KR20240030319A - Electrochromic device driving method using AC pulse voltage - Google Patents

Electrochromic device driving method using AC pulse voltage Download PDF

Info

Publication number
KR20240030319A
KR20240030319A KR1020220109206A KR20220109206A KR20240030319A KR 20240030319 A KR20240030319 A KR 20240030319A KR 1020220109206 A KR1020220109206 A KR 1020220109206A KR 20220109206 A KR20220109206 A KR 20220109206A KR 20240030319 A KR20240030319 A KR 20240030319A
Authority
KR
South Korea
Prior art keywords
coloring
pulse voltage
voltage
high voltage
alternating current
Prior art date
Application number
KR1020220109206A
Other languages
Korean (ko)
Inventor
문홍철
유경수
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Priority to KR1020220109206A priority Critical patent/KR20240030319A/en
Publication of KR20240030319A publication Critical patent/KR20240030319A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/04Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions
    • G09G3/16Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions by control of light from an independent source
    • G09G3/19Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of a single character by selection from a plurality of characters, or by composing the character by combination of individual elements, e.g. segments using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions by control of light from an independent source using electrochromic devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

본 발명은 특정의 Vpp(peak to peak voltage) 및 고전압 인가시간 비율(duty ratio)을 만족하는 교류펄스전압을 전기변색소자의 구동전압으로 적용함으로써 착색 및 탈색속도를 향상시킴과 함께 소자의 안정성을 유지시킬 수 있는 교류펄스전압을 이용한 전기변색소자 구동방법에 관한 것으로서, 본 발명에 따른 교류펄스전압을 이용한 전기변색소자 구동방법은 전기변색소자의 착색 및 탈색시 교류펄스전압을 인가하며, 착색시 교류펄스전압은 Vpp(peak to peak voltage)가 0.3∼1.2이고, 고전압 인가시간 비율(duty ratio)이 10∼90%인 파형인 것을 특징으로 한다. The present invention improves the coloring and discoloration speed and the stability of the device by applying an alternating current pulse voltage that satisfies a specific V pp (peak to peak voltage) and high voltage application time ratio (duty ratio) as the driving voltage of the electrochromic device. It relates to a method of driving an electrochromic device using an alternating current pulse voltage that can maintain an electrochromic device. The method of driving an electrochromic device using an alternating current pulse voltage according to the present invention applies an alternating pulse voltage when coloring or decolorizing an electrochromic device, and coloring The alternating current pulse voltage is characterized by a waveform with a V pp (peak to peak voltage) of 0.3 to 1.2 and a high voltage application time ratio (duty ratio) of 10 to 90%.

Description

교류펄스전압을 이용한 전기변색소자 구동방법{Electrochromic device driving method using AC pulse voltage}Electrochromic device driving method using AC pulse voltage}

본 발명은 교류펄스전압을 이용한 전기변색소자 구동방법에 관한 것으로서, 보다 상세하게는 특정의 Vpp(peak to peak voltage) 및 고전압 인가시간 비율(duty ratio)을 만족하는 교류펄스전압을 전기변색소자의 구동전압으로 적용함으로써 착색 및 탈색속도를 향상시킴과 함께 소자의 안정성을 유지시킬 수 있는 교류펄스전압을 이용한 전기변색소자 구동방법에 관한 것이다.The present invention relates to a method of driving an electrochromic device using an alternating current pulse voltage. More specifically, the present invention relates to an electrochromic device using an alternating current pulse voltage that satisfies a specific V pp (peak to peak voltage) and high voltage application time ratio (duty ratio). It relates to a method of driving an electrochromic device using alternating pulse voltage, which can improve the coloring and decolorizing speed and maintain the stability of the device by applying a driving voltage of .

전기변색소자는 전기변색물질을 이용한 표시소자이며, 전기변색물질은 전원 인가에 따라 전기화학적 산화 또는 환원반응에 의해 착색 또는 탈색이 이루어지는 물질이다. An electrochromic device is a display device using an electrochromic material, and an electrochromic material is a material that is colored or decolorized through an electrochemical oxidation or reduction reaction depending on the application of power.

전기변색소자를 구현함에 있어서 중요하게 고려되어야 할 사항으로 응답속도와 안정성을 꼽을 수 있다. 다양한 형태의 디스플레이에 시각적인 정보를 빠르게 제공하기 위해서는 응답속도 즉, 착색과 탈색시간이 짧아야 하며, 반복적인 사용에도 물질 안정성이 유지됨으로써 전기변색소자의 내구성을 확보할 수 있어야 한다. Response speed and stability are important considerations when implementing an electrochromic device. In order to quickly provide visual information to various types of displays, the response speed, that is, the coloring and discoloring time, must be short, and the durability of the electrochromic device must be secured by maintaining material stability even after repeated use.

응답속도를 향상시키는 방안으로 새로운 전기변색물질을 적용하는 것에 연구가 집중되어 왔다. 무기 전기변색물질, 유기 전기변색물질의 적용, 최근에는 다양한 전기변색물질의 조합을 통해 응답속도를 개선시키는 기술도 제시되고 있다. 또한, 액체 전해질, 고체 전해질을 대체하여 젤 전해질을 적용하는 기술, 나아가 젤 전해질과 유기 전기변색물질을 조합하는 기술도 제시되고 있다. Research has focused on applying new electrochromic materials as a way to improve response speed. Technologies for improving response speed are also being proposed through the application of inorganic electrochromic materials, organic electrochromic materials, and recently, the combination of various electrochromic materials. In addition, technologies for applying gel electrolytes in place of liquid electrolytes and solid electrolytes, and even technologies for combining gel electrolytes and organic electrochromic materials, have also been proposed.

