KR20240022999A - Composition for the prevention or treatment of metabolic inflammatory diseases comprising an eIF2α and its downstream signaling pathway modulator as an active ingredient - Google Patents

Composition for the prevention or treatment of metabolic inflammatory diseases comprising an eIF2α and its downstream signaling pathway modulator as an active ingredient Download PDF

Info

Publication number
KR20240022999A
KR20240022999A KR1020230104980A KR20230104980A KR20240022999A KR 20240022999 A KR20240022999 A KR 20240022999A KR 1020230104980 A KR1020230104980 A KR 1020230104980A KR 20230104980 A KR20230104980 A KR 20230104980A KR 20240022999 A KR20240022999 A KR 20240022999A
Authority
KR
South Korea
Prior art keywords
composition
atf4
clause
expression
inflammatory
Prior art date
Application number
KR1020230104980A
Other languages
Korean (ko)
Inventor
한재석
Original Assignee
순천향대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천향대학교 산학협력단 filed Critical 순천향대학교 산학협력단
Publication of KR20240022999A publication Critical patent/KR20240022999A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/332Promoters of weight control and weight loss
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/30Other Organic compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nutrition Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Mycology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를 유효성분으로 포함하는 대사염증질환의 예방 또는 치료용 조성물에 관한 것으로서, 본 발명은 eIF2α 인산화 및 이로 인한 하위 신호전달경로가, 대사염증 질환과 관련되어있는 것을 규명하였으며, eIF2α 인산화 및 이로 인한 하위 신호전달경로에서 eIF2α 인산화와 관련된 ATF4가 통합스트레스 반응 및 대사염증과 관련도가 높은 것을 확인하였다. 또한, ATF4의 결핍이 체중증가를 억제하고, 대식세포의 극성화를 조절하는 것을 확인하였으며, ATF4를 억제하는 eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제가, 비만과 같은 대사염증 질환에 효과가 있는 것을 확인하였다. 또한, eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제가, 비만에서 증가된 염증형 대식세포 M1의 발현과, 감소된 항염증형 대식세포 M2의 발현을 조절하여, 대식세포 불균형을 개선시키는 것을 확인하였으며, eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제가 대사염증성 질환을 개선시킬 수 있는 것을 확인하였다.The present invention relates to a composition for the prevention or treatment of metabolic inflammatory diseases, which contains as an active ingredient a regulator of eIF2α phosphorylation and the downstream signaling pathways resulting therefrom. It was confirmed that ATF4, which is related to eIF2α phosphorylation, is highly related to integrated stress response and metabolic inflammation in eIF2α phosphorylation and the resulting downstream signaling pathway. In addition, it was confirmed that ATF4 deficiency suppresses weight gain and regulates the polarization of macrophages, and eIF2α phosphorylation, which inhibits ATF4, and the resulting regulator of downstream signaling pathways are effective in metabolic inflammatory diseases such as obesity. confirmed. In addition, it was confirmed that eIF2α phosphorylation and the resulting regulator of downstream signaling pathways improved macrophage imbalance by regulating the increased expression of inflammatory macrophages M1 and decreased anti-inflammatory macrophage M2 expression in obesity. , it was confirmed that eIF2α phosphorylation and its regulation of downstream signaling pathways can improve metabolic inflammatory diseases.

Description

eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를 유효성분으로 포함하는 대사염증질환의 예방 또는 치료용 조성물{Composition for the prevention or treatment of metabolic inflammatory diseases comprising an eIF2α and its downstream signaling pathway modulator as an active ingredient}Composition for the prevention or treatment of metabolic inflammatory diseases comprising an eIF2α and its downstream signaling pathway modulator as an active ingredient}

본 발명은, eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를 유효성분으로 포함하는 대사염증질환의 예방 또는 치료용 조성물에 관한 것이다.The present invention relates to a composition for preventing or treating metabolic inflammatory diseases, which contains as an active ingredient a regulator of eIF2α phosphorylation and the resulting downstream signaling pathway.

세포가 스트레스를 받을 경우 세포의 항상성이 저해되며 이때 항상성 복원을 위한 방어기전으로 유도되는 반응으로 통합스트레스반응이 있다. 통합스트레스반응은 네 가지 인산화 효소인 PERK(PKR-like ER kinase), GCN2(general control nonderepressible 2), PKR(protein kinase R) 및 HRI(heme-regulated inhibitor kinase)에 의해 단백질 합성 개시인자인 진핵생물 개시 인자 2 알파(eukaryotic initiation factor 2 alpha, eIF2α)가 인산화 되면서 신호전달이 시작되며, 인산화된 elF2α는 세포 내 전반적인 단백질 합성 과정을 저해하며 이를 통해 세포가 스트레스에 대응할 수 있는 시간을 확보하게 된다. 대부분의 단백질이 합성되지 못하는 상황에서 ATF4(activating transcription factor 4)라는 전사조절인자의 합성이 증진되며, 이렇게 유도된 ATF4는 핵으로 이동하여, 여러 하위표적 유전자들의 전사를 증가시키게 된다. ATF4의 하위 유전자는 GADD34(Growth arrest and DNA damage-inducible 34), tRNA syntheases등이 있으며, elF2α 인산화에 의해 억제된 단백질 합성을 재개함으로써 스트레스를 극복한 세포가 새로운 단백질을 합성할 수 있도로 유도하게 된다. 그러나, 세포의 스트레스가 해소되지 못하고 악화되었을 때, 상기의 유전자들에 의해 증가한 단백질 합성과 CHOP(C/EBP homologous protein)를 포함하는 세포 사멸 유전자들에 의하여 세포는 사멸하게 된다. 따라서 통합스트레스반응은 양날의 검(Two edhed sword)라고 부르며, 지나친 스트레스 반응(Hypersensitized)과 부족한 스트레스 반응(Desensitized)를 효율적으로 조절하는 것이 중요하다.When cells are stressed, cellular homeostasis is disrupted, and the integrated stress response is a response induced as a defense mechanism to restore homeostasis. The integrated stress response is a eukaryotic protein synthesis initiation factor mediated by four phosphorylating enzymes: PERK (PKR-like ER kinase), GCN2 (general control nonderepressible 2), PKR (protein kinase R), and HRI (heme-regulated inhibitor kinase). Signaling begins when eukaryotic initiation factor 2 alpha (eIF2α) is phosphorylated, and phosphorylated elF2α inhibits the overall protein synthesis process within the cell, allowing the cell time to respond to stress. In situations where most proteins cannot be synthesized, the synthesis of a transcriptional regulator called ATF4 (activating transcription factor 4) is promoted, and the induced ATF4 moves to the nucleus and increases the transcription of several downstream target genes. Downstream genes of ATF4 include GADD34 (Growth arrest and DNA damage-inducible 34) and tRNA syntheases. By resuming protein synthesis suppressed by elF2α phosphorylation, it induces cells that have overcome stress to synthesize new proteins. do. However, when cellular stress is not resolved and worsens, the cell dies due to increased protein synthesis caused by the above genes and cell death genes including CHOP (C/EBP homologous protein). Therefore, the integrated stress response is called a double-edged sword, and it is important to efficiently control the excessive stress response (hypersensitized) and the insufficient stress response (desensitized).

한편, 비만 문제가 심각해짐에 따라 비만 자체가 곧 질병이라는 인식이 확산되고 있다. 비만 진행 여부의 판단은 대표적으로 과체중 여부로 판단할 수 있으며, 구체적으로 특정 부위에서의 체지방의 증가(예를 들어, 복부 비만 등)로 판단할 수 있다. 비만으로 분류된 경우 즉, 비만자는 다른 질병에 비해 유병률과 사망률이 높고 정상체중을 가진 사람과 비교하여 당뇨병 질환으로 인한 사망률은 4배, 간병경증 질환으로 인한 사망률은 2배, 뇌혈관질환으로 인한 사망률은 1.6배 및 관상동맥질환으로 인한 사망률은 1.8배 정도 높은 것으로 보고되고 있다.Meanwhile, as the obesity problem becomes more serious, awareness that obesity itself is a disease is spreading. The progression of obesity can typically be judged by whether or not the person is overweight, and specifically by an increase in body fat in a specific area (for example, abdominal obesity, etc.). When classified as obese, that is, obese people have a higher morbidity and mortality rate compared to other diseases, and compared to people with normal weight, the death rate due to diabetes is four times, the death rate due to mild liver disease is twice, and the death rate due to cerebrovascular disease is four times higher than that of people with normal weight. The mortality rate is reported to be 1.6 times higher and the death rate due to coronary artery disease to be 1.8 times higher.

비만과 같은 대사성 질환은 최근 만성염증에 의한 인슐린 표적세포(간세포, 근육세포, 지방세포 등)의 기능이상에 의해 초래된다는 연구 보고가 축적되고 있다. 만성염증에 의한 대사성 질환의 경우 염증세포 중 대식세포의 역할이 매우 중요하다고 알려져 있다.Recently, research reports have been accumulating that metabolic diseases such as obesity are caused by dysfunction of insulin target cells (liver cells, muscle cells, adipocytes, etc.) caused by chronic inflammation. In the case of metabolic diseases caused by chronic inflammation, the role of macrophages among inflammatory cells is known to be very important.

이에 본 발명자들은, 비만과 같은 스트레스에 의한 대사염증 병리기전에 있어서, 대식세포에 작용하는 통합스트레스반응이 연관되어 있는 것을 확인하였으며, 통합스트레스반응을 조절하면, 대사염증질환을 개선시킬 수 있는 것을 확인하여, 본 발명을 완성하였다.Accordingly, the present inventors confirmed that the integrated stress response acting on macrophages is involved in the pathological mechanism of metabolic inflammation caused by stress such as obesity, and that controlling the integrated stress response can improve metabolic inflammatory diseases. Upon confirmation, the present invention was completed.

본 발명의 목적은, eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를를 유효성분으로 포함하는 대사염증성 질환의 예방 또는 치료용 조성물을 제공하는 것이다.The purpose of the present invention is to provide a composition for preventing or treating metabolic inflammatory diseases, which includes eIF2α phosphorylation and a regulator of downstream signaling pathways resulting therefrom as an active ingredient.

본 발명의 다른 목적은, eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를 유효성분으로 포함하는 대사염증성 질환의 예방 또는 개선용 식품조성물을 제공하는 것이다.Another object of the present invention is to provide a food composition for preventing or improving metabolic inflammatory diseases, which contains eIF2α phosphorylation and the resulting downstream signaling pathway regulator as an active ingredient.

본 발명의 또 다른 목적은 eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를 유효성분으로 포함하는 항염증형 마크로파지 M2(anti-inflammatory M2)의 발현의 증가 또는 전염증형 마크로파지 M1(pro-inflammatory M1)의 발현 억제용 조성물을 제공하는 것이다.Another object of the present invention is to increase the expression of anti-inflammatory macrophage M2 (anti-inflammatory M2) containing eIF2α phosphorylation and the resulting downstream signaling pathway regulator as an active ingredient, or to increase the expression of pro-inflammatory macrophage M1 (pro-inflammatory M1). To provide a composition for suppressing expression.

상기의 목적을 달성하기 위하여, eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를 유효성분으로 포함하는 대사염증성 질환의 예방 또는 치료용 조성물을 제공한다.In order to achieve the above object, a composition for preventing or treating metabolic inflammatory diseases is provided, which includes a regulator of eIF2α phosphorylation and the resulting downstream signaling pathway as an active ingredient.

또한, 본 발명은 eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를 유효성분으로 포함하는 대사염증성 질환의 예방 또는 개선용 식품조성물을 제공한다.In addition, the present invention provides a food composition for preventing or improving metabolic inflammatory diseases, which includes eIF2α phosphorylation and a regulator of downstream signaling pathways resulting therefrom as an active ingredient.

또한, eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를 유효성분으로 포함하는 항염증형 마크로파지 M2(anti-inflammatory M2)의 발현의 증가 또는 전염증형 마크로파지 M1(pro-inflammatory M1)의 발현 억제용 조성물을 제공한다.In addition, a composition for increasing the expression of anti-inflammatory macrophage M2 (anti-inflammatory M2) or inhibiting the expression of pro-inflammatory macrophage M1 (pro-inflammatory M1) containing eIF2α phosphorylation and the resulting downstream signaling pathway regulator as an active ingredient. to provide.

본 발명은 eIF2α 인산화 및 이로 인한 하위 신호전달경로가, 대사염증 질환과 관련되어있는 것을 규명하였으며, eIF2α 인산화 및 이로 인한 하위 신호전달경로에서 eIF2α 인산화와 관련된 ATF4가 통합스트레스 반응 및 대사염증과 관련도가 높은 것을 확인하였다. 또한, ATF4의 결핍이 체중증가를 억제하고, 대식세포의 극성화를 조절하는 것을 확인하였으며, ATF4를 억제하는 eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제가, 비만과 같은 대사염증 질환에 효과가 있는 것을 확인하였다. 또한, eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제가, 비만에서 증가된 염증형 대식세포 M1의 발현과, 감소된 항염증형 대식세포 M2의 발현을 조절하여, 대식세포 불균형을 개선시키는 것을 확인하였으며, eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제가 대사염증성 질환을 개선시킬 수 있는 바, 비만과 같은 대사염증성 질환의 치료에 유용하게 이용할 수 있다.The present invention has identified that eIF2α phosphorylation and the resulting downstream signaling pathways are related to metabolic inflammatory diseases, and that ATF4, which is related to eIF2α phosphorylation in eIF2α phosphorylation and the resulting downstream signaling pathways, is also related to integrated stress response and metabolic inflammation. It was confirmed that was high. In addition, it was confirmed that ATF4 deficiency suppresses weight gain and regulates the polarization of macrophages, and eIF2α phosphorylation, which inhibits ATF4, and the resulting regulator of downstream signaling pathways are effective in metabolic inflammatory diseases such as obesity. confirmed. In addition, it was confirmed that eIF2α phosphorylation and the resulting regulator of downstream signaling pathways improved macrophage imbalance by regulating the increased expression of inflammatory macrophages M1 and decreased anti-inflammatory macrophage M2 expression in obesity. , eIF2α phosphorylation and the resulting regulator of downstream signaling pathways can improve metabolic inflammatory diseases and can be usefully used in the treatment of metabolic inflammatory diseases such as obesity.

