KR20240036169A - Functional electrical stimulation therapy system using electromyogram signal - Google Patents

Functional electrical stimulation therapy system using electromyogram signal Download PDF

Info

Publication number
KR20240036169A
KR20240036169A KR1020220114611A KR20220114611A KR20240036169A KR 20240036169 A KR20240036169 A KR 20240036169A KR 1020220114611 A KR1020220114611 A KR 1020220114611A KR 20220114611 A KR20220114611 A KR 20220114611A KR 20240036169 A KR20240036169 A KR 20240036169A
Authority
KR
South Korea
Prior art keywords
signal
muscle contraction
electrical stimulation
emg
involuntary
Prior art date
Application number
KR1020220114611A
Other languages
Korean (ko)
Inventor
이후만
Original Assignee
주식회사 엑소시스템즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엑소시스템즈 filed Critical 주식회사 엑소시스템즈
Priority to KR1020220114611A priority Critical patent/KR20240036169A/en
Publication of KR20240036169A publication Critical patent/KR20240036169A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36003Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of motor muscles, e.g. for walking assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • A61B5/397Analysis of electromyograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4082Diagnosing or monitoring movement diseases, e.g. Parkinson, Huntington or Tourette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0452Specially adapted for transcutaneous muscle stimulation [TMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0492Patch electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36031Control systems using physiological parameters for adjustment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Epidemiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Primary Health Care (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Fuzzy Systems (AREA)
  • Developmental Disabilities (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

본 발명의 실시 예에 따른 신체로부터 전기자극에 응답하여 생성되는 근전도 신호(EMG)를 수집하는 전기자극 치료 장치의 치료 방법은, 상기 근전도 신호의 주파수 영역에서 특성 벡터를 추출하는 단계, 인공지능 모델을 적용하여 추출된 상기 특성 벡터로부터 수의적 근수축 신호와 불수의적 근수축 신호를 구분하여 검출하는 단계, 상기 검출 결과에 따라 상기 근전도 신호로부터 상기 불수의적 근수축 신호를 제거하는 단계, 상기 불수의적 근수축 신호가 제거된 근전도 신호의 실효치(RMS: Root Mean Square)를 계산하는 단계, 그리고 상기 실효치와 문턱값을 비교하고, 비교 결과에 따라 상기 신체에 인가될 기능성 전기자극 신호를 생성하는 단계를 포함한다.A treatment method using an electrical stimulation treatment device that collects electromyography signals (EMG) generated in response to electrical stimulation from the body according to an embodiment of the present invention includes extracting a characteristic vector from the frequency domain of the electromyographic signal, and an artificial intelligence model. A step of distinguishing and detecting a voluntary muscle contraction signal and an involuntary muscle contraction signal from the characteristic vector extracted by applying a step of detecting the signal, removing the involuntary muscle contraction signal from the electromyogram signal according to the detection result, and the involuntary muscle contraction signal. A step of calculating the root mean square (RMS) of the electromyographic signal from which the muscle contraction signal has been removed, comparing the effective value and a threshold value, and generating a functional electrical stimulation signal to be applied to the body according to the comparison result. Includes.

Description

근전도 신호를 사용하는 기능성 전기자극 치료 장치 및 그것의 치료 방법{FUNCTIONAL ELECTRICAL STIMULATION THERAPY SYSTEM USING ELECTROMYOGRAM SIGNAL}Functional electrical stimulation treatment device using electromyography signals and its treatment method {FUNCTIONAL ELECTRICAL STIMULATION THERAPY SYSTEM USING ELECTROMYOGRAM SIGNAL}

본 발명은 기능적 전기자극 치료 장치에 관한 것으로, 좀 더 자세하게는 근전도 신호를 기반으로 기능성 전기자극(FES) 신호를 생성하는 전기자극 치료 장치 및 그것의 치료 방법에 관한 것이다.The present invention relates to a functional electrical stimulation treatment device, and more specifically, to an electrical stimulation treatment device that generates a functional electrical stimulation (FES) signal based on electromyography signals and a treatment method thereof.

근육이 활성화될 때 근육 세포에서 발생하는 전위차를 측정함으로써 근육의 활성 정도를 측정하는 근전도 신호(Electromyography: EMG)는 의료 분야에서뿐만 아니라 바이오 메카닉스 분야까지 널리 사용된다. EMG 기술은 활성화된 근육의 전위차를 측정하는 전극의 구성에 따라 발전되어 왔으며, 보편적으로 활용되는 형태는 피부 표면에 부착되는 전극 형태의 EMG 장비이다. 더불어, 전기자극 기술은 정전류 혹은 정전압의 형태로 전기자극을 근육에 인가하여 인위적으로 근육의 수축을 유발하는 기술이다. 전기자극 기술은 주로 약화 또는 상실된 근육의 기능을 보완 및 대체하는 기능성 전기자극(Functional Electrical Stimulation: 이하, FES) 기술로 발전되어 왔다.Electromyography (EMG), which measures the degree of muscle activity by measuring the potential difference generated in muscle cells when the muscle is activated, is widely used not only in the medical field but also in the biomechanics field. EMG technology has been developed according to the configuration of electrodes that measure the potential difference of activated muscles, and the most commonly used type is EMG equipment in the form of electrodes attached to the skin surface. In addition, electrical stimulation technology is a technology that artificially induces muscle contraction by applying electrical stimulation to muscles in the form of constant current or constant voltage. Electrical stimulation technology has mainly been developed into functional electrical stimulation (FES) technology, which complements and replaces the function of weakened or lost muscles.

기능성 전기자극(FES)은 일반적으로 병원에서 시술 가능한 가장 효과적인 재활 치료법으로 알려져 왔다. 기능성 전기자극(FES)을 활용한 치료를 위해 재활 전문가들은 수의적 근수축(Voluntary muscle contraction)이 발생하는 동안 환부에 전기자극을 인가한다. 재활 전문가들은 환자가 근수축을 유지하고 있는지 혹은 시작하였는지 여부를 육안으로 판단하고, FES 장치의 전원을 키는 방식으로 시술이 이루어진다. 일반적인 FES 장비에서는 사용자가 일정 이상의 힘을 주었을 때, 전기자극이 나오는 방식으로 구동된다.Functional electrical stimulation (FES) has generally been known to be the most effective rehabilitation treatment available in hospitals. For treatment using functional electrical stimulation (FES), rehabilitation experts apply electrical stimulation to the affected area while voluntary muscle contraction occurs. Rehabilitation experts perform the procedure by visually determining whether the patient is maintaining or starting muscle contraction and turning on the FES device. In general FES equipment, it is operated in such a way that electrical stimulation is generated when the user applies a certain amount of force.

따라서, FES를 이용한 재활 치료를 위해서, 한 명의 재활 전문가가 한 명의 환자를 감당할 수밖에 없다. 따라서, 다수의 환자들이 존재할 때에는 FES 장비를 사용하더라도 인력 부족은 불가피하다. FES 장치를 활용한 가정 환경에서의 재활 치료에서도 재활 전문가가 없이는 가장 효과적인 FES 재활 치료를 진행하기 어려운 실정이다. 재활 전문가는 환자가 수의적 근수축을 유지 중인지 혹은 시작하였는지 파악해야 하기 때문에 여러 명에 대해서 치료를 진행하는 것이 어렵다. 종래의 제품이나 기술에서는 사용자가 일정 이상의 힘을 주었을 때, 전기자극이 나오도록 제어되기 때문에, 전기자극이 출력된 이후 근수축 여부에 대해서는 장비가 인식하지 못한다. 환자의 수의적 근수축이 발생했을 때, 자동적으로 전기자극을 인가하는 장치가 필요하기 때문에, 입력된 신호를 분석 및 판단하는 기술이 요구된다. 따라서, 재활 전문가 없이도 환자 스스로 효과적인 FES 재활 치료가 가능할 수 있도록 하는 FES 기술에 대한 요구가 상존한다. Therefore, for rehabilitation treatment using FES, one rehabilitation expert has no choice but to handle one patient. Therefore, when there are a large number of patients, a shortage of manpower is inevitable even if FES equipment is used. Even in rehabilitation treatment in a home environment using FES devices, it is difficult to provide the most effective FES rehabilitation treatment without a rehabilitation expert. It is difficult for rehabilitation specialists to treat multiple patients because they must determine whether the patient is maintaining or starting voluntary muscle contraction. In conventional products or technologies, electrical stimulation is controlled to be output when the user applies a certain amount of force, so the equipment does not recognize whether the muscle is contracting after the electrical stimulation is output. Since a device is needed to automatically apply electrical stimulation when a patient's voluntary muscle contraction occurs, technology to analyze and judge the input signal is required. Therefore, there is a need for FES technology that allows patients to perform effective FES rehabilitation treatment on their own without a rehabilitation expert.

대한민국 공개특허공보 제10-2018-0074597호Republic of Korea Patent Publication No. 10-2018-0074597

본 발명은 상술한 기술적 과제를 해결하기 위한 것으로, 본 발명은 근자극 신호를 기반으로 기능성 전기자극(FES)을 생성하는 전기자극 치료 장치를 제공하는 데 있다. 근육이 전기자극에 의해 자극되면 불수의적 근수축(Involuntary muscle contraction)도 발생하는데, 본 발명의 목적은 불수의적 근수축과 수의적 근수축(Voluntary muscle contraction)을 구분하기 위한 전처리 기술을 사용하여 수의적 근수축 신호를 이용한 효과적인 FES 치료 장치를 제공하는데 있다. The present invention is intended to solve the above-mentioned technical problems, and the aim of the present invention is to provide an electrical stimulation treatment device that generates functional electrical stimulation (FES) based on muscle stimulation signals. When muscles are stimulated by electrical stimulation, involuntary muscle contraction also occurs. The purpose of the present invention is to use preprocessing technology to distinguish involuntary muscle contraction from voluntary muscle contraction. The aim is to provide an effective FES treatment device using induced muscle contraction signals.

본 발명의 실시 예에 따른 신체로부터 근전도 신호(EMG)를 수집하여, 기능성 전기자극 신호를 생성하는 전기자극 치료 장치는, 상기 근전도 신호에서 특성 벡터를 추출하여 자발 근수축 신호와 비자발 근수축 신호를 구분하여 검출하는 자발/비자발 수축 검출부, 상기 검출 결과에 따라 상기 근전도 신호로부터 상기 비자발 근수축 신호를 제거하는 비자발 수축 신호 제거부, 상기 비자발 근수축 신호가 제거된 근전도 신호의 실효치(RMS: Root Mean Square)를 계산하는 근활성도 세기 계산부, 그리고 상기 실효치와 문턱값을 비교하고, 비교 결과에 따라 상기 신체에 인가될 상기 기능성 전기자극 신호를 생성하는 기능성 전기자극 제어부를 포함한다. The electrical stimulation treatment device that collects electromyography signals (EMG) from the body and generates functional electrical stimulation signals according to an embodiment of the present invention extracts characteristic vectors from the electromyography signals to create voluntary muscle contraction signals and involuntary muscle contraction signals. A voluntary/involuntary contraction detection unit that detects the involuntary contraction signal separately, an involuntary contraction signal removal unit that removes the involuntary muscle contraction signal from the EMG signal according to the detection result, and an effective value of the EMG signal from which the involuntary muscle contraction signal is removed. It includes a muscle activity intensity calculation unit that calculates (RMS: Root Mean Square), and a functional electrical stimulation control unit that compares the effective value and the threshold value and generates the functional electrical stimulation signal to be applied to the body according to the comparison result. .

이 실시 예에서, 상기 특성 벡터는 상기 근전도 신호(EMG)의 주파수 영역에서 검출되는 백분위 스펙트럼 누적합(PoSCS)과 로그 파워 스펙트럼(Log Power Spectrum) 중 적어도 하나를 포함한다.In this embodiment, the feature vector includes at least one of a percentile cumulative sum of spectra (PoSCS) and a log power spectrum detected in the frequency domain of the electromyography signal (EMG).

이 실시 예에서, 상기 자발/비자발 수축 검출부는 상기 특성 벡터로부터 상기 자발 근수축 신호와 상기 비자발 근수축 신호를 구분하는 인공지능 모델을 포함한다. In this embodiment, the voluntary/involuntary contraction detection unit includes an artificial intelligence model that distinguishes the voluntary muscle contraction signal and the involuntary muscle contraction signal from the characteristic vector.

