KR20240020636A - Novel compound and composition for preventing or treating HER2 positive cancer comprising the same - Google Patents

Novel compound and composition for preventing or treating HER2 positive cancer comprising the same Download PDF

Info

Publication number
KR20240020636A
KR20240020636A KR1020220135133A KR20220135133A KR20240020636A KR 20240020636 A KR20240020636 A KR 20240020636A KR 1020220135133 A KR1020220135133 A KR 1020220135133A KR 20220135133 A KR20220135133 A KR 20220135133A KR 20240020636 A KR20240020636 A KR 20240020636A
Authority
KR
South Korea
Prior art keywords
hydroxyphenyl
cancer
dihydropyrazol
ethanone
compound
Prior art date
Application number
KR1020220135133A
Other languages
Korean (ko)
Inventor
권영주
황수연
나영화
Original Assignee
이화여자대학교 산학협력단
차의과학대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단, 차의과학대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to PCT/KR2023/011697 priority Critical patent/WO2024035085A1/en
Publication of KR20240020636A publication Critical patent/KR20240020636A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/341Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide not condensed with another ring, e.g. ranitidine, furosemide, bufetolol, muscarine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/41551,2-Diazoles non condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/06Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 신규 화합물 및 이를 포함하는 HER2 양성 암 예방 또는 치료용 조성물에 관한 것이다. 본 발명 신규 화합물은 ELF3와 MED23의 단백질-단백질 상호작용을 억제하여 HER2의 수준을 억제할 수 있으며, 이를 통해 현저한 수준의 항암 효과를 가진다. 더욱이 기존에 암 치료제로 임상에서 사용하는 트라스트주맙에 내성을 가지는 경우에도 본 발명의 신규 화합물을 처리했을 때, 현저한 수준의 항암효과를 보여주었다. 따라서, 본 발명의 신규 화합물은 암 치료 분야에서 폭넓게 활용될 수 있을 것으로 예상된다. The present invention relates to a novel compound and a composition containing the same for preventing or treating HER2-positive cancer. The novel compound of the present invention can suppress the level of HER2 by inhibiting the protein-protein interaction of ELF3 and MED23, and thereby has a significant anticancer effect. Moreover, even in cases of resistance to trastuzumab, which is previously used clinically as a cancer treatment, treatment with the new compound of the present invention showed a remarkable level of anticancer effect. Therefore, it is expected that the new compound of the present invention can be widely used in the field of cancer treatment.

Description

신규 화합물 및 이를 포함하는 HER2 양성 암 예방 또는 치료용 조성물{Novel compound and composition for preventing or treating HER2 positive cancer comprising the same}Novel compound and composition for preventing or treating HER2 positive cancer comprising the same}

신규 화합물 및 이를 포함하는 HER2 양성 암 예방 또는 치료용 조성물에 관한 것이다.It relates to a novel compound and a composition containing the same for preventing or treating HER2-positive cancer.

단백질-단백질 상호작용(Protein-protein interaction, PPI)은 인체의 필수 현상이며 질병에 걸린 환자의 경우 적절하게 조절되지 않는다. 따라서, 이러한 PPI를 타겟으로 하는 약물을 개발하기 위한 노력이 계속되었으며, 다수의 항체 약물이 개발되었으나, 작은 크기의 리간드를 확인하기 어렵다는 이유로 소분자 PPI 조절제는 소수만 개발되어 있는 상태이다. 소분자 조절제는 항체 치료제가 가지고 있는 낮은 세포 내재화, 낮은 경구 생체이용률 및 높은 면역원성 등의 문제점을 해결할 수 있어, 이에 대한 연구가 필요하다.Protein-protein interaction (PPI) is an essential phenomenon in the human body and is not properly regulated in patients with disease. Accordingly, efforts to develop drugs targeting these PPIs have continued, and a number of antibody drugs have been developed, but only a few small molecule PPI modulators have been developed due to the difficulty in identifying small-sized ligands. Small molecule modulators can solve the problems of antibody treatments, such as low cell internalization, low oral bioavailability, and high immunogenicity, so research on them is needed.

HER 패밀리의 구성원인 HER2는 세포 생존, 증식 및 분화를 조절함으로써 다양한 종양 형성 과정에서 핵심적인 역할을 한다. HER2 과발현은 유방암에서 처음 관찰되었으며 유방암에 대한 전형적인 치료 마커로 평가 되었지만, 오늘날 많은 보고서에서 위장암, 특히 위암에서 부정적인 예후 역할을 제안하여 암과의 연관성을 보여주고 있다. HER2 과발현 암 아형(subtype)의 경우 화학요법 요법은 일반적으로 HER2 단백질의 세포외 도메인을 표적으로 하는 항체 약물인 트라스트주맙(trastuzumab, TZMB)이 주로 처방된다. 그러나, 트라스트주맙의 경우 임상적으로 성공한 약물임에도 불구하고, 내성이 발생한 경우 치료가 어려워지는 문제점이 있다(Cancer Res (2008) 68 (5): 1471-1477). 따라서, 이러한 문제를 해결할 수 있는 소분자 약물의 개발이 필요한 실정이다.HER2, a member of the HER family, plays a key role in various tumorigenic processes by regulating cell survival, proliferation and differentiation. HER2 overexpression was first observed in breast cancer and was evaluated as a classic therapeutic marker for breast cancer, but today many reports show its association with cancer, suggesting a negative prognostic role in gastrointestinal cancer, especially gastric cancer. For HER2-overexpressing cancer subtypes, chemotherapy is usually administered with trastuzumab (TZMB), an antibody drug that targets the extracellular domain of the HER2 protein. However, in the case of trastuzumab, although it is a clinically successful drug, there is a problem in that treatment becomes difficult when resistance develops (Cancer Res (2008) 68 (5): 1471-1477). Therefore, there is a need to develop small molecule drugs that can solve these problems.

일 양상은 하기 화학식 1로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염을 제공하는 것이다.One aspect is to provide a compound represented by the following formula (1), a stereoisomer thereof, or a pharmaceutically acceptable salt thereof.

[화학식 1][Formula 1]

R1은 수소이고;R 1 is hydrogen;

R2 및 R3는 독립적으로 수소 또는 하이드록시기 이고;R 2 and R 3 are independently hydrogen or a hydroxy group;

R4는 p-메톡시나프탈레닐(Methoxynaphthalenyl),, 또는이고;R 4 is p-methoxynaphthalenyl, , or ego;

여기서 A1은 질소, 산소 또는 황이고;where A 1 is nitrogen, oxygen or sulfur;

A2는 할로겐, 또는 C1-3 알콕시이다.A 2 is halogen or C 1-3 alkoxy.

다른 양상은 하기 화학식 2로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염을 제공하는 것이다.Another aspect is to provide a compound represented by the following formula (2), a stereoisomer thereof, or a pharmaceutically acceptable salt thereof.

[화학식 2][Formula 2]

R5 내지 R7은 독립적으로 수소 또는 하이드록시기 이고;R 5 to R 7 are independently hydrogen or a hydroxy group;

R8p-Methoxynaphthalenyl(p-메톡시나프탈레닐), 1-메톡시나프탈레닐(1-Methoxynaphthalenyl),, 또는이고;R 8 is p -Methoxynaphthalenyl ( p -methoxynaphthalenyl), 1-Methoxynaphthalenyl (1-Methoxynaphthalenyl), , or ego;

R9는 C1-3 알킬이고;R 9 is C 1-3 alkyl;

여기서 A1은 질소, 산소 또는 황이고;where A 1 is nitrogen, oxygen or sulfur;

A2는 할로겐, 또는 C1-3 알콕시이다A 2 is halogen, or C 1-3 alkoxy

또 다른 양상은 상기 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 단백질-단백질 상호작용(protein-protein interaction) 억제용 조성물을 제공하는 것이다.Another aspect is to provide a composition for inhibiting protein-protein interaction, comprising the compound, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient.

또 다른 양상은 상기 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 암의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.Another aspect is to provide a pharmaceutical composition for preventing or treating cancer, comprising the compound, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient.

또 다른 양상은 상기 화합물, 이의 입체 이성질체 또는 이의 식품학적으로 허용가능한 염을 유효성분으로 포함하는, 암의 예방 또는 개선용 건강기능식품 조성물을 제공하는 것이다.Another aspect is to provide a health functional food composition for preventing or improving cancer, comprising the compound, a stereoisomer thereof, or a foodologically acceptable salt thereof as an active ingredient.

그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 기술분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to the problems mentioned above, and other problems not mentioned can be clearly understood by those skilled in the art from the description below.

일 양상은 하기 화학식 1로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염을 제공한다.One aspect provides a compound represented by the following formula (1), a stereoisomer thereof, or a pharmaceutically acceptable salt thereof.

[화학식 1][Formula 1]

R1은 수소이고;R 1 is hydrogen;

R2 및 R3는 독립적으로 수소 또는 하이드록시기 이고;R 2 and R 3 are independently hydrogen or a hydroxy group;

R4는 p-메톡시나프탈레닐(Methoxynaphthalenyl),, 또는이고;R 4 is p-methoxynaphthalenyl, , or ego;

여기서 A1은 질소, 산소 또는 황이고;where A 1 is nitrogen, oxygen or sulfur;

A2는 할로겐, 또는 C1-3 알콕시이다.A 2 is halogen or C 1-3 alkoxy.

본 명세서에 있어서 상기 “할로겐”은 플루오르, 염소, 브롬 또는 요오드 원자이다.In this specification, the “halogen” is a fluorine, chlorine, bromine, or iodine atom.

본 명세서에 있어서 상기 “C1-3 알콕시”는 -OR 형태에서 R이 C1-3인 OR기이다. 이에 제한되는 것은 아니지만, 예를 들어, 메톡시, 에톡시, 프로폭시, 또는 1-메틸에톡시일 수 있다.In the present specification, the “C 1-3 alkoxy” is an OR group in which R is C 1-3 in -OR form. For example, but not limited thereto, it may be methoxy, ethoxy, propoxy, or 1-methylethoxy.

상기 화합물은 하기 화합물로 이루어진 군으로부터 선택되는 어느 하나인 것일 수 있다:The compound may be any one selected from the group consisting of the following compounds:

3-푸란-2-일-1-(3-하이드록시페닐)-프로페논(3-Furan-2-yl-1-(3-hydroxyphenyl)-propenone);3-Furan-2-yl-1-(3-hydroxyphenyl)-propenone;

1-(3-하이드록시페닐)-3-(4-메톡시페닐)-프로페논(1-(3-Hydroxyphenyl)-3-(4-methoxyphenyl)-propenone);1-(3-Hydroxyphenyl)-3-(4-methoxyphenyl)-propenone);

1-(3-하이드록시페닐)-3-(4-메톡시나프탈렌-1-일)-프로페논(1-(3-Hydroxyphenyl)-3-(4-methoxynaphthalen-1-yl)-propenone);1-(3-Hydroxyphenyl)-3-(4-methoxynaphthalen-1-yl)-propenone);

3-(4-클로로페닐)-1-(3-하이드록시페닐)-프로페논(3-(4-Chlorophenyl)-1-(3-hydroxyphenyl)-propenone);3-(4-Chlorophenyl)-1-(3-hydroxyphenyl)-propenone (3-(4-Chlorophenyl)-1-(3-hydroxyphenyl)-propenone);

3-(4-하이드록시페닐)-1-(3-하이드록시페닐)-프로페논(3-(4-Hydroxyphenyl)-1-(3-hydroxyphenyl)-propenone);3-(4-Hydroxyphenyl)-1-(3-hydroxyphenyl)-propenone);

1-(2-하이드록시페닐)-3-(4-메톡시페닐)-프로페논(1-(2-Hydroxyphenyl)-3-(4-methoxyphenyl)-propenone);1-(2-Hydroxyphenyl)-3-(4-methoxyphenyl)-propenone);

1-(2-하이드록시페닐)-3-(4-메톡시나프탈렌-1-일)-프로페논(1-(2-Hydroxyphenyl)-3-(4-methoxynaphthalen-1-yl)-propenone);1-(2-Hydroxyphenyl)-3-(4-methoxynaphthalen-1-yl)-propenone);

3-푸란-2-일-1-(2-하이드록시페닐)-프로페논(3-Furan-2-yl-1-(2-hydroxyphenyl)-propenone);3-Furan-2-yl-1-(2-hydroxyphenyl)-propenone;

3-(4-하이드록시페닐)-1-(2-하이드록시페닐)-프로페논(3-(4-Hydroxyphenyl)-1-(2-hydroxyphenyl)-propenone);3-(4-Hydroxyphenyl)-1-(2-hydroxyphenyl)-propenone);

3-(4-클로로페닐)-1-(2-하이드록시페닐)-프로페논(3-(4-Chlorophenyl)-1-(2-hydroxyphenyl)-propenone); 및3-(4-Chlorophenyl)-1-(2-hydroxyphenyl)-propenone); and

1-(2-하이드록시페닐)-3-티오펜-2-일-프로페논(1-(2-Hydroxyphenyl)-3-thiophen-2-yl-propenone).1-(2-Hydroxyphenyl)-3-thiophen-2-yl-propenone.

다른 양상은 하기 화학식 2로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염을 제공한다.Another aspect provides a compound represented by the following formula (2), a stereoisomer thereof, or a pharmaceutically acceptable salt thereof.

[화학식 2][Formula 2]

R5 내지 R7은 독립적으로 수소 또는 하이드록시기 이고;R 5 to R 7 are independently hydrogen or a hydroxy group;

R8p-Methoxynaphthalenyl(p-메톡시나프탈레닐), 1-메톡시나프탈레닐(1-Methoxynaphthalenyl),, 또는이고;R 8 is p -Methoxynaphthalenyl ( p -methoxynaphthalenyl), 1-Methoxynaphthalenyl (1-Methoxynaphthalenyl), , or ego;

R9는 C1-3 알킬이고;R 9 is C 1-3 alkyl;

여기서 A1은 질소, 산소 또는 황이고;where A 1 is nitrogen, oxygen or sulfur;

A2는 할로겐, 또는 C1-3 알콕시이다.A 2 is halogen or C 1-3 alkoxy.

상기 화학식 2의 화합물은 하기 화합물로 이루어진 군으로부터 선택되는 어느 하나인 것일 수 있다:The compound of Formula 2 may be any one selected from the group consisting of the following compounds:

1-[5-푸란-2-일-3-(3-하이드록시페닐)-4,5-디하이드로피라졸-1-일]-에타논(1-[5-Furan-2-yl-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);1-[5-furan-2-yl-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-Furan-2-yl-3 -(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);

1-[3-(3-하이드록시페닐)-5-(4-메톡시페닐)-4,5-디히드로피라졸-1-일]-에탄온(1-[3-(3-Hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);1-[3-(3-hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[3-(3-Hydroxyphenyl) -5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);

1-[3-(3-하이드록시페닐)-5-(4-메톡시나프탈렌-1-일)-4,5-디히드로피라졸-1-일]-에타논(1-[3-(3-Hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone);1-[3-(3-hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[3-( 3-Hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone);

1-[5-(4-클로로페닐)-3-(3-하이드록시페닐)-4,5-디히드로피라졸-1-일]-에타논(1-[5-(4-Chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);1-[5-(4-Chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-(4-Chlorophenyl)- 3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);

1-[5-(4-하이드록시페닐)-3-(3-하이드록시페닐)-4,5-디히드로피라졸-1-일]-에타논(1-[5-(4-Hydroxyphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);1-[5-(4-hydroxyphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-(4-Hydroxyphenyl) -3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);

1-[5-푸란-2-일-3-(2-하이드록시페닐)-4,5-디하이드로피라졸-1-일]-에타논(1-[5-Furan-2-yl-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);1-[5-furan-2-yl-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-Furan-2-yl-3 -(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);

1-[3-(2-하이드록시페닐)-5-(4-메톡시나프탈렌-1-일)-4,5-디히드로피라졸-1-일]-에타논(1-[3-(2-Hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone);1-[3-(2-hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[3-( 2-Hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone);

1-[5-(4-하이드록시페닐)-3-(2-하이드록시페닐)-4,5-디히드로피라졸-1-일]-에탄온(1-[5-(4-Hydroxyphenyl)-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);1-[5-(4-hydroxyphenyl)-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-(4-Hydroxyphenyl) -3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);

1-[5-(4-클로로페닐)-3-(2-하이드록시페닐)-4,5-디히드로피라졸-1-일]-에탄온(1-[5-(4-Chlorophenyl)-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);1-[5-(4-Chlorophenyl)-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-(4-Chlorophenyl)- 3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);

1-[3-(2-하이드록시페닐)-5-티오펜-2-일-4,5-디히드로피라졸-1-일]-에탄온(1-[3-(2-Hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-ethanone);1-[3-(2-Hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-ethanone (1-[3-(2-Hydroxyphenyl)- 5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-ethanone);

1-[3-(2-하이드록시페닐)-5-(4-메톡시페닐)-4,5-디히드로피라졸-1-일]-에탄온(1-[3-(2-Hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);1-[3-(2-hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[3-(2-Hydroxyphenyl) -5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);

1-[3-(3-하이드록시페닐)-5-(4-메톡시페닐)-4,5-디히드로피라졸-1-일]-프로판-1-온(1-[3-(3-Hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one);1-[3-(3-hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one (1-[3-(3 -Hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one);

1-[3-(3-하이드록시페닐)-5-티오펜-2-일-4,5-디히드로피라졸-1-일]-프로판-1-온(1-[3-(3-Hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-propan-1-one);1-[3-(3-hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-propan-1-one (1-[3-(3- Hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-propan-1-one);

1-[5-(4-클로로페닐)-3-(3-하이드록시페닐)-4,5-디히드로피라졸-1-일]-프로판-1-온(1-[5-(4-Chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one).1-[5-(4-chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one (1-[5-(4- Chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one).

본 명세서에서 용어 "입체 이성질체(steroisomer)"는 동일한 화학식을 가지고, 구성하는 원자 간의 결합 순서도 동일하나, 삼차원 구조는 다른 분자를 의미하며, 거울상 이성질체(enantiomer)와 부분입체이성질체(diasteromer)로 나뉜다. 또한, 일 구체예에 따른 상기 피리돈 유도체 화합물의 입체화학적 이성질체 형태는 화학식 1의 화합물이 가질 수 있는 모든 가능한 화합물을 정의한다. 달리 언급하거나 지적하지 않는다면, 화합물의 화학적 명칭은 모든 가능한 입체화학적 이성체 형태의 혼합물을 지칭하며, 상기 혼합물은 기본 분자 구조의 모든 디아스테레오머 및 에난티오머를 포함한다. 특히, 입체 중심은 R- 또는 S-배위를 가질 수 있으며 2가 시클릭(부분적으로) 포화 라디칼 상의 치환기는 시스-또는 트랜스-배위를 가질 수 있다. 이중 결합을 포함하는 화합물은 상기 이중결합에서 E 또는 Z-입체화학을 가질 수 있다. 상기 화학식 1 로 표시되는 화합물의 입체화학적 이성체 형태는 상기 발명의 범위 내에 포함되는 것으로 의도된다.As used herein, the term "stereoisomer" refers to molecules that have the same chemical formula and the same bonding order between constituent atoms, but have different three-dimensional structures, and are divided into enantiomers and diastereomers. In addition, the stereochemical isomeric form of the pyridone derivative compound according to one embodiment defines all possible compounds that the compound of Formula 1 may have. Unless otherwise stated or indicated, the chemical name of a compound refers to a mixture of all possible stereochemical isomeric forms, which mixture includes all diastereomers and enantiomers of the basic molecular structure. In particular, the stereogenic center can have the R- or S-configuration and the substituents on the divalent cyclic (partially) saturated radical can have the cis- or trans-configuration. Compounds containing a double bond may have E or Z-stereochemistry at the double bond. Stereochemical isomeric forms of the compound represented by Formula 1 are intended to be included within the scope of the invention.

또 다른 양상은 상기 화학식 1 또는 화학식 2로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 단백질-단백질 상호작용(protein-protein interaction) 억제용 조성물을 제공한다.Another aspect provides a composition for inhibiting protein-protein interaction, comprising a compound represented by Formula 1 or Formula 2, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient. .

본 명세서에서 용어 “단백질-단백질 상호작용(protein-protein interaction)”은 정전기력, 수소 결합, 소수성 효과를 포함하는 상호작용에 의해 조정되는 생화학적 사건의 결과로, 둘 이상의 단백질 분자 사이에 확립된 높은 특이성의 물리적 접촉을 의미한다. 이를 가장 많이 목격할 수 있는 것은 특정 생체 분자 상황에서 세포 또는 살아있는 유기체에서 발생하는 사슬 사이의 분자 결합과의 물리적 접촉을 의미한다. 세포내 다양한 반응은 단백질-단백질 상호작용에 의해 진행되며, 비정상적인 단백질-단백질 상호작용은 크로이츠펠트-야코프병 및 알츠하이머병과 같은 다양한 질환의 시발점이 될 수 있다.As used herein, the term “protein-protein interaction” refers to an established high molecular weight relationship between two or more protein molecules as a result of biochemical events mediated by interactions involving electrostatic forces, hydrogen bonding, and hydrophobic effects. It means physical contact of singularity. This is most often observed in certain biomolecular contexts, which refers to physical contact with molecular bonds between chains that occur in cells or living organisms. Various reactions within cells proceed by protein-protein interactions, and abnormal protein-protein interactions can be the starting point of various diseases such as Creutzfeldt-Jakob disease and Alzheimer's disease.

본 명세서에서 용어 “암”은 세포의 정상적인 분열, 분화 및 사멸의 조절 기능에 문제가 발생하여 비정상적으로 과다 증식하여 주위 조직 및 장기에 침윤하여 덩어리를 형성하고 기존의 구조를 파괴하거나 변형시키는 상태를 의미한다. As used herein, the term “cancer” refers to a condition in which problems occur in the normal division, differentiation, and death control functions of cells, causing abnormal hyperproliferation, infiltrating surrounding tissues and organs, forming lumps, and destroying or deforming existing structures. it means.

또한 이에 제한되는 것은 아니지만, 상기 암은 자궁경부암, 폐암, 췌장암, 비소세포성폐암, 간암, 결장암, 골암, 피부암, 두부암, 경부암, 피부 흑색종, 안구내 흑색종, 자궁암, 난소암, 직장암, 뇌종양, 방광암, 혈액암, 위암, 항문부근암, 유방암, 나팔관암종, 자궁내막암종, 질암, 음문암종, 호지킨병(Hodgkin's disease), 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 신장암, 수뇨관암, 신장세포 암종, 신장골반 암종, 중추신경계(central nervous system; CNS) 종양, 1차 CNS 림프종, 척수 종양, 뇌간 신경교종 및 뇌하수체 선종으로 구성된 군으로부터 선택되는 어느 하나인 것일 수 있다.In addition, but not limited thereto, the above cancers include cervical cancer, lung cancer, pancreatic cancer, non-small cell lung cancer, liver cancer, colon cancer, bone cancer, skin cancer, head cancer, cervical cancer, skin melanoma, intraocular melanoma, uterine cancer, ovarian cancer, and rectal cancer. , brain tumor, bladder cancer, blood cancer, stomach cancer, perianal cancer, breast cancer, fallopian tube carcinoma, endometrial carcinoma, vaginal cancer, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, endocrine cancer, thyroid cancer, parathyroid cancer, Renal cancer, soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, kidney cancer, ureteral cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system (CNS) tumor, primary CNS lymphoma, spinal cord tumor, brainstem glioma And it may be any one selected from the group consisting of pituitary adenoma.

본 명세서에서 용어 "예방"은 조성물의 투여에 의해 질병을 억제시키거나 발병을 지연시키는 모든 행위를 말한다. 용어 "치료"는 조성물의 투여에 의해 질병의 증세가 호전되거나 이롭게 변경하는 모든 행위를 말한다.As used herein, the term “prevention” refers to any action that suppresses a disease or delays its onset by administering a composition. The term “treatment” refers to any action that improves or beneficially changes the symptoms of a disease by administering a composition.

본 명세서에서 용어 "약학적으로 허용 가능한"은 과도한 독성, 자극, 알러지 반응 또는 기타 문제점 또는 합병증 없이 이득/위험 비가 합리적이어서 대상체(예: 인간)의 조직과 접촉하여 사용하기에 적합하며 건전한 의학적 판단의 범주 이내인 조성물을 의미한다.As used herein, the term "pharmaceutically acceptable" means that the benefit/risk ratio is reasonable and is suitable for use in contact with the tissue of a subject (e.g., a human) without excessive toxicity, irritation, allergic reaction, or other problems or complications, and sound medical judgment. It means a composition within the scope of.

본 명세서에서 사용된 용어, "약학적으로 허용 가능한 염"은 약학적으로 허용 가능한 유리산(free acid)에 의해 형성된 산 부가염이 유용하다. 산 부가염은 염산, 질산, 인산, 황산, 브롬화수소산, 요드화수소산, 아질산 또는 아인산과 같은 무기산류와 지방족 모노 및 디카르복실레이트, 페닐-치환된 알카노에이트, 하이드록시 알카노에이트 및 알칸디오에이트, 방향족 산류, 지방족 및 방향족 설폰산류와 같은 무독성 유기산으로부터 얻는다.As used herein, the term “pharmaceutically acceptable salt” refers to an acid addition salt formed by a pharmaceutically acceptable free acid. Acid addition salts include inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, nitrous acid or phosphorous acid, as well as aliphatic mono- and dicarboxylates, phenyl-substituted alkanoates, hydroxyalkanoates and alkanes. Obtained from non-toxic organic acids such as dioates, aromatic acids, aliphatic and aromatic sulfonic acids.

이러한 약학적으로 무독한 염류로는 설페이트, 피로설페이트, 바이설페이트, 설파이트, 바이설파이트, 니트레이트, 포스페이트, 모노하이드로겐 포스페이트, 디하이드로겐 포스페이트, 메타포스페이트, 피로포스페이트 클로라이드, 브로마이드, 아이오다이드, 플루오라이드, 아세테이트, 프로피오네이트, 데카노에이트, 카프릴레이트, 아크릴레이트, 포메이트, 이소부티레이트, 카프레이트, 헵타노에이트, 프로피올레이트, 옥살레이트, 말로네이트, 석시네이트, 수베레이트, 세바케이트, 푸마레이트, 말리에이트, 부틴-1,4-디오에이트, 헥산-1,6-디오에이트, 벤조에이트, 클로로벤조에이트, 메틸벤조에이트, 디니트로 벤조에이트, 하이드록시벤조에이트, 메톡시벤조에이트, 프탈레이트, 테레프탈레이트, 벤젠설포네이트, 톨루엔설포네이트, 클로로벤젠설포네이트, 크실렌설포네이트, 페닐아세테이트, 페닐프로피오네이트, 페닐부티레이트, 시트레이트, 락테이트, β-하이드록시부티레이트, 글리콜레이트, 말레이트, 타트레이트, 메탄설포네이트, 프로판설포네이트, 나프탈렌-1-설포네이트, 나프탈렌-2-설포네이트 또는 만델레이트를 포함할 수 있으나, 이에 한정되지 않는다.These pharmaceutically non-toxic salts include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogen phosphate, dihydrogen phosphate, metaphosphate, pyrophosphate chloride, bromide, and iodine. Ide, fluoride, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suberate , sebacate, fumarate, maleate, butyne-1,4-dioate, hexane-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitro benzoate, hydroxybenzoate, methylbenzoate Toxybenzoate, phthalate, terephthalate, benzenesulfonate, toluenesulfonate, chlorobenzenesulfonate, xylenesulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, β-hydroxybutyrate, glycol It may include, but is not limited to, nitrate, malate, tartrate, methanesulfonate, propanesulfonate, naphthalene-1-sulfonate, naphthalene-2-sulfonate, or mandelate.