한편, 바이올로젠과 같은 유기 전기변색물질은 빠른 응답속도를 구현할 수 있으나, 높은 전압 하에서는 다이머(dimer)가 형성됨으로 인해 소자의 안정성이 저해되는 문제점이 있다. 전기변색소자는 적용되는 전기변색물질의 종류에 무관하게 일반적으로 직류전압이 적용되고, 인가되는 전압이 클수록 높은 응답속도를 구현할 수 있는 반면 소자의 안정성이 떨어지는 공통적인 특성을 나타낸다. 다만, 한국등록특허공보 제2010753호는 교류전압을 구동전압으로 적용한 기술을 개시하고 있는데, 전기변색층 구성에 따른 응답속도 및 내구성을 살펴보기 위해 실시예와 비교예 공히 동일한 교류전압을 인가함을 기재하고 있다.Meanwhile, organic electrochromic materials such as viologen can achieve a fast response speed, but there is a problem in that the stability of the device is impaired due to the formation of dimers under high voltage. Electrochromic devices generally have the common characteristic that direct current voltage is applied regardless of the type of electrochromic material applied, and that the larger the applied voltage, the higher the response speed, but the lower the stability of the device. However, Korean Patent Publication No. 2010753 discloses a technology that applies alternating current voltage as a driving voltage. In order to examine the response speed and durability according to the electrochromic layer composition, the same alternating current voltage was applied to both the examples and comparative examples. It is listed.

한국등록특허공보 제2010753호(2019. 8. 14. 공고)Korean Patent Publication No. 2010753 (announced on August 14, 2019)

The royal Society of Chemistry, M. Kim, Y. M. Kim, H. C. Moon, 2020. 10. 394-401 The royal Society of Chemistry, M. Kim, Y. M. Kim, H. C. Moon, 2020. 10. 394-401 Organic Electronics, T. Y. Yun, H. C. Moon, 2018. 178-185 Organic Electronics, T. Y. Yun, H. C. Moon, 2018. 178-185

본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 특정의 Vpp(peak to peak voltage) 및 고전압 인가시간 비율(duty ratio)을 만족하는 교류펄스전압을 전기변색소자의 구동전압으로 적용함으로써 착색 및 탈색속도를 향상시킴과 함께 소자의 안정성을 유지시킬 수 있는 교류펄스전압을 이용한 전기변색소자 구동방법을 제공하는데 그 목적이 있다.The present invention was devised to solve the above problems, by applying an alternating current pulse voltage that satisfies a specific V pp (peak to peak voltage) and high voltage application time ratio (duty ratio) as the driving voltage of the electrochromic device. The purpose is to provide a method of driving an electrochromic device using alternating pulse voltage that can improve the coloring and decolorizing speed and maintain the stability of the device.

상기의 목적을 구현하기 위한 본 발명에 따른 교류펄스전압을 이용한 전기변색소자 구동방법은 전기변색소자의 착색 및 탈색시 교류펄스전압을 인가하며, 착색시 교류펄스전압은 Vpp(peak to peak voltage)가 0.3∼1.2이고, 고전압 인가시간 비율(duty ratio)이 10∼90%인 파형인 것을 특징으로 한다. The method of driving an electrochromic device using an alternating current pulse voltage according to the present invention for realizing the above purpose applies an alternating current pulse voltage when coloring or decolorizing the electrochromic device, and the alternating current pulse voltage during coloring is V pp (peak to peak voltage). ) is 0.3 to 1.2, and the high voltage application time ratio (duty ratio) is 10 to 90%.

탈색시 교류펄스전압은 Vpp가 0.7이고, 고전압 인가시간 비율이 10∼70%인 파형이다. 착색시 교류펄스전압에서 Vpp의 기준전압은 -0.7V이고, 탈색시 교류펄스전압에서 Vpp의 기준전압은 0V이다. The AC pulse voltage during bleaching has a waveform with V pp of 0.7 and a high voltage application time ratio of 10 to 70%. When coloring, the reference voltage of V pp in the AC pulse voltage is -0.7V, and when decolorizing, the reference voltage of V pp in the AC pulse voltage is 0V.

착색시 교류펄스전압은 Vpp 1.2, 고전압 인가시간 비율 90%인 파형이고, 탈색시 교류펄스전압은 Vpp 0.7, 고전압 인가시간 비율 70%인 파형이다. When coloring, the AC pulse voltage is a waveform of V pp 1.2 and the high voltage application time ratio is 90%, and when decolorizing, the AC pulse voltage is a waveform of V pp 0.7 and the high voltage application time ratio is 70%.

전기변색소자는 젤 전해질이 적용된 전기변색소자이다.An electrochromic device is an electrochromic device using a gel electrolyte.

본 발명에 따른 교류펄스전압을 이용한 전기변색소자 구동방법은 다음과 같은 효과가 있다. The method of driving an electrochromic device using alternating pulse voltage according to the present invention has the following effects.

최적 범위의 Vpp 및 고전압 인가시간 비율이 적용된 교류펄스전압을 인가함으로써 착색 및 탈색 특성을 향상시킬 수 있음과 함께 전기변색물질의 내구성 또한 안정적으로 확보할 수 있다.By applying an alternating current pulse voltage with an optimal range of V pp and high voltage application time ratio, coloring and decolorization characteristics can be improved, and the durability of the electrochromic material can also be stably secured.

도 1a 내지 도 1d는 다양한 Vpp가 적용된 교류펄스전압 인가시 착색 특성을 나타낸 실험결과.
도 2a 및 도 2b는 Vpp 1.4 인가시 착색 특성을 나타낸 실험결과.
도 3a 내지 도 3d은 다양한 고전압 인가시간 비율(duty ratio)이 적용된 교류펄스전압 인가시 착색 특성을 나타낸 실험결과.
도 4a 내지 도 4d는 다양한 고전압 인가시간 비율이 적용된 교류펄스전압 인가시 탈색 특성을 나타낸 실험결과.
도 5a 및 도 5b는 절대값이 동일한 (+) 구동전압과 (-) 구동전압에 대해 서로 동일한 착색 형태를 나타냄을 보여주는 실험결과.
도 6은 Vpp 0.6 인가시 탈색 특성을 나타낸 실험결과.
도 7a 내지 도 7c는 최적의 착색 및 탈색 교류펄스전압 및 내구성 실험결과를 나타낸 참고도.
Figures 1a to 1d show experimental results showing coloring characteristics upon application of alternating current pulse voltage with various V pp applied.
Figures 2a and 2b are experimental results showing coloring characteristics when V pp 1.4 is applied.
Figures 3a to 3d are experimental results showing coloring characteristics upon application of alternating current pulse voltage with various high voltage application time ratios (duty ratio) applied.
Figures 4a to 4d show experimental results showing discoloration characteristics upon application of alternating current pulse voltage with various high voltage application time ratios applied.
Figures 5a and 5b are experimental results showing that the same coloring forms are shown for (+) and (-) driving voltages with the same absolute value.
Figure 6 shows experimental results showing discoloration characteristics when V pp 0.6 is applied.
Figures 7a to 7c are reference diagrams showing optimal coloring and decolorizing alternating current pulse voltage and durability test results.

