KR20240013989A - Organic compounds and organic electroluminescent device including the same - Google Patents

Organic compounds and organic electroluminescent device including the same Download PDF

Info

Publication number
KR20240013989A
KR20240013989A KR1020220091166A KR20220091166A KR20240013989A KR 20240013989 A KR20240013989 A KR 20240013989A KR 1020220091166 A KR1020220091166 A KR 1020220091166A KR 20220091166 A KR20220091166 A KR 20220091166A KR 20240013989 A KR20240013989 A KR 20240013989A
Authority
KR
South Korea
Prior art keywords
group
mmol
layer
compound
organic
Prior art date
Application number
KR1020220091166A
Other languages
Korean (ko)
Inventor
고병수
김문수
윤정훈
한갑종
오유진
Original Assignee
주식회사 랩토
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 랩토 filed Critical 주식회사 랩토
Priority to KR1020220091166A priority Critical patent/KR20240013989A/en
Priority to PCT/KR2023/010167 priority patent/WO2024019444A1/en
Publication of KR20240013989A publication Critical patent/KR20240013989A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/04Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/18Benzimidazoles; Hydrogenated benzimidazoles with aryl radicals directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D263/57Aryl or substituted aryl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • C07D277/66Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/52Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes
    • C07D333/54Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline

Abstract

유기 전계 발광 소자의 실질적인 광 효율과 시야각 향상에 기여하는 유기 화합물을 제공한다.
본 발명에 따른 유기 전계 발광 소자는, 제1 전극; 제2 전극; 상기 제1 전극과 제2 전극 사이에 배치된 1층 이상의 유기물층; 및 캡핑층을 포함하고, 상기 캡핑층은 하기 화학식 1로 표시되는 유기 화합물을 포함한다.
[화학식 1]

(상기 화학식 1에서 각 치환기들은 발명의 상세한 설명에서 정의한 바와 같다.)
Provides an organic compound that contributes to improving the practical light efficiency and viewing angle of organic electroluminescent devices.
The organic electroluminescent device according to the present invention includes a first electrode; second electrode; One or more organic layers disposed between the first electrode and the second electrode; and a capping layer, wherein the capping layer includes an organic compound represented by the following formula (1).
[Formula 1]

(In Formula 1, each substituent is as defined in the detailed description of the invention.)

Description

유기 화합물 및 이를 포함한 유기전계발광소자{Organic compounds and organic electroluminescent device including the same}Organic compounds and organic electroluminescent device including the same}

본 발명은 유기 화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것으로, 유기전계발광소자의 캡핑층이 상기 유기화합물을 포함하고, 고굴절률 층과 저굴절률 층의 상이한 층으로 구성되어, 유기전계발광소자의 효율이 향상되도록 한 것이다.The present invention relates to an organic compound and an organic electroluminescent device containing the same, wherein the capping layer of the organic electroluminescent device contains the organic compound and is composed of different layers of a high refractive index layer and a low refractive index layer. This is to improve efficiency.

디스플레이 산업에서 자기 발광 현상을 이용한 디스플레이로서 OLED(유기발광다이오드, Organic Light Emitting Diodes)가 주목받고 있다.In the display industry, OLED (Organic Light Emitting Diodes) is attracting attention as a display that uses the self-luminescence phenomenon.

OLED에 있어, 1963년 Pope 등에 의하여 안트라센(Anthracene) 방향족 탄화수소의 단결정을 이용한 캐리어 주입형 전계발광(Electroluminescence; EL)의 연구가 최초로 시도되었다. 이러한 연구로부터 유기물에서 전하주입, 재결합, 여기자 생성, 발광 등의 기초적 메커니즘과 전기발광 특성이 이해되고 연구되어 왔다.In OLED, research on carrier injection-type electroluminescence (EL) using a single crystal of anthracene aromatic hydrocarbon was first attempted by Pope et al. in 1963. From these studies, the basic mechanisms and electroluminescence properties of charge injection, recombination, exciton generation, and luminescence in organic materials have been understood and studied.

특히 발광 효율을 높이기 위해 소자의 구조 변화 및 물질 개발 등 다양한 접근이 이루어지고 있다[Sun, S., Forrest, S. R., Appl. Phys. Lett. 91, 263503 (2007)/Ken-Tsung Wong, Org. Lett., 7, 2005, 5361-5364]. In particular, various approaches, such as changing the structure of the device and developing materials, are being used to increase luminous efficiency [Sun, S., Forrest, S. R., Appl. Phys. Lett. 91, 263503 (2007)/Ken-Tsung Wong, Org. Lett., 7, 2005, 5361-5364].

OLED 디스플레이의 기본적 구조는, 일반적으로 양극(Anode), 정공주입층(Hole Injection Layer, HIL), 정공수송층(Hole Transporting Layer, HTL), 발광층(Emission Layer, EML), 전자수송층(Electron Transporting Layer, ETL), 그리고 음극(Cathode)의 다층 구조로 구성되며, 전자 유기 다층막이 두 전극 사이에 형성된 샌드위치 구조로 되어 있다. The basic structure of an OLED display is generally an anode, a hole injection layer (HIL), a hole transport layer (HTL), an emission layer (EML), and an electron transport layer. It consists of a multilayer structure of ETL) and a cathode, and has a sandwich structure in which an electro-organic multilayer film is formed between the two electrodes.

일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이들 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함할 수 있다. In general, organic luminescence refers to a phenomenon that converts electrical energy into light energy using organic materials. Organic light-emitting devices that utilize the organic light-emitting phenomenon usually have a structure including an anode, a cathode, and an organic material layer between them. Here, the organic material layer is often composed of a multi-layer structure made of different materials to increase the efficiency and stability of the organic light-emitting device, and may include, for example, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer.

이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면, 양극에서는 정공이, 음극에서는 전자가 유기물층으로 주입되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이러한 유기 발광 소자는 자발광, 고휘도, 고효율, 낮은 구동전압, 넓은 시야각, 높은 콘트라스트, 고속 응답성 등의 특성을 갖는 것으로 알려져 있다.In the structure of this organic light-emitting device, when a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode into the organic material layer, and when the injected holes and electrons meet, an exciton is formed, and this exciton When it falls to the ground state, it glows. These organic light-emitting devices are known to have characteristics such as self-luminescence, high brightness, high efficiency, low driving voltage, wide viewing angle, high contrast, and high-speed response.

유기 발광 소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공 주입 재료, 정공 수송 재료, 전자 수송 재료, 전자 주입 재료 등으로 분류될 수 있다. Materials used as organic layers in organic light-emitting devices can be classified into light-emitting materials and charge transport materials, such as hole injection materials, hole transport materials, electron transport materials, and electron injection materials, depending on their function.

발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료가 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도판트 계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트보다 에너지 대역 간극이 작고 발광 효율이 우수한 도판트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도판트로 수송되어 효율이 높게 빛을 내는 것이다. 이 때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.Depending on the color of the light, there are blue, green, and red light emitting materials, as well as yellow and orange light emitting materials needed to achieve better natural colors. Additionally, in order to increase color purity and increase luminous efficiency through energy transfer, a host/dopant system can be used as a luminescent material. The principle is that when a small amount of a dopant, which has a smaller energy band gap and higher luminous efficiency than the host that mainly constitutes the light-emitting layer, is mixed into the light-emitting layer, the exciton generated in the host is transported to the dopant and emits light with high efficiency. At this time, since the wavelength of the host moves to the wavelength of the dopant, light of the desired wavelength can be obtained depending on the type of dopant used.

전술한 유기 발광 소자가 갖는 우수한 특징들을 충분히 발현하기 위해, 소자 내 유기물층을 이루는 물질, 예컨대 정공 주입 물질, 정공 수송 물질, 발광 물질, 전자 수송 물질, 전자 주입 물질 등이 개발되었고, 이로 인해 상용화된 제품들에 의해 유기 발광 소자의 성능을 인정받고 있다. In order to fully express the excellent characteristics of the above-described organic light-emitting device, materials forming the organic material layer within the device, such as hole injection materials, hole transport materials, light-emitting materials, electron transport materials, and electron injection materials, have been developed and commercialized. The performance of organic light emitting devices is being recognized by products.

그러나 유기 발광 소자의 상용화가 이루어지고 시간이 지남에 따라 유기 발광 소자 자체의 발광 특성 이외에 다른 특성들의 필요성이 대두되고 있다. However, as organic light-emitting devices are commercialized and time passes, the need for other characteristics in addition to the light-emitting characteristics of the organic light-emitting devices themselves is emerging.

유기 발광 소자는 외부 광원에 노출되는 시간이 많은 경우가 대부분이므로 고에너지를 갖는 자외선에 노출되는 환경에 있게 된다. 이에 따라 유기 발광 소자를 구성하는 유기물이 지속적인 영향을 받게 되는 문제가 있다. 이러한 고에너지 광원에 노출을 막기 위해 자외선 흡수특성을 갖는 캡핑층을 유기 발광 소자에 적용함으로써 문제를 해결할 수 있다. Since organic light-emitting devices are often exposed to external light sources for a long time, they are in an environment where they are exposed to high-energy ultraviolet rays. Accordingly, there is a problem in that the organic materials that make up the organic light emitting device are continuously affected. To prevent exposure to such high-energy light sources, the problem can be solved by applying a capping layer with ultraviolet absorbing properties to the organic light-emitting device.

일반적으로 유기 발광 소자의 시야각 특성은 넓다고 알려져 있지만 광원 스펙트럼 관점에서는 시야각에 따라 상당한 편차가 발생하게 되며 이는 유기 발광 소자를 이루는 유리 기판, 유기물, 전극재료 등의 전체 굴절률과 유기 발광 소자의 발광파장에 따른 적절한 굴절률 사이에서 편차가 발생하는 것에 기인한다. It is generally known that the viewing angle characteristics of organic light-emitting devices are wide, but in terms of the light source spectrum, significant deviations occur depending on the viewing angle, which depends on the overall refractive index of the glass substrate, organic materials, and electrode materials that make up the organic light-emitting device and the emission wavelength of the organic light-emitting device. This is due to the deviation occurring between the appropriate refractive indices.

일반적으로 청색에 필요한 굴절률 값이 크고 파장이 길어질수록 필요 굴절률의 값은 작아진다. 이에 따라 상기 언급된 자외선 흡수특성과 적정 굴절률을 동시에 만족하는 캡핑층을 이루는 재료의 개발이 필요하다.In general, the refractive index value required for blue is large and the longer the wavelength, the smaller the required refractive index value becomes. Accordingly, it is necessary to develop a material forming a capping layer that simultaneously satisfies the above-mentioned ultraviolet absorption characteristics and an appropriate refractive index.

유기 발광 소자의 효율은 일반적으로 내부 발광 효율 (internal luminescent efficiency)과 외부 발광 효율로 나눌 수 있다. 내부 발광 효율은 광변환이 이루어지기 위해 유기층에서 엑시톤의 형성의 효율성에 관련된다. The efficiency of organic light emitting devices can generally be divided into internal luminescent efficiency and external luminescent efficiency. Internal luminescence efficiency is related to the efficiency of formation of excitons in the organic layer for photoconversion to occur.

외부 발광 효율은 유기층에서 생성된 광이 유기 발광 소자 외부로 방출되는 효율을 말한다.External light-emitting efficiency refers to the efficiency with which light generated in the organic layer is emitted outside the organic light-emitting device.

전체적으로 효율을 제고하기 위해서는 내부 발광 효율뿐만 아니라 외부 발광 효율을 높여야 하고, 따라서 외부 발광 효율을 높이는 능력이 우수한 캡핑층(CPL, 광효율 개선층) 물질 개발이 요구되고 있다.In order to improve overall efficiency, it is necessary to increase not only internal luminous efficiency but also external luminous efficiency, and therefore, the development of a capping layer (CPL, luminous efficiency improvement layer) material with excellent ability to increase external luminous efficiency is required.

한편, 공진 구조의 전면(Top) 소자 구조는 비공진 구조의 배면(Bottom) 소자 구조와 비교해보면 형성된 빛이 반사막인 애노드에 반사되어 캐소드쪽으로 나오므로 SPP(Surface Plasmon Polariton)에 의한 광학 에너지 손실이 크다. Meanwhile, compared to the top device structure of the resonance structure and the bottom device structure of the non-resonance structure, the formed light is reflected by the anode, which is a reflective film, and comes out toward the cathode, resulting in optical energy loss due to SPP (Surface Plasmon Polariton). big.

따라서, EL Spectrum의 모양과 효율향상을 위한 중요한 방법 중의 하나는 탑 캐소드(Top cathode)에 광효율 개선층(캡핑층)을 사용하는 방법이 있다. Therefore, one of the important methods to improve the shape and efficiency of the EL spectrum is to use a light efficiency improvement layer (capping layer) on the top cathode.

일반적으로 SPP는 전자방출은 Al, Pt, Ag, Au의 4종의 금속이 주로 사용되며 금속 전극 표면에서 표면 프라즈몬이 발생한다. 예를 들어 음극을 Ag로 사용할 경우 방출되는 빛이 SPP에 의해 Quenching(Ag로 인한 빛에너지 손실)되어 효율이 감소된다.In general, four types of metals, Al, Pt, Ag, and Au, are mainly used for electron emission in SPP, and surface plasmons are generated on the surface of the metal electrode. For example, when Ag is used as the cathode, the emitted light is quenched by SPP (light energy loss due to Ag), reducing efficiency.

반면, 캡핑층(광효율 개선층)을 사용할 경우에는 MgAg 전극과 유기재료 경계면에서 SPP가 발생하는데, 이때 상기 유기재료가 고굴절의 경우에(예를 들면 n>1.69 @620), 그 중 TE(Transverse electric) 편광된 빛은 소산파(evanescent wave)에 의해 수직 방향으로 캡핑층면(광효율 개선층면)에서 소멸되며, 음극과 캡핑층을 따라 이동하는 TM(Transverse magnetic) 편광된 빛은 표면 프라즈마 공진(Surface plasma resonance)에 의해 파장의 증폭현상이 일어나며, 이로 인해 피크(peak)의 세기(Intensity)가 증가하여 높은 효율과 효과적인 색순도 조절이 가능하게 된다. On the other hand, when a capping layer (light efficiency improvement layer) is used, SPP occurs at the interface between the MgAg electrode and the organic material. In this case, if the organic material has a high refractive index (for example, n>1.69 @620), TE (Transverse Electric) polarized light is extinguished in the vertical direction on the capping layer surface (luminous efficiency improvement layer surface) by an evanescent wave, and TM (transverse magnetic) polarized light moving along the cathode and capping layer causes surface plasma resonance. Amplification of the wavelength occurs due to plasma resonance, which increases the intensity of the peak, enabling high efficiency and effective color purity control.

그러나 여전히 유기 발광 소자에서 효율과 색순도의 향상과 더불어 균형이 있게 다양한 특성의 향상에 필요한 재료와 구조의 개발이 요구되고 있다.However, there is still a need to develop materials and structures necessary to improve various characteristics in a balanced manner along with improving efficiency and color purity in organic light-emitting devices.

대한민국 공개특허공보 제2016-0062307호(발명의 명칭: 고굴절률 캡핑층을 포함하는 유기발광 표시장치)Republic of Korea Patent Publication No. 2016-0062307 (Title of invention: Organic light emitting display device including high refractive index capping layer)

본 발명의 목적은, 발광 효율과 수명을 개선할 수 있고 동시에 시야각 특성을 개선할 수 있는, 유기 발광 소자용 캡핑층 재료를 제공하는 것이다.An object of the present invention is to provide a capping layer material for an organic light-emitting device, which can improve luminous efficiency and lifespan and at the same time improve viewing angle characteristics.

본 발명의 목적은 특히 유기 전계 발광 소자의 광 추출율을 개선하기 위하여 굴절률이 조절된 캡핑층을 포함하는 고효율 및 장수명의 유기 전계 발광 소자를 제공하는 것에 있다.The purpose of the present invention is to provide a high-efficiency and long-life organic electroluminescent device including a capping layer with an adjusted refractive index to improve the light extraction rate of the organic electroluminescent device.

본 발명은 제1 전극; 상기 제1 전극 상에 배치된 유기물층; 상기 유기물층 상에 배치된 제2전극; 및 상기 제2 전극 상에 배치된 캡핑층을 포함하며, 상기 캡핑층은 하기 화학식 1로 표시되는, 유기 화합물을 포함하는 유기전계발광 소자를 제공한다.The present invention relates to a first electrode; An organic material layer disposed on the first electrode; a second electrode disposed on the organic layer; and a capping layer disposed on the second electrode, wherein the capping layer includes an organic compound represented by the following formula (1).

[화학식 1][Formula 1]

상기 화학식 1에 있어서, In Formula 1,

A는 벤즈옥사졸, 벤즈티아졸, 벤조퓨란, 벤조싸이오펜, 벤조이미다졸, 카바졸, 다이벤조퓨란, 다이벤조싸이오펜, 페닐, 피리딘, 나프틸 및 퀴놀린 중에서 선택되는 어느 하나이며,A is any one selected from benzoxazole, benzthiazole, benzofuran, benzothiophene, benzoimidazole, carbazole, dibenzofuran, dibenzothiophene, phenyl, pyridine, naphthyl and quinoline,

L1 및 L2는 서로 독립적으로 페닐렌기, 피리딜렌기 및 나프틸렌기 중에서 선택되며, L 1 and L 2 are independently selected from phenylene group, pyridylene group and naphthylene group,

n 및 m은 각각 1 내지 5 인 정수이고, n and m are each integers from 1 to 5,

n 및 m이 각각 2 이상일 경우에 각각의 L1 또는 각각의 L2는 같거나 상이하다.When n and m are each 2 or more, each L 1 or each L 2 is the same or different.

본 명세서에 기재된 화합물을 저굴절 캡핑층(광효율 개선층)으로 이용한 유기 발광 소자에서 발광효율 향상, 발광 스펙트럼 반치폭 감소에 따른 색순도를 현저히 개선시킬 수 있다. In an organic light-emitting device using the compound described in this specification as a low-refractive capping layer (light efficiency improvement layer), color purity can be significantly improved by improving luminous efficiency and reducing the half width of the emission spectrum.

본 발명에 따른 유기 전계 발광 소자는 MgAg 전극 상에 고굴절의 유기재료 박막과 저굴절의 박막을 연속해서 도입함으로써 도파로 공진 현상으로 인해 공기 중으로 추출되는 빛의 시야각과 광효율 향상이 이루어질 수 있다.The organic electroluminescent device according to the present invention can improve the viewing angle and light efficiency of light extracted into the air due to the waveguide resonance phenomenon by continuously introducing a high-refractive organic material thin film and a low-refractive thin film on the MgAg electrode.

도 1은 본 발명의 일 실시예에 따른 기판(100) 위에 제1 전극(110), 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235), 제2 전극(120) 및 캡핑층(300)이 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 유기 화합물을 이용할 경우에 나타나는 빛의 굴절과 흡수 특성의 그래프이다.
1 shows a first electrode 110, a hole injection layer 210, a hole transport layer 215, a light emitting layer 220, an electron transport layer 230, and an electron injection layer on a substrate 100 according to an embodiment of the present invention. (235) shows an example of an organic light emitting device in which the second electrode 120 and the capping layer 300 are sequentially stacked.
Figure 2 is a graph of light refraction and absorption characteristics when using an organic compound according to an embodiment of the present invention.

이하 본 발명에 대하여 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Since the present invention can be subject to various changes and have various forms, specific embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention.

각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.While describing each drawing, similar reference numerals are used for similar components. In the attached drawings, the dimensions of the structures are enlarged from the actual size for clarity of the present invention. Terms such as first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.

본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. In this application, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the existence or possibility of addition of elements, numbers, steps, operations, components, parts, or combinations thereof. Additionally, when a part of a layer, membrane, region, plate, etc. is said to be “on” another part, this includes not only being “directly above” the other part, but also cases where there is another part in between.