또한, 염기를 사용하여 약학적으로 허용 가능한 금속염을 만들 수도 있다. 알칼리 금속 또는 알칼리 토금속 염은 예를 들면, 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리 토금속 수산화물 용액 중에 용해하고, 비용해 화합물 염을 여과하고, 여액을 증발, 건조시켜 얻을 수 있다. 이때, 금속염으로는 나트륨, 칼륨 또는 칼슘염을 제조하는 것이 제약상 적합하다. 이에 대응하는 은염은 알칼리 금속 또는 알칼리 토금속 염을 적당한 음염(예, 질산은)과 반응시켜 얻을 수 있다.Additionally, a pharmaceutically acceptable metal salt can be prepared using a base. The alkali metal or alkaline earth metal salt can be obtained, for example, by dissolving the compound in an excess of alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the undissolved compound salt, and evaporating and drying the filtrate. At this time, it is pharmaceutically appropriate to prepare sodium, potassium, or calcium salts as metal salts. The corresponding silver salt can be obtained by reacting an alkali metal or alkaline earth metal salt with a suitable silver salt (e.g., silver nitrate).

상기 약학적 조성물은 담체, 부형제 또는 희석제를 더 포함할 수 있다. 담체, 부형제 및 희석제는 예를 들면, 락토오스, 덱스트로오스, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트, 또는 광물유를 포함할 수 있다.The pharmaceutical composition may further include a carrier, excipient, or diluent. Carriers, excipients and diluents include, for example, lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginates, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, not determined. It may contain quality cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, or mineral oil.

상기 약학적 조성물은 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 또는 멸균 주사용액의 형태로 제형화될 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다.The pharmaceutical composition may be formulated in the form of oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, external preparations, suppositories, or sterile injection solutions according to conventional methods. When formulated, it can be prepared using diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, and surfactants.

상기 약학적 조성물에 있어서, 경구 투여를 위한 고형 제제는 정제, 환제, 산제, 과립제, 또는 캡슐제일 수 있다. 상기 고형 제제는 부형제를 더 포함할 수 있다. 부형제는 예를 들면, 전분, 칼슘카보네이트(calcium carbonate), 수크로스(sucrose), 락토오스(lactose), 또는 젤라틴일 수 있다. 또한, 상기 고형 제제는 마그네슘 스테아레이트, 또는 탈크와 같은 윤활제를 더 포함할 수 있다. 상기 약학적 조성물에 있어서, 경구를 위한 액상 제제는 현탁제, 내용액제, 유제, 또는 시럽제일 수 있다. 상기 액상 제제는 물, 또는 리퀴드 파라핀을 포함할 수 있다. 상기 액상 제제는 부형제, 예를 들면 습윤제, 감미제, 방향제, 또는 보존제를 포함할 수 있다. 상기 약학적 조성물에 있어서, 비경구 투여를 위한 제제는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 또는 및 좌제일 수 있다. 비수성용제 또는 현탁제는 식물성 기름 또는 에스테르를 포함할 수 있다. 식물성 기름은 예를 들면, 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 또는 올리브 오일일 수 있다. 에스테르는 예를 들면 에틸올레이트일 수 있다. 좌제의 기제는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 또는 글리세로젤라틴일 수 있다.In the pharmaceutical composition, the solid preparation for oral administration may be a tablet, pill, powder, granule, or capsule. The solid preparation may further include excipients. Excipients may be, for example, starch, calcium carbonate, sucrose, lactose, or gelatin. Additionally, the solid preparation may further include a lubricant such as magnesium stearate or talc. In the pharmaceutical composition, the liquid preparation for oral administration may be a suspension, oral solution, emulsion, or syrup. The liquid formulation may contain water or liquid paraffin. The liquid formulation may contain excipients such as wetting agents, sweeteners, flavoring agents, or preservatives. In the pharmaceutical composition, preparations for parenteral administration may be sterilized aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried products, and suppositories. Non-aqueous solvents or suspensions may contain vegetable oil or ester. The vegetable oil may be, for example, propylene glycol, polyethylene glycol, or olive oil. The ester may be, for example, ethyl oleate. The base of the suppository may be witepsol, macrogol, tween 61, cacao, laurel, or glycerogelatin.

상기 약학적 조성물의 바람직한 투여량은 개체의 상태 및 체중, 질병의 정도, 약물 형태, 투여 경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나, 상기 화합물, 이의 입체 이성질체, 유도체, 용매화물, 또는 약학적으로 허용가능한 염은 예를 들면, 약 0.0001 ㎎/㎏ 내지 약 100 ㎎/㎏, 또는 약 0.001 ㎎/㎏ 내지 약 100 ㎎/㎏의 양을 일일 1회 내지 24회, 2일 내지 1주에 1 내지 7회, 또는 1개월 내지 12개월에 1 내지 24회로 나누어 투여할 수 있다. 상기 약학적 조성물에서 화합물, 이의 입체 이성질체, 또는 약학적으로 허용가능한 염은 전체 조성물 총 중량에 대하여 약 0.0001 중량% 내지 약 10 중량%, 또는 약 0.001 중량% 내지 약 1 중량%로 포함될 수 있다.The preferred dosage of the pharmaceutical composition varies depending on the individual's condition and weight, degree of disease, drug form, administration route and period, but can be appropriately selected by a person skilled in the art. However, the compound, its stereoisomer, derivative, solvate, or pharmaceutically acceptable salt may be administered in an amount, for example, from about 0.0001 mg/kg to about 100 mg/kg, or from about 0.001 mg/kg to about 100 mg/kg. The amount can be divided into 1 to 24 times per day, 1 to 7 times per 2 days to 1 week, or 1 to 24 times per month to 12 months. In the pharmaceutical composition, the compound, its stereoisomer, or a pharmaceutically acceptable salt may be included in an amount of about 0.0001% to about 10% by weight, or about 0.001% by weight to about 1% by weight, based on the total weight of the composition.

투여 방법은 경구, 또는 비경구 투여일 수 있다. 투여 방법은 예를 들어, 경구, 경피, 피하, 직장, 정맥내, 동맥내, 복강내, 근육내, 흉골내, 국소, 코안(intranasal), 기관내(intratracheal), 또는 피내 경로일 수 있다. 상기 조성물은 전신적으로 또는 국부적으로 투여될 수 있고, 단독으로 또는 다른 약학적 활성 화합물과 함께 투여될 수 있다.The administration method may be oral or parenteral administration. Methods of administration may be, for example, oral, transdermal, subcutaneous, rectal, intravenous, intraarterial, intraperitoneal, intramuscular, intrasternal, topical, intranasal, intratracheal, or intradermal. The composition can be administered systemically or topically, alone or in combination with other pharmaceutically active compounds.

또 다른 양상은 일 양상에 따른 약학적 조성물을 개체에게 투여하는 단계를 포함하는, 암을 예방 또는 치료하는 방법을 제공한다. 약학적 조성물, 투여, 예방 및 치료의 구체적인 내용은 전술한 바와 같다.Another aspect provides a method of preventing or treating cancer, comprising administering the pharmaceutical composition according to one aspect to a subject. Details of the pharmaceutical composition, administration, prevention and treatment are as described above.

상기 개체는 포유동물, 예를 들면, 인간, 소, 말, 돼지, 개, 양, 염소 또는 고양이일 수 있으며, 인간을 제외한 포유동물일 수 있다. 상기 개체는 암을 앓고 있거나, 앓을 가능성이 큰 개체일 수 있다.The subject may be a mammal, for example, a human, cow, horse, pig, dog, sheep, goat, or cat, or may be a mammal other than a human. The individual may be suffering from cancer or may be at high risk of suffering from cancer.

투여 방법은 경구, 또는 비경구 투여일 수 있다. 투여 방법은 예를 들어, 경구, 경피, 피하, 직장, 정맥내, 동맥내, 복강내, 근육내, 흉골내, 국소, 코안, 기관내, 또는 피내 경로일 수 있다. 상기 약학적 조성물은 전신적으로 또는 국부적으로 투여될 수 있고, 단독으로 또는 다른 약학적 활성 화합물과 함께 투여될 수 있다.The administration method may be oral or parenteral administration. Methods of administration may be, for example, oral, transdermal, subcutaneous, rectal, intravenous, intraarterial, intraperitoneal, intramuscular, intrasternal, topical, intranasal, intratracheal, or intradermal. The pharmaceutical composition can be administered systemically or topically, alone or in combination with other pharmaceutically active compounds.

상기 조성물의 투여량은 예를 들면, 약 0.0001 ㎎/㎏ 내지 약 100 ㎎/㎏, 또는 약 0.001 ㎎/㎏ 내지 약 100 ㎎/㎏의 범위 내일 수 있다. 상기 투여는 일일 1회 내지 24회, 2일 내지 1주에 1 내지 7회, 또는 1개월 내지 12개월에 1 내지 24회로 나누어 투여될 수 있다.The dosage of the composition may range, for example, from about 0.0001 mg/kg to about 100 mg/kg, or from about 0.001 mg/kg to about 100 mg/kg. The administration may be divided into 1 to 24 times per day, 1 to 7 times per 2 days to 1 week, or 1 to 24 times per month to 12 months.

또 다른 양상은 일 양상에 따른 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용가능한 염을 포함하는 조성물의 암의 예방 또는 치료 용도를 제공한다.Another aspect provides a use of a composition comprising a compound according to one aspect, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof for the prevention or treatment of cancer.

또 다른 양상은 일 양상에 따른 화합물, 이의 입체 이성질체, 또는 이의 식품학적으로 허용가능한 염을 포함하는 건강기능식품 조성물을 제공한다.Another aspect provides a health functional food composition comprising the compound according to one aspect, a stereoisomer thereof, or a foodologically acceptable salt thereof.

본 명세서에서 사용된 용어, "개선"은 비정상적인 상태와 관련된 파라미터, 예를 들면 증상의 정도를 적어도 감소시키는 모든 행위를 의미한다. 이때 상기 건강 기능성 식품 조성물은 암의 예방 또는 개선을 위하여 해당 질환의 발병 단계 이전 또는 발병 후, 치료를 위한 약제와 동시에 또는 별개로서 사용될 수 있다.As used herein, the term “improvement” refers to any action that at least reduces the severity of a parameter associated with an abnormal condition, such as a symptom. At this time, the health functional food composition can be used simultaneously or separately with a drug for treatment before or after the onset of the disease in order to prevent or improve cancer.

상기 건강기능식품은 일 양상에 따른 화합물, 이의 입체 이성질체, 또는 이의 식품학적으로 허용가능한 염을 캡슐화, 분말화, 또는 현탁액 등으로 제제화하여 기능성 식품으로 이용하거나 각종 식품에 첨가할 수 있다. 상기 식품은 예를 들어, 육류, 소시지, 빵, 초콜릿, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알코올음료, 비타민 복합제, 기능성 식품 및 건강 식품이다.The health functional food can be prepared by encapsulating, powdering, or suspending a compound according to one aspect, a stereoisomer thereof, or a food-acceptable salt thereof, and using it as a functional food or adding it to various foods. The above foods include, for example, meat, sausages, bread, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gum, dairy products including ice cream, various soups, beverages, tea, drinks, alcoholic beverages, and vitamins. It is a combination medicine, functional food and health food.

본 발명 신규 화합물은 ELF3와 MED23의 단백질-단백질 상호작용을 억제하여 HER2의 수준을 억제할 수 있으며, 이를 통해 현저한 수준의 항암 효과를 가진다. 더욱이 기존에 암 치료제로 임상에서 사용하는 트라스트주맙에 내성을 가지는 경우에도 본 발명의 신규 화합물을 처리했을 때, 현저한 수준의 항암효과를 보여주었다. 따라서, 본 발명의 신규 화합물은 암 치료 분야에서 폭넓게 활용될 수 있을 것으로 예상된다. The novel compound of the present invention can suppress the level of HER2 by inhibiting the protein-protein interaction of ELF3 and MED23, and thereby has a significant anticancer effect. Moreover, even in cases of resistance to trastuzumab, which is previously used clinically as a cancer treatment, treatment with the new compound of the present invention showed a remarkable level of anticancer effect. Therefore, it is expected that the new compound of the present invention can be widely used in the field of cancer treatment.

도 1은 ELF3-MED23 복합체의 핫스팟을 예측하기 위하여 In silico 기반 구조 분석을 수행한 결과로서, 도 1a는 Phyre2 서버를 사용하여 준비된 MED23WT 및 ELF3WT의 단백질 결합 모델을 나타낸 도이고, 도 1b는 MED23 단백질에 대한 ELF3137-144 펩티드의 3D 도킹을 나타낸 도이고, 도 1c는 ELF3-MED23 PPI 억제 활성을 가지는 것으로 알려진 wrenchnolol, adamanolol, gefitinib, 및 canertinib의 도킹을 나타낸 도이고, 도 1d는 PoseView(https://proteins.plus)에 의해 생성된 제피티닙 도킹의 2D 상호 작용 다이어그램을 나타낸 도이고, 도 1e는 MED23과 상기 화합물간의 상호작용에 관여하는 수소결합 및 p-스태킹을 나타낸 도이다.
도 2는 canertinib의 2D 다이어그램을 나타낸 것으로서, canertinib이 MED23의 F399와 p-상호작용을 할 수 있음을 나타낸 도이다.
도 3은 ELF3-MED23 단백질-단백질 상호작용 핫스팟에 관여하는 주요 잔기를 분석한 결과로서, 도 3a는 각 MED23 돌연변이가 gal4-ELF3와 MED23의 결합 수준에 미치는 영향을 SEAP 분석으로 확인한 도이고, 도 3b는 바이오센서에 의한 스플릿 루시퍼라제 분석을 나타낸 도이고, 도 3c 및 도 3d는 ELF3와 MED23391-582 단편과의 결합 수준을 이미지(도 3c) 및 정량(도 3d)으로 나타낸 도이고, 도 3e는 여러 전장 MED23 돌연변이와 ELF3 사이의 상호작용을 GST 풀다운 분석으로 확인한 도이고, 도 3f는 HER2의 전사 활성 수준을, 도 3g는 HER2의 발현 수준을 나타낸 도이다.
도 4는 ELF3-MED23의 단백질-단백질 상호작용에 영향을 줄 수 있는 소분자를 분석한 결과로서, 도 4a는 소분자 설계 전략을 나타낸 도이고, 도 4b는 제조한 소분자의 ELF3-MED23 단백질-단백질 상호작용 억제 효과 및 세포 생존율을 확인한 도이고, 도 4c는 65% 이상의 ELF3-MED23 단백질-단백질 상호작용 억제 효과를 보이는 소분자 화합물을 농도를 달리하며 억제 효과 및 세포 생존율을 재차 확인한 도이고, 도 4d는 설계된 25개 소분자 화합물의 도킹 포즈를 나타낸 도이다.
도 5는 ELF3-MED23의 단백질-단백질 상호작용에 현저하게 영향을 주는 소분자 화합물을 선별한 결과로서, 도 5a는 gefitinib과 후보 화합물의 도킹 포즈를 중첩하여 분석한 결과로서, 수소 결합 공여체를 빨간색, 수소 결합 수용체를 파란색으로 시각화하여 나타낸 도이고, 도 5b는 후보 화합물의 도킹 포즈 다이어그램을 나타낸 도이고, 도 5c는 후보 화합물과 MED23 야생형과의 수소 결합을 통한 결합을 LC-MS/MS 분석을 통해 확인한 도이고, 도 5d는 다양한 MED23 단편에 대한 후보 화합물의 결합 친화도를 LC-MS/MS 분석을 통해 확인한 도이고, 도 5e 및 도 5f는 Nluc-ELF3WT 및 Cluc-MED23391-462 단편을 사용하여 수행된 루시퍼라제 바이오센서 분석에 의한 이미지 및 정량 데이터를 나타낸 도이고, 도 5g는 후보 화합물 또는 표지되지 않은 ELF3 단백질의 용량 의존적 처리에 따른 형광 편광(fluorescence polarization)을 나타낸 도이고, 도 5h는 후보 화합물의 IC50 값 및 Ki 값을 나타낸 도이고, 도 5i는 후보 화합물의 단백질-단백질 상호작용 억제 효과를 면역침전 분석에 의해 나타낸 도이고, 도 도 5j는 후보 화합물의 용량 의존적 처리에 따른 HER2 mRNA 발현 수준을 나타낸 도이고, 도 5k는 후보 화합물의 용량 의존적 처리에 따른 HER2 및 HER2 관련 다운스트림 신호 분자의 발현 수준을 나타낸 도이다.
도 6은 후보 화합물의 항암 활성을 생화학적으로 확인한 결과로서, 도 6a는 다양한 위암 세포주에서 HER2, ELF3 및, MED23의 발현 수준을 확인한 도이고, 도 6b는 상이한 HER2 수준을 보이는 위암 세포주에 후보 화합물을 처리한 다음 세포 생존율을 확인한 도이고, 도 6c는 NCI-N87 세포에 후보 화합물 및 비교군 화합물을 처리한 다음 세포 생존율을 확인한 도이고, 도 6d는 일반 세포(VERO, HFL-1, L929, NIH 3T3, 및 CHO-K1)에 후보 화합물을 처리한 다음, 세포 생존율을 확인한 도이다.
도 7는 후보 화합물은 항암 효과를 in vitroin vivo에서 확인한 결과로서, 도 7a 및 도 7b는 위암 환자 1,065명의 전체 생존율(도 7a) 및 무진행 생존(도 7b)를 나타낸 도이고, 도 7c는 NCI-N87 이종이식 마우스에 후보 화합물을 처리한 다음, 종양의 퇴행을 관찰한 도이고, 도 7d는 비히클 처리군 및 후보 물질 처리군 마우스에서 수득한 종양을 촬영한 도이고, 도 7e는 종양에서 HER2 및 Ki75에 대한 IHC 염색을 수행한 다음, 확인한 도이고, 도 7f 및 도 7g는 후보 화합물을 처리했을 때, 세포의 주기를 확인한 도이고, 도 7i는 후보 화합물을 처리했을 때, 세포 자멸사 효과를 확인한 도이고, 도 7h는 후보 화합물 처리에 의한 세포 자멸사 촉진 마커 및 항-세포 자멸사 마커의 수준을 확인한 도이다.
도 8은 후보 화합물의 약독학적 평가를 수행한 결과로서, 도 8a는 후보 화합물의 물리 화학적 특성(예: 용해도, Log P, 및 투과성 등)을 나타낸 도이고, 도 8b은 후보 화합물의 유전 독성(genotoxicity)을, 도 8c은 심장독성(cardiac toxicity)를 나타낸 도이고, 도 8d는 후보 화합물의 정맥 및 경구 경로 약동학 프로파일을 나타낸 도이다.
도 9는 후보 화합물의 내성 극복 효과를 확인한 결과로서, 도 9a 내지 도 9c는 모세포(BT474 및 NCI-N87) 및 트라스트주맙 내성 획득 세포(BT474 TR, NCI-N87 TR 및 JIMT-1)에 대한 후보 화합물 및 트라스트주맙의 용량 의존적 치료 효과를 확인한 도이고, 도 9d 내지 도 9f는 트라스트주맙 민감성 및 트라스트주맙 저항성 세포에 트라스트주맙과 후보 화합물을 용량을 달리하면서 처리한 다음, HER2 및 이의 주요 다운스트림 신호 분자의 수준을 확인한 도이고, 도 9g 내지 도 gi는 후보 화합물 및 트라스트주맙을 용량 의존적으로 처리하면서 트라스트주맙 민감성 및 트라스트주맙 저항성 세포의 생존 및 증식을 확인한 도이다.
도 10은 트라스트주맙 또는 후보 화합물을 처리한 JIMT-1 이종이식 마우스의 체중 변화를 확인한 도이다.
Figure 1 shows the results of in silico- based structural analysis to predict the hotspot of the ELF3-MED23 complex. Figure 1a shows the protein binding model of MED23WT and ELF3WT prepared using the Phyre2 server, and Figure 1b shows the MED23 protein. A diagram showing the 3D docking of the ELF3 137-144 peptide, Figure 1c is a diagram showing the docking of wrenchnolol, adamanolol, gefitinib, and canertinib, which are known to have ELF3-MED23 PPI inhibitory activity, and Figure 1d is a diagram showing the docking of wrenchnolol, adamanolol, gefitinib, and canertinib, which are known to have ELF3-MED23 PPI inhibitory activity. This is a diagram showing a 2D interaction diagram of gefitinib docking generated by //proteins.plus), and Figure 1e is a diagram showing hydrogen bonding and p-stacking involved in the interaction between MED23 and the compound.
Figure 2 shows a 2D diagram of canertinib, showing that canertinib can p-interact with F399 of MED23.
Figure 3 shows the results of analyzing key residues involved in the ELF3-MED23 protein-protein interaction hotspot. Figure 3a shows the effect of each MED23 mutation on the binding level of gal4-ELF3 and MED23 confirmed by SEAP analysis. 3b is a diagram showing split luciferase analysis using a biosensor, and FIGS. 3c and 3d are diagrams showing the binding levels of ELF3 and MED23 391-582 fragments in images (FIG. 3c) and quantification (FIG. 3d). Figure 3e is a diagram showing the interaction between several full-length MED23 mutants and ELF3 using GST pull-down analysis, Figure 3f is a diagram showing the transcriptional activity level of HER2, and Figure 3g is a diagram showing the expression level of HER2.
Figure 4 shows the results of analyzing small molecules that can affect the protein-protein interaction of ELF3-MED23. Figure 4a is a diagram showing the small molecule design strategy, and Figure 4b shows the ELF3-MED23 protein-protein interaction of the prepared small molecule. This is a diagram confirming the inhibitory effect and cell survival rate, and Figure 4c is a diagram confirming the inhibitory effect and cell survival rate again by varying the concentration of a small molecule compound showing an ELF3-MED23 protein-protein interaction inhibitory effect of more than 65%, and Figure 4d is a diagram confirming the inhibitory effect and cell survival rate. This diagram shows the docking poses of the 25 designed small molecule compounds.
Figure 5 shows the results of selecting small molecule compounds that significantly affect the protein-protein interaction of ELF3-MED23, and Figure 5a shows the results of analyzing the docking poses of gefitinib and candidate compounds overlapping, with hydrogen bond donors in red; A diagram showing the hydrogen bond receptor visualized in blue, Figure 5b is a diagram showing the docking pose diagram of the candidate compound, and Figure 5c shows the binding of the candidate compound to MED23 wild type through hydrogen bonding through LC-MS/MS analysis. Figure 5d is a diagram confirming the binding affinity of candidate compounds to various MED23 fragments through LC-MS/MS analysis, and Figures 5e and 5f show Nluc-ELF3 WT and Cluc-MED23 391-462 fragments. A diagram showing images and quantitative data by luciferase biosensor analysis performed using luciferase biosensor, Figure 5g is a diagram showing fluorescence polarization according to dose-dependent treatment of candidate compounds or unlabeled ELF3 protein, Figure 5h is a diagram showing the IC50 value and Ki value of the candidate compound, Figure 5i is a diagram showing the protein-protein interaction inhibition effect of the candidate compound by immunoprecipitation analysis, and Figure 5j is a diagram showing the HER2 according to dose-dependent treatment of the candidate compound. This is a diagram showing the mRNA expression level, and Figure 5k is a diagram showing the expression level of HER2 and HER2-related downstream signaling molecules according to dose-dependent treatment of the candidate compound.
Figure 6 shows the results of biochemical confirmation of the anticancer activity of the candidate compound. Figure 6a is a diagram confirming the expression levels of HER2, ELF3, and MED23 in various gastric cancer cell lines, and Figure 6b shows the candidate compound in stomach cancer cell lines showing different HER2 levels. is a diagram confirming the cell viability after treatment, Figure 6c is a diagram confirming the cell survival rate after treating NCI-N87 cells with candidate compounds and comparison compounds, and Figure 6d is a diagram confirming the cell viability after treating NCI-N87 cells with candidate compounds and comparison compounds, and Figure 6d is a diagram confirming the cell viability after treating NCI-N87 cells This is a diagram showing cell viability after treatment with candidate compounds (NIH 3T3, and CHO-K1).
Figure 7 shows the results of confirming the anticancer effect of the candidate compound in vitro and in vivo . Figures 7A and 7B are diagrams showing the overall survival rate (Figure 7A) and progression-free survival (Figure 7B) of 1,065 gastric cancer patients, and Figure 7C. is a diagram showing tumor regression after treating NCI-N87 xenograft mice with a candidate compound, Figure 7D is a diagram showing tumors obtained from mice in the vehicle-treated group and the candidate material-treated group, and Figure 7E is a diagram showing the tumor Figure 7F and Figure 7G are diagrams confirming the cell cycle after performing IHC staining for HER2 and Ki75, and Figure 7I shows apoptosis when treating the candidate compounds. This is a diagram confirming the effect, and Figure 7h is a diagram confirming the levels of apoptosis-promoting markers and anti-apoptosis markers caused by treatment with the candidate compound.
Figure 8 shows the results of pharmacological evaluation of the candidate compound. Figure 8a shows the physicochemical properties (e.g. solubility, Log P, and permeability, etc.) of the candidate compound, and Figure 8b shows the genotoxicity of the candidate compound ( Figure 8c is a diagram showing cardiac toxicity, and Figure 8d is a diagram showing the intravenous and oral route pharmacokinetic profiles of the candidate compound.
Figure 9 shows the results confirming the resistance-overcoming effect of the candidate compound, and Figures 9a to 9c show the candidate compounds for parental cells (BT474 and NCI-N87) and trastuzumab resistance-acquired cells (BT474 TR, NCI-N87 TR, and JIMT-1). This is a diagram confirming the dose-dependent therapeutic effect of the compound and trastuzumab, and Figures 9d to 9f show trastzumab-sensitive and trastzumab-resistant cells treated with trastzumab and the candidate compound at different doses, and then HER2 and its major downstream signals. This is a diagram confirming the molecular level, and Figures 9g to gi are diagrams confirming the survival and proliferation of trastuzumab-sensitive and trastuzumab-resistant cells while treating the candidate compound and trastuzumab in a dose-dependent manner.
Figure 10 is a diagram confirming the change in body weight of JIMT-1 xenograft mice treated with trastuzumab or a candidate compound.

이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.

본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 “포함한다(comprise, include)”및/또는 “포함하는(comprising, including)”은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.As used herein, the singular forms include the plural forms unless the context clearly indicates otherwise. Additionally, when used herein, “comprise, include” and/or “comprising, including” refer to the mentioned shapes, numbers, steps, operations, members, elements and/or groups thereof. It specifies the presence and does not exclude the presence or addition of one or more other shapes, numbers, operations, members, elements and/or groups.

