KR20240021590A - Flufenamic Acid-loaded Chitosan Nanoparticle - Google Patents

Flufenamic Acid-loaded Chitosan Nanoparticle Download PDF

Info

Publication number
KR20240021590A
KR20240021590A KR1020220100107A KR20220100107A KR20240021590A KR 20240021590 A KR20240021590 A KR 20240021590A KR 1020220100107 A KR1020220100107 A KR 1020220100107A KR 20220100107 A KR20220100107 A KR 20220100107A KR 20240021590 A KR20240021590 A KR 20240021590A
Authority
KR
South Korea
Prior art keywords
lmla
lmlaf
nanoparticles
lmwsc
drug
Prior art date
Application number
KR1020220100107A
Other languages
Korean (ko)
Inventor
나재운
안준혁
정경원
정특래
Original Assignee
나재운
주식회사 키토라이프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나재운, 주식회사 키토라이프 filed Critical 나재운
Priority to KR1020220100107A priority Critical patent/KR20240021590A/en
Publication of KR20240021590A publication Critical patent/KR20240021590A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/196Carboxylic acids, e.g. valproic acid having an amino group the amino group being directly attached to a ring, e.g. anthranilic acid, mefenamic acid, diclofenac, chlorambucil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Abstract

본 발명은 플루페나민산이 담지된 키토산 나노입자로서, 더욱 구체적으로 저분자량 수용성 키토산(low molecular weight water-soluble chitosan, LMWSC)에 라우릭산(lauric acid, LA)을 결합시켜 개질함으로써, 플루페나민산과 같은 항암 치료약물을 효과적으로 담지하여 세포 내로 안정적으로 전달할 수 있는 장점을 갖는다.The present invention relates to chitosan nanoparticles loaded with flufenamic acid, and more specifically, by modifying low molecular weight water-soluble chitosan (LMWSC) by combining lauric acid (LA), flufenamic acid. It has the advantage of being able to effectively carry anti-cancer drugs such as and deliver them stably into cells.

Description

플루페나민산이 담지된 키토산 나노입자 {Flufenamic Acid-loaded Chitosan Nanoparticle}Chitosan nanoparticles loaded with flufenamic acid {Flufenamic Acid-loaded Chitosan Nanoparticle}

본 발명은 플루페나민산이 담지된 키토산 나노입자로서, 더욱 구체적으로 저분자량 수용성 키토산(low molecular weight water-soluble chitosan, LMWSC)에 라우릭산(lauric acid, LA)을 결합시켜 개질함으로써, 플루페나민산과 같은 항암 치료약물을 효과적으로 담지하여 세포 내로 안정적으로 전달할 수 있는 약물전달용 나노입자에 관한 것이다.The present invention relates to chitosan nanoparticles loaded with flufenamic acid, and more specifically, by modifying low molecular weight water-soluble chitosan (LMWSC) by combining lauric acid (LA), flufenamic acid. This relates to drug delivery nanoparticles that can effectively carry anticancer drugs such as and stably deliver them into cells.

현재 인류는 고령화에 따른 건강 및 의료 분야에 관심이 증가하고 있고, 그중 암에 대한 치료와 연구가 현대의학으로 많은 자리매김을 하고 있다 (참고문헌 1-3). 암 치료를 위한 대표적인 항암제는 독소루비신과 파클리탁셀이 있으며, 이를 이용한 암 치료 연구가 많이 수행되고 있다 (참고문헌 4-6).Currently, humanity's interest in health and medical care is increasing due to aging, and cancer treatment and research are gaining ground in modern medicine (References 1-3). Representative anticancer drugs for cancer treatment include doxorubicin and paclitaxel, and many cancer treatment studies using them are being conducted (References 4-6).

그러나 현재 사용하고 있는 항암 약물들은 효과는 우수하나 강한 독성과 수많은 부작용을 유발하는 단점을 가지고 있어 이러한 문제점을 해결하기 위한 연구가 활발히 진행 중이다 (참고문헌 7 및 8).However, although the anticancer drugs currently in use are effective, they have the disadvantage of being highly toxic and causing numerous side effects, so research is actively underway to solve these problems (References 7 and 8).

한편, 하기 특허문헌 1에서는 항암제의 전달체용 수용성 키토산 나노입자 및 그 제조방법을 개시하고 있으나, 이는 플루페나민산과 같은 항암 치료약물을 효과적으로 담지하여 세포 내로 안정적으로 전달하지 못하는 한계를 지니고 있었다.Meanwhile, Patent Document 1 below discloses a water-soluble chitosan nanoparticle as a delivery vehicle for an anticancer drug and a method for manufacturing the same, but it had the limitation of not being able to effectively carry an anticancer drug such as flufenamic acid and stably deliver it into cells.

따라서, 플루페나민산과 같은 항암 치료약물을 효과적으로 담지하여 세포 내로 안정적으로 전달할 수 있는 새로운 개질 나노입자의 개발이 절실히 요구되는 실정이다.Therefore, there is an urgent need for the development of new modified nanoparticles that can effectively carry anti-cancer drugs such as flufenamic acid and stably deliver them into cells.

특허문헌 1: 대한민국 등록특허 제10-0578382호 (2006.05.11)Patent Document 1: Republic of Korea Patent No. 10-0578382 (May 11, 2006)

이에 본 발명에서는 상기 문제점을 해결하고자 Accordingly, in order to solve the above problem, the present invention

할 수 있음을 발견하였으며, 본 발명은 이에 기초하여 완성되었다.It was discovered that it could be done, and the present invention was completed based on this.

본 발명의 일 구현예에 따른 약물전달용 나노입자는 저분자량 수용성 키토산(low molecular weight water-soluble chitosan, LMWSC)에 라우릭산(lauric acid, LA)을 결합시켜 개질한 것을 특징으로 한다.Nanoparticles for drug delivery according to one embodiment of the present invention are characterized in that they are modified by combining lauric acid (LA) with low molecular weight water-soluble chitosan (LMWSC).

상기 저분자량 수용성 키토산은 3kDa ~ 10kDa 분자량을 갖는 수용성 키토산을 의미한다. The low molecular weight water-soluble chitosan refers to water-soluble chitosan with a molecular weight of 3 kDa to 10 kDa.

본 발명의 일 구현예에 따른 약물전달용 나노입자는 하기 화학식 1을 갖는 것을 특징으로 한다.Nanoparticles for drug delivery according to one embodiment of the present invention are characterized by having the following formula (1).

[화학식 1][Formula 1]

본 발명의 일 구현예에 따른 약물전달용 나노입자는 1-에틸-3-(3-디메틸 아미노프로필) 카르보디이미드(1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide, EDC)를 가교제로 이용하여 제조된 것을 특징으로 한다.Nanoparticles for drug delivery according to one embodiment of the present invention use 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) as a crosslinking agent. It is characterized by being manufactured using.

본 발명의 일 구현예에 따른 항암치료제는 상기 다양한 구현예에 따른 약물전달용 나노입자에 플루페나민산(flufenamic acid, FA)을 담지시켜 제조한 것을 특징으로 한다.The anti-cancer treatment agent according to one embodiment of the present invention is characterized in that it is manufactured by loading flufenamic acid (FA) on the drug delivery nanoparticles according to the various embodiments above.

본 발명의 일 구현예에 따른 항암치료제는 투석법에 의하여 상기 다양한 구현예에 따른 약물전달용 나노입자에 플루페나민산(flufenamic acid, FA)을 담지시키는 과정을 수행함으로써 제조된 것을 특징으로 한다.The anti-cancer treatment agent according to one embodiment of the present invention is characterized in that it is manufactured by carrying out a process of loading flufenamic acid (FA) on the drug delivery nanoparticles according to the various embodiments above by dialysis.

본 발명의 일 구현예에 따른 항암치료제는 방광암치료제인 것을 특징으로 한다.The anti-cancer treatment agent according to one embodiment of the present invention is characterized as a bladder cancer treatment agent.

본 발명에 따른 약물전달용 나노입자는 저분자량 수용성 키토산(low molecular weight water-soluble chitosan, LMWSC)에 라우릭산(lauric acid, LA)을 결합시켜 개질함으로써, 플루페나민산과 같은 항암 치료약물을 효과적으로 담지하여 세포 내로 안정적으로 전달할 수 있는 장점을 갖는다.The drug delivery nanoparticles according to the present invention are modified by combining lauric acid (LA) with low molecular weight water-soluble chitosan (LMWSC), thereby effectively delivering anticancer drugs such as flufenamic acid. It has the advantage of being able to be carried and stably delivered into cells.

도 1은 EDC를 이용하여 LMWSC-g-LA (LMLA)를 합성하는 개요를 나타내는 그림이다.
도 2는 LMLA의 1H NMR 스펙트럼을 나타내는 그림이다 ((a) LMWSC; (b) LA; (c) LMLA 20%; (d) LMLA 30%).
도 3 (a)는 LMLA 30% 수용액에서 파이렌 (Pyrene) 방출 스펙트럼을 나타내는 그림이고, 도 3 (b)는 증류수에서 LMLA 농도의 함수로 파이렌 방출 스펙트럼의 강도비(intensity ratio)(I1/I3)를 나타내는 그림이다.
도 4 (A)는 입자크기 분포, 도 4 (B)는 LMLA와 LMLAF의 형태학적 이미지를 나타내는 그림이다 ((a) LMLA 20%; (b) LMLA 30%; (c) LMLAF 20%; (d) LMLAF 30%).
도 5는 각 시간대별로 pH에 따른 LMLAF의 FA 총 누적 방출량을 나타내는 그림이다 (0.5-96h).
도 6은 MTT assay를 이용하여 LMLA 및 LMLAF의 세포독성 및 항암활성을 평가한 것을 나타낸 그림이다 ((a) HEK293 세포주; (b) T24 세포주).
Figure 1 is a diagram showing an overview of synthesizing LMWSC-g-LA (LMLA) using EDC.
Figure 2 is a picture showing the 1H NMR spectrum of LMLA ((a) LMWSC; (b) LA; (c) LMLA 20%; (d) LMLA 30%).
Figure 3 (a) is a diagram showing the pyrene emission spectrum in a 30% aqueous solution of LMLA, and Figure 3 (b) shows the intensity ratio (I1/) of the pyrene emission spectrum as a function of LMLA concentration in distilled water. This is a picture showing I3).
Figure 4 (A) shows the particle size distribution, and Figure 4 (B) shows the morphological images of LMLA and LMLAF ((a) LMLA 20%; (b) LMLA 30%; (c) LMLAF 20%; ( d) LMLAF 30%).
Figure 5 is a figure showing the total cumulative FA release amount of LMLAF according to pH for each time period (0.5-96h).
Figure 6 is a diagram showing the evaluation of cytotoxicity and anticancer activity of LMLA and LMLAF using the MTT assay ((a) HEK293 cell line; (b) T24 cell line).

