KR20240028247A - Nanobubble production chamber structure for nanobubble generator - Google Patents

Nanobubble production chamber structure for nanobubble generator Download PDF

Info

Publication number
KR20240028247A
KR20240028247A KR1020220106507A KR20220106507A KR20240028247A KR 20240028247 A KR20240028247 A KR 20240028247A KR 1020220106507 A KR1020220106507 A KR 1020220106507A KR 20220106507 A KR20220106507 A KR 20220106507A KR 20240028247 A KR20240028247 A KR 20240028247A
Authority
KR
South Korea
Prior art keywords
water
vortex
mixed
bubbles
nanobubble
Prior art date
Application number
KR1020220106507A
Other languages
Korean (ko)
Inventor
김용우
Original Assignee
주식회사 한화그린
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한화그린 filed Critical 주식회사 한화그린
Priority to KR1020220106507A priority Critical patent/KR20240028247A/en
Publication of KR20240028247A publication Critical patent/KR20240028247A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • B01F23/23231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit
    • B01F23/232312Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit the guiding constructions being baffles for guiding the flow up-and-down or from left-to-right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2326Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/7547Discharge mechanisms characterised by the means for discharging the components from the mixer using valves, gates, orifices or openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/305Treatment of water, waste water or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)

Abstract

본 발명은 버블의 용수에 혼합되는 혼합률을 높이고, 용수의 용존산소량을 높일 수 있도록 한 나노버블발생기(10)용 나노버블생성 챔버구조를 제공코자 하는 것으로서, 상기 본 발명은 유입펌프(30)에 의해서 용수가 유입되는 유입구(20)와, 유입펌프(30)에서 가압펌프(50)로 용수가 유입될 시 외부 공기가 유입되도록 설치된 이젝터(40)와, 용수와 공기를 혼합하여 용수에서 버블이 발생되도록 가압되게 구성된 가압펌프(50)와, 가압펌프(50)에서 용수와 공기가 충분히 가압하여 혼합되었을 시 사용처로 배출 이송하는 배출구(60)와, 배출구(60) 쪽에 용수에 버블이 충분히 발생되면 개방되는 배출밸브(80)와 배출밸브(80)의 개방 시 용수와 버블이 혼합된 혼합수가 배출구(60)로 배출되면서 용수 내부의 버블을 나노버블로 완성토록 구성된 나노챔버(1)가 포함된 것을 특징으로 하며, 이에 의하면 용수와 공기를 펌프에서 가압하여 혼합 후 자체 배출압으로 배출 시 압력과 속도를 가변시키면서 체류시간을 연장시켜서 용수에 버블의 혼합률을 향상시키면서 용존산소량을 극대화시키는 등 다수의 효과를 기대할 수 있는 것이다.The present invention seeks to provide a nanobubble generating chamber structure for a nanobubble generator (10) that increases the mixing rate of bubbles mixed with water and increases the amount of dissolved oxygen in the water. an inlet 20 through which water flows in, an ejector 40 installed to allow outside air to flow in when water flows from the inlet pump 30 to the pressurizing pump 50, and a mixture of water and air to remove bubbles from the water. A pressurizing pump (50) configured to pressurize to generate this, an outlet (60) through which the water and air are discharged and transported to the place of use when the water and air are sufficiently pressurized and mixed in the pressurizing pump (50), and there are sufficient bubbles in the water at the outlet (60). When generated, the discharge valve 80 opens, and when the discharge valve 80 is opened, the mixed water of water and bubbles is discharged to the outlet 60, and the nanochamber 1 is configured to complete the bubbles inside the water into nanobubbles. It is characterized by being included, and according to this, water and air are pressurized and mixed in a pump, and when discharged at its own discharge pressure, the residence time is extended while changing the pressure and speed, thereby improving the mixing rate of bubbles in the water and maximizing the amount of dissolved oxygen. Many effects can be expected, such as:

Figure P1020220106507
Figure P1020220106507

Description

나노버블발생기용 나노버블생성 챔버구조{Nanobubble production chamber structure for nanobubble generator}Nanobubble production chamber structure for nanobubble generator {Nanobubble production chamber structure for nanobubble generator}

본 발명은 나노버블발생기에서 나노버블을 직접적으로 생성하는 챔버의 구조에 대한 것으로서, 이를 보다 상세히 설명하면 용수의 유입 시 함께 유입된 외부공기에 의해서 생성되는 버블을 챔버구조에 의해서 보다 작은 나노버블로 만들어서 용수에 혼합되는 혼합률을 높이고, 이로 인하여 용수의 용존산소량을 현저히 높일 수 있도록 한 나노버블발생기용 나노버블생성 챔버구조에 관한 것이다.The present invention relates to the structure of a chamber that directly generates nanobubbles in a nanobubble generator. To explain this in more detail, the bubbles generated by external air introduced when water is introduced are converted into smaller nanobubbles by the chamber structure. This relates to a nanobubble generating chamber structure for a nanobubble generator that increases the mixing rate of the water and thereby significantly increases the amount of dissolved oxygen in the water.

일반적으로 용수에 용존산소량을 높여서 폐수나 하수 등의 오염된 용수를 정화시키거나 각종 슬러지 등을 정화시킬 때 사용되고 있었으나, 용수에 산소가 일반적인 버블로 존재하게 되면 쉽게 수면으로 상승하여 기포가 터지면서 산소가 대기 중으로 쉽게 날아가 버려서 물속에는 산소가 존재하지 않게 되었던 것으로서, 이와 같이 용수에 외부의 산소를 공급하여 버블을 생성 시 나노나 마이크로 입자 크기로 버블을 생성하여 용수 중에 완전하게 녹게 혼합시켜서 용수의 용존산소량을 높이고, 이러한 용존산소량이 높은 용수를 각종 산업현장에서 사용되고 있었던 것이다.In general, it has been used to purify contaminated water such as wastewater or sewage by increasing the amount of dissolved oxygen in water, or to purify various sludges, etc. However, when oxygen exists as general bubbles in water, it easily rises to the surface of the water and the bubbles burst, releasing oxygen. Oxygen does not exist in the water because it easily flies into the atmosphere. When bubbles are created by supplying external oxygen to the water, bubbles are created in the size of nano or micro particles and mixed completely in the water to dissolve in the water. The oxygen content was increased, and water with a high dissolved oxygen content was being used in various industrial sites.