본 명세서에서, “치환 또는 비치환”은 중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 히드록시기, 실릴기, 붕소기, 포스핀 옥사이드기, 포스핀 설파이드기, 알킬기, 알콕시기, 알케닐기, 아릴기, 헤테로 아릴기 및 헤테로 고리기로 이루어진 군에서 선택되는 1개 이상의 치환기로 치환 또는 비치환된 것을 의미할 수 있다. 또한, 상기 예시된 치환기 각각은 치환 또는 비치환된 것일 수 있다. 예를 들어, 바이페닐기는 아릴기로 해석될 수도 있고, 페닐기로 치환된 페닐기로 해석될 수도 있다.In this specification, “substituted or unsubstituted” refers to a deuterium atom, a halogen atom, a cyano group, a nitro group, an amino group, a hydroxy group, a silyl group, a boron group, a phosphine oxide group, a phosphine sulfide group, an alkyl group, an alkoxy group, and an alkenyl group. , may mean substituted or unsubstituted with one or more substituents selected from the group consisting of an aryl group, heteroaryl group, and heterocyclic group. Additionally, each of the above-exemplified substituents may be substituted or unsubstituted. For example, a biphenyl group may be interpreted as an aryl group, or as a phenyl group substituted with a phenyl group.

본 명세서에서, 할로겐 원자의 예로는 불소 원자, 염소 원자, 브롬 원자 또는 요오드 원자가 있다.In this specification, examples of halogen atoms include fluorine atom, chlorine atom, bromine atom, or iodine atom.

본 명세서에서, 알킬기는 직쇄, 분지쇄 또는 고리형일 수 있다. 알킬기의 탄소수는 1 이상 50 이하, 1 이상 30 이하, 1 이상 20 이하, 1 이상 10 이하 또는 1 이상 6 이하이다. 알킬기의 예로는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, s-부틸기, t-부틸기, i-부틸기, 2- 에틸부틸기, 3, 3-디메틸부틸기, n-펜틸기, i-펜틸기, 네오펜틸기, t-펜틸기, 시클로펜틸기, 1-메틸펜틸기, 3-메틸펜틸기, 2-에틸펜틸기, 4-메틸-2-펜틸기, n-헥실기, 1-메틸헥실기, 2-에틸헥실기, 2-부틸헥실기, 시클로헥실기, 4-메틸시클로헥실기, 4-t-부틸시클로헥실기, n-헵틸기, 1-메틸헵틸기, 2,2-디메틸헵틸기, 2-에틸헵틸기, 2-부틸헵틸기, n-옥틸기, t-옥틸기, 2-에틸옥틸기, 2-부틸옥틸기, 2-헥실옥틸기, 3,7-디메틸옥틸기, 시클로옥틸기, n-노닐기, n-데실기, 아다만틸기, 2-에틸데실기, 2-부틸데실기, 2-헥실데실기, 2-옥틸데실기, n-운데실기, n-도데실기, 2-에틸도데실기, 2-부틸도데실기, 2-헥실도데실기, 2-옥틸도데실기, n-트리데실기, n-테트라데실기, n-펜타데실기, n-헥사데실기, 2-에틸헥사데실기, 2-부틸헥사데실기, 2-헥실헥사데실기, 2-옥틸헥사데실기, n-헵타데실기, n-옥타데실기, n-노나데실기, n-이코실기, 2-에틸이코실기, 2-부틸이코실기, 2-헥실이코실기, 2-옥틸이코실기, n-헨이코실기, n-도코실기, n-트리코실기, n-테트라코실기, n-펜타코실기, n-헥사코실기, n-헵타코실기, n-옥타코실기, n-노나코실기, 및 n-트리아콘틸기 등을 들 수 있지만, 이들에 한정되지 않는다.As used herein, alkyl groups may be straight chain, branched chain, or cyclic. The carbon number of the alkyl group is 1 to 50, 1 to 30, 1 to 20, 1 to 10, or 1 to 6. Examples of alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, i-butyl group, 2-ethylbutyl group, and 3, 3-dimethylbutyl group. , n-pentyl group, i-pentyl group, neopentyl group, t-pentyl group, cyclopentyl group, 1-methylpentyl group, 3-methylpentyl group, 2-ethylpentyl group, 4-methyl-2-pentyl group. , n-hexyl group, 1-methylhexyl group, 2-ethylhexyl group, 2-butylhexyl group, cyclohexyl group, 4-methylcyclohexyl group, 4-t-butylcyclohexyl group, n-heptyl group, 1 -Methylheptyl group, 2,2-dimethylheptyl group, 2-ethylheptyl group, 2-butylheptyl group, n-octyl group, t-octyl group, 2-ethyloctyl group, 2-butyloctyl group, 2-hexyl group Siloctyl group, 3,7-dimethyloctyl group, cyclooctyl group, n-nonyl group, n-decyl group, adamantyl group, 2-ethyldecyl group, 2-butyldecyl group, 2-hexyldecyl group, 2-octyl group Tyldecyl group, n-undecyl group, n-dodecyl group, 2-ethyldodecyl group, 2-butyldodecyl group, 2-hexyldodecyl group, 2-octyldodecyl group, n-tridecyl group, n-tetradecyl group, n -Pentadecyl group, n-hexadecyl group, 2-ethylhexadecyl group, 2-butylhexadecyl group, 2-hexylhexadecyl group, 2-octylhexadecyl group, n-heptadecyl group, n-octadecyl group , n-nonadecyl group, n-icosyl group, 2-ethyl icosyl group, 2-butyl icosyl group, 2-hexyl icosyl group, 2-octyl icosyl group, n-henicosyl group, n-docosyl group, n-tricosyl group Examples include syl group, n-tetracosyl group, n-pentacosyl group, n-hexacosyl group, n-heptacosyl group, n-octacosyl group, n-nonacosyl group, and n-triacontyl group, It is not limited to these.

본 명세서에서, 탄화수소 고리기는 지방족 탄화수소 고리로부터 유도된 임의의 작용기 또는 치환기를 의미한다. 탄화수소 고리기는 고리 형성 탄소수 5 이상 20 이하의 포화 탄화수소 고리기일 수 있다.As used herein, hydrocarbon ring group refers to any functional group or substituent derived from an aliphatic hydrocarbon ring. The hydrocarbon ring group may be a saturated hydrocarbon ring group having 5 to 20 ring carbon atoms.

본 명세서에서, 아릴기는 방향족 탄화수소 고리로부터 유도된 임의의 작용기 또는 치환기를 의미한다. 아릴기는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 아릴기의 고리 형성 탄소수는 6 이상 30 이하, 6 이상 20 이하, 또는 6 이상 15 이하일 수 있다. 아릴기의 예로는 페닐기, 나프틸기, 플루오레닐기, 안트라세닐기, 페난트릴기, 바이페닐기, 터페닐기, 쿼터페닐기, 퀸크페닐기, 섹시페닐기, 트리페닐에닐기, 피레닐기, 페릴렌일기, 나프타세닐기, 파이레닐기, 벤조 플루오란테닐기, 크리세닐기 등을 예시할 수 있지만, 이들에 한정되지 않는다.As used herein, an aryl group refers to any functional group or substituent derived from an aromatic hydrocarbon ring. The aryl group may be a monocyclic aryl group or a polycyclic aryl group. The ring-forming carbon number of the aryl group may be 6 to 30, 6 to 20, or 6 to 15. Examples of aryl groups include phenyl group, naphthyl group, fluorenyl group, anthracenyl group, phenanthryl group, biphenyl group, terphenyl group, quarterphenyl group, quincphenyl group, sexiphenyl group, triphenylenyl group, pyrenyl group, perylenyl group, naphtha. Examples include cenyl group, pyrenyl group, benzofluoranthenyl group, chrysenyl group, etc., but it is not limited to these.

본 명세서에서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수도 있다. In the present specification, the fluorenyl group may be substituted, and two substituents may be combined with each other to form a spiro structure.

본 명세서에서, 헤테로아릴기는 이종 원소로 O, N, P, Si 및 S 중 1개 이상을 포함하는 헤테로아릴기일 수 있다. N 및 S 원자는 경우에 따라 산화될 수 있고, N 원자(들)은 경우에 따라 4차화될 수 있다. 헤테로아릴기의 고리 형성 탄소수는 2 이상 30 이하 또는 2 이상 20 이하이다. 헤테로아릴기는 단환식 헤테로아릴기 또는 다환식 헤테로아릴기일 수 있다. 다환식 헤테로아릴기는 예를 들어, 2환 또는 3환 구조를 갖는 것일 수 있다. In the present specification, the heteroaryl group may be a heteroaryl group containing one or more of O, N, P, Si, and S as heterogeneous elements. The N and S atoms may optionally be oxidized, and the N atom(s) may optionally be quaternized. The number of ring carbon atoms in the heteroaryl group is 2 to 30 or 2 to 20. The heteroaryl group may be a monocyclic heteroaryl group or a polycyclic heteroaryl group. For example, the polycyclic heteroaryl group may have a 2- or 3-ring structure.

헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 피라졸릴기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딘기, 비피리딘기, 피리미딘기, 트리아진기, 테트라진기, 트리아졸기, 테트라졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀린기, 퀴나졸린기, 퀴녹살린기, 페녹사진기, 프탈라진기, 피리도 피리미딘기, 피리도 피라지노 피라진기, 이소퀴놀린기, 신놀리기, 인돌기, 이소인돌기, 인다졸기, 카바졸기, N-아릴카바졸기, N-헤테로아릴카바졸기, N-알킬카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 벤조티오펜기, 벤조이소티아졸릴, 벤조이속사졸릴, 디벤조티오펜기, 티에노티오펜기, 벤조퓨란기, 페난트롤린기, 페난트리딘기, 티아졸기, 이소옥사졸기, 옥사디아졸기, 티아디아졸기, 이소티아졸기, 이속사졸기, 페노티아진기, 벤조디옥솔기, 디벤조실롤기 및 디벤조퓨란기, 이소벤조퓨란기 등이 있으나, 이들에 한정되지 않는다. 또한, 상기 단환식 헤테로 아릴기 또는 다환식 헤테로 아릴기에 상응하는 N-옥사이드 아릴기, 예를 들어, 피리딜 N-옥사이드기, 퀴놀릴 N-옥사이드기 등의 4차 염 등이 있으나, 이들에 한정되지 않는다. Examples of heteroaryl groups include thiophene group, furan group, pyrrole group, imidazole group, pyrazolyl group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridine group, bipyridine group, pyrimidine group, and triazine group. , tetrazine group, triazole group, tetrazole group, acridyl group, pyridazine group, pyrazinyl group, quinoline group, quinazoline group, quinoxaline group, phenoxazine group, phthalazine group, pyrido pyrimidine group, pyrido pyrazino Pyrazine group, isoquinoline group, cinol group, indole group, isoindole group, indazole group, carbazole group, N-arylcarbazole group, N-heteroarylcarbazole group, N-alkylcarbazole group, benzoxazole group, benzimidazole group , benzothiazole group, benzocarbazole group, benzothiophene group, benzothiophene group, benzoisothiazolyl, benzoisoxazolyl, dibenzothiophene group, thienothiophene group, benzofuran group, phenanthroline group, phenanthridine group , thiazole group, isoxazole group, oxadiazole group, thiadiazole group, isothiazole group, isoxazole group, phenothiazine group, benzodioxole group, dibenzosilol group, dibenzofuran group, isobenzofuran group, etc. It is not limited to these. In addition, there are quaternary salts such as N-oxide aryl groups corresponding to the monocyclic heteroaryl group or polycyclic heteroaryl group, for example, pyridyl N-oxide group, quinolyl N-oxide group, etc. It is not limited.

본 명세서에서, 실릴기는 알킬 실릴기 및 아릴 실릴기를 포함한다. 실릴기의 예로는 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이들에 한정되지 않는다.In this specification, silyl groups include alkyl silyl groups and aryl silyl groups. Examples of silyl groups include trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, and phenylsilyl group. It is not limited.

본 명세서에서, 붕소기는 알킬 붕소기 및 아릴 붕소기를 포함한다. 붕소기의 예로는 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 디페닐붕소기, 페닐붕소기 등이 있으나, 이들에 한정되지 않는다.As used herein, boron groups include alkyl boron groups and aryl boron groups. Examples of boron groups include, but are not limited to, trimethyl boron group, triethyl boron group, t-butyldimethyl boron group, triphenyl boron group, diphenyl boron group, and phenyl boron group.

본 명세서에서, 알케닐기는 직쇄 또는 분지쇄일 수 있다. 탄소수는 특별히 한정되지 않으나, 2 이상 30 이하, 2 이상 20 이하 또는 2 이상 10 이하이다. 알케닐기의 예로는 비닐기, 1-부테닐기, 1-펜테닐기, 1,3-부타디에닐 아릴기, 스티레닐기, 스티릴비닐기 등이 있으나, 이들에 한정되지 않는다.In this specification, alkenyl groups may be straight chain or branched. The number of carbon atoms is not particularly limited, but is 2 to 30, 2 to 20, or 2 to 10. Examples of alkenyl groups include, but are not limited to, vinyl, 1-butenyl, 1-pentenyl, 1,3-butadienyl aryl, styrenyl, and styrylvinyl groups.

본 명세서에 있어서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기, 또는 단환식아릴기와 다환식 아릴기를 동시에 포함할 수 있다. In the present specification, examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group. The aryl group in the arylamine group may be a monocyclic aryl group, and may include a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group simultaneously.

아릴 아민기의 구체적인 예로는 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 3-메틸-페닐아민기, 4-메틸-나프틸아민기, 2-메틸-비페닐아민기, 9-메틸-안트라세닐아민기, 디페닐 아민기, 페닐 나프틸아민기, 디톨릴 아민기, 페닐 톨릴 아민기, 카바졸 및 트리페닐 아민기 등이 있으나, 이에 한정되는 것은 아니다.Specific examples of aryl amine groups include phenylamine group, naphthylamine group, biphenylamine group, anthracenylamine group, 3-methyl-phenylamine group, 4-methyl-naphthylamine group, and 2-methyl-biphenylamine. group, 9-methyl-anthracenylamine group, diphenyl amine group, phenyl naphthylamine group, ditolyl amine group, phenyl tolyl amine group, carbazole and triphenyl amine group, etc., but is not limited thereto.

본 명세서에 있어서, 헤테로알릴아민기의 예로는 치환 또는 비치환된 모노헤테로아릴아민기, 치환 또는 비치환된 디헤테로아릴아민기, 또는 치환 또는 비치환된 트리헤테로아릴아민기가 있다. 상기 헤테로아릴아민기 중의 헤테로아릴기는 단환식 헤테로 고리기일 수 있고, 다환식 헤테로 고리기일 수 있다. 상기 2이상의 헤테로 고리기를 포함하는 헤테로아릴아민기는 단환식 헤테로 고리기, 다환식 헤테로 고리기, 또는 단환식 헤테로 고리기와 다환식 헤테로 고리기를 동시에 포함할 수 있다. In the present specification, examples of heteroarylamine groups include a substituted or unsubstituted monoheteroarylamine group, a substituted or unsubstituted diheteroarylamine group, or a substituted or unsubstituted triheteroarylamine group. The heteroaryl group in the heteroarylamine group may be a monocyclic heterocyclic group or a polycyclic heterocyclic group. The heteroarylamine group containing two or more heterocyclic groups may include a monocyclic heterocyclic group, a polycyclic heterocyclic group, or a monocyclic heterocyclic group and a polycyclic heterocyclic group simultaneously.

본 명세서에 있어서, 아릴헤테로아릴아민기는 아릴기 및 헤테로 고리기로 치환된 아민기를 의미한다.In the present specification, an arylheteroarylamine group refers to an amine group substituted with an aryl group and a heterocyclic group.

본 명세서에서, “인접하는 기”는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기가 치환된 원자에 치환된 다른 치환기 또는 해당 치환기와 입체구조적으로 가장 인접한 치환기를 의미할 수 있다. 예컨대, 1,2-디메틸벤젠(1,2-dimethylbenzene)에서 2개의 메틸기는 서로 “인접하는 기”로 해석될 수 있고, 1,1-디에틸시클로펜테인(1,1-diethylcyclopentene)에서 2개의 에틸기는 서로 “인접하는 기”로 해석될 수 있다.As used herein, “adjacent group” may mean a substituent substituted on an atom directly connected to the atom on which the substituent is substituted, another substituent substituted on the atom on which the substituent is substituted, or a substituent that is sterically closest to the substituent. there is. For example, in 1,2-dimethylbenzene, the two methyl groups can be interpreted as “adjacent groups,” and in 1,1-diethylcyclopentene, the two methyl groups can be interpreted as “adjacent groups.” The ethyl groups can be interpreted as “adjacent groups”.

이하에서는 상기 유기물층 및/또는 캡핑층에 사용되는 유기 화합물에 대해 설명한다. Hereinafter, the organic compounds used in the organic layer and/or capping layer will be described.

본 발명의 일 실시예에 따른 유기 화합물은 하기 화학식 1로 표시된다.The organic compound according to an embodiment of the present invention is represented by the following formula (1).

[화학식 1][Formula 1]

상기 화학식 1에 있어서, In Formula 1,

A는 벤즈옥사졸, 벤즈티아졸, 벤조퓨란, 벤조싸이오펜, 벤조이미다졸, 카바졸, 다이벤조퓨란, 다이벤조싸이오펜, 페닐, 피리딘, 나프틸 및 퀴놀린 중에서 선택되는 어느 하나이며,A is any one selected from benzoxazole, benzthiazole, benzofuran, benzothiophene, benzoimidazole, carbazole, dibenzofuran, dibenzothiophene, phenyl, pyridine, naphthyl and quinoline,

L1 및 L2는 서로 독립적으로 페닐렌기, 피리딜렌기 및 나프틸렌기 중에서 선택되며, L 1 and L 2 are independently selected from phenylene group, pyridylene group and naphthylene group,

n 및 m은 각각 1 내지 5 인 정수이고, n and m are each integers from 1 to 5,

n 및 m이 각각 2 이상일 경우에 각각의 L1 또는 각각의 L2는 같거나 상이하다.When n and m are each 2 or more, each L 1 or each L 2 is the same or different.

본 발명의 일 실시예에 따르면, 상기 화학식 1은 하기 화학식 2 내지 화학식 6으로 표시되는 것을 특징으로 하는 유기화합물이다. According to one embodiment of the present invention, Chemical Formula 1 is an organic compound characterized by the following Chemical Formulas 2 to 6.

[화학식 2][Formula 2]

[화학식 3][Formula 3]

[화학식 4][Formula 4]

[화학식 5][Formula 5]

[화학식 6][Formula 6]

상기 화학식 2 내지 화학식 6에 있어서,In Formulas 2 to 6,

X1 내지 X3는 서로 독립적으로 C 및 N 중에서 선택되고,X 1 to X 3 are independently selected from C and N,

Z1 및 Z2은 서로 독립적으로 O, S 및 NR1 중에서 선택되며, R1 은 수소, 메틸, 에틸 및 페닐기 중에 선택되며,Z 1 and Z 2 are independently selected from O, S and NR 1 , R 1 is selected from hydrogen, methyl, ethyl and phenyl groups,

R2은 수소, 메틸, 에틸 및 페닐기 중에서 선택되고,R 2 is selected from hydrogen, methyl, ethyl and phenyl groups,

L1, L2, n 및 m은 상기 화학식 1에서 정의된 것과 같다. L 1 , L 2 , n and m are as defined in Formula 1 above.

본 발명의 일 실시예에 있어서, 상기 화학식 1로 표시되는 유기 화합물은 하기 화학식 7 내지 화학식 11로 표시된 화합물들 중에서 선택된 어느 하나일 수 있고, 하기 화합물들은 추가로 치환될 수 있다. In one embodiment of the present invention, the organic compound represented by Formula 1 may be any one selected from compounds represented by Formulas 7 to 11 below, and the following compounds may be further substituted.

[화학식 7][Formula 7]

[화학식 8][Formula 8]

[화학식 9][Formula 9]

[화학식 10][Formula 10]

[화학식 11][Formula 11]

이하 도 1 및 2를 참조하여 본 발명의 실시예를 설명한다.Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

도 1은 본 발명의 일 실시예에 따른 유기 발광 소자를 개략적으로 나타낸 단면도이다. 도 1을 참조하면, 일 실시예에 따른 유기 발광 소자는 기판(100)위에 순차적으로 적층된 제1 전극(110), 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235), 제2 전극(120), 캡핑층(300)을 포함할 수 있다.1 is a cross-sectional view schematically showing an organic light-emitting device according to an embodiment of the present invention. Referring to FIG. 1, the organic light emitting device according to one embodiment includes a first electrode 110, a hole injection layer 210, a hole transport layer 215, a light emitting layer 220, and an electron layer sequentially stacked on a substrate 100. It may include a transport layer 230, an electron injection layer 235, a second electrode 120, and a capping layer 300.