본 발명은 교류펄스전압을 전기변색소자의 구동전압으로 적용함으로써 착색 및 탈색속도를 향상시키는 기술을 제시한다. The present invention presents a technology for improving coloring and decolorizing speeds by applying alternating pulse voltage as the driving voltage of an electrochromic device.

앞서 '발명의 배경이 되는 기술'에서 기술한 바와 같이, 전기변색소자의 구동전압으로 직류전압이 일반적으로 적용되고 전기변색소자의 응답속도는 전압이 클수록 증가하는 특성을 나타내나, 일정 수준 이상의 전압이 인가되면 전기변색물질의 변형이 발생된다. 따라서, 일정 수준 이하의 직류전압을 인가하는 조건 하에서 응답속도 개선을 위해 새로운 전기변색물질의 개발에 연구가 집중되어 왔다. As previously described in 'Background Technology of the Invention', direct current voltage is generally applied as the driving voltage for electrochromic devices, and the response speed of electrochromic devices increases as the voltage increases, but the response speed of electrochromic devices increases as the voltage increases. When this is applied, transformation of the electrochromic material occurs. Therefore, research has been focused on the development of new electrochromic materials to improve response speed under conditions of applying a direct current voltage below a certain level.

본 출원의 발명자들은 특정의 Vpp(peak to peak voltage) 및 고전압 인가시간 비율(duty ratio)을 만족하는 교류펄스전압을 전기변색소자의 구동전압으로 인가하면 착색 및 탈색속도가 현저히 향상됨을 실험을 통해 확인하였으며, 반복실험을 통해 전기변색물질의 안정성 또한 유지됨을 확인하였다. The inventors of the present application conducted an experiment to show that when an alternating current pulse voltage that satisfies a specific V pp (peak to peak voltage) and high voltage application time ratio (duty ratio) is applied as the driving voltage of an electrochromic device, the coloring and decolorizing speed are significantly improved. This was confirmed through repeated experiments, and it was confirmed that the stability of the electrochromic material was also maintained.

본 발명의 교류펄스전압은 최적 범위의 Vpp 및 고전압 인가시간 비율을 갖는 교류파형이며, Vpp(peak to peak voltage)는 한 주기의 파형에서 고전압과 저전압 간의 차이를 의미하며, 고전압 인가시간 비율(duty ratio)은 한 주기의 파형에서 고전압이 인가되는 시간의 비율을 의미한다. The AC pulse voltage of the present invention is an AC waveform with an optimal range of V pp and high voltage application time ratio, and V pp (peak to peak voltage) refers to the difference between high voltage and low voltage in one cycle of waveform, and high voltage application time ratio. (duty ratio) refers to the ratio of time for which high voltage is applied in one cycle of waveform.

특정 파형의 교류펄스전압을 설계함에 있어서 고려될 수 있는 변수는 1) 주파수, 2) Vpp(peak to peak voltage), 3) 고전압 인가시간 비율(duty ratio)이며, 이들 변수는 서로 연관되어 있다. 본 발명에서는 주파수는 고정 조건으로 놓고, Vpp와 고전압 인가시간 비율만을 변수로 채택하여 다양한 조건 하에서의 응답속도 특성을 살펴보았다. 주파수는, 전해질 내에서 전기이중층(electric double layer)이 형성되는 시간(RC-Time)을 충분히 만족할 수 있는 1kHz로 고정하였다. 실험의 일 예로, 주파수를 1kHz로 고정하였을 뿐, 전기이중층 형성을 만족하는 조건 하에서 다양한 범위의 주파수 조건이 적용될 수 있다. Variables that can be considered when designing an AC pulse voltage of a specific waveform are 1) frequency, 2) V pp (peak to peak voltage), and 3) high voltage application time ratio (duty ratio), and these variables are related to each other. . In the present invention, the frequency was set as a fixed condition, and only V pp and the high voltage application time ratio were selected as variables to examine response speed characteristics under various conditions. The frequency was fixed at 1 kHz, which sufficiently satisfies the time (RC-Time) during which an electric double layer is formed within the electrolyte. As an example of an experiment, the frequency is fixed at 1 kHz, and a variety of frequency conditions can be applied under the conditions that satisfy the formation of an electric double layer.

최적 범위의 Vpp 및 고전압 인가시간 비율을 설정하기 위해, 크게 두 단계의 실험을 진행하였다. 먼저, 특정의 고전압 인가시간 비율 조건 하에서 다양한 Vpp를 적용함으로써 최적 범위의 Vpp를 찾아내고, 이어 최적 범위의 Vpp 하에서 다양한 고전압 인가시간 비율을 적용함으로써 최적 범위의 고전압 인가시간 비율을 찾아내었다. In order to set the optimal range of V pp and high voltage application time ratio, two major stages of experiment were conducted. First, the optimal range of V pp was found by applying various V pp under specific high voltage application time ratio conditions, and then the optimal range of high voltage application time ratio was found by applying various high voltage application time ratios under the optimal range of V pp . .