이러한 용수에 외부로부터 유입된 산소를 초미세기포인 나노버블로 아주 미세하게 분해 및 용해시키도록 한 나노버블 발생기가 다수 개발되어 왔으며, 종래 나노버블 발생기로는 대한민국 공개특허 2017년 제100707호(2017년 9월 5일)에 게재된 바와 같이 구동부의 회전축과 동축 상에 독립적으로 존재한 상태에서 연동 회전하면서 추력을 발생시키고, 2개의 임펠러에 의해서 타격하여 버블을 잘게 부수는 기술이 개발되어 있었으며, 등록특허 제2093837호(2020년 3월 27일자 공고)에 게재된 바와 같이 펌프의 입구측 배관과 토출측 배관을 연결하고 토출 유체의 일부를 회수하여 입구측 배관으로 이송하는 순환관과 순환관의 일측에 급기관으로 연결되어 외기를 공급하는 기체공급부 및 입구측 배관을 통해 유입된 물과 급기관을 통해 공급된 기체를 고압으로 압축 및 혼합하고 반복적으로 타격을 가하도록 하나의 축 상에 다수의 임펠러와 각 임펠러를 수용하는 다수의 챔버가 내장된 혼합부를 포함하는 기술이 개발되어 있었으며, 공개특허 2020년 제126528호(2020년 11월 9일자 공개)에 게재된 바와 같이 이 역시 임펠러에 의해서 물과 공기가 혼합된 혼합수를 타격하는 기술이 존재하고 있었던 것으로서, 상기한 바와 같이 종래의 나노버블 생성장치들은 대부분이 회전되는 임펠러에 의해서 용수에 녹아 있는 공기를 타격하는 방식으로 해서 공기버블을 잘게 부수어 작은 버블이나 마이크로 버블이나 나노버블을 생성하고 있었으나, 단순 타격만으로는 마이크로 버블정도는 압력과 속도 조절을 부가하여 생성될 수 있었으나, 마이크로 버블보다 훨씬 작은 초미세기포에 해당되는 나노버블을 생성하기에는 다소 미흡하여 마이크로 버블을 제조할 정도이면서도 나노버블을 생성한다고 과대 광고하거나 효과를 부풀려서 이야기하는 등 다소의 문제점들을 가지고 있었던 것이다.A number of nanobubble generators have been developed to very finely decompose and dissolve oxygen introduced from the outside into such water into ultra-fine nanobubbles, and the conventional nanobubble generator is Republic of Korea Patent Publication No. 100707 (2017). As published on September 5, a technology has been developed that generates thrust while rotating interlocked while existing independently on the same axis as the rotation axis of the driving part, and crushes the bubble by hitting it with two impellers, and was registered. As published in Patent No. 2093837 (announced on March 27, 2020), a circulation pipe connects the inlet pipe and the discharge side pipe of the pump, recovers part of the discharged fluid, and transfers it to the inlet pipe, and a circulation pipe on one side of the circulation pipe. Multiple impellers on one axis to compress and mix the gas supplied through the gas supply pipe and the water flowing in through the gas supply unit and inlet pipe connected to the air supply pipe and the inlet pipe to high pressure and hit repeatedly. A technology has been developed that includes a mixing section with a plurality of chambers accommodating each impeller, and as published in Patent Publication No. 126528 of 2020 (published on November 9, 2020), this also mixes water and air by an impeller. There existed a technology for hitting the mixed water. As mentioned above, most of the conventional nanobubble generating devices hit the air dissolved in the water with a rotating impeller, breaking the air bubbles into small pieces. Bubbles, microbubbles, or nanobubbles were being generated, but microbubbles could be created by simply hitting them by adding pressure and speed control, but it was somewhat insufficient to generate nanobubbles, which are ultra-fine bubbles much smaller than microbubbles. Although it was capable of manufacturing microbubbles, it had some problems, such as exaggerating the claim that it created nanobubbles or exaggerating the effect.

KR 10-2017-0100707 A 2017. 9. 5.KR 10-2017-0100707 A 2017. 9. 5. KR 10-2093837 B1 2020. 3. 27.KR 10-2093837 B1 2020. 3. 27. KR 10-2020-0126528 A 2020. 11. 9.KR 10-2020-0126528 A 2020. 11. 9.

본 발명에서는 상기한 종래 기술의 제반 문제점들을 해결코자 새로운 기술을 창안한 것으로서, 본 발명은 나노버블 생성 시 배출쪽 챔버 내부에서 동력을 필요로 하는 타격의 방식이 아닌 배출 시 자체 배출압에 의해서 챔버 내에서 충돌과 마찰계수를 월등히 향상시키면서 압력과 속도를 가변화시켜서 용수에 포함된 버블을 보다 잘게 파쇄하고 용해시켜서 나노버블이 용수에 녹아들도록 해서 혼합률을 일층 향상시키면서 용존산소량을 극대화시키도록 한 나노버블발생기용 나노버블생성 챔버구조를 제공코자 함에 발명에서 해결하고자 하는 과제를 두고 완성한 것이다.In the present invention, a new technology was created to solve the problems of the prior art described above. The present invention does not use a blow method that requires power inside the discharge chamber when generating nanobubbles, but uses the chamber's own discharge pressure when discharging the nanobubbles. By significantly improving the collision and friction coefficients and varying the pressure and speed, the bubbles contained in the water are broken and dissolved more finely, allowing the nanobubbles to dissolve in the water, thereby further improving the mixing rate and maximizing the amount of dissolved oxygen. This invention was completed with the goal of providing a nanobubble generating chamber structure for a nanobubble generator.

또한 별도로 기술하지는 않았으나, 본 발명의 나노버블발생기용 나노버블생성 챔버구조를 상세하게 기술한 하기의 발명을 실시하기 위한 구체적인 내용과 청구범위 및 도면 등을 감안하여 유추할 수 있는 범위 내의 또 다른 목적들도 본 발명의 전체 해결과제에 포함되는 것이다.In addition, although not separately described, another purpose within the scope that can be inferred in consideration of the specific content, claims, and drawings for carrying out the following invention, which describes in detail the nanobubble generating chamber structure for the nanobubble generator of the present invention These are also included in the overall problem of the present invention.