제1 전극(110)과 제2 전극(120)은 서로 마주하고 배치되며, 제1 전극(110)과 제2 전극(120) 사이에는 유기물층(200)이 배치될 수 있다. 유기물층 (200)은 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235)를 포함할 수 있다.The first electrode 110 and the second electrode 120 are disposed to face each other, and an organic material layer 200 may be disposed between the first electrode 110 and the second electrode 120. The organic material layer 200 may include a hole injection layer 210, a hole transport layer 215, a light emitting layer 220, an electron transport layer 230, and an electron injection layer 235.

한편, 본 발명에서 제시되는 캡핑층(300)은 제2 전극(120) 위에 증착되는 기능층으로서, 본 발명의 화학식 1에 따른 유기물을 포함한다.Meanwhile, the capping layer 300 presented in the present invention is a functional layer deposited on the second electrode 120 and includes an organic material according to Chemical Formula 1 of the present invention.

도 1에 도시된 일 실시예의 유기 발광 소자에서 제1 전극(110)은 도전성을 갖는다. 제1 전극(110)은 금속 합금 또는 도전성 화합물로 형성될 수 있다. 제1 전극(110)은 일반적으로 양극(anode)이지만 전극으로의 기능은 제한하지 않는다.In the organic light emitting device of one embodiment shown in FIG. 1, the first electrode 110 is conductive. The first electrode 110 may be formed of a metal alloy or a conductive compound. The first electrode 110 is generally an anode, but its function as an electrode is not limited.

제1 전극(110)은 기판(100) 상부에 전극 물질을 증착법, 전자빔 증발 또는 스퍼터링법 등을 이용하여 형성할 수 있다. 제1 전극(110)의 재료는 유기 발광 소자 내부로 정공의 주입이 용이하도록 높은 일함수를 갖는 물질 중에서 선택될 수 있다. The first electrode 110 may be formed on the substrate 100 using an electrode material deposition method, electron beam evaporation, or sputtering method. The material of the first electrode 110 may be selected from materials with a high work function to facilitate injection of holes into the organic light emitting device.

본 발명에서 제안되는 캡핑층(300)은 유기 발광 소자의 발광방향이 전면발광일 경우에 적용되며 따라서 제1 전극(110)은 반사형 전극을 사용한다. 이들의 재료로는 산화물이 아닌 Mg(마그네슘), Al(알루미늄), Al-Li(알루미늄-리튬), Ca(칼슘), Mg-In(마그네슘-인듐), Mg-Ag(마그네슘-은)과 같은 금속을 사용하여 제작할 수도 있다. 최근에 와서는 CNT(탄소나노튜브), Graphene(그래핀) 등 탄소기판 유연 전극 재료가 사용될 수도 있다. The capping layer 300 proposed in the present invention is applied when the light emission direction of the organic light emitting device is top emission, and therefore the first electrode 110 uses a reflective electrode. These materials include Mg (magnesium), Al (aluminum), Al-Li (aluminum-lithium), Ca (calcium), Mg-In (magnesium-indium), and Mg-Ag (magnesium-silver), which are not oxides. It can also be manufactured using the same metal. Recently, carbon substrate flexible electrode materials such as CNT (carbon nanotube) and graphene may be used.

상기 유기물층(200)은 복수의 층으로 형성될 수 있다. 상기 유기물층 (200)이 복수의 층인 경우, 유기물층(200)은 제1 전극(110) 상에 배치된 정공수송영역(210~215), 상기 정공 수송영역 상에 배치된 발광층(220), 상기 발광층(220) 상에 배치된 전자 수송 영역(230~235)를 포함할 수 있다.The organic material layer 200 may be formed of multiple layers. When the organic material layer 200 is a plurality of layers, the organic material layer 200 includes a hole transport region 210 to 215 disposed on the first electrode 110, a light-emitting layer 220 disposed on the hole transport region, and the light-emitting layer. It may include an electron transport region (230-235) disposed on (220).

일 실시예의 상기 캡핑층(300)은 후술하는 화학식 1로 표시되는 유기화합물을 포함한다. The capping layer 300 of one embodiment includes an organic compound represented by Chemical Formula 1, which will be described later.

정공 수송 영역(210~215)은 제1 전극(110) 상에 제공된다. 정공 수송 영역(210~215)은 정공 주입층(210), 정공 수송층(215), 정공 버퍼층 및 전자 저지층(EBL) 중 적어도 하나를 포함할 수 있고, 유기 발광 소자 내로 원활한 정공 주입과 수송의 역할을 맡고 있으며 일반적으로 정공이동도가 전자이동도 보다 빠르기 때문에 전자 수송영역보다 두꺼운 두께를 갖는다.Hole transport regions 210 to 215 are provided on the first electrode 110. The hole transport regions 210 to 215 may include at least one of a hole injection layer 210, a hole transport layer 215, a hole buffer layer, and an electron blocking layer (EBL), and may provide smooth hole injection and transport into the organic light emitting device. It has a thicker thickness than the electron transport area because hole mobility is generally faster than electron mobility.

정공 수송 영역(210~215)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다. The hole transport regions 210 to 215 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multi-layer structure having a plurality of layers made of a plurality of different materials.

예를 들어, 정공 수송 영역(210~215)은 정공 주입층(210) 또는 정공 수송층(215)의 단일층의 구조를 가질 수도 있고, 정공 주입 물질과 정공 수송 물질로 이루어진 단일층 구조를 가질 수도 있다. 또한, 정공 수송 영역(210~215)은, 복수의 서로 다른 물질로 이루어진 단일층의 구조를 갖거나, 제1 전극(110)으로부터 차례로 적층된 정공 주입층(210)/정공 수송층(215), 정공 주입층(210)/정공 수송층(215)/정공 버퍼층, 정공 주입층(210)/정공 버퍼층, 정공 수송층(215)/정공 버퍼층, 또는 정공 주입층(210)/정공 수송층(215)/전자 저지층(EBL)의 구조를 가질 수 있으나, 실시예가 이에 한정되는 것은 아니다. For example, the hole transport regions 210 to 215 may have a single-layer structure of the hole injection layer 210 or the hole transport layer 215, or may have a single-layer structure composed of a hole injection material and a hole transport material. there is. In addition, the hole transport regions 210 to 215 have a single layer structure made of a plurality of different materials, or a hole injection layer 210/hole transport layer 215 sequentially stacked from the first electrode 110, Hole injection layer 210/hole transport layer 215/hole buffer layer, hole injection layer 210/hole buffer layer, hole transport layer 215/hole buffer layer, or hole injection layer 210/hole transport layer 215/electron It may have an blocking layer (EBL) structure, but the embodiment is not limited thereto.

상기 정공 수송 영역(210~215) 중 정공 주입층(210)은 양극 위로 진공증착법, 스핀코팅법, 캐스트법, LB법 등 다양한 방법으로 형성될 수 있다. 진공 증착법에 의하여 정공 주입층(210)을 형성하는 경우, 그 증착 조건은 정공주입층(210) 재료로 사용하는 화합물, 목적으로 하는 정공주입층(210)의 구조 및 열적 특성 등에 따라 100 내지 500Å에서 증착 속도를 1Å/s 전 후로 하여 자유롭게 조절할 수 있으며, 특정한 조건에 한정되는 것은 아니다. 스핀 코팅법에 의하여 정공주입층(210)을 형성하는 경우 코팅 조건은 정공주입층(210) 재료로 사용하는 화합물과 계면으로 형성되는 층들 간의 특성에 따라 상이 하지만 고른 막형성을 위해 코팅속도, 코팅 후 용매 제거를 위한 열처리 등이 필요하다.The hole injection layer 210 of the hole transport regions 210 to 215 may be formed on the anode by various methods such as vacuum deposition, spin coating, casting, and LB method. When forming the hole injection layer 210 by vacuum deposition, the deposition conditions are 100 to 500 Å depending on the compound used as the hole injection layer 210 material, the structure and thermal characteristics of the target hole injection layer 210, etc. The deposition rate can be freely adjusted to around 1Å/s and is not limited to specific conditions. When forming the hole injection layer 210 by spin coating, the coating conditions vary depending on the properties between the compound used as the hole injection layer 210 material and the layers formed at the interface, but the coating speed and coating are adjusted for uniform film formation. Afterwards, heat treatment to remove the solvent is required.

상기 정공 수송 영역(210~215)은, 예를 들면, m-MTDATA, TDATA, 2-TNATA, NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated-NPB, TAPC, HMTPD, TCTA(4,4',4"-트리스(N-카바졸일)트리페닐아민(4,4',4"-tris(Ncarbazolyl) triphenylamine)), Pani/DBSA (Polyaniline/Dodecylbenzenesulfonic acid:폴리아닐린/도데실벤젠술폰산), PEDOT/PSS (Poly(3,4-ethylenedioxythiophene) /Poly(4-styrene sulfonate):폴리(3,4-에틸렌디옥시티오펜) /폴리(4-스티렌술포네이트)), Pani/CSA (Polyaniline/Camphor sulfonicacid : 폴리아닐린/캠퍼술폰산), PANI/PSS (Polyaniline)/Poly(4-styrenesulfonate):폴리아닐린)/폴리(4-스티렌술포네이트)) 등을 포함할 수 있다.The hole transport region (210-215) is, for example, m-MTDATA, TDATA, 2-TNATA, NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated-NPB, TAPC, HMTPD, TCTA (4,4',4"-tris(Ncarbazolyl) triphenylamine), Pani/DBSA (Polyaniline/Dodecylbenzenesulfonic acid: Polyaniline/Dodecylbenzene) sulfonic acid), PEDOT/PSS (Poly(3,4-ethylenedioxythiophene) /Poly(4-styrene sulfonate):Poly(3,4-ethylenedioxythiophene) /Poly(4-styrenesulfonate)), Pani/CSA ( Polyaniline/Camphor sulfonicacid: May include polyaniline/camphorsulfonic acid), PANI/PSS (Polyaniline)/Poly(4-styrenesulfonate):polyaniline)/poly(4-styrenesulfonate)), etc.

상기 정공 수송 영역(210~215)의 두께는 약 100 내지 약 10,000Å으로 형성될 수 있으며, 각 정공 수송영역(210~215)의 해당 유기물 층들은 같은 두께로 한정되는 것은 아니다. 예를 들면, 정공 주입층(210)의 두께가 50Å이면 정공 수송층(215)의 두께는 1000Å, 전자 저지층의 두께는 500Å을 형성할 수 있다. 정공 수송영역(210~215)의 두께 조건은 유기 발광 소자의 구동전압 상승이 커지지 않는 범위 내에서 효율과 수명을 만족하는 정도로 정할 수 있다. 상기 유기물층(200)은 정공주입층(210), 정공수송층(215), 정공주입 기능과 정공수송 기능을 동시에 갖는 기능층, 버퍼층, 전자저지층, 발광층(220), 정공저지층, 전자수송층(230), 전자주입층(235), 및 전자수송 기능과 전자주입 기능을 동시에 갖는 기능층으로 이루어진 군 중에서 선택되는 1층 이상을 포함할 수 있다.The hole transport regions 210 to 215 may have a thickness of about 100 to about 10,000 Å, and the corresponding organic material layers in each hole transport region 210 to 215 are not limited to the same thickness. For example, if the hole injection layer 210 has a thickness of 50 Å, the hole transport layer 215 can have a thickness of 1000 Å, and the electron blocking layer can have a thickness of 500 Å. The thickness conditions of the hole transport regions 210 to 215 can be set to satisfy efficiency and lifespan within a range that does not increase the driving voltage of the organic light-emitting device. The organic material layer 200 includes a hole injection layer 210, a hole transport layer 215, a functional layer having both a hole injection function and a hole transport function, a buffer layer, an electron blocking layer, a light emitting layer 220, a hole blocking layer, and an electron transport layer ( 230), an electron injection layer 235, and a functional layer having both an electron transport function and an electron injection function.

정공 수송 영역(210~215)은 발광층(220)과 마찬가지로 특성 향상을 위해 도핑을 사용할 수 있으며 이러한 정공 수송 영역(210~215) 내로 전하-생성 물질의 도핑은 유기 발광 소자의 전기적 특성을 향상시킬 수 있다.The hole transport regions 210 to 215, like the light emitting layer 220, can be doped to improve the properties, and doping of a charge-generating material into these hole transport regions 210 to 215 can improve the electrical characteristics of the organic light emitting device. You can.

전하-생성 물질은 일반적으로 HOMO와 LUMO가 굉장히 낮은 물질로 이루어지며 예를 들어, 전하-생성 물질의 LUMO는 정공수송층(215) 물질의 HOMO와 유사한 값을 갖는다. 이러한 낮은 LUMO로 인하여 LUMO의 전자가 비어 있는 특성을 이용하여 인접한 정공수송층(215)에 쉽게 정공을 전달하여 전기적 특성을 향상시킨다.The charge-generating material is generally made of a material with very low HOMO and LUMO. For example, the LUMO of the charge-generating material has a similar value to the HOMO of the hole transport layer 215 material. Due to this low LUMO, holes are easily transferred to the adjacent hole transport layer 215 using the electron-empty characteristic of LUMO, thereby improving electrical characteristics.

상기 전하-생성 물질은 예를 들면, p-도펀트일 수 있다. 상기 p-도펀트는 퀴논 유도체, 금속 산화물 및 시아노기-함유 화합물 중 하나일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 상기 p-도펀트의 비제한적인 예로는, 테트라사이아노퀴논다이메테인(TCNQ) 및 2,3,5,6-테트라플루오로-테트라사이아노-1,4-벤조퀴논다이메테인(F4-TCNQ) 등과 같은 퀴논 유도체; 텅스텐 산화물 및 몰리브덴 산화물 등과 같은 금속 산화물; 및 시아노기-함유 화합물 등을 들 수 있으나, 이에 한정되는 것은 아니다.The charge-generating material may be, for example, a p-dopant. The p-dopant may be one of a quinone derivative, a metal oxide, and a cyano group-containing compound, but is not limited thereto. For example, non-limiting examples of the p-dopant include tetracyanoquinonedimethane (TCNQ) and 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinonedimethane. quinone derivatives such as phosphorus (F4-TCNQ); metal oxides such as tungsten oxide and molybdenum oxide; and cyano group-containing compounds, but are not limited thereto.

정공 수송 영역(210~215)은 앞서 언급한 물질 외에, 도전성 향상을 위하여 전하 생성 물질을 더 포함할 수 있다. In addition to the previously mentioned materials, the hole transport regions 210 to 215 may further include a charge generating material to improve conductivity.

전하 생성 물질은 정공 수송 영역(210~215) 내에 균일하게 또는 불균일하게 분산되어 있을 수 있다. 전하 생성 물질은 예를 들어, p-도펀트(dopant)일 수 있다. p-도펀트는 퀴논(quinone) 유도체, 금속 산화물 및 시아노(cyano)기 함유 화합물 중 하나일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, p-도펀트의 비제한적인 예로는, TCNQ(Tetracyanoquinodimethane) 및 F4-TCNQ(2,3,5,6-tetrafluoro-tetracyanoquinodimethane) 등과 같은 퀴논 유도체, 텅스텐 산화물 및 몰리브덴 산화물 등과 같은 금속 산화물 등을 들 수 있으나, 이에 한정되는 것은 아니다.The charge generating material may be uniformly or non-uniformly dispersed within the hole transport regions 210 to 215. The charge generating material may be, for example, a p-dopant. The p-dopant may be one of a quinone derivative, a metal oxide, and a cyano group-containing compound, but is not limited thereto. For example, non-limiting examples of p-dopants include quinone derivatives such as TCNQ (Tetracyanoquinodimethane) and F4-TCNQ (2,3,5,6-tetrafluoro-tetracyanoquinodimethane), metal oxides such as tungsten oxide and molybdenum oxide, etc. Examples include, but are not limited to.

전술한 바와 같이, 정공 수송 영역(210~215)은 정공 주입층(210) 및 정공 수송층(215) 외에, 정공 버퍼층 및 전자 저지층 중 적어도 하나를 더 포함할 수 있다. 정공 버퍼층은 발광층(220)에서 방출되는 광의 파장에 따른 공진 거리를 보상하여 광 방출 효율을 증가시킬 수 있다. 정공 버퍼층에 포함되는 물질로는 정공 수송 영역(210~215)에 포함될 수 있는 물질을 사용할 수 있다. As described above, the hole transport regions 210 to 215 may further include at least one of a hole buffer layer and an electron blocking layer in addition to the hole injection layer 210 and the hole transport layer 215. The hole buffer layer can increase light emission efficiency by compensating for the resonance distance according to the wavelength of light emitted from the light emitting layer 220. Materials included in the hole buffer layer may be materials that can be included in the hole transport regions 210 to 215.

전자 저지층은 전자 수송 영역(230~235)으로부터 정공 수송 영역(210~215)으로의 전자 주입을 방지하는 역할을 하는 층이다. 전자 저지층은 정공 수송영역으로 이동하는 전자를 저지할 뿐 아니라 발광층(220)에서 형성된 엑시톤이 정공수송영역(210~215)으로 확산되지 않도록 높은 T1 값을 갖는 재료를 사용할 수 있다. 예를 들면 일반적으로 높은 T1값을 갖는 발광층(220)의 호스트 등을 전자저지층 재료로 사용할 수 있다.The electron blocking layer is a layer that serves to prevent electron injection from the electron transport regions 230 to 235 into the hole transport regions 210 to 215. The electron blocking layer not only blocks electrons moving to the hole transport region, but also can be made of a material with a high T1 value to prevent excitons formed in the light-emitting layer 220 from diffusing into the hole transport region 210 to 215. For example, the host of the light emitting layer 220, which generally has a high T 1 value, can be used as the electron blocking layer material.

발광층(220)은 정공 수송 영역(210~215) 상에 제공된다. 발광층(220)은 예를 들어 약 100Å 내지 약 1000Å 또는, 약 100Å 내지 약 300Å의 두께를 갖는 것일 수 있다. 발광층(220)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다. The light emitting layer 220 is provided on the hole transport regions 210 to 215. For example, the light emitting layer 220 may have a thickness of about 100 Å to about 1000 Å or about 100 Å to about 300 Å. The light emitting layer 220 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multi-layer structure having a plurality of layers made of a plurality of different materials.

발광층(220)은 정공과 전자가 만나 엑시톤을 형성하는 영역으로 발광층(220)을 이루는 재료는 높은 발광 특성 및 원하는 발광색을 나타내도록 적절한 에너지밴드갭을 가져야 하며 일반적으로 호스트와 도판트 두가지 역할을 가지는 두 재료로 이루어지나, 이에 한정된 것은 아니다.The light-emitting layer 220 is a region where holes and electrons meet to form excitons. The material forming the light-emitting layer 220 must have an appropriate energy band gap to exhibit high light-emitting characteristics and the desired light-emitting color, and generally plays two roles as a host and a dopant. It is made of two materials, but is not limited to these.

상기 호스트는 하기 TPBi, TBADN, ADN("DNA"라고도 함), CBP, CDBP, TCP, mCP, 중 적어도 하나를 포함할 수 있고, 특성이 적절하다면 재료는 이에 한정된 것은 아니다.The host may include at least one of the following TPBi, TBADN, ADN (also referred to as “DNA”), CBP, CDBP, TCP, and mCP, and the material is not limited thereto if the properties are appropriate.

일 실시예의 발광층(220)의 도판트는 유기 금속 착물일 수 있다. 일반적인 도판트의 함량은 0.01 내지 20%로 선택될 수 있으며, 경우에 따라 이에 한정되는 것은 아니다.The dopant of the light emitting layer 220 in one embodiment may be an organic metal complex. The general dopant content may be selected from 0.01 to 20%, but is not limited thereto in some cases.

전자 수송 영역(230~235)은 발광층(220) 상에 제공된다. 전자 수송 영역(230~235)은, 정공 저지층, 전자 수송층(230) 및 전자 주입층(235) 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.Electron transport regions 230 to 235 are provided on the light emitting layer 220. The electron transport regions 230 to 235 may include at least one of a hole blocking layer, an electron transport layer 230, and an electron injection layer 235, but are not limited thereto.

전자 수송 영역(230~235)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다. The electron transport regions 230 to 235 may have a single layer made of a single material, a single layer made of a plurality of different materials, or a multi-layer structure having a plurality of layers made of a plurality of different materials.