이 실시 예에서, 상기 인공지능 모델은 LSTM 알고리즘을 사용한다.In this embodiment, the artificial intelligence model uses the LSTM algorithm.

본 발명의 실시 예에 따른 신체로부터 생성되는 근전도 신호(EMG)를 수집하여 기능성 전기자극 신호를 생성하는 전기자극 치료 장치는, 상기 근전도 신호의 주파수 영역에서 특성 벡터를 추출하고, 인공지능 모델을 적용하여 추출된 상기 특성 벡터로부터 수의적 근수축 신호와 불수의적 근수축 신호를 구분하여 검출하는 수의적/불수의적 근수축 검출부, 상기 검출 결과에 따라 상기 근전도 신호로부터 상기 불수의적 근수축 신호를 제거하는 불수의적 근수축 신호 제거부, 상기 불수의적 근수축 신호가 제거된 근전도 신호의 실효치(RMS: Root Mean Square)를 계산하는 근활성도 세기 계산부, 그리고 상기 실효치와 문턱값을 비교하고, 비교 결과에 따라 상기 신체에 인가될 상기 기능성 전기자극 신호를 생성하는 기능성 전기자극 제어부를 포함한다.The electrical stimulation treatment device that collects electromyography signals (EMG) generated from the body and generates functional electrical stimulation signals according to an embodiment of the present invention extracts characteristic vectors from the frequency domain of the EMG signals and applies an artificial intelligence model. A voluntary/involuntary muscle contraction detection unit that detects the voluntary muscle contraction signal by distinguishing it from the involuntary muscle contraction signal from the extracted characteristic vector, and a voluntary/involuntary muscle contraction signal that removes the involuntary muscle contraction signal from the electromyogram signal according to the detection result. An involuntary muscle contraction signal removal unit, a muscle activity intensity calculation unit that calculates the root mean square (RMS) of the EMG signal from which the involuntary muscle contraction signal has been removed, and compares the effective value and the threshold value, and provides the comparison result. It includes a functional electrical stimulation control unit that generates the functional electrical stimulation signal to be applied to the body.

이 실시 예에서, 상기 특성 벡터는 상기 근전도 신호(EMG)의 주파수 영역에서 검출되는 백분위 스펙트럼 누적합(PoSCS)과 로그 파워 스펙트럼(Log Power Spectrum) 중 적어도 하나를 포함한다.In this embodiment, the feature vector includes at least one of a percentile cumulative sum of spectra (PoSCS) and a log power spectrum detected in the frequency domain of the electromyography signal (EMG).

이 실시 예에서, 상기 불수의적 근수축 신호 제거부는 상기 근전도 신호의 상기 불수의적 근수축 신호가 포함된 구간을 6dB만큼 감쇄하여 상기 불수의적 근수축 신호를 제거한다.In this embodiment, the involuntary muscle contraction signal removal unit removes the involuntary muscle contraction signal by attenuating a section of the EMG signal including the involuntary muscle contraction signal by 6 dB.

이 실시 예에서, 상기 인공지능 모델은 인공지능 알고리즘을 사용하여 상기 근전도 신호로부터 상기 불수의적 근수축 신호와 상기 수의적 근수축 신호를 구분한다.In this embodiment, the artificial intelligence model uses an artificial intelligence algorithm to distinguish between the involuntary muscle contraction signal and the voluntary muscle contraction signal from the electromyography signal.

이 실시 예에서, 상기 불수의적 근수축 신호 제거부는, 상기 근전도 신호(EMG)의 윈도우를 선택하는 윈도우부, 상기 선택된 윈도우에 포함되는 신호를 고속 푸리에 변환으로 처리하는 고속 푸리에 변환부, 상기 고속 푸리에 변환부에서 출력되는 신호의 크기와 위상을 각각 계산하는 크기 및 위상 계산부, 상기 신호의 크기에서 피크를 검출하는 피크 검출부, 그리고 상기 검출된 피크에 대응하는 노이즈 신호를 필터링하는 피크 제거부를 포함한다.In this embodiment, the involuntary muscle contraction signal removal unit includes a window unit that selects a window of the electromyography signal (EMG), a fast Fourier transform unit that processes the signal included in the selected window by fast Fourier transform, and the fast Fourier transform unit. It includes a magnitude and phase calculation unit that calculates the size and phase of the signal output from the conversion unit, a peak detection unit that detects a peak in the size of the signal, and a peak removal unit that filters the noise signal corresponding to the detected peak. .

본 발명의 실시 예에 따른 신체로부터 근전도 신호(EMG)를 수집하여, 기능성 전기자극 신호를 생성하는 전기자극 치료 장치의 치료 방법은, 상기 근전도 신호에서 특성 벡터를 추출하여 자발 근수축 신호와 비자발 근수축 신호를 구분하여 검출하는 단계, 상기 검출 결과에 따라 상기 근전도 신호로부터 상기 비자발 근수축 신호를 제거하는 단계, 상기 비자발 근수축 신호가 제거된 근전도 신호의 실효치(RMS: Root Mean Square)를 계산하는 단계, 그리고 상기 실효치와 문턱값을 비교하고, 비교 결과에 따라 상기 신체에 인가될 상기 기능성 전기자극 신호를 생성하는 단계를 포함한다.The treatment method of the electrical stimulation treatment device that collects electromyography signals (EMG) from the body and generates functional electrical stimulation signals according to an embodiment of the present invention includes extracting characteristic vectors from the electromyography signals and dividing them into spontaneous muscle contraction signals and involuntary muscle contraction signals. A step of distinguishing and detecting a muscle contraction signal, removing the involuntary muscle contraction signal from the EMG signal according to the detection result, the root mean square (RMS) of the EMG signal from which the involuntary muscle contraction signal is removed. It includes calculating , comparing the effective value and the threshold, and generating the functional electrical stimulation signal to be applied to the body according to the comparison result.

본 발명의 실시 예에 따른 신체로부터 전기자극에 응답하여 생성되는 근전도 신호(EMG)를 수집하는 전기자극 치료 장치의 치료 방법은, 상기 근전도 신호의 주파수 영역에서 특성 벡터를 추출하는 단계, 인공지능 모델을 적용하여 추출된 상기 특성 벡터로부터 수의적 근수축 신호와 불수의적 근수축 신호를 구분하여 검출하는 단계, 상기 검출 결과에 따라 상기 근전도 신호로부터 상기 불수의적 근수축 신호를 제거하는 단계, 상기 불수의적 근수축 신호가 제거된 근전도 신호의 실효치(RMS: Root Mean Square)를 계산하는 단계, 그리고 상기 실효치와 문턱값을 비교하고, 비교 결과에 따라 상기 신체에 인가될 기능성 전기자극 신호를 생성하는 단계를 포함한다.A treatment method using an electrical stimulation treatment device that collects electromyography signals (EMG) generated in response to electrical stimulation from the body according to an embodiment of the present invention includes extracting a characteristic vector from the frequency domain of the electromyographic signal, and an artificial intelligence model. A step of distinguishing and detecting a voluntary muscle contraction signal and an involuntary muscle contraction signal from the characteristic vector extracted by applying a step of detecting the signal, removing the involuntary muscle contraction signal from the electromyogram signal according to the detection result, and the involuntary muscle contraction signal. A step of calculating the root mean square (RMS) of the electromyographic signal from which the muscle contraction signal has been removed, comparing the effective value and a threshold value, and generating a functional electrical stimulation signal to be applied to the body according to the comparison result. Includes.

본 발명의 실시 예에 따른 전기자극 치료 시스템에 따르면, 근전도 신호(EMG)로부터 높은 정확도로 수의적 근수축 신호와 불수의적 근수축 신호를 구분하여 기능성 전기자극(FES) 신호를 생성할 수 있다. 따라서, 재활 전문가나 고비용의 장비가 없이도 높은 정확도의 기능성 전기자극(FES)을 제공하는 전기자극 치료 장치를 구현할 수 있다. According to the electrical stimulation treatment system according to an embodiment of the present invention, a functional electrical stimulation (FES) signal can be generated by distinguishing between voluntary and involuntary muscle contraction signals from electromyography signals (EMG) with high accuracy. Therefore, it is possible to implement an electrical stimulation treatment device that provides functional electrical stimulation (FES) with high accuracy without the need for rehabilitation experts or expensive equipment.

도 1은 본 발명의 실시 예에 따른 근감소증 진단 및 치료 시스템을 예시적으로 보여주는 블록도이다.
도 2는 본 발명의 실시 예에 따른 전기자극 치료 시스템을 예시적으로 보여주는 블록도이다.
도 3은 도 2의 전기자극 치료 시스템의 구성을 예시적으로 보여주는 블록도이다.
도 4는 특성 추출의 예로서 백분위 스펙트럼 누적합(PoSCS)을 추출하기 위한 주파수 영역(Frequency domain)에서의 처리 방법을 보여주는 순서도이다.
도 5는 백분위 스펙트럼 누적합(PoSCS)을 추출하는 방법을 보여주는 그래프이다.
도 6은 근전도 신호(EMG)로부터 주파수별 백분위 스펙트럼 누적합(PoSCS)을 추출한 결과를 나타내는 확률밀도함수(PDF)들을 보여준다.
도 7은 본 발명의 실시 예에 따른 수의적 근수축 신호와 불수의적 근수축 신호를 분리하기 위한 인공지능 연산부의 학습 방법을 보여주는 순서도이다.
도 8은 본 발명의 시간 영역에서의 순차적인 근전도(EMG) 데이터를 통해서 수의적 근수축 신호와 불수의적 근수축 신호를 식별하기 위한 LSTM 알고리즘의 구조를 간략히 보여주는 도면이다.
도 9는 본 발명의 수의적/불수의적 근수축 검출부의 실제 동작 및 테스트 동작을 보여주는 순서도이다.
도 10은 도 3에 도시된 불수의적 근수축 신호 제거부를 예시적으로 보여주는 블록도이다.
도 11 및 도 12는 피크 검출부와 피크 억제부(1126)에서의 EMG 데이터의 주파수 분석 결과를 보여주는 그래프이다.
도 13은 역변환부에서의 전처리(Pre-processing) 과정이 있는 파형(빨간색)과 전처리 과정이 없는 파형(검정색)을 보여주는 그래프이다.
도 14 내지 도 15는 본 발명의 근자극 신호 기반의 기능성 전기자극(FES)을 생성하는 전기자극 치료 시스템의 성능을 테스트한 결과를 보여주는 도면들이다.
1 is a block diagram illustrating a sarcopenia diagnosis and treatment system according to an embodiment of the present invention.
Figure 2 is a block diagram illustrating an electrical stimulation treatment system according to an embodiment of the present invention.
FIG. 3 is a block diagram exemplarily showing the configuration of the electrical stimulation treatment system of FIG. 2.
Figure 4 is a flowchart showing a processing method in the frequency domain to extract percentile spectral cumulative sum (PoSCS) as an example of feature extraction.
Figure 5 is a graph showing a method of extracting percentile spectral cumulative sum (PoSCS).
Figure 6 shows probability density functions (PDFs) representing the results of extracting the percentile spectral cumulative sum (PoSCS) by frequency from the electromyography signal (EMG).
Figure 7 is a flowchart showing a learning method of the artificial intelligence calculation unit for separating voluntary muscle contraction signals and involuntary muscle contraction signals according to an embodiment of the present invention.
Figure 8 is a diagram briefly showing the structure of the LSTM algorithm for identifying voluntary muscle contraction signals and involuntary muscle contraction signals through sequential electromyography (EMG) data in the time domain of the present invention.
Figure 9 is a flowchart showing the actual operation and test operation of the voluntary/involuntary muscle contraction detection unit of the present invention.
FIG. 10 is a block diagram illustrating an involuntary muscle contraction signal removal unit shown in FIG. 3.
11 and 12 are graphs showing the results of frequency analysis of EMG data in the peak detection unit and peak suppression unit 1126.
Figure 13 is a graph showing a waveform with pre-processing in the inverse converter (red) and a waveform without pre-processing (black).
Figures 14 and 15 are diagrams showing the results of testing the performance of the electrical stimulation treatment system that generates functional electrical stimulation (FES) based on muscle stimulation signals of the present invention.

이하에서, 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있을 정도로, 본 발명의 실시 예들이 명확하고 상세하게 기재될 것이다.Hereinafter, embodiments of the present invention will be described clearly and in detail so that a person skilled in the art can easily practice the present invention.