후술하는 실험결과를 참조하면, 착색의 경우 Vpp 0.3∼1.2, 고전압 인가시간 비율 10∼90%의 범위에서 직류전압이 인가되는 경우에 대비하여 착색시간이 짧아짐과 함께 착색효율이 향상됨을 확인할 수 있으며, 탈색의 경우 Vpp 0.7, 고전압 인가시간 비율 10∼70%의 범위에서 직류전압이 인가되는 경우에 대비하여 탈색시간이 짧아짐을 확인할 수 있다. 또한, 착색과 탈색을 10,000s 동안 반복 실험한 결과, 투과도 특성이 일정하게 유지됨을 확인할 수 있으며 이를 통해 고전압의 교류펄스전압을 인가함에도 불구하고 전기변색물질의 안정성이 저해되지 않음을 알 수 있다. Referring to the experimental results described later, in the case of coloring, it can be seen that the coloring time is shortened and the coloring efficiency is improved compared to the case where DC voltage is applied in the range of V pp 0.3 to 1.2 and the high voltage application time ratio of 10 to 90%. In the case of decolorization, it can be seen that the decolorization time is shortened compared to the case where direct current voltage is applied in the range of V pp 0.7 and high voltage application time ratio of 10 to 70%. In addition, as a result of repeated coloring and decolorizing experiments for 10,000 s, it was confirmed that the transmittance characteristics were maintained constant. This showed that the stability of the electrochromic material was not impaired despite applying a high voltage alternating current pulse voltage.

한편, 본 발명의 교류펄스전압이 구동전압으로 인가되는 전기변색소자는 일 실시예로, 젤 전해질이 채용된 전기변색소자가 대상이 될 수는 있으나 이에 한정되지는 않는다. 즉, 액체 전해질, 고체 전해질이 적용된 전기변색소자에 대해서도 본 발명의 교류펄스전압을 구동전압으로 인가할 수 있으며, 전기변색물질이 젤 전해질과 결합된 형태의 전기변색소자에 대해서도 본 발명의 교류펄스전압을 적용할 수 있다. 또한, 전기변색물질로 무기 전기변색물질 또는 유기 전기변색물질을 적용하거나 이들의 조합을 적용할 수 있다. 후술하는 실험에서는 두 개의 투명전극 사이에 젤 전해질(PS-r-PMMA, [EMI][TFSI])이 구비되며, 젤 전해질에 환원형 유기 전기변색물질(EtV(PF6)2)과 산화형 유기 전기변색물질(dmFc)이 포함된 형태의 전기변색소자를 이용하였다. Meanwhile, the electrochromic device of the present invention to which an alternating current pulse voltage is applied as a driving voltage is an example, and may be an electrochromic device employing a gel electrolyte, but is not limited thereto. That is, the alternating current pulse voltage of the present invention can be applied as a driving voltage to electrochromic devices using liquid electrolytes and solid electrolytes, and the alternating current pulse voltage of the present invention can also be applied to electrochromic devices in which an electrochromic material is combined with a gel electrolyte. Voltage can be applied. Additionally, as the electrochromic material, inorganic electrochromic material or organic electrochromic material can be applied, or a combination thereof can be applied. In the experiment described later, a gel electrolyte (PS-r-PMMA, [EMI][TFSI]) is provided between two transparent electrodes, and a reduced organic electrochromic material (EtV(PF 6 ) 2 ) and an oxidized electrochromic material are added to the gel electrolyte. An electrochromic device containing an organic electrochromic material (dmFc) was used.

이하, 실험예를 통해 본 발명을 보다 구체적으로 설명하기로 한다. Hereinafter, the present invention will be described in more detail through experimental examples.

<실험예 1 : 전기변색소자 제작><Experimental Example 1: Production of electrochromic device>

PS-r-PMMA와 [EMI][TFSI]를 1 : 9의 비율로 혼합하여 젤 전해질을 제조하고, 젤 전해질에 환원형 유기 전기변색물질 EtV(PF6)2와 산화형 유기 전기변색물질 dmFc를 함침시켰다. ITO가 코팅된 유리기판에 1■1.5cm의 크기의 몰드를 만든 후 EtV(PF6)2와 dmFc가 함침된 젤 전해질을 개재시킨 후 또 다른 ITO가 코팅된 유리기판으로 봉지하여 전기변색소자를 제작하였다. A gel electrolyte was prepared by mixing PS-r-PMMA and [EMI][TFSI] at a ratio of 1:9, and the reduced organic electrochromic material EtV(PF 6 ) 2 and the oxidized organic electrochromic material dmFc were added to the gel electrolyte. was impregnated. After making a mold with a size of 1 1.5 cm on an ITO-coated glass substrate, a gel electrolyte impregnated with EtV(PF 6 ) 2 and dmFc was interposed, and then sealed with another ITO-coated glass substrate to create an electrochromic device. Produced.

<실험예 2 : 최적 착색 조건을 위한 Vpp 및 고전압 인가시간 비율 적용><Experimental Example 2: Application of V pp and high voltage application time ratio for optimal coloring conditions>

실험예 1을 통해 제작된 전기변색소자를 대상으로 다양한 구동전압을 인가하고 그에 따른 흡광도, 투과도 및 착색시간 특성을 살펴보았다. Various driving voltages were applied to the electrochromic device manufactured in Experimental Example 1, and the resulting absorbance, transmittance, and coloring time characteristics were examined.

전기변색소자에 일반적으로 적용되는 직류전압 이외에 다양한 Vpp를 갖는 교류펄스전압을 구동전압으로 인가하였다. 교류펄스전압의 최적 Vpp 및 고전압 인가시간 비율을 설정하기 위해, 특정의 고전압 인가시간 비율 조건 하에서 다양한 Vpp를 적용하여 최적 범위의 Vpp를 찾아내는 실험과, 최적 범위의 Vpp 하에서 다양한 고전압 인가시간 비율을 적용하여 최적 범위의 고전압 인가시간 비율을 찾아내는 실험을 순차적으로 진행하였다. In addition to the direct current voltage generally applied to electrochromic devices, alternating current pulse voltages with various V pp were applied as driving voltages. In order to set the optimal Vpp and high voltage application time ratio of the AC pulse voltage, an experiment was conducted to find the optimal range of Vpp by applying various Vpp under specific high voltage application time ratio conditions, and various high voltages were applied under the optimal range of Vpp . An experiment was sequentially conducted to find the optimal range of high voltage application time ratio by applying the time ratio.