상기한 발명의 과제를 해결하기 위한 구체적인 수단으로 본 발명에서는 나노버블발생기용 나노버블생성 챔버구조를 구성하되, 상기 본 발명의 나노버블발생기용 나노버블생성 챔버구조는 유입펌프에 의해서 용수가 유입되는 유입구가 구비되며, 유입펌프에서 가압펌프로 용수가 유입될 시 외부 공기가 유입되도록 설치된 이젝터가 구비되며, 용수와 공기를 혼합하여 용수에서 버블이 발생되도록 가압되게 구성된 가압펌프가 구비되며, 가압펌프에서 용수와 공기가 충분히 가압하여 혼합되었을 시 사용처로 배출 이송하는 배출구가 구비되며, 배출구 쪽에 용수에 버블이 충분히 발생되면 개방되는 배출밸브와 배출밸브의 개방 시 용수와 버블이 혼합된 혼합수가 배출구로 배출되면서 용수 내부의 버블을 나노버블로 완성토록 구성된 나노챔버가 구비된 것을 특징으로 한다.As a specific means for solving the problems of the above-described invention, the present invention constitutes a nanobubble generating chamber structure for a nanobubble generator, and the nanobubble generating chamber structure for the nanobubble generator of the present invention has a structure in which water is introduced by an inlet pump. An inlet is provided, and an ejector is installed to allow external air to flow in when water flows from the inlet pump to the pressurized pump. A pressurized pump is provided that mixes the water and air and pressurizes the water to generate bubbles. The pressurized pump When the water and air are sufficiently pressurized and mixed, there is an outlet that discharges and transports the water to the place of use. There is a discharge valve on the outlet side that opens when enough bubbles are generated in the water, and when the discharge valve is opened, the mixed water mixed with water and bubbles flows into the outlet. It is characterized by being equipped with a nanochamber configured to complete the bubbles inside the water into nanobubbles as they are discharged.

본 발명에서 나노챔버는 내부에 전후로 혼합수가 압력을 받으면서 고속으로 통과하도록 다양한 형태의 압축통로가 형성된 가변유도격판이 구비되며, 가변유도판의 후방에 압축통로를 통과한 혼합수가 감압되면서 저속으로 이송 유도되며, 후방으로 이웃하는 가변유도격판의 전면과 이격되어 이웃하는 가변유도격판의 압축통로 형태가 상이하더라도 혼합수가 막히지 않고 이웃하는 가변유도격판의 압축통로로 원활하게 이송되게 가변유도격판의 가장자리에서 후방으로 돌출된 돌출테두리에 의해서 내측으로 형성된 이격공간이 구비되어 가변유도격판은 이격공간을 사이사이에 각각 구비되게 수개를 중첩시켜서 나노챔버 내부에 설치된 것을 특징으로 한다.In the present invention, the nanochamber is equipped with a variable guide diaphragm inside which various types of compression passages are formed so that the mixed water passes at high speed under pressure back and forth, and at the rear of the variable guide plate, the mixed water passing through the compression passage is decompressed and transferred at low speed. It is guided and spaced apart from the front of the rearward neighboring variable guidance diaphragm, so that even if the compression passage shape of the neighboring variable guidance diaphragm is different, the mixed water is not blocked and is smoothly transferred to the compression passage of the neighboring variable guidance diaphragm at the edge of the variable guidance diaphragm. The variable induction diaphragm is provided with a separation space formed inwardly by a protruding border that protrudes to the rear, and is installed inside the nanochamber by overlapping several spacers, each having a separation space between them.

이때 나노챔버는 내면에 소용돌이 형태로 내향 돌출되어 혼합수가 통과 시 충격이 발생되면서 와류가 유도되도록 형성된 와류유도충돌돌기가 더 포함되거나, 내면에 소용돌이 형태로 외향 내입되어 혼합수가 통과 시 와류가 유도되도록 형성된 와류유도안내홈이 더 포함된 것을 특징으로 할 수 있다.At this time, the nanochamber further includes a vortex-inducing collision protrusion formed on the inner surface in the form of a vortex to induce a vortex by generating an impact when the mixed water passes through, or is protruded outward in the form of a vortex on the inner surface to induce a vortex when the mixed water passes through. It may be characterized by further including a formed vortex inducing guide groove.

본 발명의 나노챔버는 내부에 전후로 혼합수가 압력을 받으면서 고속으로 통과하도록 다양한 형태의 압축통로가 형성된 가변유도격판 수개가 연속하여 이웃되게 설치되어 압력과 속도가 가변되면서 통과하는데 시간이 많이 소요되게 체류되는 가변체류구간과, 가변체류구간에 이어서 가변체류구간보다 통과지름이 좁게 형성되며, 내면에 소용돌이 형태로 내향 돌출되어 혼합수가 통과 시 충격이 발생되면서 와류가 유도되도록 와류유도충돌돌기가 형성되어 혼합수에 작용하는 압력이 향상되면서 이송 속도가 가변체류구간보다 빨라지는 가압고속구간과, 가압고속구간에 이어서 가압고속수간보다 통과지름이 넓게 형성되며, 와류유도충돌돌기와 같은 방향의 소용돌이 형태로 외향 내입되어 혼합수가 통과 시 와류가 유도되도록 와류유도안내홈이 형성되어 혼합수에 작용하는 압력이 줄어들면서 이송속도가 가압고속수간보다 느려지는 감압저속구간이 포함된 것을 특징으로 할 수 있다.In the nanochamber of the present invention, several variable induction diaphragms with various types of compression passages are installed adjacent to each other in succession so that the mixed water passes at high speed while receiving pressure back and forth, so that the pressure and speed are varied and it takes a long time to pass through. A variable retention section is formed, and the passage diameter is narrower than the variable retention section following the variable retention section, and the inner surface protrudes inward in the form of a vortex, creating a shock when the mixed water passes through, forming a vortex-inducing collision protrusion to induce a vortex and mix. As the pressure acting on the water increases, a pressurized high-speed section is formed where the transport speed becomes faster than the variable retention section, and following the pressurized high-speed section, the passage diameter is formed wider than that of the pressurized high-speed water section, and flows outward in the form of a vortex in the same direction as the vortex-induced collision protrusion. A vortex-inducing guide groove is formed to induce a vortex when the mixed water passes through it, thereby reducing the pressure acting on the mixed water and including a decompression low-speed section in which the transfer speed is slower than that of the pressurized high-speed section.

상술한 과제 해결을 위한 구체적인 수단에 의하면, 본 발명의 나노버블발생기용 나노버블생성 챔버구조는 용수와 공기를 펌프에서 가압하여 혼합 후 챔버에서 다양한 형태의 가변유도격판의 배치에 의해서 자체 배출압으로 배출 시 가압, 감압, 가속, 감속 등을 압력과 속도를 가변시키면서 체류시간을 연장시켜서 용수에 혼합되어 있던 버블을 나노버블로 생성시킬 수 있도록 하여 용수에 버블의 혼합률을 월등하게 향상시키는 효과를 가지면서, 이로 인하여 용존산소량을 극대화시키는 효과를 가지도록 한 것이다.According to a specific means for solving the above-mentioned problem, the nanobubble generating chamber structure for the nanobubble generator of the present invention mixes water and air by pressurizing them in a pump and then adjusts them to their own discharge pressure by arranging various types of variable induction diaphragms in the chamber. When discharging, the residence time is extended by varying the pressure and speed through pressurization, decompression, acceleration, and deceleration, so that the bubbles mixed in the water can be generated into nanobubbles, which has the effect of significantly improving the mixing rate of bubbles in the water. This has the effect of maximizing the amount of dissolved oxygen.

