generation of power by the piezoelectric element is minimal.

그리고, 이렇게 발생하는 전력을 최대화하고, 발생한 전력의 변환손실을 최소화하는 전력변환방식과 이를 효율적으로 저장 및 부하에 사용한다.In addition, a power conversion method that maximizes the power generated in this way and minimizes conversion loss of the generated power is used for efficient storage and load.

도 13은 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 적용한 양방향 벅-부스트 컨버터를 설명하기 위한 도면이다.Figure 13 is a diagram for explaining a bidirectional buck-boost converter applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.

도 13에 도시된 바와 같이, 일실시예에 따른 양방향 벅-부스트 컨버터는 사용자의 편의성과 다양한 환경의 적용을 위해, 전술한 단방향으로 구성되었던 DC-DC 컨버터를 4-switch 양방향 DC-DC 컨버터로 보완한 것이다.As shown in FIG. 13, the bidirectional buck-boost converter according to one embodiment converts the aforementioned unidirectional DC-DC converter into a 4-switch bidirectional DC-DC converter for user convenience and application in various environments. It has been supplemented.

구체적으로는, 단방향 Buck-Boost의 출력 전압은

Figure pat00004
인 다이오드를 통해 출력된다(도 3 참조). 하지만 이 다이오드로 인해 입력단자와 출력 단자가 정해져 있으며, 이는 적용하기 위한 환경이 제한적이며 사용자의 편의성이 불편하다. 이러한 이유로 단방향 DC-DC컨버터의 다이오드를 스위칭 소자로 대체한 양방향 DC-DC컨버터로 개선한 것이다.Specifically, the output voltage of unidirectional Buck-Boost is
Figure pat00004
It is output through a phosphorus diode (see Figure 3). However, due to this diode, the input terminal and output terminal are limited, which limits the environment for application and inconveniences user convenience. For this reason, it was improved to a two-way DC-DC converter in which the diode of the one-way DC-DC converter was replaced with a switching element.

즉, 이러한 구성은 단방향 컨버터에서 다이오드를 스위칭 소자로 변경한 회로이며, 기본 동작원리는 단방향 구성과 동일하다.In other words, this configuration is a circuit in which a diode is changed from a one-way converter to a switching element, and the basic operating principle is the same as the one-way configuration.

부가적으로, 계측한 입력단과 출력단의 전류의 정보로 4-switch의 Turn-on/off 시간을 조절하여, MPPT 제어가 용이하다.Additionally, MPPT control is easy by adjusting the turn-on/off time of the 4-switch using the measured current information of the input and output terminals.

보다 상세하게는, 이러한 구성은 단방향의 구조와 동일하고, 단지 전술한 다이오드를 MOSFET로 보완한 것이다.More specifically, this configuration is the same as the unidirectional structure, only the aforementioned diode is supplemented with a MOSFET.

즉, 상기 제 1 벅-부스트 컨버터와 상기 제 2 벅-부스트 컨버터는 각기 아래와 같다.That is, the first buck-boost converter and the second buck-boost converter are respectively as follows.

먼저, 해당 직류전원 모듈의 입력단에 소스 단자가 연결되어, 상기 벅 모드일 경우에 온과 오프를 교대로 반복하는 제 1 MOSFET를 포함한다.First, the source terminal is connected to the input terminal of the DC power module and includes a first MOSFET that alternately turns on and off in the buck mode.

그리고, 상기 제 1 MOSFET의 드레인 단자에 소스 단자가 연결되어, 상기 제 1 MOSFET가 온일 경우에 연동하여 오프하고 상기 제 1 MOSFET가 오프일 경우에 연동하여 온하는 제 2 MOSFET를 포함한다.Also, a second MOSFET has a source terminal connected to the drain terminal of the first MOSFET, and turns off when the first MOSFET is on, and turns on when the first MOSFET is off.