도 1은 본 발명의 실시 예에 따른 근감소증 진단 및 치료 시스템을 예시적으로 보여주는 블록도이다. 도 1을 참조하면, 근감소증 진단 및 치료 시스템은 근감소증 진단 장치(1000)와 근감소증 치료 장치(1100)를 포함할 수 있다. 근감소증 진단 장치(1000)는 사용자의 근육 퀄리티(MQ)와 근감소증을 진단할 수 있다. 근감소증 진단 장치(1000)는 근력, 근지구력 등을 측정하여 근감소증을 진단할 수 있다. 본 발명의 실시 예에 따른 근감소증 진단 장치(1000)는 전기 자극 기반 반응 신호(Electrical Stimulation-based Impact Response Signal: 이하, ES-based IR)를 이용하여 근력이나 근지구력과 관련된 정보를 얻고, 인공지능 학습 모델을 적용하여 근감소증을 간편하고 신속하고 정확하게 진단할 수 있다. 특히, 본 발명의 근감소증 진단 장치(1000)는 전기 자극 기반 반응 신호(ES-based IR)로서 다중-주파수 충격 반응 신호(m-FIRS)를 사용할 것이다. 1 is a block diagram illustrating a sarcopenia diagnosis and treatment system according to an embodiment of the present invention. Referring to FIG. 1, the sarcopenia diagnosis and treatment system may include a sarcopenia diagnosis device 1000 and a sarcopenia treatment device 1100. The sarcopenia diagnosis device 1000 can diagnose the user's muscle quality (MQ) and sarcopenia. The sarcopenia diagnosis device 1000 can diagnose sarcopenia by measuring muscle strength, muscular endurance, etc. The sarcopenia diagnosis device 1000 according to an embodiment of the present invention obtains information related to muscle strength or muscular endurance using an electrical stimulation-based impact response signal (ES-based IR), and artificial By applying an intelligent learning model, sarcopenia can be diagnosed simply, quickly, and accurately. In particular, the sarcopenia diagnosis device 1000 of the present invention will use a multi-frequency impulse response signal (m-FIRS) as an electrical stimulation-based response signal (ES-based IR).

근감소증 치료 장치(1100)는 근전도(Electromyography: 이하, EMG)를 통해 근육의 미세한 움직임을 감지하고 전기 자극(Electrical Stimulation: 이하, ES)을 가해, 환자의 움직임을 보조할 수 있다. 또한, 근감소증 치료 장치(1100)는 자발적으로 힘을 주는 동안에 전기 자극을 가하여 효과적인 재활 훈련을 하도록 할 수 있다.The sarcopenia treatment device 1100 can detect minute movements of muscles through electromyography (EMG) and apply electrical stimulation (ES) to assist the patient's movements. Additionally, the sarcopenia treatment device 1100 can provide effective rehabilitation training by applying electrical stimulation while voluntarily exerting force.

도 2는 본 발명의 실시 예에 따른 전기자극 치료 시스템을 예시적으로 보여주는 블록도이다. 도 2를 참조하면, 전기자극 치료 시스템(1100)은 전기자극을 인가하여 획득되는 근전도 신호(EMG)를 통해 전처리를 수행하고, 전처리된 데이터를 이용하여 환자를 치료하기 위한 기능성 전기자극(FES)을 생성한다.Figure 2 is a block diagram illustrating an electrical stimulation treatment system according to an embodiment of the present invention. Referring to FIG. 2, the electrical stimulation treatment system 1100 performs preprocessing through electromyography signals (EMG) obtained by applying electrical stimulation, and uses the preprocessed data to perform functional electrical stimulation (FES) to treat the patient. creates .

전기자극 치료 시스템(1100)은 환자의 근육이나 피부에 전기자극(ES)을 인가하고, 전기자극(ES)에 반응하여 제공되는 근전도 신호(EMG)를 기반으로 기능성 전기자극(FES)을 생성한다. 전기자극 치료 시스템(1100)은 일반적인 기능성 전기자극(FES) 신호와 달리, 근전도 신호(EMG)에서 불수의적 근수축 신호를 분리 및 제거하는 전처리 기술을 적용한다. 물론, 수집되는 근전도 신호(EMG)에는 전기자극(ES) 신호가 포함된다. 전기자극 치료 시스템(1100)은 근전도 신호(EMG)로부터 전기자극(ES) 신호와 불수의적 근수축 신호를 제거하여 수의적 근수축 신호를 추출하고, 수의적 근수축 신호를 기반으로 기능성 전기자극(FES) 신호를 생성할 수 있다. 따라서, 본 발명의 기능성 전기자극(FES) 신호가 근전도 신호(EMG)를 기반으로 생성된다는 점에서 이하에서는 근전도 기반의 기능성 전기자극(ECF: EMG-Controlled FES)라 칭하기로 한다.The electrical stimulation treatment system 1100 applies electrical stimulation (ES) to the patient's muscles or skin and generates functional electrical stimulation (FES) based on electromyography signals (EMG) provided in response to the electrical stimulation (ES). . Unlike general functional electrical stimulation (FES) signals, the electrical stimulation treatment system 1100 applies preprocessing technology to separate and remove involuntary muscle contraction signals from electromyography (EMG) signals. Of course, the collected electromyography (EMG) signals include electrical stimulation (ES) signals. The electrical stimulation treatment system 1100 extracts a voluntary muscle contraction signal by removing the electrical stimulation (ES) signal and the involuntary muscle contraction signal from the electromyography signal (EMG), and performs functional electrical stimulation ( FES) signal can be generated. Therefore, since the functional electrical stimulation (FES) signal of the present invention is generated based on electromyography signals (EMG), it will hereinafter be referred to as electromyography-based functional electrical stimulation (ECF: EMG-Controlled FES).

전기자극 치료 시스템(1100)은 근수축에 따른 근활성도를 측정하는 근전도 신호(EMG)를 기반으로 기능성 전기자극(FES)을 조절할 수 있다. 전기자극 치료 시스템(1100)은 근전도 신호(EMG)의 실효치(RMS: Root Mean Square) 크기에 따라 전기자극의 세기를 조절할 수 있다. 이를 통해 전기자극 치료 시스템(1100)은 일정 이상의 힘을 주면 전기자극이 켜지고, 일정 이하로 힘이 떨어지면 전기자극이 꺼지는 재활 치료 서비스 제공할 수 있다. 또한, 전기자극 치료 시스템(1100)은 특정 동작을 위해 주어야 할 힘을 주지 못할 때, 부족한 힘을 보조하기 위해 전기자극을 인가하여 보조해주는 서비스를 제공할 수 있다.The electrical stimulation treatment system 1100 can control functional electrical stimulation (FES) based on electromyography signals (EMG) that measure muscle activity due to muscle contraction. The electrical stimulation treatment system 1100 can adjust the intensity of electrical stimulation according to the root mean square (RMS) size of the electromyography signal (EMG). Through this, the electrical stimulation treatment system 1100 can provide a rehabilitation treatment service in which the electrical stimulation is turned on when a certain amount of force is applied, and the electrical stimulation is turned off when the force falls below a certain level. In addition, the electrical stimulation treatment system 1100 can provide assistance by applying electrical stimulation to supplement the insufficient force when the force required for a specific movement cannot be applied.

본 발명의 전기자극 치료 시스템(1100)은 근전도 기반의 기능성 전기자극(ECF)을 사용하여 환자의 치료를 수행한다. 이를 위해 패드 형태의 전극들이 사용될 수 있다. 전기자극 패드(1111)는 전기자극(ES) 및 근전도 신호 기반의 기능성 전기자극(ECF)을 인가하는 전기자극 패드를 포함할 수 있다. 예를 들면, 전기자극 패드(1111)는 습식의 형태로 1회용 또는 다회용으로 사용될 수 있다. 또는, 전기자극 패드(1111)는 사용자의 생체 신호나 신경지배근의 전기자극 신호를 전달하기 위해 건식 고점착성 소재를 사용하여 제작될 수 있다. 예를 들어, 전기자극 패드(1111)는 탄소 나노 소재를 이용한 전도성 건식 점착 전극 패드로 제작될 수 있다. 전기자극 측정 패드(1112)는 근전도(EMG) 측정을 위해 사용된다. 전기자극 측정 패드(1112)는 허벅지 근전도 측정 센싱을 위한 EMG 센서를 포함할 수 있다. 더불어, 레퍼런스 패드(1113)는 전기자극 패드(1111)나 전기자극 측정 패드(1112)의 접지 레벨을 제공하기 위한 전극 패드로 제공된다.The electrical stimulation treatment system 1100 of the present invention performs treatment of patients using electromyography-based functional electrical stimulation (ECF). For this purpose, pad-shaped electrodes may be used. The electrical stimulation pad 1111 may include an electrical stimulation pad that applies electrical stimulation (ES) and functional electrical stimulation (ECF) based on electromyography signals. For example, the electrical stimulation pad 1111 can be used in a wet form for one-time use or multiple use. Alternatively, the electrical stimulation pad 1111 may be manufactured using a dry, high-adhesive material to transmit the user's biological signals or electrical stimulation signals of the innervated muscles. For example, the electrical stimulation pad 1111 may be manufactured as a conductive dry adhesive electrode pad using carbon nanomaterial. The electrical stimulation measurement pad 1112 is used for electromyography (EMG) measurement. The electrical stimulation measurement pad 1112 may include an EMG sensor for sensing thigh electromyography. In addition, the reference pad 1113 is provided as an electrode pad to provide a ground level for the electrical stimulation pad 1111 or the electrical stimulation measurement pad 1112.

도 3은 도 2의 전기자극 치료 시스템의 구성을 예시적으로 보여주는 블록도이다. 도 3을 참조하면, 전기자극 치료 시스템(1100)은 수의적/불수의적 근수축 검출부(1110), 불수의적 근수축 신호 제거부(1120), 근활성도 세기 계산부(1130), 그리고 기능성 전기자극 제어부(1140)를 포함할 수 있다.FIG. 3 is a block diagram exemplarily showing the configuration of the electrical stimulation treatment system of FIG. 2. Referring to FIG. 3, the electrical stimulation treatment system 1100 includes a voluntary/involuntary muscle contraction detection unit 1110, an involuntary muscle contraction signal removal unit 1120, a muscle activity intensity calculation unit 1130, and functional electrical stimulation. It may include a control unit 1140.

수의적/불수의적 근수축 검출부(1110)는 전기자극(ES)에 반응하여 수집되는 근전도 신호(EMG)를 입력받는다. 수의적/불수의적 근수축 검출부(1110)는 입력된 근전도 신호(EMG)에 포함되는 전기자극(ES)을 제거하고, 수의적 근수축 신호와 불수의적 근수축 신호를 구분할 수 있다. 수의적 근수축 신호와 불수의적 근수축 신호를 신호의 진폭만으로 구분하는 것은 어렵다. 따라서, 수의적 근수축 신호와 불수의적 근수축 신호를 분리하기 위해 인공지능(AI) 모델이 필요하다.The voluntary/involuntary muscle contraction detection unit 1110 receives electromyography signals (EMG) collected in response to electrical stimulation (ES). The voluntary/involuntary muscle contraction detection unit 1110 can remove the electrical stimulation (ES) included in the input electromyography signal (EMG) and distinguish between the voluntary muscle contraction signal and the involuntary muscle contraction signal. It is difficult to distinguish between voluntary and involuntary muscle contraction signals based on signal amplitude alone. Therefore, an artificial intelligence (AI) model is needed to separate voluntary and involuntary muscle contraction signals.

고성능의 신호 분류를 위해, 고성능의 딥러닝 모델과 더불어, 모델의 성능을 향상시키기 위한 고성능 특성 벡터도 중요하다. 따라서, 본 발명에서는 특성 추출을 위해 850Hz의 샘플링 레이트(Sampling rate)와, 320 샘플의 프레임 사이즈, 20 샘플의 시프트 사이즈, 그리고 512의 FFT 사이즈가 적용될 수 있다. 프레임 사이즈의 크기는 320 샘플이기 때문에, 320 샘플이 순차적으로 버퍼에 저장될 것이다. 그리고, 320 샘플만큼의 시간이 지난 후에, 20 샘플씩 신호가 버퍼(buffer)에 순차적으로 저장될 수 있다. 버퍼를 업데이트한 후에 특성 추출 기술을 사용하여 특성 벡터가 추출될 것이다.For high-performance signal classification, in addition to a high-performance deep learning model, high-performance feature vectors are also important to improve model performance. Therefore, in the present invention, a sampling rate of 850Hz, a frame size of 320 samples, a shift size of 20 samples, and an FFT size of 512 can be applied for feature extraction. Since the frame size is 320 samples, 320 samples will be sequentially stored in the buffer. And, after 320 samples have elapsed, signals of 20 samples each can be sequentially stored in a buffer. After updating the buffer, feature vectors will be extracted using feature extraction techniques.