제조예Manufacturing example

사용한 화학물질 및 시약은 주로 Aldrich Chemical Co.에서 얻은 것을 사용하였으며, 그 외는 TCI 등의 회사에서 얻은 것을 사용하였다. Melting point는 Barnstead Electrothermal 융점 장치, Manual MELTEMP(모델 번호: 1202D)를 사용하여 보정 없이 측정하였다. 크로마토그래피 분리는 시판되는 사전 코팅된 Merck Kieselgel 60 F254 플레이트(0.25mm)를 사용하여 박층 크로마토그래피로 모니터링하고 UV 254 및 365nm에서 시각화하여 검출했다. Merck Kieselgel 60(0.040-0.063 mm)을 사용하여 실리카겔 컬럼 크로마토그래피를 수행했다. 크로마토그래피에 사용된 모든 용매는 증류 없이 그대로 사용하였다. 순도는 HPLC(Shimadzu LC-20AD) 분석에 의해 평가되었으며, 평가 조건은 하기와 같다: 칼럼, SunFire C18(4.6mm × 150mm, 5mm); 이동상 조건: linear gradient를 따르는 물을 A, 아세토니트릴을 B로할 때, 0-15분에 50-70% B, 15-20분에 70% B, 20-25분에 100% B 및 25-30분에 50% B, 유속; 1.0mL/분; 검출, 다이오드 어레이 감지기(diode array detector, Shimadzu Spd-M20A). 화합물의 순도는 백분율(%), retention 시간은 분으로 표시하였다. NMR 스펙트럼은 Varian AS 400(400MHz에서 1H NMR 및 100MHz에서 13C NMR)으로 기록하였다. chemical shift (δ)는 ppm으로 표시하였으며, coupling constant (J)는 Hz 단위로 표시하였다.The chemicals and reagents used were mainly obtained from Aldrich Chemical Co., while others were obtained from companies such as TCI. Melting point was measured without correction using a Barnstead Electrothermal melting point apparatus, Manual MELTEMP (model number: 1202D). Chromatographic separation was monitored by thin-layer chromatography using commercially available pre-coated Merck Kieselgel 60 F254 plates (0.25 mm) and detected by visualization at UV 254 and 365 nm. Silica gel column chromatography was performed using Merck Kieselgel 60 (0.040-0.063 mm). All solvents used in chromatography were used as is without distillation. Purity was evaluated by HPLC (Shimadzu LC-20AD) analysis, and the evaluation conditions were as follows: column, SunFire C18 (4.6 mm × 150 mm, 5 mm); Mobile phase conditions: When water is A and acetonitrile is B, following a linear gradient, 50-70% B in 0-15 minutes, 70% B in 15-20 minutes, 100% B in 20-25 minutes, and 25- 50% B in 30 min, flow rate; 1.0 mL/min; Detection, diode array detector (Shimadzu Spd-M20A). The purity of the compound was expressed in percentage (%), and the retention time was expressed in minutes. NMR spectra were recorded with a Varian AS 400 (1H NMR at 400 MHz and 13C NMR at 100 MHz). Chemical shift (δ) was expressed in ppm, and coupling constant (J) was expressed in Hz.

제조예 1. 칼콘 유사체 후보 화합물들의 제조 방법Preparation Example 1. Method for preparing chalcone analogue candidate compounds

1-1. 칼콘 유사체(chalcone analogues)의 일반적 제조방법1-1. General preparation method of chalcone analogues

EtOH(10 mL)에 용해된 아세토페논 유도체(acetophenone derivative) 및 벤즈알데히드 유도체(benzaldehyde derivative, 1.0 당량)의 반응 혼합물에 50% NaOH(4.0 당량)를 첨가하였다. 반응 혼합물을 실온(24시간)에서 교반한 다음, 물을 첨가하였다. 형성된 고체를 여과하고 물로 세척한 다음 진공 하에 건조시켰다. 고체를 실리카겔 컬럼 크로마토그래피(eluent: 에틸 아세테이트: n-헥산)로 정제하여 원하는 생성물을 얻었다.50% NaOH (4.0 equivalent) was added to the reaction mixture of acetophenone derivative and benzaldehyde derivative (1.0 equivalent) dissolved in EtOH (10 mL). The reaction mixture was stirred at room temperature (24 hours) and then water was added. The solid formed was filtered, washed with water and dried under vacuum. The solid was purified by silica gel column chromatography (eluent: ethyl acetate: n-hexane) to obtain the desired product.

1-2. 후보 화합물들의 제조 방법1-2. Methods for preparing candidate compounds

① 3-푸란-2-일-1-(3-하이드록시페닐)-프로페논(3-Furan-2-yl-1-(3-hydroxyphenyl)-propenone)의 제조① Production of 3-Furan-2-yl-1-(3-hydroxyphenyl)-propenone

3-hydroxyacetophenone (1.00 g, 7.34 mmol), furfural (0.61 mL, 7.34 mmol) 및 50% NaOH (2.35 mL, 29.35 mmol)를 사용하여 상기 제조예 1-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(ethyl acetate : n-hexane = 1 : 3)로 정제하여 목적하던 갈색(brown) 고체 화합물(1번 화합물)을 수득하였다(하기 화학식 3, 1.45 g, 92.1%)The reaction was performed according to the general method of Preparation Example 1-1 using 3-hydroxyacetophenone (1.00 g, 7.34 mmol), furfural (0.61 mL, 7.34 mmol), and 50% NaOH (2.35 mL, 29.35 mmol). Purified with eluent (ethyl acetate: n-hexane = 1:3), the desired brown solid compound (compound No. 1) was obtained (Formula 3 below, 1.45 g, 92.1%).

[화학식 3][Formula 3]

녹는점: 155 - 156 ℃; R f 0.54 (ethyl acetate : n-hexane = 1 : 1); HPLC: R T 4.46 min (purity: 99.9%). Melting point: 155 - 156 °C; R f 0.54 (ethyl acetate: n -hexane = 1:1); HPLC: R T 4.46 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 6.37 (d, J = 4.8 Hz, 1H), 6.57 (s, 1H), 6.91 (ddd, J = 8.0, 1.2, 0.8 Hz, 1H), 7.15 (dd, J = 8.0, 8.0 Hz, 1H), 7.25 (d, J = 15.6 Hz, 2H), 7.32 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 8.8 Hz, 1H), 9.04 (s, 1H); 13C-NMR (CDCl3, 100 MHz) : 112.5, 115.0, 115.9, 120.2, 120.4, 129.4, 130.2, 139.2, 144.8, 151.4, 157.6, 189.6 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 6.37 (d, J = 4.8 Hz, 1H), 6.57 (s, 1H), 6.91 (ddd, J = 8.0, 1.2, 0.8 Hz, 1H), 7.15 (dd, J = 8.0, 8.0 Hz, 1H), 7.25 (d, J = 15.6 Hz, 2H), 7.32 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 8.8 Hz, 1H), 9.04 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz): 112.5, 115.0, 115.9, 120.2, 120.4, 129.4, 130.2, 139.2, 144.8, 151.4, 157.6, 189.6 ppm.

② 1-(3-하이드록시페닐)-3-(4-메톡시페닐)-프로페논(1-(3-Hydroxyphenyl)-3-(4-methoxyphenyl)-propenone)의 제조② Production of 1-(3-hydroxyphenyl)-3-(4-methoxyphenyl)-propenone (1-(3-Hydroxyphenyl)-3-(4-methoxyphenyl)-propenone)

3-hydroxyacetophenone (1.00 g, 7.34 mmol), 4-methoxy benzaldehyde (0.89 mL, 7.34 mmol) 및 50% NaOH (2.35 mL, 29.35 mmol)를 사용하여 상기 제조예 1-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(ethyl acetate : n-hexane = 1 : 3)로 정제하여 목적하던 노란색(yellow) 고체 화합물(2번 화합물)을 수득하였다(하기 화학식 4, 2.40 g, 98.9%)The reaction was performed according to the general method of Preparation Example 1-1 above using 3-hydroxyacetophenone (1.00 g, 7.34 mmol), 4-methoxy benzaldehyde (0.89 mL, 7.34 mmol), and 50% NaOH (2.35 mL, 29.35 mmol). did. By purifying with eluent (ethyl acetate: n-hexane = 1:3), the desired yellow solid compound (compound No. 2) was obtained (Formula 4 below, 2.40 g, 98.9%)

[화학식 4][Formula 4]

③ 1-(3-하이드록시페닐)-3-(4-메톡시나프탈렌-1-일)-프로페논(1-(3-Hydroxyphenyl)-3-(4-methoxynaphthalen-1-yl)-propenone)의 제조③ 1-(3-Hydroxyphenyl)-3-(4-methoxynaphthalen-1-yl)-propenone (1-(3-Hydroxyphenyl)-3-(4-methoxynaphthalen-1-yl)-propenone) manufacture of

3-hydroxyacetophenone (1.00 g, 7.34 mmol), 4-methoxy-1- naphthaldehyde (1.37 g, 7.34 mmol) 및 50% NaOH (2.35 mL, 29.35 mmol)를 사용하여 상기 제조예 1-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(ethyl acetate : n-hexane = 1 : 3)로 정제하여 목적하던 오렌지색(orange) 고체 화합물(3번 화합물)을 수득하였다(하기 화학식 5, 1.56 g, 69.8%)According to the general method of Preparation Example 1-1 above using 3-hydroxyacetophenone (1.00 g, 7.34 mmol), 4-methoxy-1-naphthaldehyde (1.37 g, 7.34 mmol) and 50% NaOH (2.35 mL, 29.35 mmol) The reaction was carried out. Purified with eluent (ethyl acetate: n-hexane = 1:3), the desired orange solid compound (compound No. 3) was obtained (Formula 5 below, 1.56 g, 69.8%).

[화학식 5][Formula 5]

녹는점: 189 - 190 ℃; R f 0.63 (ethyl acetate : n-hexane = 1 : 1); HPLC: R T 10.34 min (purity: 99.9%). Melting point: 189 - 190 °C; R f 0.63 (ethyl acetate: n -hexane = 1:1); HPLC: R T 10.34 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 3.99 (s, 3H), 4.73 (s, 1H), 6.81 (d, J = 8.4 Hz, 1H), 7.03 (ddd, J= 8.0, 2.4, 0.8 Hz, 1H), 7.26 (dd, J = 8.0, 5.6 Hz, 1H), 7.44-7.49 (m, 4H), 7.53 (ddd, J = 8.0, 8.0, 1.6 Hz, 1H), 7.84 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 8.25 (d, J = 8.0 Hz, 1H), 8.51 (d, J = 15.2 Hz, 1H), 8.98 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 55.8, 103.9, 115.3, 119.7, 120.4, 122.4, 122.5, 122.7, 123.1, 123.9, 124.6, 125.3, 126.2, 127.5, 137.9, 157.7, 190.4 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 3.99 (s, 3H), 4.73 (s, 1H), 6.81 (d, J = 8.4 Hz, 1H), 7.03 (ddd, J = 8.0, 2.4, 0.8 Hz, 1H), 7.26 (dd, J = 8.0, 5.6 Hz, 1H), 7.44-7.49 (m, 4H), 7.53 (ddd, J = 8.0, 8.0, 1.6 Hz, 1H), 7.84 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 8.25 (d, J = 8.0 Hz, 1H), 8.51 (d, J = 15.2 Hz, 1H), 8.98 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 55.8, 103.9, 115.3, 119.7, 120.4, 122.4, 122.5, 122.7, 123.1, 123.9, 124.6, 125.3, 126.2, 127.5, 137.9 , 157.7, 190.4 ppm.

④ 3-(4-클로로페닐)-1-(3-하이드록시페닐)-프로페논(3-(4-Chlorophenyl)-1-(3-hydroxyphenyl)-propenone)의 제조④ Production of 3-(4-Chlorophenyl)-1-(3-hydroxyphenyl)-propenone

3-hydroxyacetophenone(1.00 g, 7.34 mmol), 4-chloro benzaldehyde(1.03 g, 7.34 mmol) 및 50% NaOH(2.35 mL, 29.35 mmol)를 사용하여 상기 제조예 1-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(ethyl acetate : n-hexane = 1 : 3)로 정제하여 목적하던 담황색(pale yellow) 고체 화합물(4번 화합물)을 수득하였다(하기 화학식 6, 0.99 g, 52.6%).The reaction was performed according to the general method of Preparation Example 1-1 above using 3-hydroxyacetophenone (1.00 g, 7.34 mmol), 4-chloro benzaldehyde (1.03 g, 7.34 mmol), and 50% NaOH (2.35 mL, 29.35 mmol) did. By purifying with eluent (ethyl acetate: n-hexane = 1:3), the desired pale yellow solid compound (compound No. 4) was obtained (Formula 6 below, 0.99 g, 52.6%).

[화학식 6][Formula 6]

녹는점: 160 - 162 ℃; R f 0.76 (ethyl acetate : n-hexane = 1 : 1); HPLC: R T 8.35 min (purity: 99.9%)Melting point: 160 - 162 °C; R f 0.76 (ethyl acetate: n -hexane = 1:1); HPLC: R T 8.35 min (purity: 99.9%)

1H-NMR (CDCl3, 400 MHz) 7.01 (ddd, J = 8.4, 0.8, 0.8 Hz, 1H), 7.24 (d, J = 15.6 Hz, 1H), 7.30 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 8.8 Hz, 2H), 7.41 (dd, J = 8.4, 2.4 Hz, 1H), 7.48 (d, J = 8.8 Hz, 2H), 7.62 (d, J = 16.0 Hz, 1H), 9.02 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 115.2, 119.5, 120.4, 122.7, 129.1, 129.5,129.6, 133.4, 136.1, 139.2, 142.8, 157.7, 190.1 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 7.01 (ddd, J = 8.4, 0.8, 0.8 Hz, 1H), 7.24 (d, J = 15.6 Hz, 1H), 7.30 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 8.8 Hz, 2H) ), 7.41 (dd, J = 8.4, 2.4 Hz, 1H), 7.48 (d, J = 8.8 Hz, 2H), 7.62 (d, J = 16.0 Hz, 1H), 9.02 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 115.2, 119.5, 120.4, 122.7, 129.1, 129.5, 129.6, 133.4, 136.1, 139.2, 142.8, 157.7, 190.1 ppm.

⑤ 3-(4-하이드록시페닐)-1-(3-하이드록시페닐)-프로페논(3-(4-Hydroxyphenyl)-1-(3-hydroxyphenyl)-propenone)의 제조⑤ Production of 3-(4-hydroxyphenyl)-1-(3-hydroxyphenyl)-propenone (3-(4-Hydroxyphenyl)-1-(3-hydroxyphenyl)-propenone)

3-hydroxyacetophenone (1.00 g, 7.34 mmol), 4-hydroxy benzaldehyde (0.90 g, 7.34 mmol) 및 50% NaOH (2.35 mL, 29.35 mmol)를 사용하여 상기 제조예 1-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(ethyl acetate : n-hexane = 1 : 3)로 정제하여 목적하던 노란색(yellow) 고체 화합물(5번 화합물)을 수득하였다(하기 화학식 7, 1.38 g, 78.5%)The reaction was performed according to the general method of Preparation Example 1-1 above using 3-hydroxyacetophenone (1.00 g, 7.34 mmol), 4-hydroxy benzaldehyde (0.90 g, 7.34 mmol), and 50% NaOH (2.35 mL, 29.35 mmol) did. By purifying with eluent (ethyl acetate: n-hexane = 1:3), the desired yellow solid compound (compound No. 5) was obtained (Formula 7 below, 1.38 g, 78.5%)

[화학식 7][Formula 7]

녹는점: 199 - 200 ℃; R f 0.45 (ethyl acetate : n-hexane = 1 : 1); HPLC: R T 2.80 min (purity: 99.9%). Melting point: 199 - 200 °C; R f 0.45 (ethyl acetate : n -hexane = 1 : 1); HPLC: R T 2.80 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 6.80 (d, J = 8.4 Hz, 2H), 6.98 (ddd, J = 8.0, 2.4, 0.8 Hz, 1H), 7.23 (dd, J = 8.0, 8.0 Hz, 1H), 7.25 (d, J = 15.6 Hz, 1H), 7.37-7.41 (m, 2H), 7.42 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 15.6 Hz, 1H), 8.80 (s, 1H), 9.20 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 115.3, 116.2, 119.2, 119.6, 120.0, 126.4, 129.5, 130.4, 140.0, 145.0, 157.6, 160.1, 190.7 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 6.80 (d, J = 8.4 Hz, 2H), 6.98 (ddd, J = 8.0, 2.4, 0.8 Hz, 1H), 7.23 (dd, J = 8.0, 8.0 Hz, 1H), 7.25 (d, J = 15.6 Hz) , 1H), 7.37-7.41 (m, 2H), 7.42 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 15.6 Hz, 1H), 8.80 (s, 1H), 9.20 (s, 1H) ; 13 C-NMR (CDCl 3 , 100 MHz) 115.3, 116.2, 119.2, 119.6, 120.0, 126.4, 129.5, 130.4, 140.0, 145.0, 157.6, 160.1, 190.7 ppm.

⑥ 1-(2-하이드록시페닐)-3-(4-메톡시페닐)-프로페논(1-(2-Hydroxyphenyl)-3-(4-methoxyphenyl)-propenone)의 제조⑥ Production of 1-(2-Hydroxyphenyl)-3-(4-methoxyphenyl)-propenone

2-hydroxyacetophenone (1.00 mL, 6.50 mmol), 4-methoxy benzaldehyde (0.78 mL, 6.50 mmol) and 50% NaOH (2.08 mL, 26.00 mmol)를 사용하여 상기 제조예 1-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(ethyl acetate : n-hexane = 1 : 3)로 정제하여 목적하던 노란색(yellow) 고체 화합물(6번 화합물)을 수득하였다(하기 화학식 8, 0.62 g, 37.4%).The reaction was performed according to the general method of Preparation Example 1-1 above using 2-hydroxyacetophenone (1.00 mL, 6.50 mmol), 4-methoxy benzaldehyde (0.78 mL, 6.50 mmol) and 50% NaOH (2.08 mL, 26.00 mmol) did. By purifying with eluent (ethyl acetate: n-hexane = 1:3), the desired yellow solid compound (compound No. 6) was obtained (Formula 8 below, 0.62 g, 37.4%).

[화학식 8][Formula 8]

녹는점: 92 - 93 ℃; R f 0.45 (ethyl acetate : n-hexane = 1 : 1); HPLC: R T 14.91 min (purity: 99.9%). Melting point: 92 - 93 ℃; R f 0.45 (ethyl acetate: n -hexane = 1:1); HPLC: R T 14.91 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 3.87 (s, 3H), 6.94 (ddd, J = 8.8, 8.4, 1.2 Hz, 1H), 6.60 (d, J = 8.8 Hz, 2H), 7.03 (dd, J = 8.0, 1.2 Hz, 2H), 7.49 (ddd, J = 8.8, 8.4, 1.2 Hz, 1H), 7.55 (d, J = 15.6 Hz, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.91 (d, J = 15.6 Hz, 2H), 7.93 (dd, J = 8.8 1.6 Hz, 1H), 12.93 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 55.7, 114.7, 117.8, 118.8, 119.0, 120.3, 127.6, 129.7, 130.8, 136.4, 145.6, 162.3, 163.8, 193.9 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 3.87 (s, 3H), 6.94 (ddd, J = 8.8, 8.4, 1.2 Hz, 1H), 6.60 (d, J = 8.8 Hz, 2H), 7.03 (dd, J = 8.0, 1.2 Hz, 2H), 7.49 (ddd, J = 8.8, 8.4, 1.2 Hz, 1H), 7.55 (d, J = 15.6 Hz, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.91 (d, J = 15.6 Hz, 2H) , 7.93 (dd, J = 8.8 1.6 Hz, 1H), 12.93 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 55.7, 114.7, 117.8, 118.8, 119.0, 120.3, 127.6, 129.7, 130.8, 136.4, 145.6, 162.3, 163.8, 193.9 ppm.

⑦ 1-(2-하이드록시페닐)-3-(4-메톡시나프탈렌-1-일)-프로페논(1-(2-Hydroxyphenyl)-3-(4-methoxynaphthalen-1-yl)-propenone)의 제조⑦ 1-(2-Hydroxyphenyl)-3-(4-methoxynaphthalen-1-yl)-propenone) manufacture of

2-hydroxyacetophenone (1.00 mL, 6.50 mmol), 4-methoxy-1- naphthaldehyde (1.21 mL, 6.50 mmol) 및 50% NaOH (2.08 mL, 26.00 mmol)를 사용하여 상기 제조예 1-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(ethyl acetate : n-hexane = 1 : 3)로 정제하여 목적하던 오렌지색(orange) 고체 화합물(7번 화합물)을 수득하였다(하기 화학식 9, 0.57 g, 28.9%).According to the general method of Preparation Example 1-1 above using 2-hydroxyacetophenone (1.00 mL, 6.50 mmol), 4-methoxy-1-naphthaldehyde (1.21 mL, 6.50 mmol) and 50% NaOH (2.08 mL, 26.00 mmol) The reaction was carried out. By purifying with eluent (ethyl acetate: n-hexane = 1:3), the desired orange solid compound (compound No. 7) was obtained (Formula 9 below, 0.57 g, 28.9%).

[화학식 9][Formula 9]

녹는점: 158 - 160 ℃; R f 0.57 (ethyl acetate : n-hexane = 1 : 1); HPLC: R T 20.25 min (purity: 99.9%). Melting point: 158 - 160 ℃; R f 0.57 (ethyl acetate: n -hexane = 1:1); HPLC: R T 20.25 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 4.08 (s, 3H), 6.89 (d, J= 8.0 Hz, 1H), 6.95 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 7.51 (ddd, J = 8.8, 8.4, 0.8 Hz, 1H), 7.55 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.64 (ddd, J = 8.8, 8.0, 1.2 Hz, 1H), 7.69 (d, J = 15.4 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 8.8 Hz, 1H), 8.35 (d, J = 8.0 Hz, 1H), 8.76 (d, J = 15.4 Hz, 1H); 13C-NMR (CDCl3, 100 MHz) 56.0, 104.0, 118.9, 119.0, 120.1, 120.4, 123.0, 123.3, 124.5, 125.9, 126.0, 126.8, 128.0, 129.8, 133.1, 136.4, 142.6, 158.4, 163.9, 193.8 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 4.08 (s, 3H), 6.89 (d, J = 8.0 Hz, 1H), 6.95 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 7.51 (ddd , J = 8.8, 8.4, 0.8 Hz, 1H), 7.55 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.64 (ddd, J = 8.8, 8.0, 1.2 Hz, 1H), 7.69 (d, J = 15.4 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 8.8 Hz, 1H), 8.35 (d, J = 8.0 Hz, 1H), 8.76 (d, J = 15.4 Hz, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 56.0, 104.0, 118.9, 119.0, 120.1, 120.4, 123.0, 123.3, 124.5, 125.9, 126.0, 126.8, 128.0, 129.8, 133.1 , 136.4, 142.6, 158.4, 163.9, 193.8 ppm.

⑧ 3-푸란-2-일-1-(2-하이드록시페닐)-프로페논(3-Furan-2-yl-1-(2-hydroxyphenyl)-propenone)의 제조⑧ Production of 3-Furan-2-yl-1-(2-hydroxyphenyl)-propenone

2-hydroxyacetophenone (1.00 mL, 6.50 mmol), furfural (0.53 mL, 6.50 mmol) 및 50% NaOH (2.08 mL, 26.00 mmol)를 사용하여 상기 제조예 1-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(ethyl acetate : n-hexane = 1 : 3)로 정제하여 목적하던 노란색(yellow) 고체 화합물(8번 화합물)을 수득하였다(하기 화학식 10, 0.78 g, 56.1%).The reaction was performed according to the general method of Preparation Example 1-1 using 2-hydroxyacetophenone (1.00 mL, 6.50 mmol), furfural (0.53 mL, 6.50 mmol), and 50% NaOH (2.08 mL, 26.00 mmol). By purifying with eluent (ethyl acetate: n-hexane = 1:3), the desired yellow solid compound (compound No. 8) was obtained (Formula 10 below, 0.78 g, 56.1%).

[화학식 10][Formula 10]

녹는점: 108 - 109 ℃; R f 0.78 (ethyl acetate : n-hexane = 1 : 1); HPLC: R T 10.43 min (purity: 99.9%). Melting point: 108 - 109 °C; R f 0.78 (ethyl acetate: n -hexane = 1:1); HPLC: R T 10.43 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 6.54 (dd, J = 8.4, 0.8 Hz, 1H), 6.78 (s, 1H), 6.94 (ddd, J= 8.0, 1.4, 0.8 Hz, 1H), 7.02 (dd, J = 8.4, 0.8 Hz, 1H), 7.49 (ddd, J= 8.0, 8.4, 0.8 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 15.2 Hz, 1H), 7.68 (d, J = 15.2 Hz, 1H), 7.92 (dd, J = 8.0, 1.6 Hz, 1H), 12.88 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 113.1, 117.3, 117.9, 118.8, 119.1, 120.3, 129.9, 131.4, 136.5, 145.6, 151.8, 136.8, 193.6 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 6.54 (dd, J = 8.4, 0.8 Hz, 1H), 6.78 (s, 1H), 6.94 (ddd, J = 8.0, 1.4, 0.8 Hz, 1H), 7.02 (dd, J = 8.4, 0.8 Hz, 1H) , 7.49 (ddd, J = 8.0, 8.4, 0.8 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 15.2 Hz, 1H), 7.68 (d, J = 15.2 Hz, 1H), 7.92 (dd, J = 8.0, 1.6 Hz, 1H), 12.88 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 113.1, 117.3, 117.9, 118.8, 119.1, 120.3, 129.9, 131.4, 136.5, 145.6, 151.8, 136.8, 193.6 ppm.

⑨ 3-(4-하이드록시페닐)-1-(2-하이드록시페닐)-프로페논(3-(4-Hydroxyphenyl)-1-(2-hydroxyphenyl)-propenone)의 제조⑨ Production of 3-(4-hydroxyphenyl)-1-(2-hydroxyphenyl)-propenone (3-(4-Hydroxyphenyl)-1-(2-hydroxyphenyl)-propenone)

2-hydroxyacetophenone (1.00 mL, 6.50 mmol), 4-hydroxy benzaldehyde (0.80 mL, 6.50 mmol) 및 50% NaOH (2.08 mL, 26.00 mmol)를 사용하여 상기 제조예 1-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(ethyl acetate : n-hexane = 1 : 3)로 정제하여 목적하던 노란색(yellow) 고체 화합물(9번 화합물)을 수득하였다(하기 화학식 11, 0.46 g, 29.8%).The reaction was performed according to the general method of Preparation Example 1-1 above using 2-hydroxyacetophenone (1.00 mL, 6.50 mmol), 4-hydroxy benzaldehyde (0.80 mL, 6.50 mmol), and 50% NaOH (2.08 mL, 26.00 mmol) did. By purifying with eluent (ethyl acetate: n-hexane = 1:3), the desired yellow solid compound (compound No. 9) was obtained (Formula 11 below, 0.46 g, 29.8%).