그래서, 상기 제 1 MOSFET의 드레인 단자에 일단이 연결된 인덕터와 상기 인덕터의 타단에 드레인 단자가 연결된 제 3 MOSFET를 더 포함한다.Therefore, it further includes an inductor with one end connected to the drain terminal of the first MOSFET and a third MOSFET with a drain terminal connected to the other end of the inductor.

이에 따라, 상기 인덕터의 타단에 소스 단자가 연결되고 상기 제 2 MOSFET의 드레인 단자에 드레인 단자가 연결되어, 상기 부스트 모드일 경우에 온과 오프를 상기 제 2 MOSFET의 오프와 온에 연동하여 교대로 반복하는 제 4 MOSFET를 포함한다. 그리고, 상기 제 3 MOSFET의 소스 단자와 모선 측에 연결된 커패시터를 포함한다.Accordingly, the source terminal is connected to the other end of the inductor and the drain terminal is connected to the drain terminal of the second MOSFET, so that in the boost mode, on and off are alternately linked to the off and on of the second MOSFET. Includes a fourth MOSFET to repeat. And, it includes a capacitor connected to the source terminal of the third MOSFET and the bus side.

도 14 내지 도 18은 일실시예에 따른 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템에 적용한 알고리즘 실험결과를 나타낸 도면이다.Figures 14 to 18 are diagrams showing experimental results of an algorithm applied to a hybrid parallel power conversion system for increasing power generation according to an embodiment.

구체적으로는, 도 14와 도 15는 이러한 배터리 충전 모드에서의 실험결과이고, 도 16은 태양광 단독 발전 시 시뮬레이션 결과이며, 도 17은 압전 하베스팅 모듈 단독 발전 시 시뮬레이션 결과이다. 그리고, 도 18은 다수개로 발전할 경우의 시뮬레이션 결과이다.Specifically, Figures 14 and 15 are the experimental results in this battery charging mode, Figure 16 is the simulation result when solar power generation is used alone, and Figure 17 is the simulation result when the piezoelectric harvesting module is used alone. And, Figure 18 is a simulation result when generating multiple power plants.

도 14 내지 도 18에 도시된 바와 같이, 일실시예에 따른 실험결과는 먼저, 배터리 충전 모드에서의 실험결과는 배터리 충전 시, 배터리 보호를 위한 정전류 제어모드와 정전압 제어모드 시뮬레이션 결과를 나타낸 것이다(도 14와 도 15 참조).As shown in Figures 14 to 18, the experimental results according to one embodiment are first, the experimental results in the battery charging mode show the simulation results of the constant current control mode and constant voltage control mode for battery protection when charging the battery ( 14 and 15).

그리고, 도 16과 같이, 태양광 단독 발전 시 DC-DC 컨버터의 출력 전류

Figure pat00005
는 배터리도 충전되는 전류를 나타내며,
Figure pat00006
는 1[A]로 정전류 제어모드로 배터리를 충전하는 것을 확인할 수 있다.And, as shown in Figure 16, the output current of the DC-DC converter during solar power generation alone
Figure pat00005
represents the current at which the battery is also charged,
Figure pat00006
It can be confirmed that the battery is being charged in constant current control mode at 1[A].