본 발명을 좀 더 구체적으로 설명하기 전에, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정되어서는 아니되며, 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시 예의 구성은 본 발명의 바람직한 하나의 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Before describing the present invention in more detail, the terms and words used in the specification and claims should not be limited to their common or dictionary meanings, and the concepts of the terms should be appropriately used to explain the invention in the best way. It must be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined clearly. Therefore, the configuration of the embodiment described in this specification is only one preferred example of the present invention, and does not represent the entire technical idea of the present invention, and therefore, various equivalents and modifications that can replace them at the time of filing the present application You must understand that there may be.

현재 항암 약물들의 단점을 보완하고 그 효능을 극대화할 수 있는 약물 전달 방법은 고분자 재료에 화학적 결합을 통한 난용성 항암 약물을 수용화할 수 있는 prodrug과 polymeric micelle 형태의 고분자 매개체를 이용하는 방법이다. 그중 polymeric micelle 형태의 약물 전달체는 친수성 고분자 기반에 소수성 물질을 화학적 개질을 통해 합성되고, 이를 물에 분산했을 때 core-shell 형태의 나노입자가 형성되며 소수성 core 부분에 약물 담지를 통한 난용성 약물의 수용화가 가능하므로 부작용을 최소화하고 약물 효과를 극대화할 수 있는 장점이 있다 (참고문헌 9-13).A drug delivery method that can compensate for the shortcomings of current anticancer drugs and maximize their efficacy is a method that uses polymeric mediators in the form of prodrugs and polymeric micelles that can solubilize poorly soluble anticancer drugs through chemical bonding to polymeric materials. Among them, the drug carrier in the form of a polymeric micelle is synthesized through chemical modification of a hydrophobic material on a hydrophilic polymer base. When dispersed in water, core-shell shaped nanoparticles are formed, and the drug is poorly soluble by carrying the drug on the hydrophobic core. Since it is soluble in water, it has the advantage of minimizing side effects and maximizing drug effectiveness (Reference 9-13).

본 연구에서는 친수성 물질로써 천연고분자 키토산(chitosan)에 소수성 물질을 화학적으로 개질하여 polymeric micelle 형태의 나노입자를 제조하고, 이에 방광암 치료 약물로 잘 알려진 플루페나민산(flufenamic acid, FA)을 담지하여 항암제로 사용 가능성을 입증하고자 하였다. In this study, polymeric micelle-type nanoparticles were prepared by chemically modifying the natural polymer chitosan, a hydrophilic material, with a hydrophobic material, and flufenamic acid (FA), a well-known bladder cancer treatment drug, was loaded onto the nanoparticles to act as an anticancer drug. We wanted to prove the possibility of use.

키토산은 셀룰로오스에 이어 자연에 풍부하게 존재하며, 갑각류에서 얻어지는 키틴을 탈아세틸화하여 제조되는 천연 다당류로 β-(1,4)-glucosidic 결합으로 연결된 D-glucomine과 N-acetyl-D-glucomine의 두 단위체로 구성된 천연 다당류이다 (참고문헌 14-16).Chitosan is abundant in nature after cellulose, and is a natural polysaccharide manufactured by deacetylating chitin obtained from crustaceans. It is made up of D-glucomine and N-acetyl-D-glucomine linked by a β-(1,4)-glucosidic bond. It is a natural polysaccharide composed of two monomers (References 14-16).

항암 효과, 콜레스테롤 감소, 면역반응 증진 및 항균성 등 다양한 생체 생리활성을 가지고 있으며, 생체 적합하고, 생분해성이며 독성이 없는 장점이 있어 화장품, 환경 및 의약 등 다양한 분야에서 응용되고 있다 (참고문헌 17-19).It has various biological activities such as anticancer effect, cholesterol reduction, immune response enhancement, and antibacterial activity, and has the advantage of being biocompatible, biodegradable, and non-toxic, so it is applied in various fields such as cosmetics, environment, and medicine (Reference 17- 19).

많은 연구자들은 키토산을 물에 대한 용해도를 증가시키기 위해 다양한 유기산이 도입된 키토산을 연구에 사용해 왔다. 하지만 유기산이 도입된 키토산을 의약용으로 적용했을 시에 유기산으로 인한 생체에 부작용을 유발할 수 있는 단점을 갖는다. Many researchers have used chitosan in their studies with various organic acids introduced to increase the solubility of chitosan in water. However, when chitosan containing organic acids is applied for medical purposes, it has the disadvantage of causing side effects to the living body due to the organic acids.

이러한 문제점을 해결하기 위해 본 연구에서 사용된 키토산은 salt-removal 방법에 의해 유기산을 제거하여 개발된 free amine 그룹을 갖는 저분자량 수용성 키토산(low molecular weight water-soluble chitosan, LMWSC)을 연구에 사용하였다 (참고문헌 20).To solve this problem, the chitosan used in this study was low molecular weight water-soluble chitosan (LMWSC), which has a free amine group and was developed by removing organic acids by the salt-removal method. (Reference 20).

LMWSC는 free amine 그룹을 갖고 있어 약물 및 유전자 전달체로 많이 응용되어지고 있으며, 물에 대한 높은 용해성 및 낮은 독성을 가지고 있어 생체 적합성이 매우 우수한 장점이 있다.LMWSC has a free amine group, so it is widely used as a drug and gene delivery vehicle. It has high solubility in water and low toxicity, so it has excellent biocompatibility.

방광암 치료목적으로 본 연구에 사용된 FA는 N-(3-Trifluoro-methylphenyl) anthranilic acid 또는 2-(3-Trifluoromethylanilino)benzoic acid이며, N-를 갖는 안트라닐산으로 구성된 방향족 아미노산이다 (참고문헌 21 및 22).The FA used in this study for the purpose of treating bladder cancer is N-(3-Trifluoro-methylphenyl) anthranilic acid or 2-(3-Trifluoromethylanilino)benzoic acid, which is an aromatic amino acid composed of anthranilic acid with N- (References 21 and 22).

일반적으로 해열, 항염증, 진통 효과 등 특성을 가지고 있어 근골격계 및 관절장애의 통증 및 염증의 따른 진통제, 소염제 및 감기약에 주로 사용되고 있고 비스테로이드성 항염증제(NID)로 많이 사용되고 있다 (참고문헌 23 및 24).In general, it has properties such as antipyretic, anti-inflammatory, and analgesic effects, so it is mainly used as an analgesic, anti-inflammatory, and cold medicine for pain and inflammation in musculoskeletal and joint disorders, and is also widely used as a non-steroidal anti-inflammatory drug (NID) (References 23 and 24) ).

최근 연구에서 전립선 암의 새로운 치료제로 연구되고 있으며, FA의 알도케토 환원효소1C1(AKR1C1)을 억제한다는 특성으로 인해 특정 암세포인 방광암에서 항암내성 및 전이 억제에 대한 효과가 연구되었다 (참고문헌 25).In recent research, it is being studied as a new treatment for prostate cancer, and its effect on anticancer resistance and metastasis inhibition in bladder cancer, a specific cancer cell, has been studied due to FA's property of inhibiting aldoketo reductase 1C1 (AKR1C1) (Reference 25) .

하지만 FA 약물 자체는 물에 대한 용해성이 현저히 떨어지고, 면역반응 및 약물 내성에 의한 치료 효과가 반감되는 문제점을 갖는다 (참고문헌 26).However, the FA drug itself has a problem in that its solubility in water is significantly low, and the therapeutic effect is halved due to immune response and drug resistance (Reference 26).

본 연구에서는 FA 자체 문제점을 해결하고자 친수성 LMWSC에 소수성 물질인 라우릭산(lauric acid, LA)을 화학적으로 개질하여 LMWSC-g-LA(LMLA)를 합성하였고, 투석법을 이용하여 LMLA에 FA가 담지된 LMLAF 나노입자를 제조하였다. In this study, to solve the problem of FA itself, LMWSC-g-LA (LMLA) was synthesized by chemically modifying hydrophilic LMWSC with lauric acid (LA), a hydrophobic material, and FA was loaded into LMLA using dialysis. LMLAF nanoparticles were prepared.

본 발명에 따른 약물전달용 나노입자는 저분자량 수용성 키토산(low molecular weight water-soluble chitosan, LMWSC)에 라우릭산(lauric acid, LA)을 결합시켜 개질한 것을 특징으로 한다.The drug delivery nanoparticle according to the present invention is characterized by modifying low molecular weight water-soluble chitosan (LMWSC) by combining lauric acid (LA).

본 발명에 따른 약물전달용 나노입자는 하기 화학식 1을 갖는다.Nanoparticles for drug delivery according to the present invention have the following formula (1).

[화학식 1][Formula 1]

또한, 본 발명의 일 구현예에 따른 약물전달용 나노입자는 1-에틸-3-(3-디메틸 아미노프로필) 카르보디이미드(1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide, EDC)를 가교제로 이용하여 제조된 것일 수 있다.In addition, the drug delivery nanoparticle according to one embodiment of the present invention is 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC). It may be manufactured using a crosslinking agent.

본 발명의 일 구현예에 따른 항암치료제는 상기 다양한 구현예에 따른 약물전달용 나노입자에 플루페나민산(flufenamic acid, FA)을 담지시켜 제조한 것이다.The anti-cancer treatment agent according to one embodiment of the present invention is prepared by loading flufenamic acid (FA) on the drug delivery nanoparticles according to the various embodiments above.