[화학식 11][Formula 11]

녹는점: 165 - 166 ℃; R f 0.80 (ethyl acetate : n-hexane = 1 : 1); HPLC: R T 6.93 min (purity: 99.9%). Melting point: 165 - 166 °C; R f 0.80 (ethyl acetate : n -hexane = 1 : 1); HPLC: R T 6.93 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 6.75 (d, J = 8.8 Hz, 2H), 6.79 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 6.83 (dd, J = 8.0, 1.2 Hz, 1H), 7.33 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.37 (d, J = 15.2 Hz, 1H), 7.40 (d, J= 8.8, 2H), 7.72 (d, J = 15.2, 1H), 7.79 (dd, J = 8.0, 1.2, 1H), 9.40 (s, 1H), 12.84 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 116.3, 117.8, 118.0, 118.8, 119.0, 120.3, 127.9, 129.8, 131.0, 136.4, 145.4, 158.3, 163.8, 193.9 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 6.75 (d, J = 8.8 Hz, 2H), 6.79 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 6.83 (dd, J = 8.0, 1.2 Hz, 1H), 7.33 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.37 (d, J = 15.2 Hz, 1H), 7.40 (d, J = 8.8, 2H), 7.72 (d, J = 15.2, 1H), 7.79 (dd, J = 8.0, 1.2, 1H), 9.40 (s, 1H), 12.84 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 116.3, 117.8, 118.0, 118.8, 119.0, 120.3, 127.9, 129.8, 131.0, 136.4, 145.4, 158.3, 163.8, 193.9 ppm.

⑩ 3-(4-클로로페닐)-1-(2-하이드록시페닐)-프로페논(3-(4-Chlorophenyl)-1-(2-hydroxyphenyl)-propenone)의 제조⑩ Production of 3-(4-Chlorophenyl)-1-(2-hydroxyphenyl)-propenone

2-hydroxyacetophenone (1.00 mL, 6.50 mmol), 4-chlorobenzaldehyde (0.91 mL, 6.50 mmol) 및 50% NaOH (2.08 mL, 26.00 mmol)를 사용하여 상기 제조예 1-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(ethyl acetate : n-hexane = 1 : 3)로 정제하여 목적하던 노란색(yellow) 고체 화합물(10번 화합물)을 수득하였다(하기 화학식 12, 1.28 g, 76.2%).The reaction was performed according to the general method of Preparation Example 1-1 using 2-hydroxyacetophenone (1.00 mL, 6.50 mmol), 4-chlorobenzaldehyde (0.91 mL, 6.50 mmol), and 50% NaOH (2.08 mL, 26.00 mmol). . By purifying with eluent (ethyl acetate: n-hexane = 1:3), the desired yellow solid compound (compound No. 10) was obtained (Formula 12 below, 1.28 g, 76.2%).

[화학식 12][Formula 12]

녹는점: 154 - 155 ℃; R f 0.78 (ethyl acetate : n-hexane = 1 : 1); HPLC: R T 16.86 min (purity: 99.9%). Melting point: 154 - 155 °C; R f 0.78 (ethyl acetate: n -hexane = 1:1); HPLC: R T 16.86 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 6.95 (ddd, J = 8.8, 8.4, 0.8 Hz, 1H), 7.04 (dd, J = 8.4, 1.2 Hz, 1H), 7.40 (d, J = 8.4, Hz, 2H), 7.51 (ddd, J = 8.8, 8.4, 1.6 Hz, 1H), 7.60 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 15.6 Hz, 1H), 7.87 (d, J = 15.6 Hz, 1H), 7.91 (dd, J = 8.0, 1.6 Hz, 1H), 12.74 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 118.9, 119.1, 120.2, 120.8, 129.6, 129.8, 130.0, 133.3, 136.8, 137.1, 144.2, 163.9, 193.7 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 6.95 (ddd, J = 8.8, 8.4, 0.8 Hz, 1H), 7.04 (dd, J = 8.4, 1.2 Hz, 1H), 7.40 (d, J = 8.4, Hz, 2H), 7.51 (ddd, J = 8.8 , 8.4, 1.6 Hz, 1H), 7.60 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 15.6 Hz, 1H), 7.87 (d, J = 15.6 Hz, 1H), 7.91 (dd, J = 8.0, 1.6 Hz, 1H), 12.74 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 118.9, 119.1, 120.2, 120.8, 129.6, 129.8, 130.0, 133.3, 136.8, 137.1, 144.2, 163.9, 193.7 ppm.

⑪ 1-(2-하이드록시페닐)-3-티오펜-2-일-프로페논(1-(2-Hydroxyphenyl)-3-thiophen-2-yl-propenone)의 제조⑪ Production of 1-(2-Hydroxyphenyl)-3-thiophen-2-yl-propenone

2-hydroxyacetophenone (1.00 mL, 6.50 mmol), thiophene-2-carboxaldehyde (0.60 mL, 6.50 mmol) 및 50% NaOH (2.08 mL, 26.00 mmol)를 사용하여 상기 제조예 1-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(ethyl acetate : n-hexane = 1 : 3)로 정제하여 목적하던 오렌지색(orange) 고체 화합물(11번 화합물)을 수득하였다(하기 화학식 13, 0.86 g, 57.5%).Reaction was carried out according to the general method of Preparation Example 1-1 above using 2-hydroxyacetophenone (1.00 mL, 6.50 mmol), thiophene-2-carboxaldehyde (0.60 mL, 6.50 mmol), and 50% NaOH (2.08 mL, 26.00 mmol). carried out. By purifying with eluent (ethyl acetate: n-hexane = 1:3), the desired orange solid compound (compound No. 11) was obtained (Formula 13 below, 0.86 g, 57.5%).

[화학식 13][Formula 13]

녹는점: 101 - 102 ℃; R f 0.85 (ethyl acetate : n-hexane = 1 : 1); HPLC: R T 12.35 min (purity: 99.9%). Melting point: 101 - 102 °C; R f 0.85 (ethyl acetate: n -hexane = 1:1); HPLC: R T 12.35 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 6.95 (ddd, J = 8.0, 8.4, 1.2 Hz, 1H), 7.03 (dd, J = 8.4, 1.2 Hz, 1H), 7.12 (d, J = 8.4, Hz, 1H), 7.41 (dd, J = 8.4 Hz, 1H), 7.44 (d, J = 15.2 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.50 (ddd, J = 8.4, 8.4, 1.2 Hz, 1H) 7.89 (dd, J = 8.0, 1.6 Hz, 1H), 8.04 (d, J = 15.2 Hz, 1H), 12.84 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 118.8, 119.1, 120.2, 128.7, 129.8, 132.9, 136.6, 138.1, 140.4, 163.8, 193.4 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 6.95 (ddd, J = 8.0, 8.4, 1.2 Hz, 1H), 7.03 (dd, J = 8.4, 1.2 Hz, 1H), 7.12 (d, J = 8.4, Hz, 1H), 7.41 (dd, J = 8.4 Hz, 1H), 7.44 (d, J = 15.2 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.50 (ddd, J = 8.4, 8.4, 1.2 Hz, 1H) 7.89 (dd, J = 8.0, 1.6 Hz, 1H), 8.04 (d, J = 15.2 Hz, 1H), 12.84 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 118.8, 119.1, 120.2, 128.7, 129.8, 132.9, 136.6, 138.1, 140.4, 163.8, 193.4 ppm.

제조예 2. Manufacturing example 2. NN -아세틸피라졸린 유사체(-Acetylpyrazoline analogues ( NN -acetylpyrazoline analogues) 후보 화합물들의 제조 -acetylpyrazoline analogues) Preparation of candidate compounds

2-1. 일반적 제조방법2-1. General manufacturing method

AcOH(10 mL)에 용해된 칼콘 유사체(chalcone analogue)와 히드라진(hydrazine)·H2O(65%)(4.0 당량)의 반응 혼합물을 2시간 동안 환류한 다음, 실온으로 냉각시켰다. 반응 혼합물을 얼음에 붓고 실온에서 밤새 유지하였다. 형성된 고체를 여과하고 물로 세척하였다. 고체를 진공 하에 건조시킨 후 실리카겔 컬럼 크로마토그래피(eluent: MeOH: 클로로포름)로 정제하여 생성물을 수득하였다.A reaction mixture of chalcone analogue and hydrazine·H2O (65%) (4.0 equivalents) dissolved in AcOH (10 mL) was refluxed for 2 hours and then cooled to room temperature. The reaction mixture was poured onto ice and kept at room temperature overnight. The solid formed was filtered and washed with water. The solid was dried under vacuum and purified by silica gel column chromatography (eluent: MeOH: chloroform) to obtain the product.

2-2. 후보 화합물들의 제조2-2. Preparation of candidate compounds

① 1-[5-푸란-2-일-3-(3-하이드록시페닐)-4,5-디하이드로피라졸-1-일]-에타논(1-[5-Furan-2-yl-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone)의 제조① 1-[5-furan-2-yl-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-Furan-2-yl- Preparation of 3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone)

상기에서 제조한 1번 화합물(0.28 g, 1.31 mmol) 및 hydrazine H2O (65%) (0.25 mL, 5.24 mmol)를 사용하여 상기 제조예 2-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(MeOH : chloroform = 1 : 15)로 정제하여 목적하던 베이지색(beige) 고체 화합물(12번 화합물)을 수득하였다(하기 화학식 14, 0.40 g, 11.5%).The reaction was performed according to the general method of Preparation Example 2-1 using compound No. 1 (0.28 g, 1.31 mmol) and hydrazine H 2 O (65%) (0.25 mL, 5.24 mmol) prepared above. By purifying with eluent (MeOH: chloroform = 1:15), the desired beige solid compound (compound No. 12) was obtained (Formula 14 below, 0.40 g, 11.5%).

[화학식 14][Formula 14]

녹는점: 163 - 164 ℃; R f 0.45 (MeOH : chloroform = 1 : 9); HPLC: R T 2.95 min (purity: 99.9%). Melting point: 163 - 164 °C; R f 0.45 (MeOH:chloroform = 1:9); HPLC: R T 2.95 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 2.27 (s, 3H), 3.29 (dd, J = 17.6, 4.8 Hz, 1H), 3.51 (dd, J = 17.6, 12.0 Hz, 1H), 5.55 (dd, J = 11.6, 4.4 Hz, 1H), 6.22 (d, J = 8.4 Hz, 2H), 6.83 (ddd, J = 8.8, 8.8, 1.2 Hz, 1H), 7.09 - 7.17 (m, 3H), 7.23 (d, J = 2.4 Hz, 1H), 9.27 (s, 1H) : 13C-NMR (CDCl3, 100 MHz) 21.9, 53.2, 107.2, 110.5, 113.4, 117.8, 117.9, 129.7, 132.3, 141.9, 152.3, 154.5, 157.6, 168.6 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 2.27 (s, 3H), 3.29 (dd, J = 17.6, 4.8 Hz, 1H), 3.51 (dd, J = 17.6, 12.0 Hz, 1H), 5.55 (dd, J = 11.6, 4.4 Hz, 1H), 6.22 (d, J = 8.4 Hz, 2H), 6.83 (ddd, J = 8.8, 8.8, 1.2 Hz, 1H), 7.09 - 7.17 (m, 3H), 7.23 (d, J = 2.4 Hz, 1H), 9.27 ( s, 1H): 13 C-NMR (CDCl 3 , 100 MHz) 21.9, 53.2, 107.2, 110.5, 113.4, 117.8, 117.9, 129.7, 132.3, 141.9, 152.3, 154.5, 157.6, 168.6 ppm.

② 1-[3-(3-하이드록시페닐)-5-(4-메톡시페닐)-4,5-디히드로피라졸-1-일]-에탄온(1-[3-(3-Hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone)의 제조② 1-[3-(3-hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[3-(3-Hydroxyphenyl) )-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone) Preparation

상기에서 제조한 2번 화합물(0.30 g, 1.18 mmol) 및 hydrazine H2O(65%) (0.23 mL, 4.72 mmol)를 사용하여 상기 제조예 2-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(MeOH : chloroform = 1 : 15)로 정제하여 목적하던 옅은 오렌지색(pale orange) 고체 화합물(13번 화합물)을 수득하였다(하기 화학식 15, (0.18 g, 48.1%).The reaction was performed according to the general method of Preparation Example 2-1 using compound No. 2 (0.30 g, 1.18 mmol) and hydrazine H2O (65%) (0.23 mL, 4.72 mmol) prepared above. By purifying with eluent (MeOH: chloroform = 1:15), the desired pale orange solid compound (compound No. 13) was obtained (Formula 15 below, (0.18 g, 48.1%).

[화학식 15][Formula 15]

녹는점: 209 - 210 ℃; R f 0.19 (MeOH : chloroform = 1 : 9); HPLC: R T 3.58 min (purity: 99.9%). Melting point: 209 - 210 °C; R f 0.19 (MeOH:chloroform = 1:9); HPLC: R T 3.58 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 2.28 (s, 3H), 3.01 (dd, J = 17.6, 4.4 Hz, 1H), 3.60 (dd, J = 17.6, 11.6 Hz, 1H), 3.67 (s, 3H), 5.41 (dd, J = 12.0, 4.8 Hz, 1H), 6.73 (d, J = 8.8 Hz, 2H), 6.83 (ddd, J = 8.0, 1.6, 1.6 Hz, 1H), 7.04 (d, J = 8.8 Hz, 2H), 7.08 - 7.13 (m, 2H), 7.15 (d, J = 8.0 Hz, 1H), 8.89 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 21.9, 42.4, 55.2, 59.3, 113.4, 114.1, 117.8, 117.8, 126.8, 129.7, 132.5, 134.1, 154.2, 157.5, 158.9, 168.6 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 2.28 (s, 3H), 3.01 (dd, J = 17.6, 4.4 Hz, 1H), 3.60 (dd, J = 17.6, 11.6 Hz, 1H), 3.67 (s, 3H), 5.41 (dd, J = 12.0, 4.8 Hz, 1H), 6.73 (d, J = 8.8 Hz, 2H), 6.83 (ddd, J = 8.0, 1.6, 1.6 Hz, 1H), 7.04 (d, J = 8.8 Hz, 2H), 7.08 - 7.13 ( m, 2H), 7.15 (d, J = 8.0 Hz, 1H), 8.89 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 21.9, 42.4, 55.2, 59.3, 113.4, 114.1, 117.8, 117.8, 126.8, 129.7, 132.5, 134.1, 154.2, 157.5, 158.9, 1 68.6 ppm.

③ 1-[3-(3-하이드록시페닐)-5-(4-메톡시나프탈렌-1-일)-4,5-디히드로피라졸-1-일]-에타논(1-[3-(3-Hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone)의 제조③ 1-[3-(3-hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[3- Preparation of (3-Hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone)

상기에서 제조한 3번 화합물(0.10 g, 0.34 mmol) and hydrazine H2O(65%) (0.06 mL, 1.31 mmol) 를 사용하여 상기 제조예 2-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(MeOH : chloroform = 1 : 15)로 정제하여 목적하던 노란색(yellow) 고체 화합물(14번 화합물)을 수득하였다(하기 화학식 16, (46 mg, 29.1%).The reaction was performed according to the general method of Preparation Example 2-1 using compound No. 3 (0.10 g, 0.34 mmol) and hydrazine H 2 O (65%) (0.06 mL, 1.31 mmol) prepared above. By purifying with eluent (MeOH: chloroform = 1:15), the desired yellow solid compound (compound No. 14) was obtained (Formula 16 below, (46 mg, 29.1%).

[화학식 16][Formula 16]

녹는점: 280 - 282 ℃; R f 0.16 (MeOH : chloroform = 1 : 9); HPLC: R T 6.33 min (purity: 99.9%).Melting point: 280 - 282 °C; R f 0.16 (MeOH:chloroform = 1:9); HPLC: R T 6.33 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 2.37 (s, 3H), 2.95 (dd, J = 17.2, 4.4 Hz, 1H), 3.75 (dd, J = 17.2, 11.6 Hz, 1H), 3.83 (s, 3H), 6.06 (dd, J = 11.6, 4.4 Hz, 1H), 6.59 (d, J= 8.0 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 7.03 (d, J = 8.0 Hz, 2H), 7.09 - 7.10 (m, 1H), 7.37 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.45 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.78 (d, J = 8.8 Hz, 1H), 8.18 (d, J = 8.0 Hz, 1H), 8.89 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 21.9, 42.2, 55.4, 103.1, 113.3, 117.7, 122.6, 122.9, 124.9, 126.1, 126.7, 127.9, 129.5, 130.3, 136.4, 154.8, 154.9, 157.4, 168.7 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 2.37 (s, 3H), 2.95 (dd, J = 17.2, 4.4 Hz, 1H), 3.75 (dd, J = 17.2, 11.6 Hz, 1H), 3.83 (s, 3H), 6.06 (dd, J = 11.6, 4.4 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 7.03 (d, J = 8.0 Hz) , 2H), 7.09 - 7.10 (m, 1H), 7.37 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.45 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.78 (d, J = 8.8 Hz, 1H), 8.18 (d, J = 8.0 Hz, 1H), 8.89 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 21.9, 42.2, 55.4, 103.1, 113.3, 117.7, 122.6, 122.9, 124.9, 126.1, 126.7, 127.9, 129.5, 130.3, 136.4, 154.8, 154.9, 157.4, 168.7 ppm.

④ 1-[5-(4-클로로페닐)-3-(3-하이드록시페닐)-4,5-디히드로피라졸-1-일]-에타논(1-[5-(4-Chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone)의 제조④ 1-[5-(4-Chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-(4-Chlorophenyl) Preparation of -3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone)

상기에서 제조한 4번 화합물(0.30 g, 1.16 mmol) 및 히드라진 H2O(65%)(0.22mL, 4.64mmol)를 사용하여 상기 제조예 2-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(MeOH : chloroform = 1 : 15)로 정제하여 황색(yellow) 고체인 후보 화합물(15번 화합물, 이하 YK1, 하기 화학식 17, 0.29g, 97.5%)을 얻었다.The reaction was performed according to the general method of Preparation Example 2-1 using compound No. 4 (0.30 g, 1.16 mmol) and hydrazine H O (65%) (0.22 mL, 4.64 mmol) prepared above. It was purified with eluent (MeOH: chloroform = 1:15) to obtain a yellow solid candidate compound (compound No. 15, hereinafter referred to as YK1, formula 17 below, 0.29 g, 97.5%).

[화학식 17][Formula 17]

녹는점: 170 - 172℃; Rf 0.15(MeOH : chloroform = 1 : 9); HPLC: RT 3.40분(순도: 99.9%).Melting point: 170 - 172℃; Rf 0.15 (MeOH : chloroform = 1 : 9); HPLC: RT 3.40 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 2.21 (s, 3H), 2.91 (dd, J = 17.6, 4.4 Hz, 1H), 4.57 (dd, J = 17.6, 12.4 Hz, 1H), 5.35 (dd, J = 11.6, 4.8 Hz, 1H), 6.75 (dd, J = 8.0, 2.4 Hz, 1H), 6.84 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 7.06 (dd, J = 8.0, 2.4 Hz, 1H), 7.10 (d, J = 8.0 Hz, 2H), 8.91 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 22.0, 42.2, 55.3, 113.6, 118.1, 118.1, 124.6, 124.7, 126.8, 129.8, 132.4, 144.4, 154.4, 157.8, 169.0 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 2.21 (s, 3H), 2.91 (dd, J = 17.6, 4.4 Hz, 1H), 4.57 (dd, J = 17.6, 12.4 Hz, 1H), 5.35 (dd, J = 11.6, 4.8 Hz, 1H), 6.75 (dd, J = 8.0, 2.4 Hz, 1H), 6.84 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 7.06 (dd, J = 8.0, 2.4 Hz, 1H) , 7.10 (d, J = 8.0 Hz, 2H), 8.91 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 22.0, 42.2, 55.3, 113.6, 118.1, 118.1, 124.6, 124.7, 126.8, 129.8, 132.4, 144.4, 154.4, 157.8, 169.0 ppm .

⑤ 1-[5-(4-하이드록시페닐)-3-(3-하이드록시페닐)-4,5-디히드로피라졸-1-일]-에타논(1-[5-(4-Hydroxyphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone)의 제조⑤ 1-[5-(4-hydroxyphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-(4-Hydroxyphenyl )-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone) Preparation

상기에서 제조한 5번 화합물(0.30 g, 1.25 mmol) and hydrazine H2O(65%) (0.24 mL, 5.00 mmol)를 사용하여 상기 제조예 2-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(MeOH : chloroform = 1 : 15)로 정제하여 목적하던 노란색(yellow) 고체 화합물(16번 화합물)을 수득하였다(하기 화학식 18, 0.19 g, 51.6%).The reaction was performed according to the general method of Preparation Example 2-1 using compound No. 5 (0.30 g, 1.25 mmol) and hydrazine H 2 O (65%) (0.24 mL, 5.00 mmol) prepared above. By purifying with eluent (MeOH: chloroform = 1:15), the desired yellow solid compound (compound No. 16) was obtained (Formula 18 below, 0.19 g, 51.6%).

[화학식 18][Formula 18]

녹는점: 220 - 221 ℃; R f 0.13 (MeOH : chloroform = 1 : 9); HPLC: R T 2.32 min (purity: 99.9%). Melting point: 220 - 221 °C; R f 0.13 (MeOH:chloroform = 1:9); HPLC: R T 2.32 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 2.19 (s, 3H), 2.92 (dd, J = 8.8, 1.2 Hz, 1H), 3.50 (dd, J = 18.0, 12.0 Hz, 1H), 5.30 (dd, J = 15.6, 4.4 Hz, 1H), 6.58 (d, J = 8.4 Hz, 2H), 6.74 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 6.86 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 7.07 - 7.09 (m, 1H), 8.55 (s, 1H), 8.87 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 21.8, 42.3, 59.2, 113.2, 115.5, 117.6, 117.6, 126.6, 129.5, 132.5, 132.6, 154.0, 156.5, 157.4, 168.3 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 2.19 (s, 3H), 2.92 (dd, J = 8.8, 1.2 Hz, 1H), 3.50 (dd, J = 18.0, 12.0 Hz, 1H), 5.30 (dd, J = 15.6, 4.4 Hz, 1H), 6.58 (d, J = 8.4 Hz, 2H), 6.74 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 6.86 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H) , 7.07 - 7.09 (m, 1H), 8.55 (s, 1H), 8.87 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 21.8, 42.3, 59.2, 113.2, 115.5, 117.6, 117.6, 126.6, 129.5, 132.5, 132.6, 154.0, 156.5, 157.4, 168.3 ppm .

⑥ 1-[5-푸란-2-일-3-(2-하이드록시페닐)-4,5-디하이드로피라졸-1-일]-에타논(1-[5-Furan-2-yl-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone)의 제조⑥ 1-[5-furan-2-yl-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-Furan-2-yl- Preparation of 3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone)

상기에서 제조한 8번 화합물(0.80 g, 3.73 mmol) and hydrazine H2O(65%) (0.74 mL, 14.9 mmol)를 사용하여 상기 제조예 2-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(MeOH : chloroform = 1 : 15)로 정제하여 목적하던 옅은 핑크색(pale pink) 고체 화합물(17번 화합물)을 수득하였다(하기 화학식 19, 0.91 g, 90.3%).The reaction was performed according to the general method of Preparation Example 2-1 using compound No. 8 (0.80 g, 3.73 mmol) and hydrazine H 2 O (65%) (0.74 mL, 14.9 mmol) prepared above. By purifying with eluent (MeOH: chloroform = 1:15), the desired pale pink solid compound (compound No. 17) was obtained (Formula 19 below, 0.91 g, 90.3%).

[화학식 19][Formula 19]

녹는점: 132 - 133 ℃; R f 0.10 (MeOH : chloroform = 1 : 9); HPLC: R T 5.92 min (purity: 99.9%). Melting point: 132 - 133 °C; R f 0.10 (MeOH:chloroform = 1:9); HPLC: R T 5.92 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 2.36 (s, 3H), 3.58 (dd, J = 17.6, 4.8 Hz, 1H), 3.69 (dd, J = 17.6, 3.2 Hz, 1H), 5.67 (dd, J = 11.6, 4.8 Hz, 1H), 6.32 - 6.37 (m, 2H), 6.96 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.06 (d, J = 8.4 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.31 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.37 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 10.19 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 22.3, 38.8, 52.1, 108.4, 110.9, 115.3, 117.3, 120.0, 128.6, 132.5, 142.4, 151.5, 156.7, 157.9, 168.1 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 2.36 (s, 3H), 3.58 (dd, J = 17.6, 4.8 Hz, 1H), 3.69 (dd, J = 17.6, 3.2 Hz, 1H), 5.67 (dd, J = 11.6, 4.8 Hz, 1H), 6.32 - 6.37 (m, 2H), 6.96 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.06 (d, J = 8.4 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.31 ( ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.37 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 10.19 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 22.3, 38.8, 52.1, 108.4, 110.9, 115.3, 117.3, 120.0, 128.6, 132.5, 142.4, 151.5, 156.7, 157.9, 168.1 ppm .

⑦ 1-[3-(2-하이드록시페닐)-5-(4-메톡시나프탈렌-1-일)-4,5-디히드로피라졸-1-일]-에타논(1-[3-(2-Hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone)의 제조⑦ 1-[3-(2-hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[3- Preparation of (2-Hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone)

상기에서 제조한 7번 화합물(0.30 g, 3.94 mmol) and hydrazine H2O(65%) (0.19 mL, 3.94 mmol)를 사용하여 상기 제조예 2-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(MeOH : chloroform = 1 : 15)로 정제하여 목적하던 노란색(yellow) 고체 화합물(18번 화합물 이하, YK2)을 수득하였다(하기 화학식 20, 91 mg, 21.8%).The reaction was performed according to the general method of Preparation Example 2-1 using compound No. 7 (0.30 g, 3.94 mmol) and hydrazine H 2 O (65%) (0.19 mL, 3.94 mmol) prepared above. By purifying with eluent (MeOH: chloroform = 1:15), the desired yellow solid compound (compound No. 18 hereafter, YK2) was obtained (Formula 20 below, 91 mg, 21.8%).

[화학식 20][Formula 20]

녹는점: 203 - 204 ℃; R f 0.17 (MeOH : chloroform = 1 : 9); HPLC: R T 11.52 min (purity: 99.9%). Melting point: 203 - 204 °C; R f 0.17 (MeOH:chloroform = 1:9); HPLC: R T 11.52 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 2.50 (s, 3H), 3.27 (dd, J = 17.6, 4.4 Hz, 1H), 3.97 (s, 3H), 4.04 (dd, J = 19.2, 8.8 Hz, 1H), 6.22 (dd, J = 11.6, 4.8 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 6.87 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.06 (d, J = 8.8 Hz, 1H), 7.14 (ddd, J = 8.0, 8.0, 1.2 Hz, 2H), 7.33 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.52 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 7.60 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H), 8.34 (d, J = 8.4 Hz, 1H), 10.35 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 22.9, 43.4, 56.3, 103.9, 116.0, 117.8, 120.5, 122.7, 123.2, 124.0, 125.9, 127.2, 127.7, 128.0, 129.2, 131.1, 133.0, 156.1, 157.9, 158.5, 168.6 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 2.50 (s, 3H), 3.27 (dd, J = 17.6, 4.4 Hz, 1H), 3.97 (s, 3H), 4.04 (dd, J = 19.2, 8.8 Hz, 1H), 6.22 (dd, J = 11.6, 4.8 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 6.87 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.06 (d, J = 8.8 Hz, 1H), 7.14 (ddd, J = 8.0, 8.0, 1.2 Hz, 2H), 7.33 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.52 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 7.60 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H), 8.34 (d, J = 8.4 Hz, 1H), 10.35 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 22.9, 43.4, 56.3, 103.9, 116.0, 117.8, 120.5, 122.7, 123.2, 124.0, 125.9, 127.2, 127.7, 128.0, 129.2, 131.1, 133.0, 156.1, 157.9, 158.5 , 168.6 ppm.