이에 더하여 본 발명에서는 챔버의 내부에 와류를 유도하는 충돌돌기와 안내홈을 형성하여 가압 고속으로 이동하며 충돌돌기에 의해서 부딪히면서 와류가 유도되고, 감압 저속으로 이동하며 안내홈에 의해서 와류가 유도되도록 해서 용수에 나노버블이 보다 잘 혼합되도록 하는 등 그 기대되는 효과가 다대한 발명인 것이다.In addition, in the present invention, impact protrusions and guide grooves that induce vortices are formed inside the chamber, and the vortices are induced by moving at high speed under pressure and being struck by the impact protrusions, and the vortices are induced by the guide grooves when moving at depressurized low speeds, so that the water It is an invention with great expected effects, such as allowing nanobubbles to mix better.

도 1은 본 발명이 적용된 나노버블발생기의 전체적인 블록도
도 2는 본 발명이 적용된 나노버블발생기의 평면도
도 3은 본 발명이 적용된 나노버블발생기의 정면도
도 4는 본 발명의 바람직한 일례를 보인 전체 단면도
도 5는 도 4에서 가변체류구간의 구체적인 입체 예시도
도 6은 도 4에서 가압고속구간의 구체적인 입체 예시도
도 7은 도 4에서 감압저속구간의 구체적인 입체 예시도
도 8는 본 발명의 가변체류구간에서의 용수와 버블이 혼합된 혼합수의 흐름을 보인 예시도 및 이때 좌우 측면상태도
1 is an overall block diagram of the nanobubble generator to which the present invention is applied.
Figure 2 is a plan view of the nanobubble generator to which the present invention is applied.
Figure 3 is a front view of the nanobubble generator to which the present invention is applied.
Figure 4 is an overall cross-sectional view showing a preferred example of the present invention.
Figure 5 is a detailed three-dimensional illustration of the variable stay section in Figure 4
Figure 6 is a specific three-dimensional illustration of the pressurized high-speed section in Figure 4
Figure 7 is a detailed three-dimensional illustration of the decompression low-speed section in Figure 4
Figure 8 is an exemplary diagram showing the flow of mixed water mixed with water and bubbles in the variable retention section of the present invention and the left and right side state diagrams at this time.

본 발명은 챔버구조에 의해서 보다 작은 나노버블로 만들어서 용수에 혼합되는 혼합률을 높이고, 용수의 용존산소량을 현저히 높일 수 있도록 한 나노버블발생기용 나노버블생성 챔버구조를 제공코자 하는 것으로서, 이를 하기에서 도면들과 함께 보다 구체적으로 설명토록 하되, 첨부된 도면은 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐 이에 한정되는 것은 아니며, 사용되는 용어들 역시 실시 예를 구체적으로 설명하기 위한 것일 뿐 해당 용어에 국한되게 해석되어서는 아니 된다.The present invention seeks to provide a nanobubble generating chamber structure for a nanobubble generator that can increase the mixing rate in the water by making smaller nanobubbles through the chamber structure and significantly increase the amount of dissolved oxygen in the water. This is described below. It will be described in more detail with the drawings, but the attached drawings are only examples for easily explaining the content and scope of the technical idea of the present invention and are not limited thereto, and the terms used are also used to describe the embodiments in detail. It is for the purpose only and should not be construed as limited to the relevant terms.

상기 본 발명의 나노버블생성 챔버구조가 적용된 나노버블발생기(10)는 도 1의 블록도나 도 2 및 3의 평면도 및 정면도에 도시된 바와 같이 유입구(20)로 유입펌프(30)에 의해서 용수가 유입된 후 이젝터(40)로 외부 공기가 유입되어 용수와 함께 가압펌프(50)로 투입되어 가압 혼합되어 용수 내부에 미세기포가 발생되며, 이후 배출구(60)로 배출 시 순환관(70)에 의해서 버블이 완전히 나노버블이 아닌 시 이젝터(40)로 순환시켜서 재차 가압 혼합되도록 한 후 배출구(60)로 배출 전 본 발명만의 구조를 갖는 나노챔버(1)를 통과하면서 용수 내부에 완전한 나노버블이 생성되는 것이다.The nanobubble generator 10, to which the nanobubble generating chamber structure of the present invention is applied, supplies water to the inlet 20 by the inlet pump 30, as shown in the block diagram of FIG. 1 or the top and front views of FIGS. 2 and 3. After being introduced, external air flows into the ejector 40 and is injected into the pressurized pump 50 together with the water and mixed under pressure to generate fine bubbles inside the water. When it is discharged through the outlet 60, it flows into the circulation pipe 70. When the bubbles are not completely nanobubbles, they are circulated through the ejector 40 to be pressurized and mixed again, and then passed through the nanochamber 1, which has a structure unique to the present invention, before being discharged through the outlet 60, forming complete nanobubbles inside the water. This is created.

상기 본 발명을 도 1 내지 3에 도시된 바에서 보다 구체적으로 설명하면, 상기 유입펌프(30)에 의해서 용수가 유입되는 유입구(20)가 구비되며, 상기 유입펌프(30)에서 가압펌프(50)로 용수가 유입될 시 외부 공기가 유입되도록 이젝터(40)가 설치되며, 용수와 공기를 혼합하여 용수에서 버블이 발생되도록 가압되게 구성된 가압펌프(50)가 구비되어 가압펌프(50)에서 용수와 공기가 충분히 가압하여 혼합되었을 시 사용처로 배출 이송하는 배출구(60)로 연결 구성된다.If the present invention is described in more detail as shown in FIGS. 1 to 3, an inlet 20 through which water is introduced by the inlet pump 30 is provided, and the inlet pump 30 provides a pressure pump 50. ), an ejector (40) is installed to allow external air to flow in when water flows into the water, and a pressurizing pump (50) configured to mix the water and air and pressurize the water to generate bubbles is provided, so that the water is pumped from the pressurizing pump (50). When the and air are sufficiently pressurized and mixed, they are connected to an outlet (60) through which they are discharged and transported to the place of use.