또한, 본 발명의 일 구현예에 따른 항암치료제는 투석법에 의하여 상기 다양한 구현예에 따른 약물전달용 나노입자에 플루페나민산(flufenamic acid, FA)을 담지시키는 과정을 수행함으로써 제조된 것일 수 있다.In addition, the anti-cancer treatment agent according to one embodiment of the present invention may be manufactured by carrying out a process of loading flufenamic acid (FA) on the drug delivery nanoparticles according to the various embodiments above by dialysis. .

특히, 본 발명의 일 구현예에 따른 항암치료제는 방광암치료제이다.In particular, the anti-cancer treatment agent according to one embodiment of the present invention is a bladder cancer treatment agent.

한편, 본 발명자는 다양한 분석장비를 이용하여 LMLAF의 물리화학적 특성을 규명하였고, 정상세포 및 방광암 세포에서 MTT assay를 수행하여 독성 유무 및 항암 활성을 확인함으로써 본 연구에서 개발된 LMLAF 나노입자가 방광암 치료를 극대화할 수 있는 항암 제제임을 제시하고자 한다.Meanwhile, the present inventor identified the physicochemical properties of LMLAF using various analysis equipment and performed MTT assay on normal cells and bladder cancer cells to confirm toxicity and anticancer activity, thereby demonstrating that the LMLAF nanoparticles developed in this study were used to treat bladder cancer. We would like to suggest that it is an anticancer agent that can maximize .

[실험][Experiment]

1. 시약 및 재료1. Reagents and Materials

본 연구에서 사용된 저분자량 수용성 키토산(low molecular water-soluble chitosan, LMWSC, Mw: 10kDa)은 ㈜키토라이프(KITTOLIFE Co, Korea)에서 구매하여 사용하였고, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride(EDC), lauric acid(LA) 및 플루페나민산(flufenamic acid, FA)은 Sigma-Aldrich(St, Louis, MO, USA)에서 구입하여 사용하였다. 본 연구에서 세포 독성 및 항암 활성을 확인하기 위해 사용된 human embryonic kidney cells(HEK293) 세포는 american type culture collection(ATCC, Korea) 그리고 Human bladder tumor cells(T24) 세포는 한국 세포주은행(KCLB, Seoul, Korea)에서 각각 분양받아 실험을 수행하였다.Low molecular water-soluble chitosan (LMWSC, Mw: 10kDa) used in this study was purchased from KITTOLIFE Co., Korea, and was 1-ethyl-3-(3-dimethylaminopropyl) Carbodiimide hydrochloride (EDC), lauric acid (LA), and flufenamic acid (FA) were purchased from Sigma-Aldrich (St, Louis, MO, USA). In this study, the human embryonic kidney cells (HEK293) cells used to confirm cytotoxicity and anticancer activity were from the American type culture collection (ATCC, Korea), and the human bladder tumor cells (T24) cells used were from the Korean Cell Line Bank (KCLB, Seoul, Korea). Korea) and conducted experiments.

Dulbecco’s modified eagle’s medium(DMEM)은 Lonza(USA) 그리고 RPMI-1640은 Hyclone(USA)에서 각각 구입하였고, ethylenediamintetetraacetic acid(EDTA)와 fetal bovine serum(FBS)은 Gibco(USA)에서 구입하여 세포배양에 사용하였다. 또한, dimethylsulfoxide(DMSO) 및 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide(MTT)는 Sigma-Aldrich(St, Louis, MO, USA)에서 구입하여 사용하였으며, 기타 시약 및 용매는 GR등급을 구매하여 정제하지 않고 실험에 사용하였다.Dulbecco's modified eagle's medium (DMEM) was purchased from Lonza (USA) and RPMI-1640 were purchased from Hyclone (USA), and ethylenediamintetetraacetic acid (EDTA) and fetal bovine serum (FBS) were purchased from Gibco (USA) and used for cell culture. did. In addition, dimethylsulfoxide (DMSO) and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) were purchased from Sigma-Aldrich (St, Louis, MO, USA), and other Reagents and solvents were purchased as GR grade and used in the experiment without purification.

2. LMWSC-g-LA(LMLA)의 합성2. Synthesis of LMWSC-g-LA (LMLA)

LMLA는 가교제 EDC를 이용하여 LMWSC의 아민 그룹에 소수성 LA를 도입하여 합성하였다. LMWSC 100 mg을 MES buffer 2mL에 완전히 용해되도록 상온에서 교반하였다. LA의 카르복실 그룹을 활성화하기 위해 LMWSC 중량 대비 몰 비율 20%, 30% 각각의 중량을 DMSO에 용해하고 EDC 가교제를 LA 중량 대비 몰 비율로 2배 각각 첨가한 후 30분간 교반하였다. 카르복실 그룹이 활성화된 LA 용액을 LMWSC 용액에 천천히 점적하고 4시간 동안 상온에서 교반하였다. 반응이 종결된 용액을 아세톤에 침전시키고 3회 세척한 후 MWCO 3500 cellulose membrane을 이용하여 증류수 상에서 24시간 동안 투석하였다. 최종물질 LMLA는 동결건조 후에 powder로 얻은 후 실험에 사용하였다.LMLA was synthesized by introducing hydrophobic LA into the amine group of LMWSC using the cross-linker EDC. 100 mg of LMWSC was stirred at room temperature to completely dissolve in 2mL of MES buffer. To activate the carboxyl group of LA, 20% and 30% of LMWSC were dissolved in DMSO, and EDC cross-linker was added at twice the molar ratio of LA and stirred for 30 minutes. The LA solution with activated carboxyl group was slowly added dropwise to the LMWSC solution and stirred at room temperature for 4 hours. After the reaction was completed, the solution was precipitated in acetone, washed three times, and dialyzed against distilled water using a MWCO 3500 cellulose membrane for 24 hours. The final material, LMLA, was obtained as powder after freeze-drying and used in the experiment.

3. LMLA의 구조 분석3. Structural analysis of LMLA

LMLA의 합성 유무는 핵자기 공명장치(1H NMR, 400 MHz, Bruker, Germany)를 이용하여 분석하였다. LMWSC 및 LMLA는 D2O 그리고 LA는 DMSO에 각각 용해하여 0-9 ppm 범위에서 특성피크 및 chemical shift를 분석하여 합성 유무를 확인하였다.The presence or absence of LMLA synthesis was analyzed using nuclear magnetic resonance (1H NMR, 400 MHz, Bruker, Germany). LMWSC and LMLA were dissolved in D2O and LA in DMSO, respectively, and the presence or absence of synthesis was confirmed by analyzing the characteristic peak and chemical shift in the range of 0-9 ppm.

4. FA가 담지된 LMLA(LMLAF)의 제조 및 담지 효율 확인4. Manufacturing and confirmation of loading efficiency of FA-loaded LMLA (LMLAF)

FA가 담지된 LMLA(LMLAF)는 evaporation 기법을 이용하여 제조하였으며, 그 실험방법은 다음과 같다. LMLA 30 mg을 증류수 7 mL에 용해한 후에 tetrahydrofuran(THF) 35mL를 LMLA 수용액에 첨가하여 10분간 교반한다. FA는 LMLA 양 대비 5% 중량 비율로 THF 1 mL에 용해한 후 LMLA 용액에 천천히 점적하여 1시간 동안 교반하였다. 이 용액을 회전증발기를 이용하여 THF를 제거하고 MWCO 3500 cellulose membrane으로 24시간 동안 투석한 후 동결 건조하여 최종물질 LMLAF를 얻었다. LMLAF로부터 FA의 담지 효율은 자외선 분광계(UV-vis spectrometer, UV-1601, Shimadzu, Japan)를 이용하여 계산하였으며, 그 실험 방법은 다음과 같다.FA-loaded LMLA (LMLAF) was manufactured using the evaporation technique, and the experimental method was as follows. After dissolving 30 mg of LMLA in 7 mL of distilled water, 35 mL of tetrahydrofuran (THF) was added to the LMLA aqueous solution and stirred for 10 minutes. FA was dissolved in 1 mL of THF at a weight ratio of 5% relative to the amount of LMLA, then slowly added dropwise to the LMLA solution and stirred for 1 hour. THF was removed from this solution using a rotary evaporator, dialyzed against a MWCO 3500 cellulose membrane for 24 hours, and then freeze-dried to obtain the final material, LMLAF. The loading efficiency of FA from LMLAF was calculated using an ultraviolet-vis spectrometer (UV-1601, Shimadzu, Japan), and the experimental method was as follows.

LMLAF를 2mg를 0.1% trifluoroacetic acid(TFA) 200 μL에 완전히 용해한 후 DMSO 1.8 mL를 첨가하여 24시간 동안 shaking하였다. 이 용액을 ultra filtration membrane를 이용하여 FA 용액을 얻었으며, 이를 자외선 분광계를 통해 최대 흡수 파장인 289 nm에서 흡광도를 확인하여 담지 효율을 하기 계산식 1 및 2에 의해 계산하였다.2 mg of LMLAF was completely dissolved in 200 μL of 0.1% trifluoroacetic acid (TFA), then 1.8 mL of DMSO was added and shaken for 24 hours. An FA solution was obtained using this solution using an ultra filtration membrane, and the absorbance was confirmed at 289 nm, the maximum absorption wavelength, using an ultraviolet spectrometer, and the loading efficiency was calculated using Equations 1 and 2 below.

[계산식 1][Calculation Formula 1]

[계산식 2][Calculation Formula 2]

5. LMLA 및 LMLAF 나노입자 제조 및 특성 분석5. LMLA and LMLAF nanoparticle preparation and characterization

LMLA 및 LMLAF 나노입자는 MWCO 3500 cellulose membrane을 이용한 투석법에 의해 제조하였으며, 제조된 LMLA 또는 LMLAF 나노입자의 입자 크기, 임계응집농도(critical aggregation concentration, CAC) 및 형태학적 이미지 특성 분석은 아래와 같이 수행하였다.LMLA and LMLAF nanoparticles were manufactured by dialysis using MWCO 3500 cellulose membrane, and the particle size, critical aggregation concentration (CAC), and morphological image characteristics of the prepared LMLA or LMLAF nanoparticles were analyzed as follows. did.