최적 범위의 Vpp를 찾아내는 실험에서, 고전압 인가시간 비율(duty ratio)이 공히 10%인 조건에서 Vpp가 0.3, 0.6, 0.8, 1.0, 1.2인 교류펄스전압을 각각 구동전압으로 인가하였으며, 종래 기술과의 대비를 위해 DC -0.7V를 구동전압으로 인가한 실험도 진행하였다(도 1b 참조). 여기서, Vpp 설정시 기준전압(저전압)은 -0.7V이고, 고전압은 각각 -1.0V, -1.3V, -1.5V, -1.7V, -1.9V이다. In an experiment to find the optimal range of V pp , AC pulse voltages with V pp of 0.3, 0.6, 0.8, 1.0, and 1.2 were applied as driving voltages under the condition that the high voltage application time ratio (duty ratio) was 10%, respectively. For comparison with the technology, an experiment was also conducted in which DC -0.7V was applied as the driving voltage (see Figure 1b). Here, when setting V pp , the reference voltage (low voltage) is -0.7V, and the high voltage is -1.0V, -1.3V, -1.5V, -1.7V, and -1.9V, respectively.

그 결과, 도 1d에 도시한 바와 같이 DC -0.7V를 인가한 경우 착색시간이 약 49초인 반면, Vpp 0.3(duty ratio 10%)인 경우 약 41초이고 Vpp 1.2인 경우에는 착색시간이 약 32초로 현저히 감소되는 것으로 확인되었다. 또한, Vpp가 0.3에서 1.2로 증가할수록 착색시간이 감소하는 경향을 나타냈다. 이러한 결과를 통해, DC -0.7V를 인가한 경우에 대비하여 Vpp 0.3∼1.2를 인가한 경우 모두 착색시간의 감소 효과가 나타남을 알 수 있다. 아울러, 흡광도 특성의 경우, Vpp가 0.3에서 1.2로 증가할수록 흡광도 특성이 우수한 경향을 나타내었으며, Vpp 0.3인 경우에서도 DC -0.7V를 인가한 경우보다 우수한 흡광도 특성을 나타냈다(도 1a 참조). 이와 함께, 투과도를 측정한 결과, Vpp가 0.3에서 1.2로 증가할수록 투과도가 감소하는 시간이 단축되는 것을 알 수 있다(도 1c 참조). 정리하면, Vpp가 0.3에서 1.2로 증가할수록 흡광도, 투과도 및 착색시간 특성이 모두 향상되는 경향성을 나타내었으며, Vpp 0.3인 조건에서도 DC -0.7V를 인가한 경우보다 우수한 특성을 나타내었다. As a result, as shown in Figure 1d, when DC -0.7V is applied, the coloring time is about 49 seconds, whereas when V pp 0.3 (duty ratio 10%), the coloring time is about 41 seconds, and when V pp 1.2, the coloring time is about 49 seconds. It was confirmed that it was significantly reduced to about 32 seconds. Additionally, as V pp increased from 0.3 to 1.2, the coloring time tended to decrease. Through these results, it can be seen that the effect of reducing the coloring time appears when applying V pp 0.3 to 1.2 compared to when applying DC -0.7V. In addition, in the case of absorbance characteristics, the absorbance characteristics tended to be superior as V pp increased from 0.3 to 1.2, and even when V pp was 0.3, the absorbance characteristics were superior to those when DC -0.7 V was applied (see Figure 1a). . In addition, as a result of measuring the permeability, it can be seen that as V pp increases from 0.3 to 1.2, the time for the permeability to decrease is shortened (see Figure 1c). In summary, as V pp increased from 0.3 to 1.2, the absorbance, transmittance, and coloring time characteristics all tended to improve, and even under the condition of V pp 0.3, better characteristics were shown than when DC -0.7 V was applied.

한편, 상기의 실험에 더해 Vpp 1.4인 조건에 대해 추가적으로 실험을 진행한 결과, 흡광도 및 투과도 특성이 Vpp 1.2인 조건에 대비하여 열화됨을 확인되었다(도 2a 및 도 2b 참조). Meanwhile, as a result of conducting an additional experiment on the condition of V pp 1.4 in addition to the above experiment, it was confirmed that the absorbance and transmittance characteristics were deteriorated compared to the condition of V pp 1.2 (see FIGS. 2A and 2B).

상기 실험을 통해 Vpp 0.3∼1.2를 인가한 경우 DC -0.7V를 인가한 경우에 비해 흡광도, 투과도 및 착색시간 특성이 우수함을 확인하였으며, 이 중 Vpp 1.2인 조건에서 가장 우수한 특성을 나타냄을 알 수 있다. 이에, 후속 실험으로 Vpp 1.2 조건 하에서 다양한 고전압 인가시간 비율을 적용하여 최적 범위의 고전압 인가시간 비율을 찾아내는 실험을 진행하였다. Through the above experiment, it was confirmed that when V pp 0.3∼1.2 was applied, the absorbance, transmittance, and coloring time characteristics were superior to those when DC -0.7 V was applied. Among these, the best characteristics were shown under the condition of V pp 1.2. Able to know. Accordingly, as a follow-up experiment, an experiment was conducted to find the optimal range of high voltage application time ratios by applying various high voltage application time ratios under the condition of V pp 1.2.

최적 범위의 고전압 인가시간 비율(duty ratio)을 찾아내는 실험에서, Vpp 1.2인 조건에서 고전압 인가시간 비율이 10%, 30%, 50%, 70%, 90%인 교류펄스전압을 각각 구동전압으로 인가하였다(도 3a 참조). 여기서, Vpp 설정시 앞선 실험과 동일하게 기준전압(저전압)은 -0.7V이고, 고전압은 -1.9V이다. In an experiment to find the optimal range of high voltage application time ratio (duty ratio), AC pulse voltages with high voltage application time ratios of 10%, 30%, 50%, 70%, and 90% were used as driving voltages under the condition of V pp 1.2. It was applied (see Figure 3a). Here, when setting V pp , the reference voltage (low voltage) is -0.7V and the high voltage is -1.9V, as in the previous experiment.