⑧ 1-[5-(4-하이드록시페닐)-3-(2-하이드록시페닐)-4,5-디히드로피라졸-1-일]-에탄온(1-[5-(4-Hydroxyphenyl)-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone)의 제조⑧ 1-[5-(4-hydroxyphenyl)-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-(4-Hydroxyphenyl) )-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone) Preparation

상기에서 제조한 9번 화합물(0.30 g, 1.25 mmol) and hydrazine H2O(65%) (0.24 mL, 4.99 mmol)를 사용하여 상기 제조예 2-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(MeOH : chloroform = 1 : 15)로 정제하여 목적하던 노란색(yellow) 고체 화합물(19번 화합물)을 수득하였다(하기 화학식 21, 0.22 g, 60.4%).The reaction was performed according to the general method of Preparation Example 2-1 using compound No. 9 (0.30 g, 1.25 mmol) and hydrazine H 2 O (65%) (0.24 mL, 4.99 mmol) prepared above. By purifying with eluent (MeOH: chloroform = 1:15), the desired yellow solid compound (compound No. 19) was obtained (Formula 21 below, 0.22 g, 60.4%).

[화학식 21][Formula 21]

녹는점: 260 - 262 ℃; R f 0.20 (MeOH : chloroform = 1 : 9); HPLC: R T 3.64 min (purity: 99.9%). Melting point: 260 - 262 °C; R f 0.20 (MeOH:chloroform = 1:9); HPLC: R T 3.64 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 2.20 (s, 3H), 3.13 (dd, J = 18.0, 4.4 Hz, 1H), 3.68 (dd, J = 18.0, 12.0 Hz, 1H), 5.33 (dd, J = 11.6, 4.4 Hz, 1H), 6.63 (d, J = 8.0 Hz, 2H), 6.78 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 6.89 (d, J = 8.0 Hz, 2H) 7.09 (d, J= 8.0 Hz, 1H), 7.18 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 8.72 (s, 1H), 10.12 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 21.8, 42.5, 57.7, 115.0, 115.5, 116.6, 119.4, 126.5, 128.3, 131.7, 131.8, 156.2, 156.7, 157.3, 167.1 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 2.20 (s, 3H), 3.13 (dd, J = 18.0, 4.4 Hz, 1H), 3.68 (dd, J = 18.0, 12.0 Hz, 1H), 5.33 (dd, J = 11.6, 4.4 Hz, 1H), 6.63 (d, J = 8.0 Hz, 2H), 6.78 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 6.89 (d, J = 8.0 Hz, 2H) 7.09 (d, J = 8.0 Hz, 1H), 7.18 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 8.72 (s, 1H), 10.12 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 21.8, 42.5, 57.7, 115.0, 115.5, 116.6, 119.4, 126.5, 128.3, 131.7, 131.8, 156.2, 156.7, 157.3, 167.1 ppm .

⑨ 1-[5-(4-클로로페닐)-3-(2-하이드록시페닐)-4,5-디히드로피라졸-1-일]-에탄온(1-[5-(4-Chlorophenyl)-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone)의 제조⑨ 1-[5-(4-Chlorophenyl)-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-(4-Chlorophenyl) Preparation of -3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone)

상기에서 제조한 10번 화합물(0.30 g, 1.16 mmol) and hydrazine H2O(65%) (0.22 mL, 4.64 mmol)를 사용하여 상기 제조예 2-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(MeOH : chloroform = 1 : 15)로 정제하여 목적하던 노란색(yellow) 고체 화합물(20번 화합물)을 수득하였다(하기 화학식 22, 0.34 g, 94.4%).The reaction was performed according to the general method of Preparation Example 2-1 using compound No. 10 (0.30 g, 1.16 mmol) and hydrazine H 2 O (65%) (0.22 mL, 4.64 mmol) prepared above. By purifying with eluent (MeOH: chloroform = 1:15), the desired yellow solid compound (compound No. 20) was obtained (Formula 22 below, 0.34 g, 94.4%).

[화학식 22][Formula 22]

녹는점: 143 - 144 ℃; R f 0.42 (MeOH : chloroform = 1 : 9); HPLC: R T 9.46 min (purity: 99.9%). Melting point: 143 - 144 °C; R f 0.42 (MeOH:chloroform = 1:9); HPLC: R T 9.46 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 2.39 (s, 3H), 3.27 (dd, J = 17.6, 4.8 Hz, 1H), 3.87 (dd, J = 18.0, 12.0 Hz, 1H), 5.53 (dd, J = 6.8, 4.8 Hz, 1H), 6.94 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 7.19 (d, J = 8.8 Hz, 2H), 7.20 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.37 (ddd, J = 8.0, 8.0, 0.8 Hz, 2H), 10.20 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 22.3, 42.8, 58.1, 115.2, 117.4, 120.0, 127.3, 128.6, 129.4, 132.7, 134.0, 139.9, 156.4, 158.0, 168.0 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 2.39 (s, 3H), 3.27 (dd, J = 17.6, 4.8 Hz, 1H), 3.87 (dd, J = 18.0, 12.0 Hz, 1H), 5.53 (dd, J = 6.8, 4.8 Hz, 1H), 6.94 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 7.19 (d, J = 8.8 Hz, 2H), 7.20 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.31 (d, J = 8.4 Hz, 2H), 7.37 (ddd, J = 8.0, 8.0, 0.8 Hz, 2H), 10.20 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 22.3, 42.8, 58.1, 115.2, 117.4, 120.0, 127.3, 128.6, 129.4, 132.7, 134.0, 139.9, 156.4, 158.0, 168.0 ppm .

⑩ 1-[3-(2-하이드록시페닐)-5-티오펜-2-일-4,5-디히드로피라졸-1-일]-에탄온(1-[3-(2-Hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-ethanone)의 제조⑩ 1-[3-(2-Hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-ethanone (1-[3-(2-Hydroxyphenyl) Preparation of -5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-ethanone)

상기에서 제조한 11번 화합물(0.30 g, 1.25 mmol) 및 hydrazine H2O(65%) (0.24 mL, 4.99 mmol)를 사용하여 상기 제조예 2-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(MeOH : chloroform = 1 : 15)로 정제하여 목적하던 노란색(yellow) 고체 화합물(21번 화합물)을 수득하였다(하기 화학식 23, 0.17 g, 48.9%).The reaction was performed according to the general method of Preparation Example 2-1 using compound No. 11 (0.30 g, 1.25 mmol) and hydrazine H 2 O (65%) (0.24 mL, 4.99 mmol) prepared above. By purifying with eluent (MeOH: chloroform = 1:15), the desired yellow solid compound (compound No. 21) was obtained (Formula 23 below, 0.17 g, 48.9%).

[화학식 23][Formula 23]

녹는점: 120 - 122 ℃; R f 0.76 (MeOH : chloroform = 1 : 9); HPLC: R T 6.37 min (purity: 99.9%). Melting point: 120 - 122 °C; R f 0.76 (MeOH:chloroform = 1:9); HPLC: R T 6.37 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 2.37 (s, 3H), 3.49 (dd, J =17.6, 4.0 Hz, 1H), 3.83 (dd, J = 17.6, 11.2 Hz, 1H), 5.89 (dd, J = 11.6, 4.0 Hz, 1H), 6.94 (d, J= 8.0 Hz, 2H), 7.05 (d, J= 8.0 Hz, 2H), 7.21 (d, J = 6.8 Hz, 1H), 7.27 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.37 (ddd, J = 8.8, 8.4, 1.2 Hz, 1H), 10.20 (s, 2H); 13C-NMR (CDCl3, 100 MHz) 22.3, 42.6, 54.0, 115.3, 117.4, 120.0, 125.2, 125.3, 127.1, 128.6, 132.6, 143.7, 156.5, 158.0, 168.1 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 2.37 (s, 3H), 3.49 (dd, J =17.6, 4.0 Hz, 1H), 3.83 (dd, J = 17.6, 11.2 Hz, 1H), 5.89 (dd, J = 11.6, 4.0 Hz, 1H), 6.94 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 6.8 Hz, 1H), 7.27 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H) , 7.37 (ddd, J = 8.8, 8.4, 1.2 Hz, 1H), 10.20 (s, 2H); 13 C-NMR (CDCl 3 , 100 MHz) 22.3, 42.6, 54.0, 115.3, 117.4, 120.0, 125.2, 125.3, 127.1, 128.6, 132.6, 143.7, 156.5, 158.0, 168.1 ppm .

⑪ 1-[3-(2-하이드록시페닐)-5-(4-메톡시페닐)-4,5-디히드로피라졸-1-일]-에탄온(1-[3-(2-Hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone)의 제조⑪ 1-[3-(2-hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[3-(2-Hydroxyphenyl) )-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone) Preparation

상기에서 제조한 화합물 6(0.30 g, 1.18 mmol) 및 hydrazine H2O(65%) (0.23 mL, 4.72 mmol)를 사용하여 상기 제조예 2-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(MeOH : chloroform = 1 : 15)로 정제하여 목적하던 옅은 노란색(pale yellow) 고체 화합물(22번 화합물)을 수득하였다(하기 화학식 24, 0.34 g, 93.9%).The reaction was performed according to the general method of Preparation Example 2-1 using Compound 6 (0.30 g, 1.18 mmol) and hydrazine H 2 O (65%) (0.23 mL, 4.72 mmol) prepared above. By purifying with eluent (MeOH: chloroform = 1:15), the desired pale yellow solid compound (compound No. 22) was obtained (Formula 24 below, 0.34 g, 93.9%).

[화학식 24][Formula 24]

녹는점: 139 - 140 ℃; R f 0.24 (MeOH : chloroform = 1 : 9); HPLC: R T 6.87 min (purity: 99.9%). Melting point: 139 - 140 °C; R f 0.24 (MeOH:chloroform = 1:9); HPLC: R T 6.87 min (purity: 99.9%).

1H-NMR (CDCl3, 400 MHz) 2.37 (s, 3H), 3.30 (dd, J = 17.6, 4.4 Hz, 1H), 3.78 (s, 3H), 3.82 (dd, J = 18.0, 6.0 Hz, 1H), 5.53 (dd, J = 11.6, 4.8 Hz, 1H), 6.86 (d, J = 8.8 Hz, 2H), 6.94 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 7.17 (d, J = 8.8 Hz, 2H), 7.23 (d, J = 8.0 Hz, 1H), 7.36 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 10.29 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 22.3, 42.3, 55.5, 58.2, 114.6, 115.4, 117.3, 120.0, 127.2, 128.6, 132.5, 133.6, 156.6, 157.9, 159.5, 168.0 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 2.37 (s, 3H), 3.30 (dd, J = 17.6, 4.4 Hz, 1H), 3.78 (s, 3H), 3.82 (dd, J = 18.0, 6.0 Hz, 1H), 5.53 (dd, J = 11.6, 4.8 Hz, 1H), 6.86 (d, J = 8.8 Hz, 2H), 6.94 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 7.17 (d, J = 8.8 Hz, 2H), 7.23 (d, J = 8.0 Hz, 1H), 7.36 (ddd, J = 8.0, 8.0, 0.8 Hz, 1H), 10.29 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 22.3, 42.3, 55.5, 58.2, 114.6, 115.4, 117.3, 120.0, 127.2, 128.6, 132.5, 133.6, 156.6, 157.9, 159.5, 1 68.0 ppm.

제조예 3. Manufacturing example 3. NN -프로피오닐피라졸린 유사체(-Propionylpyrazoline analogues ( NN -propionylpyrazoline analogues) 후보 화합물들의 제조.-propionylpyrazoline analogues) Preparation of candidate compounds.

3-1. 일반적 제조방법3-1. General manufacturing method

프로피온산(propionic acid, 10mL)에 용해된 칼콘 유사체와 히드라진·H2O(65%)(4.0당량)의 반응 혼합물을 환류(2시간)한 다음 실온으로 냉각시켰다. 반응 혼합물을 얼음에 붓고 실온에서 밤새 유지하였다. 형성된 고체를 여과하고 물로 세척하였다. 고체를 진공 하에 건조시킨 후 실리카겔 컬럼 크로마토그래피(elute: MeOH: chloroform)로 정제하여 원하는 생성물을 얻었다.The reaction mixture of chalcone analog and hydrazine·H 2 O (65%) (4.0 equivalents) dissolved in propionic acid (10 mL) was refluxed (2 hours) and then cooled to room temperature. The reaction mixture was poured onto ice and kept at room temperature overnight. The solid formed was filtered and washed with water. The solid was dried under vacuum and purified by silica gel column chromatography (elute: MeOH: chloroform) to obtain the desired product.

3-2. 후보 화합물들의 제조3-2. Preparation of candidate compounds

① 1-[3-(3-하이드록시페닐)-5-(4-메톡시페닐)-4,5-디히드로피라졸-1-일]-프로판-1-온(1-[3-(3-Hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one)의 제조① 1-[3-(3-hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one (1-[3-( Preparation of 3-Hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one)

상기에서 제조한 화합물 6(0.30 g, 1.18 mmol) 및 hydrazine H2O(65%) (0.23 mL, 4.72 mmol)를 사용하여 상기 제조예 3-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(MeOH : chloroform = 1 : 15)로 정제하여 목적하던 하얀색(white) 고체 화합물(23번 화합물)을 수득하였다(하기 화학식 25, 93.2 mg, 24.4%).The reaction was performed according to the general method of Preparation Example 3-1 using Compound 6 (0.30 g, 1.18 mmol) and hydrazine H 2 O (65%) (0.23 mL, 4.72 mmol) prepared above. Purified with eluent (MeOH: chloroform = 1:15), the desired white solid compound (compound No. 23) was obtained (Formula 25 below, 93.2 mg, 24.4%).

[화학식 25][Formula 25]

녹는점: 233 - 234 ℃; R f 0.19 (MeOH : chloroform = 1 : 9); HPLC: R T 5.59 min (purity: 98.6%). Melting point: 233 - 234 °C; R f 0.19 (MeOH:chloroform = 1:9); HPLC: R T 5.59 min (purity: 98.6%).

1H-NMR (CDCl3, 400 MHz) 1.05 (t, J = 7.6, 3H), 2.38 (s, 3H), 2.66 (dd, J = 14.8, 4.6 Hz, 2H), 2.99 (dd, J = 17.6, 4.8 Hz, 1H), 3.57 (dd, J = 18.0, 12.0 Hz, 1H), 5.38 (dd, J = 11.6, 4.8 Hz, 1H), 6.71 (d, J = 8.8 Hz, 2H), 6.80 (ddd, J = 8.0, 1.6, 1.2 Hz, 1H), 7.03 (d, J = 8.8 Hz, 2H), 7.10 (d, J = 8.8 Hz, 2H), 7.14 (ddd, J = 8.0, 1.6, 1.2 Hz, 1H), 8.84 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 8.9, 27.5, 55.2, 59.4, 113.4, 114.1, 117.7, 117.8, 126.9, 129.6, 132.7, 134.4, 153.8, 157.5, 158.8, 172.0 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 1.05 (t, J = 7.6, 3H), 2.38 (s, 3H), 2.66 (dd, J = 14.8, 4.6 Hz, 2H), 2.99 (dd, J = 17.6, 4.8 Hz, 1H), 3.57 (dd, J = 18.0, 12.0 Hz, 1H), 5.38 (dd, J = 11.6, 4.8 Hz, 1H), 6.71 (d, J = 8.8 Hz, 2H), 6.80 (ddd, J = 8.0, 1.6, 1.2 Hz, 1H) ), 7.03 (d, J = 8.8 Hz, 2H), 7.10 (d, J = 8.8 Hz, 2H), 7.14 (ddd, J = 8.0, 1.6, 1.2 Hz, 1H), 8.84 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 8.9, 27.5, 55.2, 59.4, 113.4, 114.1, 117.7, 117.8, 126.9, 129.6, 132.7, 134.4, 153.8, 157.5, 158.8, 17 2.0 ppm.

② 1-[3-(3-하이드록시페닐)-5-티오펜-2-일-4,5-디히드로피라졸-1-일]-프로판-1-온(1-[3-(3-Hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-propan-1-one)의 제조② 1-[3-(3-hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-propan-1-one (1-[3-(3 Preparation of -Hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-propan-1-one)

상기에서 제조한 화합물 11(0.30 g, 1.30 mmol) 및 hydrazine H2O(65%) (0.25 mL, 5.21 mmol)를 사용하여 상기 제조예 3-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(MeOH : chloroform = 1 : 15)로 정제하여 목적하던 오렌지색(orange) 고체 화합물(24번 화합물)을 수득하였다(하기 화학식 26, 63.6 mg, 16.3%).The reaction was performed according to the general method of Preparation Example 3-1 using Compound 11 (0.30 g, 1.30 mmol) and hydrazine H 2 O (65%) (0.25 mL, 5.21 mmol) prepared above. Purified with eluent (MeOH: chloroform = 1:15), the desired orange solid compound (compound No. 24) was obtained (Formula 26 below, 63.6 mg, 16.3%).

[화학식 26][Formula 26]

녹는점: 183 - 184 ℃; R f 0.36 (MeOH : chloroform = 1 : 9); HPLC: R T 5.21 min (purity: 98.1%). Melting point: 183 - 184 °C; R f 0.36 (MeOH:chloroform = 1:9); HPLC: R T 5.21 min (purity: 98.1%).

1H-NMR (CDCl3, 400 MHz) 1.08 (t, J = 7.6 Hz, 3H), 2.63 - 2.70 (m, 2H), 3.19 (dd, J = 17.6, 4.0 Hz, 1H), 5.33 (s, 1H), 5.77 (dd, J = 11.2, 4.0 Hz, 1H), 6.82 (d, J = 8.0 Hz, 2H), 6.90 - 6.91 (m, 1H), 7.10 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H), 9.17 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 8.5, 26.9, 41.4, 49.0, 54.7, 112.7, 117.2, 123.7, 123.9, 126.2, 129.2, 131.8, 144.3, 153.4, 157.1, 171.2 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 1.08 (t, J = 7.6 Hz, 3H), 2.63 - 2.70 (m, 2H), 3.19 (dd, J = 17.6, 4.0 Hz, 1H), 5.33 (s, 1H), 5.77 (dd, J = 11.2, 4.0 Hz, 1H), 6.82 (d, J = 8.0 Hz, 2H), 6.90 - 6.91 (m, 1H), 7.10 (d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.0 Hz, 2H) , 9.17 (s, 1H); 13 C-NMR (CDCl 3 , 100 MHz) 8.5, 26.9, 41.4, 49.0, 54.7, 112.7, 117.2, 123.7, 123.9, 126.2, 129.2, 131.8, 144.3, 153.4, 157.1, 171 .2 ppm.

③ 1-[5-(4-클로로페닐)-3-(3-하이드록시페닐)-4,5-디히드로피라졸-1-일]-프로판-1-온(1-[5-(4-Chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one)의 제조③ 1-[5-(4-chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one (1-[5-(4 Preparation of -Chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one)

상기에서 제조한 화합물 4(0.30 g, 1.16 mmol) 및 hydrazine H2O(65%) (0.22 mL, 4.64 mmol)를 사용하여 상기 제조예 3-1의 일반적인 방법에 따라 반응을 수행하였다. eluent(MeOH : chloroform = 1 : 15)로 정제하여 목적하던 하얀색(white) 고체 화합물(25번 화합물)을 수득하였다(하기 화학식 27, 0.12 g, 31.8%).The reaction was performed according to the general method of Preparation Example 3-1 using Compound 4 (0.30 g, 1.16 mmol) and hydrazine H 2 O (65%) (0.22 mL, 4.64 mmol) prepared above. By purifying with eluent (MeOH: chloroform = 1:15), the desired white solid compound (compound No. 25) was obtained (Formula 27 below, 0.12 g, 31.8%).

[화학식 27][Formula 27]

녹는점: 206 - 207 ℃; R f 0.26 (MeOH : chloroform = 1 : 9); HPLC: R T 10.74 min (purity: 99.6%). Melting point: 206 - 207 °C; R f 0.26 (MeOH:chloroform = 1:9); HPLC: R T 10.74 min (purity: 99.6%).

1H-NMR (CDCl3, 400 MHz) 1.02 (t, J = 7.6, Hz, 3H), 2.64 (dd, J = 14.8, 7.6 Hz, 2H), 2.93 (dd, J = 17.6, 4.8 Hz, 1H), 3.58 (dd, J = 17.6, 1.2 Hz, 1H), 5.36 (dd, J = 12.4, 4.8 Hz, 1H), 6.78 (ddd, J = 8.0, 1.2, 1.2 Hz, 1H), 7.02 (d, J = 8.4 Hz, 2H), 7.03 - 7.06 (m, 1H), 7.10 (d, J = 8.8 Hz, 2H), 7.13 (d, J = 8.8 Hz, 2H), 8.89 (s, 1H); 13C-NMR (CDCl3, 100 MHz) 8.8, 27.4, 59.3, 113.3, 117.6, 117.7, 127.0, 128.8, 129.6, 132.2, 133.0, 140.6, 153.7, 157.5, 172.0 ppm. 1 H-NMR (CDCl 3 , 400 MHz) 1.02 (t, J = 7.6, Hz, 3H), 2.64 (dd, J = 14.8, 7.6 Hz, 2H), 2.93 (dd, J = 17.6, 4.8 Hz, 1H), 3.58 (dd, J = 17.6, 1.2 Hz, 1H), 5.36 (dd, J = 12.4, 4.8 Hz, 1H), 6.78 (ddd, J = 8.0, 1.2, 1.2 Hz, 1H), 7.02 (d, J = 8.4 Hz, 2H), 7.03 - 7.06 (m, 1H), 7.10 (d, J = 8.8 Hz, 2H), 7.13 (d, J = 8.8 Hz, 2H), 8.89 (s, 1H); 13 C-NMR (CDCL 3 , 100 MHz) 8.8, 27.4, 59.3, 113.3, 117.6, 117.7, 127.0, 128.8, 129.6, 132.2, 133.0, 140.6, 153.7, 157.5, 172.0 ppm.

실시예Example

1. 실험방법 및 준비1. Experimental method and preparation

1-1. 웨스턴 블롯 분석1-1. Western blot analysis

웨스턴 블롯 분석을 위해, 세포를 6웰 플레이트에 시딩한 다음, 1% 0.1M PMSF 및 1% 100X 프로테아제 억제제 칵테일 용액 (Genedepot, USA)을 함유하는 1X RIPA 용해 완충액(Cell Signaling, USA)에 용해시켰다. 전체 단백질 수준은 Pierce™ BCA protein assay kit(Thermo Fisher Scientific, USA)와 microplate reader(Tecan Group Ltd., Switzerland)를 사용하여 표준화 하였다. 20μg의 단백질을 SDS-PAGE용 10-15% 아크릴아마이드 젤에 로딩한 다음 0.2μm PVDF 멤브레인(Pall Life Science, USA)으로 옮겼다. 5% 탈지유 또는 5% BSA를 처리하여 막을 차단(blocking)한 다음, 막을 1차 항체(Thermo Fisher, Cell Signaling, Santa Cruz, Novus 또는 MBL에서 구매)와 함께 실온에서 3시간 또는 4°C에서 밤새 배양했다. 블롯은 트리스 완충 식염수-0.1% Tween20(1X TBST)으로 3회 세척하고 HRP-접합 이차 항체(GeneTex, USA)와 함께 인큐베이션했다. 단백질 밴드는 ECL 용액 시약(GE Healthcare, USA)과 LAS-3000(Fuji Photo Film Co., Ltd., Japan)을 사용하여 검출하였으며, 캡처된 이미지는 Multi-Gauge 소프트웨어(Fuji Photo Film Co. Ltd.)로 평가하였다. 하기 분석들을 위한 세포 용해물 준비는 웨스턴 블롯 분석을 위한 방법과 동일하게 수행하였다.For Western blot analysis, cells were seeded in 6-well plates and then lysed in 1X RIPA lysis buffer (Cell Signaling, USA) containing 1% 0.1M PMSF and 1% 100X protease inhibitor cocktail solution (Genedepot, USA). . Total protein levels were standardized using Pierce™ BCA protein assay kit (Thermo Fisher Scientific, USA) and microplate reader (Tecan Group Ltd., Switzerland). 20 μg of protein was loaded onto a 10–15% acrylamide gel for SDS-PAGE and then transferred to a 0.2 μm PVDF membrane (Pall Life Science, USA). Membranes were blocked by treatment with 5% skim milk or 5% BSA, and then incubated with primary antibodies (purchased from Thermo Fisher, Cell Signaling, Santa Cruz, Novus, or MBL) for 3 hours at room temperature or overnight at 4°C. cultured. Blots were washed three times with Tris-buffered saline-0.1% Tween20 (1X TBST) and incubated with HRP-conjugated secondary antibodies (GeneTex, USA). Protein bands were detected using ECL solution reagent (GE Healthcare, USA) and LAS-3000 (Fuji Photo Film Co., Ltd., Japan), and captured images were captured using Multi-Gauge software (Fuji Photo Film Co. Ltd.). ) was evaluated. Cell lysate preparation for the following analyzes was performed in the same manner as for Western blot analysis.

1-2. 면역침전 분석법1-2. Immunoprecipitation assay

위암세포주인 NCI-N87 세포를 100mm 세포 배양 접시에 시딩한 다음, 60-70% confluence에 도달할 때까지 배양하였다. 배양된 세포를 Lipofectamine® 2000(Invitrogen, USA)를 사용하여 p3Xflag-myc-CMV26-empty 또는 p3Xflag-myc-CMV26-MED23 WT 플라스미드로 형질감염 했다. 형질감염 시킨 다음, 12시간이 경과했을 때, YK1(5μM )을 처리하고 12시간 동안 배양하였다. 750μg 의 세포 추출물을 20μL의 FLAG-아가로스 비드(Sigma Aldrich, USA) 슬러리(slurry)와 함께 회전기에서 4°C에서 4시간 동안 인큐베이션 한 다음, 샘플을 12000rpm에서 1분 동안 원심분리하여 비드를 침전시켰다. 상층액을 제거한 다음, 나머지 비드를 200μL의 용해 완충액(RIPA)으로 3회 세척했다. 최종 상층액을 제거한 다음, 비드를 98°C에서 5분 동안 끓임으로써 2X 샘플 완충액으로 용출(eluted)시켰다. 면역침전된 단백질을 로딩한 다음, SDS-PA로 분리하여 웨스턴 블롯으로 분석하였다.NCI-N87 cells, a gastric cancer cell line, were seeded in a 100 mm cell culture dish and then cultured until they reached 60-70% confluence. Cultured cells were transfected with p3Xflag-myc-CMV26-empty or p3Xflag-myc-CMV26-MED23 WT plasmid using Lipofectamine® 2000 (Invitrogen, USA). After transfection, 12 hours later, YK1 (5 μM) was treated and cultured for 12 hours. 750 μg of cell extract was incubated with 20 μL of FLAG-agarose beads (Sigma Aldrich, USA) slurry at 4°C for 4 hours on a rotator, and then the samples were centrifuged at 12000 rpm for 1 minute to sediment the beads. I ordered it. After removing the supernatant, the remaining beads were washed three times with 200 μL of lysis buffer (RIPA). After removing the final supernatant, the beads were eluted with 2X sample buffer by boiling at 98°C for 5 minutes. Immunoprecipitated proteins were loaded, separated by SDS-PA, and analyzed by Western blot.