LMLA는 LA에 의한 소수성 특성과 LMWSC에 의한 친수성 특성을 갖고 있어 수용액에서 자가 응집에 의한 core-shell 입자를 형성하게 된다. 따라서 입자형성이 가능한 최소 농도 CAC를 다음의 방법으로 측정하였다. LMLA has hydrophobic properties due to LA and hydrophilic properties due to LMWSC, so it forms core-shell particles through self-aggregation in aqueous solution. Therefore, the minimum concentration CAC at which particle formation is possible was measured using the following method.

Pyrene을 아세톤에 6×10-5 M이 되도록 용해시킨 후 증류수를 첨가하여 최종농도가 1.2×10-6 M이 되도록 한다. 이 용액을 40℃에서 2시간 동안 감압 하에서 아세톤을 제거한 후에 pyrene 용액과 다양한 농도의 나노입자의 용액(3.0×10?5-2 mg/mL)을 혼합하여 pyrene의 최종 농도가 6.0×10-7 M이 되도록 하였다. 이 용액을 60℃에서 3시간 동안 암실에서 교반 후 광학적 거동을 형광광도계(RF-5301PC, Shimadzu, Japan)를 이용하여 파장 350-460 nm 범위에서 발광 특성을 관찰하였다. 농도에 따른 특정 파장(I1과 I3)에서 강도의 비(I1/I3)를 이용하여 CAC를 결정하였다. Pyrene is dissolved in acetone to 6×10-5 M and then distilled water is added to make the final concentration 1.2×10-6 M. After removing acetone from this solution under reduced pressure at 40°C for 2 hours, the pyrene solution and various concentrations of nanoparticle solutions (3.0×10?5-2 mg/mL) were mixed to obtain a final concentration of 6.0×10-7. It was made to be M. This solution was stirred in the dark at 60°C for 3 hours, and the optical behavior was observed using a fluorescence photometer (RF-5301PC, Shimadzu, Japan) in the wavelength range of 350-460 nm. CAC was determined using the intensity ratio (I1/I3) at specific wavelengths (I1 and I3) according to concentration.

LMLA 및 LMLAF의 입자크기는 동적광산란(dynamic light scattering, DLS) 장비를 이용해서 측정하였고, DLS는 ELS8000 electro phoretic LS spectrophotometer(Otsuka Electronics Co., Japan)를 사용했다. 동적광산란장치를 이용하여 입자의 크기 및 분포를 측정하였으며, 이 때 제조되어진 LMLA 및 LMLAF를 각각 2 mg/mL의 농도의 수용액으로 제조하였다. 또한, LMLA와 LMLAF의 제타전위는 1.5 mg/mL의 농도의 수용액으로 제조하여 입자크기 측정에 사용된 위의 동일한 장비를 이용하여 측정하여 확인하였다.The particle size of LMLA and LMLAF was measured using dynamic light scattering (DLS) equipment, and DLS was performed using an ELS8000 electro phoretic LS spectrophotometer (Otsuka Electronics Co., Japan). The size and distribution of particles were measured using a dynamic light scattering device, and LMLA and LMLAF were each prepared as aqueous solutions at a concentration of 2 mg/mL. In addition, the zeta potential of LMLA and LMLAF was confirmed by preparing an aqueous solution with a concentration of 1.5 mg/mL and measuring it using the same equipment used to measure particle size.

LMLA 및 LMLAF의 형태학적 분석은 투과전자현미경(transmission electron microscope, TEM, Hitachi, H-7500, Japan)을 이용하여 다음과 같이 확인하였다. LMLA 및 LMLAF 각각 10 mg/mL의 농도로 제조한 후에 이를 copper carbon grid에 올리고 상온에서 완전히 건조하였다. 이를 3% uranyl acetate에 15분간 염색한 후 24시간 동안 건조하여 TEM를 통해 입자 이미지를 관찰하였다.Morphological analysis of LMLA and LMLAF was confirmed using a transmission electron microscope (TEM, Hitachi, H-7500, Japan) as follows. After preparing LMLA and LMLAF at a concentration of 10 mg/mL each, they were placed on a copper carbon grid and completely dried at room temperature. This was stained with 3% uranyl acetate for 15 minutes, dried for 24 hours, and particle images were observed through TEM.

6. LMLAF로부터 FA의 방출 거동 확인6. Confirmation of FA release behavior from LMLAF

LMLAF로부터 FA의 방출 거동은 자외선 분광계(UV-Vis spectrometer, UV1601, Shimadzu, Japan)를 이용하여 확인하였다. LMLAF 4mg을 2 mL의 pH 5.5 및 7.4 PBS buffer에 각각 용해하여 MWCO 1000 cellulose membrane에 넣은 후 37℃에서 140rpm으로 교반하였다. 시간에 따른(0.5-96시간) 방출된 용액 각각 2mL를 취하여 자외선 분광계를 통해 289 nm에서 흡광도를 측정하여 누적 방출량을 백분율로 계산하였다.The emission behavior of FA from LMLAF was confirmed using an ultraviolet spectrometer (UV-Vis spectrometer, UV1601, Shimadzu, Japan). 4 mg of LMLAF was dissolved in 2 mL of pH 5.5 and 7.4 PBS buffer, respectively, added to MWCO 1000 cellulose membrane, and stirred at 140 rpm at 37°C. 2 mL of each solution released over time (0.5-96 hours) was taken, the absorbance was measured at 289 nm through an ultraviolet spectrometer, and the cumulative release amount was calculated as a percentage.

7. LMLA 및 LMLAF의 세포 독성 및 항암 활성 확인7. Confirmation of cytotoxic and anticancer activity of LMLA and LMLAF

제조된 LMLA와 LMLAF의 독성 및 항암 활성 효과는 HEK293 정상 세포와 방광암 세포 T24에서 MTT assay를 수행하여 확인하였다. HEK293 세포는 FBS 10%가 함유된 DMEM 배지 그리고 T24 세포는 10% 함유된 RPMI 배지 상태에서 CO2 농도가 5%이며 온도가 37℃인 incubator에서 각각 배양하였다. 세포 seeding은 96 well plate에 5×103 cell/well 농도로 하여, 하루 동안 incubator에서 배양하였으며, 배양된 HEK293 세포에는 1, 0.5, 0.25, 0.13, 0.063, 0.031 mg/mL 농도로 제조된 LMLA 용액을 첨가하였고, T24세포에는 0.25, 0.125, 0.063, 0.031, 0.016, 0.008 mg/mL 농도로 제조된 LMLAF 용액을 각각 첨가하여 48시간 동안 incubator에서 암실 배양하였다. 48시간이 지난 후에 MTT를 처리하고 4시간 암실 배양하였으며, 최종적으로 MTT를 제거한 후 DMSO 200μL를 처리하여 560 nm와 670 nm에서 흡광도를 측정하였다. 측정된 흡광도 값을 이용하여 세포 생존율은 하기 계산식 3 및 4에 의해 계산되었다. The toxicity and anticancer activity effects of the prepared LMLA and LMLAF were confirmed by performing MTT assay on HEK293 normal cells and T24 bladder cancer cells. HEK293 cells were cultured in DMEM medium containing 10% FBS, and T24 cells were cultured in RPMI medium containing 10% FBS in an incubator with a CO2 concentration of 5% and a temperature of 37°C. Cell seeding was done in a 96 well plate at a concentration of 5 LMLAF solutions prepared at concentrations of 0.25, 0.125, 0.063, 0.031, 0.016, and 0.008 mg/mL were added to T24 cells, respectively, and cultured in the dark in an incubator for 48 hours. After 48 hours, MTT was treated and cultured in the dark for 4 hours. Finally, after MTT was removed, 200 μL of DMSO was treated and absorbance was measured at 560 nm and 670 nm. Using the measured absorbance value, cell viability was calculated using equations 3 and 4 below.

[계산식 3][Calculation Formula 3]

[계산식 4][Calculation Equation 4]

[실험 결과][Experiment result]

1. LMLA의 합성 및 구조적 특성 분석1. Synthesis and structural characterization of LMLA

방광암 치료제로 잘 알려진 FA 약물의 자체 사용은 면역반응과 약물 내성으로 인해 치료 효과가 반감되는 문제점을 갖는다. 본 연구에서는 이러한 문제점을 해결하기 위해 core-shell 형태의 자가 조립 나노입자를 형성할 수 있는 약물 전달체를 개발하여 FA의 방광암 치료 효과를 극대화하고자 하였다. core-shell 형태의 나노입자를 제조하기 위해 친수성 LMWSC에 소수성 물질인 LA를 가교제 EDC를 이용하여 화학적 개질을 통해 합성하였다. LA의 carboxyl group(-COOH)을 가교제 EDC를 이용하여 활성화하고, 이를 LMWSC의 amine group(-NH2)에 도입하여 최종적으로 LMWSC-g-LA(LMLA)를 합성하였다 (도 1).Self-use of FA drugs, which are well-known as treatments for bladder cancer, has the problem that the treatment effect is halved due to immune response and drug resistance. In this study, to solve these problems, we attempted to maximize the effectiveness of FA in treating bladder cancer by developing a drug carrier that can form core-shell self-assembled nanoparticles. To manufacture core-shell type nanoparticles, hydrophilic LMWSC was synthesized with LA, a hydrophobic material, through chemical modification using the cross-linker EDC. The carboxyl group (-COOH) of LA was activated using the cross-linking agent EDC, and this was introduced into the amine group (-NH2) of LMWSC to finally synthesize LMWSC-g-LA (LMLA) (Figure 1).