실험 결과, 고전압 인가시간 비율 10%인 경우 착색시간이 약 32초인 것으로 나타났으며, 고전압 인가시간 비율이 증가될수록 착색시각이 점차 감소되어 고전압 인가시간 비율 90%인 경우에서는 착색시간이 약 18.5초까지 감소되는 것을 알 수 있다(도 3c 참조). 참고로, 앞선 실험의 결과에서 적시한 바와 같이 DC -0.7V를 인가한 경우의 착색시간은 약 49초이다. 또한, 투과도를 측정한 결과, 고전압 인가시간 비율이 10%에서 90%로 증가할수록 투과도가 감소하는 시간이 단축되는 것을 알 수 있다(도 3b 참조). 나아가, Vpp 12, 고전압 인가시간 비율 90%인 교류펄스전압을 인가한 경우의 착색효율(Coloration Efficiency, η)과 DC -0.7V를 인가한 경우의 착색효율을 살펴본 결과(도 3d 참조), DC -0.7V가 인가된 경우 착색효율(η)이 95.3cm2C-1인 반면, Vpp 12, 고전압 인가시간 비율 90%인 교류펄스전압이 인가된 경우 착색효율(η)이 161cm2C-1인 것으로 나타나 착색효율이 월등히 개선됨을 알 수 있다. As a result of the experiment, it was found that when the high voltage application time ratio was 10%, the coloring time was about 32 seconds. As the high voltage application time ratio increased, the coloring time gradually decreased, and when the high voltage application time ratio was 90%, the coloring time was about 18.5 seconds. It can be seen that it decreases to (see Figure 3c). For reference, as indicated in the results of the previous experiment, the coloring time when DC -0.7V is applied is about 49 seconds. In addition, as a result of measuring the transmittance, it can be seen that as the high voltage application time ratio increases from 10% to 90%, the time for the transmittance to decrease is shortened (see Figure 3b). Furthermore, as a result of examining the coloration efficiency (η) when applying an alternating pulse voltage with V pp 12 and a high voltage application time ratio of 90%, and the coloring efficiency when applying DC -0.7V (see Figure 3d), When DC -0.7V is applied, the coloring efficiency (η) is 95.3cm 2 C -1 , whereas when V pp 12 and an AC pulse voltage with a high voltage application time ratio of 90% are applied, the coloring efficiency (η) is 161cm 2 C. It is found to be -1, showing that the coloring efficiency is significantly improved.

<실험예 3 : 최적 탈색 조건을 위한 Vpp 및 고전압 인가시간 비율 적용><Experimental Example 3: Application of V pp and high voltage application time ratio for optimal decolorization conditions>

실험예 1을 통해 제작된 전기변색소자를 대상으로 Vpp 12, 고전압 인가시간 비율 90%인 교류펄스전압을 인가하여 착색을 유도한 상태에서, 다양한 교류펄스전압을 인가하고 그에 따른 흡광도, 투과도 및 탈색시간 특성을 살펴보았다. Coloring was induced by applying an alternating current pulse voltage of V pp 12 and a high voltage application time ratio of 90% to the electrochromic device manufactured through Experimental Example 1. Then, various alternating current pulse voltages were applied and the resulting absorbance, transmittance and The decolorization time characteristics were examined.

전기변색소자의 탈색에 일반적으로 적용되는 DC 0V 이외에 Vpp 0.7 조건 하에 고전압 인가시간 비율이 10%, 30%, 50%, 70%, 90%인 교류펄스전압을 탈색 구동전압으로 인가하였다(도 4b 참조). 여기서, Vpp 설정시 기준전압(저전압)은 0V이고, 고전압은 0.7V이다. In addition to DC 0V, which is generally applied to decolorization of electrochromic devices, alternating current pulse voltage with high voltage application time ratios of 10%, 30%, 50%, 70%, and 90% was applied as the decolorization driving voltage under the condition of V pp 0.7 (Figure see 4b). Here, when setting V pp , the reference voltage (low voltage) is 0V and the high voltage is 0.7V.

실험 결과, 도 4d에 도시한 바와 같이 DC 0V를 인가한 경우 탈색시간(Bleaching Time)이 약 32초였으며, 고전압 인가시간 비율 10%(Vpp 0.7)인 경우에는 탈색시간이 약 31초로 나타났다. 이어, 고전압 인가시간 비율이 증가할수록 탈색시간은 점차 감소하였으며, 고전압 인가시간 비율이 70%인 경우에서는 탈색시간이 약 26초로 나타났다. 이러한 경향은 흡광도 및 투과도 특성에서도 동일하게 나타났다. 흡광도 및 투과도 특성을 살펴보면(도 4a 및 도 4c 참조), 고전압 인가시간 비율이 10%에서 70%까지 증가할 때는 흡광도 특성이 개선되었다. 반면, 고전압 인가시간 비율이 90%일 때에는 탈색이 아닌 착색 현상이 발생되었다. As a result of the experiment, as shown in Figure 4d, when DC 0V was applied, the bleaching time was about 32 seconds, and when the high voltage application time ratio was 10% (V pp 0.7), the bleaching time was about 31 seconds. Subsequently, as the high voltage application time ratio increased, the decolorization time gradually decreased, and when the high voltage application time ratio was 70%, the decolorization time was approximately 26 seconds. This trend was also observed in absorbance and transmittance characteristics. Looking at the absorbance and transmittance characteristics (see FIGS. 4A and 4C), the absorbance characteristics were improved when the high voltage application time ratio increased from 10% to 70%. On the other hand, when the high voltage application time ratio was 90%, coloring rather than discoloration occurred.