도 1은 eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제에 대한 본 발명의 모식도 이다. 스트레스에 의해 eIF2α 인산화 및 이로 인하여 ATF4라는 전사조절인자가 유도되고 순차적으로 하위 유전자들의 전사가 조절되면서 통합스트레스반응이 활성화되며, 이러한 활성화를 제어하는 조절자를 통해 대식세포의 극성화를 제어하여 염증완화 M2 대식세포를 복원함으로써 염증을 완화하고 결국 대사염증성 질환인 간섬유화를 개선시키며 또한 갈색/베이지색 지방의 활성화를 높이는 과정을 나타낸 도이다.
도 2는 대식세포의 비중에 따른 비만의 과정을 도식화한 것이다. 정상상태에서는 대식세포 중 M2의 비중이 상대적으로 높은 상태이지만 스트레스가 유도될 경우 M2의 비중은 적어지고 M1의 비중은 늘어나게 되며, M1의 전염증 기능 강화 및 M1의 항염증성 기능의 약화로 인하여 대사성 염증반응이 악화되어 대사성 염증질환이 나타나게 된다. 또한 M2의 비중이 줄게됨으로서 잉여에너지를 소모하는 갈색 및 베이지색 지방의 활성이 감소하게 되어 잉여에너지가 소모되지 못하고 축적되며 비만이 유도되는 악순환에 빠지게 되어 대사염증성 질환이 더욱 악화되게 된다. 이때 eIF2a 인산화 및 하위 신호전달경로가 큰 역할을 하며, 이 신호전달경로를 제어할 경우 M2의 비중이 늘고 M1의 비중은 줄어 대사염증 상황이 개선되며, 동시에 늘어간 M2에 의해 갈색 및 베이지색 지방의 기능이 다시 활성화되어 에너지를 더욱 소모하여 비만을 완화시키게 되는 것을 나타낸 도이다.
도 3은 고지방식이 급여에 따른 마우스 비만 표현형의 변화를 확인한 도이다.
A: 복부 지방 및 장기 조직 확인
B: 간, 부고환 백색 지방조직(epWAT) 및 피하 백색 지방조직(scWAT) 확인
C: 체중 변화 정량화
D: 혈당 수준 확인
E: 포도당 내성 확인
F: 인슐린 내성 확인
도 4는 고지방식이 급여에 따른 마우스 지방 조직의 염증 반응을 크라운 유사 구조(Crown like structure, CLS)로 확인한 도이다(A: epWAT 확인, B: scWAT 확인).
도 5는 고지방식이 급여에 따른 총 지방 조직에서의 염증 인자 및 ER 스트레스 마커의 발현을 확인한 도이다(A: epWAT 확인, B: scWAT 확인).
도 6은 고지방식이 급여에 따른 간질 혈관 분획(stromal vascular fraction, SVF)의 염증 인자 및 ER 스트레스 마커의 발현을 확인한 도이다(A: epWAT 확인, B: scWAT 확인).
도 7은 고지방식이 급여에 따른 대식세포 분극화를 확인한 도이다.
A: epWAT M1 대식세포 분극화 확인
B: epWAT에서의 M1 및 M2 대식세포 인자 발현 확인
C: scWAT M1 대식세포 분극화 확인
D: scWAT에서의 M1 및 M2 대식세포 인자 발현 확인
도 8은 ER 스트레스 유도제인 튜니카마이신(tnuicamycin, TM)의 처리에 따른 M1 및 M2 대식세포 분극화를 확인한 도이다.
A: M1 대식세포 분극화 유세포 분석 결과
B: M1 대식세포 연관 인자 발현 확인
C: M2 대식세포 분극화 유세포 분석 결과
D: M2 대식세포 연관 인자 발현 확인
도 9는 ER 스트레스 반응에서의 미접힘 단백질 반응(unfolded protein response, UPR)의 하위 3가지 경로 억제제의 M2 분극화 회복을 확인한 도이다.
A: eIF2α-ATF4 경로 억제제인 ISRIB의 M2 분극 촉진 확인
B: IRE1α-XBP1 경로 억제제인 4μ8C의 M2 분극 촉진 확인
C: ATF6α 경로 억제제인 Ceapin A7의 M2 분극 촉진 확인
도 10은 고지방식이 유도 비만 마우스에서 ISRIB의 투여에 따른 비만 표현형을 확인한 도이다(A: 장기 무게 정량화, B: 혈당 수준 확인, C: 혈중 지질 정량화).
도 11은 고지방식이 유도 비만 마우스에서 ISRIB의 투여에 따른 대사 표현형을 확인한 도이다(A: 복부 지방 및 장기 확인, B: 체중 변화 정량화, C: 포도당 내성 확인, D: 인슐린 내성 확인).
도 12는 고지방식이 유도 비만 마우스에서 ISRIB의 투여에 따른 간 조직 및 간 독성을 확인한 도이다(A: 간 내 지방 조직 확인, B: 간 독성 인자 정량화).
도 13은 고지방식이 유도 비만 마우스에서 ISRIB의 투여에 따른 CLS를 확인한 도이다(A: epWAT CLS 확인 및 정량화, B: scWAT CLS 확인 및 정량화).
도 14는 고지방식이 유도 비만 마우스에서 ISRIB의 투여에 따른 M1 및 M2 대식세포 분극화를 유세포분석으로 확인한 도이다(A: eqWAT 분극화 확인, B: scWAT 분극화 확인).
도 15는 고지방식이 유도 비만 마우스에서 ISRIB의 투여에 따른 지방 조직 내 염증 및 ER 스트레스 인자의 발현을 확인한 도이다.
A: epWAT 내 염증 인자 및 ER 스트레스 인자 발현 확인
B: epWAT 내 대식세포 분극화 및 스트레으 인자 발현 확인
C: scWAT 내 염증 인자 및 ER 스트레스 인자 발현 확인
D: scWAT 내 대식세포 분극화 및 스트레으 인자 발현 확인
도 16은 고지방식이 유도 비만 마우스에서 ISRIB의 투여에 따른 식이량, 직장 온도 및 활동성을 확인한 도이다(A: 식이량 정량화, B: 직장 온도 확인, C: 산소 소비량 확인, D: 활동성 확인).
도 17은 고지방식이 유도 비만 마우스에서 ISRIB의 투여에 따른 열 생성 단백질의 발현을 면역조직화학 염색으로 확인한 도이다.
A: 갈색 및 베이지색 지방 조직(brown adipose tissue, BAT) 확인
B: scWAT 확인
도 18은 고지방식이 유도 비만 마우스에서 ISRIB의 투여에 따른 열 생성 유전자의 발현을 확인한 도이다(A: BAT 확인, B: scWAT 확인).
도 19는 고지방식이 유도 비만 마우스에서 ISRIB의 투여에 따른 열 생성 단백질 및 tyrosine hydroxlase (TH) 단백질의 발현을 확인한 도이다(A: BAT 확인, B: scWAT 확인).
도 20은 고지방식이 유도 비만 마우스에서 ISRIB의 투여에 따른 노르에피네프린(norepinephrine)의 양을 확인한 도이다.
도 21은 골수성 ATF4 결실 마우스의 제작 방법 및 골수 특이적 ATF4 결실을 확인한 도이다(A: 제작 방법 도식화, B: 골수 특이 ATF4 결실 확인).
도 22는 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f )에 고지방식이 급여에 따른 비만 표현형을 확인한 도이다.
A: 복부 지방 및 장기 확인
B: 체중 변화 정량화
C: 포도당 내성 확인
D: 인슐린 내성 확인
도 23은 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f )에 고지방식이 급여에 따른 대사 표현형을 확인한 도이다.
A: 장기 무게 정량화
B: epWAT 및 scWAT 확인
C: 간 내 지방 공포 확인
D: 혈중 지질 분석
도 24는 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f )에 고지방식이 급여에 따른 CLS를 확인한 도이다(A: epWAT의 CLS 확인, B: scWAT의 CLS 확인).
도 25는 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f )에서의 M1 및 M2 대식세포 분극화를 유세포 분석으로 확인한 도이다 (정상식이 급여).
도 26은 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f )에서 고지방식이 급여에 따른 M1 및 M2 대식세포 분극화를 확인한 도이다(A: epWAT 분극화 확인, B: scWAT 분극화 확인).
도 27은 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f )에서 고지방식이 급여에 따른 M1 및 M2 대식세포 마커 및 스트레스 인자의 발현을 확인한 도이다.
A: epWAT 에서의 발현 확인
B: epWAT 유래 SVF에서의 발현 확인
C: scWAT 에서의 발현 확인
D: scWAT 유래 SVF에서의 발현 확인
도 28은 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f )에서 TM의 처리 또는 ATF4의 과발현에 따른 M1 대식세포 분극화를 확인한 도이다.
A: ATF4 및 CHOP 단백질 발현 확인
B: 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f )에서M1 대식세포 분극화 확인
C: ATF4의 과발현에 따른 M2 대식세포 분극화 확인
도 29는 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f ) 마우스에서 TM의 처리에 따른 M2 대식세포 분극화를 확인한 도이다(A: 유세포분석 결과 및 정량화, B: M2 대식세포 유전자 발현 확인, C: M2 대식세포 마커 단백질 발현 확인).
도 30은 ATF4의 과발현에 따른 M2 대식세포 분극화를 확인한 도이다.
A: 유세포분석 결과 및 정량화
B: M2 대식세포 유전자 발현 확인
C: 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f ) 마우스에서 TM 처리에 따른 IL-4 receptor alpha(IL-4ra) 발현 확인
D: ATF4 과발현에 따른 IL-4ra 발현 확인
도 31은 ATF4 단백질이 M2 대식세포를 억제하는 기전을 확인한 도이다.
A: TM 처리에 따른 M2 분극화 신호전달 관련 단백질 발현 변화 확인
B: TM 처리에 따른 간 강화 억제 단백질(liver-enriched inhibitory protein, LIP) 발현 확인
C: TM 처리 및 ATF4의 결손 및 이를 다시 발현 시킨후 LIP 단백질 발현 확인
도 32는 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f ) 마우스에서 ATF4 결실에 따른 식이량, 직장 온도 및 활동성을 확인한 도이다(A: 식이량 정량화, B: 직장 온도 확인, C: 산소 소비량 확인, D: 활동성 확인).
도 33은 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f ) 마우스에서 ATF4 결실에 따른 BAT 내 열 단백질 발현을 확인한 도이다(A: UCP1 발현 확인, B: UCP1 및 TH 발현 확인, C: 열 단백질 유전자 발현 확인).
도 34는 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f ) 마우스에서 ATF4 결실에 따른 scWAT 내 열 단백질 발현을 확인한 도이다(A: UCP1 발현 확인, B: UCP1 및 TH 발현 확인, C: 열 단백질 유전자 발현 확인).
도 35는 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f ) 마우스에서 ATF4 결실에 따른 노르에피네프린의 양을 확인한 도이다.
도 36은 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f ) 마우스에서 저온 스트레스에 따른 열 대사 표현형을 확인한 도이다.
A: 체온 변화 확인
B: BAT 내 UCP1 발현 확인 (면역조직화학 염색)
C: BAT 내 UCP1 및 TH 발현 확인
D: BAT 내 열 단백질 유전자 발현 확인
도 37은 골수성 ATF4 결실 마우스 및 대조군 마우스의 저온 스트레스에 따른 체중 및 장기 무게를 정량화한 도이다(A: 체중 정량화, B: 장기 무게 정량화).
도 38은 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f ) 마우스에서 저온 스트레스에 따른 지방 조직 내 지방 공포 형성을 확인한 도이다(A: BAT 공포 확인, B: scWAT 공포 확인).
도 39는 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f ) 마우스에서 저온 스트레스에 따른 scWAT의 열 단백질 발현을 확인한 도이다(A: UCP1 발현 확인, B: UCP1 및 TH 발현 확인, C: 열 단백질 유전자 발현 확인).
도 40은 골수성 ATF4 결실 마우스 (Atf4 f/f ;lyz2-Cre) 및 대조군 (Atf4 f/f ) 마우스에서 저온 스트레스에 따른 노르에피네프린의 양을 확인한 도이다.
Figure 1 is a schematic diagram of the present invention regarding eIF2α phosphorylation and the resulting downstream signaling pathway regulator. Due to stress, eIF2α phosphorylation is induced and a transcriptional regulator called ATF4 is induced, and the transcription of downstream genes is sequentially regulated, thereby activating the integrated stress response. The polarization of macrophages is controlled through the regulator that controls this activation, alleviating inflammation. This diagram shows the process of alleviating inflammation by restoring M2 macrophages, ultimately improving liver fibrosis, a metabolic inflammatory disease, and increasing the activation of brown/beige fat.
Figure 2 schematically illustrates the process of obesity according to the specific gravity of macrophages. In normal conditions, the proportion of M2 among macrophages is relatively high, but when stress is induced, the proportion of M2 decreases and the proportion of M1 increases. Due to the strengthening of the pro-inflammatory function of M1 and the weakening of the anti-inflammatory function of M1, metabolic As the inflammatory response worsens, metabolic inflammatory disease appears. In addition, as the proportion of M2 decreases, the activity of brown and beige fat that consumes surplus energy decreases, so the surplus energy cannot be consumed and accumulates, falling into a vicious cycle that leads to obesity and further worsens metabolic inflammatory diseases. At this time, eIF2a phosphorylation and downstream signaling pathways play a major role, and when this signaling pathway is controlled, the proportion of M2 increases and the proportion of M1 decreases, improving the metabolic inflammation situation, and at the same time, brown and beige fat due to increased M2. This diagram shows that the function is activated again and consumes more energy, thereby alleviating obesity.
Figure 3 is a diagram confirming changes in mouse obesity phenotype according to high-fat diet feeding.
A: Check abdominal fat and organ tissue
B: Confirmation of liver, epididymal white adipose tissue (epWAT) and subcutaneous white adipose tissue (scWAT)
C: Quantification of weight change
D: Check blood sugar levels
E: Check glucose tolerance
F: Confirmation of insulin resistance
Figure 4 is a diagram showing the inflammatory response of mouse adipose tissue following high-fat diet feeding with a crown-like structure (CLS) (A: confirmation of epWAT, B: confirmation of scWAT).
Figure 5 is a diagram confirming the expression of inflammatory factors and ER stress markers in total adipose tissue following high-fat diet feeding (A: epWAT confirmed, B: scWAT confirmed).
Figure 6 is a diagram confirming the expression of inflammatory factors and ER stress markers in the stromal vascular fraction (SVF) according to high-fat diet feeding (A: epWAT confirmed, B: scWAT confirmed).
Figure 7 is a diagram confirming macrophage polarization according to high-fat diet feeding.
A: Confirmation of epWAT M1 macrophage polarization
B: Confirmation of M1 and M2 macrophage factor expression in epWAT
C: Confirmation of scWAT M1 macrophage polarization
D: Confirmation of M1 and M2 macrophage factor expression in scWAT
Figure 8 is a diagram confirming M1 and M2 macrophage polarization according to treatment with tunicamycin (TM), an ER stress inducer.
A: M1 macrophage polarization flow cytometry results
B: Confirmation of expression of M1 macrophage-related factors
C: M2 macrophage polarization flow cytometry results.
D: Confirmation of expression of M2 macrophage-related factors
Figure 9 is a diagram confirming the recovery of M2 polarization of the three lower pathway inhibitors of the unfolded protein response (UPR) in the ER stress response.
A: Confirmation of M2 polarization promotion by ISRIB, an eIF2α-ATF4 pathway inhibitor.
B: Confirmation of M2 polarization promotion by 4μ8C, an inhibitor of the IRE1α-XBP1 pathway.
C: Confirmation of promotion of M2 polarization by Ceapin A7, an ATF6α pathway inhibitor.
Figure 10 is a diagram confirming the obesity phenotype according to the administration of ISRIB in high-fat diet-induced obese mice (A: quantification of organ weight, B: confirmation of blood sugar level, C: quantification of blood lipids).
Figure 11 is a diagram confirming the metabolic phenotype according to the administration of ISRIB in high-fat diet-induced obese mice (A: confirmation of abdominal fat and organs, B: quantification of body weight change, C: confirmation of glucose tolerance, D: confirmation of insulin resistance).
Figure 12 is a diagram confirming liver tissue and liver toxicity following administration of ISRIB in high-fat diet-induced obese mice (A: confirmation of fatty tissue in the liver, B: quantification of liver toxicity factors).
Figure 13 is a diagram confirming CLS following administration of ISRIB in high-fat diet-induced obese mice (A: confirmation and quantification of epWAT CLS, B: confirmation and quantification of scWAT CLS).
Figure 14 is a diagram confirming M1 and M2 macrophage polarization following administration of ISRIB in high-fat diet-induced obese mice by flow cytometry (A: confirmation of eqWAT polarization, B: confirmation of scWAT polarization).
Figure 15 is a diagram confirming the expression of inflammation and ER stress factors in adipose tissue following administration of ISRIB in high-fat diet-induced obese mice.
A: Confirmation of expression of inflammatory factors and ER stress factors in epWAT
B: Confirmation of macrophage polarization and stress factor expression in epWAT
C: Confirmation of expression of inflammatory factors and ER stress factors in scWAT
D: Confirmation of macrophage polarization and stress factor expression in scWAT
Figure 16 is a diagram confirming the amount of food, rectal temperature, and activity according to the administration of ISRIB in high-fat diet-induced obese mice (A: Quantification of food amount, B: Checking rectal temperature, C: Checking oxygen consumption, D: Checking activity) .
Figure 17 is a diagram confirming the expression of thermogenic proteins following administration of ISRIB in high-fat diet-induced obese mice by immunohistochemical staining.
A: Check for brown and beige adipose tissue (BAT)
B: Check scWAT
Figure 18 is a diagram confirming the expression of thermogenic genes following administration of ISRIB in high-fat diet-induced obese mice (A: confirmed in BAT, B: confirmed in scWAT).
Figure 19 is a diagram confirming the expression of thermogenic protein and tyrosine hydroxlase (TH) protein according to administration of ISRIB in high-fat diet-induced obese mice (A: confirmation of BAT, B: confirmation of scWAT).
Figure 20 is a diagram confirming the amount of norepinephrine following administration of ISRIB in high-fat diet-induced obese mice.
Figure 21 is a diagram showing the production method and bone marrow-specific ATF4 deletion of a myeloid ATF4 deletion mouse (A: Schematic illustration of the production method, B: Confirmation of bone marrow-specific ATF4 deletion).
Figure 22 is a diagram confirming the obesity phenotype according to high-fat diet feeding in myeloid ATF4 deletion mice ( Atf4 f/f ; lyz2-Cre ) and control group ( Atf4 f/f ).
A: Check abdominal fat and organs
B: Quantification of weight change
C: Check glucose tolerance
D: Confirmation of insulin resistance
Figure 23 is a diagram confirming the metabolic phenotype according to high-fat diet feeding to myeloid ATF4 deletion mice ( Atf4 f/f ; lyz2-Cre ) and control group ( Atf4 f/f ).
A: Organ weight quantification
B: Check epWAT and scWAT
C: Confirmation of fat vacuoles in the liver
D: Blood lipid analysis
Figure 24 is a diagram confirming CLS according to high-fat diet feeding in myeloid ATF4 deletion mice ( Atf4 f/f ; lyz2-Cre ) and control group ( Atf4 f/f ) (A: confirmation of CLS in epWAT, B: CLS in scWAT check).
Figure 25 is a diagram confirming M1 and M2 macrophage polarization in myeloid ATF4 deletion mice ( Atf4 f/f ; lyz2-Cre ) and control group ( Atf4 f/f ) by flow cytometry (fed with normal diet).
Figure 26 is a diagram confirming M1 and M2 macrophage polarization according to high-fat diet feeding in myeloid ATF4 deletion mice ( Atf4 f/f ; lyz2-Cre ) and control group ( Atf4 f/f ) (A: confirmation of epWAT polarization, B : Confirm scWAT polarization).
Figure 27 is a diagram confirming the expression of M1 and M2 macrophage markers and stress factors according to high-fat diet feeding in myeloid ATF4 deletion mice ( Atf4 f/f ; lyz2-Cre ) and control group ( Atf4 f/f ).
A: Confirmation of expression in epWAT
B: Confirmation of expression in epWAT-derived SVF
C: Confirmation of expression in scWAT
D: Confirmation of expression in scWAT-derived SVF
Figure 28 is a diagram confirming M1 macrophage polarization according to TM treatment or overexpression of ATF4 in myeloid ATF4 deletion mice ( Atf4 f/f ; lyz2-Cre ) and control group ( Atf4 f/f ).
A: Confirmation of ATF4 and CHOP protein expression
B: Confirmation of M1 macrophage polarization in myeloid ATF4 deletion mice ( Atf4 f/f ;lyz2-Cre ) and controls ( Atf4 f/f )
C: Confirmation of M2 macrophage polarization due to overexpression of ATF4
Figure 29 is a diagram confirming M2 macrophage polarization according to TM treatment in myeloid ATF4 deletion mice ( Atf4 f/f ; lyz2-Cre ) and control ( Atf4 f/f ) mice (A: flow cytometry results and quantification, B : Confirmation of M2 macrophage gene expression, C: Confirmation of M2 macrophage marker protein expression).
Figure 30 is a diagram confirming M2 macrophage polarization due to overexpression of ATF4.
A: Flow cytometry results and quantification
B: Confirmation of M2 macrophage gene expression
C: Confirmation of IL-4 receptor alpha (IL-4ra) expression following TM treatment in myeloid ATF4 deletion mice ( Atf4 f/f ;lyz2-Cre ) and control ( Atf4 f/f ) mice
D: Confirmation of IL-4ra expression following ATF4 overexpression
Figure 31 is a diagram confirming the mechanism by which ATF4 protein inhibits M2 macrophages.
A: Confirmation of changes in protein expression related to M2 polarization signaling following TM treatment
B: Confirmation of liver-enriched inhibitory protein (LIP) expression following TM treatment
C: Confirmation of LIP protein expression after TM treatment and ATF4 deletion and re-expression
Figure 32 is a diagram confirming the amount of food, rectal temperature, and activity according to ATF4 deletion in myeloid ATF4 deletion mice ( Atf4 f/f ; lyz2-Cre ) and control ( Atf4 f/f ) mice (A: Quantification of food amount, B : check rectal temperature, C: check oxygen consumption, D: check activity).
Figure 33 is a diagram confirming the expression of heat protein in BAT due to ATF4 deletion in myeloid ATF4 deletion mice ( Atf4 f/f ;lyz2-Cre ) and control ( Atf4 f/f ) mice (A: Confirmation of UCP1 expression, B: UCP1 and TH expression confirmed, C: heat protein gene expression confirmed).
Figure 34 is a diagram confirming heat protein expression in scWAT due to ATF4 deletion in myeloid ATF4 deletion mice ( Atf4 f/f ; lyz2-Cre ) and control ( Atf4 f/f ) mice (A: Confirmation of UCP1 expression, B: UCP1 and TH expression confirmed, C: heat protein gene expression confirmed).
Figure 35 is a diagram confirming the amount of norepinephrine due to ATF4 deletion in myeloid ATF4 deletion mice ( Atf4 f/f ;lyz2-Cre ) and control ( Atf4 f/f ) mice.
Figure 36 is a diagram confirming the heat metabolism phenotype according to cold stress in myeloid ATF4 deletion mice ( Atf4 f/f ;lyz2-Cre ) and control ( Atf4 f/f ) mice.
A: Check for changes in body temperature
B: Confirmation of UCP1 expression in BAT (immunohistochemical staining)
C: Confirmation of UCP1 and TH expression in BAT
D: Confirmation of heat protein gene expression in BAT
Figure 37 is a diagram quantifying body weight and organ weight according to cold stress in myeloid ATF4 deletion mice and control mice (A: body weight quantification, B: organ weight quantification).
Figure 38 is a diagram confirming the formation of fat vacuoles in adipose tissue due to cold stress in myeloid ATF4 deletion mice ( Atf4 f/f ; lyz2-Cre ) and control ( Atf4 f/f ) mice (A: Confirmation of BAT vacuoles; B: scWAT fear confirmation).
Figure 39 is a diagram confirming heat protein expression in scWAT according to cold stress in myeloid ATF4 deletion mice ( Atf4 f/f ; lyz2-Cre ) and control ( Atf4 f/f ) mice (A: Confirmation of UCP1 expression, B: UCP1 and TH expression confirmed, C: heat protein gene expression confirmed).
Figure 40 is a diagram confirming the amount of norepinephrine according to cold stress in myeloid ATF4 deletion mice ( Atf4 f/f ;lyz2-Cre ) and control ( Atf4 f/f ) mice.

이하 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 이하의 설명에 있어, 당업자에게 주지 저명한 기술에 대해서는 그 상세한 설명을 생략할 수 있다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있다. 또한, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. In the following description, detailed descriptions of techniques well known to those skilled in the art may be omitted. Additionally, when describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description may be omitted. In addition, the terminology used in this specification is a term used to appropriately express preferred embodiments of the present invention, and may vary depending on the intention of the user or operator or the customs of the field to which the present invention belongs.

따라서 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Therefore, definitions of these terms should be made based on the content throughout this specification. Throughout the specification, when a part is said to “include” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.

본 발명은, eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를 유효성분으로 포함하는 대사염증성 질환의 예방 또는 치료용 조성물을 제공한다.The present invention provides a composition for preventing or treating metabolic inflammatory diseases, comprising a regulator of eIF2α phosphorylation and the resulting downstream signaling pathway as an active ingredient.

본 발명에서 사용되는 용어 “예방”은 본 발명의 조성물의 투여로 특정 질환의 증상을 억제하거나 진행을 지연시키는 모든 행위를 의미한다.The term “prevention” used in the present invention refers to any action that suppresses the symptoms or delays the progression of a specific disease by administering the composition of the present invention.

본 발명에서 사용되는 용어 “치료”는 본 발명의 조성물의 투여로 특정 질환의 증상을 호전 또는 이롭게 변경시키는 모든 행위를 의미한다.The term “treatment” used in the present invention refers to any action that improves or beneficially changes the symptoms of a specific disease by administering the composition of the present invention.

본 발명의 “eIF2α 인산화 및 이로 인한 하위 신호전달경로”는 진핵 세포에서 보존되는 세포 스트레스 반응으로, 단백질 합성을 하향 조절하고 내부 또는 환경 스트레스에 반응하여 특정 유전자를 상향 조절하는 일련의 반응을 의미한다. eIF2α 인산화 및 이로 인한 하위 신호전달경로의 활성화는 외인성 또는 내재적 조건으로 세포 내에서 유도될 수 있으며, 외인성 요인으로는 저산소증, 아미노산 결핍, 포도당 결핍, 바이러스 감염 및 산화제의 존재가 외인성 요인으로 작용할 수 있으며, 내재적인 요인은 미접힘 단백질 반응(unfolded protein response, UPR)으로 인한 소포체 스트레스 및 미토콘드리아의 항상성 저해로 인한 미토콘드리아 스트레스가 요인으로 작용할 수 있다. 스트레스 신호는 eIF2α라고 불리는 단백질 복합체의 서브유닛을 인산화시켜, ATF4 유전자가 활성화 되어, 다양한 유전자의 발현에 영향을 미칠 수 있다. eIF2α가 인산화되면, 복합체의 활성이 감소하여 번역 개시 및 단백질 합성의 감소를 유도하며, 이때 ATF4 유전자의 발현을 촉진시킨다. 미접힘 단백질 반응(unfolded protein response, UPR)은 PKR-like ER kinase(PERK), Inositol-requiring enzyme 1α(IRE1α), Activating Transcription Factor 6α(ATF6α) 등의 세 가지 ER 막관통 단백질의 활성화에 의해 시작되며, PERK의 지속적인 활성화로 진핵생물 개시 인자 2 알파(eukaryotic initiation factor 2 alpha, eIF2α)의 인산화 및 C/EBP 상동 단백질(C/EBP homologous protein, CHOP)의 발현을 유도하는 일련의 반응을 뜻한다.“eIF2α phosphorylation and its resulting downstream signaling pathway” of the present invention is a cellular stress response conserved in eukaryotic cells and refers to a series of reactions that downregulate protein synthesis and upregulate specific genes in response to internal or environmental stress. . eIF2α phosphorylation and the resulting activation of downstream signaling pathways can be induced within cells by exogenous or intrinsic conditions, and hypoxia, amino acid deficiency, glucose deficiency, viral infection, and the presence of oxidants can act as extrinsic factors. , intrinsic factors may include endoplasmic reticulum stress due to the unfolded protein response (UPR) and mitochondrial stress due to inhibition of mitochondrial homeostasis. Stress signals can phosphorylate a subunit of a protein complex called eIF2α, activating the ATF4 gene and affecting the expression of various genes. When eIF2α is phosphorylated, the activity of the complex decreases, leading to a decrease in translation initiation and protein synthesis, which then promotes the expression of the ATF4 gene. The unfolded protein response (UPR) includes PKR-like ER kinase (PERK), Inositol-requiring enzyme 1α (IRE1α), and Activating Transcription Factor 6α (ATF6α). It is initiated by the activation of three ER transmembrane proteins, and continued activation of PERK leads to phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) and C/EBP homologous protein (CHOP). refers to a series of reactions that induce the expression of

또한, 인산화된 eIF2α 및 CHOP의 유도는 지방 생성의 억제를 유도하고, IREα-Xbp1 경로와 ATF6은 각각 백색 지방세포 분화를 촉진하는 것으로 알려져 있다. 예를 들어, CHOP는 C/EBPβ와 복합체를 형성하여 백색지방의 분화를 담당하는 표적유전자들의 전사를 차단함으로서, 백색 지방 생성을 억제하는 것으로 알려져 있다.In addition, induction of phosphorylated eIF2α and CHOP leads to inhibition of adipogenesis, and the IREα-Xbp1 pathway and ATF6 are known to promote white adipocyte differentiation, respectively. For example, CHOP is known to inhibit white fat production by forming a complex with C/EBPβ and blocking the transcription of target genes responsible for white fat differentiation.