LMLA의 합성 유무를 규명하기 위해 핵자기 공명 장치(1H NMR, 400 MHz, Bruker, Germany)를 이용하여 구조적 특성을 분석하였다. LA는 0.7-0.9 ppm에서 -CH3의 수소 피크 및 1.5-2.3 ppm에서 -CH2의 수소 피크들을 각각 확인할 수 있으며, LMWSC는 1번 탄소 위치의 수소 피크는 4.9 ppm, 2번 탄소 위치의 수소 피크는 2.9 ppm, 3번-6번 탄소 위치의 수소 피크는 3.5-3.9 ppm, 그리고 키토산 구조 내의 키틴의 아세틸 그룹에 의한 특성 피크를 2.1 ppm에서 각각 확인할 수 있었다(도 2). 최종 합성 물질인 LMLA에서 LMWSC와 LA의 특성 피크를 모두 확인함과 동시에 피크의 chemical shift에 의해 성공적으로 합성되었음을 확인하였다.To determine whether LMLA was synthesized, its structural characteristics were analyzed using nuclear magnetic resonance (1H NMR, 400 MHz, Bruker, Germany). In LA, the hydrogen peak of -CH3 at 0.7-0.9 ppm and the hydrogen peak of -CH2 at 1.5-2.3 ppm can be confirmed, and in LMWSC, the hydrogen peak at carbon position 1 is 4.9 ppm and the hydrogen peak at carbon position 2 is 4.9 ppm. The hydrogen peak at carbon positions 3-6 was confirmed at 2.9 ppm, and the characteristic peak due to the acetyl group of chitin in the chitosan structure was confirmed at 2.1 ppm (Figure 2). In LMLA, the final synthesized material, both the characteristic peaks of LMWSC and LA were confirmed, and it was confirmed that the synthesis was successful through chemical shift of the peak.

2. LMLA 및 LMLAF 나노입자의 특성 분석2. Characterization of LMLA and LMLAF nanoparticles

LMLA 및 LMLAF 나노입자는 투석법에 의해 제조되었으며, 입자크기, 제타전위, CAC 및 형태학적 분석을 통해 그 나노입자의 특성을 규명하였다. LMLA 나노입자는 친수성인 LMWSC에 소수성인 LA가 결합되어 있는 양친매성 구조를 나타내며, 이는 수용액 상에서 자가 조립에 의한 core-shell 형태의 나노입자를 형성하게 된다. 본 연구에서는 이러한 LA결합 비율에 따라서 LMLA 20%, 30% 각각 두 종류의 약물 담지체를 합성하여 형광 분광계를 통해 CAC를 확인하였다. 그 결과 LMWSC에 LA의 결합 비율이 20%일 경우에는 0.22 mg/mL, 30%일 경우에는 0.13 mg/mL의 CAC 값을 나타냈으며, 이는 LA의 결합 비율이 30%의 경우에 더 적은 농도의 CAC 값을 확인할 수 있었다(표 a 및 도 3). LMLA and LMLAF nanoparticles were prepared by dialysis, and the characteristics of the nanoparticles were characterized through particle size, zeta potential, CAC, and morphological analysis. LMLA nanoparticles exhibit an amphipathic structure in which hydrophobic LA is bound to hydrophilic LMWSC, which forms core-shell shaped nanoparticles through self-assembly in an aqueous solution. In this study, two types of drug carriers containing 20% and 30% LMLA were synthesized according to the LA binding ratio, and CAC was confirmed using a fluorescence spectrometer. As a result, when the binding ratio of LA to LMWSC was 20%, the CAC value was 0.22 mg/mL, and when it was 30%, the CAC value was 0.13 mg/mL, which means that when the binding ratio of LA was 30%, the concentration was lower. The CAC value could be confirmed (Table a and Figure 3).

[표 a][Table a]

또한, LMLA 및 LMLAF의 입자형성 시 그 형태와 크기를 확인하기 위해 TEM과 DLS을 수행한 결과 LMLA 및 LMLAF 모두 구형의 나노입자(도 4(B))와 단분산 입자 분포를 확인할 수 있었으며, LMLA 20%의 경우 320.1±10.8 nm, LMLA 30%의 경우 279.6±12.8 nm로 LA가 30% 결합되어 있을 경우에 입자크기가 더 작은 것을 확인할 수 있었다(표 a 및 도 4(A)). In addition, as a result of performing TEM and DLS to confirm the shape and size of LMLA and LMLAF particles during particle formation, spherical nanoparticles (Figure 4(B)) and monodisperse particle distribution were confirmed for both LMLA and LMLAF. It was confirmed that the particle size was smaller when 30% LA was combined, at 320.1 ± 10.8 nm for 20% and 279.6 ± 12.8 nm for 30% LMLA (Table a and Figure 4(A)).

이러한 CAC와 입자크기 결과를 보여주는 이유는 LMLA 30%인 경우에 LA가 더 많이 결합되어 있어 core 내부에 강한 소수성 작용으로 인해 소수성 밀도가 증가했기 때문인 것으로 사료된다. It is believed that the reason for showing these CAC and particle size results is that more LA is bound in the case of 30% LMLA, and the hydrophobic density increases due to a strong hydrophobic effect inside the core.

또한, LMLAF의 경우에 LMLA보다 입자크기가 상대적으로 감소하는 것을 확인할 수 있는데(표 a 및 도 4(A)), 이는 FA 약물이 LMLA의 core 부분에 담지됨에 따라 LMLA 내부 core와 소수성 약물 FA 사이의 소수성 상호작용이 증가하여 보다 작은 입자를 형성한 것으로 사료된다. In addition, in the case of LMLAF, it can be seen that the particle size is relatively reduced compared to LMLA (Table a and Figure 4(A)), which means that as the FA drug is supported in the core part of LMLA, there is a gap between the inner core of LMLA and the hydrophobic drug FA. It is believed that the hydrophobic interaction increased to form smaller particles.

또한, LMLAF 20%와 LMLAF 30%의 제타전위는 각각 32.8±0.5 mV 및 27.8±0.7 mV로 강한 양전하를 나타냈으며 (표 a, 이는 암세포의 표면 전하가 음전하인 것을 고려했을 때 높은 전하 상호작용이 유발되어 효율적으로 세포 내로 입자 유입을 유도할 수 있을 것으로 사료된다. 또한, LMLAF 30%가 LMLAF 20%보다 낮은 제타전위를 보이는 이유는 LMWSC의 아민(-NH2) 그룹에 LA가 더 많이 도입되어 아민 그룹이 상대적으로 감소했기 때문인 것으로 사료된다. 이러한 LMLA 나노입자의 다양한 특성 분석을 통해 FA의 담지체로 활용 가능할 뿐만 아니라 더 나아가 의약학 분야의 약물 전달체로 응용 가능함을 확인하였다.In addition, the zeta potentials of LMLAF 20% and LMLAF 30% were 32.8 ± 0.5 mV and 27.8 ± 0.7 mV, respectively, showing a strong positive charge (Table a), which indicates a high charge interaction considering that the surface charge of cancer cells is negative. It is believed that the reason why LMLAF 30% shows a lower zeta potential than LMLAF 20% is because more LA is introduced into the amine (-NH2) group of LMWSC, causing amine This is believed to be due to the relative decrease in the group. Through analysis of the various characteristics of these LMLA nanoparticles, it was confirmed that they can not only be used as carriers for FA, but can also be applied as drug carriers in the medical field.

3. LMLAF로부터 FA의 담지 효율 및 방출 거동 분석3. Analysis of FA loading efficiency and release behavior from LMLAF

방광암 치료제로 사용되는 FA의 단점을 개선하고 그 치료 효율을 극대화하기 위해 LMLA 나노입자 core 내부에 FA를 투석법에 의해 담지하였다. 소수성 LA의 결합 비율에 따라 FA 담지 효율은 표 a에 요약하였다. 그 결과 LMLAF 1 mg당 FA의 담지 효율인 DC는 3.8%(LMLAF 20%)와 4.5% (LMLAF 30%)로 각각 나타났으며, 총 FA 담지 효율인 EE는 66.12%(LMLAF 20%), 80.46%(LMLAF 30%)로 높은 담지 효율을 확인하였다. LMLA 20% 보다 LMLA 30%가 FA의 담지 효율이 높은 이유는 소수성 LA가 더 많이 결합된 LMLA 30%의 경우 core 내부에 강한 소수성 작용으로 인한 높은 소수성 밀도가 형성되어 소수성 FA 약물과 상호작용이 증가했기 때문인 것으로 사료된다. 또한, LMLAF로부터 FA의 약물 방출 거동을 pH 변화에 따라 확인한 결과 pH 7.4의 경우 LMLAF 20%는 약 96시간 동안 FA 총 누적 방출량이 29.5%, LMLAF 30%는 23.4%의 방출량을 각각 보여줬다. pH 5.5의 경우 LMLAF 20%의 FA 총 누적 방출량은 39.7%, LMLAF 30%는 28.0%의 방출량을 각각 나타냈다(도 5). To improve the shortcomings of FA used as a treatment for bladder cancer and maximize its treatment efficiency, FA was loaded inside the LMLA nanoparticle core by dialysis. The FA loading efficiency according to the binding ratio of hydrophobic LA is summarized in Table a. As a result, the DC, which is the FA loading efficiency per 1 mg of LMLAF, was 3.8% (LMLAF 20%) and 4.5% (LMLAF 30%), respectively, and the total FA loading efficiency, EE, was 66.12% (LMLAF 20%) and 80.46. High loading efficiency was confirmed by % (LMLAF 30%). The reason why LMLA 30% has a higher FA loading efficiency than LMLA 20% is that in the case of LMLA 30%, where more hydrophobic LA is bound, a high hydrophobic density is formed due to strong hydrophobic action inside the core, which increases interaction with hydrophobic FA drugs. It is believed that this is because it was done. In addition, as a result of confirming the drug release behavior of FA from LMLAF according to pH changes, in the case of pH 7.4, LMLAF 20% showed a total cumulative FA release of 29.5% and LMLAF 30% showed a release amount of 23.4% over about 96 hours. In the case of pH 5.5, the total cumulative FA release for 20% LMLAF was 39.7%, and 30% LMLAF was 28.0% (Figure 5).