또한, 도 17에서는 압전 하베스팅 모듈 단독 발전 시 시뮬레이션 결과이며, 이러한 경우에 압전 하베스팅 모듈의 전압에 따라,

Figure pat00007
가 가변되어 MPPT제어가 이루어짐을 확인할 수 있으며, 이러한 결과를 통틀어서, 태양광 및 압전에너지의 발전 전압이 DC-DC컨버터의 출력전압
Figure pat00008
보다 작으면 Boost 컨버터 모드를, 이와 반대일 경우 Buck 컨버터 모드를 행하고 있는 것을 각 듀티비
Figure pat00009
Figure pat00010
에서 확인 가능하다. 또, 도 18에서와 같이, 태양광 및 압전 하베스팅 모듈 연계 발전 시 시뮬레이션 결과로서 이때, 각 발전 전압이 가변할 때 마다, 출력 전류가 바뀌는것을 확인할 수 있으며, 이 결과들을 통해, 제안한 알고리즘의 타당성을 검증한다.In addition, Figure 17 shows simulation results when the piezoelectric harvesting module alone generates power. In this case, depending on the voltage of the piezoelectric harvesting module,
Figure pat00007
It can be confirmed that MPPT control is achieved by changing the
Figure pat00008
If it is smaller than this, the Boost converter mode is used, and if it is the opposite, the Buck converter mode is used.
Figure pat00009
and
Figure pat00010
You can check it here. In addition, as shown in Figure 18, as a result of simulation when generating power in conjunction with solar and piezoelectric harvesting modules, it can be confirmed that the output current changes whenever each power generation voltage is changed. These results confirm the validity of the proposed algorithm. Verify .

101 : 제 1 벅-부스트 컨버터
102 : 제 2 벅-부스트 컨버터
103 : 배터리
101: first buck-boost converter
102: second buck-boost converter
103: battery

Claims (4)

입력단은 직류전원 모듈과 연결되고 출력단은 모선(grid power)으로 연결되어, 상기 직류전원 모듈에서의 입력 전원을 모선의 구동 전원으로 상이하게 변환 제어하여 전력을 제공하는 전력변환 시스템에 있어서,
상기 전력변환을 할 경우, 제 1 직류전원을 공급하는 제 1 직류전원 모듈;
상기 제 1 직류전원과는 상이한 제 2 직류전원을 공급하는 제 2 직류전원 모듈;
상기 제 1 직류전원 모듈에 연결되어, 입력전압과 출력전압을 비교하여 입력전압이 출력전압보다 낮은 경우 부스트 모드로서 승압하고, 높은 경우에는 벅 모드로서 감압함으로써, 배터리의 충전 제어용 전원으로 변환하는 제 1 벅-부스트 컨버터;
상기 제 2 직류전원 모듈에 연결되어, 입력전압과 출력전압을 비교하여 입력전압이 출력전압보다 낮은 경우 부스트 모드로서 승압하고, 높은 경우에는 벅 모드로서 감압함으로써, 배터리의 충전 제어용 전원으로 변환하는 제 2 벅-부스트 컨버터;
상기 제 1 벅-부스트 컨버터와 상기 제 2 벅-부스트 컨버터의 출력단에 각기 병렬로 연결되어, 각 충전 제어용 전원에 의한 출력 전압 및 전류를 배터리장치의 내부 상태에 따라 제어하도록 하는 배터리; 및
상기 제 1, 2 벅-부스트 컨버터의 전력변환 동작을 각기 모선에 따라 상이하게 제어하여 수행하고, 상기 배터리의 내부 상태에 따라 상기 충전 제어용 전원에 의한 출력 전압 및 전류를 상이하게 제어하는 전력 제어기; 를 포함하고,

상기 제 1, 2 벅-부스트 컨버터는
각기 입력단에 소스 단자가 연결되어, 상기 벅 모드일 경우에 온과 오프를 교대로 반복하는 제 1 MOSFET;
상기 제 1 MOSFET의 드레인 단자에 캐소드 단자가 연결되어, 상기 제 1 MOSFET가 온, 오프일 경우에 연동하여 오프, 온하는 제 1 다이오드;
상기 제 1 MOSFET의 드레인 단자에 일단이 연결된 인덕터;
상기 인덕터의 타단에 애노드 단자가 연결된 제 2 다이오드;
상기 인덕터의 타단에 소스 단자가 연결되고 상기 다이오드의 애노드 단자에 드레인 단자가 연결되어, 상기 부스트 모드일 경우에 온과 오프를 상기 제 1 다이오드의 오프와 온에 연동하여 교대로 반복하는 제 2 MOSFET; 및
상기 제 2 다이오드의 캐소드 단자와 모선 측에 연결된 커패시터; 를 포함하고,