불수의적 근수축 신호 제거부(1120)는 검출된 불수의적 근수축 신호를 제거한다. 근활성도 세기 계산부(1130)는 노이즈 제거가 된 상태에서 RMS를 계산하여 힘이 어느 정도 가해졌는지 직관적으로 파악할 수 있도록 해준다.The involuntary muscle contraction signal removal unit 1120 removes the detected involuntary muscle contraction signal. The muscle activity intensity calculation unit 1130 calculates the RMS in a noise-removed state to intuitively determine how much force was applied.

기능성 전기자극 제어부(1140)는 근전도 기반의 기능성 전기자극(ECF)을 생성한다. 즉, 기능성 전기자극 제어부(1140)는 특정 문턱값(Threshold)과 RMS를 비교하여 기능성 전기자극을 인가하는 것을 온(ON) 또는 오프(OFF)할 수 있다. 예를 들면, 기능성 전기자극 제어부(1140)는 RMS가 문턱값보다 크거나 같으면 기능성 전기자극을 인가하고, 작으면 인가하지 않을 수 있다. 또는, 기능성 전기자극 제어부(1140)는 RMS에 따라 기능성 전기자극의 세기를 결정할 수 있다. 기능성 전기자극 제어부(1140)는 RMS가 커지면 전기자극도 세지고, 작아지면 약해지도록 제어할 수 있다.  The functional electrical stimulation control unit 1140 generates electromyography-based functional electrical stimulation (ECF). That is, the functional electrical stimulation control unit 1140 can turn on or off the application of functional electrical stimulation by comparing the RMS with a specific threshold. For example, the functional electrical stimulation control unit 1140 may apply functional electrical stimulation if the RMS is greater than or equal to the threshold, and may not apply functional electrical stimulation if it is smaller than the threshold. Alternatively, the functional electrical stimulation control unit 1140 may determine the intensity of functional electrical stimulation according to RMS. The functional electrical stimulation control unit 1140 can control the electrical stimulation so that it becomes stronger as the RMS increases and becomes weaker as the RMS decreases.

전기자극 치료 시스템(1100)은 근수축에 따른 근활성도를 측정하는 근전도 신호(EMG)를 기반으로 기능성 전기자극(FES)을 조절할 수 있다. 전기자극 치료 시스템(1100)은 EMG의 RMS 크기에 따라 전기자극의 세기를 조절할 수 있다. 이를 통해 전기자극 치료 시스템(1100)은 일정 이상의 힘을 주면 전기자극이 켜지고, 일정 이하로 힘이 떨어지면 전기자극이 꺼지는 재활 치료 서비스 제공할 수 있다. 또한, 전기자극 치료 시스템(1100)은 특정 동작을 위해 주어야 할 힘을 주지 못할 때, 부족한 힘을 보조하기 위해 전기자극을 인가하여 보조해 주는 서비스를 제공할 수 있다.The electrical stimulation treatment system 1100 can control functional electrical stimulation (FES) based on electromyography signals (EMG) that measure muscle activity due to muscle contraction. The electrical stimulation treatment system 1100 can adjust the intensity of electrical stimulation according to the RMS size of the EMG. Through this, the electrical stimulation treatment system 1100 can provide a rehabilitation treatment service in which the electrical stimulation is turned on when a certain amount of force is applied, and the electrical stimulation is turned off when the force falls below a certain level. In addition, the electrical stimulation treatment system 1100 can provide assistance by applying electrical stimulation to supplement the insufficient force when the force required for a specific movement cannot be applied.

도 4는 특성 추출의 예로서 백분위 스펙트럼 누적합(PoSCS)을 추출하기 위한 주파수 영역(Frequency domain)에서의 처리 방법을 보여주는 순서도이다. 도 4를 참조하면, 근전도 신호(EMG)에 대한 주파수 영역의 처리를 통해서 백분위 스펙트럼 누적합(Percentile of Spectral Cumulative Sum: 이하, PoSCS)을 추출할 수 있다.Figure 4 is a flowchart showing a processing method in the frequency domain to extract percentile spectral cumulative sum (PoSCS) as an example of feature extraction. Referring to FIG. 4, the Percentile of Spectral Cumulative Sum (PoSCS) can be extracted through frequency domain processing of the electromyography signal (EMG).

S110 단계에서, 주파수 스펙트럼으로 변환할 근전도 신호(EMG)의 시간 영역에서의 윈도우(Window)가 선택된다. 예를 들면, 근전도 신호(EMG)의 윈도우가 섹터 단위로 또는 프레임 단위로 선택될 수 있을 것이다.In step S110, a window in the time domain of the electromyography signal (EMG) to be converted to a frequency spectrum is selected. For example, a window of electromyography (EMG) signals may be selected on a sector-by-sector basis or a frame-by-frame basis.

S120 단계에서, 선택된 구간의 근전도 신호(EMG)의 윈도우에 대한 고속 푸리에 변환(FFT) 및 절대값 연산이 수행된다.In step S120, fast Fourier transform (FFT) and absolute value calculation are performed on the window of the electromyography signal (EMG) of the selected section.

S130 단계에서, 절대값 연산 결과에 기초하여 주파수 영역에서 스펙트럼 누적합(SCS)이 추출된다.In step S130, a cumulative spectrum sum (SCS) is extracted in the frequency domain based on the absolute value calculation result.

S140 단계에서, 정규화(Normalization) 연산이 수행된다.In step S140, normalization operation is performed.

S150 단계에서, 정규화된 데이터에 기초하여 주파수들 각각의 백분위 스펙트럼 누적합(PoSCS)이 추출된다.In step S150, the percentile spectral cumulative sum (PoSCS) of each frequency is extracted based on the normalized data.

도 5는 백분위 스펙트럼 누적합(PoSCS)을 추출하는 방법을 보여주는 그래프이다. 도 5를 참조하면, 백분위 스펙트럼 누적합(PoSCS)의 추출은 예시적으로 다음과 같은 과정을 통해 수행될 수 있다.Figure 5 is a graph showing a method of extracting percentile spectral cumulative sum (PoSCS). Referring to FIG. 5, extraction of percentile spectral cumulative sum (PoSCS) may be exemplarily performed through the following process.

먼저, 주파수 도메인(frequency domain)에서 x축 양의 방향으로 크기(magnitude)를 누적시킨 후, 최대 정규화(max-normalization) 데이터를 활용한다. 이어서, y축을 기준으로 0.05 단위로 0.05에서 0.30까지 수평선을 시프팅(Shifting)한 후, 수평선과 스펙트럼 누적합(SCS)과의 접점의 주파수 빈(frequency bin)을 특성(feature)으로 추출한다. 프레임(Frame) 별로 6차로 구성된 특성 벡터를 추출함으로써, 스펙트럼 누적합(SCS)의 사용은 불수의적 근수축과 수의적 근수축을 효과적으로 구분하는데 사용될 수 있다. 이러한 과정은 주파수 빈(frequency bin)을 추출된 특성을 도시하는 오른쪽 그래프에 나타난다.First, the magnitude is accumulated in the positive x-axis direction in the frequency domain, and then the max-normalization data is used. Next, the horizontal line is shifted from 0.05 to 0.30 in 0.05 increments based on the y-axis, and then the frequency bin of the contact point between the horizontal line and the cumulative spectral sum (SCS) is extracted as a feature. By extracting a 6-order feature vector for each frame, the use of spectral cumulative sum (SCS) can be used to effectively distinguish between involuntary muscle contraction and voluntary muscle contraction. This process is shown in the graph on the right, which shows the extracted features in frequency bins.

불수의적 근수축으로 인해 발생하는 주파수 영역에서의 잡음 성분은 수의적 근수축의 주파수 성분과는 다르게 비정상적으로 튀어오르는 값을 갖는다. 따라서, 불수의적 근수축과 수의적 근수축이 동시에 존재할 때, 불수의적 근수축만 존재했을 때와는 다르게 스펙트럼 누적합(SCS)의 특징이 다르게 나타난다. 또한, 불수의적 근수축으로 인해 발생하는 주파수 영역에서의 잡음 성분은 전기자극(ES)의 주파수 파라미터에 따라 다르게 나타난다. 전기자극 환경에 따라 수의적 근수축 구간에서 두드러지게 나타나는 특성이 다르다. 따라서, 모든 전기자극 환경에 대해, 고성능 모델을 구성하기 위해서는 위에서 언급한 바와 같이 다차원(multi-dimension) 형태의 특성 벡터를 활용해야 한다. 결과적으로, 백분위 스펙트럼 누적합(PoSCS)은 수의적 근수축 구간에서 두드러지게 나타나는 것을 확인할 수 있다.The noise component in the frequency domain that occurs due to involuntary muscle contraction has an abnormally bouncing value, unlike the frequency component of voluntary muscle contraction. Therefore, when involuntary muscle contraction and voluntary muscle contraction exist simultaneously, the characteristics of the cumulative spectral sum (SCS) appear differently than when only involuntary muscle contraction exists. Additionally, noise components in the frequency domain that occur due to involuntary muscle contraction appear differently depending on the frequency parameters of electrical stimulation (ES). The characteristics that stand out in the voluntary muscle contraction section differ depending on the electrical stimulation environment. Therefore, in order to construct a high-performance model for all electrical stimulation environments, multi-dimensional feature vectors must be utilized, as mentioned above. As a result, it can be seen that percentile spectral cumulative sum (PoSCS) appears prominently in the voluntary muscle contraction section.

도 6은 근전도 신호(EMG)로부터 주파수별 백분위 스펙트럼 누적합(PoSCS)을 추출한 결과를 보여주는 확률밀도함수(PDF)들이다. 도 6을 참조하면, 시간 영역에서의 근전도 신호(EMG)에서는 각 주파수 대역에서 불수의적 근수축과 수의적 근수축이 구분될 수는 있다. 하지만, 중첩되는 부분이 존재함을 알 수 있다. 따라서, 인공지능 알고리즘을 활용한 분리 연산이 필요함을 알 수 있다.   Figure 6 is a probability density function (PDF) showing the results of extracting the percentile spectral cumulative sum (PoSCS) by frequency from the electromyography signal (EMG). Referring to FIG. 6, in the electromyography signal (EMG) in the time domain, involuntary muscle contraction and voluntary muscle contraction can be distinguished in each frequency band. However, it can be seen that there is an overlap. Therefore, it can be seen that separation calculation using artificial intelligence algorithm is necessary.

주파수별 백분위 스펙트럼 누적합(PoSCS)을 추출한 후, 불수의적 근수축 신호에 대한 특성의 활률밀도함수(PDF)는 각 주파수들(10Hz, 60Hz, 90Hz)에서 곡선들(C11, C12, C13)로 나타난다. 그리고 수의적 근수축 신호에 대한 특성의 확률밀도함수는 각 주파수들(10Hz, 60Hz, 90Hz)에서 곡선들(C21, C22, C23)로 나타난다. 백분위 스펙트럼 누적합(PoSCS)의 추출 결과에 따르면, 저주파에서의 불수의적 근수축 신호와 수의적 근수축 신호는 서로 다른 평균을 가지고 있어 상대적으로 뚜렷한 구분이 가능하다. 하지만, 추출된 특성이 상호 중첩되는 부분이 존재하기 때문에 어느 주파수에서든 높은 분류 해상도를 제공하기 위해서는 추출된 특성에 대한 딥러닝이나 인공지능 기법이 필요하게 된다. 특히, 본 발명에서는 롱텀 타임 시리즈 데이터에 대해서 가장 높은 성능을 제공하는 LSTM(Long Short Term Memory) 알고리즘이 사용될 것이다.  After extracting the percentile spectral cumulative sum (PoSCS) for each frequency, the activity density function (PDF) of the characteristic for the involuntary muscle contraction signal is expressed as curves (C11, C12, C13) at each frequency (10Hz, 60Hz, 90Hz). appear. And the probability density function of the characteristics of the voluntary muscle contraction signal appears as curves (C21, C22, C23) at each frequency (10Hz, 60Hz, 90Hz). According to the extraction results of percentile spectral cumulative sum (PoSCS), involuntary muscle contraction signals and voluntary muscle contraction signals at low frequencies have different averages, allowing relatively clear distinction. However, since there is some overlap between the extracted features, deep learning or artificial intelligence techniques for the extracted features are needed to provide high classification resolution at any frequency. In particular, in the present invention, the LSTM (Long Short Term Memory) algorithm, which provides the highest performance for long-term time series data, will be used.