1-3. 루시퍼라제 프로모터 분석1-3. Luciferase promoter analysis

HEK293 세포를 6웰 플레이트에 플레이팅한 다음, 1μg의 pNeuLite (Addgene) 단독 또는 0.5μg의 pcDNA3.1-flag-ELF3 WT (Dr. Seung Bae Rho 제공, National Cancer Center) 및 p3Xflag-myc-CMV26-MED23 돌연변이 플라스미드로 형질전환 하였다. 각 시료의 luciferase 활성을 정규화하기 위하여 β-galactosidase 발현 플라스미드(Dr. Eun-Sook Hwang 제공, Ewha Womans University)를 모든 시료군에 0.5μg 첨가하였다. 모든 형질감염은 Lipofectamine® 2000 Transfection Reagent(Invitrogen, USA)를 사용하여 수행하였다. 24시간이 경과한 다음, firefly 루시페라제 및 β-갈락토시다제(β-galactosidase) 활성은 Luciferase Assay System(Promega) 및 Galacto-Light Plus β -Galactosidase Reporter Gene Assay System(Invitrogen)을 사용하여, Infinite M200 PRO Microplate reader(Tecan Group Ltd., Switzerland)로 평가하였다.HEK293 cells were plated in 6-well plates and then incubated with 1 μg of pNeuLite (Addgene) alone or 0.5 μg of pcDNA3.1-flag-ELF3 WT (provided by Dr. Seung Bae Rho, National Cancer Center) and p3Xflag-myc-CMV26- Transformed with MED23 mutant plasmid. To normalize the luciferase activity of each sample, 0.5 μg of β-galactosidase expression plasmid (provided by Dr. Eun-Sook Hwang, Ewha Womans University) was added to all sample groups. All transfections were performed using Lipofectamine® 2000 Transfection Reagent (Invitrogen, USA). After 24 hours, firefly luciferase and β-galactosidase (β-galactosidase) activities were measured using the Luciferase Assay System (Promega) and Galacto-Light Plus β -Galactosidase Reporter Gene Assay System (Invitrogen). Evaluation was performed using an Infinite M200 PRO Microplate reader (Tecan Group Ltd., Switzerland).

1-4. 단백질-소분자 상호작용 분석1-4. Protein-small molecule interaction analysis

HEK293 세포를 100mm3 접시에 접종하고 70-80% confluency에 도달할 때까지 인큐베이션 했다. 세포를 p3Xflag-myc-CMV26-MED23 WT 및 p3Xflag-myc-CMV26-MED23 D400A/H449G 플라스미드로 24시간 동안 형질감염시키고 용해시켜 단백질 추출물을 얻었다. MED23에 결합된 후보 화합물(YK1)을 분리하기 위하여, 전체 용해물을 YK1 과 함께 4시간 동안 인큐베이션하고 마지막으로 FLAG-아가로스 비드(Sigma Aldrich, USA)를 사용하여 풀다운(pulled-down)하였다. 침전된 비드를 3회 이상 세척하여 결합되지 않은 화합물을 완전히 제거하였다. 침전된 MED23에서 후보 화합물을 분리하기 위해 샘플(50μL)을 1mL의 아세토니트릴(acetonitrile)로 추출한 다음, 13,000rpm으로 4°C에서 10분 동안 원심분리 했다. 각 샘플을 상층(1000μL)에서 새 튜브로 분취하고 37°C에서 질소 가스 하에 증발 건조시켰다. YK1 의 분석을 위하여, 잔류물을 50 μL의 ACN에 용해시키고 10분 동안 와동(vortexed)시켰다. 각 샘플들을 5000 μg /mL 농도의 ACN에 포함된 내부 기준 물질(후보 물질과 유사하나 MED23에 대한 결합 친화도가 낮은 물질, 이하 YK2)과 혼합시킨 다음, 초음파 처리 및 와류 혼합에 의해 450 μL의 ACN으로 추출하였다. MED23과 결합된 후보물질은 최종적으로 Agilent 6460 삼중 사중극자 질량 분석기(Agilent Technologies, USA)를 사용하여 분석하였다.HEK293 cells were seeded in 100 mm 3 dishes and incubated until 70-80% confluency was reached. Cells were transfected with p3Xflag-myc-CMV26-MED23 WT and p3Xflag-myc-CMV26-MED23 D400A/H449G plasmids for 24 hours and lysed to obtain protein extracts. To isolate the candidate compound (YK1) bound to MED23, the entire lysate was incubated with YK1 for 4 hours and finally pulled down using FLAG-agarose beads (Sigma Aldrich, USA). The precipitated beads were washed three or more times to completely remove unbound compounds. To isolate candidate compounds from the precipitated MED23, the sample (50 μL) was extracted with 1 mL of acetonitrile and then centrifuged at 13,000 rpm at 4°C for 10 minutes. Each sample was aliquoted from the upper layer (1000 μL) into a new tube and evaporated to dryness under nitrogen gas at 37°C. For analysis of YK1, the residue was dissolved in 50 μL of ACN and vortexed for 10 min. Each sample was mixed with an internal reference material (a material similar to the candidate material but with low binding affinity for MED23, hereafter YK2) contained in ACN at a concentration of 5000 μg/mL, and then mixed with 450 μL by sonication and vortex mixing. Extracted with ACN. The candidate material combined with MED23 was finally analyzed using an Agilent 6460 triple quadrupole mass spectrometer (Agilent Technologies, USA).

실시예 2. ELF3-MED23 복합체의 구조 확인Example 2. Confirmation of the structure of the ELF3-MED23 complex

ELF3 및 MED23의 결합 모듈에 대한 심층적인 구조적 통찰력을 얻기 위해 먼저 Phyre2 서버(http://www.sbg.bio.ic.ac.uk/phyre2)를 사용하여 ELF3 단백질의 상동성 모델을 구축했다. 이미 알려진 MED23의 구조(PDB ID: 6H02)의 알려진 구조에 기반하여 자동화된 단백질-단백질 도킹서버 ClusPro를 적용하여 단백질의 상호작용을 확인하였다(도 1a). 최종 모델의 MED23의 291-582 잔기는 녹색으로 나타내었으며, ELF3의 TAD 도메인은 마젠타색으로 나타내었다. 이전에 상호작용에 필요한 잔기로 확인된 ELF3의 S137~E144(8aa)는 노란색으로 나타내었다. 구체적인 검증을 위해 ELF3137-144 펩타이드를 리간드로 준비하고 예측된 복합체의 결합 계면에 대한 도킹 연구를 수행했다(도 1b). 그 결과, ELF3의 5개 소수성 잔기(W138, I139, I140, L142 및 L143)가 MED23의 K406, D400, E405, H449, P446 및 M396과 소수성 접촉(hydrophobic contact)를 수행하는 것을 확인하였다. ELF3의 5가지 주요 소수성 잔기 중 W138의 인돌 부분은 D400과 수소 결합을, MED23의 F399 와 상당히 강한 π-π 상호작용을 가지는 것으로 확인되었다. 또한, ELF3의 I139 및 I140 잔기는 MED23의 E405 및 H449와 추가적인 수소 결합을 생성할 것으로 예측되며, ELF3와 MED23의 D400, H449, E405, M396, P446 및 K406 잔기 사이의 여러 소수성 상호작용을 통합(consolidate)하는 것으로 예상된다.To obtain in-depth structural insights into the binding modules of ELF3 and MED23, we first built a homology model of the ELF3 protein using the Phyre2 server (http://www.sbg.bio.ic.ac.uk/phyre2). Based on the already known structure of MED23 (PDB ID: 6H02), the automated protein-protein docking server ClusPro was applied to confirm the protein interaction (Figure 1a). Residues 291-582 of MED23 in the final model are shown in green, and the TAD domain of ELF3 is shown in magenta. S137 to E144 (8aa) of ELF3, which was previously identified as a residue required for interaction, is shown in yellow. For specific verification, ELF3 137-144 peptide was prepared as a ligand and docking study was performed on the binding interface of the predicted complex (Figure 1b). As a result, it was confirmed that five hydrophobic residues (W138, I139, I140, L142, and L143) of ELF3 make hydrophobic contact with K406, D400, E405, H449, P446, and M396 of MED23. Among the five major hydrophobic residues of ELF3, the indole portion of W138 was confirmed to have a hydrogen bond with D400 and a fairly strong π-π interaction with F399 of MED23. Additionally, residues I139 and I140 of ELF3 are predicted to create additional hydrogen bonds with E405 and H449 of MED23, incorporating several hydrophobic interactions between residues D400, H449, E405, M396, P446, and K406 of ELF3 and MED23 ( It is expected to consolidate.

ELF3와 상호작용에 결정적인 역할을 하는 MED23 잔기를 구체적으로 확인하기 위하여, 기존에 ELF3와 MED23의 단백질 상호작용(protein-protein interaction, PPI)을 억제하는 것으로 알려진 adamanolol, wrenchnolol, canertinib 및 gefitinib를 사용하여 도킹연구를 수행하였다. 그 결과, 도 1c 내지 도 1e에 나타낸 바와 같이, 실험에 사용된 모든 화합물과 ELF3137-144가 MED23의 D400 및 H449와 수소 결합을 형성하는 것을 확인할 수 있었다. 또한, 상기 화합물중 gefitnib 보다 우수한 PPI 억제 활성을 가지는 것으로 확인된 ELF3137-144 및 canertinib는 MED23의 F399와 추가적인 π-상호작용을 형성하는 것을 확인하였다(도 2). To specifically identify the MED23 residue that plays a critical role in the interaction with ELF3, adamanolol, wrenchnolol, canertinib, and gefitinib, which are known to inhibit protein-protein interaction (PPI) between ELF3 and MED23, were used. Docking studies were performed. As a result, as shown in Figures 1c to 1e, it was confirmed that all compounds used in the experiment and ELF3 137-144 formed hydrogen bonds with D400 and H449 of MED23. In addition, among the above compounds, ELF3 137-144 and canertinib, which were confirmed to have superior PPI inhibitory activity than gefitnib, were confirmed to form additional π-interactions with F399 of MED23 (Figure 2).

상기와 같은 결과를 토대로, MED23의 D400, H449 및 F399 잔기가 ELF3와 수소결합(D400, H449) 및 π-스태킹(F399)를 형성함으로써, EL3-MED23 PPI에 대한 핫스팟 역할을 하는 것으로 예상하고 추가적인 실험을 진행하였다.Based on the above results, it is expected that the D400, H449, and F399 residues of MED23 form hydrogen bonds (D400, H449) and π-stacking (F399) with ELF3, thereby serving as hotspots for EL3-MED23 PPI, and additional An experiment was conducted.

실시예 3. ELF3-MED23 PPI 핫스팟에서 상호작용하는 주요 잔기의 확인Example 3. Identification of key residues interacting in the ELF3-MED23 PPI hotspot

3-1. SEAP 분석3-1. SEAP analysis

D400, H449 잔기가 실제로 ELF3-MED23 단백질 상호작용의 핵심적인 역할을 하는지 확인하기 위하여, SEAP 분석을 수행하였다. 구체적으로, 293T 신장 세포를 96-웰 마이크로플레이트(SPL, 한국)에 5 x 103 cells/well의 밀도로 시딩하고, 밤새 배양하였다. 그 다음 100ng의 각 플라스미드 및 형질감염 최적화 배지(Welgene, Korea)를 사용하여 상기 세포를 동시에 형질감염시켰다. 상기 플라스미드는 SEAP 리포터 유전자(pG5IL2SX) 및 GAL4-ELF3 발현 벡터(pBJ GAL4-ELF3)를 사용하였다. 형질감염 시키기 위하여 세포를 WelFectQ(Welgene, Korea)와 함께 3시간 동안 인큐베이션 한 다음, 후보 화합물 또는 MED23 단백질 구조물(pcDNA_MED23WT, K397A, D400A, H449G 및 D400A/H449G)을 첨가하였다. 처리된 세포를 12시간 동안 인큐베이션 하였다. 후보 화합물을 5% CO2, 및 37 ℃ 조건의 인큐베이터에 처리한 다음, 플레이트를 65 ℃ 에서 3시간 동안 인큐베이션을 수행하여 SEAP(Secreted Alkaline Phosphatase)를 제외한 모든 효소를 불활성화시켰다. 0.1M 4-methylumbelliferyl phosphate(Sigma, USA) 1.19μL 로 만든 기질 용액 100μL, 불활성화 배지 25μL, 및 이중 증류수 75μL의 혼합물을 첨가 한 다음, 98.81μL 의 2M 디에탄올아민(pH 10, Sigma, USA). 37 ℃ 에서 밤새 인큐베이션 하였다. 후 fluorometer(SPECTRAmax GEMINIEM, Molecular Devices, USA)를 사용하여 여기 파장(excitation wavelength) 360 nm 및 방출 파장(emission wavelength) 440 nm 에서 형광 강도를 측정하였다.To confirm that D400 and H449 residues actually play a key role in ELF3-MED23 protein interaction, SEAP analysis was performed. Specifically, 293T kidney cells were seeded in a 96-well microplate (SPL, Korea) at a density of 5 x 10 3 cells/well and cultured overnight. The cells were then simultaneously transfected using 100ng of each plasmid and transfection optimized medium (Welgene, Korea). The plasmid used was a SEAP reporter gene (pG5IL2SX) and a GAL4-ELF3 expression vector (pBJ GAL4-ELF3). For transfection, cells were incubated with WelFectQ (Welgene, Korea) for 3 hours, and then candidate compounds or MED23 protein constructs (pcDNA_MED23 WT, K397A, D400A, H449G, and D400A/H449G ) were added. Treated cells were incubated for 12 hours. The candidate compound was placed in an incubator under 5% CO 2 and 37°C conditions, and then the plate was incubated at 65°C for 3 hours to inactivate all enzymes except SEAP (Secreted Alkaline Phosphatase). A mixture of 100 μL of substrate solution made from 1.19 μL of 0.1 M 4-methylumbelliferyl phosphate (Sigma, USA), 25 μL of inactivation medium, and 75 μL of double distilled water was added, followed by 98.81 μL of 2 M diethanolamine (pH 10, Sigma, USA). . Incubation was performed overnight at 37°C. Then, the fluorescence intensity was measured at an excitation wavelength of 360 nm and an emission wavelength of 440 nm using a fluorometer (SPECTRAmax GEMINIEM, Molecular Devices, USA).

그 결과, MED23WT 은 SEAP 활성의 증가를 유도했지만 ELF3과 수소 결합을 형성하는 능력이 없는 MED23D400A, MED23H449G 및 MED23D400A/H449G 돌연변이체는 SEAP 활성 증가가 유도되지 않았다(도 3a). 또한, PPI 비기여 잔기로 예측된 K397 잔기에 알라닌을 도입했을 때에도(MED23K397A), 야생형에 비해 유의한 변화를 나타내지 않았다.As a result, MED23 WT induced an increase in SEAP activity, but MED23 D400A , MED23 H449G , and MED23 D400A/H449G mutants, which do not have the ability to form hydrogen bonds with ELF3, did not induce an increase in SEAP activity (Figure 3a). In addition, even when alanine was introduced into the K397 residue, which was predicted to be a PPI non-contributing residue (MED23 K397A ), there was no significant change compared to the wild type.

3-2. 스플릿 루시퍼라제 상보성 분석3-2. Split luciferase complementation assay

분석에 사용된 바이오센서는 In-Fusion® HD Cloning Kit with firefly (Photinus pyralis)를 사용하여 준비하였다. 루시퍼라제는 2개의 조각으로 분할하였다(Nluc 및 Cluc). 전장 ELF3(야생형) 및 MED23 변이체를 p3Xflag -myc-CMV26의 HindⅢ 및 Kpnl 부위와 Notl 및 Kpnl 부위 에 각각 클로닝 하였다. 인간 ELF3의 전장 cDNA(수탁 번호 NM_001114309.1)는 분할된 루시퍼라제(Nluc)의 N-말단 단편과 융합되었고, MED23의 전장 cDNA(수탁 번호 NM_001270521.1)는 분할된 루시퍼라제(Cluc)의 C-말단과 융합되었다.The biosensor used in the analysis was prepared using the In-Fusion® HD Cloning Kit with firefly (Photinus pyralis). Luciferase was split into two fragments (Nluc and Cluc). Full-length ELF3 (wild type) and MED23 mutants were cloned into HindIII and Kpnl sites and Notl and Kpnl sites of p3Xflag -myc-CMV26, respectively. The full-length cDNA of human ELF3 (accession number NM_001114309.1) was fused with the N-terminal fragment of split luciferase (Nluc), and the full-length cDNA of MED23 (accession number NM_001270521.1) was fused to the C-terminal fragment of split luciferase (Cluc). -fused with the extremities.

상기 방법으로 ELF3-MED23 결합에 의해 상보적으로 생성된 생물발광 강도를 측정하였다(도 3b). 그 결과, Nluc-ELF3 및 Cluc-MED23391-582WT 또는 K397A의 동시 형질감염은 루시퍼라제 활성을 뚜렷하게 증가시켰지만 Cluc-MED23391-582D400A 및 H449G 작제물은 그러한 변화가 확인되지 않았다(도 3c 및 도 3d).The intensity of bioluminescence produced complementary by ELF3-MED23 binding was measured using the above method (Figure 3b). As a result, co-transfection of Nluc-ELF3 and Cluc-MED23 391-582WT or K397A significantly increased luciferase activity, but no such changes were observed with Cluc-MED23 391-582 D400A and H449G constructs (Figures 3c and 3d).

3-3. 풀다운 분석3-3. Pull-down analysis

HEK293 세포를 100mm 세포 배양 접시에 시딩하고 70-80% confluence에 도달할 때까지 배양하였다. 표지된 GST 태그된 ELF3 작제물은 Lipofectamine® 2000(Invitrogen, USA)를 사용하여 형질감염하였다. 1000μg 의 세포 추출물을 20μL 의 Glutathione Sepharose™ 비드(GE Healthcare, UK)와 함께 로테이터(rotator)에서 4°C에서 1시간 동안 인큐베이션했다. 비드를 200 μL의 얼음처럼 차가운 1X PBS로 3회 세척했다. 최종 상층액을 제거한 다음, 비드를 용출 완충액(20mM Glutathione, 100mM Tris-HCl(pH 8.0), 120mM NaCl, 10% glycerol)으로 용출시켰다. 침전된 단백질을 로딩한 다음, SDS-PAGE로 분리하고 웨스턴 블롯으로 분석하였다.HEK293 cells were seeded in 100 mm cell culture dishes and cultured until they reached 70-80% confluence. Labeled GST-tagged ELF3 constructs were transfected using Lipofectamine® 2000 (Invitrogen, USA). 1000 μg of cell extract was incubated with 20 μL of Glutathione Sepharose™ beads (GE Healthcare, UK) for 1 hour at 4°C on a rotator. Beads were washed three times with 200 μL of ice-cold 1X PBS. After removing the final supernatant, the beads were eluted with elution buffer (20mM Glutathione, 100mM Tris-HCl (pH 8.0), 120mM NaCl, 10% glycerol). The precipitated proteins were loaded, separated by SDS-PAGE, and analyzed by Western blot.

그 결과, 상기 실시예 3-1 및 3-2에서 확인한 바와 유사하게, ELF3 및 MED23의 상호작용은 D400A 및 H449G에서 현저하게 감소하였으나, K397A의 경우, 유의한 변화가 확인되지 않았다(도 3e). MED23과 ELF3(야생형 및 K397A)의 성공적인 상호작용은 ELF3의 전사 활성의 증가와 함께, HER2의 발현 수준을 상향조절(upregulate)할 수 있음을 확인하였다(도 3f 및 도 3g).As a result, similar to what was confirmed in Examples 3-1 and 3-2, the interaction of ELF3 and MED23 was significantly reduced in D400A and H449G, but in the case of K397A, no significant change was confirmed (Figure 3e) . It was confirmed that successful interaction between MED23 and ELF3 (wild type and K397A) can upregulate the expression level of HER2 along with an increase in the transcriptional activity of ELF3 (Figures 3f and 3g).

상기와 같은 결과를 통해, MED23의 D400 및 H449 잔기의 수소 결합 형성을 통한 EFL3와의 상호작용은 HER2 유전자 전사를 활성화하는 ELF3-MED23의 단백질-단백질 상호작용에 중요한 역할을 한다는 점을 확인하였다.Through the above results, it was confirmed that the interaction with EFL3 through hydrogen bond formation between the D400 and H449 residues of MED23 plays an important role in the protein-protein interaction of ELF3-MED23 that activates HER2 gene transcription.

실시예 4. ELF3-MED23 PPI의 주요 잔기에 대한 소분자 화합물의 효과 및 HER2-양성 위암세포주에 대한 우세한 항증식 효과 확인Example 4. Confirmation of the effect of small molecule compounds on key residues of ELF3-MED23 PPI and their dominant anti-proliferative effect on HER2-positive gastric cancer cell lines.

4-1. 후보 화합물의 선정4-1. Selection of candidate compounds

상기와 같은 발견을 구체화하기 위하여, ELF3-MED23 PPI에 영향을 줄 수 있는 소분화 화합물을 설계 및 합성하였다. 구체적으로, gefitnib에서 비필수 측쇄를 제거한 다음, MED23의 D400 및 H449 잔기 각각에 대하여 수소 결합 공여체 및 수용체 부분을 모두 가질 수 있는 화합물을 설계하였다(도 4a). 구체적으로, 골격으로는 칼콘(chalcones) 및 피라졸린(pyrazolines)를 선정하여 25개의 화합물(11개의 칼콘 및 14개의 피라졸린 베이스 화합물)을 준비하였다. 상기 준비한 모든 화합물의 ELF3-MED23 PPI 억제활성을 SEAP 분석을 통해 측정하였으며, 65% 이상의 억제를 보여준 화합물은 초기 스크리닝 데이터를 확인하기 위하여 다양한 농도(3, 5 및 10μM)에서 추가로 실험을 진행하였다(도 4b, 도 4c).In order to embody the above findings, we designed and synthesized a minor compound that can affect ELF3-MED23 PPI. Specifically, non-essential side chains were removed from gefitnib, and then a compound capable of having both hydrogen bond donor and acceptor moieties for each of the D400 and H449 residues of MED23 was designed (Figure 4a). Specifically, chalcones and pyrazolines were selected as the skeleton, and 25 compounds (11 chalcones and 14 pyrazoline base compounds) were prepared. The ELF3-MED23 PPI inhibitory activity of all the compounds prepared above was measured through SEAP analysis, and compounds that showed more than 65% inhibition were further tested at various concentrations (3, 5, and 10 μM) to confirm the initial screening data. (Figure 4b, Figure 4c).

리포터 유전자 분석 및 세포 생존 시험을 병렬적으로 수행하여, ELF3-MED23 PPI의 억제가 화합물의 세포 독성에 기인한 것이 아닌, 상호작용 자체에 대한 억제임을 확인하였다. 이를 구체적으로 확인하기 위하여, MED23의 확인된 핫스팟에 대한 in sillico 도킹 분석을 수행하였다. 도킹 분석은 ClusPro 웹 서버를 통해 얻은 ELF3-MED23 상호 작용에 대한 단백질-단백질 도킹 모델을 사용하여 수행하였다. 도킹 분석을 수행하기 전에, ELF3의 137-144 아미노산은 내부 리간드로 추출하였고, 모델에서 ELF3 단백질을 제거한 다음, 프로토몰(protomol)을 ELF3의 137-144 아미노산을 사용하여 제조하였다. 후보 화합물인 YK1의 3D 구조는 SYBYL program (Tripos Inc., St. Louis, USA)의 SKETCH 모듈을 사용하여 생성하였다. 모든 분자의 도킹은 Sybyl -X 2.3 과 연결된 Surflex -Dock(Tripos International, 2012)를 통해 수행하였으며, 그 결과를 하기 표 1에 나타내었다.By performing reporter gene analysis and cell survival tests in parallel, it was confirmed that the inhibition of ELF3-MED23 PPI was not due to the cytotoxicity of the compound, but rather the inhibition of the interaction itself. To confirm this specifically, in silico docking analysis was performed on the identified hotspot of MED23. Docking analysis was performed using the protein-protein docking model for the ELF3-MED23 interaction obtained through the ClusPro web server. Before performing the docking analysis, amino acids 137-144 of ELF3 were extracted as an internal ligand, the ELF3 protein was removed from the model, and then a protomol was prepared using amino acids 137-144 of ELF3. The 3D structure of the candidate compound YK1 was generated using the SKETCH module of the SYBYL program (Tripos Inc., St. Louis, USA). Docking of all molecules was performed using Surflex -Dock (Tripos International, 2012) linked to Sybyl -X 2.3, and the results are shown in Table 1 below.

CompoundsCompounds Interacting residuesInteracting residues aa by by
in silico in silico studystudy
SEAP assaySEAP assay SEAP assaySEAP assay
InhibitionInhibition
(%)(%) bb
InhibitionInhibition
(%)(%) bb
Peptide Peptide
(8 a.a.)(8 a.a.)
D400, E405, H449D400, E405, H449 5353 5353
GefitinibGefitinib D400, H449D400, H449 8585 8585 1One D400, H449D400, H449 8686 8686 22 H449H449 4141 4141 33 D400, H449D400, H449 7070 7070 44 D400, H449D400, H449 8080 8080 55 F399, K406, H449F399, K406, H449 6060 6060 66 D400, H449D400, H449 9090 9090 77 D400D400 8080 8080 88 H449H449 5050 5050 99 F399, Y403, E405, H449F399, Y403, E405, H449 5050 5050 1010 D400D400 8080 8080 1111 H449H449 5050 5050 1212 H449H449 5858 5858 1313 H449H449 5858 5858 1414 F399, W429F399, W429 1414 1414 1515 D400, H449D400, H449 9595 9595 1616 F399, W429, P446F399, W429, P446 3737 3737 1717 -- 2323 2323 1818 -- 00 00 1919 F399, Y403F399, Y403 3939 3939 2020 H449H449 4545 4545 2121 H449H449 5757 5757 2222 D400D400 6363 6363 2323 D400, H449D400, H449 8787 8787 2424 -- 3434 3434 2525 F399, H449F399, H449 4242 4242

그 결과, D400 및 H449 잔기 모두와 수소 결합을 형성할 것으로 예측되는 화합물이 우수한 ELF3-MED23 PPI 억제 활성을 가지고 있음을 확인하였다(도 4d). 상기 1번 내지 22번 화합물을 HCT15(HER2양성 대장암 세포주), NCI-N87(HER2양성 위장암 세포주), T47D(HER2음성 유방암 세포주), HeLa(HER2음성 자궁경부암 세포주)에 72시간 처리한 후 항증식효과를 측정한 결과, NCI-N87 세포주에서 대체로 강한 항증식효과가 있음을 확인하였다(하기 표 2). As a result, it was confirmed that the compound predicted to form hydrogen bonds with both D400 and H449 residues had excellent ELF3-MED23 PPI inhibitory activity (Figure 4d). Compounds 1 to 22 were treated with HCT15 (HER2-positive colon cancer cell line), NCI-N87 (HER2-positive gastrointestinal cancer cell line), T47D (HER2-negative breast cancer cell line), and HeLa (HER2-negative cervical cancer cell line) for 72 hours. As a result of measuring the anti-proliferative effect, it was confirmed that there was a generally strong anti-proliferative effect in the NCI-N87 cell line (Table 2 below).