예를 들어, 전자 수송 영역(230~235)은 전자 주입층(235) 또는 전자 수송층(230)의 단일층의 구조를 가질 수도 있고, 전자 주입 물질과 전자 수송 물질로 이루어진 단일층 구조를 가질 수도 있다. 또한, 전자 수송 영역(230~235)은, 복수의 서로 다른 물질로 이루어진 단일층의 구조를 갖거나, 발광층(220)으로부터 차례로 적층된 전자 수송층(230)/전자 주입층(235), 정공 저지층/전자 수송층(230)/전자 주입층(235) 구조를 가질 수 있으나, 이에 한정되는 것은 아니다. 전자 수송 영역(230~235)의 두께는 예를 들어, 약 1000Å 내지 약 1500Å인 것일 수 있다.For example, the electron transport regions 230 to 235 may have a single-layer structure of the electron injection layer 235 or the electron transport layer 230, or may have a single-layer structure composed of an electron injection material and an electron transport material. there is. In addition, the electron transport regions 230 to 235 have a single-layer structure made of a plurality of different materials, or have an electron transport layer 230/electron injection layer 235 or a hole blocking layer sequentially stacked from the light emitting layer 220. It may have a structure of layer/electron transport layer 230/electron injection layer 235, but is not limited thereto. The thickness of the electron transport regions 230 to 235 may be, for example, about 1000 Å to about 1500 Å.

전자 수송 영역(230~235)은, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등과 같은 다양한 방법을 이용하여 형성될 수 있다.The electron transport regions 230 to 235 are formed using various methods such as vacuum deposition, spin coating, casting, LB (Langmuir-Blodgett), inkjet printing, laser printing, and laser induced thermal imaging (LITI) methods. It can be formed using a method.

전자 수송 영역(230~235)이 전자 수송층(230)을 포함할 경우, 전자 수송 영역(230)은 안트라센계 화합물을 포함하는 것일 수 있다. 다만, 이에 한정되는 것은 아니며, 전자 수송 영역은 예를 들어, Alq3(Tris(8-hydroxyquinolinato)aluminum),1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene,2,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine,2-(4-(N-phenylbenzoimidazolyl-1-ylphenyl)-9,10-dinaphthylanthracene,TPBi(1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl),BCP(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline),Bphen(4,7-Diphenyl-1,10-phenanthroline),TAZ(3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole),NTAZ(4-(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole),tBu-PBD(2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole),BAlq(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum),Bebq2(berylliumbis(benzoquinolin-10-olate),ADN(9,10-di(naphthalene-2-yl)anthracene)및 이들의 혼합물을 포함하는 것일 수 있다. When the electron transport regions 230 to 235 include the electron transport layer 230, the electron transport region 230 may include an anthracene-based compound. However, it is not limited to this, and the electron transport region is, for example, Alq3 (Tris(8-hydroxyquinolinato)aluminum), 1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene, 2 ,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine,2-(4-(N-phenylbenzoimidazolyl-1-ylphenyl)-9,10 -dinaphthylanthracene,TPBi(1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl),BCP(2,9-Dimethyl-4,7-diphenyl-1,10- phenanthroline),Bphen(4,7-Diphenyl-1,10-phenanthroline),TAZ(3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole),NTAZ(4 -(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole),tBu-PBD(2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1, 3,4-oxadiazole), BAlq(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum), Bebq2(berylliumbis(benzoquinolin-10-olate), It may include ADN (9,10-di(naphthalene-2-yl)anthracene) and mixtures thereof.

전자 수송층(230)은 유기 발광 소자 구조에 따라 빠른 전자이동도 혹은 느린 전자이동도의 재료로 선택되므로 다양한 재료의 선택이 필요하며, 경우에 따라서 하기 Liq나 Li이 도핑되기도 한다.The electron transport layer 230 is selected from a material with fast or slow electron mobility depending on the structure of the organic light emitting device, so it is necessary to select a variety of materials, and in some cases, it is doped with Liq or Li as shown below.

전자 수송층(230)들의 두께는 약 100Å 내지 약 1000Å, 예를 들어 약 150Å내지 약 500Å일 수 있다. 전자 수송층(230)들의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승없이 만족스러운 정도의 전자 수송 특성을 얻을 수 있다.The thickness of the electron transport layers 230 may be about 100Å to about 1000Å, for example, about 150Å to about 500Å. When the thickness of the electron transport layers 230 satisfies the range described above, satisfactory electron transport characteristics can be obtained without a substantial increase in driving voltage.

전자 수송 영역(230~235)이 전자 주입층(235)을 포함할 경우, 전자 수송 영역(230~235)은 전자의 주입을 용이하게 하는 금속재료를 선택하며, LiF, LiQ(Lithium quinolate), Li2O, BaO, NaCl, CsF, Yb와 같은 란타넘족 금속, 또는 RbCl, RbI와 같은 할로겐화 금속 등이 사용될 수 있으나 이에 한정되는 것은 아니다. When the electron transport region 230 to 235 includes the electron injection layer 235, the electron transport region 230 to 235 is selected from a metal material that facilitates injection of electrons, such as LiF, LiQ (Lithium quinolate), Lanthanide metals such as Li 2 O, BaO, NaCl, CsF, and Yb, or halogenated metals such as RbCl and RbI may be used, but are not limited thereto.

전자 주입층(235)은 또한 전자 수송 물질과 절연성의 유기 금속염(organo metal salt)이 혼합된 물질로 이루어질 수 있다. 유기 금속염은 에너지 밴드 갭(energy band gap)이 대략 4eV 이상의 물질이 될 수 있다. 구체적으로 예를 들어, 유기 금속염은 금속 아세테이트(metal acetate), 금속 벤조에이트(metal benzoate), 금속 아세토아세테이트(metal acetoacetate), 금속 아세틸아세토네이트(metal acetylacetonate) 또는 금속 스테아레이트(stearate)를 포함할 수 있다. 전자 주입층(235)들의 두께는 약 1Å내지 약 100Å, 약 3Å 내지 약 90Å일 수 있다. 전자 주입층(235)들의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승 없이 만족스러운 정도의 전자 주입 특성을 얻을 수 있다.The electron injection layer 235 may also be made of a material that is a mixture of an electron transport material and an insulating organo metal salt. Organic metal salts can be materials with an energy band gap of approximately 4 eV or more. Specifically, for example, the organometallic salt may include metal acetate, metal benzoate, metal acetoacetate, metal acetylacetonate, or metal stearate. You can. The thickness of the electron injection layers 235 may be about 1Å to about 100Å, or about 3Å to about 90Å. When the thickness of the electron injection layers 235 satisfies the range described above, satisfactory electron injection characteristics can be obtained without a substantial increase in driving voltage.

전자 수송 영역(230~235)은 앞서 언급한 바와 같이, 정공 저지층을 포함할 수 있다. 정공 저지층은 예를 들어, BCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen(4,7-diphenyl-1,10-phenanthroline) 및 Balq 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.As mentioned above, the electron transport regions 230 to 235 may include a hole blocking layer. The hole blocking layer includes, for example, at least one of BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen (4,7-diphenyl-1,10-phenanthroline), and Balq. It can be done, but it is not limited to this.

제2 전극(120)은 전자 수송 영역(230~235) 상에 제공된다. 제2 전극(120)은 공통 전극 또는 음극일 수 있다. 제2 전극(120)은 투과형 전극 또는 반투과형 전극 전극일 수 있다. 제2 전극(120)은 제1 전극(110)과 다르게 상대적으로 낮은 일함수를 갖는 금속, 전기전도성 화합물, 합금 등을 조합하여 사용할 수 있다.The second electrode 120 is provided on the electron transport regions 230 to 235. The second electrode 120 may be a common electrode or a cathode. The second electrode 120 may be a transmissive electrode or a semi-transmissive electrode. Unlike the first electrode 110, the second electrode 120 may be used in combination with metals, electrically conductive compounds, alloys, etc. having a relatively low work function.

제2 전극(120)은 반투과형 전극 또는 반사형 전극이다. 제2 전극(120)은 Li(리튬), Mg(마그네슘), Al(알루미늄), Al-Li(알루미늄-리튬), Ca(칼슘), Mg-In(마그네슘-인듐), Mg-Ag(마그네슘-은) 또는 이들을 포함하는 화합물이나 혼합물(예를 들어, Ag와 Mg의 혼합물)을 포함할 수 있다. 또는 상기 물질로 형성된 반사막이나 반투과막 및 ITO(indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), ITZO(indium tin zinc oxide) 등으로 형성된 투명 도전막을 포함하는 복수의 층 구조일 수 있다.The second electrode 120 is a transflective electrode or a reflective electrode. The second electrode 120 includes Li (lithium), Mg (magnesium), Al (aluminum), Al-Li (aluminum-lithium), Ca (calcium), Mg-In (magnesium-indium), and Mg-Ag (magnesium). -silver) or a compound or mixture containing these (for example, a mixture of Ag and Mg). Or a plurality of layer structure including a reflective film or semi-transmissive film formed of the above materials and a transparent conductive film formed of ITO (indium tin oxide), IZO (indium zinc oxide), ZnO (zinc oxide), ITZO (indium tin zinc oxide), etc. It can be.

도시하지는 않았으나, 제2 전극(120)은 보조 전극과 연결될 수 있다. 제2 전극(120)가 보조 전극과 연결되면, 제2 전극(120)의 저항을 감소시킬 수 있다.Although not shown, the second electrode 120 may be connected to an auxiliary electrode. When the second electrode 120 is connected to the auxiliary electrode, the resistance of the second electrode 120 can be reduced.

도시된 기판(100) 상에 전극 및 유기물층을 형성하며, 이 때 기판(100) 재료는 경성 또는 연성 재료를 사용할 수 있으며, 예를 들어 경성 재료로는 소다라임 글래스, 무알칼리 글래스, 알루미노 실리케이트 글래스 등을 사용할 수 있으며, 연성 재료로는 PC(폴리카보네이트), PES(폴리에테르술폰), COC(싸이클릭올리펜코폴리머), PET(폴리에틸렌테레프탈레이트), PEN(폴리에틸렌나프탈레이트) 등을 사용할 수 있다.An electrode and an organic material layer are formed on the illustrated substrate 100. At this time, the substrate 100 material may be a hard or soft material. For example, hard materials include soda lime glass, alkali-free glass, and alumino silicate. Glass, etc. can be used, and soft materials such as PC (polycarbonate), PES (polyether sulfone), COC (cyclic olipencopolymer), PET (polyethylene terephthalate), and PEN (polyethylene naphthalate) can be used. there is.

유기 발광 소자에서, 제1 전극(110)과 제2 전극(120)에 각각 전압이 인가됨에 따라 제1 전극(110)으로부터 주입된 정공(hole)은 정공 수송 영역(210~215)을 거쳐 발광층(220)으로 이동되고, 제2 전극(120)로부터 주입된 전자가 전자 수송 영역(230~235)을 거쳐 발광층(220)으로 이동된다. 전자와 정공은 발광층(220)에서 재결합하여 여기자(exciton)를 생성하며, 여기자가 여기 상태에서 바닥 상태로 떨어지면서 발광하게 된다.In an organic light emitting device, as voltage is applied to the first electrode 110 and the second electrode 120, holes injected from the first electrode 110 pass through the hole transport regions 210 to 215 and then pass through the light emitting layer. 220, and the electrons injected from the second electrode 120 move to the light emitting layer 220 through the electron transport regions 230 to 235. Electrons and holes recombine in the light emitting layer 220 to generate excitons, and the excitons emit light as they fall from the excited state to the ground state.

발광층(220)에서 발생된 광경로는 유기 발광 소자를 구성하는 유무기물들의 굴절률에 따라 매우 다른 경향을 나타낼 수 있다. 제2 전극(120)을 통과하는 빛은 제2 전극(120)의 임계각보다 작은 각도로 투과되는 빛들만 통과할 수 있다. 그 외 임계각보다 크게 제2 전극(120)에 접촉하는 빛들은 전반사 또는 반사되어 유기 발광 소자 외부로 방출되지 못한다.The light path generated in the light emitting layer 220 may exhibit very different trends depending on the refractive index of the organic and inorganic materials that make up the organic light emitting device. Light passing through the second electrode 120 can only pass through at an angle smaller than the critical angle of the second electrode 120. Other lights that contact the second electrode 120 at a angle greater than the critical angle are totally reflected or reflected and are not emitted outside the organic light emitting device.

캡핑층(300)의 굴절률이 높으면 이러한 전반사 또는 반사 현상을 줄여서 발광효율 향상에 기여하고 또한 적절한 두께를 갖게 되면 미소공동현상(Micro-cavity)현상의 극대화로 높은 효율 향상과 색순도 향상에도 기여하게 된다.If the capping layer 300 has a high refractive index, it contributes to improving luminous efficiency by reducing total reflection or reflection phenomenon, and if it has an appropriate thickness, it maximizes the micro-cavity phenomenon and contributes to high efficiency and color purity. .

캡핑층(300)은 유기 발광 소자의 가장 바깥에 위치하게 되며, 소자의 구동에 전혀 영향을 주지 않으면서 소자특성에는 지대한 영향을 미친다. 따라서 캡핑층(300)은 유기 발광 소자의 내부 보호역할과 동시에 유기 발광층(220)에서 발생된 빛이 효율적으로 외부를 향해 방출될 수 있도록 돕는 역할을 한다. 유기물질들은 특정 파장영역의 광에너지를 흡수하며 이는 에너지밴드갭에 의존한다. 이 에너지밴드갭을 유기 발광 소자내부의 유기물질들에 영향을 줄 수 있는 UV영역의 흡수를 목적으로 조정하면 캡핑층(300)이 광학특성 개선을 포함하여 유기 발광 소자 보호의 목적으로도 사용될 수 있다. The capping layer 300 is located on the outermost side of the organic light emitting device and has a significant influence on the device characteristics without affecting the operation of the device at all. Therefore, the capping layer 300 serves to protect the interior of the organic light-emitting device and at the same time helps the light generated in the organic light-emitting layer 220 to be efficiently emitted to the outside. Organic materials absorb light energy in a specific wavelength range and this depends on the energy band gap. By adjusting this energy band gap for the purpose of absorbing the UV region, which can affect the organic materials inside the organic light-emitting device, the capping layer 300 can be used for the purpose of protecting the organic light-emitting device, including improving optical properties. there is.

본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light emitting device according to the present specification may be a front emitting type, a back emitting type, or a double-sided emitting type depending on the material used.

이하 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 명세서에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당 업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present specification will be described in detail using examples. However, the embodiments according to the present specification may be modified into various other forms, and the scope of the present application is not to be construed as being limited to the embodiments described in detail below. The embodiments of this application are provided to more completely explain the present specification to those with average knowledge in the art.

[제조예][Manufacturing example]

중간체 intermediate 합성예Synthesis example 1: 중간체(3)의 합성 1: Synthesis of intermediate (3)

(중간체(1)의 합성)(Synthesis of intermediate (1))

6-브로모나프탈렌-2-올(6-Bromonaphthalen-2-ol) 15.0 g(67.2 mmol), 페닐 보론산(Phenyl boronic acid) 8.2 g(67.2 mmol), Pd(PPh3)4 2.3 g(2.0 mmol), 2M 탄산나트륨 67.2 mL(134.5 mmol), 톨루엔 700 mL 및 에탄올 350 mL의 혼합물을 12시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 용매를 제거하고 물을 첨가한 후 디클로로메탄을 넣어 유기층을 분리하여 무수 황산마그네슘으로 건조하고, 얻어진 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 흰색 고체의 화합물(중간체(1)) 12.1 g(수율: 81.7%)을 얻었다.6-Bromonaphthalen-2-ol (6-Bromonaphthalen-2-ol) 15.0 g (67.2 mmol), Phenyl boronic acid 8.2 g (67.2 mmol), Pd (PPh 3 ) 4 2.3 g (2.0 mmol), 67.2 mL (134.5 mmol) of 2M sodium carbonate, 700 mL of toluene, and 350 mL of ethanol were refluxed and stirred for 12 hours. After cooling the reaction mixture to room temperature, the solvent was removed, water was added, dichloromethane was added, the organic layer was separated, dried over anhydrous magnesium sulfate, and the obtained compound was purified by silica gel column chromatography to produce a white solid compound (intermediate (1) )) 12.1 g (yield: 81.7%) was obtained.

(중간체(2)의 합성)(Synthesis of intermediate (2))

중간체(1) 12.1 g(42.0 mmol) 및 디클로로메탄 400 mL를 혼합하고 교반한 후, 피리딘(pyridine) 5.0 g(63.0 mmol)을 첨가하고 0℃에서 무수 트리플루오로메탄 설폰산(Trifluoromethanesulfonic anhydride) 17.8 g(63.0 mmol)을 천천히 첨가하고 상온으로 승온한 후, 하루 동안 교반하였다. 반응 종결 후, 물과 디클로로메탄을 첨가한 후 유기층을 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 갈색 고체의 화합물(중간체(2)) 12.3 g(수율: 83.1%)을 얻었다.After mixing and stirring 12.1 g (42.0 mmol) of intermediate (1) and 400 mL of dichloromethane, 5.0 g (63.0 mmol) of pyridine was added, and trifluoromethanesulfonic anhydride 17.8 was added at 0°C. g (63.0 mmol) was slowly added, the temperature was raised to room temperature, and the mixture was stirred for one day. After completion of the reaction, water and dichloromethane were added, the organic layer was separated, dried over anhydrous magnesium sulfate, and the obtained compound was purified by silica gel column chromatography to obtain a brown solid compound (Intermediate (2)), 12.3 g (yield: 83.1%). got it

(중간체(3)의 합성)(Synthesis of intermediate (3))

중간체(2) 10.0 g(28.4 mmol), PIN2B2 7.9 g(31.2 mmol), Pd(dppf)Cl2 -DCM 1.4 g(1.4 mmol), KOAc 8.4 g(85.2 mmol) 및 1,4-디옥산 300 mL를 혼합하고 하루 동안 환류 및 교반하였다. 상온에서 냉각한 후, 셀라이트 여과를 통해 불순물을 제거하였다. 용매를 제거한 후 실리카겔 컬럼크로마토그래피(DCM:HEX)로 정제하였다. 얻어진 고체를 헥산으로 여과하여 흰색 고체의 화합물(중간체(3)) 7.2 g(수율: 76.8%)을 얻었다.Intermediate (2) 10.0 g (28.4 mmol), PIN 2 B 2 7.9 g (31.2 mmol), Pd(dppf)Cl 2 - DCM 1.4 g (1.4 mmol), KOAc 8.4 g (85.2 mmol) and 1,4-di 300 mL of oxane was mixed and refluxed and stirred for one day. After cooling to room temperature, impurities were removed through Celite filtration. After removing the solvent, it was purified by silica gel column chromatography (DCM:HEX). The obtained solid was filtered with hexane to obtain 7.2 g (yield: 76.8%) of a white solid compound (Intermediate (3)).

중간체 intermediate 합성예Synthesis example 2: 중간체(6)의 합성 2: Synthesis of intermediate (6)

(중간체(4)의 합성)(Synthesis of intermediate (4))

7-브로모나프탈렌-2-올(7-bromonaphthalen-2-ol) 50.0 g(224.2 mmol), 페닐보론산(phenylboronic acid) 27.3 g(224.2 mmol), Pd(PPh3)4 7.8 g(6.7 mmol), K3PO4 142.7 g(672.5 mmol), 톨루엔 500 mL, 에탄올 150 mL 및 물 150 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 첨가하여 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하여, 노란색 고체의 화합물(중간체(4)) 43.2 g(수율: 87.5%)을 얻었다.7-bromonaphthalen-2-ol (7-bromonaphthalen-2-ol) 50.0 g (224.2 mmol), phenylboronic acid 27.3 g (224.2 mmol), Pd (PPh 3 ) 4 7.8 g (6.7 mmol) ), 142.7 g (672.5 mmol) of K 3 PO 4 , 500 mL of toluene, 150 mL of ethanol, and 150 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, water was added, extraction was performed with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA) to obtain 43.2 g (yield: 87.5%) of a yellow solid compound (Intermediate (4)).