LMLAF 30%의 경우에 LMLAF 20% 보다 방출량이 상대적으로 더 적은 것을 확인할 수 있는데, 이는 소수성 LA가 LMLAF 30%에 더 많이 결합되어 있어 core 내부의 강한 소수성 밀도로 인해 FA 약물이 좀 더 천천히 방출되는 것으로 사료된다. 또한, pH 7.4 보다 pH 5.5에서 FA 방출량이 더 많은 것을 확인할 수 있는데, 이는 LMWSC의 pKa가 5.5-6.4로 약산성 환경일 경우 키토산 아민(-NH2) 그룹에 수소가 protonation되어 -NH3+로 전환되면서 전하 반발력이 유도되어 더 많은 양의 FA가 방출된 것으로 사료된다. 이러한 담지효율과 방출 거동 결과를 통해 LMLAF를 방광암 치료제로 사용했을 시 산성 환경의 특성을 갖는 암세포 내에서 서방성 약물 방출을 유도하여 약물의 내성에 대한 문제를 해결함과 동시에 그 치료 효과를 극대화할 수 있을 것으로 사료된다.In the case of LMLAF 30%, it can be seen that the release amount is relatively lower than that of LMLAF 20%. This is because more hydrophobic LA is bound to LMLAF 30%, and the FA drug is released more slowly due to the strong hydrophobic density inside the core. It is believed that In addition, it can be seen that the amount of FA released is greater at pH 5.5 than at pH 7.4, which means that in a slightly acidic environment with the pKa of LMWSC being 5.5-6.4, hydrogen is protonated on the chitosan amine (-NH2) group and converted to -NH3+, resulting in charge repulsion. It is believed that this was induced and a greater amount of FA was released. Based on these results of loading efficiency and release behavior, when LMLAF is used as a treatment for bladder cancer, it induces sustained drug release within cancer cells that have characteristics of an acidic environment, thereby solving the problem of drug resistance and maximizing the treatment effect. It is believed that it can be done.

4. LMLA 및 LMLAF의 독성 및 항암 효과 규명4. Elucidation of toxicity and anticancer effects of LMLA and LMLAF

LMLAF를 방광암 치료제로 사용 가능성을 규명하기 위해서 LMLA 나노입자의 생체 내 세포 독성 여부를 HEK293 정상세포 그리고 LMLAF의 항암 효과를 T24 방광암 세포에서 각각 MTT assay를 이용하여 확인하였다. 그 결과 LMWSC, LMLA 20% 및 LMLA 30% 모두 가장 높은 농도인 1 mg/mL에서 70% 이상의 세포 생존율을 나타남에 따라 독성이 거의 없음을 확인하였다(도 6(a)). 또한, T24 방광암 세포에서 항암 효과를 확인한 결과 0.25 mg/mL 농도에서 FA 약물 자체는 23%의 세포 생존율을 보여주는 반면에 LMLAF 30%의 경우 38%의 세포 생존율이 나타나는 것을 확인하였다(도 6(b)).To investigate the possibility of using LMLAF as a bladder cancer treatment, the in vivo cytotoxicity of LMLA nanoparticles was confirmed in HEK293 normal cells and the anticancer effect of LMLAF in T24 bladder cancer cells using MTT assay. As a result, it was confirmed that LMWSC, LMLA 20%, and LMLA 30% all showed a cell viability of more than 70% at the highest concentration of 1 mg/mL, showing almost no toxicity (Figure 6(a)). In addition, as a result of confirming the anticancer effect in T24 bladder cancer cells, it was confirmed that at a concentration of 0.25 mg/mL, the FA drug itself showed a cell survival rate of 23%, while in the case of LMLAF 30%, a cell survival rate of 38% was observed (Figure 6(b) )).

LMLAF 30%가 0.25 mg/mL 농도에서 담지된 FA 약물의 함양을 DC를 통해 계산해 봤을 때, 약 0.0113 mg/mL인 것을 확인하였고, 이는 약물 자체 FA의 양과 비교해봤을 때 약 1/22배 적은 양이며, 적은 약물양으로도 제조된 LMLA 약물전달체 내부에 담지되었을 시 항암 효과를 극대화할 수 있음을 규명하였다. 이러한 결과를 통해 세포 독성 및 항암 효과를 규명함으로써 제조된 LMLA와 LMLAF 나노입자가 체내 안전함과 동시에 방광암에 높은 치료 효율 기대할 수 있는 항암제재로 사용이 가능할 것으로 사료된다.When calculating the content of FA drug loaded at a concentration of 0.25 mg/mL with LMLAF 30%, it was confirmed to be about 0.0113 mg/mL, which is about 1/22 times less than the amount of FA of the drug itself. It was found that even with a small amount of drug, the anticancer effect can be maximized when loaded inside the manufactured LMLA drug carrier. Through these results, it is believed that by identifying the cytotoxic and anticancer effects, the manufactured LMLA and LMLAF nanoparticles can be used as anticancer agents that are safe in the body and can be expected to have high treatment efficiency for bladder cancer.

[결론][conclusion]

본 연구는 방광암 치료제로 사용되는 FA 약물의 문제점을 개선하기 위해 core-shell 형태의 LMLA 약물전달체를 가교제 EDC를 이용하여 합성하였고, 이에 FA를 소수성 core 내부에 담지하여 치료 효과를 극대화하고자 하였다. LMLA의 합성 유무는 1H NMR을 통해 합성되었음을 확인하였다. 또한, LMLA 및 LMLAF 나노입자의 입자크기, 제타전위, CAC 및 형태학적 이미지를 통한 물리·화학적 특성과 LMLAF로부터 FA의 담지 효율 및 방출 거동을 분석함으로써 LMLA가 FA의 담지체로 활용 가능함을 입증하였다. 더 나아가 LMLA 및 LMLAF의 세포 독성 및 항암 효과를 MTT assay를 통해 확인한 결과 세포 독성이 전혀 없음과 동시에 적은 약물로도 높은 항암 효과를 나타냈다. 이러한 결과를 통해 본 연구에서 개발한 LMLAF는 인체 내에서 높은 안전성을 갖을 뿐만 아니라 암치료 효율을 극대화할 수 있는 항암 제제로 사용이 가능함을 제시한다.In this study, to improve the problems of FA drugs used as bladder cancer treatments, a core-shell type LMLA drug carrier was synthesized using the cross-linker EDC, and FA was supported inside the hydrophobic core to maximize the therapeutic effect. The presence or absence of LMLA synthesis was confirmed through 1H NMR. In addition, we demonstrated that LMLA can be used as a carrier for FA by analyzing the physical and chemical properties of LMLA and LMLAF nanoparticles through particle size, zeta potential, CAC, and morphological images, as well as the loading efficiency and release behavior of FA from LMLAF. Furthermore, the cytotoxic and anticancer effects of LMLA and LMLAF were confirmed through MTT assay, and the results showed that there was no cytotoxicity at all and at the same time, high anticancer effects were observed even with a small amount of drug. These results suggest that LMLAF developed in this study not only has high safety in the human body but can also be used as an anticancer agent that can maximize cancer treatment efficiency.

[비교실험][Comparative experiment]

<실시예 1><Example 1>

전술한 방법으로 제조된 본 발명에 따른 저분자량 수용성 키토산(low molecular weight water-soluble chitosan, LMWSC)에 라우릭산(lauric acid, LA)을 결합시켜 개질한 약물전달용 나노입자 (LMLAF)Nanoparticles for drug delivery (LMLAF) modified by combining lauric acid (LA) with low molecular weight water-soluble chitosan (LMWSC) according to the present invention prepared by the above-described method.

<비교예 1><Comparative Example 1>

라우릭산(lauric acid, LA)으로 개질되지 않은 저분자량 수용성 키토산(low molecular weight water-soluble chitosan, LMWSC)Low molecular weight water-soluble chitosan (LMWSC) not modified with lauric acid (LA)

<비교예 2><Comparative Example 2>

특허문헌 1(10-0578382)의 실시예 1에 개시된 수용성 키토산 나노입자Water-soluble chitosan nanoparticles disclosed in Example 1 of Patent Document 1 (10-0578382)

상기 실시예 1과 비교예 1 및 2를 통하여 각각 준비된 나노입자를 이용하여 각각 동일한 실험조건에서 플루페나민산(flufenamic acid, FA)을 담지시켜 T24 방광암 세포에 도입하고 각각 MTT assay를 이용하여 방광암 치료효과를 테스트하는 실험을 수행하였으며 (기타 실험 조건은 서로 동일하게 설정함), 그 결과를 하기 표 1에 나타내었다 (각각 0.25 mg/mL 농도로 실험).Using the nanoparticles prepared through Example 1 and Comparative Examples 1 and 2, flufenamic acid (FA) was loaded and introduced into T24 bladder cancer cells under the same experimental conditions, and bladder cancer was treated using MTT assay. An experiment was conducted to test the effect (other experimental conditions were set identically), and the results are shown in Table 1 below (each experiment was conducted at a concentration of 0.25 mg/mL).

구분division 세포 생존율cell viability 실시예 1Example 1 38%38% 비교예 1Comparative Example 1 25%25% 비교예 2Comparative Example 2 27%27%

상기 표 1의 결과를 살표보면, 본 발명에 따른 실시예 1의 경우 비교예 1 (라우릭산으로 개질되지 않은 저분자량 수용성 키토산) 및 비교예 2(특허문헌 1의 실시예 1)의 나노입자를 이용한 경우보다 플루페나민산의 담지효율이 훨씬 더 우수함을 확인할 수 있다.Looking at the results in Table 1 above, in the case of Example 1 according to the present invention, the nanoparticles of Comparative Example 1 (low molecular weight water-soluble chitosan not modified with lauric acid) and Comparative Example 2 (Example 1 of Patent Document 1) It can be seen that the loading efficiency of flufenamic acid is much better than when used.

[참고문헌][references]

1. Michel, L.; Rassaf, T.; Totzeck, M. Biomarkers for the Detection of Apparent and Subclinical Cancer Therapy-related Cardiotoxicity. J. Thora. Dis. 2018, 10, S4282-S4295.1. Michel, L.; Rassaf, T.; Totzeck, M. Biomarkers for the Detection of Apparent and Subclinical Cancer Therapy-related Cardiotoxicity. J. Thora. Dis. 2018, 10, S4282-S4295.