본 발명의 약학 조성물에는 유효성분 이외에 보조제(adjuvant)를 추가로 포함할 수 있다. 상기 보조제는 당해 기술분야에 알려진 것이라면 어느 것이나 제한 없이 사용할 수 있으나, 예를 들어 프로인트(Freund)의 완전 보조제 또는 불완전 보조제를 더 포함하여 그 효과를 증가시킬 수 있다.The pharmaceutical composition of the present invention may further include adjuvants in addition to the active ingredients. The auxiliary agent may be any one known in the art without limitation, but the effect may be increased by further including, for example, Freund's complete auxiliary agent or incomplete auxiliary agent.

본 발명에 따른 약학 조성물은 유효성분을 약학적으로 허용된 담체에 혼입시킨 형태로 제조될 수 있다. 여기서, 약학적으로 허용된 담체는 제약 분야에서 통상 사용되는 담체, 부형제 및 희석제를 포함한다. 본 발명의 약학 조성물에 이용할 수 있는 약학적으로 허용된 담체는 이들로 제한되는 것은 아니지만, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로스, 메틸 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다.The pharmaceutical composition according to the present invention can be prepared by incorporating the active ingredient into a pharmaceutically acceptable carrier. Here, pharmaceutically acceptable carriers include carriers, excipients, and diluents commonly used in the pharmaceutical field. Pharmaceutically acceptable carriers that can be used in the pharmaceutical composition of the present invention include, but are not limited to, lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, Examples include calcium phosphate, calcium silicate, cellulose, methyl cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.

본 발명의 약학 조성물은 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀전, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 또는 멸균 주사용액의 형태로 제형화하여 사용될 수 있다.The pharmaceutical composition of the present invention can be formulated and used in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, external preparations, suppositories, or sterile injection solutions according to conventional methods. .

제제화할 경우에는 통상 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 그러한 고형 제제는 유효성분에 적어도 하나 이상의 부형제, 예를 들면 전분, 칼슘 카르보네이트, 수크로스, 락토오스, 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용될 수 있다. 경구투여를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데, 일반적으로 사용되는 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수용성용제, 현탁제, 유제, 동결건조 제제 및 좌제가 포함된다. 비수용성용제, 현탁제로는 프로필렌 글리콜, 폴리에틸렌 글리콜, 올리브유와 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 트윈(tween) 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.When formulated, it can be prepared using diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, and surfactants. Solid preparations for oral administration include tablets, pills, powders, granules, capsules, etc., and such solid preparations contain the active ingredient plus at least one excipient, such as starch, calcium carbonate, sucrose, lactose, and gelatin. It can be prepared by mixing etc. Additionally, in addition to simple excipients, lubricants such as magnesium stearate and talc can also be used. Liquid preparations for oral administration include suspensions, oral solutions, emulsions, and syrups. In addition to the commonly used diluents such as water and liquid paraffin, they contain various excipients such as wetting agents, sweeteners, fragrances, and preservatives. You can. Preparations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations, and suppositories. Non-aqueous solvents and suspensions include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, and injectable ester such as ethyl oleate. As a base for suppositories, witepsol, tween 61, cacao, laurel, glycerogelatin, etc. can be used.

본 발명에 따른 약학 조성물은 개체에 다양한 경로로 투여될 수 있다. 투여의 모든 방식이 예상될 수 있는데, 예를 들면 경구, 정맥, 근육, 피하, 복강내 주사에 의해 투여될 수 있다.The pharmaceutical composition according to the present invention can be administered to an individual through various routes. All modes of administration are contemplated, for example, by oral, intravenous, intramuscular, subcutaneous, or intraperitoneal injection.

본 발명에 따른 약학 조성물의 투여량은 개체의 연령, 체중, 성별, 신체 상태 등을 고려하여 선택된다. 상기 약학 조성물 중 포함되는 유효성분의 농도는 대상에 따라 다양하게 선택할 수 있음은 자명하며, 바람직하게는 약학 조성물에0.01 ~ 5,000 ㎍/ml의 농도로 포함되는 것이다. 그 농도가 0.01 ㎍/ml 미만일 경우에는 약학 활성이 나타나지 않을 수 있고, 5,000 ㎍/ml를 초과할 경우에는 인체에 독성을 나타낼 수 있다.The dosage of the pharmaceutical composition according to the present invention is selected taking into account the age, weight, gender, physical condition, etc. of the individual. It is obvious that the concentration of the active ingredient included in the pharmaceutical composition can be selected in various ways depending on the target, and is preferably included in the pharmaceutical composition at a concentration of 0.01 to 5,000 μg/ml. If the concentration is less than 0.01 ㎍/ml, pharmaceutical activity may not appear, and if it exceeds 5,000 ㎍/ml, it may be toxic to the human body.

본 발명의 일실시예에 따르면, 상기 하위 신호전달경로는 ATF4인 것일 수 있고, 상기 eIF2α의 인산화는 ATF4(activating transcription factor 4)의 발현을 증가시키는 것일 수 있다.According to one embodiment of the present invention, the downstream signaling pathway may be ATF4, and phosphorylation of eIF2α may increase the expression of ATF4 (activating transcription factor 4).

본 발명의 일실시예에 따르면, 상기 신호전달경로 조절제는 하기 화학식 1로 표시되는 화합물인 것일 수 있다.According to one embodiment of the present invention, the signal transduction pathway regulator may be a compound represented by the following formula (1).

[화학식 1][Formula 1]

본 발명의 상기 화학식 1의 화합물은 통합 스트레스 반응 억제제(integrated stress response inhibitor)로서, CAS number 1597403-47-8의 화합물인 것일 수 잇고, 본 발명에서는 상기 화학식 1의 화합물 또는 이의 약제학적으로 허용가능한 염을 더 포함할 수 있다.The compound of Formula 1 of the present invention is an integrated stress response inhibitor, and may be a compound of CAS number 1597403-47-8. In the present invention, the compound of Formula 1 or its pharmaceutically acceptable It may further contain salt.

상기 용어 "약제학적으로 허용가능한 염" 은, 건전한 의학적 판단의 범위 내에서, 과도한 독성, 자극, 알레르기 반응 및 이와 유사한 것 없이 인간 및 하급 동물의 조직과 접촉에 사용되는 것이며 합리적인 장점/단점 비에 비례하는 이들 염을 의미한다. 예를 들어, S. M. Berge et al.는, J. Pharmaceutical Sciences, 1977, 66, 1-19에 상세하게 약제학적으로 허용가능한 염을 설명하고 있으며, 참조로서 여기 통합되어 있다. 본 발명의 화합물의 약제학적으로 허용가능한 염은, 적당한 무기 및 유기산 및 염기로부터 유도된 것들을 포함한다. 약제학적으로 허용가능한, 무독성 산부가염의 예들은, 염산, 브롬화수소산, 인산, 황산 및 과염소산과 같은 무기산, 또는 아세트산, 옥살산, 말레산, 타르타르산, 시트르산, 숙신산 또는 말론산과 같은 유기산으로 형성되거나, 또는 이온 교환과 같은 당해 기술분야에서 사용된 다른 방법을 사용하여 형성된 아미노기의 염이다. 다른 약제학적으로 허용가능한 염은, 아디페이트, 알지네이트, 아스코르베이트, 아스파르테이트, 벤젠술포네이트, 벤조에이트, 비설페이트, 보레이트, 부티레이트, 캄포레이트, 캄포르술포네이트, 시트레이트, 시클로 펜탄프로피오네이트, 디글루코네이트, 도데실설페이트, 에탄술포네이트, 포르메이트, 푸마레이트, 글루코헵토네이트, 글리세로포스페이트, 글루코네이트, 헤미설페이트, 헵타노에이트, 헥사노에이트, 히드로요오다이드, 2-히드록시-에탄술포네이트, 락토비오네이트, 락테이트, 라우레이트, 라우릴 설페이트, 말레이트, 말리에이트, 말로네이트, 메탄술포네이트, 2-나프탈렌술포네이트, 니코티네이트, 니트레이트, 올리에이트, 옥살레이트, 팔미테이트, 파모에이트, 펙티네이트, 퍼설페이트, 3-페닐프로피오네이트, 포스페이트, 피발레이트, 프로피오네이트, 스테아레이트, 숙시네이트, 설페이트, 타르트레이트, 티오시아네이트, p-톨루엔술포네이트, 운데카노에이트, 발레르에이트 염, 및 이와 유사한 것을 포함한다.The term "pharmaceutically acceptable salt" means that, within the scope of sound medical judgment, it is intended for use in contact with tissues of humans and lower animals without undue toxicity, irritation, allergic reactions and the like, and in a reasonable advantage/disadvantage ratio. These salts are meant to be proportional. For example, S. M. Berge et al. describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, which is incorporated herein by reference. Pharmaceutically acceptable salts of the compounds of the present invention include those derived from suitable inorganic and organic acids and bases. Examples of pharmaceutically acceptable, non-toxic acid addition salts include those formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid, or organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid, or It is a salt of an amino group formed using other methods used in the art, such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, and cyclopentaneprop. Cypionate, digluconate, dodecyl sulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2- Hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, Oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluene sulfo. nate, undecanoate, valerate salt, and the like.

적당한 염기로부터 유도된 염은, 알칼리 금속, 알칼리 토금속, 암모늄 및 N+(C1-4알킬)4 염을 포함한다. 대표적 알칼리 또는 알칼리 토금속 염은 소듐, 리튬, 포타슘, 칼슘, 마그네슘, 및 이와 유사한 것을 포함한다. 게다가 약제학적으로 허용가능한 염은, 적당할 때, 무독성 암모늄, 4기 암모늄, 및 할라이드, 히드록시드, 카복실레이트, 설페이트, 포스페이트, 니트레이트, 저급알킬 술포네이트 및 아릴 술포네이트와 같은 상대이온을 사용하여 형성된 아민 양이온을 포함한다.Salts derived from suitable bases include alkali metal, alkaline earth metal, ammonium and N + (C 1-4 alkyl) 4 salts. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. In addition, pharmaceutically acceptable salts include, when appropriate, non-toxic ammoniums, quaternary ammoniums, and counterions such as halides, hydroxides, carboxylates, sulfates, phosphates, nitrates, lower alkyl sulfonates, and aryl sulfonates. Contains amine cations formed using.

본 발명의 일실시예에 따르면, 상기 조성물은 대식세포 극성화를 조절하는 것일 수 있고, 상기 대식세포는 전염증형 마크로파지 M1(pro-inflammatory M1) 또는 항염증형 마크로파지 M2(anti-inflammatory M2)인 것일 수 있다.According to one embodiment of the present invention, the composition may regulate macrophage polarization, and the macrophages are pro-inflammatory macrophage M1 (pro-inflammatory M1) or anti-inflammatory macrophage M2 (anti-inflammatory M2). It could be.

본 발명의 일실시예에 따르면, 대식세포 극성화를 조절하는 것은, 전염증형 마크로파지 M1의 발현을 억제시키는 것일 수 있고, 상기 전염증형 마크로파지 M1의 발현을 억제시키는 것은 IL-1β(Interleukin 1 beta), IL-6(Interleukin 6) 또는 Nos2(Nitric oxide synthase 2)의 발현을 억제시키는 것일 수 있다.According to one embodiment of the present invention, controlling macrophage polarization may include suppressing the expression of pro-inflammatory macrophage M1, and suppressing the expression of pro-inflammatory macrophage M1 may include IL-1β (Interleukin 1 beta). , it may inhibit the expression of IL-6 (Interleukin 6) or Nos2 (Nitric oxide synthase 2).

본 발명의 일실시예에 따르면, 상기 대식세포 극성화를 조절하는 것은, 항염증형 마크로파지 M2의 발현을 증가시키는 것일 수 있고, 상기 항염증형 마크로파지 M2의 발현을 증가시키는 것은 Arg1(arginase-1), Ym1(chitinase 3-like 3) 또는 Fizz1(resistin like beta)의 발현을 증가시키는 것일 수 있다.According to one embodiment of the present invention, controlling the macrophage polarization may mean increasing the expression of anti-inflammatory macrophage M2, and increasing the expression of anti-inflammatory macrophage M2 may include Arg1 (arginase-1). ), Ym1 (chitinase 3-like 3), or Fizz1 (resistin like beta) expression.

본 발명의 도 2를 참조하면, 정상상태에서는 대식세포 중 M2의 비중이 상대적으로 높은 상태이지만 스트레스가 유도될 경우 M2의 비중은 적어지고 M1의 비중은 늘어나게 되며, M1의 전염증 기능 강화 및 M1의 항염증성 기능의 약화로 인하여 대사성 염증반응이 악화되어 대사성 염증질환이 나타나게 된다. 또한 M2의 비중이 줄게됨으로서 잉여에너지를 소모하는 갈색 및 베이지색 지방의 활성이 감소하게 되어 잉여에너지가 소모되지 못하고 축적되며 비만이 유도되는 악순환에 빠지게 되어 대사염증성 질환이 더욱 악화되게 된다. 이때 eIF2a 인산화 및 하위 신호전달경로가 큰 역할을 하며, 이 신호전달경로를 제어할 경우 M2의 비중이 늘고 M1의 비중은 줄어 대사염증 상황이 개선되며, 동시에 늘어간 M2에 의해 갈색 및 베이지색 지방의 기능이 다시 활성화되어 에너지를 더욱 소모하여 비만을 완화시키게 된다.Referring to Figure 2 of the present invention, in a normal state, the proportion of M2 among macrophages is relatively high, but when stress is induced, the proportion of M2 decreases and the proportion of M1 increases, and the pro-inflammatory function of M1 is strengthened and M1 Due to the weakening of the anti-inflammatory function, the metabolic inflammatory response worsens, resulting in metabolic inflammatory disease. In addition, as the proportion of M2 decreases, the activity of brown and beige fat that consumes surplus energy decreases, so the surplus energy cannot be consumed and accumulates, falling into a vicious cycle that leads to obesity and further worsens metabolic inflammatory diseases. At this time, eIF2a phosphorylation and downstream signaling pathways play a major role, and when this signaling pathway is controlled, the proportion of M2 increases and the proportion of M1 decreases, improving the metabolic inflammation situation, and at the same time, brown and beige fat due to increased M2. The function is activated again, consuming more energy and alleviating obesity.

본 발명의 일실시예에 따르면, 상기 조성물은 지방조직의 대사염증을 억제시키는 것일 수 있으며, 상기 지방조직은 서혜부 백색 지방 조직(inguinal white adipose tissue, iWAT), 부고환 백색 지방 조직(epididymal white adipose tissue, eWAT) 또는 간(liver) 조직인 것일 수 있다.According to one embodiment of the present invention, the composition may inhibit metabolic inflammation of adipose tissue, and the adipose tissue is inguinal white adipose tissue (iWAT), epididymal white adipose tissue , eWAT) or liver tissue.

본 발명의 일실시예에 따르면, 상기 대사염증은 지방 조직의 크라운 유사 구조(Crown like structure, CLS)가 형성되는 것일 수 있다.According to one embodiment of the present invention, the metabolic inflammation may be the formation of a crown-like structure (CLS) of adipose tissue.

본 발명의 일실시예에 따르면, 상기 조성물은 에너지 대사를 증가시키는 것일 수 있고, 상기 에너지 대사 증가는 갈색 지방(brown adipocytes) 또는 베이지색 지방(beige adipocytes)세포의 형성을 증가시키는 것일 수 있으며, 산소 소비량을 증가시키는 것일 수 있다.According to one embodiment of the present invention, the composition may increase energy metabolism, and the increase in energy metabolism may increase the formation of brown adipocytes or beige adipocytes, It may increase oxygen consumption.

본 발명의 “갈색 지방(brown adipocytes) 세포”는 갈색지방(brown fat)이라고도 하며, 갈색을 띄고 있어 일반적인 저장지방인 백색지방조직(white adipose tissue)과 구별된다. 미토콘드리아와 유적(油滴)을 다량 포함하고 있는 세포로 구성되며, 교감신경섬유가 많아, 대사활성, 특히 지방분해와 지방산 산화능력이 높아, 체온조절을 위한 산열기관으로 분류된다. 갓 태어난 동물에 많이 존재하며, 체온조절 기능이 발달됨에 따라 서서히 퇴화하는 것이 보통이지만, 성체에서 상당한 양이 발견되는 경우도 있으며, 저온순응에 따라 증가하게된다. 갈색지방조직은 노르아드레날린(noradrenalin)의 작용으로 급속히 다량의 열을 내는 특성이 있으나, 지방산(脂肪酸)의 산화과정에서는 P/O비가 낮은 점에서 ATP생산을 억제하는 메커니즘이 작용한다.The “brown adipocytes cells” of the present invention are also called brown fat, and are distinguished from white adipose tissue, which is a common storage fat, due to their brown color. It is composed of cells containing a large amount of mitochondria and oil droplets, and has many sympathetic nerve fibers, so it has high metabolic activity, especially fat decomposition and fatty acid oxidation ability, and is classified as an acid-heating organ for regulating body temperature. It is present in large quantities in newborn animals, and usually degenerates slowly as the thermoregulatory function develops, but it is sometimes found in significant amounts in adults, and increases with cold acclimatization. Brown adipose tissue has the characteristic of rapidly generating a large amount of heat due to the action of noradrenalin, but in the oxidation process of fatty acids, a mechanism that inhibits ATP production is activated due to the low P/O ratio.

본 발명의 “베이지색 지방(beige adipocytes) 세포”는 외부의 낮은 온도로부터 체온을 유지하기 위하여, 열을 발생시키는 지방세포로서 백색 지방내에 존재하며, 세포 내 많은 수의 미토콘드리아를 보유하고 있으며, 열 발생 조절 단백질을 발현시키고, 다방성 지방을 형성하는 지방 세포를 뜻한다. 베이지색 지방 세포는 백색 지방 세포와 상이한 특성을 나타내며, 백색 지방 세포가 에너지를 저장하는 세포인 반면, 베이지색 지방 세포는 열을 발생시키기 위하여, 에너지를 소모하는 지방 세포이다. 베이지색 지방은 갈변(browning)이라는 경로를 통하여 백색 지방 세포로부터 만들어지는 것으로 보고되었으며, 백색 지방 세포와 상이한 특성을 가져, 비만을 포함하는 다양한 대사성 질환의 치료 타겟으로 주목받고 있는 세포이다.The “beige adipocytes cells” of the present invention are fat cells that generate heat to maintain body temperature from external low temperatures, exist within white fat, and possess a large number of mitochondria within the cells. It refers to adipocytes that express developmental regulatory proteins and form polytropic fat. Beige adipocytes exhibit different characteristics from white adipocytes. While white adipocytes are cells that store energy, beige adipocytes are adipocytes that consume energy to generate heat. Beige fat has been reported to be produced from white adipocytes through a pathway called browning, and has different characteristics from white adipocytes, making it a cell that is attracting attention as a treatment target for various metabolic diseases, including obesity.

본 발명의 도 1을 참조하면, 다양한 스트레스에 의해 eIF2a 인산화 및 이로 인하여 ATF4라는 전사조절인자가 유도되고 순차적으로 하위 유전자들의 전사가 조절되면서 통합스트레스반응이 활성화되며, 이러한 활성화를 제어하는 조절자를 통해 대식세포의 극성화를 제어하여 염증완화 M2 대식세포를 복원함으로써 염증을 완화하고 결국 대사염증성 질환인 간섬유화를 개선시키고 또한 갈색/베이지색 지방의 활성화를 높여 체중을 감소시키는 과정을 나타나게 된다.Referring to Figure 1 of the present invention, eIF2a phosphorylation is induced by various stresses, which induces a transcriptional regulator called ATF4, and the transcription of downstream genes is sequentially regulated, thereby activating the integrated stress response. Through the regulator that controls this activation, It relieves inflammation by controlling the polarization of macrophages. By restoring M2 macrophages, inflammation is alleviated, which ultimately improves liver fibrosis, a metabolic inflammatory disease, and also increases the activation of brown/beige fat, leading to weight loss.