(중간체(5)의 합성)(Synthesis of intermediate (5))

중간체(4) 43.2 g(196.1 mmol)을 다이클로로메탄(DCM) 800 mL에 녹이고 피리딘(Pyridine) 47.4 mL(588.4 mmol)을 적가한 후 0℃로 온도를 낮췄다. Tf2O 39.6 mL(235.4 mmol)를 천천히 적가 한 후 상온으로 온도를 올린 후 12시간 동안 반응시켰다. 반응물을 물에 세척한 후, 분리한 유기층을 무수 황산나트륨으로 건조, 여과하고 농축한 후 컬럼크로마토그래피로(CHCl3) 정제하여 노란색 고체의 화합물(중간체(5)) 53.5 g(수율: 77.4%)을 얻었다.43.2 g (196.1 mmol) of intermediate (4) was dissolved in 800 mL of dichloromethane (DCM), 47.4 mL (588.4 mmol) of pyridine was added dropwise, and the temperature was lowered to 0°C. 39.6 mL (235.4 mmol) of Tf 2 O was slowly added dropwise, the temperature was raised to room temperature, and reaction was performed for 12 hours. After washing the reaction product with water, the separated organic layer was dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column chromatography (CHCl 3 ) to obtain 53.5 g of the compound (Intermediate (5)) as a yellow solid (yield: 77.4%). got it

(중간체(6)의 합성)(Synthesis of intermediate (6))

중간체(5) 53.5 g(151.9 mmol), 피나콜디보론(Bis(pinacolato)diboron) 57.8 g(227.8 mmol), Pd(dppf)Cl2 -CH2Cl2 3.7 g(4.6 mmol), KOAc 44.7 g(455.5 mmol) 및 1,4-디옥산 700 mL를 혼합한 후, 100℃에서 12시간 동안 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(Hex:CHCl3)로 정제하여 노란색 고체의 화합물(중간체(6)) 39.7 g(수율: 79.2%)을 얻었다.Intermediate (5) 53.5 g (151.9 mmol), Pinacoldiboron (Bis(pinacolato)diboron) 57.8 g (227.8 mmol), Pd(dppf)Cl 2 - CH 2 Cl 2 3.7 g (4.6 mmol), KOAc 44.7 g (455.5 mmol) and 700 mL of 1,4-dioxane were mixed and stirred at 100°C for 12 hours. After the reaction was completed, it was cooled to room temperature, the reactant was passed through a Celite pad, and then concentrated under reduced pressure. The reaction mixture was purified by silica gel column chromatography (Hex:CHCl 3 ) to obtain 39.7 g (yield: 79.2%) of a yellow solid compound (Intermediate (6)).

중간체 intermediate 합성예Synthesis example 3: 중간체(9)의 합성 3: Synthesis of intermediate (9)

(중간체(7)의 합성)(Synthesis of intermediate (7))

6-브로모나프탈렌-2-올(6-bromonaphthalen-2-ol) 50.0 g(224.2 mmol), [1,1'-바이페닐]-4-닐보론산([1,1'-biphenyl]-4-ylboronic acid) 44.4 g(224.2 mmol), Pd(PPh3)4 7.8 g(6.7 mmol), K3PO4 142.7 g(672.5 mmol), 톨루엔 500 mL, 에탄올 150 mL 및 물 150 mL을 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 첨가하여 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하여, 흰색 고체의 화합물(중간체(7)) 47.8 g(수율: 72.0%)을 얻었다.6-bromonaphthalen-2-ol (6-bromonaphthalen-2-ol) 50.0 g (224.2 mmol), [1,1'-biphenyl]-4-nylboronic acid ([1,1'-biphenyl]- 4-ylboronic acid) 44.4 g (224.2 mmol), Pd(PPh 3 ) 4 7.8 g (6.7 mmol), K 3 PO 4 142.7 g (672.5 mmol), toluene 500 mL, ethanol 150 mL, and water 150 mL were mixed. Afterwards, the mixture was refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, water was added, extraction was performed with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA) to obtain 47.8 g (yield: 72.0%) of a white solid compound (Intermediate (7)).

(중간체(8)의 합성)(Synthesis of intermediate (8))

중간체(7) 47.8 g(161.3 mmol)을 다이클로로메탄(DCM) 800 mL에 녹이고 피리딘(Pyridine) 39.0 mL(483.9 mmol)를 적가한 후 0℃로 온도를 낮췄다. Tf2O 32.6 mL(193.5 mmol)를 천천히 적가한 후 상온으로 온도를 올린 후 12시간 동안 반응시켰다. 반응물을 물에 세척한 후, 분리한 유기층을 무수 황산나트륨으로 건조, 여과하고 농축한 후 컬럼크로마토그래피로(CHCl3) 정제하여 흰색 고체의 화합물(중간체(8)) 52.3 g(수율: 75.7%)을 얻었다.47.8 g (161.3 mmol) of intermediate (7) was dissolved in 800 mL of dichloromethane (DCM), 39.0 mL (483.9 mmol) of pyridine was added dropwise, and the temperature was lowered to 0°C. 32.6 mL (193.5 mmol) of Tf 2 O was slowly added dropwise, the temperature was raised to room temperature, and reaction was performed for 12 hours. After washing the reaction product with water, the separated organic layer was dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column chromatography (CHCl 3 ) to obtain 52.3 g of the compound (Intermediate (8)) as a white solid (yield: 75.7%). got it

(중간체(9)의 합성)(Synthesis of intermediate (9))

중간체(8) 52.3 g(122.1 mmol), 피나콜디보론(Bis(pinacolato)diboron) 46.5 g(183.1 mmol), Pd(dppf)Cl2 -CH2Cl2 3.0 g(3.7 mmol), KOAc 35.9 g(366.2 mmol) 및 1,4-디옥산 700 mL를 혼합한 후, 100℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼크로마토그래피(Hex:CHCl3)로 정제하여 흰색 고체의 화합물(중간체(9)) 36.2 g(수율: 73.0%)을 얻었다.Intermediate (8) 52.3 g (122.1 mmol), Pinacoldiboron (Bis(pinacolato)diboron) 46.5 g (183.1 mmol), Pd(dppf)Cl 2 - CH 2 Cl 2 3.0 g (3.7 mmol), KOAc 35.9 g (366.2 mmol) and 700 mL of 1,4-dioxane were mixed and stirred at 100°C for 12 hours. After the reaction was completed, it was cooled to room temperature, the reactant was passed through a Celite pad, and then concentrated under reduced pressure. The reaction mixture was purified by silica gel column chromatography (Hex:CHCl 3 ) to obtain 36.2 g (yield: 73.0%) of the compound (Intermediate (9)) as a white solid.

중간체 intermediate 합성예Synthesis example 4: 중간체(11)의 합성 4: Synthesis of intermediate (11)

(중간체(10)의 합성)(Synthesis of intermediate (10))

6-브로모나프탈렌-2-올(6-bromonaphthalen-2-ol) 10.0 g(44.8 mmol), 피리딘-3-닐보론산(pyridin-3-ylboronic acid) 5.5 g(44.8 mmol), Pd(PPh3)4 1.6 g(1.3 mmol), K3PO4 28.6 g(134.5 mmol), 톨루엔 100 mL, 에탄올 20 mL 및 물 20 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 첨가하여 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하여, 흰색 고체의 화합물(중간체(10)) 7.8 g(수율: 78.6%)을 얻었다.6-bromonaphthalen-2-ol (6-bromonaphthalen-2-ol) 10.0 g (44.8 mmol), pyridin-3-ylboronic acid (pyridin-3-ylboronic acid) 5.5 g (44.8 mmol), Pd (PPh 3 ) 1.6 g (1.3 mmol) of 4 , 28.6 g (134.5 mmol) of K 3 PO 4 , 100 mL of toluene, 20 mL of ethanol, and 20 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, water was added, extraction was performed with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA) to obtain 7.8 g (yield: 78.6%) of the compound (Intermediate (10)) as a white solid.

(중간체(11)의 합성)(Synthesis of intermediate (11))

중간체(10) 7.8 g(35.2 mmol)을 다이클로로메탄(DCM) 150 mL에 녹이고 피리딘(Pyridine) 8.5 mL(105.8 mmol)를 적가한 후 0℃로 온도를 낮췄다. Tf2O 7.1 mL(42.3 mmol)를 천천히 적가 한 후 상온으로 온도를 올린 후 12시간 동안 반응시켰다. 반응물을 물에 세척한 후, 분리한 유기층을 무수 황산나트륨으로 건조, 여과하고 농축한 후 컬럼크로마토그래피로(CHCl3) 정제하여 흰색 고체의 화합물(중간체(11)) 8.6 g(수율: 69.1%)을 얻었다.7.8 g (35.2 mmol) of intermediate (10) was dissolved in 150 mL of dichloromethane (DCM), 8.5 mL (105.8 mmol) of pyridine was added dropwise, and the temperature was lowered to 0°C. 7.1 mL (42.3 mmol) of Tf 2 O was slowly added dropwise, the temperature was raised to room temperature, and reaction was performed for 12 hours. After washing the reaction product with water, the separated organic layer was dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column chromatography (CHCl 3 ) to obtain 8.6 g of the compound (Intermediate (11)) as a white solid (yield: 69.1%). got it

중간체 intermediate 합성예Synthesis example 5: 중간체(13)의 합성 5: Synthesis of intermediate (13)

(중간체(12)의 합성)(Synthesis of intermediate (12))

퀴놀린-3-닐보론산(quinolin-3-ylboronic acid) 10.0 g(57.8 mmol), 4-브로모페놀(4-bromophenol) 10.0 g(57.8 mmol), Pd(PPh3)4 2.0 g(1.7 mmol), K3PO4 36.8 g(173.4 mmol), 톨루엔 100 mL, 에탄올 20 mL 및 물 20 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 첨가하여 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하여, 흰색 고체의 화합물(중간체(12)) 9.1 g(수율: 71.1%)을 얻었다.Quinolin-3-ylboronic acid 10.0 g (57.8 mmol), 4-bromophenol 10.0 g (57.8 mmol), Pd(PPh 3 ) 4 2.0 g (1.7 mmol) ), 36.8 g (173.4 mmol) of K 3 PO 4 , 100 mL of toluene, 20 mL of ethanol, and 20 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, water was added, extraction was performed with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA) to obtain 9.1 g (yield: 71.1%) of the compound (Intermediate (12)) as a white solid.

(중간체(13)의 합성)(Synthesis of intermediate (13))

중간체(12) 9.1 g(41.1 mmol)을 다이클로로메탄(DCM) 150 mL에 녹이고 피리딘(Pyridine) 9.9 mL(123.4 mmol)를 적가한 후 0℃로 온도를 낮췄다. Tf2O 8.3 mL(49.4 mmol)를 천천히 적가한 후 상온으로 온도를 올린 후 12시간 동안 반응시켰다. 반응물을 물에 세척한 후, 분리한 유기층을 무수 황산나트륨으로 건조, 여과하고 농축한 후 컬럼크로마토그래피로(CHCl3) 정제하여 흰색 고체의 화합물(중간체(13)) 10.7 g(수율: 73.6%)을 얻었다.9.1 g (41.1 mmol) of intermediate (12) was dissolved in 150 mL of dichloromethane (DCM), 9.9 mL (123.4 mmol) of pyridine was added dropwise, and the temperature was lowered to 0°C. 8.3 mL (49.4 mmol) of Tf 2 O was slowly added dropwise, the temperature was raised to room temperature, and reaction was performed for 12 hours. After washing the reaction product with water, the separated organic layer was dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column chromatography (CHCl 3 ) to obtain 10.7 g of the compound (Intermediate (13)) as a white solid (yield: 73.6%). got it

중간체 intermediate 합성예Synthesis example 6: 중간체(14)의 합성 6: Synthesis of intermediate (14)

(중간체(14)의 합성)(Synthesis of intermediate (14))

2-브로모나프탈렌(2-bromonaphthalene) 10.0 g(48.3 mmol), (6-브로모피리딘-3-닐)보론산((6-bromopyridin-3-yl)boronic acid) 9.8 g(48.3 mmol), Pd(PPh3)4 1.7 g(1.5 mmol), K3PO4 30.8 g(144.9 mmol), 톨루엔 100 mL, 에탄올 20 mL 및 물 20 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 첨가하여 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하여, 흰색 고체의 화합물(중간체(14)) 8.6 g(수율: 62.7%)을 얻었다.2-bromonaphthalene 10.0 g (48.3 mmol), (6-bromopyridin-3-yl)boronic acid 9.8 g (48.3 mmol), 1.7 g (1.5 mmol) of Pd(PPh 3 ) 4 , 30.8 g (144.9 mmol) of K 3 PO 4 , 100 mL of toluene, 20 mL of ethanol, and 20 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, water was added, extraction was performed with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA) to obtain 8.6 g (yield: 62.7%) of the compound (Intermediate (14)) as a white solid.

중간체 intermediate 합성예Synthesis example 7: 중간체(15)의 합성 7: Synthesis of intermediate (15)

(중간체(15)의 합성)(Synthesis of intermediate (15))

2-클로로벤조[d]티아졸(2-chlorobenzo[d]thiazole) 10.0 g(59.0 mmol), (6-브로모피리딘-3-닐)보론산((6-bromopyridin-3-yl)boronic acid) 11.9 g(59.0 mmol), Pd(PPh3)4 2.0 g(1.8 mmol), K3PO4 37.5 g(176.9 mmol), 톨루엔 100 mL, 에탄올 20 mL 및 물 20 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 첨가하여 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하여, 흰색 고체의 화합물(중간체(15)) 8.1 g(수율: 47.2%)을 얻었다.2-chlorobenzo[d]thiazole 10.0 g (59.0 mmol), (6-bromopyridin-3-yl)boronic acid ) 11.9 g (59.0 mmol), Pd(PPh 3 ) 4 2.0 g (1.8 mmol), K 3 PO 4 37.5 g (176.9 mmol), 100 mL of toluene, 20 mL of ethanol, and 20 mL of water were mixed, then left for 12 hours. The mixture was refluxed and stirred. After the reaction was completed, it was cooled to room temperature, water was added, extraction was performed with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA) to obtain 8.1 g (yield: 47.2%) of the compound (Intermediate (15)) as a white solid.

중간체 intermediate 합성예Synthesis example 8: 중간체(16)의 합성 8: Synthesis of intermediate (16)

(중간체(16)의 합성)(Synthesis of intermediate (16))

1-브로모-4-요오드벤젠(1-Bromo-4-iodobenzene) 50.0 g(176.7 mmol), 벤조싸이오펜-2-일보론산(benzo[b]thiophen-2-ylboronic acid) 31.5 g(176.7 mmol), Pd(PPh3)4 6.1 g(5.3 mmol), K3PO4 112.5 g(530.2 mmol), 톨루엔 500 mL, 에탄올 150 mL 및 물 150 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 첨가하여 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하여, 흰색 고체의 화합물(중간체(16)) 35.2 g(수율: 68.9%)을 얻었다.1-Bromo-4-iodobenzene 50.0 g (176.7 mmol), benzo[b]thiophen-2-ylboronic acid 31.5 g (176.7 mmol) ), 6.1 g (5.3 mmol) of Pd(PPh 3 ) 4 , 112.5 g (530.2 mmol) of K 3 PO 4 , 500 mL of toluene, 150 mL of ethanol, and 150 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, water was added, extraction was performed with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA) to obtain 35.2 g (yield: 68.9%) of the compound (Intermediate (16)) as a white solid.

중간체 intermediate 합성예Synthesis example 9: 중간체(19)의 합성 9: Synthesis of intermediate (19)

(중간체(17)의 합성)(Synthesis of intermediate (17))

4-브로모-2-요오드아닐린(4-Bromo-2-iodoaniline) 40.0 g(134.26 mmol), 벤조일 클로라이드(Benzoyl chloride) 18.9 g(134.26 mmol) 및 THF 360 mL를 혼합하여 상온에서 3시간 동안 교반하였다. 반응이 종결된 후 용매를 감압 증류하였다. 디아이소프로필에테르(IPE)로 고체화하여 흰색 고체의 화합물(중간체(17)) 52.3 g(수율: 96.8 %)을 얻었다.Mix 40.0 g (134.26 mmol) of 4-Bromo-2-iodoaniline, 18.9 g (134.26 mmol) of benzoyl chloride, and 360 mL of THF and stir at room temperature for 3 hours. did. After the reaction was completed, the solvent was distilled under reduced pressure. It was solidified with diisopropyl ether (IPE) to obtain 52.3 g (yield: 96.8%) of the compound (Intermediate (17)) as a white solid.

(중간체(18)의 합성)(Synthesis of intermediate (18))

중간체(17) 52.3 g(130.09 mmol), CuI 1.24 g(6.50 mmol), 1,10-Phenanthroline 2.34 g(13.01 mmol), Cs2CO3 84.7 g(260.18 mmol) 및 디메톡시에탄(DME) 180 mL를 혼합하고 하루 동안 환류 교반하였다. 반응이 종결된 후 DCM으로 셀라이트 패드에 통과시켰다. 용매 제거 후 얻어진 고체를 클로로포름에 녹인 후 컬럼크로마토그래피(CHCl3)를 이용하여 정제하였다. 메탄올로 고체화하여 흰색 고체의 화합물(중간체(18)) 23.6 g(수율: 71.1 %)을 얻었다.Intermediate (17) 52.3 g (130.09 mmol), CuI 1.24 g (6.50 mmol), 1,10-Phenanthroline 2.34 g (13.01 mmol), Cs 2 CO 3 84.7 g (260.18 mmol) and dimethoxyethane (DME) 180 mL were mixed and stirred under reflux for one day. After the reaction was completed, DCM was passed through a Celite pad. After removing the solvent, the obtained solid was dissolved in chloroform and purified using column chromatography (CHCl 3 ). It was solidified with methanol to obtain 23.6 g (yield: 71.1%) of a white solid compound (Intermediate (18)).

(중간체(19)의 합성)(Synthesis of intermediate (19))

중간체(18) 23.6 g(86.1 mmol), (4-브로모페닐)보론산((4-bromophenyl)boronic acid) 17.3 g(86.1 mmol), Pd(PPh3)4 3.0 g(2.6 mmol), K3PO4 54.8 g(258.3 mmol), 톨루엔 120 mL, 에탄올 30 mL 및 물 30 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 첨가하여 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하여, 흰색 고체의 화합물(중간체(19)) 20.4 g(수율: 67.7%)을 얻었다.Intermediate (18) 23.6 g (86.1 mmol), (4-bromophenyl)boronic acid 17.3 g (86.1 mmol), Pd(PPh 3 ) 4 3.0 g (2.6 mmol), K 3 54.8 g (258.3 mmol) of PO 4 , 120 mL of toluene, 30 mL of ethanol, and 30 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, water was added, extraction was performed with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA) to obtain 20.4 g (yield: 67.7%) of the compound (Intermediate (19)) as a white solid.

중간체 intermediate 합성예Synthesis example 10: 중간체(20)의 합성 10: Synthesis of intermediate (20)

(중간체(20)의 합성)(Synthesis of intermediate (20))

5-브로모벤조퓨란(5-bromobenzofuran) 10.0 g(50.8 mmol), (4-브로모페닐)보론산((4-bromophenyl)boronic acid) 10.2 g(50.8 mmol), Pd(PPh3)4 1.8 g(1.5 mmol), K3PO4 32.3 g(152.3 mmol), 톨루엔 100 mL, 에탄올 20 mL 및 물 20 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 첨가하여 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하여, 흰색 고체의 화합물(중간체(20)) 9.3 (수율: 67.1%)을 얻었다.5-bromobenzofuran 10.0 g (50.8 mmol), (4-bromophenyl)boronic acid 10.2 g (50.8 mmol), Pd(PPh 3 ) 4 1.8 g (1.5 mmol), 32.3 g (152.3 mmol) of K 3 PO 4 , 100 mL of toluene, 20 mL of ethanol, and 20 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, water was added, extraction was performed with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA) to obtain compound 9.3 (Intermediate (20)) as a white solid (yield: 67.1%).

중간체 intermediate 합성예Synthesis example 11: 중간체(21)의 합성 11: Synthesis of intermediate (21)

(중간체(21)의 합성)(Synthesis of intermediate (21))

5-브로모벤조[b]싸이오펜(5-bromobenzo[b]thiophene) 10.0 g(46.9 mmol), (4-브로모페닐)보론산((4-bromophenyl)boronic acid) 9.4 g(46.9 mmol), Pd(PPh3)4 1.6 g(1.4 mmol), K3PO4 30.0 g(140.8 mmol), 톨루엔 100 mL, 에탄올 20 mL 및 물 20 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 첨가하여 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하여, 흰색 고체의 화합물(중간체(21)) 8.7g(수율: 64.1%)을 얻었다.5-bromobenzo[b]thiophene 10.0 g (46.9 mmol), (4-bromophenyl)boronic acid 9.4 g (46.9 mmol) , 1.6 g (1.4 mmol) of Pd(PPh 3 ) 4 , 30.0 g (140.8 mmol) of K 3 PO 4 , 100 mL of toluene, 20 mL of ethanol, and 20 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, water was added, extraction was performed with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA) to obtain 8.7 g (yield: 64.1%) of the compound (Intermediate (21)) as a white solid.