2. Wang, J.; Zheng, Y.; Zhao, M. Exosome-Based Cancer Therapy: Implication for Targeting Cancer Stem Cells. Front. Pharmacol. 2016, 7, 533.2.Wang, J.; Zheng, Y.; Zhao, M. Exosome-Based Cancer Therapy: Implications for Targeting Cancer Stem Cells. Front. Pharmacol. 2016, 7, 533.

3. Allahyari, H.; Heidari, S.; Ghamgosha, M.; Saffarian, P.; Amani, J. Immunotoxin: A New Tool for Cancer Therapy. Tumour Biology. 2017, 39, 1010428317692226.3. Allahyari, H.; Heidari, S.; Ghamgosha, M.; Saffarian, P.; Amani, J. Immunotoxin: A New Tool for Cancer Therapy. Tumor Biology. 2017, 39, 1010428317692226.

4. Kundranda, M. N.; Niu, J. Albumin-Bound Paclitaxel in Solid Tumors: Clinical Development and Future Directions. Drug Des. Devel. Ther. 2015, 9, 3767-3777.4. Kundranda, M. N.; Niu, J. Albumin-Bound Paclitaxel in Solid Tumors: Clinical Development and Future Directions. Drug Des. Devel. Ther. 2015, 9, 3767-3777.

5. Silva, E. F.; Bazoni, R. F.; Ramos, E. B.; Rocha, M. S. DNADoxorubicin Interaction: New Insights and Peculiarities. Biopolymers. 2017, 107, e22998.5.Silva, E.F.; Bazoni, R.F.; Ramos, E. B.; Rocha, M. S. DNADoxorubicin Interaction: New Insights and Peculiarities. Biopolymers. 2017, 107, e22998.

6. Behnam, B.; Rezazadehkermani, M.; Ahmadzadeh, S.; Mokhtarzadeh, A.; Nematollahi-Mahani, S. N.; Pardakhty, A. Microniosomes for Concurrent Doxorubicin and Iron Oxide Nanoparticles Loading; Preparation, Characterization and Cytotoxicity Studies. Artif. Cells Nanomed. Biotechnol. 2018, 46, 118-125.6. Behnam, B.; Rezazadehkermani, M.; Ahmadzadeh, S.; Mokhtarzadeh, A.; Nematollahi-Mahani, S. N.; Pardakhty, A. Microniosomes for Concurrent Doxorubicin and Iron Oxide Nanoparticles Loading; Preparation, Characterization and Cytotoxicity Studies. Artif. Cells Nanomed. Biotechnology. 2018, 46, 118-125.

7. Aboian, M. S.; Yu, J. F.; Gautam, A.; Sze, C. H.; Yang, J. K.; Chan, J.; Lillaney, P. V.; Jordan, C. D.; Oh, H. J.; Wilson, D. M.; Patel, A. S.; Wilson, M. W.; Hetts, S. W. In vitro Clearance of Doxorubicin with a DNA-Based Filtration Device Designed for Intravascular Use with Intra-Arterial Chemotherapy. Biomed. Microdevices 2016, 18, 98.7. Aboian, M. S.; Yu, J.F.; Gautam, A.; Sze, C. H.; Yang, J. K.; Chan, J.; Lillaney, P. V.; Jordan, C. D.; Oh, H.J.; Wilson, D. M.; Patel, A. S.; Wilson, M. W.; Hetts, S. W. In vitro Clearance of Doxorubicin with a DNA-Based Filtration Device Designed for Intravascular Use with Intra-Arterial Chemotherapy. Biomed. Microdevices 2016, 18, 98.

8. Meredith, A. M.; Dass, C. R. Increasing Role of the Cancer Chemotherapeutic Doxorubicin in Cellular Metabolism. J. Pharm. Pharmacol. 2016, 68, 729-741.8.Meredith, A. M.; Dass, C. R. Increasing Role of the Cancer Chemotherapeutic Doxorubicin in Cellular Metabolism. J. Pharm. Pharmacol. 2016, 68, 729-741.

9. Saraiva, C. R.; Praca, C.; Ferreira, R.; Santos, T.; Ferreira, L.; 9. Saraiva, C. R.; Praca, C.; Ferreira, R.; Santos, T.; Ferreira, L.;

Bernardino, L. Nanoparticle-Mediated Brain Drug Delivery: Overcoming Blood-Brain Barrier to Treat Neurodegenerative Diseases. J. Controlled Release. 2016, 235, 34-47.Bernardino, L. Nanoparticle-Mediated Brain Drug Delivery: Overcoming Blood-Brain Barrier to Treat Neurodegenerative Diseases. J. Controlled Release. 2016, 235, 34-47.

10. Matoba, T.; Koga, J. I.; Nakano, K.; Egashira, K.; Tsutsui, H. Nanoparticle-Mediated Drug Delivery System for Atherosclerotic Cardiovascular Disease. J. Cardiology. 2017, 70, 206-211.10. Matoba, T.; Koga, J. I.; Nakano, K.; Egashira, K.; Tsutsui, H. Nanoparticle-Mediated Drug Delivery System for Atherosclerotic Cardiovascular Disease. J. Cardiology. 2017, 70, 206-211.

11. Mangal, S.; Gao, W.; Li, T.; Zhou, Q. T. Pulmonary Delivery of Nanoparticle Chemotherapy for the Treatment of Lung Cancers: Challenges and Opportunities. Acta Pharmacol. Sin. 2017, 38, 782-797.11. Mangal, S.; Gao, W.; Li, T.; Zhou, Q. T. Pulmonary Delivery of Nanoparticle Chemotherapy for the Treatment of Lung Cancers: Challenges and Opportunities. Acta Pharmacol. Sin. 2017, 38, 782-797.

12. Park, J.; Choi, Y.; Chang, H.; Um, W.; Ryu, J. H.; Kwon, I. C. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment. Theranostics. 2019, 9, 8073-8090.12. Park, J.; Choi, Y.; Chang, H.; Um, W.; Ryu, J. H.; Kwon, I. C. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment. Theranostics. 2019, 9, 8073-8090.

13. Baetke, S. C.; Lammers, T.; Kiessling, F. Applications of Nanoparticles for Diagnosis and Therapy of Cancer. Brit. J. Radiol. 2015, 88, 20150207.13. Baetke, S. C.; Lammers, T.; Kiessling, F. Applications of Nanoparticles for Diagnosis and Therapy of Cancer. Brit. J. Radiol. 2015, 88, 20150207.

14. Jeong, G. W.; Park, S. C.; Choi, C.; Nam, J. P.; Kim, T. H.; Choi, S. K.; Park, J. K.; Nah, J. W. Anticancer Effect of Gene/Peptide Co-Delivery System Using Transferrin-Grafted LMWSC. Int. J. Pharm. 2015, 488, 165-173.14. Jeong, G. W.; Park, S. C.; Choi, C.; Nam, J. P.; Kim, T. H.; Choi, S. K.; Park, J. K.; Nah, J. W. Anticancer Effect of Gene/Peptide Co-Delivery System Using Transferrin-Grafted LMWSC. Int. J. Pharm. 2015, 488, 165-173.

15. Mammeri, M.; Chevillot, A.; Thomas, M.; Polack, B.; Julien, C.; Marden, J. P.; Auclair, E.; Vallee, I.; Adjou, K. T. Efficacy of Chitosan, a Natural Polysaccharide, Against Cryptosporidium Parvum in vitro and in vivo in Neonatal Mice. Exp. Parasitol. 2018, 194, 1-8.15. Mammeri, M.; Chevillot, A.; Thomas, M.; Polack, B.; Julien, C.; Marden, J. P.; Auclair, E.; Vallee, I.; Adjou, K. T. Efficacy of Chitosan, a Natural Polysaccharide, Against Cryptosporidium Parvum in vitro and in vivo in Neonatal Mice. Exp. Parasitel. 2018, 194, 1-8.

16. Ribeiro, J. C. V.; Vieira, R. S.; Melo, I. M.; Araujo, V. M. A.; Lima, V. Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. Sci. World J. 2017, 8639898.16. Ribeiro, J. C. V.; Vieira, R. S.; Melo, I. M.; Araujo, V. M. A.; Lima, V. Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. Sci. World J. 2017, 8639898.

17. Matica, M. A.; Aachmann, F. L.; Tondervik, A.; Sletta, H.; Ostafe, V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int. J. Mol. Sci. 2019, 20, 5889.17. Matica, M. A.; Aachmann, F.L.; Tondervik, A.; Sletta, H.; Ostafe, V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int. J. Mol. Sci. 2019, 20, 5889.

18. Cheung, R. C.; Ng, T. B.; Wong, J. H.; Chan, W. Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs. 2015, 13, 5156-5186.18. Cheung, R. C.; Ng, T. B.; Wong, J. H.; Chan, W. Y. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs. 2015, 13, 5156-5186.

19. Shahid Ul, I.; Butola, B. S. Recent Advances in Chitosan Polysaccharide and its Derivatives in Antimicrobial Modification of Textile Materials. Int. J. Biol. Macromol. 2019, 121, 905-912.19. Shahid Ul, I.; Butola, B. S. Recent Advances in Chitosan Polysaccharide and its Derivatives in Antimicrobial Modification of Textile Materials. Int. J. Biol. Macromol. 2019, 121, 905-912.

20. Jang, M. J.; Kim, D. G.; Jeong, Y. I.; Jang, M. K.; Nah, J. W. Preparation and Characterization of Low Molecular Weight Water Soluble Chitosan Gene Carrier Fractioned according to Molecular Weight. Polym. Korea 2007, 31, 555-561.20. Jang, M. J.; Kim, D. G.; Jeong, Y. I.; Jang, M. K.; Nah, J. W. Preparation and Characterization of Low Molecular Weight Water Soluble Chitosan Gene Carrier Fractioned according to Molecular Weight. Polym. Korea 2007, 31, 555-561.