Comp#Comp# HCT15 (+)HCT15 (+) NCI-N87 (+)NCI-N87 (+) T47D (-)T47D (-) HeLa (-)HeLa (-) 1One 29.66±0.1429.66±0.14 13.50±0.2913.50±0.29 8.48±0.028.48±0.02 19.50±0.0419.50±0.04 22 8.51±0.018.51±0.01 10.65±0.3110.65±0.31 18.89±0.2018.89±0.20 9.85±0.379.85±0.37 33 7.64±0.097.64±0.09 3.45±0.053.45±0.05 1.21±0.021.21±0.02 9.73±0.049.73±0.04 44 11.96±0.1711.96±0.17 4.82±0.104.82±0.10 17.57±0.1317.57±0.13 25.64±0.0925.64±0.09 55 8.97±0.178.97±0.17 17.82±0.1717.82±0.17 9.04±0.079.04±0.07 30.02±0.1830.02±0.18 66 >50>50 44.88±0.8044.88±0.80 >50>50 >50>50 77 14.18±0.0514.18±0.05 11.36±0.1211.36±0.12 15.56±0.1515.56±0.15 16.13±0.0816.13±0.08 88 >50>50 >50>50 >50>50 42.19±0.0142.19±0.01 99 >50>50 >50>50 27.89±0.0627.89±0.06 >50>50 1010 14.36±0.1214.36±0.12 14.38±0.0614.38±0.06 8.96±0.028.96±0.02 5.54±0.215.54±0.21 1111 >50>50 47.76±0.2247.76±0.22 >50>50 44.31±0.1144.31±0.11 1212 >50>50 >50>50 >50>50 >50>50 1313 >50>50 >50>50 >50>50 >50>50 1414 19.47±0.4119.47±0.41 42.35±0.8642.35±0.86 5.57±0.265.57±0.26 0.69±0.000.69±0.00 1515 7.66±0.047.66±0.04 1.56±0.141.56±0.14 9.99±0.209.99±0.20 16.92±0.1016.92±0.10 1616 >50>50 >50>50 >50>50 >50>50 1717 >50>50 >50>50 >50>50 >50>50 1818 19.70±0.0519.70±0.05 >50>50 29.28±0.2729.28±0.27 6.69±0.406.69±0.40 1919 >50>50 >50>50 >50>50 >50>50 2020 >50>50 >50>50 >50>50 >50>50 2121 >50>50 >50>50 >50>50 >50>50 2222 40.29±0.5140.29±0.51 >50>50 >50>50 >50>50

화합물 중, 가장 우수한 PPI 억제 활성 및 HER2양성 위암세포주에서 가장 우수한 항증식효과를 보이는 후보 화합물을 선정하였다(15번 화합물 이하, YK1로 명명). 선정한 후보 화합물은 10μM에서 95%의 PPI 억제, IC50(μM) = 1.18±0.34 및 NCI-N87세포주에서 IC50(μM) = 1.56±0.14의 암세포 증식 억제 효과를 보여주었다. Among the compounds, the candidate compound showing the best PPI inhibitory activity and the best antiproliferative effect in HER2-positive gastric cancer cell lines was selected (compound No. 15, hereinafter referred to as YK1). The selected candidate compounds showed 95% PPI inhibition at 10 μM, IC50 (μM) = 1.18 ± 0.34, and cancer cell proliferation inhibition effects of IC50 (μM) = 1.56 ± 0.14 in the NCI-N87 cell line.

4-2. 선정된 후보 화합물의 효과 확인4-2. Confirm the effect of selected candidate compounds

선정된 후보 화합물과 gefitinib의 도킹 포즈를 중첩했을 때, ELF3-MED23 PPI의 핫스팟 내에서 유사한 결합 방향을 가지고 있음을 확인할 수 있었다(도 5a). gefitinib의 퀴나졸린 고리(quinazoline) 고리에 있는 질소 원자 대신 후보 화합물 피라졸린(pyrazoline) 고리 메톡시기의 산소 원자가 MED23의 H449에 대한 수소결합 수용체 역할을 수행한다. 또한, 후보 화합물의 페닐(phenyl) 고리에 있는 하이드록시기의 수소 원자가 gefitinib의 퀴나졸린 고리와 같이, 수소결합 공여체 역할을 수행한다. 그러나, gefitinib과는 달리, 후보 화합물은 D400 잔기의 백본에 있는 산소와 수소 결합을 형성하여 MED23의 F399와 추가적인 p-상호작용을 형성하는 것을 확인하였다. 더욱이, YK1은 ELF3137-144 펩타이드와 유사하게, MED23 잔기인 F399, E405 및 P446과 소수성 상호작용을 형성할 것으로 예상된다(도 5b). When the docking poses of the selected candidate compounds and gefitinib were overlapped, it was confirmed that they had similar binding directions within the hotspot of ELF3-MED23 PPI (Figure 5a). Instead of the nitrogen atom in the quinazoline ring of gefitinib, the oxygen atom in the methoxy group of the pyrazoline ring of the candidate compound serves as a hydrogen bond acceptor for H449 of MED23. In addition, the hydrogen atom of the hydroxy group in the phenyl ring of the candidate compound acts as a hydrogen bond donor, like the quinazoline ring of gefitinib. However, unlike gefitinib, the candidate compound was confirmed to form a hydrogen bond with the oxygen in the backbone of the D400 residue, forming an additional p-interaction with F399 of MED23. Moreover, YK1 is predicted to form hydrophobic interactions with MED23 residues F399, E405, and P446, similar to the ELF3 137-144 peptide (Figure 5b).

상기와 같은 후보물질의 효과를 구체적으로 확인하기 위하여, LC-MS/MS 기반 정량 분석을 수행하였다. 구체적으로, FavorPrep ™ Tri-RNA 시약(FAVORGEN Biotech Corp., Taiwan)과 PrimeScript™ RT Reagent Kit(Takara Bio Inc., Japan)를 제조사에 지침에 따라 사용하여 세포에서 RNA를 추출하고 상보적 DNA(complementary DNA, cDNA)를 합성하기위해 사용하였다. 유전자의 정량적 분석은 SensiFAST™ SYBR No-ROX kit(Bioline, Canada)를 사용하여 수행하였다. PCR은 95°C에서 2분, 95°C에서 for 10초 조건으로 27 사이클, 56°C에서 10초, 72 °C에서 20초의 프로토콜에 따라 CFX96 TM 실시간 PCR 검출 시스템(Bio-Rad, USA)을 사용하여 수행하였다. mRNA의 상대적인 양은 ㅿㅿCt 방법을 사용하여 결정되었고 GAPDH 또는 ACTIN으로 정규화하였다. 그 결과, 후보 물질은 MED23의 D400 및 H449 잔기와의 수소 결합 형성을 통해 직접적으로 결합하는 것을 확인할 수 있었다. 후보 물질은 FLAG가 태그된 야생형 MED23과는 결합할 수 있으나, 이중 돌연변이인 MED23D400A/H449G에는 결합할 수 없었다(도 5c). 그러나, MED23의 단편 중, D400 및 H449 잔기를 포함하는 단편인 MED23391-625과는 특이적으로 상호작용하였다(도 5d). In order to specifically confirm the effect of the above candidate substances, LC-MS/MS-based quantitative analysis was performed. Specifically, RNA was extracted from cells using FavorPrep™ Tri-RNA Reagent (FAVORGEN Biotech Corp., Taiwan) and PrimeScript™ RT Reagent Kit (Takara Bio Inc., Japan) according to the manufacturer's instructions, and complementary DNA was extracted. used to synthesize DNA, cDNA). Quantitative analysis of genes was performed using the SensiFAST™ SYBR No-ROX kit (Bioline, Canada). PCR was performed using a CFX96 TM real-time PCR detection system (Bio-Rad, USA) according to the following protocol: 95°C for 2 min, 27 cycles at 95°C for 10 s, 56°C for 10 s, and 72°C for 20 s. It was performed using . Relative amounts of mRNA were determined using the ㅿㅿCt method and normalized to GAPDH or ACTIN. As a result, it was confirmed that the candidate substance directly binds to the D400 and H449 residues of MED23 through hydrogen bond formation. The candidate material could bind to FLAG-tagged wild-type MED23, but could not bind to the double mutant MED23 D400A/H449G (Figure 5c). However, among the fragments of MED23, it specifically interacted with MED23 391-625 , a fragment containing D400 and H449 residues (FIG. 5d).

생물발광 강도의 변화를 측정했을 때에도, MED23391-462의 처리에 의해 현저하게 상승된 루시퍼라제의 활성은 후보물질의 처리에 의해 용량 의존적으로 유의하게 감소되는 것을 확인할 수 있었다(도 5e 및 도 5f). Even when measuring the change in bioluminescence intensity, it was confirmed that the activity of luciferase, which was significantly increased by treatment with MED23 391-462 , was significantly reduced in a dose-dependent manner by treatment with the candidate substance (Figures 5e and 5f ).

상기와 같은 결과를 통해, 후보물질은 MED23391-462에 특이적으로 결합할 수 있으며, 이를 통해 ELF3-MED23의 PPI를 유의한 수준으로 억제할 수 있음을 확인하였다.Through the above results, it was confirmed that the candidate material can specifically bind to MED23 391-462 and thereby inhibit the PPI of ELF3-MED23 to a significant level.

실시예 5. 후보 화합물의 HER2 억제 효과 확인Example 5. Confirmation of HER2 inhibition effect of candidate compound

5-1. HER 발현 수준 확인5-1. Confirmation of HER expression level

상기에서 ELF3-MED23 PPI 억제 효과를 확인한 후보 화합물이 HER2의 발현을 억제할 수 있는지 여부를 확인하기 위하여 형광 편광 분석(Fluorescence Polarization Assay)을 수행하였다. 구체적으로, 다양한 농도의 (His)6-MED23391-582 및 플루오레세인 이소티오시아네이트(fluorescein isothiocyanate, FITC) 표지된 ELF3 129-145 펩티드(10nM)를 분석 완충액(30mM NaCl 및 5mM β-메르캅토에탄올(β-mercaptoethanol)을 포함하는, 20mM 인산나트륨(pH 8.0))에서 혼합한 다음, Kd 값을 결정 하였다. 최종 부피를 50μL로 조정한 샘플을 실온에서 30분 동안 이큐베이션 하였다. Kd 값 의 결정은 least-squares non-linear fit 방법을 사용하여 Prism 6.0(GraphPad Software, USA) 으로 수행하였다. FP 신호는 Infinite F200 PRO 마이크로플레이트 판독기(Tecan Group Ltd., Switzerland)를 사용하여 485nm의 여기 파장, 및 535nm의 방출 파장을 밀리편광(milipolarization, mP)단위로 측정하였다. displacement 분석을 위하여 농도에 등급을 매긴 YK1 및 표지되지 않은-ELF3137--144 펩티드를 80 nM (His)6-MED23391-582 및 10 nM FITC-ELF3129-145와 함께 혼합하였다. 화합물 YK1의 효과는 표지되지 않은 펩티드를 양성 대조군으로 사용하여 FP 신호의 감소 수준을 측정하여 확인하였다. 화합물 각각의 IC50을 결정하기 위하여 4-파라미터 로지스틱 방정식을 Table Curve 2D 프로그램(SPSS Inc.)을 통해 수행하였다. Ki값은 Cheng-Prusoff 방정식(Ki = IC50/1+([Ligand]/Kd))에 기반하여 계산하였다. Fluorescence Polarization Assay was performed to determine whether the candidate compound whose ELF3-MED23 PPI inhibitory effect was confirmed above could inhibit the expression of HER2. Specifically, various concentrations of (His) 6 -MED23 391-582 and fluorescein isothiocyanate (FITC) labeled ELF3 129-145 peptides (10 nM) were incubated in assay buffer (30mM NaCl and 5mM β-mer). After mixing in 20mM sodium phosphate (pH 8.0) containing captoethanol (β-mercaptoethanol), the K d value was determined. The samples were adjusted to a final volume of 50 μL and incubated for 30 minutes at room temperature. Determination of K d value was performed with Prism 6.0 (GraphPad Software, USA) using the least-squares non-linear fit method. The FP signal was measured using an Infinite F200 PRO microplate reader (Tecan Group Ltd., Switzerland) with an excitation wavelength of 485 nm and an emission wavelength of 535 nm in millipolarization (mP). For displacement analysis, graded concentrations of YK1 and unlabeled-ELF3 137--144 peptides were mixed with 80 nM (His)6-MED23 391-582 and 10 nM FITC-ELF3 129-145 . The effect of compound YK1 was confirmed by measuring the level of reduction in FP signal using unlabeled peptide as a positive control. A 4-parameter logistic equation was used to determine the IC 50 of each compound. This was performed using the Table Curve 2D program (SPSS Inc.). The Ki value was calculated based on the Cheng-Prusoff equation (K i = IC 50 /1+([Ligand]/K d )).

그 결과, 후보 화합물은 MED23391-582에서 FITC 표지 ELF3129-145 펩타이드의 방출을 유도하여 FP 신호를 현저히 감소시키는 것이 확인되었으며, 이는 직접적으로 PPI를 억제할 수 있음을 재확인시켜 주었다(도 5g). 또한, 후보 화합물의 PPI 억제 활성(4.27 ± 0.25 μM)을 상기 Ki 값에 따라 계산했을 때에도, 표지되지 않은 ELF3137-144 펩티드의 억제활성(0.78 ± 0.05 μM) 보다 뛰어난 것을 확인할 수 있었다(도 5h)As a result, the candidate compound was confirmed to significantly reduce the FP signal by inducing the release of FITC-labeled ELF3 129-145 peptide from MED23 391-582 , which reconfirmed that it can directly inhibit PPI (Figure 5g) . In addition, when the PPI inhibitory activity (4.27 ± 0.25 μM) of the candidate compound was calculated according to the above Ki value, it was confirmed to be superior to the inhibitory activity (0.78 ± 0.05 μM) of the unlabeled ELF3 137-144 peptide (Figure 5h) )

상기와 같은 PPI 억제 효과가 ELF3-MED23 특이적인지 여부를 확인하기 위해 MED23와 파트너 전사인자로 알려진 ELK1 및 IRF7에 대한 PPI 억제 효과를 확인했을 때에도, 후보 화합물에 의해 PPI가 억제되지 않음을 확인하였다(도 5i). 후보 화합물은 ELF3-MED23 특이적인 PPI 억제를 통해, 용량 의존적으로 HER2 유전자 및 단백질의 발현 수준을 유의하게 하향 조절할 수 있음을 확인하였다(도 5j 및 도 5k). In order to confirm whether the PPI inhibitory effect described above is specific to ELF3-MED23, when the PPI inhibitory effect on MED23 and ELK1 and IRF7, known as partner transcription factors, was confirmed, it was confirmed that PPI was not inhibited by the candidate compound ( Figure 5i). It was confirmed that the candidate compound can significantly downregulate the expression levels of the HER2 gene and protein in a dose-dependent manner through ELF3-MED23-specific PPI inhibition (Figures 5j and 5k).

상기와 같은 결과를 통해, 후보 화합물은 ELF3-MED23 특이적으로, 단백질-단백질 상호작용을 억제할 수 있으며, 이를 통해 HER2의 발현 수준을 억제함을 확인하였다. Through the above results, it was confirmed that the candidate compound can specifically inhibit protein-protein interaction in ELF3-MED23, thereby suppressing the expression level of HER2.

5-2. 키나제 억제 효과 확인5-2. Confirmation of kinase inhibition effect

10 μM 및 25 μM에서 후보 화합물의 키나제(kinase) 억제 활성은 Eurofins 키나제 프로파일링 서비스를 통해 확인하였다. c-RAF, EGFR, ErbB2, ErbB4 및 PI3 키나제에 대한 억제 효과는 Kinase Profiler Service Assay 프로토콜에 따라 분석했다.The kinase inhibitory activity of the candidate compounds at 10 μM and 25 μM was confirmed through Eurofins kinase profiling service. The inhibitory effect on c-RAF, EGFR, ErbB2, ErbB4 and PI3 kinases was analyzed according to the Kinase Profiler Service Assay protocol.

그 결과, 후보 화합물은 gefitinib과는 달리, HER 패밀리 키나제(EGFR, ErbB2 및 ErbB4) 또는 AKT/MAPK 경로 관련 키나제(PI3 키나제 및 c-RAF)에 대해 유의한 억제 활성을 보여주지 않았다(하기 표 3).As a result, unlike gefitinib, the candidate compound did not show significant inhibitory activity against HER family kinases (EGFR, ErbB2, and ErbB4) or AKT/MAPK pathway-related kinases (PI3 kinase and c-RAF) (Table 3 below) ).

KinaseKinase In vitro kinase inhibitory activity (%) at the concentration of In vitro kinase inhibitory activity (%) at the concentration of 10 μM10 μM 25 μM25 μM c-RAFc-RAF 33 1010 EGFREGFR 00 00 ErbB2ErbB2 22 00 ErbB4ErbB4 00 00 PI3 Kinase (p110a/p85a)PI3 Kinase (p110a/p85a) 33 1717

상기와 같은 결과는 후보 화합물에 의해 유도된 HER2의 전사 하향 조절은 ELF3-MED23 PPI 억제에 의해 특이적으로 촉발되는 것이며, HER2 관련 신호 전달 캐스케이드의 감쇠를 초래했음을 보여준다. The above results show that the transcriptional downregulation of HER2 induced by the candidate compound was specifically triggered by ELF3-MED23 PPI inhibition, resulting in attenuation of the HER2-related signaling cascade.

5-3. 항증식 효과 확인5-3. Confirmation of anti-proliferative effect

후보 화합물의 HER2 억제에 따른 항증식 효과를 확인하였다. 구체적으로 후보 화합물의 항암효과를 확인하기 위하여, 암세포를 20시간 동안 96-웰 세포 배양 플레이트에 104 cells/well으로 시딩(seeding)하였다. 세포는 무혈청 배지에서 4시간 동안 기아 상태로 유지된 다음, 지정된 농도의 화합물이 첨가된 배지로 교체하고 5% CO2, 및 37 ℃ 조건의 인큐베이터에서 72시간 동안 배양하였다. 세포의 생존율은 각 웰에 5 μL의 EZ -cytoX 를 도포한 다음, 450 nm에서 흡광도를 확인하여 확인하였다. 측정은 ELISA Microplate Reader (VersaMax, Molecular Devices)를 사용하였다.The antiproliferative effect of the candidate compound due to HER2 inhibition was confirmed. Specifically, to confirm the anticancer effect of the candidate compound, cancer cells were seeded at 10 4 cells/well in a 96-well cell culture plate for 20 hours. Cells were starved in serum-free medium for 4 hours, then replaced with medium supplemented with the indicated concentration of compounds and cultured in an incubator at 5% CO 2 and 37°C for 72 hours. Cell viability was confirmed by applying 5 μL of EZ-cytoX to each well and then checking the absorbance at 450 nm. For measurement, an ELISA Microplate Reader (VersaMax, Molecular Devices) was used.

그 결과, 후보 화합물은 NCI-N87의 세포 성장을 현저한 수준으로 억제하는 것을 확인하였다(도 6a 내지 도 6c). 상기와 같은 결과를 후보 화합물의 항증식 활성이 HER2의 발현 조절에 의한 것임을 확인하였다. As a result, it was confirmed that the candidate compound significantly inhibited cell growth of NCI-N87 (FIGS. 6A to 6C). The above results confirmed that the antiproliferative activity of the candidate compound was caused by regulating the expression of HER2.

실시예 6. 후보 화합물의 항암 효과 확인Example 6. Confirmation of anticancer effect of candidate compounds

6-1. 데이터 분석을 통한 항암 효과 확인6-1. Confirmation of anti-cancer effect through data analysis

후보 화합물이 HER2-양성 위암에 대한 항암 효과가 있는지 여부를 확인하기 위하여, 공개적으로 이용 가능한 1,065명의 위암 환자 데이터 세트(www.kmplot.com/gastric/)를 사용하여 Kaplan-Meier 생존 분석을 수행하였다. 그 결과, HER2 mRNA 수준과 전체 생존(overall survival, OS) 또는 무진행 생존(progression-free survival, PFS) 사이에 유의한 음의 상관관계가 있음을 보여주었다(도 7a 및 도 7b).To determine whether the candidate compounds have anticancer effects against HER2-positive gastric cancer, Kaplan-Meier survival analysis was performed using a publicly available dataset of 1,065 gastric cancer patients ( www.kmplot.com/gastric/ ). . The results showed that there was a significant negative correlation between HER2 mRNA levels and overall survival (OS) or progression-free survival (PFS) (FIGS. 7A and 7B).

6-2. 이종이식 마우스에 대한 항암 효과 확인6-2. Confirmation of anticancer effect on xenograft mice

항암효과를 확인하기 위하여 이종이식(xenograft) 마우스를 제조하였다. 1X 인산완충식염수(PBS) 100μL에 녹인 NCI-N87과 JIMT-1 세포(5 x 106 세포)를 5주령 흉선이 없는 암컷 누드 마우스(Envigo, USA) 및 4주령 암컷 NOD-SCID(Koatech, South Korea)의 오른쪽 옆구리에 피하 주사한 다음, 마우스. 종양이 90-100mm3의 부피에 도달했을 때, 마우스를 지정된 각 그룹으로 무작위로 분리했다. NCI-N87 이종이식편은 정맥투여로 6회, JIMT-1 이종이식편에서는 복강내 8회 약물투여를 모두 3일 간격으로 반복하였다. 후보 화합물(이하, YK1)과 트라스트주맙(trastuzumab, TZMB)은 4 mg/kg의 농도로 동일하게 준비하여, 각각 DMAC/Tween80/saline(5:10:85) 비율의 혼합물 및 saline과 혼합한 다음, 주입하였다. 약물을 주입한 다음, 대조군의 평균 종양 크기가 2000-2500 mm3에 도달할 때까지 종양 크기의 변화를 모니터링했다. NCI-N87의 경우 첫 번째 약물 주사 후 28일, JIMT-1 이종이식의 경우 46일 후에 마우스를 희생시킨 다음, 각 마우스에서 종양을 절제하고 상대적인 종양 크기를 결정했다. 종양의 길이(L)와 너비(W)는 캘리퍼스로 측정하였고, 종양 부피는 (L X W2) / 2 공식으로 계산하였다.To confirm the anticancer effect, xenograft mice were prepared. NCI-N87 and JIMT-1 cells (5 x 10 6 cells) dissolved in 100 μL of 1 Korea) was injected subcutaneously into the right flank of the mouse. When tumors reached a volume of 90–100 mm 3 , mice were randomly separated into each designated group. Drug administration was repeated 6 times intravenously for NCI-N87 xenografts and 8 times intraperitoneally for JIMT-1 xenografts, all at 3-day intervals. The candidate compound (YK1) and trastuzumab (TZMB) were prepared at the same concentration of 4 mg/kg and mixed with a mixture of DMAC/Tween80/saline (5:10:85) and saline, respectively. , was injected. After drug injection, changes in tumor size were monitored until the average tumor size in the control group reached 2000-2500 mm 3 . Mice were sacrificed 28 days after the first drug injection for NCI-N87 and 46 days for JIMT-1 xenografts, then tumors were excised from each mouse and relative tumor size was determined. The length (L) and width (W) of the tumor were measured with calipers, and the tumor volume was calculated using the formula (LXW 2 ) / 2.

그 결과, NCI-N87 이종이식 마우스에 후보 화합물을 4mg/kg 만큼 정맥내(IV) 투여했을 때, 종양 부피가 상당수준 감소했으며, 종양의 성장이 지연됨을 확인하였다(도 7c 및 도 7d). As a result, it was confirmed that when 4 mg/kg of the candidate compound was administered intravenously (IV) to NCI-N87 xenograft mice, the tumor volume was significantly reduced and tumor growth was delayed (FIGS. 7C and 7D).

IHC 분석을 수행하기 위하여, 하기와 같은 실험을 진행하였다. 이종이식 마우스 모델에서 얻은 종양을 사용 하여 면역조직화학(immunohistochemistry, IHC)을 위한 파라핀 포매 블록 절편을 준비하였다. HER2 및 Ki-67 1차 항체를 4°C에서 밤새 인큐베이션한 다음, 1X PBS로 3회 세척하고 2차 항체와 함께 인큐베이션하고, DAB 용액(Dako, Carpinteria, USA)으로 염색하였다. 대조군은 헤마톡실린(hematoxylin)으로 염색하였으며, IHC 염색을 200X 배율의 광학현미경으로 평가했다.To perform IHC analysis, the following experiment was performed. Tumors obtained from a xenograft mouse model were used to prepare paraffin-embedded block sections for immunohistochemistry (IHC). HER2 and Ki-67 primary antibodies were incubated overnight at 4°C, then washed three times with 1X PBS, incubated with secondary antibodies, and stained with DAB solution (Dako, Carpinteria, USA). The control group was stained with hematoxylin, and IHC staining was evaluated under a light microscope at 200X magnification.

그 결과, 후보 화합물이 처리된 그룹에 비해 HER2가 1.8배 수준으로 감소됨을 확인하였으며(도 7e, 상단 패널), 증식 마커인 Ki67이 현저한 수준으로 감소됨을 확인하였다(도 7e, 하단 패널). As a result, it was confirmed that HER2 was reduced to a 1.8-fold level compared to the group treated with the candidate compound (Figure 7e, upper panel), and Ki67, a proliferation marker, was confirmed to be significantly reduced (Figure 7e, lower panel).

6-3. 세포 주기 및 세포 자멸사 효과 확인 6-3. Check cell cycle and apoptosis effects

HER2 과발현은 세포 주기 및 세포 자멸사와 관련되어 있기에, 후보 화합물이 이에 미치는 영향을 확인하기 위한 실험을 진행하였다. 구체적으로, 5 x 105 NCI-N87 세포를 60mm 접시에 접종한 다음, 70-80% confluence에 도달할 때까지 배양하였다. 후보 화합물인 YK1을 상이한 농도로 처리한 다음, 8시간 동안 배양하였다. 세포에 트립신을 처리한 다음, 차가운 PBS(pH 7.4)로 세척하였다. 세포주기 분석(Cell cycle analysis)를 위하여 70% 에탄올로 고정하고 4°C에서 30분 동안 배양한 다음, FxCycleTM PI/RNase 염색 용액(InvitrogenTM, USA)을 사용하여 염색하였다. 세포 주기 분석은 FACS(fluorescence-activated cell sorting) 기기(BD Biosciences, USA)를 사용하여 수행하였다. Since HER2 overexpression is related to cell cycle and apoptosis, experiments were conducted to determine the effect of candidate compounds on these. Specifically, 5 x 10 5 NCI-N87 cells were inoculated into a 60 mm dish and then cultured until reaching 70-80% confluence. The candidate compound YK1 was treated with different concentrations and then incubated for 8 hours. The cells were treated with trypsin and then washed with cold PBS (pH 7.4). For cell cycle analysis, the cells were fixed with 70% ethanol, incubated at 4°C for 30 minutes, and then stained using FxCycle PI/RNase staining solution (Invitrogen , USA). Cell cycle analysis was performed using a fluorescence-activated cell sorting (FACS) instrument (BD Biosciences, USA).