1) 상기 배터리의 충전 제어를 위해 상기 제 1 벅-부스트 컨버터와 상기 제 2 벅-부스트 컨버터를 교차 배선하여 배터리 내부와 별도의 전류 경로를 통해 배터리 충전 전류를 공유함으로써, 배터리 충전 제어를 수행하고,
2) 상기 제 1 벅-부스트 컨버터와 상기 제 2 벅-부스트 컨버터를 단일로 사용할 경우는 각 컨버터의 출력전압과 상기 배터리의 출력전압을 연결하여 사용할 수 있도록 하며,

상기 전력 제어기는,
상기 전력변환을 할 경우, 제 1 직류전원 모듈의 입력전압과 출력전압을 비교하고, 상기 제 2 직류전원 모듈의 입력전압과 출력전압을 비교하는 제 1 단계;
상기 비교 결과, 상기 제 1 직류전원 모듈의 입력전압이 출력전압보다 낮은 경우 부스트 모드로서 승압하고, 높은 경우에는 벅 모드로서 감압함으로써, 충전 제어용 전원으로 변환하고,
상기 제 2 직류전원 모듈의 입력전압이 출력전압보다 낮은 경우 부스트 모드로서 승압하고, 높은 경우에는 벅 모드로서 감압함으로써, 충전 제어용 전원으로 변환하는 제 2 단계;
상기 제 1 직류전원 모듈과 상기 제 2 직류전원 모듈의 충전 제어용 전원에 의해 가변하는 상기 배터리의 내부 상태를 확인하는 제 3 단계; 및
상기 확인 결과, 상기 배터리의 내부 상태가 방전상태인 경우에 각 입력 전력의 최대 점을 제어하는 최대 전력추종제어(MPPT, Maximum Power Point Tracking)를 수행하고,
상기 배터리의 내부 상태가 충전상태인 경우에는 완전충전의 설정값까지는 설정 정전류 제어 모드를 수행하고, 완전충전의 설정값보다 이상에서는 최대 전압을 제한하여 설정 정전압 제어 모드를 수행하는 제 4 단계; 를 포함하는 것을 특징으로 하는 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템.
In the power conversion system, where the input terminal is connected to a DC power module and the output terminal is connected to a bus bar (grid power), the input power from the DC power module is differently converted and controlled to the driving power of the bus bar to provide power,
When performing the power conversion, a first direct current power module that supplies first direct current power;
a second DC power module supplying a second DC power different from the first DC power;
A device connected to the first DC power module, compares the input voltage and the output voltage, boosts the input voltage in boost mode when the input voltage is lower than the output voltage, and reduces the voltage in buck mode when the input voltage is higher than the output voltage, thereby converting it into power for charging control of the battery. 1 buck-boost converter;
A device connected to the second DC power module, compares the input voltage and the output voltage, boosts the input voltage in boost mode when the input voltage is lower than the output voltage, and reduces the voltage in buck mode when the input voltage is higher than the output voltage, thereby converting it into power for charging control of the battery. 2 buck-boost converters;
a battery connected in parallel to the output terminals of the first buck-boost converter and the second buck-boost converter to control the output voltage and current of each charging control power source according to the internal state of the battery device; and
a power controller that controls and performs power conversion operations of the first and second buck-boost converters differently depending on the busbar, and differently controls the output voltage and current of the charging control power source depending on the internal state of the battery; Including,

The first and second buck-boost converters are
A first MOSFET having a source terminal connected to each input terminal and alternately turning on and off in the buck mode;
a first diode whose cathode terminal is connected to the drain terminal of the first MOSFET and which turns off and on in response to when the first MOSFET is on and off;
an inductor with one end connected to the drain terminal of the first MOSFET;
a second diode whose anode terminal is connected to the other end of the inductor;
A second MOSFET has a source terminal connected to the other end of the inductor and a drain terminal connected to the anode terminal of the diode, so that in the boost mode, on and off are alternately linked to the off and on of the first diode. ; and
a capacitor connected to the cathode terminal of the second diode and the bus bar; Including,