도 7은 본 발명의 실시 예에 따른 수의적 근수축 신호와 불수의적 근수축 신호를 분리하기 위한 인공지능 연산부의 학습 방법을 보여주는 순서도이다. 도 7을 참조하면, 수의적/불수의적 근수축 검출부(1110, 도 2 참조)는 입력되는 근전도 신호(EMG)를 이용하여 순환신경망(RNN)의 일종인 LSTM의 학습을 진행할 수 있다. 학습을 통해서 수의적 근수축 신호와 불수의적 근수축 신호에 대한 높은 해상도의 식별이 가능하다.Figure 7 is a flowchart showing a learning method of the artificial intelligence calculation unit for separating voluntary muscle contraction signals and involuntary muscle contraction signals according to an embodiment of the present invention. Referring to FIG. 7, the voluntary/involuntary muscle contraction detection unit 1110 (see FIG. 2) can use the input electromyography signal (EMG) to learn LSTM, a type of recurrent neural network (RNN). Through learning, high-resolution discrimination between voluntary and involuntary muscle contraction signals is possible.

S210 단계에서, 수의적/불수의적 근수축 검출부(1110)는 근전도(EMG) 데이터를 수집할 수 있다. 수의적/불수의적 근수축 검출부(1110)는 신체 근육에 전기자극(ES)을 인가하고, 근전도(EMG) 데이터를 측정할 수 있다.In step S210, the voluntary/involuntary muscle contraction detection unit 1110 may collect electromyography (EMG) data. The voluntary/involuntary muscle contraction detection unit 1110 can apply electrical stimulation (ES) to the body muscles and measure electromyography (EMG) data.

S220 단계에서, 수의적/불수의적 근수축 검출부(1110)는 근전도(EMG) 데이터를 분석하고, 특성 벡터를 추출할 수 있다. 수의적/불수의적 근수축 검출부(1110)는 근전도(EMG) 데이터에 포함된 노이즈 신호를 제거한 다음에, 근력이나 근지구력 등과 관련된 특성 벡터(feature vector)를 추출할 수 있다.In step S220, the voluntary/involuntary muscle contraction detection unit 1110 may analyze electromyography (EMG) data and extract characteristic vectors. The voluntary/involuntary muscle contraction detection unit 1110 may remove noise signals included in electromyography (EMG) data and then extract feature vectors related to muscle strength or muscular endurance.

S230 단계에서, 수의적/불수의적 근수축 검출부(1110)는 특성 벡터를 기초로, 인공지능(AI) 모델의 학습을 수행한다. 수의적/불수의적 근수축 검출부(1110) 인공지능 학습을 위한 학습 데이터를 생성한다. 수의적/불수의적 근수축 검출부(1110)는 특성 벡터를 기초로, 학습용 데이터베이스(DB)를 생성할 수 있다(S231). 수의적/불수의적 근수축 검출부(1110)는 LSTM 가중치(Weight)를 초기화할 수 있다(S232). 수의적/불수의적 근수축 검출부(1110)는 학습용 데이터베이스(DB)를 셔플(shuffle)한다. 즉, 수의적/불수의적 근수축 검출부(1110)는 학습용 데이터를 FCNN(Fully connected Neural Network)에 제공하여 학습 연산으로 처리할 수 있다(S233). 수의적/불수의적 근수축 검출부(1110)는 현재 LSTM 모델 오차를 계산할 수 있다(S234). 수의적/불수의적 근수축 검출부(1110)는 현재까지 학습한 오류(Epoch)가 총 오류(total epoch)보다 작은지를 판단한다(S235). 수의적/불수의적 근수축 검출부(1110)는 현재까지 학습한 Epoch가 총 오류(total epoch)보다 작지 않으면(NO) 종료한다. 반면, 수의적/불수의적 근수축 검출부(1110)는 현재까지 학습한 Epoch가 총 오류(total epoch)보다 작으면(YES), LSTM 가중치를 업데이트하고(S236), S233 단계로 복귀한다.In step S230, the voluntary/involuntary muscle contraction detection unit 1110 performs learning of an artificial intelligence (AI) model based on the characteristic vector. The voluntary/involuntary muscle contraction detection unit 1110 generates learning data for artificial intelligence learning. The voluntary/involuntary muscle contraction detection unit 1110 may create a learning database (DB) based on the characteristic vector (S231). The voluntary/involuntary muscle contraction detection unit 1110 may initialize the LSTM weight (S232). The voluntary/involuntary muscle contraction detection unit 1110 shuffles the learning database (DB). That is, the voluntary/involuntary muscle contraction detection unit 1110 may provide learning data to a fully connected neural network (FCNN) and process it through a learning operation (S233). The voluntary/involuntary muscle contraction detection unit 1110 can calculate the current LSTM model error (S234). The voluntary/involuntary muscle contraction detection unit 1110 determines whether the error (epoch) learned to date is smaller than the total error (total epoch) (S235). The voluntary/involuntary muscle contraction detection unit 1110 terminates (NO) if the epoch learned to date is not less than the total error (total epoch). On the other hand, if the epoch learned to date is less than the total epoch (YES), the voluntary/involuntary muscle contraction detection unit 1110 updates the LSTM weights (S236) and returns to step S233.

도 8은 본 발명의 시간 영역에서의 순차적인 근전도(EMG) 데이터를 통해서 수의적 근수축 신호와 불수의적 근수축 신호를 식별하기 위한 LSTM 알고리즘의 구조를 간략히 보여주는 도면이다. 도 8을 참조하면, LSTM 알고리즘에 의해서 시간적으로 순차적으로 제공되는 근전도(EMG) 데이터에 대한 가중치들의 업데이트, 즉 학습이 수행된다.Figure 8 is a diagram briefly showing the structure of the LSTM algorithm for identifying voluntary muscle contraction signals and involuntary muscle contraction signals through sequential electromyography (EMG) data in the time domain of the present invention. Referring to FIG. 8, updating, or learning, of weights for electromyography (EMG) data provided sequentially in time is performed by the LSTM algorithm.

LSTM 알고리즘의 구조는 순차적으로 입력되는 입력 데이터(Dt)를 처리하는 LSTM 셀들로 구성된다. LSTM 셀들 각각은 현재 시점의 상태를 기초로 과거 데이터를 얼마나 기억할지, 버릴지를 결정하고 그 결과에 현재의 출력을 반영하여 다음 LSTM 셀에 전달한다. 이러한 기능을 위해 하나의 LSTM 셀은 현재 입력 데이터(Dt)를 처리하기 위한 망각 게이트(Forget gate), 입력 게이트(Input gate), 그리고 출력 게이트(Output gate)로 구성된다.The structure of the LSTM algorithm consists of LSTM cells that process sequentially input data (Dt). Each LSTM cell decides how much past data to remember or discard based on its current state, reflects the current output in the result, and passes it to the next LSTM cell. For this function, one LSTM cell consists of a forget gate, an input gate, and an output gate to process the current input data (Dt).

도 9는 본 발명의 수의적/불수의적 근수축 검출부의 실제 동작 및 테스트 동작을 보여주는 순서도이다. 도 9를 참조하면, 수의적/불수의적 근수축 검출부(1110)는 입력되는 근전도 신호(EMG)를 기초로 도 8에서 학습된 LSTM을 이용하여 수의적 근수축 신호와 불수의적 근수축 신호를 구분할 수 있다.Figure 9 is a flowchart showing the actual operation and test operation of the voluntary/involuntary muscle contraction detection unit of the present invention. Referring to FIG. 9, the voluntary/involuntary muscle contraction detection unit 1110 can distinguish between voluntary muscle contraction signals and involuntary muscle contraction signals using the LSTM learned in FIG. 8 based on the input electromyography signal (EMG). You can.

S310 단계에서, 수의적/불수의적 근수축 검출부(1110)는 근전도(EMG) 데이터를 수집할 수 있다. 수의적/불수의적 근수축 검출부(1110)는 신체 근육에 전기자극(ES)을 인가하고, 근전도(EMG) 데이터를 측정할 수 있다.In step S310, the voluntary/involuntary muscle contraction detection unit 1110 may collect electromyography (EMG) data. The voluntary/involuntary muscle contraction detection unit 1110 can apply electrical stimulation (ES) to the body muscles and measure electromyography (EMG) data.

S320 단계에서, 수의적/불수의적 근수축 검출부(1110)는 근전도(EMG) 데이터를 분석하고, 특성 벡터를 추출할 수 있다. 수의적/불수의적 근수축 검출부(1110)는 근전도(EMG) 데이터에 포함된 노이즈 전기 신호를 제거한 다음에, 근력이나 근지구력 등과 관련된 특성 벡터(feature vector)를 추출할 수 있다.In step S320, the voluntary/involuntary muscle contraction detection unit 1110 may analyze electromyography (EMG) data and extract characteristic vectors. The voluntary/involuntary muscle contraction detection unit 1110 may remove noise electrical signals included in electromyography (EMG) data and then extract feature vectors related to muscle strength or muscular endurance.

S330 단계에서, 수의적/불수의적 근수축 검출부(1110)는 시계열적으로 순차적으로 입력되는 특성 벡터를 기초로 LSTM 연산을 수행한다. S340 단계에서, LSTM 연산의 결과로 제공되는 출력 계층의 파라미터(Wo)가 제공된다. 수의적/불수의적 근수축 검출부(1110)는 파라미터(Wo)를 이용하여 출력값(y)을 제공한다. S350 단계에서, 수의적/불수의적 근수축 검출부(1110)는 최종적으로 출력값(y)을 이용하여 문턱값(threshold)을 이용한 분류(classification)을 수행하고, 결과를 출력한다.In step S330, the voluntary/involuntary muscle contraction detection unit 1110 performs an LSTM operation based on feature vectors sequentially input in time series. In step S340, the parameters (Wo) of the output layer provided as a result of the LSTM operation are provided. The voluntary/involuntary muscle contraction detection unit 1110 provides an output value (y) using the parameter (Wo). In step S350, the voluntary/involuntary muscle contraction detection unit 1110 finally uses the output value (y) to perform classification using a threshold and outputs the result.

도 10은 도 3에 도시된 불수의적 근수축 신호 제거부를 예시적으로 보여주는 블록도이다. 도 10을 참조하면, 불수의적 근수축 신호 제거부(1120)는 윈도우부(1121), 고속 푸리에 변환부(FFT: Fast Fourier Transform, 1122), 크기(magnitude)와 위상(phase) 계산부(1123, 1124), 피크 검출부(1125), 피크 제거부(1126), 그리고 역변환부(IFFT: inverse FFT, 1127)를 포함할 수 있다.FIG. 10 is a block diagram illustrating an involuntary muscle contraction signal removal unit shown in FIG. 3. Referring to FIG. 10, the involuntary muscle contraction signal removal unit 1120 includes a window unit 1121, a Fast Fourier Transform (FFT) 1122, and a magnitude and phase calculation unit 1123. , 1124), a peak detection unit 1125, a peak removal unit 1126, and an inverse FFT (IFFT) 1127.