상기 가압펌프(50)에서 용수 내부의 공기에 의한 버블이 충분히 나노버블로 생성되지 않았을 시 이젝터(40)를 통해서 버블이 혼합된 용수를 순환시켜서 가압펌프(50)에서 재차 가압 혼합되도록 순환되게 구성된 순환관(70)이 더 구비되도록 할 수 있으며, 본 발명에서는 배출구(60) 쪽에 용수에 버블이 충분히 발생되면 개방되는 배출밸브(80)와 배출밸브(80)의 개방 시 용수와 버블이 혼합된 혼합수가 배출구(60)로 배출되면서 용수 내부의 버블을 나노버블로 완성토록 구성된 나노챔버(1)가 구비됨을 특징으로 하는 것이다.When the bubbles caused by the air inside the water are not sufficiently created into nanobubbles in the pressurizing pump 50, the water mixed with bubbles is circulated through the ejector 40 and circulated to be pressurized and mixed again in the pressurizing pump 50. A circulation pipe 70 can be further provided, and in the present invention, a discharge valve 80 is opened when sufficient bubbles are generated in the water at the outlet 60, and when the discharge valve 80 is opened, the water and bubbles are mixed. It is characterized by a nanochamber (1) configured to complete the bubbles inside the water into nanobubbles as the mixed water is discharged through the outlet (60).

본 발명의 상기 나노챔버(1)는 도 4에 도시된 바와 같이 가변체류구간(L1)과, 가압고속구간(L2)과, 감압저속구간(L3)으로 이루어지며, 경우에 따라서는 각 구간을 독립적으로 구비하거나, 하나 이상이 혼합되게 구성할 수도 있으며, 순서를 다양하게 할 수도 있다.As shown in FIG. 4, the nanochamber 1 of the present invention consists of a variable residence section (L1), a pressurization high-speed section (L2), and a decompression low-speed section (L3), and in some cases, each section They can be provided independently, or more than one can be mixed, and the order can be varied.

상기 가변체류구간(L1)은 내부에 전후로 혼합수가 압력을 받으면서 고속으로 통과하도록 다양한 형태의 압축통로(21)가 형성된 가변유도격판(2) 수개가 연속하여 이웃되게 설치되어 압력과 속도가 가변되면서 통과하는데 시간이 많이 소요되게 체류되는 구간이다.In the variable retention section (L1), several variable induction diaphragms (2) formed with various types of compression passages (21) are installed adjacent to each other in succession so that the mixed water passes at high speed under pressure, back and forth, so that the pressure and speed are varied. This is a section that takes a lot of time to pass.

상기 가압고속구간(L2)은 가변체류구간(L1)에 이어서 가변체류구간(L1)보다 통과지름이 좁게 형성되며, 내면에 소용돌이 형태로 내향 돌출되어 혼합수가 통과 시 충격이 발생되면서 와류가 유도되도록 와류유도충돌돌기(3)가 형성되어 혼합수에 작용하는 압력이 향상되면서 이송 속도가 가변체류구간(L1)보다 빨라지는 구간이다.The pressurized high-speed section (L2) is formed following the variable retention section (L1) and has a narrower passage diameter than the variable retention section (L1), and protrudes inward in the form of a vortex on the inner surface so that a shock occurs when the mixed water passes through and a vortex is induced. This is a section where the vortex-inducing collision protrusion (3) is formed and the pressure acting on the mixed water increases, making the transfer speed faster than the variable retention section (L1).

상기 감압저속구간(L3)은 가압고속구간(L2)에 이어서 가압고속수간보다 통과지름이 넓게 형성되며, 와류유도충돌돌기(3)와 같은 방향의 소용돌이 형태로 외향 내입되어 혼합수가 통과 시 와류가 유도되도록 와류유도안내홈(4)이 형성되어 혼합수에 작용하는 압력이 줄어들면서 이송속도가 가압고속수간보다 느려지는 구간인 것이다.The decompression low-speed section (L3) follows the pressurization high-speed section (L2) and has a wider passage diameter than the pressurized high-speed water section, and is inwardly inverted in the form of a vortex in the same direction as the vortex-inducing collision protrusion (3), so that a vortex occurs when the mixed water passes through. This is a section where the eddy current inducing guide groove (4) is formed to induce the mixed water, thereby reducing the pressure acting on the mixed water and making the transfer speed slower than that of the pressurized high-speed water.

본 발명에서 나노챔버(1)의 구성을 독립적으로 살펴보면, 나노챔버(1)는 도 5에 도시된 바와 같이 내부에 전후로 혼합수가 압력을 받으면서 고속으로 통과하도록 다양한 형태의 압축통로(21)가 형성된 가변유도격판(2)과, 가변유도판의 후방에 압축통로(21)를 통과한 혼합수가 감압되면서 저속으로 이송 유도되며, 후방으로 이웃하는 가변유도격판(2)의 전면과 이격되어 이웃하는 가변유도격판(2)의 압축통로(21) 형태가 상이하더라도 혼합수가 막히지 않고 이웃하는 가변유도격판(2)의 압축통로(21)로 원활하게 이송되게 가변유도격판(2)의 가장자리에서 후방으로 돌출된 돌출테두리(23)에 의해서 내측으로 형성된 이격공간(22)이 포함되며, 가변유도격판(2)은 이격공간(22)을 사이사이에 각각 구비되게 수개를 중첩시켜서 나노챔버(1) 내부에 설치되도록 할 수 있으며, 필요에 따라서 각 가변유도격판(2)의 가운데에 결합공(24)을 형성하여 결합축(25)으로 관통 결합시켜서 각 가변유도격판(2)의 중심이 일치하면서 이웃하는 가변유도격판(2)이 일치토록 맞대어 결합이 이루어지도록 할 수 있다.Independently examining the configuration of the nanochamber 1 in the present invention, as shown in FIG. 5, the nanochamber 1 has various types of compression passages 21 formed inside it to allow mixed water to pass at high speed back and forth under pressure. The variable induction diaphragm (2) and the mixed water that has passed through the compression passage (21) at the rear of the variable induction plate are decompressed and induced to be transported at low speed, and are spaced apart from the front of the variable induction diaphragm (2) adjacent to the rear. Even if the shape of the compression passage (21) of the induction diaphragm (2) is different, the mixed water protrudes rearward from the edge of the variable induction diaphragm (2) so that it is smoothly transferred to the compression passage (21) of the neighboring variable induction diaphragm (2) without being blocked. It includes a separation space (22) formed inwardly by the protruding border (23), and the variable guide diaphragm (2) is located inside the nanochamber (1) by overlapping several spacers (22) between each other. It can be installed, and if necessary, a coupling hole 24 is formed in the center of each variable guide diaphragm (2) and penetrated through the coupling shaft 25, so that the centers of each variable guide diaphragm (2) coincide and the neighboring The variable induction diaphragm (2) can be joined by butting it so that it matches.