중간체 intermediate 합성예Synthesis example 12: 중간체(22)의 합성 12: Synthesis of intermediate (22)

(중간체(22)의 합성)(Synthesis of intermediate (22))

다이벤조[b,d]퓨란-2-닐보론산(dibenzo[b,d]furan-2-ylboronic acid) 10.0 g(47.2 mmol), 1-브로모-4-아이오도벤젠(1-bromo-4-iodobenzene) 13.3 g(47.2 mmol), Pd(PPh3)4 1.6 g(1.4 mmol), K3PO4 30.0 g(141.5 mmol), 톨루엔 100 mL, 에탄올 20 mL 및 물 20 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 첨가하여 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하여, 흰색 고체의 화합물(중간체(22)) 9.4 g(수율: 61.7%)을 얻었다.Dibenzo[b,d]furan-2-ylboronic acid 10.0 g (47.2 mmol), 1-bromo-4-iodobenzene (1-bromo- After mixing 13.3 g (47.2 mmol) of 4-iodobenzene), 1.6 g (1.4 mmol) of Pd(PPh 3 ) 4 , 30.0 g (141.5 mmol) of K 3 PO 4 , 100 mL of toluene, 20 mL of ethanol, and 20 mL of water. , and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, water was added, extraction was performed with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA) to obtain 9.4 g (yield: 61.7%) of the compound (Intermediate (22)) as a white solid.

중간체 intermediate 합성예Synthesis example 13: 중간체(23)의 합성 13: Synthesis of intermediate (23)

(중간체(23)의 합성)(Synthesis of intermediate (23))

2-브로모다이벤조[b,d]싸이오펜(2-bromodibenzo[b,d]thiophene) 10.0 g(38.0 mmol), (4-브로모페닐)보론산((4-bromophenyl)boronic acid) 7.6 g(38.0 mmol), Pd(PPh3)4 1.3 g(1.1 mmol), K3PO4 24.2 g(114.0 mmol), 톨루엔 100 mL, 에탄올 20 mL 및 물 20 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 첨가하여 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하여, 흰색 고체의 화합물(중간체(23)) 8.2 (수율: 63.6%)을 얻었다.2-bromodibenzo[b,d]thiophene 10.0 g (38.0 mmol), (4-bromophenyl)boronic acid 7.6 g (38.0 mmol), 1.3 g (1.1 mmol) of Pd(PPh 3 ) 4 , 24.2 g (114.0 mmol) of K 3 PO 4 , 100 mL of toluene, 20 mL of ethanol, and 20 mL of water were mixed, then refluxed and stirred for 12 hours. did. After the reaction was completed, it was cooled to room temperature, water was added, extraction was performed with ethyl acetate, and the solvent was removed under reduced pressure. The obtained reaction mixture was purified by silica gel column chromatography (CHCl 3 :EA) to obtain compound 8.2 (Intermediate (23)) as a white solid (yield: 63.6%).

상기 합성된 중간체 화합물을 이용하여 이하와 같이 다양한 유기 화합물을 합성하였다. Using the synthesized intermediate compounds, various organic compounds were synthesized as follows.

합성예Synthesis example 1: 화합물 7-1(LT22-35-215)의 합성 1: Synthesis of compound 7-1 (LT22-35-215)

[1,1'-바이페닐]-4-닐보론산([1,1'-biphenyl]-4-ylboronic acid) 3.0 g(15.2 mmol), 중간체(2) 5.3 g(15.2 mmol), 톨루엔 60 mL 및 에탄올 30 mL를 혼합하였다. 이 혼합물에 Pd(PPh3)4 525.2 mg(454.5 μmol) 및 2M K2CO3 용액 14.2 mL(30.3 mmol)을 첨가한 후 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 석출된 고체를 증류수와 메탄올로 세척하며 감압 필터하였다. 얻은 고체를 클로로포름에 가열하여 녹인 후 실리카겔 컬럼 크로마토그래피(CHCl3:EA)로 정제하였다. 얻어진 화합물을 클로로포름과 아세톤으로 고체화하였다. 흰색 고체의 화합물 7-1(LT22-35-215) 2.2 g(수율: 40.7%)을 얻었다.[1,1'-biphenyl]-4-ylboronic acid ([1,1'-biphenyl]-4-ylboronic acid) 3.0 g (15.2 mmol), intermediate (2) 5.3 g (15.2 mmol), toluene 60 mL and 30 mL of ethanol were mixed. To this mixture, 525.2 mg (454.5 μmol) of Pd(PPh 3 ) 4 and 14.2 mL (30.3 mmol) of 2M K 2 CO 3 solution were added and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, and the precipitated solid was washed with distilled water and methanol and filtered under reduced pressure. The obtained solid was dissolved by heating in chloroform and then purified by silica gel column chromatography (CHCl 3 :EA). The obtained compound was solidified with chloroform and acetone. 2.2 g (yield: 40.7%) of compound 7-1 (LT22-35-215) as a white solid was obtained.

합성예Synthesis example 2: 화합물 7-10(LT22-35-204)의 합성 2: Synthesis of compound 7-10 (LT22-35-204)

[1,1'-바이페닐]-4-닐보론산([1,1'-biphenyl]-4-ylboronic acid) 3.0 g(15.2 mmol), 중간체(5) 5.3 g(15.2 mmol), 톨루엔 60 mL 및 에탄올 30 mL를 혼합하였다. 이 혼합물에 Pd(PPh3)4 525.2 mg(454.5 μmol) 및 2M K2CO3 용액 14.2 mL(30.3 mmol)을 첨가한 후 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 석출된 고체를 증류수와 메탄올로 세척하며 감압 필터하였다. 얻은 고체를 클로로포름에 가열하여 녹인 후 실리카겔 컬럼 크로마토그래피(CHCl3:EA)로 정제하였다. 얻어진 화합물을 클로로포름과 아세톤으로 고체화하였다. 흰색 고체의 화합물 7-10(LT22-35-204) 2.4 g(수율: 44.4%)을 얻었다.[1,1'-biphenyl]-4-ylboronic acid ([1,1'-biphenyl]-4-ylboronic acid) 3.0 g (15.2 mmol), intermediate (5) 5.3 g (15.2 mmol), toluene 60 mL and 30 mL of ethanol were mixed. To this mixture, 525.2 mg (454.5 μmol) of Pd(PPh 3 ) 4 and 14.2 mL (30.3 mmol) of 2M K 2 CO 3 solution were added and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, and the precipitated solid was washed with distilled water and methanol and filtered under reduced pressure. The obtained solid was dissolved by heating in chloroform and then purified by silica gel column chromatography (CHCl 3 :EA). The obtained compound was solidified with chloroform and acetone. 2.4 g (yield: 44.4%) of compound 7-10 (LT22-35-204) as a white solid was obtained.

합성예Synthesis example 3: 화합물 7-13(LT22-35-226)의 합성 3: Synthesis of compound 7-13 (LT22-35-226)

2-(4-브로모페닐)피리딘(2-(4-bromophenyl)pyridine) 3.0g(12.8 mmol), 중간체(3) 4.7 g(14.1 mmol), Pd(PPh3)4 592.4 mg(512.6 μmol), K3PO4 6.8 g(32.0 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 7-13(LT22-35-226) 3.2 g(수율: 69.9%)을 얻었다.2-(4-bromophenyl)pyridine (2-(4-bromophenyl)pyridine) 3.0 g (12.8 mmol), intermediate (3) 4.7 g (14.1 mmol), Pd(PPh 3 ) 4 592.4 mg (512.6 μmol) , 6.8 g (32.0 mmol) of K 3 PO 4 , 30 mL of toluene, 10 mL of ethanol, and 10 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 3.2 g of compound 7-13 (LT22-35-226) as a white solid (yield: 69.9%). got it

합성예Synthesis example 4: 화합물 7-15(LT22-35-210)의 합성 4: Synthesis of compound 7-15 (LT22-35-210)

2-(4-브로모페닐)피리딘(2-(4-bromophenyl)pyridine) 3.0g(12.8 mmol), 중간체(9) 5.7 g(14.1 mmol), Pd(PPh3)4 592.4 mg(512.6 μmol), K3PO4 6.8 g(32.0 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 7-15(LT22-35-210) 3.5 g(수율: 63.0%)을 얻었다. 2-(4-bromophenyl)pyridine (2-(4-bromophenyl)pyridine) 3.0 g (12.8 mmol), intermediate (9) 5.7 g (14.1 mmol), Pd(PPh 3 ) 4 592.4 mg (512.6 μmol) , 6.8 g (32.0 mmol) of K 3 PO 4 , 30 mL of toluene, 10 mL of ethanol, and 10 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 3.5 g of Compound 7-15 (LT22-35-210) as a white solid (yield: 63.0%). got it

합성예Synthesis example 5: 화합물 7-22(LT22-35-209)의 합성 5: Synthesis of compound 7-22 (LT22-35-209)

2-(4-브로모페닐)피리딘(2-(4-bromophenyl)pyridine) 3.0g(12.8 mmol), 중간체(6) 4.7 g(14.1 mmol), Pd(PPh3)4 592.4 mg(512.6 μmol), K3PO4 6.8 g(32.0 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 7-22(LT22-35-209) 2.8 g(수율: 61.1%)을 얻었다.2-(4-bromophenyl)pyridine (2-(4-bromophenyl)pyridine) 3.0 g (12.8 mmol), intermediate (6) 4.7 g (14.1 mmol), Pd(PPh 3 ) 4 592.4 mg (512.6 μmol) , 6.8 g (32.0 mmol) of K 3 PO 4 , 30 mL of toluene, 10 mL of ethanol, and 10 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.8 g of Compound 7-22 (LT22-35-209) as a white solid (yield: 61.1%). got it

합성예Synthesis example 6: 화합물 7-35(LT22-35-223)의 합성 6: Synthesis of compound 7-35 (LT22-35-223)

중간체(11) 3.0 g(8.5 mmol), 중간체(3) 3.1 g(9.3 mmol), 톨루엔 60 mL 및 에탄올 20 mL를 혼합하였다. 이 혼합물에 Pd(PPh3)4 294.3 mg(254.7 μmol) 및 2M K2CO3 용액 8.0 mL(17.0 mmol)를 첨가한 후 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 얻어진 고체를 증류수와 메탄올로 세척하고 감압 필터하였다. 얻어진 고체를 클로로포름에 녹인 후 실리카겔 컬럼 크로마토그래피(CHCl3:EA)로 정제하였다. 얻어진 화합물을 클로로포름과 아세톤으로 고체화하였다. 흰색 고체의 화합물 7-35(LT22-35-223) 2.3 g(수율: 66.5%)을 얻었다.3.0 g (8.5 mmol) of intermediate (11), 3.1 g (9.3 mmol) of intermediate (3), 60 mL of toluene, and 20 mL of ethanol were mixed. To this mixture, 294.3 mg (254.7 μmol) of Pd(PPh 3 ) 4 and 8.0 mL (17.0 mmol) of 2M K 2 CO 3 solution were added and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, and the obtained solid was washed with distilled water and methanol and filtered under reduced pressure. The obtained solid was dissolved in chloroform and purified by silica gel column chromatography (CHCl 3 :EA). The obtained compound was solidified with chloroform and acetone. 2.3 g (yield: 66.5%) of compound 7-35 (LT22-35-223) as a white solid was obtained.

합성예Synthesis example 7: 화합물 8-1(LT22-35-227)의 합성 7: Synthesis of compound 8-1 (LT22-35-227)

2-(4-브로모페닐)나프탈렌(2-(4-bromophenyl)naphthalene) 3.0g(10.6 mmol), 중간체(3) 3.9 g(11.7 mmol), Pd(PPh3)4 489.7 mg(423.8 μmol), K3PO4 5.6 g(26.5 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 8-1(LT22-35-227) 2.7 g(수율: 62.7%)을 얻었다.2-(4-bromophenyl)naphthalene (2-(4-bromophenyl)naphthalene) 3.0 g (10.6 mmol), intermediate (3) 3.9 g (11.7 mmol), Pd(PPh 3 ) 4 489.7 mg (423.8 μmol) , 5.6 g (26.5 mmol) of K 3 PO 4 , 30 mL of toluene, 10 mL of ethanol, and 10 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.7 g of Compound 8-1 (LT22-35-227) as a white solid (yield: 62.7%). got it

합성예Synthesis example 8: 화합물 8-13(LT22-35-225)의 합성 8: Synthesis of compound 8-13 (LT22-35-225)

중간체(13) 3.0 g(8.5 mmol), 중간체(3) 3.1 g(9.3 mmol), 톨루엔 60 mL 및 에탄올 20 mL를 혼합하였다. 이 혼합물에 Pd(PPh3)4 294.3 mg(254.7 μmol) 및 2M K2CO3 용액 8.0 mL(17.0 mmol)를 첨가한 후 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 석출된 고체를 증류수와 메탄올로 세척하고 감압 필터하였다. 얻은 고체를 클로로포름에 가열하여 녹인 후 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하였다. 얻어진 화합물을 클로로포름과 아세톤으로 고체화하였다. 흰색 고체의 화합물 8-13(LT22-35-225) 1.9 g(수율: 54.9%)을 얻었다.3.0 g (8.5 mmol) of intermediate (13), 3.1 g (9.3 mmol) of intermediate (3), 60 mL of toluene, and 20 mL of ethanol were mixed. To this mixture, 294.3 mg (254.7 μmol) of Pd(PPh 3 ) 4 and 8.0 mL (17.0 mmol) of 2M K 2 CO 3 solution were added and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, and the precipitated solid was washed with distilled water and methanol and filtered under reduced pressure. The obtained solid was dissolved by heating in chloroform and then purified by silica gel column chromatography (CHCl 3 :EA). The obtained compound was solidified with chloroform and acetone. 1.9 g (yield: 54.9%) of compound 8-13 (LT22-35-225) was obtained as a white solid.

합성예Synthesis example 9: 화합물 8-25(LT22-35-220)의 합성 9: Synthesis of compound 8-25 (LT22-35-220)

2-(4-브로모페닐)나프탈렌(2-(4-bromophenyl)naphthalene) 3.0g(10.6 mmol), 중간체(6) 3.9 g(11.7 mmol), Pd(PPh3)4 489.7 mg(423.8 μmol), K3PO4 5.6 g(26.5 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL을 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 8-25(LT22-35-220) 2.3 g(수율: 53.4%)을 얻었다.2-(4-bromophenyl)naphthalene (2-(4-bromophenyl)naphthalene) 3.0 g (10.6 mmol), intermediate (6) 3.9 g (11.7 mmol), Pd(PPh 3 ) 4 489.7 mg (423.8 μmol) , 5.6 g (26.5 mmol) of K 3 PO 4 , 30 mL of toluene, 10 mL of ethanol, and 10 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.3 g of Compound 8-25 (LT22-35-220) as a white solid (yield: 53.4%). got it

합성예Synthesis example 10: 화합물 8-26(LT22-35-216)의 합성 10: Synthesis of compound 8-26 (LT22-35-216)

중간체(14) 3.0g(10.6 mmol), 중간체(6) 3.8 g(11.6 mmol), Pd(PPh3)4 488.0 mg(422.3 μmol), K3PO4 5.6 g(26.3 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 8-26(LT22-35-216) 2.5 g(수율: 58.1%)을 얻었다.Intermediate (14) 3.0 g (10.6 mmol), Intermediate (6) 3.8 g (11.6 mmol), Pd(PPh 3 ) 4 488.0 mg (422.3 μmol), K 3 PO 4 5.6 g (26.3 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.5 g of compound 8-26 (LT22-35-216) as a white solid (yield: 58.1%). got it

합성예Synthesis example 11: 화합물 9-7(LT22-35-224)의 합성 11: Synthesis of compound 9-7 (LT22-35-224)

2-(4-브로모페닐)벤조[d]옥사졸(2-(4-bromophenyl)benzo[d]oxazole) 3.0g(10.9 mmol), 중간체(6) 4.0 g(12.0 mmol), Pd(PPh3)4 505.9 mg(437.8 μmol), K3PO4 5.8 g(27.4 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 9-7(LT22-35-224) 2.7 g(수율: 62.1%)을 얻었다.2-(4-bromophenyl)benzo[d]oxazole (2-(4-bromophenyl)benzo[d]oxazole) 3.0 g (10.9 mmol), intermediate (6) 4.0 g (12.0 mmol), Pd(PPh) 3 ) 505.9 mg (437.8 μmol) of 4 , 5.8 g (27.4 mmol) of K 3 PO 4 , 30 mL of toluene, 10 mL of ethanol, and 10 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.7 g of compound 9-7 (LT22-35-224) as a white solid (yield: 62.1%). got it

합성예Synthesis example 12: 화합물 9-17(LT22-35-206)의 합성 12: Synthesis of compound 9-17 (LT22-35-206)

중간체(15) 3.0g(10.3 mmol), 중간체(3) 3.7 g(11.3 mmol), Pd(PPh3)4 476.3 mg(412.1 μmol), K3PO4 5.5 g(25.8 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 9-17(LT22-35-206) 2.5 g(수율: 58.5%)을 얻었다.Intermediate (15) 3.0 g (10.3 mmol), intermediate (3) 3.7 g (11.3 mmol), Pd(PPh 3 ) 4 476.3 mg (412.1 μmol), K 3 PO 4 5.5 g (25.8 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.5 g of compound 9-17 (LT22-35-206) as a white solid (yield: 58.5%). got it

합성예Synthesis example 13: 화합물 9-26(LT22-35-248)의 합성 13: Synthesis of compound 9-26 (LT22-35-248)

중간체(8) 3.0 g(7.0 mmol), 벤조퓨란-2-닐보론산(benzofuran-2-ylboronic acid) 1.3 g(7.7 mmol), 톨루엔 60 mL 및 에탄올 20 mL를 혼합하였다. 이 혼합물에 Pd(PPh3)4 242.8 mg(210.1 μmol) 및 2M K2CO3 용액 6.6 mL(14.0 mmol)을 첨가한 후 15시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고 석출된 고체를 증류수와 메탄올로 세척하며 감압 필터하였다. 얻은 고체를 클로로포름에 가열하여 녹인 후 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하였다. 얻어진 화합물을 클로로포름과 아세톤으로 고체화하였다. 흰색 고체의 화합물 9-26(LT22-35-248) 1.8 g(수율: 64.8%)을 얻었다.3.0 g (7.0 mmol) of intermediate (8), 1.3 g (7.7 mmol) of benzofuran-2-ylboronic acid, 60 mL of toluene, and 20 mL of ethanol were mixed. To this mixture, 242.8 mg (210.1 μmol) of Pd(PPh 3 ) 4 and 6.6 mL (14.0 mmol) of 2M K 2 CO 3 solution were added and stirred under reflux for 15 hours. After the reaction was completed, it was cooled to room temperature, and the precipitated solid was washed with distilled water and methanol and filtered under reduced pressure. The obtained solid was dissolved by heating in chloroform and then purified by silica gel column chromatography (CHCl 3 :EA). The obtained compound was solidified with chloroform and acetone. 1.8 g (yield: 64.8%) of compound 9-26 (LT22-35-248) was obtained as a white solid.