윈도우부(1121)는 타임 도메인(time domain)의 입력 신호(예를 들면, EMG 신호)를 주파수 도메인(frequency domain)의 신호로 윈도윙(windowing)을 수행한다. 윈도우부(1121)는 실시간으로 20 샘플(samples) 단위로 시프트하고, 512 샘플 단위로 프레임을 구성하며, 512 크기의 FFT 사이즈로 동작할 수 있다. 고속 푸리에 변환부(1122)는 푸리에 변환을 수행하고, 계산부(1123, 1124)는 크기(magnitude)와 위상(phase)을 계산한다. 피크 검출부(1125) 및 피크 제거부(1126)는 파형의 피크를 검출함으로 노이즈를 검출하고, 치환을 통해 피크 제거(peak suppression)를 수행한다. 불수의적 근수축 성분은 임펄스(Impulse)처럼 피크 형태의 크기(magnitude)로 나타난다. 따라서, 피크 검출부(1125)는 크기(magnitude)가 임펄스(Impulse)처럼 나타나는 불수의적 근수축 성분을 검출한다. 피크 제거부(1126)는 검출된 피크를 eps (= 2.2204e-16) 값으로 치환한 후, IFFT를 수행하여, 불수의적 근수축 성분이 제거된 신호를 얻을 수 있다. 역변환부(1127)는 피크 검출부(1125)와 피크 제거부(1126)를 거친 파형의 크기(magnitude)와, 앞에서 계산한 파형의 위상(phase)을 이용하여 역변환을 수행하고, 출력 신호를 발생한다.The window unit 1121 performs windowing of an input signal (eg, EMG signal) in the time domain into a signal in the frequency domain. The window unit 1121 can shift in real time in units of 20 samples, configure a frame in units of 512 samples, and operate with an FFT size of 512. The fast Fourier transform unit 1122 performs Fourier transform, and the calculation units 1123 and 1124 calculate magnitude and phase. The peak detection unit 1125 and peak removal unit 1126 detect noise by detecting the peak of the waveform and perform peak suppression through substitution. The involuntary muscle contraction component appears in peak-shaped magnitude like an impulse. Accordingly, the peak detection unit 1125 detects an involuntary muscle contraction component whose magnitude appears like an impulse. The peak removal unit 1126 replaces the detected peak with an eps (=2.2204e-16) value and then performs IFFT to obtain a signal from which the involuntary muscle contraction component is removed. The inverse conversion unit 1127 performs inverse conversion using the magnitude of the waveform that has passed through the peak detection unit 1125 and the peak removal unit 1126 and the phase of the waveform calculated previously, and generates an output signal. .

결국, 불수의적 근수축 신호 제거부(1120)는 주파수 영역에서의 불수의적 근수축 신호와 관련된 피크 신호를 검출한 후에 제거하는 방식의 적응형 잡음 억압 알고리즘(Adaptive noise suppression algorithm)을 사용한다. 전기자극(ES)의 주파수가 변함에 따라 불수의적 근수축 신호의 주파수 성분도 변하게 된다. 이러한 적응형 잡음 억압 알고리즘을 사용하여 가변되는 주파수의 불수의적 근수축 신호를 효과적으로 제거할 수 있다. 필터 대역이 고정된 방식을 사용하는 경우, 상황에 따라 또는 사용자에 따라 성능 편차가 발생할 수 있기 때문에 적응형 잡음 억압 알고리즘을 사용하는 불수의적 근수축 신호 제거부(1120)는 안정적인 성능을 제공할 수 있다.Ultimately, the involuntary muscle contraction signal removal unit 1120 uses an adaptive noise suppression algorithm that detects and then removes the peak signal related to the involuntary muscle contraction signal in the frequency domain. As the frequency of electrical stimulation (ES) changes, the frequency component of the involuntary muscle contraction signal also changes. Using this adaptive noise suppression algorithm, involuntary muscle contraction signals of variable frequency can be effectively removed. When using a method with a fixed filter band, performance deviations may occur depending on the situation or user, so the involuntary muscle contraction signal removal unit 1120 using an adaptive noise suppression algorithm can provide stable performance. there is.

도 11 및 도 12는 피크 검출부(1125)와 피크 억제부(1126)에서의 EMG 데이터의 주파수 분석 결과를 보여주는 그래프이다. 도 13은 역변환부(1127)에서의 전처리(Pre-processing) 과정이 있는 파형(빨간색)과 전처리 과정이 없는 파형(검정색)을 보여주는 그래프이다.11 and 12 are graphs showing the results of frequency analysis of EMG data in the peak detection unit 1125 and the peak suppression unit 1126. Figure 13 is a graph showing a waveform (red) with pre-processing in the inverse converter 1127 and a waveform without pre-processing (black).

불수의적 근수축 신호 제거부(1120)는 주파수 영역에서 불수의적 근수축(즉, 노이즈)과 관련된 피크 신호를 찾은 뒤, 제거하는 형태의 적응형 잡음 억압 알고리즘(Adaptive noise suppression algorithm)으로 구현될 수 있다. 전기자극의 주파수가 변함에 따라, 비자발 근수축의 주파수 성분이 변하게 된다. 불수의적 근수축 신호 제거부(1120)는 이를 효과적으로 제거하기 위해, 적응적으로(Adaptively) 불수의적 근수축 성분을 제거할 수 있다.The involuntary muscle contraction signal removal unit 1120 can be implemented with an adaptive noise suppression algorithm that finds and removes peak signals related to involuntary muscle contraction (i.e., noise) in the frequency domain. there is. As the frequency of electrical stimulation changes, the frequency component of involuntary muscle contraction changes. The involuntary muscle contraction signal removal unit 1120 may adaptively remove the involuntary muscle contraction component in order to effectively remove it.

고정된 필터를 사용하면 상황에 따라 혹은 사람에 따라 성능 편차가 발생할 수 있다. 불수의적 근수축 신호 제거부(1120)는 이러한 문제를 해결하기 위한 것으로, 상황이나 사람에 따른 성능 편차를 줄일 수 있다.If a fixed filter is used, performance differences may occur depending on the situation or person. The involuntary muscle contraction signal removal unit 1120 is designed to solve this problem and can reduce performance deviations depending on the situation or person.

불수의적 근수축 신호 제거부(1120)는 다음과 같은 방식으로 동작할 수 있다. 예를 들면, 불수의적 근수축 신호 제거부(1120)는 실시간으로 20 samples 단위로 쉬프트(shift)를 하고, 512 samples 단위로 프레임(frame)을 구성하며, FFT 크기는 512로 설정하여 알고리즘을 구동할 수 있다. 불수의적 근수축 신호 제거부(1120)는 미리 정의된 프레임(frame)을 FFT한 후, 크기(magnitude)와 위상(phase)을 계산하고, 크기(magnitude)에서 임펄스처럼 나타나는 불수의적 근수축 성분을 찾기 위해 피크를 검출할 수 있다.The involuntary muscle contraction signal removal unit 1120 may operate in the following manner. For example, the involuntary muscle contraction signal removal unit 1120 shifts in real time in units of 20 samples, configures a frame in units of 512 samples, and sets the FFT size to 512 to drive the algorithm. can do. The involuntary muscle contraction signal removal unit 1120 performs FFT on a predefined frame, calculates the magnitude and phase, and removes the involuntary muscle contraction component that appears like an impulse in the magnitude. You can detect peaks to find them.

불수의적 근수축 신호 제거부(1120)는 불수의적 근수축 성분을 제거하기 위해 피크를 eps (= 2.2204e-16) 값으로 치환한 후, IFFT를 수행하여, 불수의적 근수축 성분이 제거된 신호를 얻을 수 있다. 불수의적 근수축 신호 제거부(1120)는 최종적으로 불수의적 근수축 신호 제거 알고리즘을 통해 불수의적 근수축으로 분류되어 수축 구간이 아닌 경우에는 크기(magnitude)를 6dB 만큼 제거하여 신호를 얻을 수 있다.The involuntary muscle contraction signal removal unit 1120 replaces the peak with an eps (= 2.2204e-16) value to remove the involuntary muscle contraction component and then performs IFFT to obtain a signal from which the involuntary muscle contraction component has been removed. can be obtained. The involuntary muscle contraction signal removal unit 1120 can finally classify the involuntary muscle contraction as an involuntary muscle contraction through an involuntary muscle contraction signal removal algorithm, and obtain a signal by removing the magnitude (magnitude) by 6 dB when it is not in the contraction section.

도 13을 참조하면, 본 발명의 근전도 기반의 기능성 전기자극(ECF)을 사용하는 전기자극 치료 시스템(1100)은 높은 불수의적 근수축 신호의 제거 효율을 제공할 수 있다. 시간 영역에서의 근전도 신호(EMG)에 포함된 불수의적 근수축 신호를 적응형 잡음 억압 알고리즘(Adaptive noise suppression algorithm)을 적용함에 따라 효과적으로 제거할 수 있다. 따라서, 본 발명의 전기자극 치료 시스템(1100, 도 1 참조)은 저잡음의 수의적성 근수축 신호를 기반으로 기능성 전기자극(ECF)을 생성할 수 있다. 따라서, 전문가나 고비용의 장치에 의존하지 않고도 높은 신뢰성의 기능성 전기자극 치료가 가능하다.Referring to FIG. 13, the electrical stimulation treatment system 1100 using electromyography-based functional electrical stimulation (ECF) of the present invention can provide high removal efficiency of involuntary muscle contraction signals. Involuntary muscle contraction signals included in electromyography signals (EMG) in the time domain can be effectively removed by applying an adaptive noise suppression algorithm. Therefore, the electrical stimulation treatment system 1100 (see FIG. 1) of the present invention can generate functional electrical stimulation (ECF) based on low-noise voluntary muscle contraction signals. Therefore, highly reliable functional electrical stimulation treatment is possible without relying on experts or expensive devices.

도 14 내지 도 15는 본 발명의 근자극 신호 기반의 기능성 전기자극(FES)을 생성하는 전기자극 치료 시스템의 성능을 테스트한 결과를 보여주는 도면들이다. 본 발명의 전기자극 치료 시스템(1100)의 테스트를 위해 전기자극(ES)은 10Hz에서 90Hz까지 5Hz 단위로 주파수를 증가시키면서 인가되었다. 그리고 전기자극(ES)이 제공되는 중에 근전도 신호(EMG)를 수집하면서, 측정 대상자로는 10초 동안 휴식하고, 20초 동안 수의적 근수축을 진행하고, 다시 10초 동안 휴식하는 패턴을 반복하였다. 한 사람당 총 40초 가량의 데이터가 수집되며, 총 6명에 대해 동일한 방식으로 수집된 데이터를 이용하여 데이터베이스를 구축하였다. 그리고 수의적 근수축이 유지되는 구간은 '1'로, 비자발 근수축만이 존재하는 구간은 '0'으로 레벨링 하였다.Figures 14 and 15 are diagrams showing the results of testing the performance of the electrical stimulation treatment system that generates functional electrical stimulation (FES) based on muscle stimulation signals of the present invention. For testing the electrical stimulation treatment system 1100 of the present invention, electrical stimulation (ES) was applied at increasing frequencies from 10 Hz to 90 Hz in 5 Hz increments. And while electromyographic signals (EMG) were collected while electrical stimulation (ES) was provided, the measurement subject rested for 10 seconds, performed voluntary muscle contraction for 20 seconds, and rested for 10 seconds again. . A total of about 40 seconds of data is collected per person, and a database was constructed using data collected in the same way for a total of 6 people. The section in which voluntary muscle contraction was maintained was leveled to '1', and the section in which only involuntary muscle contraction existed was leveled to '0'.

인공지능 모델은, 추출된 특성들을 모두 입력으로 사용하고, 더불어, 인공지능 모델의 초기화는 랜덤 초기화(Random initialization) 방식을 적용하고, 파인-튜닝(Fine-Tuning)은 오류역전파(Backpropagation) 방식으로, 풀리 커넥티드 레이어(Fully Connected layer)의 수는 1개, 유닛 수도 1로 설정하였다. 더불어, 가중치의 업데이트 방식을 결정하는 최적화 알고리즘(Optimization algorithm)으로는 적응형 모멘트 추정(Adam: Adaptive Momentum Estimation) 방식을 사용하였다. 더불어, 비용 함수(Cost function)로는 이진 교차 엔트로피(Binary cross entropy)를, 그리고 활성화 함수(Active function)로는 하이퍼블릭 탄젠트(Hyperbolic tangent)를, 셀의 수는 3개, 각 셀당 히든 유닛들은 각각 128, 64, 32개가 사용되었다.The artificial intelligence model uses all extracted characteristics as input, and in addition, the initialization of the artificial intelligence model uses random initialization, and fine-tuning uses backpropagation. , the number of fully connected layers was set to 1 and the number of units was also set to 1. In addition, the Adaptive Momentum Estimation (Adam) method was used as an optimization algorithm to determine the weight update method. In addition, the cost function is binary cross entropy, the activation function is hyperbolic tangent, the number of cells is 3, and the number of hidden units per cell is 128. , 64, 32 were used.

도 14를 참조하면, 본 발명의 인공지능 모델인 LSTM을 사용하는 경우와, 일반적인 인공지능 모델들(SVM, ANN, DNN)을 적용했을 경우들 각각에서의 불수의적 근수축 신호의 제거 성능이 테이블로 도시되어 있다. 총 2개 그룹(Set1, Set2)에 대한 테스트 결과에 따르면, LSTM 모델을 사용하는 경우에서 총 정확도(TA)가 각각 90.01%, 82.82%로 가장 우수하였다.Referring to Figure 14, the removal performance of involuntary muscle contraction signals in the case of using LSTM, the artificial intelligence model of the present invention, and in the case of applying general artificial intelligence models (SVM, ANN, DNN) is shown in the table. It is shown as According to the test results for a total of two groups (Set1, Set2), the total accuracy (TA) was the best when using the LSTM model, at 90.01% and 82.82%, respectively.