이때 상기 가변유도격판(2)은 도시된 바와 같이 3가지 타입으로 구성할 수 있으며, 첫 번째 타입은 전방에 전후로 혼합수가 가압되면서 고속으로 통과하도록 방사상으로 수개가 가장자리까지 확장되게 관통 형성된 부채꼴의 압축통로(21)와, 후방 외측에 가장자리 후방으로 돌출되게 형성된 돌출테두리(23)와, 후방 내측에 가장자리의 돌출테두리(23)에 의해서 전방의 확장된 부채꼴의 압축통로(21) 모두와 연통되게 형성된 이격공간(22)으로 구성할 수 있다.At this time, the variable guide diaphragm (2) can be composed of three types as shown, and the first type is a fan-shaped compression formed radially extending to the edge so that the mixed water is pressed back and forth in the front and passes at high speed. It is formed to communicate with both the passage 21, the protruding border 23 formed to protrude backward from the edge on the rear outer side, and the expanded fan-shaped compression passage 21 at the front by the protruding border 23 of the edge on the rear inner side. It can be configured as a separation space (22).

두 번째 타입의 가변유도격판(2)은 전방에 전후로 혼합수가 가압되면서 고속으로 통과하도록 수개가 관통 형성된 원형의 압축통로(21)와, 후방 외측에 가장자리 후방으로 돌출되게 형성된 돌출테두리(23)와, 후방 내측에 가장자리의 돌출테두리(23)에 의해서 전방의 원형의 압축통로(21) 모두와 연통되게 형성된 이격공간(22)으로 구성할 수 있다.The second type of variable guide diaphragm (2) has several circular compression passages (21) formed through the front to allow the mixed water to pass at high speed while being pressurized back and forth, and a protruding border (23) formed to protrude rearward at the outer rear edge. , It can be configured as a separation space (22) formed in communication with both the front circular compression passages (21) by the protruding border (23) of the edge on the rear inner side.

세 번째 타입의 가변유도격판(2)은 전방에 전후로 혼합수가 가압되면서 고속으로 통과하도록 방사상으로 수개가 가장자리까지 확장되지 않게 관통 형성된 부채꼴의 압축통로(21)와, 후방 외측에 가장자리 후방으로 돌출되게 형성된 돌출테두리(23)와, 후방 내측에 가장자리의 돌출테두리(23)에 의해서 전방의 비확장된 부채꼴의 압축통로(21) 모두와 연통되게 형성된 이격공간(22)으로 구성할 수 있는 것이다.The third type of variable guide diaphragm (2) has several fan-shaped compression passages (21) formed radially through the front without extending to the edge so that the mixed water passes at high speed while being pressurized back and forth, and a fan-shaped compression passage (21) protruding behind the edge on the rear outer side. It can be composed of a protruding border 23 formed and a separation space 22 formed in communication with both the front non-expanded fan-shaped compression passage 21 by the protruding border 23 of the edge on the rear inner side.

이에 더하여 상기 나노챔버(1)는 도 6에 도시된 바와 같이 내면에 소용돌이 형태로 내향 돌출되어 혼합수가 통과 시 충격이 발생되면서 와류가 유도되도록 형성된 와류유도충돌돌기(3)가 포함되거나, 도 7에 도시된 바와 같이 내면에 소용돌이 형태로 외향 내입되어 혼합수가 통과 시 와류가 유도되도록 형성된 와류유도안내홈(4)이 포함되도록 구성할 수 있다.In addition, as shown in FIG. 6, the nanochamber 1 includes a vortex-inducing collision protrusion 3 that protrudes inward in the form of a vortex on the inner surface and is formed to induce a vortex by generating an impact when the mixed water passes through, or FIG. 7. As shown, it can be configured to include a vortex-inducing guide groove (4) formed on the inner surface outward in the form of a vortex to induce a vortex when the mixed water passes through.

상기와 같이 구성된 본 발명이 적용된 나노버블발생기(10)는 유입구(20)로 유입펌프(30)에 의해서 용수가 유입된 후 이젝터(40)로 외부 공기가 유입되어 용수와 함께 가압펌프(50)로 투입되어 가압 혼합되어 용수 내부에 미세기포가 발생되며, 이후 배출구(60)로 배출 시 순환관(70)에 의해서 버블이 완전히 나노버블이 아닌 시 이젝터(40)로 순환시켜서 재차 가압 혼합되도록 한 후 배출구(60)로 배출 전 본 발명만의 구조를 갖는 나노챔버(1)를 통과하면서 용수 내부에 완전한 나노버블이 생성되는 것으로서, 이에 의하면 본 발명의 나노버블생성 챔버구조는 도 8에 도시된 바와 같이 용수와 공기를 가압펌프(50)에서 가압하여 혼합 후 나노챔버(1)에서 다양한 형태의 가변유도격판(2)의 배치에 의해서 자체 배출압으로 배출 시 가압, 감압, 가속, 감속 등을 압력과 속도를 가변시키면서 각 가변유도격판(2)에서 위치가 상이한 압축통로(21)에 의해서 지그재그로 체류시간을 연장시켜서 용수에 혼합되어 있던 버블을 나노버블로 완전하게 생성시킬 수 있는 효능을 가지고 있으며, 따라서 용수에 버블의 혼합률을 월등하게 향상시키는 효능을 가지므로 이에 의하여 배출구(60)로 배출되는 용수의 용존산소량을 극대화시키는 효능을 가지는 것이다.In the nanobubble generator 10 to which the present invention configured as described above is applied, water flows into the inlet 20 by the inlet pump 30, and then external air flows into the ejector 40, and is then pumped together with the water into the pressurized pump 50. is injected into the water and mixed under pressure to generate fine bubbles inside the water. When discharged through the discharge port 60, if the bubbles are not completely nanobubbles by the circulation pipe 70, they are circulated through the ejector 40 to be pressurized and mixed again. Complete nanobubbles are generated inside the water as it passes through the nanochamber 1, which has a structure unique to the present invention, before being discharged to the outlet 60. Accordingly, the nanobubble generating chamber structure of the present invention is shown in Figure 8. As shown, water and air are pressurized and mixed in the pressurizing pump (50), and then pressurized, decompressed, accelerated, decelerated, etc. when discharged with its own discharge pressure by arranging various types of variable guide diaphragms (2) in the nanochamber (1). It has the effect of completely generating bubbles mixed in water into nanobubbles by varying the pressure and speed and extending the residence time in a zigzag manner through the compression passages (21) at different positions in each variable induction diaphragm (2). Therefore, it has the effect of significantly improving the mixing rate of bubbles in the water and thus has the effect of maximizing the amount of dissolved oxygen in the water discharged through the outlet (60).