1) To control the charging of the battery, perform battery charging control by cross-wiring the first buck-boost converter and the second buck-boost converter to share the battery charging current through a separate current path inside the battery, and ,
2) When the first buck-boost converter and the second buck-boost converter are used singly, the output voltage of each converter can be connected to the output voltage of the battery,

The power controller is,
When performing the power conversion, a first step of comparing the input voltage and output voltage of the first DC power module and comparing the input voltage and output voltage of the second DC power module;
As a result of the comparison, if the input voltage of the first DC power module is lower than the output voltage, the voltage is boosted in boost mode, and if it is higher, the voltage is reduced in buck mode, thereby converting it into a power supply for charging control,
A second step of converting the input voltage of the second DC power module into a power supply for charging control by boosting the voltage in a boost mode when the input voltage of the second DC power module is lower than the output voltage, and reducing the voltage in a buck mode when the input voltage of the second DC power module is higher than the output voltage;
A third step of checking the internal state of the battery that varies by the charging control power of the first DC power module and the second DC power module; and
As a result of the confirmation, if the internal state of the battery is in a discharged state, maximum power point tracking (MPPT) is performed to control the maximum point of each input power,
If the internal state of the battery is in a charged state, performing a set constant current control mode up to the set value of full charge, and performing a set constant voltage control mode by limiting the maximum voltage above the set value of full charge; A hybrid parallel power conversion system for increasing power generation, comprising:
입력단은 직류전원 모듈과 연결되고 출력단은 모선(grid power)으로 연결되어, 상기 직류전원 모듈에서의 입력 전원을 모선의 구동 전원으로 상이하게 변환 제어하여 전력을 제공하는 전력변환 시스템에 있어서,
상기 전력변환을 할 경우, 제 1 직류전원을 공급하는 제 1 직류전원 모듈;
상기 제 1 직류전원과는 상이한 제 2 직류전원을 공급하는 제 2 직류전원 모듈;
상기 제 1 직류전원 모듈에 연결되어, 입력전압과 출력전압을 비교하여 입력전압이 출력전압보다 낮은 경우 부스트 모드로서 승압하고, 높은 경우에는 벅 모드로서 감압함으로써, 배터리의 충전 제어용 전원으로 변환하는 제 1 벅-부스트 컨버터;
상기 제 2 직류전원 모듈에 연결되어, 입력전압과 출력전압을 비교하여 입력전압이 출력전압보다 낮은 경우 부스트 모드로서 승압하고, 높은 경우에는 벅 모드로서 감압함으로써, 배터리의 충전 제어용 전원으로 변환하는 제 2 벅-부스트 컨버터;
상기 제 1 벅-부스트 컨버터와 상기 제 2 벅-부스트 컨버터의 출력단에 각기 병렬로 연결되어, 각 충전 제어용 전원에 의한 출력 전압 및 전류를 배터리장치의 내부 상태에 따라 제어하도록 하는 배터리; 및
상기 제 1, 2 벅-부스트 컨버터의 전력변환 동작을 각기 모선에 따라 상이하게 제어하여 수행하고, 상기 배터리의 내부 상태에 따라 상기 충전 제어용 전원에 의한 출력 전압 및 전류를 상이하게 제어하는 전력 제어기; 를 포함하고,

상기 제 1, 2 벅-부스트 컨버터는
각기 입력단에 소스 단자가 연결되어, 상기 벅 모드일 경우에 온과 오프를 교대로 반복하는 제 1 MOSFET;
상기 제 1 MOSFET의 드레인 단자에 소스 단자가 연결되어, 상기 제 1 MOSFET가 온일 경우에 연동하여 오프하고 상기 제 1 MOSFET가 오프일 경우에 연동하여 온하는 제 2 MOSFET;
상기 제 1 MOSFET의 드레인 단자에 일단이 연결된 인덕터;
상기 인덕터의 타단에 드레인 단자가 연결된 제 3 MOSFET;
상기 인덕터의 타단에 소스 단자가 연결되고 상기 제 2 MOSFET의 드레인 단자에 드레인 단자가 연결되어, 상기 부스트 모드일 경우에 온과 오프를 상기 제 2 MOSFET의 오프와 온에 연동하여 교대로 반복하는 제 4 MOSFET; 및
상기 제 3 MOSFET의 소스 단자와 모선 측에 연결된 커패시터; 를 포함하고,