그 결과, 후보 화합물의 시간 및 용량 의존적인 치료는 G1의 세포 분획에서 상당한 증가를 초래했다. 구체적으로, S 및 G2/M 단계의 감소뿐만 아니라 전반적으로 G1 정지를 촉진함을 확인하였다(도 7f 및 7g). As a result, time- and dose-dependent treatment with the candidate compounds resulted in a significant increase in the cell fraction in G1. Specifically, it was confirmed that it not only reduced the S and G2/M phases, but also promoted overall G1 arrest (Figures 7f and 7g).

또한, 세포자멸사(apoptosis) 분석을 위한 세포는 상기 세포 주기 분석 방법에서 준비한 세포와 동일한 방법으로 준비하였다. 세포를 트립신 처리 하고 1X PBS로 세척한 다음, FITC Annexin V Apoptosis Detection 키트 I(BD Pharmingen)를 사용 하여, 각 샘플을 재현탁 하였다. 세포자멸사는 FACS 기기를 사용하여 분석하였다. Additionally, cells for apoptosis analysis were prepared in the same manner as the cells prepared in the cell cycle analysis method. Cells were trypsinized and washed with 1X PBS, and then each sample was resuspended using FITC Annexin V Apoptosis Detection Kit I (BD Pharmingen ). Apoptosis was analyzed using a FACS machine.

그 결과, 후보 화합물은 용량 의존적 방식으로 세포 자멸사를 현저하게 촉진할 수 있으며(도 7h), pro-apoptotic marker인 c-PARP와 c-caspase 7의 증가를 유도하고, 항세포자멸사 마커인 bcl-2의 감소를 유도하는 것을 확인하였다(도 7i). As a result, the candidate compound can significantly promote apoptosis in a dose-dependent manner (Figure 7h), inducing an increase in pro-apoptotic markers c-PARP and c-caspase 7, and anti-apoptotic marker bcl- It was confirmed that a decrease in 2 was induced (Figure 7i).

6-4. 물리화학적 특징 확인6-4. Check physical and chemical characteristics

후보 화합물은 합리적인 수준의 용해도(pH 7에서 103.2 ± 0.6 μg/ml) 및 투과성(도 8a 내지 도 8c)를 가지고 있음을 확인하였다. 이는 후보 화합물이 일반적인 약물 유사성 기준을 충족하며, PK 프로필을 확인했을 때에도, 후보 화합물은 긴 반감기(T1/2 (IV), 9.74 ± 2.76 h, T1/2 (PO), 10.9 ± 11.00 h)를 가지며 준수한 수준의 생체 이용률(Ft, 25.1%)을 가지고 있음을 확인하였다(도 8d). The candidate compound was confirmed to have a reasonable level of solubility (103.2 ± 0.6 μg/ml at pH 7) and permeability (FIGS. 8A to 8C). This means that the candidate compound meets general drug-likeness criteria and, when confirmed PK profile, the candidate compound has a long half-life (T1/2 (IV), 9.74 ± 2.76 h; T1/2 (PO), 10.9 ± 11.00 h). It was confirmed that it had a decent level of bioavailability (Ft, 25.1%) (Figure 8d).

상기와 같은 결과를 통해, 후보 화합물은 현저한 수준의 항암 효과를 가지고 있으며, 물리화학적으로도 항암제로 활용되기에 적합한 특성을 가지고 있음을 확인하였다. Through the above results, it was confirmed that the candidate compound has a remarkable level of anticancer effect and has physicochemical properties suitable for use as an anticancer agent.

실시예 7. 후보 화합물의 내성 회피 효과 확인Example 7. Confirmation of resistance avoidance effect of candidate compound

7-1. 내성 회피 효과 확인7-1. Confirm resistance evasion effect

후보 화합물이 트라스트주맙 내성을 극복할 수 있는지 여부를 확인하였다. 구체적으로, 제조한 1번 내지 22번 화합물을 JIMT-1(ER-/PR-/HER2+ 아형, 선천적 TZMB 내성), TZMB-불응성 BT474(BT-TR, ER+/PR+/HER2+ 아형, 후천성 내성) 및 TZMB-불응성 NCI-N87(NCI-N87 TR; HER2+ 아형, 획득 내성) 그룹에 처리한 다음, 효과를 확인하였다It was determined whether the candidate compound could overcome trastuzumab resistance. Specifically, the prepared compounds Nos. 1 to 22 were used for JIMT-1 (ER-/PR-/HER2+ subtype, congenital TZMB resistance) and TZMB-refractory BT474 (BT-TR, ER+/PR+/HER2+ subtype, acquired resistance). and TZMB-refractory NCI-N87 (NCI-N87 TR; HER2+ subtype, acquired resistance) group, and then the effect was confirmed.

TZMB의 처리는 TZMB-민감성 세포에 대해서만 효과가 있는데에 반해, 후보 화합물을 처리하는 경우, TZMB-민감성 세포뿐만 아니라, TZMB-저항성 세포에도 현저한 항암효과를 가지고 있음을 확인하였다(도 9a 내지 도 9f). HER2의 발현 및 인산화된 AKT 및 MAPK와 같은 다운 스트림 신호 또한 현저하게 하향 조절할 수 있음을 확인하였다. 대조적으로, TZMB-저항성 세포에 TZMB를 처리했을 때에는 이러한 변화가 확인되지 않았다(도 9d 내지 도 9f). While treatment with TZMB is effective only on TZMB-sensitive cells, treatment with the candidate compound was confirmed to have a significant anticancer effect not only on TZMB-sensitive cells but also on TZMB-resistant cells (Figures 9a to 9f ). It was confirmed that the expression of HER2 and downstream signals such as phosphorylated AKT and MAPK could also be significantly downregulated. In contrast, no such changes were observed when TZMB-resistant cells were treated with TZMB (Figures 9D to 9F).

7-2. 클론 분석을 통한 내성 회피 효과 확인7-2. Confirmation of resistance avoidance effect through clone analysis

상기와 같은 결과를 재확인 하기 위하여, 클론 분석을 수행하였다. 구체적으로, 6-웰 배양 플레이트에 2000 cells/well의 밀도로 세포를 시딩한 다음, TZMB(10 또는 20μg /mL) 및 YK1(0.5 또는 1μM)을 처리하거나 처리하지 않고 14일 동안 인큐베이션 했다. 인큐베이션한 세포는 1시간 동안 100% 메탄올로 고정한 다음, 웰당 200μL의 크리스탈 바이올렛(crystal violet) 용액으로 염색하였다. 세포를 수돗물로 세척한 다음, ChemiDoc bio-image analyzer (Bio-Rad)로 이미지를 촬영하였고, ImageJ 소프트웨어(NIH, Bethesda, MD, USA)로 정량화 했다. 고정 후 상기 모든 단계는 실온에서 수행하였다.In order to reconfirm the above results, clonal analysis was performed. Specifically, cells were seeded in 6-well culture plates at a density of 2000 cells/well and then incubated for 14 days with or without TZMB (10 or 20 μg/mL) and YK1 (0.5 or 1 μM). The incubated cells were fixed with 100% methanol for 1 hour and then stained with 200 μL of crystal violet solution per well. Cells were washed with tap water, then images were taken with a ChemiDoc bio-image analyzer (Bio-Rad) and quantified with ImageJ software (NIH, Bethesda, MD, USA). After fixation, all above steps were performed at room temperature.

그 결과, 상기 실시예 7-1에서 확인한 바와 같이, 후보 화합물은 TZMB 내성에도 효과가 있으나, TZMB는 이러한 효과가 나타나지 않음을 확인하였다(도 9g 내지 도 9i). As a result, as confirmed in Example 7-1, the candidate compound was effective in TZMB resistance, but it was confirmed that TZMB did not have this effect (FIGS. 9g to 9i).

7-3. 이종이식 마우스에서 내성 회피 효과 확인7-3. Confirmation of resistance evasion effect in xenograft mice

JIMT-1 이종이식 마우스에 각각 4 mg/kg의 후보 화합물 및 TZMB를 처리하여, in vivo에서 내성 회피 효과를 확인하였다. 그 결과, 후보 화합물을 처리했을 때, HER2의 수준이 현저하게 감소하며, 종양의 성장 및 부피가 유의한 수준으로 감소됨을 확인하였다(도 9j 내지 도 9m). 또한, 증식 마커인 Ki67 또한, TZMB 처리군에 비해 후보 화합물 처리군에서 현저하게 감소되어 있음을 확인하였다(도 9n). 한편, 마우스의 체중은 실험 전반에 걸쳐 일반적으로 유사하였다(도 10). JIMT-1 xenograft mice were treated with 4 mg/kg of the candidate compound and TZMB, respectively, and the resistance evasion effect was confirmed in vivo . As a result, it was confirmed that when treated with the candidate compound, the level of HER2 was significantly reduced, and the growth and volume of the tumor were significantly reduced (FIGS. 9J to 9M). In addition, Ki67, a proliferation marker, was also confirmed to be significantly reduced in the candidate compound treatment group compared to the TZMB treatment group (FIG. 9n). Meanwhile, the body weights of mice were generally similar throughout the experiment (Figure 10).

상기와 같은 결과를 통해, 후보 화합물은 기존에 임상에서 사용되는 TZMB에 내성이 있는 세포에도 효과적으로 활용될 수 있음을 확인하였다. Through the above results, it was confirmed that the candidate compound can be effectively used even in cells resistant to TZMB, which is currently used clinically.

Claims (14)

하기 화학식 1로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염:
[화학식 1]

R1은 수소이고;
R2 및 R3는 독립적으로 수소 또는 하이드록시기 이고;
R4는 p-메톡시나프탈레닐(Methoxynaphthalenyl),, 또는이고;
여기서 A1은 질소, 산소 또는 황이고;
A2는 할로겐, 또는 C1-3 알콕시이다.
A compound represented by the following formula (1), a stereoisomer thereof, or a pharmaceutically acceptable salt thereof:
[Formula 1]

R 1 is hydrogen;
R 2 and R 3 are independently hydrogen or a hydroxy group;
R 4 is p-methoxynaphthalenyl, , or ego;
where A 1 is nitrogen, oxygen or sulfur;
A 2 is halogen or C 1-3 alkoxy.
청구항 1에 있어서,
상기 화학식 1의 화합물은 하기 화합물로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염:
3-푸란-2-일-1-(3-하이드록시페닐)-프로페논(3-Furan-2-yl-1-(3-hydroxyphenyl)-propenone);
1-(3-하이드록시페닐)-3-(4-메톡시페닐)-프로페논(1-(3-Hydroxyphenyl)-3-(4-methoxyphenyl)-propenone);
1-(3-하이드록시페닐)-3-(4-메톡시나프탈렌-1-일)-프로페논(1-(3-Hydroxyphenyl)-3-(4-methoxynaphthalen-1-yl)-propenone);
3-(4-클로로페닐)-1-(3-하이드록시페닐)-프로페논(3-(4-Chlorophenyl)-1-(3-hydroxyphenyl)-propenone);
3-(4-하이드록시페닐)-1-(3-하이드록시페닐)-프로페논(3-(4-Hydroxyphenyl)-1-(3-hydroxyphenyl)-propenone);
1-(2-하이드록시페닐)-3-(4-메톡시페닐)-프로페논(1-(2-Hydroxyphenyl)-3-(4-methoxyphenyl)-propenone);
1-(2-하이드록시페닐)-3-(4-메톡시나프탈렌-1-일)-프로페논(1-(2-Hydroxyphenyl)-3-(4-methoxynaphthalen-1-yl)-propenone);
3-푸란-2-일-1-(2-하이드록시페닐)-프로페논(3-Furan-2-yl-1-(2-hydroxyphenyl)-propenone);
3-(4-하이드록시페닐)-1-(2-하이드록시페닐)-프로페논(3-(4-Hydroxyphenyl)-1-(2-hydroxyphenyl)-propenone);
3-(4-클로로페닐)-1-(2-하이드록시페닐)-프로페논(3-(4-Chlorophenyl)-1-(2-hydroxyphenyl)-propenone); 및
1-(2-하이드록시페닐)-3-티오펜-2-일-프로페논(1-(2-Hydroxyphenyl)-3-thiophen-2-yl-propenone).
In claim 1,
The compound of Formula 1 is a compound, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof, characterized in that any one selected from the group consisting of the following compounds:
3-Furan-2-yl-1-(3-hydroxyphenyl)-propenone;
1-(3-Hydroxyphenyl)-3-(4-methoxyphenyl)-propenone);
1-(3-Hydroxyphenyl)-3-(4-methoxynaphthalen-1-yl)-propenone);
3-(4-Chlorophenyl)-1-(3-hydroxyphenyl)-propenone (3-(4-Chlorophenyl)-1-(3-hydroxyphenyl)-propenone);
3-(4-Hydroxyphenyl)-1-(3-hydroxyphenyl)-propenone);
1-(2-Hydroxyphenyl)-3-(4-methoxyphenyl)-propenone);
1-(2-Hydroxyphenyl)-3-(4-methoxynaphthalen-1-yl)-propenone);
3-Furan-2-yl-1-(2-hydroxyphenyl)-propenone;
3-(4-Hydroxyphenyl)-1-(2-hydroxyphenyl)-propenone);
3-(4-Chlorophenyl)-1-(2-hydroxyphenyl)-propenone); and
1-(2-Hydroxyphenyl)-3-thiophen-2-yl-propenone.
하기 화학식 2로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염:
[화학식 2]

R5 내지 R7은 독립적으로 수소 또는 하이드록시기 이고;
R8p-Methoxynaphthalenyl(p-메톡시나프탈레닐), 1-메톡시나프탈레닐(1-Methoxynaphthalenyl),, 또는이고;
R9는 C1-3 알킬이고;
여기서 A1은 질소, 산소 또는 황이고;
A2는 할로겐, 또는 C1-3 알콕시이다.
A compound represented by the following formula (2), a stereoisomer thereof, or a pharmaceutically acceptable salt thereof:
[Formula 2]

R 5 to R 7 are independently hydrogen or a hydroxy group;
R 8 is p -Methoxynaphthalenyl ( p -methoxynaphthalenyl), 1-Methoxynaphthalenyl (1-Methoxynaphthalenyl), , or ego;
R 9 is C 1-3 alkyl;
where A 1 is nitrogen, oxygen or sulfur;
A 2 is halogen or C 1-3 alkoxy.
청구항 3에 있어서,
상기 화학식 2의 화합물은 하기 화합물로 이루어진 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염:
1-[5-푸란-2-일-3-(3-하이드록시페닐)-4,5-디하이드로피라졸-1-일]-에타논(1-[5-Furan-2-yl-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[3-(3-하이드록시페닐)-5-(4-메톡시페닐)-4,5-디히드로피라졸-1-일]-에탄온(1-[3-(3-Hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[3-(3-하이드록시페닐)-5-(4-메톡시나프탈렌-1-일)-4,5-디히드로피라졸-1-일]-에타논(1-[3-(3-Hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[5-(4-클로로페닐)-3-(3-하이드록시페닐)-4,5-디히드로피라졸-1-일]-에타논(1-[5-(4-Chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[5-(4-하이드록시페닐)-3-(3-하이드록시페닐)-4,5-디히드로피라졸-1-일]-에타논(1-[5-(4-Hydroxyphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[5-푸란-2-일-3-(2-하이드록시페닐)-4,5-디하이드로피라졸-1-일]-에타논(1-[5-Furan-2-yl-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[3-(2-하이드록시페닐)-5-(4-메톡시나프탈렌-1-일)-4,5-디히드로피라졸-1-일]-에타논(1-[3-(2-Hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[5-(4-하이드록시페닐)-3-(2-하이드록시페닐)-4,5-디히드로피라졸-1-일]-에탄온(1-[5-(4-Hydroxyphenyl)-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[5-(4-클로로페닐)-3-(2-하이드록시페닐)-4,5-디히드로피라졸-1-일]-에탄온(1-[5-(4-Chlorophenyl)-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[3-(2-하이드록시페닐)-5-티오펜-2-일-4,5-디히드로피라졸-1-일]-에탄온(1-[3-(2-Hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-ethanone);
1-[3-(2-하이드록시페닐)-5-(4-메톡시페닐)-4,5-디히드로피라졸-1-일]-에탄온(1-[3-(2-Hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[3-(3-하이드록시페닐)-5-(4-메톡시페닐)-4,5-디히드로피라졸-1-일]-프로판-1-온(1-[3-(3-Hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one);
1-[3-(3-하이드록시페닐)-5-티오펜-2-일-4,5-디히드로피라졸-1-일]-프로판-1-온(1-[3-(3-Hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-propan-1-one);
1-[5-(4-클로로페닐)-3-(3-하이드록시페닐)-4,5-디히드로피라졸-1-일]-프로판-1-온(1-[5-(4-Chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one).
In claim 3,
The compound of Formula 2 is a compound, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof, characterized in that any one selected from the group consisting of the following compounds:
1-[5-furan-2-yl-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-Furan-2-yl-3 -(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[3-(3-hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[3-(3-Hydroxyphenyl) -5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[3-(3-hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[3-( 3-Hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[5-(4-Chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-(4-Chlorophenyl)- 3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[5-(4-hydroxyphenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-(4-Hydroxyphenyl) -3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[5-furan-2-yl-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-Furan-2-yl-3 -(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[3-(2-hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[3-( 2-Hydroxyphenyl)-5-(4-methoxynaphthalen-1-yl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[5-(4-hydroxyphenyl)-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-(4-Hydroxyphenyl) -3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[5-(4-Chlorophenyl)-3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[5-(4-Chlorophenyl)- 3-(2-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[3-(2-Hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-ethanone (1-[3-(2-Hydroxyphenyl)- 5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-ethanone);
1-[3-(2-hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone (1-[3-(2-Hydroxyphenyl) -5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-ethanone);
1-[3-(3-hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one (1-[3-(3 -Hydroxyphenyl)-5-(4-methoxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one);
1-[3-(3-hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-propan-1-one (1-[3-(3- Hydroxyphenyl)-5-thiophen-2-yl-4,5-dihydropyrazol-1-yl]-propan-1-one);
1-[5-(4-chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one (1-[5-(4- Chlorophenyl)-3-(3-hydroxyphenyl)-4,5-dihydropyrazol-1-yl]-propan-1-one).
하기 화학식 1로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 단백질-단백질 상호작용(protein-protein interaction) 억제용 조성물:
[화학식 1]

R1은 수소이고;
R2 및 R3는 독립적으로 수소 또는 하이드록시기 이고;
R4는 p-메톡시나프탈레닐(Methoxynaphthalenyl),, 또는이고;
여기서 A1은 질소, 산소 또는 황이고;
A2는 할로겐, 또는 C1-3 알콕시이다.
A composition for inhibiting protein-protein interaction, comprising a compound represented by the following formula (1), a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient:
[Formula 1]

R 1 is hydrogen;
R 2 and R 3 are independently hydrogen or a hydroxy group;
R 4 is p-methoxynaphthalenyl, , or ego;
where A 1 is nitrogen, oxygen or sulfur;
A 2 is halogen or C 1-3 alkoxy.
하기 화학식 2로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 단백질-단백질 상호작용(protein-protein interaction) 억제용 조성물:
[화학식 2]

R5 내지 R7은 독립적으로 수소 또는 하이드록시기 이고;
R8p-Methoxynaphthalenyl(p-메톡시나프탈레닐), 1-메톡시나프탈레닐(1-Methoxynaphthalenyl),, 또는이고;
R9는 C1-3 알킬이고;
여기서 A1은 질소, 산소 또는 황이고;
A2는 할로겐, 또는 C1-3 알콕시이다.
A composition for inhibiting protein-protein interaction, comprising a compound represented by the following formula (2), a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient:
[Formula 2]

R 5 to R 7 are independently hydrogen or a hydroxy group;
R 8 is p -Methoxynaphthalenyl ( p -methoxynaphthalenyl), 1-Methoxynaphthalenyl (1-Methoxynaphthalenyl), , or ego;
R 9 is C 1-3 alkyl;
where A 1 is nitrogen, oxygen or sulfur;
A 2 is halogen or C 1-3 alkoxy.
청구항 5항 또는 청구항 6항에 있어서,
상기 단백질-단백질 상호작용은 ELF3 및 MED23의 상호작용인 것인, 단백질-단백질 상호작용(protein-protein interaction) 억제용 조성물.
According to claim 5 or claim 6,
A composition for inhibiting protein-protein interaction, wherein the protein-protein interaction is the interaction of ELF3 and MED23.
상기 청구항 1항 내지 청구항 4항 중, 어느 한 항의 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 암의 예방 또는 치료용 약학적 조성물.
A pharmaceutical composition for preventing or treating cancer, comprising the compound of any one of claims 1 to 4, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient.
청구항 8항에 있어서,
상기 암은 자궁경부암, 폐암, 췌장암, 비소세포성폐암, 간암, 결장암, 골암, 피부암, 두부암, 경부암, 피부 흑색종, 안구내 흑색종, 자궁암, 난소암, 직장암, 뇌종양, 방광암, 혈액암, 위암, 항문부근암, 유방암, 나팔관암종, 자궁내막암종, 질암, 음문암종, 호지킨병(Hodgkin's disease), 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 신장암, 수뇨관암, 신장세포 암종, 신장골반 암종, 중추신경계(central nervous system; CNS) 종양, 1차 CNS 림프종, 척수 종양, 뇌간 신경교종 및 뇌하수체 선종으로 구성된 군으로부터 선택되는 어느 하나인 것인 약학적 조성물.
In claim 8,
The above cancers include cervical cancer, lung cancer, pancreatic cancer, non-small cell lung cancer, liver cancer, colon cancer, bone cancer, skin cancer, head cancer, cervical cancer, skin melanoma, intraocular melanoma, uterine cancer, ovarian cancer, rectal cancer, brain tumor, bladder cancer, and blood cancer. , stomach cancer, perianal cancer, breast cancer, fallopian tube carcinoma, endometrial carcinoma, vaginal cancer, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, endocrine cancer, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer. , from the group consisting of penile cancer, prostate cancer, kidney cancer, ureteral cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system (CNS) tumor, primary CNS lymphoma, spinal cord tumor, brainstem glioma, and pituitary adenoma. A pharmaceutical composition that is any one selected.
청구항 8항에 있어서,
상기 암은 HER2를 과발현 하는 것인, 약학적 조성물.
In claim 8,
A pharmaceutical composition wherein the cancer overexpresses HER2.
청구항 8항에 있어서,
상기 암은 트라스트주맙(trastuzumab)에 대한 내성을 갖는 것인, 약학적 조성물.
In claim 8,
A pharmaceutical composition, wherein the cancer has resistance to trastuzumab.
청구항 8항에 있어서,
상기 조성물은 HER2의 수준을 억제하는 것인, 약학적 조성물.
In claim 8,
A pharmaceutical composition, wherein the composition inhibits the level of HER2.
청구항 8항에 있어서,
상기 조성물은 암 세포의 세포 자멸사(apoptosis)를 유발하는 것인, 약학적 조성물.
In claim 8,
The composition is a pharmaceutical composition that induces apoptosis of cancer cells.
상기 청구항 1항 내지 청구항 4항 중, 어느 한 항의 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 암의 예방 또는 개선용 건강기능식품 조성물.A health functional food composition for preventing or improving cancer, comprising the compound of any one of claims 1 to 4, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient.
KR1020220135133A 2022-08-08 2022-10-19 Novel compound and composition for preventing or treating HER2 positive cancer comprising the same KR20240020636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2023/011697 WO2024035085A1 (en) 2022-08-08 2023-08-08 Novel compound, and composition for preventing or treating her2-positive cancer, comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220098780 2022-08-08
KR20220098780 2022-08-08

Publications (1)

Publication Number Publication Date
KR20240020636A true KR20240020636A (en) 2024-02-15

Family

ID=89899385

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220135133A KR20240020636A (en) 2022-08-08 2022-10-19 Novel compound and composition for preventing or treating HER2 positive cancer comprising the same

Country Status (1)

Country Link
KR (1) KR20240020636A (en)

Similar Documents

Publication Publication Date Title
Bale et al. Chalcones and bis-chalcones: As potential α-amylase inhibitors; synthesis, in vitro screening, and molecular modelling studies
US11091469B2 (en) Crystalline form of N-[5-(3,5-difluoro-benzyl)-1H-indazol-3-yl]-4-(4-methyl-piperazin-1-yl)-2-(tetrahydro-pyran-4-ylamino)-benzamide
KR20010042804A (en) Btk inhibitors and methods for their identification and use
EP2687216B1 (en) Pharmaceutical composition for treating aging-associated diseases, containing progerin expression inhibitor as active ingredient, and screening method of said progerin expression inhibitor
CN106831824A (en) Pyrrolopyridines and its application containing naphthyridones structure
Lu et al. A novel NAE/UAE dual inhibitor LP0040 blocks neddylation and ubiquitination leading to growth inhibition and apoptosis of cancer cells
Mohyeldin et al. Novel c-Met inhibitory olive secoiridoid semisynthetic analogs for the control of invasive breast cancer
Khadka et al. Substituted 2-arylquinazolinones: Design, synthesis, and evaluation of cytotoxicity and inhibition of topoisomerases
Xu et al. Design, synthesis, and biological evaluation of novel water-soluble triptolide derivatives: Antineoplastic activity against imatinib-resistant CML cells bearing T315I mutant Bcr-Abl
Song et al. Discovery of bazedoxifene analogues targeting glycoprotein 130
EP3497083B1 (en) Heterocyclic naphthoquinones derivatives for use in the treatment of cancers including cushing disease
Sun et al. Design, semi-synthesis and bioactivity evaluation of novel podophyllotoxin derivatives as potent anti-tumor agents
KR20240020636A (en) Novel compound and composition for preventing or treating HER2 positive cancer comprising the same
CN110467616B (en) Preparation and application of triazolopyrazine compound containing heteroaryl substituted pyridazinone structure
Li et al. Discovery of N-(1, 3, 4-thiadiazol-2-yl) benzamide derivatives containing a 6, 7-methoxyquinoline structure as novel EGFR/HER-2 dual-target inhibitors against cancer growth and angiogenesis
KR101655697B1 (en) Novel pyrazoline derivatives and the use thereof
Li et al. Synthesis and evaluation of novel HER-2 inhibitors to exert anti-breast cancer ability through epithelial-mesenchymal transition (EMT) pathway
US10765669B2 (en) Pharmaceutical composition for preventing or treating DYRK-related diseases, containing pyridine-based compound as active ingredient
EP1137415A1 (en) Myt1 kinase inhibitors
Isaacs et al. Third generation quinoline‐3‐carboxamide transcriptional disrupter of HDAC4, HIF‐1α, and MEF‐2 signaling for metastatic castration‐resistant prostate cancer
KR102576102B1 (en) Probe for detecting uch37 and uses thereof
CN114539129B (en) Allylamine bifunctional compound and application thereof
KR101615009B1 (en) Anti-cancer Composition
KR101713027B1 (en) Composition for preventing or treating cancer comprising phenyloxazol derivatives
Barone Design, synthesis and biological evaluation of new anticancer drugs: FGFR inhibitors