도 15를 참조하면, 2개 그룹(Set1, Set2)에 대한 인공지능 모델들의 주파수별 성능(AUC: Area under the Curve) 평가의 결과를 그래프로 보여준다. 2개 그룹(Set1, Set2)들 각각에 대해서 LSTM 모델을 사용하는 경우에서 전체 실험 주파수들에 걸쳐 신뢰도(AUV)가 가장 높은 것으로 관찰되었다.Referring to Figure 15, the results of the frequency-specific performance (AUC: Area under the Curve) evaluation of artificial intelligence models for two groups (Set1, Set2) are shown graphically. It was observed that the reliability (AUV) was highest across all experimental frequencies when using the LSTM model for each of the two groups (Set1, Set2).

상술한 내용은 본 발명을 실시하기 위한 구체적인 실시 예들이다. 본 발명은 상술한 실시 예들 이외에도, 단순하게 설계 변경되거나 용이하게 변경할 수 있는 실시 예들도 포함할 것이다. 또한, 본 발명은 실시 예들을 이용하여 용이하게 변형하여 실시할 수 있는 기술들도 포함될 것이다. 따라서, 본 발명의 범위는 상술한 실시 예들에 국한되어 정해져서는 안되며, 후술하는 특허청구범위뿐만 아니라 이 발명의 특허청구범위와 균등한 것들에 의해 정해져야 할 것이다.The above-described details are specific embodiments for carrying out the present invention. In addition to the above-described embodiments, the present invention will also include embodiments that can be simply changed or easily changed in design. In addition, the present invention will also include technologies that can be easily modified and implemented using the embodiments. Therefore, the scope of the present invention should not be limited to the above-described embodiments, but should be determined by the claims and equivalents of the present invention as well as the claims described later.

Claims (20)

신체로부터 근전도 신호(EMG)를 수집하여, 기능성 전기자극 신호를 생성하는 전기자극 치료 장치에 있어서:
상기 근전도 신호에서 특성 벡터를 추출하여 자발 근수축 신호와 비자발 근수축 신호를 구분하여 검출하는 자발/비자발 수축 검출부;
상기 검출 결과에 따라 상기 근전도 신호로부터 상기 비자발 근수축 신호를 제거하는 비자발 수축 신호 제거부;
상기 비자발 근수축 신호가 제거된 근전도 신호의 실효치(RMS: Root Mean Square)를 계산하는 근활성도 세기 계산부; 그리고
상기 실효치와 문턱값을 비교하고, 비교 결과에 따라 상기 신체에 인가될 상기 기능성 전기자극 신호를 생성하는 기능성 전기자극 제어부를 포함하는 전기자극 치료 장치.
In the electrical stimulation treatment device that collects electromyography signals (EMG) from the body and generates functional electrical stimulation signals:
a voluntary/involuntary contraction detection unit that extracts a characteristic vector from the electromyogram signal and detects it by distinguishing between a voluntary muscle contraction signal and an involuntary muscle contraction signal;
an involuntary contraction signal removal unit that removes the involuntary muscle contraction signal from the EMG signal according to the detection result;
a muscle activity intensity calculator that calculates a root mean square (RMS) value of the EMG signal from which the involuntary muscle contraction signal has been removed; and
An electrical stimulation treatment device comprising a functional electrical stimulation control unit that compares the effective value and the threshold value and generates the functional electrical stimulation signal to be applied to the body according to the comparison result.
제 1 항에 있어서,
상기 특성 벡터는 상기 근전도 신호(EMG)의 주파수 영역에서 검출되는 백분위 스펙트럼 누적합(PoSCS)과 로그 파워 스펙트럼(Log Power Spectrum) 중 적어도 하나를 포함하는 전기자극 치료 장치.
According to claim 1,
The characteristic vector is an electrical stimulation treatment device including at least one of a percentile cumulative sum of spectra (PoSCS) and a log power spectrum detected in the frequency domain of the electromyography signal (EMG).
제 1 항에 있어서,
상기 자발/비자발 수축 검출부는 상기 특성 벡터로부터 상기 자발 근수축 신호와 상기 비자발 근수축 신호를 구분하는 인공지능 모델을 포함하는 전기자극 치료 장치.
According to claim 1,
The voluntary/involuntary contraction detection unit is an electrical stimulation treatment device including an artificial intelligence model that distinguishes the voluntary muscle contraction signal and the involuntary muscle contraction signal from the characteristic vector.
제 3 항에 있어서,
상기 인공지능 모델은 LSTM 알고리즘을 사용하는 전기자극 치료 장치.
According to claim 3,
The artificial intelligence model is an electrical stimulation treatment device that uses the LSTM algorithm.
신체로부터 생성되는 근전도 신호(EMG)를 수집하여 기능성 전기자극 신호를 생성하는 전기자극 치료 장치에 있어서:
상기 근전도 신호의 주파수 영역에서 특성 벡터를 추출하고, 인공지능 모델을 적용하여 추출된 상기 특성 벡터로부터 수의적 근수축 신호와 불수의적 근수축 신호를 구분하여 검출하는 수의적/불수의적 근수축 검출부;
상기 검출 결과에 따라 상기 근전도 신호로부터 상기 불수의적 근수축 신호를 제거하는 불수의적 근수축 신호 제거부;
상기 불수의적 근수축 신호가 제거된 근전도 신호의 실효치(RMS: Root Mean Square)를 계산하는 근활성도 세기 계산부; 그리고
상기 실효치와 문턱값을 비교하고, 비교 결과에 따라 상기 신체에 인가될 상기 기능성 전기자극 신호를 생성하는 기능성 전기자극 제어부를 포함하는 전기자극 치료 장치.
In the electrical stimulation treatment device that collects electromyography signals (EMG) generated from the body and generates functional electrical stimulation signals:
A voluntary/involuntary muscle contraction detection unit that extracts a characteristic vector from the frequency domain of the EMG signal and detects a voluntary muscle contraction signal and an involuntary muscle contraction signal from the extracted characteristic vector by applying an artificial intelligence model;
an involuntary muscle contraction signal removal unit that removes the involuntary muscle contraction signal from the EMG signal according to the detection result;
a muscle activity intensity calculator that calculates a root mean square (RMS) value of the EMG signal from which the involuntary muscle contraction signal is removed; and
An electrical stimulation treatment device comprising a functional electrical stimulation control unit that compares the effective value and the threshold value and generates the functional electrical stimulation signal to be applied to the body according to the comparison result.
제 5 항에 있어서,
상기 특성 벡터는 상기 근전도 신호(EMG)의 주파수 영역에서 검출되는 백분위 스펙트럼 누적합(PoSCS)과 로그 파워 스펙트럼(Log Power Spectrum) 중 적어도 하나를 포함하는 전기자극 치료 장치.
According to claim 5,
The characteristic vector is an electrical stimulation treatment device including at least one of a percentile cumulative sum of spectra (PoSCS) and a log power spectrum detected in the frequency domain of the electromyography signal (EMG).
제 5 항에 있어서,
상기 불수의적 근수축 신호 제거부는 상기 근전도 신호의 상기 불수의적 근수축 신호가 포함된 구간을 6dB만큼 감쇄하여 상기 불수의적 근수축 신호를 제거하는 전기자극 치료 장치.
According to claim 5,
The involuntary muscle contraction signal removal unit attenuates the section of the EMG signal containing the involuntary muscle contraction signal by 6 dB to remove the involuntary muscle contraction signal.
제 5 항에 있어서,
상기 인공지능 모델은 인공지능 알고리즘을 사용하여 상기 근전도 신호로부터 상기 불수의적 근수축 신호와 상기 수의적 근수축 신호를 구분하는 전기자극 치료 장치.
According to claim 5,
The artificial intelligence model is an electrical stimulation treatment device that distinguishes the involuntary muscle contraction signal and the voluntary muscle contraction signal from the electromyography signal using an artificial intelligence algorithm.
제 5 항에 있어서,
상기 불수의적 근수축 신호 제거부는:
상기 근전도 신호(EMG)의 윈도우를 선택하는 윈도우부;
상기 선택된 윈도우에 포함되는 신호를 고속 푸리에 변환으로 처리하는 고속 푸리에 변환부;
상기 고속 푸리에 변환부에서 출력되는 신호의 크기와 위상을 각각 계산하는 크기 및 위상 계산부;
상기 신호의 크기에서 피크를 검출하는 피크 검출부; 그리고
상기 검출된 피크에 대응하는 노이즈 신호를 필터링하는 피크 제거부를 포함하는 전기자극 치료 장치.
According to claim 5,
The involuntary muscle contraction signal removal unit:
a window unit that selects a window of the electromyography signal (EMG);
a fast Fourier transform unit that processes signals included in the selected window by fast Fourier transform;
a magnitude and phase calculation unit that calculates the magnitude and phase of the signal output from the fast Fourier transform unit, respectively;
a peak detection unit that detects a peak in the magnitude of the signal; and
An electrical stimulation treatment device including a peak removal unit that filters a noise signal corresponding to the detected peak.
신체로부터 근전도 신호(EMG)를 수집하여, 기능성 전기자극 신호를 생성하는 전기자극 치료 장치의 치료 방법에 있어서:
상기 근전도 신호에서 특성 벡터를 추출하여 자발 근수축 신호와 비자발 근수축 신호를 구분하여 검출하는 단계;
상기 검출 결과에 따라 상기 근전도 신호로부터 상기 비자발 근수축 신호를 제거하는 단계;
상기 비자발 근수축 신호가 제거된 근전도 신호의 실효치(RMS: Root Mean Square)를 계산하는 단계; 그리고
상기 실효치와 문턱값을 비교하고, 비교 결과에 따라 상기 신체에 인가될 상기 기능성 전기자극 신호를 생성하는 단계를 포함하는 치료 방법.
In a treatment method using an electrical stimulation treatment device that collects electromyography signals (EMG) from the body and generates functional electrical stimulation signals:
Extracting a characteristic vector from the electromyogram signal and detecting it separately into a voluntary muscle contraction signal and an involuntary muscle contraction signal;
removing the involuntary muscle contraction signal from the EMG signal according to the detection result;
Calculating the root mean square (RMS) of the EMG signal from which the involuntary muscle contraction signal has been removed; and
A treatment method comprising comparing the effective value and the threshold value and generating the functional electrical stimulation signal to be applied to the body according to the comparison result.
제 10 항에 있어서,
상기 전기자극 치료 장치는,
상기 근전도 신호의 주파수 영역에서 특성 벡터를 추출하고, 인공지능 모델을 적용하여 추출된 상기 특성 벡터로부터 수의적 근수축 신호와 불수의적 근수축 신호를 구분하여 검출하는 수의적/불수의적 근수축 검출부;
상기 검출 결과에 따라 상기 근전도 신호로부터 상기 불수의적 근수축 신호를 제거하는 불수의적 근수축 신호 제거부;
상기 불수의적 근수축 신호가 제거된 근전도 신호의 실효치(RMS: Root Mean Square)를 계산하는 근활성도 세기 계산부; 그리고
상기 실효치와 문턱값을 비교하고, 비교 결과에 따라 상기 신체에 인가될 상기 기능성 전기자극 신호를 생성하는 기능성 전기자극 제어부를 포함하는 치료 방법.
According to claim 10,
The electrical stimulation treatment device,
A voluntary/involuntary muscle contraction detection unit that extracts a characteristic vector from the frequency domain of the EMG signal and detects a voluntary muscle contraction signal and an involuntary muscle contraction signal from the extracted characteristic vector by applying an artificial intelligence model;
an involuntary muscle contraction signal removal unit that removes the involuntary muscle contraction signal from the EMG signal according to the detection result;
a muscle activity intensity calculator that calculates a root mean square (RMS) value of the EMG signal from which the involuntary muscle contraction signal is removed; and
A treatment method comprising a functional electrical stimulation control unit that compares the effective value and the threshold value and generates the functional electrical stimulation signal to be applied to the body according to the comparison result.
제 11 항에 있어서,
상기 특성 벡터는 상기 근전도 신호(EMG)의 주파수 영역에서 검출되는 백분위 스펙트럼 누적합(PoSCS)과 로그 파워 스펙트럼(Log Power Spectrum) 중 적어도 하나를 포함하는 치료 방법.
According to claim 11,
The characteristic vector includes at least one of a percentile cumulative sum of spectra (PoSCS) and a log power spectrum detected in the frequency domain of the electromyography signal (EMG).
제 11 항에 있어서,
상기 불수의적 근수축 신호 제거부는 상기 근전도 신호의 상기 불수의적 근수축 신호가 포함된 구간을 6dB만큼 감쇄하여 상기 불수의적 근수축 신호를 제거하는 치료 방법.
According to claim 11,
A treatment method in which the involuntary muscle contraction signal removal unit removes the involuntary muscle contraction signal by attenuating the section of the EMG signal containing the involuntary muscle contraction signal by 6 dB.
제 11 항에 있어서,
상기 인공지능 모델은 인공지능 알고리즘을 사용하여 상기 근전도 신호로부터 상기 불수의적 근수축 신호와 상기 수의적 근수축 신호를 구분하는 치료 방법.
According to claim 11,
A treatment method in which the artificial intelligence model distinguishes between the involuntary muscle contraction signal and the voluntary muscle contraction signal from the electromyography signal using an artificial intelligence algorithm.
제 11 항에 있어서,
상기 불수의적 근수축 신호 제거부는:
상기 근전도 신호(EMG)의 윈도우를 선택하는 윈도우부;
상기 선택된 윈도우에 포함되는 신호를 고속 푸리에 변환으로 처리하는 고속 푸리에 변환부;
상기 고속 푸리에 변환부에서 출력되는 신호의 크기와 위상을 각각 계산하는 크기 및 위상 계산부;
상기 신호의 크기에서 피크를 검출하는 피크 검출부; 그리고
상기 검출된 피크에 대응하는 노이즈 신호를 필터링하는 피크 제거부를 포함하는 치료 방법.
According to claim 11,
The involuntary muscle contraction signal removal unit:
a window unit that selects a window of the electromyography signal (EMG);
a fast Fourier transform unit that processes signals included in the selected window by fast Fourier transform;
a magnitude and phase calculation unit that calculates the magnitude and phase of the signal output from the fast Fourier transform unit, respectively;
a peak detection unit that detects a peak in the magnitude of the signal; and
A treatment method comprising a peak removal unit that filters a noise signal corresponding to the detected peak.
신체로부터 전기자극에 응답하여 생성되는 근전도 신호(EMG)를 수집하는 전기자극 치료 장치의 치료 방법에 있어서:
상기 근전도 신호의 주파수 영역에서 특성 벡터를 추출하는 단계;
인공지능 모델을 적용하여 추출된 상기 특성 벡터로부터 수의적 근수축 신호와 불수의적 근수축 신호를 구분하여 검출하는 단계;
상기 검출 결과에 따라 상기 근전도 신호로부터 상기 불수의적 근수축 신호를 제거하는 단계;
상기 불수의적 근수축 신호가 제거된 근전도 신호의 실효치(RMS: Root Mean Square)를 계산하는 단계; 그리고
상기 실효치와 문턱값을 비교하고, 비교 결과에 따라 상기 신체에 인가될 기능성 전기자극 신호를 생성하는 단계를 포함하는 치료 방법.
In a treatment method using an electrical stimulation treatment device that collects electromyography signals (EMG) generated in response to electrical stimulation from the body:
extracting a feature vector from the frequency domain of the electromyogram signal;
A step of detecting and distinguishing between voluntary muscle contraction signals and involuntary muscle contraction signals from the characteristic vector extracted by applying an artificial intelligence model;
removing the involuntary muscle contraction signal from the electromyography signal according to the detection result;
Calculating the root mean square (RMS) of the EMG signal from which the involuntary muscle contraction signal has been removed; and
A treatment method comprising comparing the effective value and the threshold value and generating a functional electrical stimulation signal to be applied to the body according to the comparison result.
상기 전기자극 치료 장치는,
상기 근전도 신호에서 특성 벡터를 추출하여 자발 근수축 신호와 비자발 근수축 신호를 구분하여 검출하는 자발/비자발 수축 검출부;
상기 검출 결과에 따라 상기 근전도 신호로부터 상기 비자발 근수축 신호를 제거하는 비자발 수축 신호 제거부;
상기 비자발 근수축 신호가 제거된 근전도 신호의 실효치(RMS: Root Mean Square)를 계산하는 근활성도 세기 계산부; 그리고
상기 실효치와 문턱값을 비교하고, 비교 결과에 따라 상기 신체에 인가될 상기 기능성 전기자극 신호를 생성하는 기능성 전기자극 제어부를 포함하는 치료 방법.
The electrical stimulation treatment device,
a voluntary/involuntary contraction detection unit that extracts a characteristic vector from the electromyogram signal and detects it by distinguishing between a voluntary muscle contraction signal and an involuntary muscle contraction signal;
an involuntary contraction signal removal unit that removes the involuntary muscle contraction signal from the EMG signal according to the detection result;
a muscle activity intensity calculator that calculates a root mean square (RMS) value of the EMG signal from which the involuntary muscle contraction signal has been removed; and
A treatment method comprising a functional electrical stimulation control unit that compares the effective value and the threshold value and generates the functional electrical stimulation signal to be applied to the body according to the comparison result.
제 17 항에 있어서,
상기 특성 벡터는 상기 근전도 신호(EMG)의 주파수 영역에서 검출되는 백분위 스펙트럼 누적합(PoSCS)과 로그 파워 스펙트럼(Log Power Spectrum) 중 적어도 하나를 포함하는 치료 방법.
According to claim 17,
The characteristic vector includes at least one of a percentile cumulative sum of spectra (PoSCS) and a log power spectrum detected in the frequency domain of the electromyography signal (EMG).
제 17 항에 있어서,
상기 자발/비자발 수축 검출부는 상기 특성 벡터로부터 상기 자발 근수축 신호와 상기 비자발 근수축 신호를 구분하는 인공지능 모델을 포함하는 치료 방법.
According to claim 17,
The voluntary/involuntary contraction detection unit includes an artificial intelligence model that distinguishes the voluntary muscle contraction signal and the involuntary muscle contraction signal from the characteristic vector.
신체로부터 전기자극에 응답하여 생성되는 근전도 신호(EMG)를 수집하는 전기자극 치료 장치의 치료 방법에 있어서:
상기 전기자극 치료 장치는,
상기 근전도 신호의 주파수 영역에서 특성 벡터를 추출하고, 인공지능 모델을 적용하여 추출된 상기 특성 벡터로부터 수의적 근수축 신호와 불수의적 근수축 신호를 구분하여 검출하는 수의적/불수의적 근수축 검출부;
상기 검출 결과에 따라 상기 근전도 신호로부터 상기 불수의적 근수축 신호를 제거하는 불수의적 근수축 신호 제거부;
상기 불수의적 근수축 신호가 제거된 근전도 신호의 실효치(RMS: Root Mean Square)를 계산하는 근활성도 세기 계산부; 그리고
상기 실효치와 문턱값을 비교하고, 비교 결과에 따라 상기 신체에 인가될 상기 기능성 전기자극 신호를 생성하는 기능성 전기자극 제어부를 포함하되,
상기 전기자극 치료 장치의 치료 방법은,
상기 근전도 신호의 주파수 영역에서 특성 벡터를 추출하는 단계;
인공지능 모델을 적용하여 추출된 상기 특성 벡터로부터 수의적 근수축 신호와 불수의적 근수축 신호를 구분하여 검출하는 단계;
상기 검출 결과에 따라 상기 근전도 신호로부터 상기 불수의적 근수축 신호를 제거하는 단계;
상기 불수의적 근수축 신호가 제거된 근전도 신호의 실효치(RMS: Root Mean Square)를 계산하는 단계; 그리고
상기 실효치와 문턱값을 비교하고, 비교 결과에 따라 상기 신체에 인가될 기능성 전기자극 신호를 생성하는 단계를 포함하는 치료 방법.
In a treatment method using an electrical stimulation treatment device that collects electromyography signals (EMG) generated in response to electrical stimulation from the body:
The electrical stimulation treatment device,
A voluntary/involuntary muscle contraction detection unit that extracts a characteristic vector from the frequency domain of the EMG signal and detects a voluntary muscle contraction signal and an involuntary muscle contraction signal from the extracted characteristic vector by applying an artificial intelligence model;
an involuntary muscle contraction signal removal unit that removes the involuntary muscle contraction signal from the EMG signal according to the detection result;
a muscle activity intensity calculator that calculates a root mean square (RMS) value of the EMG signal from which the involuntary muscle contraction signal is removed; and
A functional electrical stimulation control unit that compares the effective value and the threshold value and generates the functional electrical stimulation signal to be applied to the body according to the comparison result,
The treatment method of the electrical stimulation treatment device is,
extracting a feature vector from the frequency domain of the electromyogram signal;
A step of detecting and distinguishing between voluntary muscle contraction signals and involuntary muscle contraction signals from the characteristic vector extracted by applying an artificial intelligence model;
removing the involuntary muscle contraction signal from the electromyography signal according to the detection result;
Calculating the root mean square (RMS) of the EMG signal from which the involuntary muscle contraction signal has been removed; and
A treatment method comprising comparing the effective value and the threshold value and generating a functional electrical stimulation signal to be applied to the body according to the comparison result.
KR1020220114611A 2022-09-12 2022-09-12 Functional electrical stimulation therapy system using electromyogram signal KR20240036169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220114611A KR20240036169A (en) 2022-09-12 2022-09-12 Functional electrical stimulation therapy system using electromyogram signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220114611A KR20240036169A (en) 2022-09-12 2022-09-12 Functional electrical stimulation therapy system using electromyogram signal