1) 상기 배터리의 충전 제어를 위해 상기 제 1 벅-부스트 컨버터와 상기 제 2 벅-부스트 컨버터를 교차 배선하여 배터리 내부와 별도의 전류 경로를 통해 배터리 충전 전류를 공유함으로써, 배터리 충전 제어를 수행하고,
2) 상기 제 1 벅-부스트 컨버터와 상기 제 2 벅-부스트 컨버터를 단일로 사용할 경우는 각 컨버터의 출력전압과 상기 배터리의 출력전압을 연결하여 사용할 수 있도록 하며,

상기 전력 제어기는,
상기 전력변환을 할 경우, 제 1 직류전원 모듈의 입력전압과 출력전압을 비교하고, 상기 제 2 직류전원 모듈의 입력전압과 출력전압을 비교하는 제 1 단계;
상기 비교 결과, 상기 제 1 직류전원 모듈의 입력전압이 출력전압보다 낮은 경우 부스트 모드로서 승압하고, 높은 경우에는 벅 모드로서 감압함으로써, 충전 제어용 전원으로 변환하고,
상기 제 2 직류전원 모듈의 입력전압이 출력전압보다 낮은 경우 부스트 모드로서 승압하고, 높은 경우에는 벅 모드로서 감압함으로써, 충전 제어용 전원으로 변환하는 제 2 단계;
상기 제 1 직류전원 모듈과 상기 제 2 직류전원 모듈의 충전 제어용 전원에 의해 가변하는 상기 배터리의 내부 상태를 확인하는 제 3 단계; 및
상기 확인 결과, 상기 배터리의 내부 상태가 방전상태인 경우에 각 입력 전력의 최대 점을 제어하는 최대 전력추종제어(MPPT, Maximum Power Point Tracking)를 수행하고,
상기 배터리의 내부 상태가 충전상태인 경우에는 완전충전의 설정값까지는 설정 정전류 제어 모드를 수행하고, 완전충전의 설정값보다 이상에서는 최대 전압을 제한하여 설정 정전압 제어 모드를 수행하는 제 4 단계; 를 포함하는 것을 특징으로 하는 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템.
In the power conversion system, where the input terminal is connected to a DC power module and the output terminal is connected to a bus bar (grid power), the input power from the DC power module is differently converted and controlled to the driving power of the bus bar to provide power,
When performing the power conversion, a first direct current power module that supplies first direct current power;
a second DC power module supplying a second DC power different from the first DC power;
A device connected to the first DC power module, compares the input voltage and the output voltage, boosts the input voltage in boost mode when the input voltage is lower than the output voltage, and reduces the voltage in buck mode when the input voltage is higher than the output voltage, thereby converting it into power for charging control of the battery. 1 buck-boost converter;
A device connected to the second DC power module, compares the input voltage and the output voltage, boosts the input voltage in boost mode when the input voltage is lower than the output voltage, and reduces the voltage in buck mode when the input voltage is higher than the output voltage, thereby converting it into power for charging control of the battery. 2 buck-boost converters;
a battery connected in parallel to the output terminals of the first buck-boost converter and the second buck-boost converter to control the output voltage and current of each charging control power source according to the internal state of the battery device; and
a power controller that controls and performs power conversion operations of the first and second buck-boost converters differently depending on the busbar, and differently controls the output voltage and current of the charging control power source depending on the internal state of the battery; Including,