한편, 실험예 1을 통해 제작된 전기변색소자는 절대값이 동일한 (+) 구동전압과 (-) 구동전압에 대해 서로 동일한 착색 형태를 나타낸다. 즉, 절대값이 동일한 (+) 구동전압이 인가된 경우의 착색 특성과 절대값이 동일한 (-) 구동전압이 인가된 경우의 착색 특성이 동일하다. 도 5a는 다양한 (-) 직류전압을 인가한 경우의 흡광도 특성을 나타낸 것이고, 도 5b는 다양한 (+) 직류전압을 인가한 경우의 흡광도 특성을 나타낸 것이다. 도 5a 및 도 5b를 참조하면, DC -0.7V를 인가한 착색 흡광도 그래프와 DC 0.7V를 인가한 착색 흡광도 그래프가 거의 동일한 형태를 이룸을 알 수 있으며, 다른 대칭적인 전압을 인가한 경우에도 착색 흡광도 그래프가 형태적으로 거의 일치함을 확인할 수 있다. 또한, 도 5a 및 도 5b의 결과에서 보면, DC -0.7V와 DC 0.7V를 인가한 경우에만 착색이 뚜렷하게 발생되고, 다른 전압에서는 착색이 미미하게 발생됨을 확인할 수 있다. Meanwhile, the electrochromic device manufactured through Experimental Example 1 shows the same coloring form for (+) and (-) driving voltages with the same absolute value. That is, the coloring characteristics when a (+) driving voltage with the same absolute value is applied is the same as the coloring characteristic when a (-) driving voltage with the same absolute value is applied. Figure 5a shows the absorbance characteristics when various (-) direct current voltages are applied, and Figure 5b shows the absorbance characteristics when various (+) direct current voltages are applied. Referring to Figures 5a and 5b, it can be seen that the colored absorbance graph when DC -0.7V is applied and the colored absorbance graph when DC 0.7V is applied have almost the same form, and even when other symmetrical voltages are applied, the coloring remains. It can be seen that the absorbance graphs are almost identical morphologically. In addition, looking at the results of Figures 5a and 5b, it can be seen that coloring occurs clearly only when DC -0.7V and DC 0.7V are applied, and coloring occurs slightly at other voltages.

본 실험예 3에서 Vpp 설정시 기준전압(저전압)을 0V로 하고, 고전압으로 0.7V로 설정한 이유는, 상술한 바와 같은 도 5a 및 도 5b의 실험결과에서 출발한다. 도 6에 도시한 바와 같이 DC -0.6V를 인가한 경우 일정 정도 착색이 발생되지만 Vpp 0.6 조건에서 어떠한 고전압 인가시간 비율(10%∼90%)을 적용하더라도 착색이 발생되지 않았으며, 이에 본 발명자들은 Vpp 0.7 조건을 적용하여 실험예 3을 진행하였다. In this Experimental Example 3, the reason why the reference voltage (low voltage) was set to 0V and the high voltage was set to 0.7V when setting V pp starts from the experimental results of FIGS. 5A and 5B as described above. As shown in Figure 6, when DC -0.6V is applied, coloring occurs to a certain extent, but no coloring occurs no matter what high voltage application time ratio (10% to 90%) is applied under the condition of V pp 0.6. The inventors conducted Experiment Example 3 by applying the condition of V pp 0.7.

<실험예 4 : 전기변색소자의 내구성><Experimental Example 4: Durability of electrochromic device>

실험예 2, 3을 통해 착색의 경우 Vpp 0.3∼1.2, 고전압 인가시간 비율 10∼90%의 범위에서 우수한 착색 특성을 나타내고, 탈색의 경우 Vpp 0.7, 고전압 인가시간 비율 10∼70%의 범위에서 탈색 특성이 우수함을 알 수 있으며, 특히 착색은 Vpp 1.2, 고전압 인가시간 비율 90%인 조건에서 가장 우수하고(착색시간 약 18.5초), 탈색은 Vpp 0.7, 고전압 인가시간 비율 70%인 조건에서 가장 우수한 결과(탈색시간 약 26.0초)를 나타내었다(도 7a 및 도 7b 참조). Experimental Examples 2 and 3 showed excellent coloring characteristics in the range of V pp 0.3 to 1.2 and a high voltage application time ratio of 10 to 90% for coloring, and in the case of decolorization, V pp 0.7 and a high voltage application time ratio in the range of 10 to 70%. It can be seen that the discoloration properties are excellent, and in particular, coloring is best under the conditions of V pp 1.2 and high voltage application time ratio of 90% (coloring time about 18.5 seconds), and decolorization is V pp 0.7 and high voltage application time ratio of 70%. It showed the best results (decolorization time of about 26.0 seconds) under these conditions (see FIGS. 7A and 7B).

이에 근거하여, Vpp 1.2, 고전압 인가시간 비율 90%인 착색용 교류펄스전압과 Vpp 0.7, 고전압 인가시간 비율 70%인 탈색용 교류펄스전압을 교번하여 10,000s 동안 반복 인가하고, 그에 따른 투과도 특성을 살펴보았다. Based on this, the alternating current pulse voltage for coloring with V pp 1.2, high voltage application time ratio of 90%, and the alternating current pulse voltage for decolorization with V pp 0.7, high voltage application time ratio 70% were alternately applied for 10,000 s, and the resulting transmittance We looked at the characteristics.

실험 결과, 초기 400s 동안의 투과도 특성과 마지막 400s 동안의 투과도 특성이 거의 변화가 없음을 알 수 있으며, 이를 통해 본 발명의 교류펄스전압을 전기변색소자에 반복적으로 인가하더라도 전기변색물질의 안정성이 유지됨을 알 수 있다(도 7c 참조). As a result of the experiment, it can be seen that there is almost no change in the transmittance characteristics during the first 400 s and the last 400 s. This shows that the stability of the electrochromic material is maintained even when the alternating pulse voltage of the present invention is repeatedly applied to the electrochromic device. can be seen (see Figure 7c).

이상의 실험예 2 내지 실험예 4에서 살펴본 바와 같이, 종래의 직류전압을 구동전압으로 사용하는 것에 대비하여 본 발명의 교류펄스전압을 구동전압으로 인가하는 경우에 있어서 착색 및 탈색 특성이 우수하고 소자의 안정성이 유지되는 이유는, 본 발명의 교류펄스전압 인가시 일정 시간 동안 고전압이 인가됨으로 인해 전기변색물질의 환원이 가속화되어 응답속도가 향상되고 일정 시간 동안만 고전압이 인가됨에 따라 전기변색물질이 변형되는 것을 방지할 수 있기 때문이다.As seen in Experimental Examples 2 to 4 above, when applying the alternating current pulse voltage of the present invention as a driving voltage compared to using a conventional direct current voltage as a driving voltage, the coloring and discoloring characteristics are excellent and the device's The reason why stability is maintained is that when the alternating current pulse voltage of the present invention is applied, a high voltage is applied for a certain period of time, thereby accelerating the reduction of the electrochromic material, improving the response speed, and as the high voltage is applied only for a certain period of time, the electrochromic material is transformed. This is because it can be prevented from happening.