본 발명의 일실시예에 따르면, 상기 에너지 대사 증가는 체온을 증가시키는 것일 수 있고, 상기 체온을 증가시키는 것은, 열 발생 단백질 또는 열 발생 유전자 발현을 증가시키는 것일 수 있으며, 상기 열 발생 단백질은 분리 단백질 1(uncoupling protein 1, UCP1) 또는 Tyrosine hydroxylase (TH)인 것일 수 있고, 상기 열 발생 유전자는 UCP1, Prdm16(PR domain containing 16), Cox8b(Cytochrome c oxidase subunit 8 B) 및 Pgc1a(Peroxisome proliferator-activated receptor gamma coactivator 1-alpha)로 이루어진 군에서 선택된 것일 수 있다.According to one embodiment of the present invention, the increase in energy metabolism may increase body temperature, and increasing the body temperature may increase the expression of a thermogenic protein or a thermogenic gene, and the thermogenic protein is separated. uncoupling protein 1 (UCP1) or It may be tyrosine hydroxylase (TH), and the thermogenic gene consists of UCP1, Prdm16 (PR domain containing 16), Cox8b (Cytochrome c oxidase subunit 8 B), and Pgc1a (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha). It may have been chosen by the military.

본 발명의 일실시예에 따르면, 상기 대사염증성 질환은 비만(obesity), 간섬유증(hepatic fibrosis), 지방간(fatty liver), 알코올성 간질환(alcoholic liver disease), 제 1형 당뇨병(type 1 diabetes), 제 2형 당뇨병(type 2 diabetes), 저혈당증(hypoglycemia), 고콜레스테롤혈증(hypercholesterinemia), 고지혈증(hyperlipidemia), 혈색소증(Hemochromatosis), 아밀로이드증(amyloidsis) 및 포르피린증(porphyria)으로 이루어진 군에서 선택된 것일 수 있고, 바람직하게는 비만 또는 간섬유증이나 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the metabolic inflammatory diseases include obesity, hepatic fibrosis, fatty liver, alcoholic liver disease, and type 1 diabetes. , may be selected from the group consisting of type 2 diabetes, hypoglycemia, hypercholesterinemia, hyperlipidemia, hemochromatosis, amyloidsis, and porphyria, , preferably obesity or liver fibrosis, but is not limited thereto.

또한, 본 발명은, eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를 유효성분으로 포함하는 대사염증성 질환의 예방 또는 개선용 식품조성물을 제공한다.In addition, the present invention provides a food composition for preventing or improving metabolic inflammatory diseases, which contains a regulator of eIF2α phosphorylation and the resulting downstream signaling pathway as an active ingredient.

본 발명에서 사용되는 용어 “개선”은 치료되는 상태와 관련된 파라미터, 예를 들면 증상의 정도를 적어도 감소시키는 모든 행위를 의미한다.As used herein, the term “improvement” refers to any action that reduces at least the severity of a parameter, such as a symptom, related to the condition being treated.

본 발명의 식품 조성물은 본 발명의 유효성분을 함유하는 것 외에 통상의 식품 조성물과 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다.In addition to containing the active ingredient of the present invention, the food composition of the present invention may contain various flavoring agents or natural carbohydrates as additional ingredients like a normal food composition.

상술한 천연 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 슈크로스 등; 및 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당, 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 상술한 향미제는 천연 향미제 (타우마틴), 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진 등) 및 합성 향미제 (사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. 본 발명의 식품 조성물은 상기 약학적 조성물과 동일한 방식으로 제제화되어 기능성 식품으로 이용하거나, 각종 식품에 첨가할 수 있다. 본 발명의 조성물을 첨가할 수 있는 식품으로는 예를 들어, 음료류, 육류, 초코렛, 식품류, 과자류, 피자, 라면, 기타 면류, 껌류, 사탕류, 아이스크림류, 알코올 음료류, 비타민 복합제 및 건강보조식품류 등이 있다.Examples of the above-mentioned natural carbohydrates include monosaccharides such as glucose, fructose, etc.; Disaccharides such as maltose, sucrose, etc.; and polysaccharides, such as common sugars such as dextrin and cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol. The above-described flavoring agents include natural flavoring agents (thaumatin), stevia extracts (e.g. rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.). The food composition of the present invention can be formulated in the same way as the pharmaceutical composition and used as a functional food or added to various foods. Foods to which the composition of the present invention can be added include, for example, beverages, meat, chocolate, foods, confectionery, pizza, ramen, other noodles, gum, candy, ice cream, alcoholic beverages, vitamin complexes, health supplements, etc. There is.

또한 상기 식품 조성물은 유효성분인 추출물 외에 여러 가지 영양제, 비타민, 광물 (전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제 (치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그밖에 본 발명의 식품 조성물은 천연 과일 쥬스 및 과일 쥬스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다.In addition to the extract as an active ingredient, the food composition contains various nutrients, vitamins, minerals (electrolytes), flavoring agents such as synthetic and natural flavors, colorants and thickening agents (cheese, chocolate, etc.), pectic acid and its salts, It may contain alginic acid and its salts, organic acids, protective colloidal thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohol, carbonating agents used in carbonated beverages, etc. In addition, the food composition of the present invention may contain pulp for the production of natural fruit juice, fruit juice beverages, and vegetable beverages.

본 발명의 기능성 식품 조성물은 대사염증 질환의 예방 또는 치료 목적으로, 정제, 캅셀, 분말, 과립, 액상, 환 등의 형태로 제조 및 가공될 수 있다. 본 발명에서 '건강기능성 식품 조성물'이라 함은 건강기능식품에 관한 법률 제6727호에 따른 인체에 유용한 기능성을 가진 원료나 성분을 사용하여 제조 및 가공한 식품을 말하며, 인체의 구조 및 기능에 대하여 영양소를 조절하거나 생리학적 작용 등과 같은 보건용도에 유용한 효과를 얻을 목적으로 섭취하는 것을 의미한다. 본 발명의 건강기능식품은 통상의 식품 첨가물을 포함할 수 있으며, 식품 첨가물로서의 적합 여부는 다른 규정이 없는 한, 식품의약품안전청에 승인된 식품 첨가물 공전의 총칙 및 일반시험법 등에 따라 해당 품목에 관한 규격 및 기준에 의하여 판정한다. 상기 '식품 첨가물 공전'에 수재된 품목으로는 예를 들어, 케톤류, 글리신, 구연산칼슘, 니코틴산, 계피산 등의 화학적 합성물; 감색소, 감초추출물, 결정셀룰로오스, 고량색소, 구아검 등의 천연첨가물; L-글루타민산나트륨 제제, 면류첨가알칼리제, 보존료 제제, 타르색소제제 등의 혼합제제류 등을 들 수 있다. 예를 들어, 정제 형태의 건강기능식품은 본 발명의 유효성분을 부형제, 결합제, 붕해제 및 다른 첨가제와 혼합한 혼합물을 통상의 방법으로 과립화한 다음, 활택제 등을 넣어 압축성형하거나, 상기 혼합물을 직접 압축 성형할 수 있다. 또한 상기 정제 형태의 건강기능식품은 필요에 따라 교미제 등을 함유할 수도 있다. 캅셀 형태의 건강기능식품 중 경질 캅셀제는 통상의 경질 캅셀에 본 발명의 유효성분을 부형제 등의 첨가제와 혼합한 혼합물을 충진하여 제조할 수 있으며, 연질 캅셀제는 본 발명의 유효성분을 부형제 등의 첨가제와 혼합한 혼합물을 젤라틴과 같은 캅셀기제에 충진하여 제조할 수 있다. 상기 연질 캅셀제는 필요에 따라 글리세린 또는 소르비톨 등의 가소제, 착색제, 보존제 등을 함유할 수 있다. 환 형태의 건강기능식품은 본 발명의 유효성분과 부형제, 결합제, 붕해제 등을 혼합한 혼합물을 기존에 공지된 방법으로 성형하여 조제할 수 있으며, 필요에 따라 백당이나 다른 제피제로 제피할 수 있으며, 또는 전분, 탈크와 같은 물질로 표면을 코팅할 수도 있다. 과립 형태의 건강기능식품은 본 발명의 유효성분의 부형제, 결합제, 붕해제 등을 혼합한 혼합물을 기존에 공지된 방법으로 입상으로 제조할 수 있으며, 필요에 따라 착향제, 교미제 등을 함유할 수 있다.The functional food composition of the present invention can be manufactured and processed in the form of tablets, capsules, powders, granules, liquids, pills, etc. for the purpose of preventing or treating metabolic inflammatory diseases. In the present invention, 'health functional food composition' refers to food manufactured and processed using raw materials or ingredients with functionality useful to the human body in accordance with Act No. 6727 on Health Functional Food, and refers to food that is related to the structure and function of the human body. It means taking it for the purpose of controlling nutrients or obtaining useful health effects such as physiological effects. The health functional food of the present invention may contain common food additives, and its suitability as a food additive is determined in accordance with the general provisions and general test methods of the food additive code approved by the Food and Drug Administration, unless otherwise specified. Judgment is made according to specifications and standards. Items listed in the 'Food Additive Code' include, for example, chemical compounds such as ketones, glycine, calcium citrate, nicotinic acid, and cinnamic acid; Natural additives such as dark pigment, licorice extract, crystalline cellulose, high-quality pigment, and guar gum; Examples include mixed preparations such as sodium L-glutamate preparations, noodle additive alkaline preparations, preservative preparations, and tar coloring preparations. For example, the health functional food in the form of a tablet is made by granulating a mixture of the active ingredient of the present invention with excipients, binders, disintegrants and other additives in a conventional manner, and then adding a lubricant and compression molding, or The mixture can be directly compression molded. In addition, the health functional food in the form of tablets may contain flavoring agents, etc., if necessary. Among capsule-type health functional foods, hard capsules can be manufactured by filling a regular hard capsule with a mixture of the active ingredient of the present invention mixed with additives such as excipients, and soft capsules can be prepared by mixing the active ingredient of the present invention with additives such as excipients. It can be manufactured by filling the mixture with a capsule base such as gelatin. The soft capsule may contain plasticizers such as glycerin or sorbitol, colorants, preservatives, etc., if necessary. The health functional food in the form of a pill can be prepared by molding a mixture of the active ingredient of the present invention and excipients, binders, disintegrants, etc., using a known method. If necessary, it can be coated with white sugar or other coating agent. Alternatively, the surface can be coated with substances such as starch or talc. Health functional food in the form of granules can be manufactured into granules by mixing a mixture of excipients, binders, disintegrants, etc. of the active ingredients of the present invention by a known method, and may contain flavoring agents, flavoring agents, etc., if necessary. You can.

또한, 본 발명은 eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를 유효성분으로 포함하는 항염증형 마크로파지 M2(anti-inflammatory M2)의 발현의 증가 또는 전염증형 마크로파지 M1(pro-inflammatory M1)의 발현 억제용 조성물을 제공한다.In addition, the present invention increases the expression of anti-inflammatory macrophage M2 (anti-inflammatory M2) or inhibits the expression of pro-inflammatory macrophage M1 (pro-inflammatory M1), which contains eIF2α phosphorylation and the resulting downstream signaling pathway regulator as an active ingredient. Provides a composition for

이하, 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

<준비예 1> eIF2α-ATF4 신호 전달 및 비만 연관성 확인을 위한 준비<Preparation Example 1> Preparation for confirmation of correlation between eIF2α-ATF4 signaling and obesity

<1-1> 동물 모델<1-1> Animal model

본 발명의 골수 특이 Atf4-녹아웃(knockout) 마우스(Atf4 f/f ;Lyz2-Cre)를 제작하기 위하여, 리소자임 2 유전자 프로모터(lysozyme 2 gene promoter)/인핸서 요소(enhancer element)의 제어 하에, Cre recombinase 유전자를 발현하는 Lyz2-Cre 마우스(LysM-Cre)를 Atf4 대립 유전자의 엑손 2와 3이 LoxP 영역 옆에 존재하는 Atf4 f/f 마우스와 교배하여, Atf4-녹아웃(knockout) 마우스(Atf4 f/f ;Lyz2-Cre)를 제작하였다. 그 후 마우스에 일반 식이(nomal control diet, NCD 또는 ND)를 급여하였다. 식이 유발 비만 마우스(diet-induced obesity, DIO)를 제작하기 위하여 16주 동안 고지방 식이(high fat diet, HFD)를 공급하였다. 또한, DIO 유도 비만 실험 및 통합스트레스 반응을 제어하는 것으로 알려진 약물인 ISRIB(integrated stress response inhibitor, Apexbio, B3699) 투여 효과를 확인하기 위하여, C57BL/6J 마우스를 Jackson laboratry 에서 구입하였다. 본 발명에 사용된 ISRIB는 하기 화학식 1의 화합물이다.To produce bone marrow-specific Atf4-knockout mice ( Atf4 f/f ;Lyz2-Cre ) of the present invention, Cre recombinase is activated under the control of the lysozyme 2 gene promoter/enhancer element. Lyz2-Cre mice expressing the gene (LysM-Cre) were transformed into Atf4 f/f, in which exons 2 and 3 of the Atf4 allele are flanked by the LoxP region. By crossing with mice, Atf4-knockout mice ( Atf4 f/f ;Lyz2-Cre ) were created. Afterwards, the mice were fed a normal control diet (NCD or ND). To create diet-induced obesity (DIO) mice, they were fed a high fat diet (HFD) for 16 weeks. In addition, in order to test DIO-induced obesity and to confirm the effect of administering ISRIB (integrated stress response inhibitor, Apexbio, B3699), a drug known to control the integrated stress response, C57BL/6J mice were purchased from Jackson laboratry. ISRIB used in the present invention is a compound of formula 1 below.

[화학식 1][Formula 1]

저온 노출 실험을 위하여, 10주령의 수컷 마우스를 4℃의 저온 환경에 노출시켰으며, 실온(room temperature, RT) 에서의 대조군은 25℃의 배양기에 두었다. 모든 동물모델은 12시간 암/광 주기로 사육하였으며, 모든 동물 관리 실험 및 절차는 순천향대학교 동물관리위원회에서 승인한 프로토콜 및 지침에 따라 수행하였다.For the low-temperature exposure experiment, 10-week-old male mice were exposed to a low temperature environment of 4°C, and a control group at room temperature (RT) was placed in an incubator at 25°C. All animal models were reared under a 12-hour dark/light cycle, and all animal care experiments and procedures were performed in accordance with the protocols and guidelines approved by the Animal Care Committee of Soonchunhyang University.

<1-2> 대사 표현형 확인<1-2> Confirmation of metabolic phenotype

내당능 검사(glucose tolerance test, GTT)를 위하여, 마우스를 6시간 동안 금식시킨 후 체중 1kg당 1g의 포도당을 복강 내 주사하였다. 인슐린 내성 시험(insulin tolerance test, ITT)을 위하여, 6시간 동안 금식시킨 마우스에 인슐린 주사기(insulin syringe, BD science, BD328820)를 이용하여 1 unit/kg의 인슐린(Lilly, HI0210)을 주사하였다. 주사 후 0, 30, 60, 120분에 혈당 수치를 혈당계(glucometer, Barogen)로 확인하였다.For the glucose tolerance test (GTT), mice were fasted for 6 hours and then intraperitoneally injected with 1 g of glucose per kg of body weight. For the insulin tolerance test (ITT), 1 unit/kg of insulin (Lilly, HI0210) was injected using an insulin syringe (BD science, BD328820) in mice that had been fasted for 6 hours. Blood sugar levels were checked with a glucometer (Barogen) at 0, 30, 60, and 120 minutes after injection.

또한, ISRIB를 복강 내 주사하기 위하여, NCD 또는 HFD를 급여한 C57BL/6J 마우스에 2.5 mg/kg의 농도로 ISRIB를 매일 투여하였으며, ISRIB는 DMSO 및 폴리에틸렌글리콜을 1 : 1의 부피비로 혼합한 용매에 녹여 사용하였다.In addition, to inject ISRIB intraperitoneally, ISRIB was administered daily at a concentration of 2.5 mg/kg to C57BL/6J mice fed NCD or HFD. ISRIB was a solvent mixed with DMSO and polyethylene glycol at a volume ratio of 1:1. It was dissolved and used.

그 후 포괄적 실험실 동물 모니터링 시스템(Comprehensive Laboratory Animal Monitoring System, CLAMS, TSE Systems)을 이용하여, 간접 열량계 측정을 수행하였으며, 마우스는 산소 소비량 측정 전에 CLAMS에 24시간 동안 적응시켰으며, 24시간 동안 신체 활동을 모니터링 하였다. 산소 소비량(oxygen consumption , VO2), 식이 섭취량, 신체 활동은 40분 간격으로 기록하였으며, 산소 소비량은 마우스 체중을 이용하여 보정하였다. 또한 마우스 직장 온도는 탐침 디지털 온도계(Harvard Apparatus)를 이용하여 측정하였다.Indirect calorimetry measurements were then performed using the Comprehensive Laboratory Animal Monitoring System (CLAMS, TSE Systems). Mice were acclimated to CLAMS for 24 hours before measuring oxygen consumption, and were subject to physical activity for 24 hours. was monitored. Oxygen consumption (VO2), food intake, and physical activity were recorded at 40-minute intervals, and oxygen consumption was corrected using mouse body weight. Additionally, mouse rectal temperature was measured using a probe digital thermometer (Harvard Apparatus).

<1-3> 지방 조직에서 간질 혈관 분획 분리<1-3> Isolation of stromal vascular fraction from adipose tissue

마우스 부고환(epididymal) 및 피하 지방(subcutaneous adipose) 조직을 분리하고, 0.5% BSA(Bioshop, ALB001.100)가 첨가된 HEPES 완충액(Corning, H3375)에서 1 mg/ml의 콜라게네이즈 제 1형(collagenase type 1, Worthington, LS004196)을 첨가하고, 37℃에서 30분간 진탕 배양하여 반응시켰다. 반응 종료 후 5 mM의 EDTA를 첨가하여 5분간 처리하여, 반응을 종료시켰다. 그 후 소화된 조직을 100 μm 메쉬(mesh)로 여과한 후 500xg에서 5분간 원심분리 하였다. 그 후 부유 지방세포(Floating adipocytes) 및 간질 혈관 분획(stromal vascular fraction, SVF) 펠렛(pellet)을 적혈구 용해 완충액(red-blood-cell lysis buffer, Gibco, A10492-01)에 재현탁시켜, 추후 실험에 이용하였다.Mouse epididymal and subcutaneous adipose tissues were isolated, and 1 mg/ml of collagenase type 1 (Corning, H3375) supplemented with 0.5% BSA (Bioshop, ALB001.100) was added. Collagenase type 1, Worthington, LS004196) was added and incubated with shaking at 37°C for 30 minutes to react. After completion of the reaction, 5 mM EDTA was added and treated for 5 minutes to terminate the reaction. Afterwards, the digested tissue was filtered through a 100 μm mesh and centrifuged at 500xg for 5 minutes. Afterwards, the floating adipocytes and stromal vascular fraction (SVF) pellets were resuspended in red-blood-cell lysis buffer (Gibco, A10492-01) for further experiments. It was used for.

<1-4> 혈장 생화학적 분석<1-4> Plasma biochemical analysis

혈당 농도는 혈당측정기 (glucose stripe, Barogen)를 이용하여 측정하였다. 혈장 트리글리세리드(plasma triglyceride), 총 콜레스테롤(total cholesterol), 유리 지방산(free fatty acid), 알라닌 트랜스아미나제(alanine transaminase), 아스파르테이트 아미노트랜스퍼라제(aspartate aminotransferase)는 각각의 키트(Wako, 632-50991; Wako, 635-50981; Wako, 294-63601; Biovision, K562-100; 및 Biovision, K552-100)를 이용하여 분석하였다.Blood sugar concentration was measured using a blood glucose meter (glucose stripe, Barogen). Plasma triglyceride, total cholesterol, free fatty acid, alanine transaminase, and aspartate aminotransferase were measured using each kit (Wako, 632- 50991; Wako, 635-50981; Wako, 294-63601; Biovision, K562-100; and Biovision, K552-100).