또한 본 발명에서는 나노챔버(1)의 내부에 와류를 유도하는 와류유도충돌돌기(3)와 와류유도안내홈(4)을 형성하여 가압 고속으로 이동하며 와류유도충돌돌기(3)에 의해서 부딪히면서 와류가 유도되고, 감압 저속으로 이동하며 와류유도안내홈(4)에 의해서 와류가 유도되도록 해서 용수에 나노버블이 보다 잘 혼합되도록 하는 등의 효능을 동시에 갖도록 할 수 있다.In addition, in the present invention, a vortex-inducing collision protrusion (3) and a vortex-inducing guide groove (4) that induce a vortex are formed inside the nanochamber (1), and the vortex moves at high speed and is struck by the vortex-inducing collision protrusion (3). is induced, moves at low speed under reduced pressure, and vortices are induced by the vortex induction guide groove (4), so that the nanobubbles can be better mixed in the water.

이상과 같이 본 발명의 상세한 설명에는 본 발명의 가장 바람직한 실시 예에 관하여 설명하였으나, 본 발명의 기술범위에 벗어나지 않는 범위 내에서는 다양한 변형실시도 가능하다 할 것이며, 따라서 본 발명의 보호범위는 상기 실시 예에 한정하여 정해지는 것이 아니라, 후술하는 특허청구범위의 기술들과 이들 기술로부터 균등한 기술수단들에까지 보호범위가 인정되어야 할 것이다.As described above, the most preferred embodiments of the present invention have been described in the detailed description of the present invention, but various modifications may be made without departing from the technical scope of the present invention. Therefore, the scope of protection of the present invention is limited to the above-mentioned embodiments. Rather than being limited to examples, the scope of protection should be recognized to include the technologies in the patent claims described later and equivalent technical means from these technologies.

10:나노버블발생기 20:유입구 30:유입펌프 40:이젝터 50:가압펌프 60:배출구 70:순환관 80:배출밸브
1:나노챔버
2:가변유도격판 21:압축통로 22:이격공간 23:돌출테두리 24:결합공 25:결합축
3:와류유도충돌돌기
4:와류유도안내홈
L1:가변체류구간 L2:가압고속구간 L3:감압저속구간
10: Nanobubble generator 20: Inlet 30: Inlet pump 40: Ejector 50: Pressurization pump 60: Outlet 70: Circulation pipe 80: Discharge valve
1: Nanochamber
2: Variable induction diaphragm 21: Compression passage 22: Separation space 23: Protruding border 24: Coupling hole 25: Coupling shaft
3: Vortex-induced collision protrusion
4: Vortex induction guide groove
L1: Variable retention section L2: Pressurization high-speed section L3: Decompression low-speed section

Claims (5)