합성예Synthesis example 14: 화합물 9-37(LT22-35-244)의 합성 14: Synthesis of compound 9-37 (LT22-35-244)

중간체(16) 3.0g(10.4 mmol), 중간체(3) 3.8 g(11.4 mmol), Pd(PPh3)4 479.5 mg(415.0 μmol), K3PO4 5.5 g(25.9 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 9-37(LT22-35-244) 2.9 g(수율: 67.8%)을 얻었다.Intermediate (16) 3.0 g (10.4 mmol), intermediate (3) 3.8 g (11.4 mmol), Pd(PPh 3 ) 4 479.5 mg (415.0 μmol), K 3 PO 4 5.5 g (25.9 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.9 g of compound 9-37 (LT22-35-244) as a white solid (yield: 67.8%). got it

합성예Synthesis example 15: 화합물 9-39(LT22-35-207)의 합성 15: Synthesis of compound 9-39 (LT22-35-207)

중간체(16) 3.0g(10.4 mmol), 중간체(9) 4.6 g(11.4 mmol), Pd(PPh3)4 479.5 mg(415.0 μmol), K3PO4 5.5 g(25.9 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL을 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 9-39(LT22-35-207) 3.3 g(수율: 65.1%)을 얻었다.Intermediate (16) 3.0 g (10.4 mmol), Intermediate (9) 4.6 g (11.4 mmol), Pd(PPh 3 ) 4 479.5 mg (415.0 μmol), K 3 PO 4 5.5 g (25.9 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 3.3 g of compound 9-39 (LT22-35-207) as a white solid (yield: 65.1%). got it

합성예Synthesis example 16: 화합물 9-43(LT22-35-243)의 합성 16: Synthesis of compound 9-43 (LT22-35-243)

중간체(16) 3.0g(10.4 mmol), 중간체(6) 3.8 g(11.4 mmol), Pd(PPh3)4 479.5 mg(415.0 μmol), K3PO4 5.5 g(25.9 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 9-43(LT22-35-243) 2.8 g(수율: 65.4%)을 얻었다.Intermediate (16) 3.0 g (10.4 mmol), Intermediate (6) 3.8 g (11.4 mmol), Pd(PPh 3 ) 4 479.5 mg (415.0 μmol), K 3 PO 4 5.5 g (25.9 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.8 g of compound 9-43 (LT22-35-243) as a white solid (yield: 65.4%). got it

합성예Synthesis example 17: 화합물 9-49(LT22-35-231)의 합성 17: Synthesis of compound 9-49 (LT22-35-231)

2-(4-브로모페닐)-1-페닐-1H-벤조[d]이미다졸(2-(4-bromophenyl)-1-phenyl-1H-benzo[d]imidazole) 3.0g(8.6 mmol), 중간체(3) 3.1 g(9.5 mmol), Pd(PPh3)4 397.1 mg(343.6 μmol), K3PO4 4.6 g(21.5 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 9-49(LT22-35-231) 2.5 g(수율: 61.6%)을 얻었다.2-(4-bromophenyl)-1-phenyl-1H-benzo[d]imidazole (2-(4-bromophenyl)-1-phenyl-1H-benzo[d]imidazole) 3.0 g (8.6 mmol), After mixing 3.1 g (9.5 mmol) of intermediate (3), 397.1 mg (343.6 μmol) of Pd (PPh 3 ) 4 , 4.6 g (21.5 mmol) of K 3 PO 4 , 30 mL of toluene, 10 mL of ethanol, and 10 mL of water. , and stirred under reflux for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.5 g of compound 9-49 (LT22-35-231) as a white solid (yield: 61.6%). got it

합성예Synthesis example 18: 화합물 10-1(LT22-35-240)의 합성 18: Synthesis of compound 10-1 (LT22-35-240)

중간체(19) 3.0g(8.6 mmol), 중간체(3) 3.1 g(9.4 mmol), Pd(PPh3)4 396.0 mg(342.7 μmol), K3PO4 4.6 g(21.4 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 10-1(LT22-35-240) 2.7 g(수율: 66.6%)을 얻었다.Intermediate (19) 3.0 g (8.6 mmol), intermediate (3) 3.1 g (9.4 mmol), Pd (PPh 3 ) 4 396.0 mg (342.7 μmol), K 3 PO 4 4.6 g (21.4 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.7 g of Compound 10-1 (LT22-35-240) as a white solid (yield: 66.6%). got it

합성예Synthesis example 19: 화합물 10-7(LT22-35-211)의 합성 19: Synthesis of compound 10-7 (LT22-35-211)

중간체(18) 3.0g(10.9 mmol), 중간체(3) 4.0 g(12.0 mmol), Pd(PPh3)4 505.9 mg(437.8 μmol), K3PO4 5.8 g(27.4 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 10-7(LT22-35-211) 3.0 g(수율: 69.0%)을 얻었다.Intermediate (18) 3.0 g (10.9 mmol), intermediate (3) 4.0 g (12.0 mmol), Pd (PPh 3 ) 4 505.9 mg (437.8 μmol), K 3 PO 4 5.8 g (27.4 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 3.0 g of compound 10-7 (LT22-35-211) as a white solid (yield: 69.0%). got it

합성예Synthesis example 20: 화합물 10-9(LT22-35-217)의 합성 20: Synthesis of compound 10-9 (LT22-35-217)

중간체(18) 3.0g(10.9 mmol), 중간체(6) 4.0 g(12.0 mmol), Pd(PPh3)4 505.9 mg(437.8 μmol), K3PO4 5.8 g(27.4 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 10-9(LT22-35-217) 2.7 g(수율: 62.1%)을 얻었다.Intermediate (18) 3.0 g (10.9 mmol), intermediate (6) 4.0 g (12.0 mmol), Pd(PPh 3 ) 4 505.9 mg (437.8 μmol), K 3 PO 4 5.8 g (27.4 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.7 g of compound 10-9 (LT22-35-217) as a white solid (yield: 62.1%). got it

합성예Synthesis example 21: 화합물 10-10(LT22-35-212)의 합성 21: Synthesis of compound 10-10 (LT22-35-212)

중간체(19) 3.0g(8.6 mmol), 중간체(6) 3.1 g(9.4 mmol), Pd(PPh3)4 396.0 mg(342.7 μmol), K3PO4 4.6 g(21.4 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 10-10(LT22-35-212) 2.9 g(수율: 71.5%)을 얻었다.Intermediate (19) 3.0 g (8.6 mmol), Intermediate (6) 3.1 g (9.4 mmol), Pd(PPh 3 ) 4 396.0 mg (342.7 μmol), K 3 PO 4 4.6 g (21.4 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.9 g of compound 10-10 (LT22-35-212) as a white solid (yield: 71.5%). got it

합성예Synthesis example 22: 화합물 10-145(LT22-35-228)의 합성 22: Synthesis of compound 10-145 (LT22-35-228)

중간체(20) 3.0g(11.0 mmol), 중간체(3) 4.0 g(12.1 mmol), Pd(PPh3)4 507.7 mg(439.4 μmol), K3PO4 5.8 g(27.5 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 10-145(LT22-35-228) 3.1 g(수율: 71.2%)을 얻었다.Intermediate (20) 3.0 g (11.0 mmol), Intermediate (3) 4.0 g (12.1 mmol), Pd(PPh 3 ) 4 507.7 mg (439.4 μmol), K 3 PO 4 5.8 g (27.5 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 3.1 g of compound 10-145 (LT22-35-228) as a white solid (yield: 71.2%). got it

합성예Synthesis example 23: 화합물 10-199(LT22-35-230)의 합성 23: Synthesis of compound 10-199 (LT22-35-230)

중간체(21) 3.0g(10.4 mmol), 중간체(6) 3.8 g(11.4 mmol), Pd(PPh3)4 479.5 mg(415.0 μmol), K3PO4 5.5 g(25.9 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 10-199(LT22-35-230) 2.8 g(수율: 65.4%)을 얻었다.Intermediate (21) 3.0 g (10.4 mmol), Intermediate (6) 3.8 g (11.4 mmol), Pd(PPh 3 ) 4 479.5 mg (415.0 μmol), K 3 PO 4 5.5 g (25.9 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.8 g of compound 10-199 (LT22-35-230) as a white solid (yield: 65.4%). got it

합성예Synthesis example 24: 화합물 11-1(LT22-35-219)의 합성 24: Synthesis of compound 11-1 (LT22-35-219)

4-(4-브로모페닐)다이벤조[b,d]퓨란(4-(4-bromophenyl)dibenzo[b,d]furan) 3.0g(9.3 mmol), 중간체(3) 3.4 g(10.2 mmol), Pd(PPh3)4 429.1 mg(371.3 μmol), K3PO4 4.9 g(23.2 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 11-1(LT22-35-219) 2.6 g(수율: 62.7%)을 얻었다.4-(4-bromophenyl)dibenzo[b,d]furan (4-(4-bromophenyl)dibenzo[b,d]furan) 3.0 g (9.3 mmol), intermediate (3) 3.4 g (10.2 mmol) , 429.1 mg (371.3 μmol) of Pd(PPh 3 ) 4 , 4.9 g (23.2 mmol) of K 3 PO 4 , 30 mL of toluene, 10 mL of ethanol, and 10 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.6 g of Compound 11-1 (LT22-35-219) as a white solid (yield: 62.7%). got it

합성예Synthesis example 25: 화합물 11-31(LT22-35-249)의 합성 25: Synthesis of compound 11-31 (LT22-35-249)

중간체(22) 3.0g(9.3 mmol), 중간체(3) 3.4 g(10.2 mmol), Pd(PPh3)4 429.1 mg(371.3 μmol), K3PO4 4.9 g(23.2 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 11-31(LT22-35-249) 2.5 g(수율: 60.3%)을 얻었다.Intermediate (22) 3.0 g (9.3 mmol), intermediate (3) 3.4 g (10.2 mmol), Pd (PPh 3 ) 4 429.1 mg (371.3 μmol), K 3 PO 4 4.9 g (23.2 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.5 g of Compound 11-31 (LT22-35-249) as a white solid (yield: 60.3%). got it

합성예Synthesis example 26: 화합물 11-85(LT22-35-235)의 합성 26: Synthesis of compound 11-85 (LT22-35-235)

중간체(23) 3.0g(8.8 mmol), 중간체(6) 3.2 g(9.7 mmol), Pd(PPh3)4 408.8 mg(353.7 μmol), K3PO4 4.7 g(22.1 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 11-85(LT22-35-235) 2.2 g(수율: 53.8%)을 얻었다.Intermediate (23) 3.0 g (8.8 mmol), Intermediate (6) 3.2 g (9.7 mmol), Pd(PPh 3 ) 4 408.8 mg (353.7 μmol), K 3 PO 4 4.7 g (22.1 mmol), toluene 30 mL, After mixing 10 mL of ethanol and 10 mL of water, the mixture was refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.2 g of Compound 11-85 (LT22-35-235) as a white solid (yield: 53.8%). got it

합성예Synthesis example 27: 화합물 11-91(LT22-35-229)의 합성 27: Synthesis of compound 11-91 (LT22-35-229)

3-(4-브로모페닐)-9-페닐-9H-카바졸(3-(4-bromophenyl)-9-phenyl-9H-carbazole) 3.0g(7.5 mmol), 중간체(3) 2.7 g(8.3 mmol), Pd(PPh3)4 348.2 mg(301.3 μmol), K3PO4 4.0 g(18.8 mmol), 톨루엔 30 mL, 에탄올 10 mL 및 물 10 mL를 혼합한 후, 12시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 고체를 여과하고 물과 메탄올로 씻어서 건조하였다. 건조한 고체를 클로로포름에 녹인 후 혼합물을 실리카겔 컬럼크로마토그래피(CHCl3:EA)로 정제하고 다이클로로메탄으로 고체화하여 흰색 고체의 화합물 11-91(LT22-35-229) 2.3 g(수율: 58.5%)을 얻었다.3-(4-bromophenyl)-9-phenyl-9H-carbazole (3-(4-bromophenyl)-9-phenyl-9H-carbazole) 3.0 g (7.5 mmol), intermediate (3) 2.7 g (8.3 mmol), 348.2 mg (301.3 μmol) of Pd(PPh 3 ) 4 , 4.0 g (18.8 mmol) of K 3 PO 4 , 30 mL of toluene, 10 mL of ethanol, and 10 mL of water were mixed, and then refluxed and stirred for 12 hours. After the reaction was completed, it was cooled to room temperature, and the solid was filtered, washed with water and methanol, and dried. After dissolving the dried solid in chloroform, the mixture was purified by silica gel column chromatography (CHCl 3 :EA) and solidified with dichloromethane to obtain 2.3 g of compound 11-91 (LT22-35-229) as a white solid (yield: 58.5%). got it

<시험예><Test example>

본 발명의 화합물에 대하여 J.A. WOOLLAM社 Ellipsometer 기기를 이용하여 광학 특성 평가용 단막의 n(refractive index)와 k(extinction coefficient)을 측정한다.Regarding the compounds of the present invention, J.A. Measure the n (refractive index) and k (extinction coefficient) of the single film for optical property evaluation using WOOLLAM's Ellipsometer.

광학 특성 평가용 단막 제작: Fabrication of monolayers for optical property evaluation:

화합물의 광학 특성 측정을 위해, 유리기판(0.7T)을 Ethanol, DI Water, Acetone에 각각 10분씩 세척한 후, 2×10- 2Torr에서 125 W로 2분간 산소 플라즈마 처리를 하였다. 화합물을 9×10- 7Torr의 진공도에서 1Å/sec의 속도로 유리기판 위에 화합물을 증착하여 단막을 제작한다. To measure the optical properties of the compound, a glass substrate (0.7T) was washed with Ethanol, DI Water, and Acetone for 10 minutes each, and then treated with oxygen plasma for 2 minutes at 125 W at 2×10 - 2 Torr. A single film is produced by depositing the compound on a glass substrate at a speed of 1Å/sec in a vacuum of 9×10 - 7 Torr.

상기 광학 특성 평가용 단막 제작에서 화합물로 Alq3와 REF01, REF02를 각각 사용하였다. In the production of the single film for evaluating optical properties, Alq 3 , REF01, and REF02 were used as compounds, respectively.

<시험예 1 내지 27><Test Examples 1 to 27>

상기 광학 특성 평가용 단막에서 화합물로 하기 표 1에 나타낸 각각의 화합물을 사용하여 광학 특성을 평가하고, 그 결과를 하기 표 1에 나타냈다.The optical properties were evaluated using each compound shown in Table 1 below as a compound in the single film for evaluating optical properties, and the results are shown in Table 1 below.

광학 특성은 460nm 및 620nm 파장에서 굴절률(n) 상수이다.The optical properties are the refractive index (n) constant at wavelengths of 460 nm and 620 nm.

구분division 화합물compound n(460nm)n(460nm) n(620nm)n(620nm) 비교시험예 1Comparative test example 1 Alq3 Alq 3 1.8081.808 1.6901.690 비교시험예 2Comparative test example 2 REF01REF01 1.9861.986 1.8461.846 시험예 1Test example 1 7-1
(LT22-35-215)
7-1
(LT22-35-215)
1.4511.451 1.5221.522
시험예 2Test example 2 7-10
(LT22-35-204)
7-10
(LT22-35-204)
1.5401.540 1.5121.512
시험예 3Test example 3 7-13
(LT22-35-226)
7-13
(LT22-35-226)
1.5551.555 1.5381.538
시험예 4Test example 4 7-15
(LT22-35-210)
7-15
(LT22-35-210)
1.5371.537 1.5121.512
시험예 5Test Example 5 7-22
(LT22-35-209)
7-22
(LT22-35-209)
1.5191.519 1.4961.496
시험예 6Test example 6 7-35
(LT22-35-223)
7-35
(LT22-35-223)
1.5351.535 1.5021.502
시험예 7Test example 7 8-1
(LT22-35-227)
8-1
(LT22-35-227)
1.5121.512 1.4991.499
시험예 8Test example 8 8-13
(LT22-35-225)
8-13
(LT22-35-225)
1.5421.542 1.5151.515
시험예 9Test Example 9 8-25
(LT22-35-220)
8-25
(LT22-35-220)
1.6151.615 1.5681.568
시험예 10Test Example 10 8-26
(LT22-35-216)
8-26
(LT22-35-216)
1.5991.599 1.5521.552
시험예 11Test Example 11 9-7
(LT22-35-224)
9-7
(LT22-35-224)
1.5621.562 1.4951.495
시험예 12Test Example 12 9-17
(LT22-35-206)
9-17
(LT22-35-206)
1.5421.542 1.5181.518
시험예 13Test Example 13 9-26
(LT22-35-248)
9-26
(LT22-35-248)
1.5171.517 1.4901.490
시험예 14Test Example 14 9-37
(LT22-35-244)
9-37
(LT22-35-244)
1.5321.532 1.4951.495
시험예 15Test Example 15 9-39
(LT22-35-207)
9-39
(LT22-35-207)
1.5211.521 1.4951.495
시험예 16Test Example 16 9-43
(LT22-35-243)
9-43
(LT22-35-243)
1.5091.509 1.4901.490
시험예 17Test Example 17 9-49
(LT22-35-231)
9-49
(LT22-35-231)
1.6411.641 1.6151.615
시험예 18Test Example 18 10-1
(LT22-35-240)
10-1
(LT22-35-240)
1.5421.542 1.5201.520
시험예 19Test Example 19 10-7
(LT22-35-211)
10-7
(LT22-35-211)
1.5141.514 1.4921.492
시험예 20Test Example 20 10-9
(LT22-35-217)
10-9
(LT22-35-217)
1.5121.512 1.4931.493
시험예 21Test Example 21 10-10
(LT22-35-212)
10-10
(LT22-35-212)
1.5481.548 1.5151.515
시험예 22Test example 22 10-145
(LT22-35-228)
10-145
(LT22-35-228)
1.5321.532 1.5081.508
시험예 23Test example 23 10-199
(LT22-35-230)
10-199
(LT22-35-230)
1.5421.542 1.5121.512
시험예 24Test example 24 11-1
(LT22-35-219)
11-1
(LT22-35-219)
1.6551.655 1.6121.612
시험예 25Test Example 25 11-31
(LT22-35-249)
11-31
(LT22-35-249)
1.5371.537 1.5121.512
시험예 26Test Example 26 11-85
(LT22-35-235)
11-85
(LT22-35-235)
1.6481.648 1.6221.622
시험예 27Test Example 27 11-91
(LT22-35-229)
11-91
(LT22-35-229)
1.5221.522 1.5021.502

상기 표 1에서 알 수 있는 바와 같이, 비교시험예(Alq3)의 청색영역(460nm)과 적색영역(620nm)에서의 n값이 각각 1.808, 1.690이었고, 이에 반해 대부분의 본 발명에 따른 화합물들은 대체적으로 청색영역, 녹색영역 및 적색영역에서 비교시험예1 화합물(Alq3) 보다 낮은 굴절률(n<1.69 @620nm)을 갖는 것으로 확인되었다. 이것은 청색영역에서의 높은 시야각을 확보하기 위해 필요한 낮은 굴절률 값에 만족한다. As can be seen in Table 1, the n values in the blue region (460 nm) and red region (620 nm) of the comparative test example (Alq 3 ) were 1.808 and 1.690, respectively, whereas most of the compounds according to the present invention were In general, it was confirmed to have a lower refractive index (n<1.69 @620nm) than Comparative Test Example 1 compound (Alq 3 ) in the blue region, green region, and red region. This satisfies the low refractive index value required to secure a high viewing angle in the blue region.

<실시예><Example>

소자 제작Device fabrication

소자 제작을 위해 투명 전극인 ITO는 양극 층으로 사용하였고, 2-TNATA는 정공 주입층, NPB는 정공 수송층, αβ-ADN은 발광층의 호스트, Pyrene-CN은 청색 형광 도판트, Alq3는 전자 수송층, Liq는 전자 주입층, Mg:Ag은 음극으로 사용하였다. 이 화합물들의 구조는 하기의 화학식과 같다.To fabricate the device, ITO, a transparent electrode, was used as the anode layer, 2-TNATA was the hole injection layer, NPB was the hole transport layer, αβ-ADN was the host of the emitting layer, Pyrene-CN was the blue fluorescent dopant, and Alq 3 was the electron transport layer. , Liq was used as the electron injection layer, and Mg:Ag was used as the cathode. The structures of these compounds are shown in the following chemical formulas.

비교실시예 1(캡핑층이 없음): ITO / 2-TNATA(60 nm) / NPB(20 nm) / αβ-ADN:10% Pyrene-CN(30 nm) / Alq3(30 nm) / Liq(2 nm) / Mg:Ag(1:9, 10 nm) Comparative Example 1 (no capping layer): ITO / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN: 10% Pyrene-CN (30 nm) / Alq 3 (30 nm) / Liq ( 2 nm) / Mg:Ag (1:9, 10 nm)

비교실시예 2(캡핑층을 1층으로 구성): ITO / 2-TNATA(60 nm) / NPB(20 nm) / αβ-ADN:10% Pyrene-CN(30 nm) / Alq3(30 nm) / Liq(2 nm) / Mg:Ag(1:9, 10 nm) / Alq3(80nm) Comparative Example 2 (composed of one capping layer): ITO / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN: 10% Pyrene-CN (30 nm) / Alq 3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) / Alq 3 (80 nm)

실시예 (캡핑층을 2층으로 구성): ITO / 2-TNATA(60 nm) / NPB(20 nm) / αβ-ADN:10% Pyrene-CN(30 nm) / Alq3(30 nm) / Liq(2 nm) / Mg:Ag(1:9, 10 nm) / 본 발명의 화합물(20nm, 저굴절 화합물) / REF01(60nm, 고굴절 화합물) Example (composed of two capping layers): ITO / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN: 10% Pyrene-CN (30 nm) / Alq 3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) / Compound of the present invention (20 nm, low refractive index compound) / REF01 (60 nm, high refractive index compound)

청색 형광 유기발광소자는 ITO / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN:Pyrene-CN 10% (30 nm) / Alq3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) / 캡핑층 순으로 증착하여 소자를 제작하였다. Blue fluorescent organic light emitting device is ITO / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN:Pyrene-CN 10% (30 nm) / Alq 3 (30 nm) / Liq (2 nm) / Mg :Ag (1:9, 10 nm) / capping layer was deposited in that order to manufacture the device.