<1-5> 조직학적 분석<1-5> Histological analysis

간(Liver) 및 지방(adipose) 조직을 4℃에서 4% 파라포름알데히드(paraformaldehyde, GeneAll, CNP001-1000)를 이용하여 18시간 동안 고정시켰다. 그 후 조직 처리기(tissue processor, Thermo fisher scientific)를 이용하여, 에탄올과 자일렌으로 처리한 후 파라핀 임베더(paraffin embedder, Thermo fisher scientific)를 사용하여 파라핀에 포매(embedded)하였다. 그 후 마이크로톰(microtome, Leica)으로 4 μm로 섹션(section)하고, 이를 헤마톡실린 및 에오신(hematoxylin & eosin, H&E)으로 염색하였다. 면역조직화학(immunohistochemistry, IHC) 염색의 경우, 재수화된 조직 절편을 antigen retrieval을 위하여, 15 psi에서 20분간 시트르산나트륨 완충액(sodium citrate buffer, pH6.0)에 침지한 후, 3% 과산화수소에서 항온처리하였다. 그 후 Anti-F4/80(Bio-Rad, MCA497RT), Anti-TNFα(CST, #3707), Anti-ARG1(CST, #9819) 및 Anti-UCP1(Abcam, ab10983)을 처리하고, 4℃ 18시간 동안 반응시켰다. 그 후 마우스 및 토끼 유래 2차 항체(Jackson lab, 115-035-003, 111-035-003)를 처리하여 2시간 동안 반응시킨 후 DAB 염색 키트(Vector laboratories, SK-4100)를 이용하여, 가시화 하였다. DAB 염색 후 대조염색을 위해 헤마톡실린을 사용하였으며, 자일렌 (Xylene)으로 탈수한 후, 마운팅 용액(Fisher chemical, SP15-100)으로 절편 슬라이드를 마운팅하였다. IHC 염색 결과는 BX61 현미경(Olympus)으로 확인하였으며, 면역형광(immunofluorescence, IF)발현을 위하여, Alexa 594를 2차 항체로 반응시켰다. IF 결과는 Eclipse Ti-U 형광 현미경(Nikon)으로 확인하였다.Liver and adipose tissue were fixed for 18 hours using 4% paraformaldehyde (GeneAll, CNP001-1000) at 4°C. Afterwards, it was treated with ethanol and xylene using a tissue processor (Thermo fisher scientific) and then embedded in paraffin using a paraffin embedder (Thermo fisher scientific). Afterwards, it was sectioned at 4 μm using a microtome (Leica) and stained with hematoxylin & eosin (H&E). For immunohistochemistry (IHC) staining, rehydrated tissue sections were immersed in sodium citrate buffer (pH6.0) at 15 psi for 20 minutes for antigen retrieval, and then incubated in 3% hydrogen peroxide. Processed. Afterwards, treated with Anti-F4/80 (Bio-Rad, MCA497RT), Anti-TNFα (CST, #3707), Anti-ARG1 (CST, #9819) and Anti-UCP1 (Abcam, ab10983), incubated at 4℃ 18 It was reacted for some time. Afterwards, it was treated with secondary antibodies derived from mouse and rabbit (Jackson lab, 115-035-003, 111-035-003), reacted for 2 hours, and visualized using a DAB staining kit (Vector laboratories, SK-4100). did. After DAB staining, hematoxylin was used for counterstaining, and after dehydration with xylene, the section slides were mounted with mounting solution (Fisher chemicals, SP15-100). The IHC staining results were confirmed with a BX61 microscope (Olympus), and for immunofluorescence (IF) expression, Alexa 594 was reacted with a secondary antibody. IF results were confirmed using an Eclipse Ti-U fluorescence microscope (Nikon).

<1-6> 유세포 분석<1-6> Flow cytometry

분리된 SVF는 항-마우스 CD16/32 항체(Fc block, Biolegend, 101302)를 이용하여 4℃에서 15분간 차단되었다. 그 후 FITC-항-F4/80(Biolegend, 123108), APC-Cy7-항-CD45(Biolegend, 103116), PE-항-CD11c(Biolegend, 117308), APC-항-CD206(Biolegend, 141708) 및 Pacific blue-anti-Annexin V(Biolegend, 640926)를 포함하는 형광색소 접합 항체를 처리하여, 4℃에서 30분간 반응시켰다. 그 후 인산완충식염수(phosphate-buffered saline, PBS)로 3회 세척한 후 PBS 및 0.1% 파라포름알데히드로 고정시켰다. 그 후 BD FACS Canto(BD science)를 이용하여 유세포분석을 수행하고, 데이터를 Flowjo (BD science)을 이용하여 분석하였다.Isolated SVF was blocked using anti-mouse CD16/32 antibody (Fc block, Biolegend, 101302) at 4°C for 15 minutes. Then FITC-anti-F4/80 (Biolegend, 123108), APC-Cy7-anti-CD45 (Biolegend, 103116), PE-anti-CD11c (Biolegend, 117308), APC-anti-CD206 (Biolegend, 141708) and It was treated with a fluorescent dye-conjugated antibody containing Pacific blue-anti-Annexin V (Biolegend, 640926) and reacted at 4°C for 30 minutes. Afterwards, it was washed three times with phosphate-buffered saline (PBS) and fixed with PBS and 0.1% paraformaldehyde. Afterwards, flow cytometry was performed using BD FACS Canto (BD science), and data were analyzed using Flowjo (BD science).

<1-7> 골수 유래 대식세포 분화 분석<1-7> Bone marrow-derived macrophage differentiation analysis

마우스로부터 수득된 다리 뼈를 해부하고, 냉각 RPMI(Corning, 10-040-CV)를 이용하여 모세혈관을 수득하고, 이를 세척하여, 골수를 수득하였다. 수득된 골수를 5분간 500xg에서 원심분리하여, 세포 펠렛을 수득하였다. 수득된 세포 펠렛을 RPMI에 재현탁하고, 100 μM 매쉬로 여과하여, 세포 외 덩어리를 제거하였다. 분리된 골수 세포는 분화 배지[150 ml의 L929 조정 배지, 500 ml RPMI, 1% 페니실린 스트렙토마이신(Corning, 30-002-CI), 1% Primocin(Invivogen, ant-pm-1), 10% 우태아 혈청(Equiptech, SFBM30) 및 1% 비필수 아미노산(Corning, 25-025-CI) 및 450ul 2-메르캅토에탄올(Gibco, 21985-023)]에서 배양하여 분화시켰다. 분화 7일 후 골수 유래 대식세포(bone marrow derived macrophage, BMDM)를 추후 실험에 사용하였으며, L929 조정 배지는 T75 플라스크에서 7일간 RPMI, 1% 페니실린 스트렙토마이신 및 10% 우태아 혈청에서 L929를 배양하여 제조하였다. 각 시점에서의 배양액은 여과병(Corning, 430517)을 이용하여 수집하였다.A leg bone obtained from a mouse was dissected, capillaries were obtained using cold RPMI (Corning, 10-040-CV), and these were washed to obtain bone marrow. The obtained bone marrow was centrifuged at 500xg for 5 minutes to obtain a cell pellet. The obtained cell pellet was resuspended in RPMI and filtered through 100 μM mesh to remove extracellular clumps. Isolated bone marrow cells were cultured in differentiation medium [150 ml L929 conditioned medium, 500 ml RPMI, 1% penicillin streptomycin (Corning, 30-002-CI), 1% Primocin (Invivogen, ant-pm-1), 10% cow. Differentiation was achieved by culturing in fetal serum (Equiptech, SFBM30) and 1% non-essential amino acids (Corning, 25-025-CI) and 450 μl 2-mercaptoethanol (Gibco, 21985-023)]. After 7 days of differentiation, bone marrow derived macrophages (BMDM) were used for further experiments, and L929 conditioned medium was cultured in RPMI, 1% penicillin streptomycin, and 10% fetal bovine serum for 7 days in a T75 flask. Manufactured. Culture fluid at each time point was collected using a filter bottle (Corning, 430517).

<1-8> 대식세포 분극 분석<1-8> Macrophage polarization analysis

BMDM에 M1 대식세포 분극화를 위하여, 1 μg/ml의 LPS 및 10 unit/ml의 INFγ를 24시간 동안 처리하였다. 또한 M2 분극화를 위하여 10 unit/ml의 IL-4를 24시간 동안 처리하였다. 모든 사이토카인은 처리용 배지(RPMI, 10% FBS, 1% PS, 1% NEAA, 0.1% 2-ME)에 희석하여 사용하였다.To polarize M1 macrophages in BMDM, 1 μg/ml of LPS and 10 unit/ml of INFγ were treated for 24 hours. Additionally, for M2 polarization, 10 units/ml of IL-4 was treated for 24 hours. All cytokines were used after being diluted in processing medium (RPMI, 10% FBS, 1% PS, 1% NEAA, 0.1% 2-ME).

<1-9> 대식세포의 화학 처리<1-9> Chemical treatment of macrophages

ER 스트레스 유도(ER stress-inducing)를 위하여, 튜니카마이신(Tunicamycin) 500 ng/ml을 L929 조정 배지가 포함되지 않는 조건에서 24시간 동안 처리하였다. 그 후 약리학적 억제 실험을 위하여, BMDM에 100 nM의 ISRIB, 1 μg/ml의 CeapinA7(Merck, SML2330)을 24시간 동안 처리하였다.For ER stress-inducing, 500 ng/ml of tunicamycin was treated for 24 hours under conditions without L929 conditioned medium. Then, for pharmacological inhibition experiments, BMDMs were treated with 100 nM ISRIB and 1 μg/ml CeapinA7 (Merck, SML2330) for 24 hours.

<1-10> 아데노바이러스 감염<1-10> Adenovirus infection

아데노바이러스 벡터 구축물의 유전적 구성요소를 복제하여, 아데노바이러스 혈청형 제5형(Adeno virus type 5, ad5) pVQ-K-NpA 셔틀 벡터에 삽입하였다. 그 후 자동화된 DNA 시퀀싱을 이용하여 유전자 서열의 정확성을 검증하였다. 바이러스 생성 및 증식 프로세스를 수행하기 위하여 ViraQuest를 이용하였으며, 바이러스는 세포당 100개의 바이러스 비율로 세포를 감염시키는데 이용하였다. 바이러스 코어는 β-갈락토시다아제를 발현하도록 설계된 아데노바이러스 벡터 코어(미시간 대학교, University of Michigan)를 이용하였다. 그 후 102 viral 입자/ml의 ATF4 아데노바이러스 및 β-갈락토시다아제를 6 웰 플레이트(well plate)에서 106 세포/wll의 세포 농도의 BMDM에 처리하여, 24시간 동안 반응시켰다.The genetic components of the adenovirus vector construct were cloned and inserted into the adenovirus type 5 (ad5) pVQ-K-NpA shuttle vector. Afterwards, the accuracy of the gene sequence was verified using automated DNA sequencing. ViraQuest was used to perform the virus generation and propagation process, and viruses were used to infect cells at a rate of 100 viruses per cell. The viral core used was an adenovirus vector core (University of Michigan) designed to express β-galactosidase. Afterwards, 10 2 viral particles/ml of ATF4 adenovirus and β-galactosidase were treated with BMDM at a cell concentration of 10 6 cells/wll in a 6 well plate, and reacted for 24 hours.

<1-11> 정량적 RT-PCR<1-11> Quantitative RT-PCR

세포 및 조직을 TRIzol 시약(Geneall, 301-001) 및 클로로포름을 1 : 6의 부피비로 혼합한 시약을 이용하여, 용해시켰다. 그 후 4°C에서 15분 동안 13,000 rpm 원심분리하여, 상층액을 수득하였다. 수득된 상층액을 이소프로판올(Sigma, I9516-500ML)과 1 : 1로 혼합하였으며, 반응 전 후 실온에서 10분간 배양하였다. 그 후 13,000 rpm에서 원심분리하여 RNA를 침전시키고, 70% 에탄올을 첨가하였다. 그 후 RNA 펠렛을 증류수에 재현탁하고 55℃에서 10분간 방치하였다. 분리된 RNA는 Nano-drop(Thermo fisher Scientific)을 이용하여 정량하였다. 분리된 RNA에서 역전사효소 키트(Toyobo, TOFSQ-201)를 이용하여 cDNA를 합성하고, 1 : 40으로 cDNA를 희석한 후 정량적 실시간 PCR(quantitative real-time PCR)을 수행하였다. SYBR Green 시약(Enzynomics, RT501M) 및 마우스 프라이머를 정량적 실시간 PCR(Bio-Rad)을 이용하여 수행하였으며, 모든 표적 프라이머는 18s rRNA 프라이머로 정규화 하였다.Cells and tissues were dissolved using a reagent mixed with TRIzol reagent (Geneall, 301-001) and chloroform at a volume ratio of 1:6. Afterwards, the supernatant was obtained by centrifugation at 13,000 rpm for 15 minutes at 4°C. The obtained supernatant was mixed 1:1 with isopropanol (Sigma, I9516-500ML), and incubated at room temperature for 10 minutes before and after the reaction. Afterwards, RNA was precipitated by centrifugation at 13,000 rpm, and 70% ethanol was added. Afterwards, the RNA pellet was resuspended in distilled water and left at 55°C for 10 minutes. The isolated RNA was quantified using Nano-drop (Thermo Fisher Scientific). cDNA was synthesized from the isolated RNA using a reverse transcriptase kit (Toyobo, TOFSQ-201), the cDNA was diluted 1:40, and quantitative real-time PCR was performed. Quantitative real-time PCR (Bio-Rad) was performed using SYBR Green reagent (Enzynomics, RT501M) and mouse primers, and all target primers were normalized to 18s rRNA primers.

<1-11> 면역블로팅<1-11> Immunoblotting

세포 및 조직을 포로테아제/포스파타제 억제제(Thermo fisher Scientific, 78442)를 포함하는 RIPA 완충액(1% NP-40,150mM NaCl, 0.5% 데옥시콜산나트륨, 0.1% SDS 및 50mM Tris-HCl, pH 7.4)에서 30분간 용해시켰다. 그 후 용해된 샘플을 4°C에서 20분 동안 12,000rpm에서 원심분리하고, 상등액을 새 튜브에 보관하였으며, 단백질 정량 분석 키트(Thermo fisher Scientific, 23225)로 정량하였다. 그 후 4X laemmli 샘플 버퍼(Bio-Rad, BR1610747) 및 2-메르캅토에탄올(Sigma, M6250-100ML)을 이용하여 정량화된 샘플을 100℃에서 5분간 가열하였다. 그 후 Tris-glycine 완충액(with SDS)을 사용하여 전기영동 장비(Bio-Rad)를 통해 SDS-PAGE 겔에 전기영동하였다. 전기영동 후 분리된 단백질을 Tris-glycine 완충액(20% 메탄올 포함, SDS 없음)을 사용하여, transferring equipment(Bio-Rad)를 이용하여, methanol-activated polyvinylidene difluoride(PVDF, Millipore, IPVH00010) 멤브레인(membrane)으로 단백질을 옮겼다. 그 후 5% 탈지유(BD science, BD232100)를 처리하여 1시간동안 블로킹 하고, 항-phospho-eIF2α(Abcam, Ab32157), 항-eIF2α(CST, #9722), 항-ATF4(CST, #11815), 항-CHOP(Santacruz, sc-575), 항-α-Tubulin(Sigma, T9026), 항-IL4RA(Santacruz, sc-165974), 항-포스포-STAT6(CST, #9361), 항-STAT6(Santacruz, sc-271213), 항-UCP1(Abcam, ab10983), 항-ARG1( CST, #9819) 및 Anti-TNFα(CST, #3707)를 멤브레인에 첨가하여, 4℃에서 18시간 동안 진탕 반응시켰다. 그 후 HRP 접합된 마우스 및 토끼 2차 항체(Jackson lab, 115-035-003, 111-035-003)를 첨가하여 1시간동안 반응시키고, Supersignal west pico 화학발광 기판(Thermo fisher Scientific, 34080)을 이용하여, 가시화 하였다. 그 후 현상액(Agfa)을 통해 현상하였다. 모든 세척 단계에서는 Tris-buffered saline with 0.1% Triton-X를 사용하여, 세척하였다.Cells and tissues were incubated in RIPA buffer (1% NP-40, 150mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, and 50mM Tris-HCl, pH 7.4) containing phosphatase/phosphatase inhibitors (Thermo fisher Scientific, 78442). was dissolved for 30 minutes. The dissolved sample was then centrifuged at 12,000 rpm for 20 minutes at 4°C, the supernatant was stored in a new tube, and quantified using a protein quantitative analysis kit (Thermo fisher Scientific, 23225). Afterwards, the quantified sample was heated at 100°C for 5 minutes using 4X laemmli sample buffer (Bio-Rad, BR1610747) and 2-mercaptoethanol (Sigma, M6250-100ML). Afterwards, electrophoresis was performed on an SDS-PAGE gel using an electrophoresis equipment (Bio-Rad) using Tris-glycine buffer (with SDS). After electrophoresis, the separated proteins were transferred to a methanol-activated polyvinylidene difluoride (PVDF, Millipore, IPVH00010) membrane using Tris-glycine buffer (containing 20% methanol, no SDS) using transfer equipment (Bio-Rad). ) Protein was transferred to. Afterwards, blocking was performed with 5% skim milk (BD science, BD232100) for 1 hour, followed by anti-phospho-eIF2α (Abcam, Ab32157), anti-eIF2α (CST, #9722), and anti-ATF4 (CST, #11815). , anti-CHOP (Santacruz, sc-575), anti-α-Tubulin (Sigma, T9026), anti-IL4RA (Santacruz, sc-165974), anti-phospho-STAT6 (CST, #9361), anti-STAT6 (Santacruz, sc-271213), anti-UCP1 (Abcam, ab10983), anti-ARG1 (CST, #9819) and Anti-TNFα (CST, #3707) were added to the membrane and shaken for 18 hours at 4°C. I ordered it. Afterwards, HRP-conjugated mouse and rabbit secondary antibodies (Jackson lab, 115-035-003, 111-035-003) were added and reacted for 1 hour, and Supersignal west pico chemiluminescence substrate (Thermo fisher Scientific, 34080) was added. It was visualized using. Afterwards, it was developed using a developer (Agfa). In all washing steps, Tris-buffered saline with 0.1% Triton-X was used.

<실시예 1> 고지방식이 유도 비만에 따른 대식세포 분극화 및 ER 스트레스 유도 확인<Example 1> Confirmation of macrophage polarization and ER stress induction due to high-fat diet-induced obesity

ER 스트레스가 지방 조직에서 비만 관련 만성 염증을 유도하는지 확인하였다. 구체적으로 HFD 마우스는 NCD 마우스와 비교하여, 현저히 증가된 혈당 수치 및 간 지방증으로 인한 체중 및 장기의 무게가 유의적으로 증가되어 있었다(도 3A 내지 도 3D). 또한, HFD 마우스는 포도당 내성 및 인슐린 내성이 감소하여, 대사 표현형이 손상된 것을 확인하였다(도 3E 및 도 3F). We confirmed whether ER stress induces obesity-related chronic inflammation in adipose tissue. Specifically, compared to NCD mice, HFD mice had significantly increased body weight and organ weight due to significantly increased blood sugar levels and liver steatosis (Figures 3A to 3D). In addition, HFD mice had decreased glucose tolerance and insulin resistance, confirming that their metabolic phenotype was impaired (Figures 3E and 3F).

비만에서는 백색 지방 조직(white adipose tissue, WAT)에서 만성 저등급 대사 염증의 발달이 유도되기에, 피하(subcutaneous, sc) 및 부고환(epididymal, ep) WAT의 염증 상태를 확인한 결과, scWAT 및 epWAT의 조직학적 분석에서, HFD 비만 마우스의 WAT에서 크라운 유사 구조(crown-like structures, CLS)의 수가 유의적으로 증가하였으며, 이로부터 면역 세포가 지방 조직에 침투하는 것을 확인하였다(도 4A 및 도 4B). 또한 Adgre1(F4/80), Mcp1(monocyte chemoattractant protein 1) 및 Tnfa(tumor necrosis factor alpha)를 포함하는 염증 마커 유전자의 발현 수준이 HFD 비만 마우스의 scWAT 및 epWAT에서 유의적으로 증가하였다(도 5A 및 도 5B).Since the development of chronic low-grade metabolic inflammation is induced in white adipose tissue (WAT) in obesity, the inflammatory status of subcutaneous (sc) and epididymal (ep) WAT was checked, and the results showed that scWAT and epWAT In histological analysis, the number of crown-like structures (CLS) was significantly increased in the WAT of HFD obese mice, confirming that immune cells infiltrate adipose tissue (Figures 4A and 4B). . Additionally, the expression levels of inflammatory marker genes, including Adgre1 (F4/80), monocyte chemoattractant protein 1 (Mcp1), and tumor necrosis factor alpha (Tnfa), were significantly increased in scWAT and epWAT of HFD obese mice ( Figures 5A and Figure 5B).

지방 조직에 침투한 면역세포의 염증 반응을 확인한 결과, 전체 WAT와 동일하게, 침윤된 면역세포를 나타내는 간질 혈관 분획(stromal vascular fraction, SVF)은 HFD 비만 마우스의 scWAT 및 epWAT에서 염증 마커 유전자의 발현이 유의적으로 증가하였다(도 6A 및 도 6B). 상기의 결과로부터 지방 조직이 HFD 비만에서 염증 스트레스를 유도하는 것을 확인하였다.As a result of confirming the inflammatory response of immune cells infiltrating adipose tissue, the stromal vascular fraction (SVF), which represents infiltrated immune cells, showed the expression of inflammatory marker genes in scWAT and epWAT of HFD obese mice, similar to the overall WAT. This significantly increased (Figures 6A and 6B). From the above results, it was confirmed that adipose tissue induces inflammatory stress in HFD obesity.