The first and second buck-boost converters are
A first MOSFET having a source terminal connected to each input terminal and alternately turning on and off in the buck mode;
a second MOSFET whose source terminal is connected to the drain terminal of the first MOSFET, and which turns off in conjunction with the first MOSFET when the first MOSFET is on and turns on in conjunction with the first MOSFET when the first MOSFET is off;
an inductor with one end connected to the drain terminal of the first MOSFET;
a third MOSFET with a drain terminal connected to the other end of the inductor;
A source terminal is connected to the other end of the inductor and a drain terminal is connected to the drain terminal of the second MOSFET, so that in the boost mode, on and off are alternately linked to the off and on of the second MOSFET. 4 MOSFETs; and
A capacitor connected to the source terminal of the third MOSFET and the bus side; Including,

1) To control the charging of the battery, perform battery charging control by cross-wiring the first buck-boost converter and the second buck-boost converter to share the battery charging current through a separate current path inside the battery, and ,
2) When the first buck-boost converter and the second buck-boost converter are used singly, the output voltage of each converter can be connected to the output voltage of the battery,

The power controller is,
When performing the power conversion, a first step of comparing the input voltage and output voltage of the first DC power module and comparing the input voltage and output voltage of the second DC power module;
As a result of the comparison, if the input voltage of the first DC power module is lower than the output voltage, the voltage is boosted in boost mode, and if it is higher, the voltage is reduced in buck mode, thereby converting it into a power supply for charging control,
A second step of converting the input voltage of the second DC power module into a power supply for charging control by boosting the voltage in a boost mode when the input voltage of the second DC power module is lower than the output voltage, and reducing the voltage in a buck mode when the input voltage of the second DC power module is higher than the output voltage;
A third step of checking the internal state of the battery that varies by the charging control power of the first DC power module and the second DC power module; and
As a result of the confirmation, if the internal state of the battery is in a discharged state, maximum power point tracking (MPPT) is performed to control the maximum point of each input power,
If the internal state of the battery is in a charged state, performing a set constant current control mode up to the set value of full charge, and performing a set constant voltage control mode by limiting the maximum voltage above the set value of full charge; A hybrid parallel power conversion system for increasing power generation, comprising:
청구항 1 또는 청구항 2에 있어서,
상기 배터리에 의해 충전 직류전원을 발생한 경우, 상기 배터리로부터의 충전 직류전원을 교류 계통의 부하 구동전원에 따라 상이하게 교류전원으로 변환함으로써, 교류 계통과 연계하는 DC-AC 컨버터; 를 더 포함하고,

상기 DC-AC 컨버터는,
상기 배터리에 연결되어, 상기 제 1, 2 직류전원 컨버터에 의한 배터리의 충전 직류전원을 풀 브릿지 스위칭 회로를 통해 교류로 변환하고, 출력과 입력측은 전류 센서로 전류 감지를 하며, 출력 전원의 전압은 계측용 트랜스포머를 통해 측정하는 것; 을 특징으로 하는 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템.
In claim 1 or claim 2,
When charging direct current power is generated by the battery, a DC-AC converter that connects to the alternating current system by converting the charging direct current power from the battery into alternating current power differently depending on the load driving power of the alternating current system; It further includes,

The DC-AC converter is,
Connected to the battery, the charging DC power of the battery by the first and second DC power converters is converted into alternating current through a full bridge switching circuit, and the output and input sides detect current with a current sensor, and the voltage of the output power is Measuring with instrumentation transformers; A hybrid parallel power conversion system for increasing power generation, characterized by:
청구항 3에 있어서,
상기 제 1 직류전원 모듈은,
발전 전력이 설정 전력보다 임계값만큼 이하로 낮은 압전에너지 하베스팅 모듈이고,
상기 제 2 직류전원 모듈은,
설정 링크 전압보다 임계값만큼 높은 직류단 링크 전압을 출력하는 태양광 패널 모듈인 것; 을 특징으로 하는 발전량의 증대를 위한 하이브리드 병렬형 전력변환 시스템.
