유기물을 증착하기 전에 ITO 전극은 2 × 10- 2Torr에서 125W로 2분간 산소 플라즈마 처리를 하였다. 유기물은 9 × 10- 7Torr의 진공도에서 증착하였으며, Liq는 0.1 Å/sec, αβ-ADN은 0.18 Å/sec의 기준으로 Pyrene-CN는 0.02 Å/sec으로 동시 증착하였고, 나머지 유기물들은 모두 1 Å/sec의 속도로 증착하였다. 실험에 사용된 캡핑층 물질은 REF01로 선택하였다. 소자 제작이 끝난 후 소자의 공기 및 수분의 접촉을 막기 위하여 질소 기체로 채워져 있는 글러브 박스 안에서 봉지를 하였다. 3M사의 접착용 테이프로 격벽을 형성 후 수분 등을 제거할 수 있는 흡습제인 바륨산화물(Barium Oxide)을 넣고 유리판을 붙였다.Before depositing organic materials, the ITO electrode was treated with oxygen plasma at 2 × 10 - 2 Torr at 125 W for 2 minutes. Organic materials were deposited at a vacuum of 9 It was deposited at a rate of Å/sec. The capping layer material used in the experiment was selected as REF01. After the device was manufactured, it was sealed in a glove box filled with nitrogen gas to prevent contact with air and moisture. After forming a partition using 3M adhesive tape, barium oxide, a moisture absorbent that can remove moisture, was added and a glass plate was attached.

< 실시예 1 내지 27><Examples 1 to 27>

상기 실시예에서 저굴절 화합물로 하기 표 2에 나타낸 각각의 화합물을 사용하여 소자를 제작하였다.In the above example, a device was manufactured using each compound shown in Table 2 below as the low refractive index compound.

상기 비교실시예 및 실시예 1 내지 27에서 제조된 유기 발광 소자에 대한 전기적 발광특성을 표 2에 나타냈다.The electrical luminescence characteristics of the organic light-emitting devices manufactured in Comparative Examples and Examples 1 to 27 are shown in Table 2.

구분division 화합물compound 구동전압
[V]
driving voltage
[V]
효율
[cd/A]
efficiency
[cd/A]
수명
(%)
life span
(%)
비교실시예 1Comparative Example 1 -- 4.514.51 4.224.22 89.2189.21 비교실시예 2Comparative Example 2 Alq3 단독Alq 3 only 4.504.50 4.834.83 88.9288.92 실시예 1Example 1 7-1
(LT22-35-215)
7-1
(LT22-35-215)
4.474.47 5.475.47 96.5896.58
실시예 2Example 2 7-10
(LT22-35-204)
7-10
(LT22-35-204)
4.494.49 5.405.40 95.1495.14
실시예 3Example 3 7-13
(LT22-35-226)
7-13
(LT22-35-226)
4.484.48 5.485.48 97.1297.12
실시예 4Example 4 7-15
(LT22-35-210)
7-15
(LT22-35-210)
4.504.50 5.845.84 95.0395.03
실시예 5Example 5 7-22
(LT22-35-209)
7-22
(LT22-35-209)
4.404.40 6.026.02 98.2498.24
실시예 6Example 6 7-35
(LT22-35-223)
7-35
(LT22-35-223)
4.494.49 5.925.92 96.5896.58
실시예 7Example 7 8-1
(LT22-35-227)
8-1
(LT22-35-227)
4.424.42 6.056.05 98.6298.62
실시예 8Example 8 8-13
(LT22-35-225)
8-13
(LT22-35-225)
4.484.48 5.785.78 97.8997.89
실시예 9Example 9 8-25
(LT22-35-220)
8-25
(LT22-35-220)
4.494.49 5.925.92 96.8796.87
실시예 10Example 10 8-26
(LT22-35-216)
8-26
(LT22-35-216)
4.464.46 6.016.01 96.4796.47
실시예 11Example 11 9-7
(LT22-35-224)
9-7
(LT22-35-224)
4.394.39 6.006.00 98.5198.51
실시예 12Example 12 9-17
(LT22-35-206)
9-17
(LT22-35-206)
4.504.50 5.565.56 97.2597.25
실시예 13Example 13 9-26
(LT22-35-248)
9-26
(LT22-35-248)
4.424.42 6.126.12 98.3498.34
실시예 14Example 14 9-37
(LT22-35-244)
9-37
(LT22-35-244)
4.424.42 6.056.05 98.1098.10
실시예 15Example 15 9-39
(LT22-35-207)
9-39
(LT22-35-207)
4.414.41 6.136.13 98.6298.62
실시예 16Example 16 9-43
(LT22-35-243)
9-43
(LT22-35-243)
4.474.47 5.905.90 98.2098.20
실시예 17Example 17 9-49
(LT22-35-231)
9-49
(LT22-35-231)
4.494.49 5.845.84 95.6795.67
실시예 18Example 18 10-1
(LT22-35-240)
10-1
(LT22-35-240)
4.484.48 5.765.76 96.8596.85
실시예 19Example 19 10-7
(LT22-35-211)
10-7
(LT22-35-211)
4.424.42 6.126.12 98.5298.52
실시예 20Example 20 10-9
(LT22-35-217)
10-9
(LT22-35-217)
4.404.40 6.236.23 98.2498.24
실시예 21Example 21 10-10
(LT22-35-212)
10-10
(LT22-35-212)
4.504.50 5.565.56 95.6695.66
실시예 22Example 22 10-145
(LT22-35-228)
10-145
(LT22-35-228)
4.494.49 5.595.59 97.1297.12
실시예 23Example 23 10-199
(LT22-35-230)
10-199
(LT22-35-230)
4.414.41 6.186.18 98.2098.20
실시예 24Example 24 11-1
(LT22-35-219)
11-1
(LT22-35-219)
4.434.43 6.096.09 98.5198.51
실시예 25Example 25 11-31
(LT22-35-249)
11-31
(LT22-35-249)
4.904.90 5.955.95 96.5496.54
실시예 26Example 26 11-85
(LT22-35-235)
11-85
(LT22-35-235)
4.484.48 5.895.89 96.4796.47
실시예 27Example 27 11-91
(LT22-35-229)
11-91
(LT22-35-229)
4.504.50 5.475.47 97.2497.24

상기 표 2의 결과로부터 알 수 있듯이, 캡핑층(Capping Layer, 광효율 개선층)이 있는 소자(비교실시예2)와 없는 소자(비교실시예1)의 결과를 보면 캡핑층(Capping Layer, 광효율 개선층)으로 효율을 상승시킬 수 있음을 확인할 수 있다.As can be seen from the results in Table 2, the results of the device with a capping layer (Capping Layer, luminous efficiency improvement layer) (Comparative Example 2) and the device without (Comparative Example 1) show that the capping layer (Light Efficiency Improvement Layer) is improved. layer), it can be confirmed that efficiency can be increased.

상기 표 2의 결과로부터, 본 발명에 따른 특정의 유기 화합물은 유기 발광 소자를 비롯한 유기 전자 소자의 저굴절 캡핑층의 재료로서 사용될 수 있고, 이를 이용한 유기 발광 소자를 비롯한 유기 전자 소자는 효율, 구동전압, 안정성 등에서 우수한 특성을 나타냄을 알 수 있다. From the results in Table 2, it can be seen that the specific organic compound according to the present invention can be used as a material for a low-refractive capping layer of organic electronic devices, including organic light-emitting devices, and that organic electronic devices, including organic light-emitting devices, using the same have improved efficiency and driving. It can be seen that it exhibits excellent characteristics in terms of voltage, stability, etc.

캡핑층(Capping Layer, 광효율 개선층)으로 고굴절(n>1.69 @620nm) 화합물로 단일층만 사용하고 있는 소자와 고굴절(n>1.69 @620nm) 화합물과 저굴절(n<1.69 @620nm) 화합물로 복층으로 사용하고 있는 소자의 결과를 보면 복층으로 사용한 캡핑층(Capping Layer, 광효율 개선층)이 효율을 상승시킬 수 있음을 확인할 수 있으며, 캡핑층(Capping Layer, 광효율 개선층)으로 Alq3를 사용한 소자(비교실시예2) 보다 본 발명의 재료를 복층으로 사용하였을 경우에 효율이 개선됨을 알 수 있다.The capping layer (light efficiency improvement layer) consists of a device using only a single layer of a high refractive index (n>1.69 @620nm) compound and a high refractive index (n>1.69 @620nm) compound and a low refractive index (n<1.69 @620nm) compound. Looking at the results of the device being used as a double layer, it can be confirmed that the capping layer (light efficiency improvement layer) used as a double layer can increase efficiency, and the use of Alq 3 as the capping layer (light efficiency improvement layer) can be confirmed. It can be seen that efficiency is improved when the material of the present invention is used in multiple layers compared to the device (Comparative Example 2).

이는 굴절률로 설명할 수 있는데, 고굴절률을 가지는 REF01 단일층 보다 높은 굴절률(고굴절)과 낮은 굴절률(저굴절)을 가지는 본 발명의 화합물을 복층으로 사용한 유기 전기발광소자가 높은 효율을 가지는 것은 자명한 일이다.This can be explained by the refractive index. It is obvious that an organic electroluminescent device using a double layer of the compound of the present invention with a higher refractive index (high refractive index) and a lower refractive index (low refractive index) than the REF01 single layer with a high refractive index has high efficiency. It's work.

따라서 화학식 1의 화합물은 OLED에서 저굴절 캡핑층으로 사용하기 위한 의외의 바람직한 특성을 가지고 있다. Therefore, the compound of Formula 1 has unexpectedly desirable properties for use as a low-refractive capping layer in OLED.

본 발명의 화합물이 이러한 특성에 의해 산업용 유기 전자 소자 제품에 적용될 수 있다.The compounds of the present invention can be applied to industrial organic electronic device products due to these properties.

다만, 전술한 합성예는 일 예시이며, 반응 조건은 필요에 따라 변경될 수 있다. 또한, 본 발명의 일 실시예에 따른 화합물은 당 기술분야에 알려진 방법 및 재료를 이용하여 다양한 치환기를 가지도록 합성될 수 있다. 화학식 1로 표시되는 코어 구조에 다양한 치환체를 도입함으로써 유기 전계 발광 소자에 사용되기에 적합한 특성을 가질 수 있다.However, the above-described synthesis example is just an example, and the reaction conditions may be changed as needed. Additionally, the compound according to an embodiment of the present invention can be synthesized to have various substituents using methods and materials known in the art. By introducing various substituents into the core structure represented by Formula 1, properties suitable for use in organic electroluminescent devices can be obtained.

100: 기판, 110: 제1 전극, 120: 제2 전극, 200: 유기물층, 210: 정공주입층, 215: 정공수송층, 220: 발광층, 230: 전자수송층, 235: 전자주입층, 300: 캡핑층 100: substrate, 110: first electrode, 120: second electrode, 200: organic material layer, 210: hole injection layer, 215: hole transport layer, 220: light emitting layer, 230: electron transport layer, 235: electron injection layer, 300: capping layer

Claims (6)

하기 화학식 1로 표시되는, 유기전계발광소자의 캡핑층용 유기 화합물.
[화학식 1]

상기 화학식 1에 있어서,
A는 벤즈옥사졸, 벤즈티아졸, 벤조퓨란, 벤조싸이오펜, 벤조이미다졸, 카바졸, 다이벤조퓨란, 다이벤조싸이오펜, 페닐, 피리딘, 나프틸 및 퀴놀린 중에서 선택되는 어느 하나이며,
L1 및 L2는 서로 독립적으로 페닐렌기, 피리딜렌기 및 나프틸렌기 중에서 선택되며,
n 및 m은 각각 1 내지 5 인 정수이고,
n 및 m이 각각 2 이상일 경우에 각각의 L1 또는 각각의 L2는 같거나 상이하다.
An organic compound for the capping layer of an organic electroluminescent device, represented by the following formula (1).
[Formula 1]

In Formula 1,
A is any one selected from benzoxazole, benzthiazole, benzofuran, benzothiophene, benzoimidazole, carbazole, dibenzofuran, dibenzothiophene, phenyl, pyridine, naphthyl and quinoline,
L 1 and L 2 are independently selected from phenylene group, pyridylene group and naphthylene group,
n and m are each integers from 1 to 5,
When n and m are each 2 or more, each L 1 or each L 2 is the same or different.
제 1항에 있어서,
상기 화학식 1의 화합물은 하기 화학식 2 내지 화학식 6 중 어느 하나로 표시되는 유기전계발광소자의 캡핑층용 유기 화합물.
[화학식 2]

[화학식 3]

[화학식 4]

[화학식 5]

[화학식 6]

상기 화학식 2 내지 화학식 6에 있어서,
X1 내지 X3는 서로 독립적으로 C 및 N 중에서 선택되고,
Z1 및 Z2은 서로 독립적으로 O, S 및 NR1 중에서 선택되며, R1 은 수소, 메틸, 에틸 및 페닐기 중에 선택되며,
R2은 수소, 메틸, 에틸 및 페닐기 중에서 선택되고,
L1, L2, n 및 m은 상기 화학식 1에서 정의된 것과 같다.
According to clause 1,
The compound of Formula 1 is an organic compound for the capping layer of an organic electroluminescent device represented by any one of Formulas 2 to 6 below.
[Formula 2]

[Formula 3]

[Formula 4]

[Formula 5]

[Formula 6]

In Formulas 2 to 6,
X 1 to X 3 are independently selected from C and N,
Z 1 and Z 2 are independently selected from O, S and NR 1 , R 1 is selected from hydrogen, methyl, ethyl and phenyl groups,
R 2 is selected from hydrogen, methyl, ethyl and phenyl groups,
L 1 , L 2 , n and m are as defined in Formula 1 above.
제 1항에 있어서,
상기 화학식 1은 하기 화학식 7 내지 화학식 11 화합물 중에서 선택되는 유기전계발광소자의 캡핑층용 유기 화합물.
[화학식 7]



















[화학식 8]




















[화학식 9]
























[화학식 10]












































































[화학식 11]


































According to clause 1,
Formula 1 is an organic compound for the capping layer of an organic electroluminescent device selected from compounds of Formulas 7 to 11 below.
[Formula 7]



















[Formula 8]




















[Formula 9]
























[Formula 10]












































































[Formula 11]


































제 1항에 있어서,
상기 화학식 1로 표시되는 유기화합물은 굴절률 상수가 1.69(@620nm) 미만인 것을 특징으로 하는 유기전계발광소자의 캡핑층용 유기화합물.
According to clause 1,
The organic compound represented by Formula 1 is an organic compound for the capping layer of an organic electroluminescent device, characterized in that the refractive index constant is less than 1.69 (@620nm).
제1 전극;
상기 제1 전극 상에 배치된, 복수의 유기물층으로 구성된 유기물층;
상기 유기물층 상에 배치된 제2 전극; 및
상기 제2 전극 상에 배치된 캡핑층;을 포함하고,
상기 캡핑층은 상기 제 1항 내지 제 4항 중 어느 한 항에 따른 유기 화합물을 포함하는 유기전계발광소자.
first electrode;
An organic material layer composed of a plurality of organic material layers disposed on the first electrode;
a second electrode disposed on the organic layer; and
It includes a capping layer disposed on the second electrode,
The capping layer is an organic electroluminescent device comprising the organic compound according to any one of claims 1 to 4.
제 5항에 있어서,
상기 캡핑층은 상이한 굴절률을 가지는 복수개의 층을 포함하여 이루어진 것을 특징으로 하는 유기전계발광소자.
According to clause 5,
An organic electroluminescent device characterized in that the capping layer includes a plurality of layers having different refractive indices.
KR1020220091166A 2022-07-22 2022-07-22 Organic compounds and organic electroluminescent device including the same KR20240013989A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220091166A KR20240013989A (en) 2022-07-22 2022-07-22 Organic compounds and organic electroluminescent device including the same
PCT/KR2023/010167 WO2024019444A1 (en) 2022-07-22 2023-07-17 Organic compound, and organic electroluminescent device comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220091166A KR20240013989A (en) 2022-07-22 2022-07-22 Organic compounds and organic electroluminescent device including the same

Publications (1)

Publication Number Publication Date
KR20240013989A true KR20240013989A (en) 2024-01-31

Family

ID=89618148

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220091166A KR20240013989A (en) 2022-07-22 2022-07-22 Organic compounds and organic electroluminescent device including the same

Country Status (2)

Country Link
KR (1) KR20240013989A (en)
WO (1) WO2024019444A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160062307A (en) 2014-11-24 2016-06-02 삼성디스플레이 주식회사 Organic light emitting diode display compring capping layer having high refractive index

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008205A1 (en) * 2007-07-07 2009-01-15 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and material for organic electroluminescent device
KR20170030427A (en) * 2015-09-09 2017-03-17 주식회사 엘지화학 Organoluminescent device
KR20210141824A (en) * 2020-05-13 2021-11-23 주식회사 랩토 Benzazole derivatives and organic electroluminescent device including the same
KR20210141825A (en) * 2020-05-13 2021-11-23 주식회사 랩토 Benzazole derivatives and organic electroluminescent device including the same
WO2022144018A1 (en) * 2021-01-04 2022-07-07 浙江光昊光电科技有限公司 Organic mixture and application thereof in organic electronic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160062307A (en) 2014-11-24 2016-06-02 삼성디스플레이 주식회사 Organic light emitting diode display compring capping layer having high refractive index

Also Published As

Publication number Publication date
WO2024019444A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
KR102099171B1 (en) Aryl amine derivatieves and organic electroluminescent device including the same
KR102060645B1 (en) Tertiary amine derivatives and organic electroluminescent device including the same
KR102059550B1 (en) Tribenzazole amine derivatives and organic electroluminescent device including the same
KR102517278B1 (en) Triazine or Pyrimidine derivatives, and organic electroluminescent device including the same
KR102252493B1 (en) Benzazole derivatives and organic electroluminescent device including the same
EP4129964A1 (en) Organic compound and organic electroluminescent device comprising same
KR20210141824A (en) Benzazole derivatives and organic electroluminescent device including the same
KR20210141825A (en) Benzazole derivatives and organic electroluminescent device including the same
KR20220030385A (en) Anthracene, Triphenylene derivatives and organic electroluminescent device including the same
KR102517277B1 (en) Cyano-group substituted aryl or heteroaryl derivatives and organic electroluminescent device including the same
KR102417622B1 (en) Tertiary amine derivatives and organic electroluminescent device including the same
KR102470622B1 (en) Tertiary amine derivatives and organic electroluminescent device including the same
KR102261704B1 (en) Tertiary amine derivatives and organic electroluminescent device including the same
KR20230028821A (en) Heteroaryl amine derivatives substituted with cyano group and organic electroluminescent device including the same
KR20230025723A (en) cyano group-substituted carbazole derivatives and organic electroluminescent device including the same
KR102612519B1 (en) Organic compounds and organic electroluminescent device including the same
KR102460493B1 (en) Dibenzo five-membered ring compounds and organic electroluminescent device including the same
KR102274482B1 (en) Heteroaryl derivatives and organic electroluminescent device including the same
KR102561396B1 (en) Diamine derivatives and organic electroluminescent device including the same
KR20240013989A (en) Organic compounds and organic electroluminescent device including the same
KR20190082052A (en) Aryl amine derivatieves and organic electroluminescent device including the same
KR102256222B1 (en) Tertiary amine derivatives and organic electroluminescent device including the same
KR102443601B1 (en) Tertiary amine derivatives and organic electroluminescent device including the same
KR102099172B1 (en) Aryl amine derivatieves and organic electroluminescent device including the same
KR20240013521A (en) Organic compounds and organic electroluminescent device including the same