<실시예 2> M1/M2 불균형 및 HFD 비만에서의 ER 스트레스 상관관계 확인<Example 2> Confirmation of ER stress correlation in M1/M2 imbalance and HFD obesity

침윤된 면역세포 중 대식세포가 지방 조직의 비만 관련 만성 염증에 중요한 요인인 것이 알려져 있으며, 특히 M1 유형의 대식세포의 증가와 M2 유형 대식세포의 감소로 인한 M1/M2 불균형이 대사성 염증의 특징으로 알려져 있다. 이에, HFD로 유발된 비만이 비만과 관련된 지방 조직 대식세포(adipose tissue macrophage, ATM) 분극화와 관련되어 있는지 확인하였다. 그 결과, scWAT 및 epWAT의 SVF에 대한 유세포분석에서 NCD 마우스와 비교하여, HFD 마우스에서 총 대식세포(F4/80+)의 수가 증가하였다. NCD 마우스와 비교하여 HFD 마우스에서는 epWAT의 SVF에서 M2 ATM(F4/80+;CD206+)보다 M1 ATM(F4/80+;CD11c+)의 비율이 현저히 증가한 것을 확인하였다. 반면 scWAT에서는 유의적인 차이는 없었다(도 7A 및 도 7C). 또한, 비만 scWAT 및 epWAT의 SVF에서 Nos2(Nitric oxide synthase 2) 및 IL-6(Interleukin 6)를 포함하는 M1 특이적 유전자의 mRNA 발현이 유의적으로 증가하였으나, Arg1(arginase-1) 및 Fizz1(resistin-like-α)을 포함하는 M2 특이적 유전자의 mRNA 발현은 현저히 감소한 것을 확인하였다(도 7B 및 도 7D). 또한, 비만 마우스의 scWAT 및 epWAT의 SVF 뿐만 아니라, 총 지방 조직에서 Chop(C/EBP homologous protein), Atf6α(Activating transcription factor 6 alpha) 및 spliced Xbp1 (spliced X-box binding protein 1, sXbp1)의 발현이 증가하여 ER 스트레스 마커가 증가된 것을 확인하였다(도 5 및 도 6). 상기의 결과로 HDF 유도 비만이 M1/M2 비율의 불균형과 ER 스트레스 증가와 함께 만성 염증을 유도하는 것을 확인하였다.Among the infiltrated immune cells, macrophages are known to be an important factor in obesity-related chronic inflammation in adipose tissue. In particular, M1/M2 imbalance due to an increase in M1 type macrophages and a decrease in M2 type macrophages is a characteristic of metabolic inflammation. It is known. Accordingly, we confirmed whether HFD-induced obesity was related to obesity-related adipose tissue macrophage (ATM) polarization. As a result, in flow cytometry analysis of the SVF of scWAT and epWAT, the number of total macrophages (F4/80+) was increased in HFD mice compared to NCD mice. Compared to NCD mice, in HFD mice, the ratio of M1 ATM (F4/80+;CD11c+) was confirmed to be significantly increased compared to M2 ATM (F4/80+;CD206+) in the SVF of epWAT. On the other hand, there was no significant difference in scWAT (Figures 7A and 7C). Additionally, the mRNA expression of M1-specific genes, including Nos2 (Nitric oxide synthase 2) and IL-6 (Interleukin 6), was significantly increased in the SVF of obese scWAT and epWAT, but Arg1 (arginase-1) and Fizz1 ( It was confirmed that the mRNA expression of M2-specific genes, including resistin-like-α, was significantly reduced (Figures 7B and 7D). In addition, expression of Chop (C/EBP homologous protein), Atf6α (activating transcription factor 6 alpha), and spliced It was confirmed that ER stress markers increased (Figures 5 and 6). The above results confirmed that HDF-induced obesity induces chronic inflammation with an imbalance in the M1/M2 ratio and increased ER stress.

<실시예 3> eIF2α-ATF4 경로의 M2 분극화 및 ER 스트레스 매개 연관성 확인<Example 3> Confirmation of M2 polarization and ER stress-mediated association of eIF2α-ATF4 pathway

ER 스트레스가 비만 관련 대사 기능 장애의 요인일 수 있는 것이 알려져 있기에, 본 발명에서는 HFD 유도 비만 마우스에서 WAT로 인한 ATM에서 ER 스트레스가 유도되는 것을 구체적으로 확인하였다(도 5 및 도 6). 이에, 비만 유발 ER 스트레스가 대식세포 분극화에 영향을 미치는지 확인하였다. 구체적으로 INFγ 및 LPS 또는 IL-4를 처리하여 각각 M1 또는 M2 분극화가 유도된 마우스 골수 유래 대식세포(bone marrow derived macrophages, BMDM)를 사용하였으며, ER 스트레스는 대식세포 분극화 기간 동안 N-글리코실화 억제제인 튜니카마이신(tnuicamycin, TM) 처리로 유도하였다. 그 결과, TM 처리는 M1 분극화 동안의 BMDM에서 F4/80+;CD11c+ 세포의 수를 증가시켰지만(도 8A), M2 분극화 동안의 BMDM에서는 F4/80+;CD206+ 세포의 수를 감소시켰다(도 8B). 또한 M1 마커 유전자인 IL-1b(Interleukin 1 beta), IL-6 및 Nos2의 mRNA 발현은 M1 분극화 동안의 BMDM에서는 TM의 처리로 현저히 증가하였으나(도 8C), 대조적으로 M2 마커 유전자인 Arg1, Ym1(chitinase 3-like 3) 및 Fizz1의 발현은 M2 분극화 동안의 BMDM에서는 TM의 처리로 현저히 감소한 것을 확인하여(도 8D), ER 스트레스가 M1 대식세포의 분극화를 촉진시키나, M2 대식세포의 분극화는 감소시키는 것을 확인하였다.Since it is known that ER stress can be a factor in obesity-related metabolic dysfunction, the present invention specifically confirmed that ER stress is induced in ATM caused by WAT in HFD-induced obese mice (FIGS. 5 and 6). Therefore, we confirmed whether obesity-induced ER stress affects macrophage polarization. Specifically, mouse bone marrow derived macrophages (BMDM), in which M1 or M2 polarization was induced by treatment with INFγ and LPS or IL-4, respectively, were used, and ER stress was used as an N-glycosylation inhibitor during the period of macrophage polarization. It was induced by treatment with tunicamycin (TM). As a result, TM treatment increased the number of F4/80+;CD11c+ cells in BMDMs during M1 polarization (Figure 8A), but decreased the number of F4/80+;CD206+ cells in BMDMs during M2 polarization (Figure 8B). ). In addition, the mRNA expression of M1 marker genes IL-1b (Interleukin 1 beta), IL-6, and Nos2 was significantly increased by TM treatment in BMDMs during M1 polarization (Figure 8C), but in contrast, M2 marker genes Arg1 and Ym1 were significantly increased by TM treatment. (chitinase 3-like 3) and Fizz1 expression were significantly decreased by TM treatment in BMDMs during M2 polarization (Figure 8D), indicating that ER stress promotes polarization of M1 macrophages, but polarization of M2 macrophages It was confirmed that it decreased.

그 후 본 발명에서는, 미접힘 단백질 반응(unfolded protein response, UPR)의 세 가지 경로 중, M2 대식세포 분극화의 ER 스트레스 매개 억제와 관련된 경로를 확인하였다. 구체적으로 ER 스트레스와 관련된 UPR 경로인 eIF2α/ATF4 경로, IRE1α/XBP1 경로 및 ATF6α 경로를 억제하기 위하여, ISRIP, 4μ8c 및 Ceapin A7을 각각 처리하였다. 그 결과, ISRIP 및 4μ8c를 처리하면, TM의 처리로 감소된 M2 대식세포 마커가 유의적으로 증가하여, eIF2α/ATF4 경로 및 IRE1α/XBP1 경로가 ER 스트레스 매개 M2 분극화 억제 경로인 것을 확인하였으며(도 9), 시험관 내에서는 eIF2α/ATF4 신호 전달이 M2 분극화 억제에 가장 주요한 경로인 것을 확인하였다.Subsequently, in the present invention, among the three pathways of unfolded protein response (UPR), the pathway related to ER stress-mediated inhibition of M2 macrophage polarization was identified. Specifically, to inhibit the eIF2α/ATF4 pathway, IRE1α/XBP1 pathway, and ATF6α pathway, which are UPR pathways related to ER stress, ISRIP, 4μ8c, and Ceapin A7 were treated, respectively. As a result, treatment with ISRIP and 4μ8c significantly increased M2 macrophage markers, which were reduced by TM treatment, confirming that the eIF2α/ATF4 pathway and IRE1α/XBP1 pathway are ER stress-mediated M2 polarization inhibition pathways (Figure 9), it was confirmed that eIF2α/ATF4 signaling is the most important pathway for suppressing M2 polarization in vitro.

<실시예 4> eIF2α-ATF4 경로 억제에 따른 대사염증 및 M1/M2 비율 감소 확인<Example 4> Confirmation of decreased metabolic inflammation and M1/M2 ratio due to inhibition of eIF2α-ATF4 pathway

eIF2α-ATF4 경로의 억제가, HFD 비만 마우스에서 억제된 M2 ATM 분극화를 회복시킬 수 있는지 확인하였다. 10 주간 ND 또는 HFD를 급여한 C57BL6 마우스에 ISRIB를 2.5 mg/Kg의 농도로 복강주사하고, Vehicle 군으로는 DMSO를 투여하였다. 그 결과 ND 마우스 군에서는 Vehicle 군과 비교하여, ISRIB를 투여한 마우스에서는 체중 또는 체지방량에 유의한 차이는 없었다. 그러나, HFD 유도 비만 마우스에서는 Vehicle 군과 비교하여 ISRIB를 투여한 마우스에서 장기 무게 및 혈당이 감소하는 것을 확인하였으며(도 10A 및 도 10B), 체중이 감소된 것을 확인하였다(도 11A 및 도 11B). 또한, 트리글리세리드(triglyceride, TG), 콜레스테롤(cholesterol) 및 NEFA 수치가 유의적으로 감소한 것을 확인하였다(도 10C).It was determined whether inhibition of the eIF2α-ATF4 pathway could restore suppressed M2 ATM polarization in HFD obese mice. ISRIB was injected intraperitoneally at a concentration of 2.5 mg/Kg into C57BL6 mice fed ND or HFD for 10 weeks, and DMSO was administered to the Vehicle group. As a result, there was no significant difference in body weight or body fat in the ND mouse group compared to the Vehicle group in the mice administered ISRIB. However, in HFD-induced obese mice, it was confirmed that organ weight and blood sugar were decreased in mice administered ISRIB compared to the Vehicle group (Figures 10A and 10B), and body weight was confirmed to be reduced (Figures 11A and 11B). . In addition, it was confirmed that triglyceride (TG), cholesterol, and NEFA levels were significantly reduced (Figure 10C).

또한, ISRIB가 처리된 비만 마우스는 간에서 지질 함량이 감소하였으며(도 12A), 포도당 내성 및 인슐린 내성이 감소하는 것을 확인하여(도 11C 및 도 11D), eIF2α-ATF4 신호 전달이 생체 내에서 비만 유발 대사 기능 장애를 유도하고, eIF2α-ATF4의 억제제인 ISRIB를 처리하면, 대사 기능 장애가 개선되는 것을 확인하였다.In addition, ISRIB-treated obese mice had decreased lipid content in the liver (Figure 12A) and decreased glucose tolerance and insulin resistance (Figures 11C and 11D), suggesting that eIF2α-ATF4 signaling is responsible for obesity in vivo. It was confirmed that metabolic dysfunction was induced and treatment with ISRIB, an inhibitor of eIF2α-ATF4, improved metabolic dysfunction.

또한 간 손상 인자인 아스파르테이트 트랜스아미나제(aspartate transaminase, AST) 및 알라닌 트랜스아미나제(alanine transaminase, ALT)의 발현이 ISRIB의 처리로 증가하지 않아, ISRIB가 간 손상을 유도하지 않는 안전한 물질인 것을 확인하였다(도 12B).In addition, the expression of aspartate transaminase (AST) and alanine transaminase (ALT), which are liver damage factors, did not increase with ISRIB treatment, making ISRIB a safe substance that does not induce liver damage. This was confirmed (Figure 12B).

그 후, ISRIB 투여로 개선된 대사 표현형이 HFD 급여 마우스에서 만성 염증 및 대식세포 분극화에 영향을 미치는지 확인하였다. 그 결과, HFD 비만 마우스에서 Vehicle 군과 비교하여 ISRIB 군에서는 epWAT 및 scWAT 모두에서 CLS 구조가 현저히 감소하는 것을 확인하여, 지방 조직 내 염증이 ISRIB 처리로 개선되는 것을 확인하였다(도 13A 및 도 13B). 또한, HFD 급여 하에서 ISRIB에 의한 염증 감소가 대식세포 분극화와 상관관계가 있는지 확인한 결과, HFD 비만 마우스에서 DMSO 또는 ISRIB 처리 마우스의 epWAT 또는 scWAT 유래의 SVF에서는 F4/80+;CD11c+ 대식세포의 수는 현저히 감소하였으며, F4/80+;CD206+ 대식세포 수가 유의적으로 증가한 것을 확인하여(도 14A 및 도 14B), ISRIB가 HFD 비만 마우스에서 M1 분극화는 억제하고, M2 분극화를 증가시키는 것을 확인하였다. 또한, 지방 조직에서, 염증 유전자인 Tnfa 및 Mcp1과, UPR 유전자인 Chop, sXBP1 및 Atf6α의 발현이 ISRIB의 처리로 유의적으로 감소된 것을 확인하였으며(도 15A 및 도15C), M1 특이적 유전자인 IL-6 및 Nos2의 mRNA 발현이 유의적으로 감소하고, M2 특이적 유전자인 Arg1 및 Fizz1의 mRNA 발현은 ISRIB의 투여로 유의적으로 증가한 것을 확인하였다(도 15B 및 도 15D). 상기의 결과로 ISRIB 투여로 생체 내 eIF2α-ATF4 신호 전달을 억제하면, 비만 및 관련 대사 증후이 개선되는 것을 확인하였다.Afterwards, it was confirmed whether the metabolic phenotype improved by ISRIB administration affects chronic inflammation and macrophage polarization in HFD-fed mice. As a result, it was confirmed that the CLS structure was significantly reduced in both epWAT and scWAT in the ISRIB group compared to the Vehicle group in HFD obese mice, confirming that inflammation in adipose tissue was improved by ISRIB treatment (Figures 13A and 13B). . In addition, we examined whether the reduction of inflammation by ISRIB under HFD feeding was correlated with macrophage polarization. As a result, the number of F4/80+;CD11c+ macrophages in SVF derived from epWAT or scWAT of DMSO- or ISRIB-treated mice in HFD obese mice was It was confirmed that the number of F4/80+;CD206+ macrophages was significantly increased (FIGS. 14A and 14B), confirming that ISRIB suppresses M1 polarization and increases M2 polarization in HFD obese mice. In addition, in adipose tissue, the expression of inflammatory genes Tnfa and Mcp1, and UPR genes Chop, sXBP1, and Atf6α were confirmed to be significantly reduced by treatment with ISRIB (Figures 15A and 15C), and M1-specific genes It was confirmed that the mRNA expression of IL-6 and Nos2 was significantly decreased, and the mRNA expression of M2-specific genes Arg1 and Fizz1 was significantly increased by administration of ISRIB (Figures 15B and 15D). As a result of the above results, it was confirmed that when eIF2α-ATF4 signaling in vivo is inhibited by ISRIB administration, obesity and related metabolic symptoms are improved.

<실시예 5> eIF2α-ATF4 경로 억제에 따른 갈색 및 베이지색 지방 세포 분화 확인<Example 5> Confirmation of brown and beige adipocyte differentiation due to inhibition of eIF2α-ATF4 pathway

상기 실시예 4에서 ISRIB의 투여가, HFD 비만 마우스에서 체중 증가를 지연시키는 것을 확인하였으며, ISRIB는 식이 섭취에 영향을 줄 수 있는 뇌 영역에 영향을 미치는 것이 알려져 있는 바, ISRIB의 투여로 마우스의 식이량(food intake)에 변화가 있는지 확인하였다. 그 결과, ND 마우스 또는 HFD 비만 마우스에서 DMSO 또는 ISRIB의 투여에 따른 식이량은 유의적인 차이가 없는 것을 확인하였다(도 16A). 그러나, HFD 비만 마우스에서, Vehicle 군과 비교하여, ISRIB 투여군에서 직장 체온 증가가 확인되었으며, ND 급여 마우스에서는 코어 체온에 유의적인 차이가 없는 것을 확인하였다(도 16B). 또한, HFD 비만 마우스에 ISRIB를 투여하면, 산소 소비량이(VO2) 현저히 증가하는 것을 확인하였으며(도 16C), 신체 활동에서는 ND 마우스 및 HFD 비만 마우스에서 Vehicle 군 및 ISRIB 군에서 유의적인 차이가 확인되지 않아(도 16D), 상기의 결과로부터 eIF2α-ATF4 경로를 ISRIB로 억제하면, 식이량 및 활동량에 변화 없이, 에너지 소비를 증가시켜 식이 유발성 비만을 개선시키는 것을 확인하였다.In Example 4, it was confirmed that the administration of ISRIB delayed weight gain in HFD obese mice, and since ISRIB is known to affect brain regions that can affect food intake, the administration of ISRIB decreased the weight gain in mice. We checked whether there were any changes in food intake. As a result, it was confirmed that there was no significant difference in the dietary amount according to the administration of DMSO or ISRIB in ND mice or HFD obese mice (FIG. 16A). However, in HFD obese mice, an increase in rectal body temperature was confirmed in the ISRIB-administered group compared to the Vehicle group, and there was no significant difference in core body temperature in ND-fed mice (FIG. 16B). In addition, when ISRIB was administered to HFD obese mice, oxygen consumption (VO 2 ) was confirmed to significantly increase (Figure 16C), and significant differences in physical activity were confirmed between the Vehicle group and the ISRIB group in ND mice and HFD obese mice. (Figure 16D), it was confirmed from the above results that inhibiting the eIF2α-ATF4 pathway with ISRIB improves diet-induced obesity by increasing energy consumption without changing the amount of food or activity.

갈색 및 베이지색 지방 조직(Brown adipose tissue, BAT)은 열 생성을 통한 에너지 소비에 중요한 역할을 하는 특수한 세포로서, 결합 해제 단백질 1(uncoupling protein 1, UCP1)을 분리하여 열을 생성하여, 미토콘드리아 호흡의 분리를 포함하는 과정으로, 저장된 에너지를 열로 변환하여 체온 및 에너지 대사를 저절하는 세포이다. 이에, 본 발명에서는 eIF2α-ATF4 신호전달의 억제가 갈색 및 베이지색 지방 세포의 열생성 활동을 증가시킬 수 있는지 확인하였다. UCP1의 발현은 ISRIB를 투여한 ND 마우스 및 HFD 비만 마우스 모두에서 BAT 및 scWAT에서 현저히 증가하였으며(도 17A 및 도 17B), HFD 비만 마우스의 BAT 및 scWAT에서, Vehicle 군과 비교하여 ISRIB 투여 군에서는 열 발생 유전자인 Ucp1, Prdm16(PR domain containing 16), Cox8b(Cytochrome c oxidase subunit 8 B) 및 Pgc1a(Peroxisome proliferator-activated receptor gamma coactivator 1-alpha)의 mRNA 발현이 유의적으로 증가한 것을 확인하였다(도 18A 및 도 18B). 또한, BAT 및 scWAT에서 UCP1 단백질 및 tyrosine hydroxylase (TH)의 양이 HDF 비만 마우스에서 ISRIB의 투여에 따라 증가한 것을 확인하였다(도 19A 및 도 19B). 또한, ISRIB의 투여가, 교감 신경 말단에서 방출되는 신경 전달 물질인 노르에피네프린(norepinephrine)의 수치를 증가하시키는 것을 확인하였다(도 20). 노르에피네프린은 갈색 및 베이지색 지방세포에서 열 발생을 활성화 시키는 것으로 알려져 있으며, 상기의 결과로부터, eIF2α-ATF4 경로가, 갈색 및 베이지색 지방세포의 열 생성을 감소시키나, ISRIB의 처리로 감소된 열 생성이 증가되어, 에너지 대사가 촉진되는 것을 확인하였다.Brown and beige adipose tissue (BAT) is a special cell that plays an important role in energy consumption through heat generation. It generates heat by dissociating uncoupling protein 1 (UCP1), thereby promoting mitochondrial respiration. This is a process that involves the separation of cells, which convert stored energy into heat to naturally regulate body temperature and energy metabolism. Accordingly, the present invention confirmed whether inhibition of eIF2α-ATF4 signaling could increase the thermogenic activity of brown and beige adipocytes. Expression of UCP1 was significantly increased in BAT and scWAT of both ND mice and HFD obese mice administered ISRIB (Figures 17A and 17B), and in BAT and scWAT of HFD obese mice, fever was observed in the ISRIB group compared to the Vehicle group. It was confirmed that the mRNA expression of developmental genes Ucp1, Prdm16 (PR domain containing 16), Cox8b (Cytochrome c oxidase subunit 8 B), and Pgc1a (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha) was significantly increased (Figure 18A and Figure 18B). In addition, it was confirmed that the amounts of UCP1 protein and tyrosine hydroxylase (TH) in BAT and scWAT increased with the administration of ISRIB in HDF obese mice (Figures 19A and 19B). Additionally, it was confirmed that administration of ISRIB increased the level of norepinephrine, a neurotransmitter released from sympathetic nerve terminals (FIG. 20). Norepinephrine is known to activate thermogenesis in brown and beige adipocytes, and from the above results, it can be seen that the eIF2α-ATF4 pathway reduces thermogenesis in brown and beige adipocytes, but the heat was reduced by treatment with ISRIB. It was confirmed that production was increased and energy metabolism was promoted.