21. Guinamard, R.; Simard, C.; Del Negro, C. Flufenamic Acid as an Ion Channel Modulator. Pharmacol. Ther. 2013, 138, 272-284.21. Guinamard, R.; Simard, C.; Del Negro, C. Flufenamic Acid as an Ion Channel Modulator. Pharmacol. Ther. 2013, 138, 272-284.

22. Sun, H.; Wei, Y.; Deng, H.; Xiong, Q.; Li, M.; Lahiri, J.; Fang, Y. Label-Free Cell Phenotypic Profiling Decodes the Composition and Signaling of an Endogenous ATP-Sensitive Potassium Channel. Sci. Rep. 2014, 4, 4934.22. Sun, H.; Wei, Y.; Deng, H.; Xiong, Q.; Li, M.; Lahiri, J.; Fang, Y. Label-Free Cell Phenotypic Profiling Decodes the Composition and Signaling of an Endogenous ATP-Sensitive Potassium Channel. Sci. Rep. 2014, 4, 4934.

23. Smolkova, R.; Zelenak, V.; Smolko, L.; Sabolova, D.; Kuchar, J.; Gyepes, R. Novel Zn(II) Complexes with Non-Steroidal Anti-Inflammatory Ligand, Flufenamic Acid: Characterization, topoisomerase I inhibition activity, DNA and HSA Binding Studies. J. Inorg. Biochem. 2017, 177, 143-158.23. Smolkova, R.; Zelenak, V.; Smolko, L.; Sabolova, D.; Kuchar, J.; Gyepes, R. Novel Zn(II) Complexes with Non-Steroidal Anti-Inflammatory Ligand, Flufenamic Acid: Characterization, topoisomerase I inhibition activity, DNA and HSA Binding Studies. J. Inorg. Biochem. 2017, 177, 143-158.

24. Malinovskaja-Gomez, K.; Labouta, H. I.; Schneider, M.; Hirvonen, J.; Laaksonen, T. Transdermal Iontophoresis of Flufenamic Acid Loaded PLGA Nanoparticles. Eur. J. Pharm. Sci. 2016, 89, 154-162.24. Malinovskaja-Gomez, K.; Labouta, H. I.; Schneider, M.; Hirvonen, J.; Laaksonen, T. Transdermal Iontophoresis of Flufenamic Acid Loaded PLGA Nanoparticles. Eur. J. Pharm. Sci. 2016, 89, 154-162.

25. Matsumoto, R.; Tsuda, M.; Yoshida, K.; Tanino, M.; Kimura, T.; Nishihara, H.; Abe, T.; Shinohara, N.; Nonomura, K.; Tanaka, S. Aldo-keto Reductase 1C1 Induced by Interleukin-1beta Mediates the Invasive Potential and Drug Resistance of Metastatic Bladder Cancer Cells. Sci. Rep. 2016, 6, 34625.25. Matsumoto, R.; Tsuda, M.; Yoshida, K.; Tanino, M.; Kimura, T.; Nishihara, H.; Abe, T.; Shinohara, N.; Nonomura, K.; Tanaka, S. Aldo-keto Reductase 1C1 Induced by Interleukin-1beta Mediates the Invasive Potential and Drug Resistance of Metastatic Bladder Cancer Cells. Sci. Rep. 2016, 6, 34625.

26. Hendriks, C. M.; Penning, T. M.; Zang, T.; Wiemuth, D.; Grunder, S.; Sanhueza, I. A.; Schoenebeck, F.; Bolm, C. Pentafluorosulfanyl-Containing Flufenamic Acid Analogs: Syntheses Properties and Biological Activities. Bioorganic Med. Chem. Lett. 2015, 25, 4437-4440.26. Hendriks, C. M.; Penning, T. M.; Zang, T.; Wiemuth, D.; Grunder, S.; Sanhueza, I. A.; Schoenebeck, F.; Bolm, C. Pentafluorosulfanyl-Containing Flufenamic Acid Analogs: Syntheses Properties and Biological Activities. Bioorganic Med. Chem. Lett. 2015, 25, 4437-4440.

Claims (6)

저분자량 수용성 키토산(low molecular weight water-soluble chitosan, LMWSC)에 라우릭산(lauric acid, LA)을 결합시켜 개질한 약물전달용 나노입자.Nanoparticles for drug delivery modified by combining lauric acid (LA) with low molecular weight water-soluble chitosan (LMWSC). 청구항 1에 있어서,
하기 화학식 1을 갖는 것을 특징으로 하는 약물 전달용 나노입자.
[화학식 1]
In claim 1,
Nanoparticles for drug delivery, characterized by having the following formula (1).
[Formula 1]
청구항 1에 있어서,
1-에틸-3-(3-디메틸 아미노프로필) 카르보디이미드(1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide, EDC)를 가교제로 이용하여 제조된 것을 특징으로 하는 약물전달용 나노입자.
In claim 1,
Nanoparticles for drug delivery, characterized in that they are manufactured using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) as a cross-linking agent.
청구항 1 내지 3 중 어느 한 항에 따른 약물전달용 나노입자에 플루페나민산(flufenamic acid, FA)을 담지시켜 제조한 항암치료제.An anti-cancer treatment agent prepared by loading flufenamic acid (FA) on the drug delivery nanoparticle according to any one of claims 1 to 3. 청구항 4에 있어서,
상기 약물전달용 나노입자에 플루페나민산(flufenamic acid, FA)을 담지시키는 과정은 투석법에 의하여 수행되는 것을 특징으로 하는 항암치료제.
In claim 4,
An anti-cancer treatment agent, characterized in that the process of loading flufenamic acid (FA) on the drug delivery nanoparticles is performed by dialysis.
청구항 4에 있어서,
상기 항암치료제는 방광암치료제인 것을 특징으로 하는 항암치료제.






In claim 4,
The anti-cancer treatment agent is an anti-cancer treatment agent, characterized in that the anti-cancer treatment agent is a bladder cancer treatment agent.






KR1020220100107A 2022-08-10 2022-08-10 Flufenamic Acid-loaded Chitosan Nanoparticle KR20240021590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220100107A KR20240021590A (en) 2022-08-10 2022-08-10 Flufenamic Acid-loaded Chitosan Nanoparticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220100107A KR20240021590A (en) 2022-08-10 2022-08-10 Flufenamic Acid-loaded Chitosan Nanoparticle

Publications (1)

Publication Number Publication Date
KR20240021590A true KR20240021590A (en) 2024-02-19

Family

ID=90055852

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220100107A KR20240021590A (en) 2022-08-10 2022-08-10 Flufenamic Acid-loaded Chitosan Nanoparticle

Country Status (1)

Country Link
KR (1) KR20240021590A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100578382B1 (en) 2004-07-16 2006-05-11 나재운 Water soluble chitosan nanoparticle for delivering a anticance agent and preparing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100578382B1 (en) 2004-07-16 2006-05-11 나재운 Water soluble chitosan nanoparticle for delivering a anticance agent and preparing method thereof

Similar Documents

Publication Publication Date Title
Feng et al. Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency
Li et al. Molecular bottlebrush as a unimolecular vehicle with tunable shape for photothermal cancer therapy
Narmani et al. Targeting delivery of oxaliplatin with smart PEG-modified PAMAM G4 to colorectal cell line: In vitro studies
Huang et al. pH-triggered charge-reversal polypeptide nanoparticles for cisplatin delivery: preparation and in vitro evaluation
Ghorbani et al. Redox and pH-responsive gold nanoparticles as a new platform for simultaneous triple anti-cancer drugs targeting
Hua et al. Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer
Yang et al. Red fluorescent ZnO nanoparticle grafted with polyglycerol and conjugated RGD peptide as drug delivery vehicles for efficient target cancer therapy
Farboudi et al. Synthesis of magnetic gold coated poly (ε-caprolactonediol) based polyurethane/poly (N-isopropylacrylamide)-grafted-chitosan core-shell nanofibers for controlled release of paclitaxel and 5-FU
Lee et al. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system
Wang et al. Berberine hydrochloride-loaded chitosan nanoparticles effectively targets and suppresses human nasopharyngeal carcinoma
Chang et al. Synthesis and characterization of DOX-conjugated dendrimer-modified magnetic iron oxide conjugates for magnetic resonance imaging, targeting, and drug delivery
Jiang et al. PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma
Landarani-Isfahani et al. Elegant pH-responsive nanovehicle for drug delivery based on triazine dendrimer modified magnetic nanoparticles
Shen et al. Surface charge-switchable polymeric magnetic nanoparticles for the controlled release of anticancer drug
Su et al. On-demand versatile prodrug nanomicelle for tumor-specific bioimaging and photothermal-chemo synergistic cancer therapy
Zhou et al. Acidity-responsive shell-sheddable camptothecin-based nanofibers for carrier-free cancer drug delivery
Chen et al. Novel hyaluronic acid coated hydrophobically modified chitosan polyelectrolyte complex for the delivery of doxorubicin
Bobde et al. PEGylated N-(2 hydroxypropyl) methacrylamide-doxorubicin conjugate as pH-responsive polymeric nanoparticles for cancer therapy
Ban et al. PMPC modified PAMAM dendrimer enhances brain tumor‐targeted drug delivery
Hsieh et al. Tumor site-specific PEG detachment and active tumor homing of therapeutic PEGylated chitosan/folate-decorated polydopamine nanoparticles to augment antitumor efficacy of photothermal/chemo combination therapy
Wu et al. Superparamagnetic chitosan nanocomplexes for colorectal tumor-targeted delivery of irinotecan
Yan et al. Acid-sensitive polymeric vector targeting to hepatocarcinoma cells via glycyrrhetinic acid receptor-mediated endocytosis
Duan et al. Folate-decorated chitosan/doxorubicin poly (butyl) cyanoacrylate nanoparticles for tumor-targeted drug delivery
Ting et al. Indocyanine green-carrying polymeric nanoparticles with acid-triggered detachable PEG coating and drug release for boosting cancer photothermal therapy
Zhang et al. Zinc finger-inspired nanohydrogels with glutathione/pH triggered degradation based on coordination substitution for highly efficient delivery of anti-cancer drugs