In claim 3,
The first DC power module,
It is a piezoelectric energy harvesting module whose generated power is lower than the set power by a threshold value,
The second DC power module,
A solar panel module that outputs a DC link voltage that is higher than the set link voltage by a threshold value; A hybrid parallel power conversion system for increasing power generation, characterized by:
















KR1020220123879A 2022-09-29 2022-09-29 System for controlling power used in dc-dc converter employing hybrid parallel for increasing of generation quantity KR20240044631A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220123879A KR20240044631A (en) 2022-09-29 2022-09-29 System for controlling power used in dc-dc converter employing hybrid parallel for increasing of generation quantity
PCT/KR2023/014862 WO2024072016A1 (en) 2022-09-29 2023-09-26 Hybrid parallel power conversion system for increasing power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220123879A KR20240044631A (en) 2022-09-29 2022-09-29 System for controlling power used in dc-dc converter employing hybrid parallel for increasing of generation quantity

Publications (1)

Publication Number Publication Date
KR20240044631A true KR20240044631A (en) 2024-04-05

Family

ID=90478509

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220123879A KR20240044631A (en) 2022-09-29 2022-09-29 System for controlling power used in dc-dc converter employing hybrid parallel for increasing of generation quantity

Country Status (2)

Country Link
KR (1) KR20240044631A (en)
WO (1) WO2024072016A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808127B2 (en) * 2008-08-04 2010-10-05 Triune Ip Llc Multile input channel power control circuit
WO2012129781A1 (en) * 2011-03-29 2012-10-04 阿特斯(中国)投资有限公司 Photovoltaic system
JP2020077131A (en) * 2018-11-06 2020-05-21 太陽誘電株式会社 Power conversion device, power generation system, and power control method
KR102336746B1 (en) * 2020-01-20 2021-12-06 경성대학교 산학협력단 Power control circuit of renewable energy source
KR20210106136A (en) * 2020-02-20 2021-08-30 김동완 Smart piezoelectric energy harvesting systems

Also Published As

Publication number Publication date
WO2024072016A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
KR101116428B1 (en) Energy Storage System
CN102362419B (en) Control device for transformer coupling type booster
US20120153729A1 (en) Multi-input bidirectional dc-dc converter
US20110103114A1 (en) Solar power conversion circuit and power supply system using the same
KR101256077B1 (en) Power control system and controlling method thereof
WO2007122849A1 (en) System interconnection power conditioner and system interconnection power supply system
CN105518962B (en) Cell of fuel cell
KR20120075970A (en) An apparatus of processing photovoltaic and a method thereof
US11496067B2 (en) Power conversion apparatus with dual-mode control
US20240348170A1 (en) Direct current to direct current (dcdc) converter and control method
Zhan et al. Performance comparison of input current ripple reduction methods in UPS applications with hybrid PEM fuel cell/supercapacitor power sources
CN110138217B (en) Three-port DC-DC converter and control method thereof
CN116613976A (en) Power conversion circuit, control method thereof, battery pack and energy storage system
JP2021019400A (en) Power storage system
KR20160029235A (en) Apparatus for storing energy
CN209200934U (en) Direct-current three-level boost converter fusing coupling inductance technology
CN108736707B (en) BOOST converter with switch inductance structure
KR20210109795A (en) Integrated converter of Grid connected type for new renewable energy and energy storage devices
KR20240044631A (en) System for controlling power used in dc-dc converter employing hybrid parallel for increasing of generation quantity
CN114243872B (en) Charging pile direct-current power supply device and charging equipment
KR20240044626A (en) Method for controlling power used in dc-dc converter employing hybrid parallel for increasing of generation quantity
KR20240044623A (en) DC-DC converter employing hybrid parallel for increasing of generation quantity
CN211830581U (en) High-transformation-ratio bidirectional direct current conversion circuit
KR102650607B1 (en) Method for controlling power used in dc-dc converter employing hybrid parallel for increasing of generation quantity for increasing of generation quantity
CN113938001A (en) Three-level converter, control method thereof and power supply system