<실시예 6> ATF4 결핍에 따른 대사 기능 장애 및 염증 감소 확인<Example 6> Confirmation of decreased metabolic function and inflammation due to ATF4 deficiency

상기의 실시예들로부터 eIF2α-ATF4 경로가 M2 대식세포 분극화를 억제하고, HFD 비만 마우스에서 열 발생 활동을 감소시키는 것을 확인하였으나, ISRIB의 투여가 신체의 다양한 기관에도 영향을 미칠 수 있기에, ISRIB의 투여가 eIF2α-ATF4 경로를 억제하는지 구체적으로 확인하였다. ATF4가 eIF2α 경로에서의 주요 하위 조절자이기에, 라이소자임 프로모터(Lyz2-cre)의 제어 하에 CRE 재조합효소를 발현하는 마우스를 Atf4와 교배하여 골수성 특정 Atf4 결핍(Atf4 f/f ;Lyz2-cre) 마우스를 제작하였다(도 21A). ATF4 단백질은 BMDM 및 복막 대식세포에서 선택적으로 결실되었으며, epWAT 및 scWAT에서는 정상적으로 발현되는 것을 확인하여, 골수성 ATF4 결실을 확인하였다(도 21B). Atf4 f/f ;Lyz2-creAtf4f f/f 마우스에 ND 식이를 공급했을 때 발생하는 표현형에는 유의적인 변화가 없었으며, 체중, 혈청 지질 함량, 간 지질 축적, 포도당 및 인슐린 내성에서 유의적인 차이는 확인되지 않았다(도 22A 내지 도 22D, 도 23A 내지 도 23D). 그러나, Atf4 f/f ;Lyz2-creAtf4f f/f 마우스에 HFD를 급여하면, Atf4f f/f 마우스와 비교하여, Atf4 f/f ;Lyz2-cre 마우스에서는 체중이 현저히 감소한 것을 확인하였다(도 22A 및 도 22B). 또한, 간 및 혈청에서 지질 수준이 감소하고(도 23C 및 도 23D), 포도당 내성 및 인슐린 내성이 개선된 것을 확인하였다(도 22C 및 도 22D). epWAT 및 scWAT의 크기는 HFD 급여 시 Atf4f f/f 마우스와 비교하여 Atf4 f/f ;Lyz2-cre 마우스에서 유의적으로 감소하였으며(도 23B), ISRIB 투여 마우스에서 확인된 결과와 동일하게, HFD 급여 시 Atf4f f/f 마우스와 비교하여 Atf4 f/f ;Lyz2-cre 마우스의 epWAT 및 scWAT에서 CLS가 유의적으로 감소하였다(도 24A 및 도 24B). 상기의 결과로, Atf4의 결실이 지방 조직의 염증을 감소시키는 것을 확인하였다.From the above examples, it was confirmed that the eIF2α-ATF4 pathway suppresses M2 macrophage polarization and reduces thermogenic activity in HFD obese mice. However, since the administration of ISRIB can also affect various organs of the body, the use of ISRIB It was specifically confirmed whether administration inhibited the eIF2α-ATF4 pathway. As ATF4 is a key downstream regulator in the eIF2α pathway, mice expressing CRE recombinase under the control of the lysozyme promoter (Lyz2-cre) were crossed with Atf4 to generate myeloid-specific Atf4-deficient ( Atf4 f/f ;Lyz2-cre ) mice. It was manufactured (Figure 21A). ATF4 protein was selectively deleted in BMDM and peritoneal macrophages, and was found to be expressed normally in epWAT and scWAT, confirming myeloid ATF4 deletion (Figure 21B). Atf4 f/f ;Lyz2-cre and Atf4f f/f There were no significant changes in the phenotype that occurred when mice were fed an ND diet, and no significant differences were observed in body weight, serum lipid content, liver lipid accumulation, glucose, and insulin resistance (Figures 22A to 22D, Figure 23A to Figure 23D). However, when HFD was fed to Atf4 f/f ;Lyz2-cre and Atf4f f/f mice, it was confirmed that body weight was significantly reduced in Atf4 f/f ;Lyz2-cre mice compared to Atf4f f/f mice (Figure 22A and Figure 22B). In addition, it was confirmed that lipid levels were reduced in the liver and serum (Figures 23C and 23D), and glucose tolerance and insulin resistance were improved (Figures 22C and 22D). The sizes of epWAT and scWAT were significantly reduced in Atf4 f /f ;Lyz2-cre mice compared to Atf4f f /f mice when fed on a HFD (Figure 23B), consistent with the results found in mice administered ISRIB. Compared to Atf4f f/f mice, CLS was significantly reduced in epWAT and scWAT of Atf4 f/f ;Lyz2-cre mice (Figures 24A and 24B). From the above results, it was confirmed that deletion of Atf4 reduces inflammation in adipose tissue.

<실시예 7> ATF4 골수 특이 결실 마우스에서 M1/M2 분극화 교정 효과 확인<Example 7> Confirmation of M1/M2 polarization correction effect in ATF4 bone marrow-specific deletion mice

Atf4 골수성 특정 결실이 대식세포 분극화에 영향을 미치는지 확인하였다. 구체적으로, ND 및 HFD를 급여한 Atf4 f/f ;Lyz2-creAtf4f f/f 마우스의 epWAT 또는 scWAT에서 분리된 SVF를 사용하여 유세포분석을 수행하였으며, ND를 급여한 Atf4 f/f ;Lyz2-creAtf4f f/f 마우스의 epWAT 및 scWAT 유래 SVF에서는 F4/80+;CD11c+ 및 F4/80+;CD206+ 대식세포에 유의적인 차이는 없었다(도 25). 그러나, HDF를 급여한 Atf4f f/f 마우스와 비교하여, Atf4 f/f ;Lyz2-cre의 epWAT 및 scWAT 유래 SVF에서는 F4/80+;CD11c+ 세포가 현저히 감소되어 있었으며, F4/80+;CD206+ 세포가 현저히 증가된 것을 확인하여(도 26A 및 도 26B), 골수성 ATF4 결실이 HFD로 유도되는 M1 분극을 억제하고, M2 분극 억제를 개선시키는 것을 확인하였다.We determined whether myeloid-specific deletion of Atf4 affects macrophage polarization. Specifically, flow cytometry was performed using SVF isolated from epWAT or scWAT of Atf4 f/f ;Lyz2-cre and Atf4f f/f mice fed ND and HFD, and Atf4 f/f ;Lyz2 fed ND. There was no significant difference in F4/80+;CD11c+ and F4/80+;CD206+ macrophages in SVF derived from epWAT and scWAT of -cre and Atf4f f/f mice (Figure 25). However, compared to Atf4f f/f mice fed HDF, F4/80+;CD11c+ cells were significantly reduced in SVF derived from epWAT and scWAT of Atf4 f/f ;Lyz2-cre , and F4/80+;CD206+ cells were significantly reduced. was confirmed to be significantly increased (Figures 26A and 26B), confirming that myeloid ATF4 deletion suppresses M1 polarization induced by HFD and improves suppression of M2 polarization.

또한, Atf4 결실이 대식세포 분극화에 미치는 영향을 추가로 확인하기 위하여, 지방 조직뿐만 아니라, ND 또는 HFD 급여 Atf4 f/f ;Lyz2-creAtf4f f/f 마우스의 scWAT 및 epWAT의 SVF에서 대식세포 분극화와 관련된 mRNA의 발현을 확인한 결과, HFD를 급여한 Atf4f f/f 마우스와 비교하여, Atf4 f/f ;Lyz2-cre 마우스에서는 전체 조직에서 M1 특이적 유전자인 IL-6 및 Nos2의 mRNA 발현이 유의적으로 감소하였으며, M2 특이적 유전자인 Arg1 및 Fizz1의 발현은 유의적으로 증가한 것을 확인하였으며(도 27A 및 도 27C), scWAT 및 epWAT 유래 SVF에서도 동일한 발현을 확인하였다(도 27B 및 도 27D). 특히, Atf4f f/f 마우스와 비교하여, Atf4 f/f ;Lyz2-cre의 SVF에서 Chop 수준이 현저하게 감소하였으며, 이는 eIF2α-ATF4 신호 전달 경로가 Atf4 f/f ;Lyz2-cre 마우스의 대식세포에서 효과적으로 제거된 것을 시사한다.Additionally, to further confirm the effect of Atf4 deletion on macrophage polarization, macrophages were analyzed in adipose tissue as well as in the SVF of scWAT and epWAT of ND- or HFD-fed Atf4 f/f ;Lyz2-cre and Atf4f f/f mice. As a result of confirming the expression of mRNA related to polarization, compared to Atf4f f/f mice fed a HFD, mRNA expression of M1-specific genes IL-6 and Nos2 was decreased in Atf4 f/f ;Lyz2-cre mice in all tissues. It was confirmed that the expression of M2-specific genes Arg1 and Fizz1 was significantly increased (Figures 27A and 27C), and the same expression was also confirmed in SVF derived from scWAT and epWAT (Figures 27B and 27D). . In particular, compared with Atf4f f/f mice, the level of Chop was significantly reduced in the SVF of Atf4 f/f ;Lyz2-cre , indicating that the eIF2α-ATF4 signaling pathway was activated in macrophages of Atf4 f/f ;Lyz2-cre mice. This suggests that it has been effectively removed from .

<실시예 8> ATF4의 M2 분극에 대한 ER 스트레스 억제 연관성 확인<Example 8> Confirmation of the association of ER stress inhibition with M2 polarization of ATF4

ATF4가 ER 스트레스 조건에서, 세포 자율적 방식으로 대식세포 분극화를 조절하는지 확인하였다. Atf4 f/f ;Lyz2-creAtf4f f/f 마우스에서 분리된 BMDM에 10 ng/ml의 INFγ 또는 IL-4와 LPS(10 ng/ml)를 처리하여 반응시켰다. 그 후 TM의 처리에 따른 M1 및 M2 분극화를 확인하였다(도 28A). 그 결과, 상기 실시예의 결과에서와 동일하게, TM의 처리에 따라 Atf4f f/f 마우스 유래 BMDM에서 ER 스트레스는 F4/80+;CD11c+ 세포의 수를 증가시키고, F4/80+;CD206+ 세포의 수는 감소시켰으나, Atf4 f/f ;Lyz2-cre 마우스의 BMDM에서는 F4/80+;CD11c+ 세포 및 F4/80+;CD206+ 세포의 수는 유의적인 차이가 확인되지 않았다(도 28B 및 도 29A). 또한, TM 처리 시 감소된 M2 특이적 유전자인 Arg1, Ym 및 Fizz1의 mRNA 발현이 ATF4 결핍 BMDM에서 역전된 것을 확인하였으며(도 29B), ARG1 단백질 또한 BMDM에서 Atf4 결실에 따라 발현이 증가되었다(도 29C).We confirmed whether ATF4 regulates macrophage polarization in a cell-autonomous manner under ER stress conditions. BMDM isolated from Atf4 f/f ;Lyz2-cre and Atf4f f/f mice were treated with 10 ng/ml of INFγ or IL-4 and LPS (10 ng/ml). Afterwards, M1 and M2 polarization according to TM treatment was confirmed (Figure 28A). As a result, as in the results of the above example, ER stress increases the number of F4/80+;CD11c+ cells and the number of F4/80+;CD206+ cells in BMDM derived from Atf4f f/f mice upon treatment with TM. was decreased, but no significant difference was observed in the numbers of F4/80+;CD11c+ cells and F4/80+;CD206+ cells in BMDM of Atf4 f/f ;Lyz2-cre mice (Figures 28B and 29A). In addition, it was confirmed that the mRNA expression of M2-specific genes Arg1, Ym, and Fizz1, which were decreased upon TM treatment, was reversed in ATF4-deficient BMDM (Figure 29B), and the expression of ARG1 protein was also increased following Atf4 deletion in BMDM (Figure 29B). 29C).

또한, ATF4의 역할을 추가로 확인하기 위하여, CMV(cytomegalovirus) 프로모터 통제하에, ATF4(Ad-ATF4) 또는 β-gal 단백질(Ad-β-gal)을 발현하는 아데노바이러스를 이용하였으며, M2 분극화 대식세포(F4/80+;CD206+)의 수는 Ad-ATF4 감염으로 유의적으로 감소하였으나, Ad-β-gal 감염에 에서는, 발현에 유의적인 차이가 없으며(도 30A), Ad-ATF4 감염으로 인한 ATF4의 고발현은 F4/80+;CD11c+ 세포의 수를 증가시켰다(도 28C). 또한, ATF4의 고발현 유도는 Chop 유전자의 mRNA 발현을 유의적으로 증가시켰으며, M2 특이적 유전자인 Arg1, Ym1 및 Fizz1의 mRNA 발현을 유의적으로 감소시켰다(도 30B). 상기의 결과로 ATF4가 ER 스트레스 조건에서 M2 분극화 억제에 기여하는 것을 확인하였다.In addition, to further confirm the role of ATF4, adenoviruses expressing ATF4 (Ad-ATF4) or β-gal protein (Ad-β-gal) under the control of the CMV (cytomegalovirus) promoter were used, and M2 polarization vs. The number of phagocytes (F4/80+; CD206+) was significantly decreased by Ad-ATF4 infection, but in Ad-β-gal infection, there was no significant difference in expression (Figure 30A), and the High expression of ATF4 increased the number of F4/80+;CD11c+ cells (Figure 28C). In addition, high-expression induction of ATF4 significantly increased the mRNA expression of the Chop gene and significantly decreased the mRNA expression of the M2-specific genes Arg1, Ym1, and Fizz1 (Figure 30B). The above results confirmed that ATF4 contributes to the inhibition of M2 polarization under ER stress conditions.

그 후 ATF4가 M2 분극화를 억제시키는 기전을 확인하였다. M2 아형에 대한 대식세포 분극화는 IL-4가 수용체(IL-4 receptor, IL-4R)에 결합하고, STAT6의 후속 인산화를 시작으로 M2 유전자의 발현을 활성화 시키는 바, IL-4R의 구성 요소를 암호화하는 IL-4rα 유전자의 mRNA 발현이 마우스 배아 섬유아세포(mouse embryonic fibroblast, MEF)에서 ER 스트레스에 의해 유의하게 감소되는 것이 확인되었기에, IL-4rα 발현에 대한 ATF4의 효과를 확인하였다. 그 결과, TM의 처리가 Atf4f/f;Lyz2-cre BMDM에서보다 Atf4f/f BMDM에서 IL-4rα mRNA 발현을 현저히 감소시키는 것을 확인하였으며(도 30C), ATF4의 고발현 유도는 IL-4rα 유전자의 mRNA 발현을 억제하였다(도 30D).Afterwards, the mechanism by which ATF4 suppresses M2 polarization was confirmed. Polarization of macrophages toward the M2 subtype involves binding of IL-4 to its receptor (IL-4 receptor, IL-4R), starting with subsequent phosphorylation of STAT6 and activating the expression of the M2 gene, a component of the IL-4R. Since it was confirmed that the mRNA expression of the encoding IL-4rα gene was significantly reduced by ER stress in mouse embryonic fibroblast (MEF), the effect of ATF4 on IL-4rα expression was confirmed. As a result, it was confirmed that treatment with TM significantly reduced IL-4rα mRNA expression in Atf4f/f BMDMs compared to Atf4f/f;Lyz2-cre BMDMs (Figure 30C), and the induction of high expression of ATF4 resulted in an increase in IL-4rα gene expression. mRNA expression was suppressed (Figure 30D).

또한, TM의 투여는 Atf4f/f 마우스에서 IL-4rα 단백질의 발현을 유의적으로 감소시켰지만, Atf4f/f;Lyz2-cre 마우스에서는 발현에 유의적인 변화가 없었다. 또한, IL-4 수용체 신호 전달의 하위 경로인 STAT6의 인산화된 형태(pSTAT6)는 IL-4의 처리로 유도되었으나, Atf4f f/f f 마우스에서 TM의 처리에 의하여 감소하였다. 그러나, Atf4 f/f ;Lyz2-cre 마우스에서는 TM 처리에 의하여, pSTAT6의 발현에 유의적인 차이는 확인되지 않았다(도 31A).Additionally, administration of TM significantly reduced the expression of IL-4rα protein in Atf4f/f mice, but there was no significant change in expression in Atf4f/f;Lyz2-cre mice. In addition, the phosphorylated form of STAT6 (pSTAT6), a downstream pathway of IL-4 receptor signaling, was induced by treatment with IL-4, but was decreased by treatment with TM in Atf4f f/f f mice. However, in Atf4 f/f ;Lyz2-cre mice, no significant difference in pSTAT6 expression was observed due to TM treatment (Figure 31A).

그 후 eIF2α-ATF4 경로가 IL-4rα 유전자 발현을 억제하는 방법을 확인하였다. C/EBPβ 유전자는 간 강화 활성화 단백질-1(liver-enriched activator protein, LAP), LPA-2 및 간 강화 억제 단백질(liver-enriched inhibitory protein, LIP)을 포함하는 세가지 동형 단백질(isoform)을 생산할 수 있어, 동형 단백질 중에서 LIP는 eIF2α-ATF4 종속적으로 ER 스트레스에 따라 크게 증가하는 것이 알려져 있다. 또한 ER 스트레스로 유도된 LIP는 MEF에서 IL-4rα 유전자의 전사를 억제할 수 있다. 그 결과, Atf4f f/f BMDM에서는 LIP 단백질 발현이 유의하게 증가했지만 Atf4 f/f ;Lyz2-cre BMDM에서는 LIP 단백질 발현이 현저히 감소하였다(도 31B). 또한, ATF4의 발현이 Ad-ATF4에 감염에 의해 과발현 되었을 때에는, LIP 단백질 수준이 Atf4 f/f ;Lyz2-cre BMDM에서 증가하였으며(도 31C), 상기의 결과로, LIP가 ER 스트레스 및 ATF4 발현 시 IL-4rα의 발현을 억제하는 전사 억제인자로 작용하는 것을 확인하였다. 따라서, eIF2α-ATF4 경로 활성화와 그에 따른 LIP의 유도가 IL-4rα 유전자 발현을 억제하여, M2 분극화에 필요한 IL-4/IL-13 신호의 손상을 유도하는 것을 확인하였다.Afterwards, we confirmed how the eIF2α-ATF4 pathway suppresses IL-4rα gene expression. The C/EBPβ gene can produce three isoforms, including liver-enriched activator protein (LAP), LPA-2, and liver-enriched inhibitory protein (LIP). It is known that, among isoform proteins, LIP increases significantly upon ER stress in an eIF2α-ATF4-dependent manner. Additionally, LIP induced by ER stress can inhibit the transcription of the IL-4rα gene in MEFs. As a result, LIP protein expression was significantly increased in Atf4f f/f BMDMs, but LIP protein expression was significantly decreased in Atf4 f/f ;Lyz2-cre BMDMs (Figure 31B). In addition, when the expression of ATF4 was overexpressed by infection with Ad-ATF4, the LIP protein level increased in Atf4 f/f ;Lyz2-cre BMDM (Figure 31C), and as a result, LIP was associated with ER stress and ATF4 expression. It was confirmed that it acts as a transcriptional repressor that suppresses the expression of IL-4rα. Therefore, it was confirmed that activation of the eIF2α-ATF4 pathway and subsequent induction of LIP suppresses IL-4rα gene expression, leading to impairment of IL-4/IL-13 signaling required for M2 polarization.

<실시예 9> ATF4 골수 특이 결실의 갈색 및 베이지색 지방 에너지 소비 증가 확인<Example 9> Confirmation of increased brown and beige fat energy consumption in ATF4 bone marrow-specific deletion

ISRIB 투여로 eIF2α-ATF4 신호 전달의 억제가 에너지 소비 및 갈색/베이지색 지방세포 활동을 증가시키는 것을 확인하였으나, 대식세포 경로에서 직접적인 역할을 확인하였다. 또한, 상기 실시예에서 Atf4 f/f ;Lyz2-cre 마우스가 Atf4f f/f 마우스와 비교하여 HFD 유도 비만에 저항성이 있는 것을 확인하였으며, ISRIB 처리 결과와 유사하게, Atf4 f/f ;Lyz2-cre 마우스와 Atf4f f/f 마우스에 ND 및 HFD를 급여하면, 식이량에는 유의적인 변화가 없었으나(도 32A), Atf4 f/f ;Lyz2-cre 마우스에 HFD를 급여하면, 직장 온도가 유의적으로 증가한 것을 확인하였다(도 32B). 또한, 총 산소 소모량(VO2)은 제지방으로 정량하였을 때, HFD를 급여한 Atf4f f/f 마우스보다 Atf4 f/f ;Lyz2-cre 마우스에서 현저히 증가하였으며(도 32C), HFD 또는 ND를 급여한 각 마우스에서 신체 활동에는 유의적인 차이가 없었다(도 32D). 따라서, Atf4 f/f ;Lyz2-creAtf4f f/f 마우스 간의 에너지 소비의 차이는, 식이 섭취, 총 활동, 유전자형 및 식이량과는 상관관계가 없으며, 열 발생 능력과 관련된 것을 확인하였다.It was confirmed that inhibition of eIF2α-ATF4 signaling by ISRIB administration increased energy consumption and brown/beige adipocyte activity, but its direct role in the macrophage pathway was confirmed. In addition, in the above example, it was confirmed that Atf4 f/f ;Lyz2-cre mice were resistant to HFD-induced obesity compared to Atf4f f/f mice, and similar to the results of ISRIB treatment, Atf4 f/f ;Lyz2-cre When ND and HFD were fed to mice and Atf4f f/f mice, there was no significant change in food amount (Figure 32A), but when HFD was fed to Atf4 f/f ;Lyz2-cre mice, rectal temperature was significantly decreased. An increase was confirmed (Figure 32B). In addition, total oxygen consumption (VO 2 ), when quantified by lean mass, was significantly increased in Atf4 f/f ;Lyz2-cre mice than in Atf4f f/f mice fed HFD (Figure 32C), and was significantly increased in Atf4 f/f ; Lyz2-cre mice fed HFD or ND. There was no significant difference in physical activity in each mouse (Figure 32D). Therefore, it was confirmed that the difference in energy expenditure between Atf4 f/f ;Lyz2-cre and Atf4f f/f mice is not correlated with food intake, total activity, genotype, or amount of food, but is related to thermogenic ability.