Publications (1)

Publication Number Publication Date
KR20240036169A true KR20240036169A (en) 2024-03-20

Family

ID=90483318

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220114611A KR20240036169A (en) 2022-09-12 2022-09-12 Functional electrical stimulation therapy system using electromyogram signal

Country Status (1)

Country Link
KR (1) KR20240036169A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180074597A (en) 2016-12-23 2018-07-03 순천향대학교 산학협력단 Apparatus and method for diagnosing sarcopenia based fat free mass index

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180074597A (en) 2016-12-23 2018-07-03 순천향대학교 산학협력단 Apparatus and method for diagnosing sarcopenia based fat free mass index

Similar Documents

Publication Publication Date Title
Abbaspour et al. Evaluation of surface EMG-based recognition algorithms for decoding hand movements
CN107137071B (en) Method for calculating short-term heart rate value by analyzing heart attack signal
Kumar et al. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network
US6192273B1 (en) Non-programmable automated heart rhythm classifier
KR102008196B1 (en) Apparatus for generating of Potassium level determination model using ECG and method thereof
Clancy et al. Single‐channel techniques for information extraction from the surface EMG signal
CN104173043A (en) Electrocardiogram (ECG) data analysis method suitable for mobile platform
Nieminen et al. Evidence of deterministic chaos in the myoelectric signal
WO2016057823A1 (en) Method and system for measuring beat parameters
Jose et al. Classification of forearm movements from sEMG time domain features using machine learning algorithms
Drapała et al. Two stage EMG onset detection method
CN114052744B (en) Electrocardiosignal classification method based on impulse neural network
Bajaj et al. Features based on intrinsic mode functions for classification of EMG signals
Veisi et al. Fast and robust detection of epilepsy in noisy EEG signals using permutation entropy
Wang et al. Accelerometry based classification of gait patterns using empirical mode decomposition
De Marchis et al. An optimized method for tremor detection and temporal tracking through repeated second order moment calculations on the surface EMG signal
Kang et al. A Precise Muscle activity onset/offset detection via EMG signal
Rong et al. Classification of surface EMGs using wavelet packet energy analysis and a genetic algorithm-based support vector machine
TWI629049B (en) A method for analyzing a heart shock signal for calculating a short-term heart rate value
Terracina et al. Real-time forecasting and classification of trunk muscle fatigue using surface electromyography
KR102538154B1 (en) Functional electrical stimulation generate system using electromyogram signal
Sultana et al. MSVM-based classifier for cardiac arrhythmia detection
KR20240036169A (en) Functional electrical stimulation therapy system using electromyogram signal
CN112089979A (en) Neck massager, health detection method thereof and computer storage medium
CN115607167A (en) Lightweight model training method, atrial fibrillation detection method, device and system