Claims (5)

전기변색소자의 착색 및 탈색시 교류펄스전압을 인가하며,
착색시 교류펄스전압은 Vpp(peak to peak voltage)가 0.3∼1.2이고, 고전압 인가시간 비율(duty ratio)이 10∼90%인 파형인 것을 특징으로 하는 교류펄스전압을 이용한 전기변색소자 구동방법.
When coloring or decolorizing electrochromic devices, alternating pulse voltage is applied.
A method of driving an electrochromic device using an alternating current pulse voltage, characterized in that the alternating current pulse voltage during coloring has a V pp (peak to peak voltage) of 0.3 to 1.2 and a high voltage application time ratio (duty ratio) of 10 to 90%. .
제 1 항에 있어서, 탈색시 교류펄스전압은 Vpp가 0.7이고, 고전압 인가시간 비율이 10∼70%인 파형인 것을 특징으로 하는 교류펄스전압을 이용한 전기변색소자 구동방법.
The method of driving an electrochromic device using an alternating current pulse voltage according to claim 1, wherein the alternating current pulse voltage during bleaching has a waveform with V pp of 0.7 and a high voltage application time ratio of 10 to 70%.
제 2 항에 있어서, 착색시 교류펄스전압에서 Vpp의 기준전압은 -0.7V이고, 탈색시 교류펄스전압에서 Vpp의 기준전압은 0V인 것을 특징으로 하는 교류펄스전압을 이용한 전기변색소자 구동방법.
The method of claim 2, wherein the reference voltage of V pp in the AC pulse voltage during coloring is -0.7V, and the reference voltage of V pp in the AC pulse voltage during decolorization is 0V. method.
제 1 항에 있어서, 착색시 교류펄스전압은 Vpp 1.2, 고전압 인가시간 비율 90%인 파형이고, 탈색시 교류펄스전압은 Vpp 0.7, 고전압 인가시간 비율 70%인 파형인 것을 특징으로 하는 교류펄스전압을 이용한 전기변색소자 구동방법.
The alternating current pulse voltage according to claim 1, wherein the alternating current pulse voltage during coloring is a waveform of V pp 1.2 and a high voltage application time ratio of 90%, and the alternating current pulse voltage during decolorization is a waveform of V pp 0.7 and a high voltage application time ratio of 70%. Method of driving an electrochromic device using pulse voltage.
제 1 항에 있어서, 전기변색소자는 젤 전해질이 적용된 전기변색소자인 것을 특징으로 하는 교류펄스전압을 이용한 전기변색소자 구동방법.The method of driving an electrochromic device using an alternating current pulse voltage according to claim 1, wherein the electrochromic device is an electrochromic device to which a gel electrolyte is applied.
KR1020220109206A 2022-08-30 2022-08-30 Electrochromic device driving method using AC pulse voltage KR20240030319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220109206A KR20240030319A (en) 2022-08-30 2022-08-30 Electrochromic device driving method using AC pulse voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220109206A KR20240030319A (en) 2022-08-30 2022-08-30 Electrochromic device driving method using AC pulse voltage

Publications (1)

Publication Number Publication Date
KR20240030319A true KR20240030319A (en) 2024-03-07

Family

ID=90272089

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220109206A KR20240030319A (en) 2022-08-30 2022-08-30 Electrochromic device driving method using AC pulse voltage

Country Status (1)

Country Link
KR (1) KR20240030319A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102010753B1 (en) 2016-03-08 2019-08-14 주식회사 엘지화학 Electrochromic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102010753B1 (en) 2016-03-08 2019-08-14 주식회사 엘지화학 Electrochromic device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Organic Electronics, T. Y. Yun, H. C. Moon, 2018. 178-185
The royal Society of Chemistry, M. Kim, Y. M. Kim, H. C. Moon, 2020. 10. 394-401

Similar Documents

Publication Publication Date Title
EP1328842B1 (en) Color-stabilized electrochromic devices
KR100786973B1 (en) Electrode comprising lithium nickel oxide layer, method for preparing the same, and electrochromic device comprising the same
JP2930202B2 (en) Variable reflectivity mirror for automobile
KR100880523B1 (en) Electrochromic device having electrolyte comprising eutectic mixture
EP0917556A1 (en) Electrochromic indicating device
US20050040048A1 (en) Electropolymerization method for preparing nano-tube type conducting polymer using porous template, method for preparing electrochromic device, and electrochromic device prepared therefrom
JP2013254196A (en) Electrochromic display device
JPH03280023A (en) Method of reducing leakage current of electrochemical variable chromaticity solution and solution based on said method
KR20150122319A (en) method for manufacturing electrochromic device
EP0880567A1 (en) Electrochromic system
Chidichimo et al. Solid thermoplastic laminable electrochromic film
US4752119A (en) Electrochromic display devices
EP1556733A1 (en) Electrochromic devices having an electron shuttle
KR20240030319A (en) Electrochromic device driving method using AC pulse voltage
Ojha et al. Variable-tint electrochromic supercapacitor with a benzyl hexenyl viologen-prussian blue architecture and ultralong cycling life
TWI603139B (en) Black-to-transmissive electrochromic device
US8300296B2 (en) Electrochromic formulation and organic electrochromic switchable electronic component
JP2004020928A (en) Electrochromic display component, its manufacturing method and electrochromic display device
KR102182469B1 (en) Electrochromic device, display including the same and method of preparing transmissivity changeable device
JP6234427B2 (en) Organic compound, light modulation composition, and light modulation device using the same
JP2006071767A (en) Color rewritable display device
JPH01230691A (en) Electrochromic display element
JP2011232488A (en) Display element
CN111647399A (en) Fast-fading electrochromic material
KR980009422A (en) Multicolor electrochromic composition and multicolor electrochromic device

Legal Events

Date Code Title Description
E902 Notification of reason for refusal