또한, ISRIB 투여 마우스와 표현형의 유사성을 감안하여, WAT에서 BAT 및 베이지 지방 세포의 활성화를 확인하였다. 그 결과, 면역조직화학 염색 및 면역블로팅 분석에서, HFD를 급여한 Atf4f f/f 마우스와 비교하여, Atf4 f/f ;Lyz2-cre 마우스의 BAT에서 UCP1 단백질의 발현이 유의하게 증가하였으며(도 33A 및 도 33B), 열 발생 단백질인 Ucp1, Prdm16, Cox8b 및 Pcg1α의 발현이 현저히 증가한 것을 확인하였다(도 33C). 특히, BAT에서 UCP1 단백질 발현과 함께, HFD 급여 Atf4 f/f ;Lyz2-cre 마우스는 scWAT에서 UCP1 및 TH 단백질 수준이 현저히 증가하였으며(도 34A 및 도 34B), 열 발생 단백질인 Ucp1, Prdm16, Cox8b 및 Pcg1α의 발현 또한 HFD를 급여한 Atf4f f/f 마우스와 비교하여, HFD 급여 Atf4 f/f ;Lyz2-cre 마우스의 scWAT에서 증가되어 있었다(도 34C). 또한, ISRIB 투여와 유사하게, 교감 신경 말단에서 분비되는 신경 전달 물질인 노르에피네프린의 수치 또한 증가하였으며(도 35), 상기의 결과로 ER 스트레스와 대식세포에서 ATF4의 유도가 에너지 소비를 억제하고 비만 발달을 촉진하는 것을 확인하였다.Additionally, considering the similarity in phenotype with ISRIB-administered mice, activation of BAT and beige adipocytes in WAT was confirmed. As a result, immunohistochemical staining and immunoblotting analysis showed that the expression of UCP1 protein was significantly increased in the BAT of Atf4 f/f ;Lyz2-cre mice compared to Atf4f f /f mice fed HFD (Figure 33A and Figure 33B), it was confirmed that the expression of thermogenic proteins Ucp1, Prdm16, Cox8b, and Pcg1α was significantly increased (Figure 33C). In particular, along with UCP1 protein expression in BAT, HFD-fed Atf4 f/f ;Lyz2-cre mice had significantly increased UCP1 and TH protein levels in scWAT (Figures 34A and 34B), and thermogenic proteins Ucp1, Prdm16, and Cox8b. And the expression of Pcg1α was also increased in scWAT of HFD-fed Atf4 f/f ;Lyz2-cre mice compared to HFD-fed Atf4f f/ f mice (FIG. 34C). In addition, similar to ISRIB administration, the level of norepinephrine, a neurotransmitter secreted from sympathetic nerve terminals, also increased (Figure 35), and as a result, ER stress and induction of ATF4 in macrophages suppress energy consumption and obesity. It has been confirmed that it promotes development.

<실시예 10> ATF4 골수 특이 결실의 저온 유도 열 발생 증가 확인 <Example 10> Confirmation of increased cold-induced thermogenesis in ATF4 bone marrow-specific deletion

골수 특이 ATF4의 결실이, 적응성 열 발생에 미치는 영향을 확인하였다. 구체적으로 4℃의 저온 스트레스에 마우스를 노출시켰으며, 그 결과, Atf4f f/f 마우스와 비교하여, Atf4 f/f ;Lyz2-cre 마우스는 최대 48시간 까지 체온을 유지하는 것을 확인하였다(도 36A). 또한, 체중과 BAT 무게에는 유의적인 차이가 없었으나(도 37A 및 도 37B). Atf4 f/f ;Lyz2-cre 마우스의 BAT는 Atf4f f/f 마우스와 비교하여, 지질 공포 크기가 감소하고(도 38A), UCP1의 발현이 증가하였다(도 36B 및 36C). 열 발생 유전자인 Ucp1, Prdm16, Cox8b 및 Pcg1α의 발현은 Atf4f f/f 마우스보다 Atf4 f/f ;Lyz2-cre 마우스의 BAT에서 증가하였다(도 36D).The effect of bone marrow-specific deletion of ATF4 on adaptive thermogenesis was confirmed. Specifically, mice were exposed to cold stress at 4°C, and as a result, compared to Atf4f f/f mice, Atf4 f/f ;Lyz2-cre mice were confirmed to maintain body temperature for up to 48 hours (Figure 36A ). Additionally, there was no significant difference in body weight and BAT weight (Figures 37A and 37B). BAT of Atf4 f/f ;Lyz2-cre mice had reduced lipid vacuole size (Figure 38A) and increased expression of UCP1 (Figures 36B and 36C) compared to Atf4f f/f mice. Expression of thermogenic genes Ucp1, Prdm16, Cox8b, and Pcg1α was increased in BAT of Atf4 f /f ;Lyz2-cre mice than in Atf4f f/f mice (Figure 36D).

또한, 저온 환경에 노출된 Atf4 f/f ;Lyz2-cre 마우스의 scWAT는 UCP1을 발현하는 베이지색 지방 세포의 수를 현저히 증가시켰으며(도 38B 및 도 39A), UCP1 및 TH의 발현이 증가하고(도 39B), 열 발생 유전자의 발현이 증가하였다(도 39C).In addition, scWAT from Atf4 f/f ;Lyz2-cre mice exposed to a cold environment showed a significant increase in the number of beige adipocytes expressing UCP1 (Figures 38B and 39A), and increased expression of UCP1 and TH. (Figure 39B), the expression of thermogenic genes increased (Figure 39C).

또한, ISRIB 투여 및 HFD 유도 비만 Atf4 f/f ;Lyz2-cre 마우스와 마찬가지로 혈청 및 BAT에서 노르에피네프린 수치가 증가하는 것을 확인하였으며(도 40A 및 도 40B), 상기의 결과로, ATF4 골수 특이적 결실이 BAT 및 베이지 지방 세포 모두의 열 발생 활성을 증가시켜, 에너지 소비를 증가시키는 것을 확인하였다.In addition, as in ISRIB-administered and HFD-induced obese Atf4 f/f ;Lyz2-cre mice, norepinephrine levels were confirmed to increase in serum and BAT (Figures 40A and 40B), and as a result, ATF4 bone marrow-specific deletion It was confirmed that this increased the thermogenic activity of both BAT and beige fat cells, thereby increasing energy consumption.

따라서, 본 발명은 eIF2α 인산화 및 이로 인한 하위 신호전달경로가, 대사염증 질환과 관련되어있는 것을 규명하였으며, eIF2α 인산화 및 이로 인한 하위 신호전달경로에서 eIF2α 인산화와 관련된 ATF4가 통합스트레스 반응 및 대사염증과 관련도가 높은 것을 확인하였다. 또한, ATF4의 결핍이 체중증가를 억제하고, 대식세포의 극성화를 조절하는 것을 확인하였으며, ATF4를 억제하는 eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제가, 비만과 같은 대사염증 질환에 효과가 있는 것을 확인하였다. 또한, eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제가, 비만에서 증가된 염증형 대식세포 M1의 발현과, 감소된 항염증형 대식세포 M2의 발현을 조절하여, 대식세포 불균형을 개선시키는 것을 확인하였으며, eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제가 대사염증성 질환을 개선시킬 수 있는 것을 확인하였다.Therefore, the present invention has identified that eIF2α phosphorylation and the resulting downstream signaling pathways are related to metabolic inflammatory diseases, and that ATF4, which is related to eIF2α phosphorylation in eIF2α phosphorylation and the resulting downstream signaling pathways, is involved in integrated stress response and metabolic inflammation. It was confirmed that the degree of relevance was high. In addition, it was confirmed that ATF4 deficiency suppresses weight gain and regulates the polarization of macrophages, and eIF2α phosphorylation, which inhibits ATF4, and the resulting regulator of downstream signaling pathways are effective in metabolic inflammatory diseases such as obesity. confirmed. In addition, it was confirmed that eIF2α phosphorylation and the resulting regulator of downstream signaling pathways improved macrophage imbalance by regulating the increased expression of inflammatory macrophages M1 and decreased anti-inflammatory macrophage M2 expression in obesity. , it was confirmed that eIF2α phosphorylation and its regulation of downstream signaling pathways can improve metabolic inflammatory diseases.

Claims (26)

eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를 유효성분으로 포함하는 대사염증성 질환의 예방 또는 치료용 조성물.A composition for preventing or treating metabolic inflammatory diseases, comprising as an active ingredient a regulator of eIF2α phosphorylation and the resulting downstream signaling pathway. 제 1항에 있어서,
상기 하위 신호전달경로는 ATF4인 것인, 조성물.
According to clause 1,
A composition wherein the lower signaling pathway is ATF4.
제 1항에 있어서,
상기 신호전달경로 조절제는 하기 화학식 1로 표시되는 화합물인 것인, 조성물
[화학식 1]
.
According to clause 1,
A composition wherein the signal transduction pathway regulator is a compound represented by the following formula (1):
[Formula 1]
.
제 3항에 있어서,
상기 화합물은 eIF2α의 하위 신호전달경로인 ATF4를 억제하는 것인, 조성물.
According to clause 3,
A composition wherein the compound inhibits ATF4, a downstream signaling pathway of eIF2α.
제 1항에 있어서,
상기 조성물은 대식세포 극성화를 조절하는 것인, 조성물.
According to clause 1,
The composition regulates macrophage polarization.
제 5항에 있어서,
상기 대식세포는 전염증형 마크로파지 M1(pro-inflammatory M1) 또는 항염증형 마크로파지 M2(anti-inflammatory M2)인 것인, 조성물.
According to clause 5,
The composition, wherein the macrophages are pro-inflammatory macrophage M1 (pro-inflammatory M1) or anti-inflammatory macrophage M2 (anti-inflammatory M2).
제 5항에 있어서,
상기 대식세포 극성화를 조절하는 것은, 전염증형 마크로파지 M1의 발현을 억제시키는 것인, 조성물.
According to clause 5,
A composition that regulates macrophage polarization by suppressing the expression of pro-inflammatory macrophage M1.
제 7항에 있어서,
상기 전염증형 마크로파지 M1의 발현을 억제시키는 것은 IL-1β(Interleukin 1 beta), IL-6(Interleukin 6) 또는 Nos2(Nitric oxide synthase 2)의 발현을 억제시키는 것인, 조성물.
According to clause 7,
A composition that inhibits the expression of pro-inflammatory macrophage M1 by inhibiting the expression of IL-1β (Interleukin 1 beta), IL-6 (Interleukin 6), or Nos2 (Nitric oxide synthase 2).
제 5항에 있어서,
상기 대식세포 극성화를 조절하는 것은, 항염증형 마크로파지 M2의 발현을 증가시키는 것인, 조성물.
According to clause 5,
A composition that regulates macrophage polarization by increasing the expression of anti-inflammatory macrophage M2.
제 9항에 있어서,
상기 항염증형 마크로파지 M2의 발현을 증가시키는 것은 Arg1(arginase-1), Ym1(chitinase 3-like 3) 또는 Fizz1(resistin-like-α)의 발현을 증가시키는 것인, 조성물.
According to clause 9,
A composition wherein increasing the expression of the anti-inflammatory macrophage M2 increases the expression of Arg1 (arginase-1), Ym1 (chitinase 3-like 3), or Fizz1 (resistin-like-α).
제 1항에 있어서,
상기 조성물은 지방조직의 대사염증을 억제시키는 것인, 조성물.
According to clause 1,
The composition is for suppressing metabolic inflammation of adipose tissue.
제 11항에 있어서,
상기 지방조직은 서혜부 백색 지방 조직(inguinal white adipose tissue, iWAT), 부고환 백색 지방 조직(epididymal white adipose tissue, eWAT) 또는 간(liver) 조직인 것인, 조성물.
According to clause 11,
The composition, wherein the adipose tissue is inguinal white adipose tissue (iWAT), epididymal white adipose tissue (eWAT), or liver tissue.
제 11항에 있어서,
상기 대사염증은 지방 조직의 크라운 유사 구조(Crown like structure, CLS)가 형성되는 것인, 조성물.
According to clause 11,
The composition, wherein the metabolic inflammation results in the formation of a crown-like structure (CLS) of adipose tissue.
제 1항에 있어서,
상기 조성물은 에너지 대사를 증가시키는 것인, 조성물.
According to clause 1,
The composition increases energy metabolism.
제 14항에 있어서,
상기 에너지 대사 증가는 갈색 지방(brown adipocytes) 또는 베이지색 지방(beige adipocytes)세포의 형성을 증가시키는 것인, 조성물.
According to clause 14,
A composition wherein the increase in energy metabolism increases the formation of brown adipocytes or beige adipocytes.
제 14항에 있어서,
상기 에너지 대사 증가는 산소 소비량을 증가시키는 것인, 조성물.
According to clause 14,
The composition, wherein the increase in energy metabolism increases oxygen consumption.
제 14항에 있어서,
상기 에너지 대사 증가는 체온을 증가시키는 것인, 조성물.
According to clause 14,
The composition, wherein the increase in energy metabolism increases body temperature.
제 17항에 있어서,
상기 체온을 증가시키는 것은, 열 발생 단백질 또는 열 발생 유전자 발현을 증가시키는 것인, 조성물.
According to clause 17,
A composition wherein increasing the body temperature increases expression of a thermogenic protein or thermogenic gene.
제 18항에 있어서,
상기 열 발생 단백질은 분리 단백질 1(uncoupling protein 1, UCP1) 또는 갑상선 호르몬(thyroid hormone)인 것인, 조성물.
According to clause 18,
A composition wherein the heat generating protein is uncoupling protein 1 (UCP1) or thyroid hormone.
제 18항에 있어서,
상기 열 발생 유전자는 UCP1, Prdm16(PR domain containing 16), Cox8b(Cytochrome c oxidase subunit 8 B) 및 Pgc1a(Peroxisome proliferator-activated receptor gamma coactivator 1-alpha)로 이루어진 군에서 선택된 것인, 조성물.
According to clause 18,
The composition, wherein the thermogenic gene is selected from the group consisting of UCP1, Prdm16 (PR domain containing 16), Cox8b (Cytochrome c oxidase subunit 8 B), and Pgc1a (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha).
제 14항에 있어서,
상기 에너지 대사를 증가는 혈청 내 노르에피네프린(norepinephrine)의 양을 증가시키는 것인, 조성물.
According to clause 14,
A composition that increases the energy metabolism by increasing the amount of norepinephrine in the serum.
제 1항에 있어서,
상기 대사염증성 질환은 비만(obesity), 간섬유증(hepatic fibrosis), 지방간(fatty liver), 알코올성 간질환(alcoholic liver disease), 제 1형 당뇨병(type 1 diabetes), 제 2형 당뇨병(type 2 diabetes), 저혈당증(hypoglycemia), 고콜레스테롤혈증(hypercholesterinemia), 고지혈증(hyperlipidemia), 혈색소증(Hemochromatosis), 아밀로이드증(amyloidsis) 및 포르피린증(porphyria)으로 이루어진 군에서 선택된 것인, 조성물.
According to clause 1,
The metabolic inflammatory diseases include obesity, hepatic fibrosis, fatty liver, alcoholic liver disease, type 1 diabetes, and type 2 diabetes. ), hypoglycemia, hypercholesterinemia, hyperlipidemia, hemochromatosis, amyloidsis and porphyria.
eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를 유효성분으로 포함하는 대사염증성 질환의 예방 또는 개선용 식품조성물.A food composition for preventing or improving metabolic inflammatory diseases, containing eIF2α phosphorylation and a regulator of downstream signaling pathways resulting therefrom as an active ingredient. 제 23항에 있어서,
상기 신호전달경로 조절제는 하기 화학식 1로 표시되는 화합물인 것인, 식품조성물
[화학식 1]
According to clause 23,
The food composition, wherein the signal transduction pathway regulator is a compound represented by the following formula (1):
[Formula 1]
eIF2α 인산화 및 이로 인한 하위 신호전달경로 조절제를 유효성분으로 포함하는 항염증형 마크로파지 M2(anti-inflammatory M2)의 발현의 증가 또는 전염증형 마크로파지 M1(pro-inflammatory M1)의 발현 억제용 조성물.A composition for increasing the expression of anti-inflammatory macrophage M2 (anti-inflammatory M2) or inhibiting the expression of pro-inflammatory macrophage M1 (pro-inflammatory M1), comprising as an active ingredient a regulator of eIF2α phosphorylation and the resulting downstream signaling pathway. 제 25항에 있어서,
상기 신호전달경로 조절제는 하기 화학식 1로 표시되는 화합물인 것인, 식품조성물
[화학식 1]
.
According to clause 25,
The food composition, wherein the signal transduction pathway regulator is a compound represented by the following formula (1):
[Formula 1]
.
KR1020230104980A 2022-08-12 2023-08-10 Composition for the prevention or treatment of metabolic inflammatory diseases comprising an eIF2α and its downstream signaling pathway modulator as an active ingredient KR20240022999A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220101215 2022-08-12
KR1020220101215 2022-08-12

Publications (1)

Publication Number Publication Date
KR20240022999A true KR20240022999A (en) 2024-02-20

Family

ID=90056931

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230104980A KR20240022999A (en) 2022-08-12 2023-08-10 Composition for the prevention or treatment of metabolic inflammatory diseases comprising an eIF2α and its downstream signaling pathway modulator as an active ingredient

Country Status (1)

Country Link
KR (1) KR20240022999A (en)

Similar Documents

Publication Publication Date Title
Barthel et al. Novel concepts in insulin regulation of hepatic gluconeogenesis
Deng et al. Adipocyte Xbp1s overexpression drives uridine production and reduces obesity
KR101665846B1 (en) Pharmaceutical composition for preventing or treating of nonalcoholic fatty liver disease comprising G protein coupled receptor 119 ligand as an active ingredient
RU2768943C1 (en) Pharmaceutical composition for preventing or treating non-alcoholic fatty liver infiltration, containing gpr119 ligand as active ingredient
EP3361250B1 (en) Midodrine for inducing exercise-like effects
US20090326259A1 (en) NF-Kappabeta Activation Inhibitor
KR102481705B1 (en) A Composition for Preventing or Treating Hepatic Fibrosis Comprising Triazole Derivatives as Active Ingredients
JP2013173719A (en) Agent for preventing and/or treating metabolic syndrome, using sudachitin as active ingredient
KR101668443B1 (en) Composition for preventing, improving, or treating metabolic diseases containing amodiaquine
KR20240022999A (en) Composition for the prevention or treatment of metabolic inflammatory diseases comprising an eIF2α and its downstream signaling pathway modulator as an active ingredient
Topsakal et al. Alpha lipoic acid attenuates high-fructose-induced pancreatic toxicity
KR20120112973A (en) A composition for preventing or treating obesity or type 2 diabetes
Zhao et al. Increased β-cell apoptosis and impaired insulin signaling pathway contributes to the onset of diabetes in OLETF rats
KR101402921B1 (en) Use of resveratol derivatives for treating obesity or type 2 diabetes
KR20210031884A (en) Composition for preventing, treating, or improving fatty liver comprising of azelaic acid as an active ingredient
KR101898610B1 (en) Fetal reprogramming of PPARδ agonists
KR102122970B1 (en) Composition for inhibiting osteoclast differentiation comprising gold compound as an active ingredient
JP6736676B2 (en) Pharmaceutical composition for inducing exercise-like effect
Du et al. Berberine attenuates obesity‐induced insulin resistance by inhibiting miR‐27a secretion
US20230190682A1 (en) Pharmaceutical composition for preventing or treating metabolic diseases
US10537559B2 (en) Isonitramine compound and composition containing same for preventing or treating metabolic diseases
KR20220059990A (en) Composition for preventing or treating obesity or metabolic disease comprising XMU-MP-1
KR20230067992A (en) Composition for preventing or treating fatty liver disease
KR20150088038A (en) Amide analogues and use thereof
Menichini Integrazione con inositoli in gravidanze complicate da sindrome metabolica. Effetti sul sistema metabolico e cardiovascolare nell'unità materno-fetale.