유입펌프(30)에 의해서 용수가 유입되는 유입구(20);
유입펌프(30)에서 가압펌프(50)로 용수가 유입될 시 외부 공기가 유입되도록 설치된 이젝터(40);
용수와 공기를 혼합하여 용수에서 버블이 발생되도록 가압되게 구성된 가압펌프(50);
가압펌프(50)에서 용수와 공기가 충분히 가압하여 혼합되었을 시 사용처로 배출 이송하는 배출구(60);
배출구(60) 쪽에 용수에 버블이 충분히 발생되면 개방되는 배출밸브(80)와 배출밸브(80)의 개방 시 용수와 버블이 혼합된 혼합수가 배출구(60)로 배출되면서 용수 내부의 버블을 나노버블로 완성토록 구성된 나노챔버(1);
가 포함된 것을 특징으로 하는 나노버블발생기용 나노버블생성 챔버구조.
An inlet (20) through which water is introduced by the inlet pump (30);
An ejector (40) installed to allow external air to flow in when water flows from the inflow pump (30) to the pressurizing pump (50);
A pressurizing pump (50) configured to mix water and air and pressurize the water to generate bubbles;
When the water and air are sufficiently pressurized and mixed in the pressurizing pump (50), an outlet (60) for discharging and transporting the water to the place of use;
The discharge valve 80 opens when enough bubbles are generated in the water at the discharge port 60, and when the discharge valve 80 is opened, the mixed water mixed with water and bubbles is discharged to the discharge port 60, and the bubbles inside the water are converted into nanobubbles. A nanochamber (1) constructed to be completed with;
A nanobubble generating chamber structure for a nanobubble generator, characterized in that it includes.
청구항 1에 있어서;
나노챔버(1)는
내부에 전후로 혼합수가 압력을 받으면서 고속으로 통과하도록 다양한 형태의 압축통로(21)가 형성된 가변유도격판(2);
가변유도판의 후방에 압축통로(21)를 통과한 혼합수가 감압되면서 저속으로 이송 유도되며, 후방으로 이웃하는 가변유도격판(2)의 전면과 이격되어 이웃하는 가변유도격판(2)의 압축통로(21) 형태가 상이하더라도 혼합수가 막히지 않고 이웃하는 가변유도격판(2)의 압축통로(21)로 원활하게 이송되게 가변유도격판(2)의 가장자리에서 후방으로 돌출된 돌출테두리(23)에 의해서 내측으로 형성된 이격공간(22);
이 포함되며,
가변유도격판(2)은 이격공간(22)을 사이사이에 각각 구비되게 수개를 중첩시켜서 나노챔버(1) 내부에 설치된 것을 특징으로 하는 나노버블발생기용 나노버블생성 챔버구조.
In claim 1;
Nanochamber (1) is
A variable guide diaphragm (2) with various types of compression passages (21) formed inside it to allow the mixed water to pass at high speed under pressure back and forth;
The mixed water passing through the compression passage (21) at the rear of the variable guide plate is decompressed and is induced to be transported at a low speed, and is spaced apart from the front of the variable guide diaphragm (2) adjacent to the rear, and is spaced apart from the compression passage of the neighboring variable guide diaphragm (2). (21) Even if the shape is different, the mixed water is not blocked and is smoothly transferred to the compression passage (21) of the neighboring variable guide diaphragm (2) by the protruding border (23) that protrudes rearward from the edge of the variable guide diaphragm (2). A space formed inwardly (22);
This includes,
A nanobubble generating chamber structure for a nanobubble generator, characterized in that the variable induction diaphragm (2) is installed inside the nanochamber (1) by overlapping several of them with a separation space (22) between them.
청구항 1에 있어서;
나노챔버(1)는
내면에 소용돌이 형태로 내향 돌출되어 혼합수가 통과 시 충격이 발생되면서 와류가 유도되도록 형성된 와류유도충돌돌기(3);
가 포함된 것을 특징으로 하는 나노버블발생기용 나노버블생성 챔버구조.
In claim 1;
Nanochamber (1) is
A vortex-inducing collision protrusion (3) that protrudes inward in the form of a vortex and is formed to induce a vortex by generating an impact when the mixed water passes through;
A nanobubble generating chamber structure for a nanobubble generator, characterized in that it includes.
청구항 1에 있어서;
나노챔버(1)는
내면에 소용돌이 형태로 외향 내입되어 혼합수가 통과 시 와류가 유도되도록 형성된 와류유도안내홈(4);
이 포함된 것을 특징으로 하는 나노버블발생기용 나노버블생성 챔버구조.
In claim 1;
Nanochamber (1) is
A vortex-inducing guide groove (4) formed on the inner surface outward in the form of a vortex to induce a vortex when the mixed water passes through it;
A nanobubble generating chamber structure for a nanobubble generator, characterized in that it includes.
청구항 1에 있어서;
나노챔버(1)는
내부에 전후로 혼합수가 압력을 받으면서 고속으로 통과하도록 다양한 형태의 압축통로(21)가 형성된 가변유도격판(2) 수개가 연속하여 이웃되게 설치되어 압력과 속도가 가변되면서 통과하는데 시간이 많이 소요되게 체류되는 가변체류구간(L1);
가변체류구간(L1)에 이어서 가변체류구간(L1)보다 통과지름이 좁게 형성되며, 내면에 소용돌이 형태로 내향 돌출되어 혼합수가 통과 시 충격이 발생되면서 와류가 유도되도록 와류유도충돌돌기(3)가 형성되어 혼합수에 작용하는 압력이 향상되면서 이송 속도가 가변체류구간(L1)보다 빨라지는 가압고속구간(L2);
가압고속구간(L2)에 이어서 가압고속수간보다 통과지름이 넓게 형성되며, 와류유도충돌돌기(3)와 같은 방향의 소용돌이 형태로 외향 내입되어 혼합수가 통과 시 와류가 유도되도록 와류유도안내홈(4)이 형성되어 혼합수에 작용하는 압력이 줄어들면서 이송속도가 가압고속수간보다 느려지는 감압저속구간(L3);
이 포함된 것을 특징으로 하는 나노버블발생기용 나노버블생성 챔버구조.
In claim 1;
Nanochamber (1) is
Several variable guide diaphragms (2) with various types of compression passages (21) formed inside to allow the mixed water to pass at high speed under pressure are installed adjacent to each other in succession, so that the pressure and speed vary and it takes a long time to pass. variable stay section (L1);
Following the variable retention section (L1), the passage diameter is narrower than that of the variable retention section (L1), and a vortex-inducing collision protrusion (3) is formed on the inner surface to protrude inward in the form of a vortex so that a shock is generated when the mixed water passes and a vortex is induced. A pressurized high-speed section (L2) where the pressure acting on the mixed water increases and the transfer speed becomes faster than the variable retention section (L1);
Following the pressurized high-speed section (L2), the passage diameter is formed to be wider than that of the pressurized high-speed water section, and the vortex-inducing guide groove (4) is inverted outward in the form of a vortex in the same direction as the vortex-inducing collision protrusion (3) to induce a vortex when the mixed water passes. ) is formed in the decompression low-speed section (L3) where the pressure acting on the mixed water is reduced and the transfer speed is slower than that of the pressurized high-speed section;
A nanobubble generating chamber structure for a nanobubble generator, characterized in that it includes.
KR1020220106507A 2022-08-24 2022-08-24 Nanobubble production chamber structure for nanobubble generator KR20240028247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220106507A KR20240028247A (en) 2022-08-24 2022-08-24 Nanobubble production chamber structure for nanobubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220106507A KR20240028247A (en) 2022-08-24 2022-08-24 Nanobubble production chamber structure for nanobubble generator

Publications (1)

Publication Number Publication Date
KR20240028247A true KR20240028247A (en) 2024-03-05

Family

ID=90298673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220106507A KR20240028247A (en) 2022-08-24 2022-08-24 Nanobubble production chamber structure for nanobubble generator

Country Status (1)

Country Link
KR (1) KR20240028247A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170100707A (en) 2016-02-25 2017-09-05 (주)거해산업개발 Nano bubble generator
KR102093837B1 (en) 2019-10-29 2020-03-27 전경중 Nano-bubble generating and gas-liquid mixing apparatus
KR20200126528A (en) 2019-04-30 2020-11-09 주식회사 일성 Nano-bubble generator system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170100707A (en) 2016-02-25 2017-09-05 (주)거해산업개발 Nano bubble generator
KR20200126528A (en) 2019-04-30 2020-11-09 주식회사 일성 Nano-bubble generator system
KR102093837B1 (en) 2019-10-29 2020-03-27 전경중 Nano-bubble generating and gas-liquid mixing apparatus

Similar Documents

Publication Publication Date Title
KR101483412B1 (en) Micro bubble nozzle
KR102093837B1 (en) Nano-bubble generating and gas-liquid mixing apparatus
KR101969772B1 (en) Gas-dissolved water producing device for dissolving air or gas in liquid
CN102133509B (en) Gas and liquid mixed circulation generating device
KR101980480B1 (en) Apparatus for generating nano bubble
JP4929874B2 (en) Microbubble generator
JP2007021343A (en) Microbubble generator
JP5573879B2 (en) Microbubble generator
US11779890B2 (en) Nano-micro bubble generator
KR101869487B1 (en) Nano bubble generator for bathtub or sink with cleaning and sterilizing function
JP4426612B2 (en) Fine bubble generation nozzle
JP3058595B2 (en) Gas-liquid mixing device
KR101922665B1 (en) Micro bubble generator
KR101874897B1 (en) swirl type micro buble generating device
KR20240028247A (en) Nanobubble production chamber structure for nanobubble generator
US20210213400A1 (en) Gas-liquid mixing device
KR100854687B1 (en) Micro bubble system
KR102130543B1 (en) Apparatus for generating nano bubble
KR102534708B1 (en) A fine bubble generator using perforated plate
CN201151674Y (en) Jet mixing device and jet mixing aeration device
KR102618660B1 (en) Nano bubble generator
KR102562944B1 (en) A Head Assembly for Generating Microbubble and a Microbubble Generator Comprising the Same
CN111229476A (en) Jet stirring type flotation column with multi-connection stirring function
WO2018012703A1 (en) Micro bubble generating device
KR102521926B1 (en) Micro Bubble Generating Apparatus

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal