KR20240013557A - Non-oriented electrical steel sheet and method for manufacturing the same - Google Patents

Non-oriented electrical steel sheet and method for manufacturing the same Download PDF

Info

Publication number
KR20240013557A
KR20240013557A KR1020220091263A KR20220091263A KR20240013557A KR 20240013557 A KR20240013557 A KR 20240013557A KR 1020220091263 A KR1020220091263 A KR 1020220091263A KR 20220091263 A KR20220091263 A KR 20220091263A KR 20240013557 A KR20240013557 A KR 20240013557A
Authority
KR
South Korea
Prior art keywords
weight
steel sheet
electrical steel
oriented electrical
grain size
Prior art date
Application number
KR1020220091263A
Other languages
Korean (ko)
Inventor
이승태
이강노
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020220091263A priority Critical patent/KR20240013557A/en
Publication of KR20240013557A publication Critical patent/KR20240013557A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Abstract

본 발명은 실리콘(Si): 0.1 ~ 0.4 중량%, 망간(Mn): 0.2 ~ 0.5 중량%, 알루미늄(Al): 0 초과 0.1 중량%, 탄소(C): 0 초과 0.003 중량% 이하, 인(P): 0 초과 0.1 중량% 이하, 황(S): 0 초과 0.002 중량% 이하, 질소(N): 0 초과 0.003 중량% 이하, 티타늄(Ti): 0 초과 0.003 중량% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함하되, 최종 미세조직에서 평균 결정립크기는 80 ~ 100㎛이며, 하기 수식1을 만족하는 무방향성 전기강판을 제공한다.
수식1: 20 ≤ [Mn] × [평균 결정립 크기] ≤ 50
(단, 상기 [Mn]은 단위가 중량%인 망간의 함량값이며, 상기 [평균 결정립 크기]는 단위가 ㎛인 평균 결정립 크기의 값임)
The present invention provides silicon (Si): 0.1 to 0.4% by weight, manganese (Mn): 0.2 to 0.5% by weight, aluminum (Al): more than 0 to 0.1% by weight, carbon (C): more than 0 to 0.003% by weight or less, phosphorus ( P): more than 0 and not more than 0.1% by weight, sulfur (S): more than 0 and not more than 0.002% by weight, nitrogen (N): more than 0 and not more than 0.003% by weight, titanium (Ti): more than 0 and not more than 0.003% by weight, and the remaining iron (Fe ) and other inevitable impurities, but the average grain size in the final microstructure is 80 to 100㎛, and provides a non-oriented electrical steel sheet that satisfies Equation 1 below.
Formula 1: 20 ≤ [Mn] × [average grain size] ≤ 50
(However, the [Mn] is the manganese content in weight%, and the [average grain size] is the average grain size in ㎛.)

Description

무방향성 전기강판 및 그 제조 방법{NON-ORIENTED ELECTRICAL STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME} Non-oriented electrical steel sheet and method of manufacturing the same {NON-ORIENTED ELECTRICAL STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME}

본 발명은 무방향성 전기강판 및 그 제조 방법에 관한 것으로서, 보다 상세하게는 고효율 무방향성 전기강판 및 그 제조 방법에 관한 것이다. The present invention relates to a non-oriented electrical steel sheet and a method of manufacturing the same, and more specifically to a high-efficiency non-oriented electrical steel sheet and a method of manufacturing the same.

전기강판은 자기 특성에 따라서 방향성 전기강판과 무방향성 전기강판으로 나눌 수 있다. 방향성 전기강판(oriented electrical steel sheet)은 강판의 압연방향으로 자화가 용이하도록 제조하여 압연 방향으로 특히 우수한 자기 특성을 가지므로, 저철손, 고투자율이 요구되는 대형, 중소형 변압기의 철심으로 주로 사용된다. 이에 반하여, 무방향성 전기강판(non-oriented electrical steel sheet)은 강판의 방향에 관계없이 균일한 자기특성을 가지므로, 소형 전동기나 소형 전원 변압기, 안정기 등의 철심 재료로 널리 사용되고 있다. Electrical steel sheets can be divided into oriented electrical steel sheets and non-oriented electrical steel sheets depending on their magnetic properties. Oriented electrical steel sheet is manufactured to facilitate magnetization in the rolling direction of the steel sheet and has particularly excellent magnetic properties in the rolling direction, so it is mainly used as the iron core of large, small and medium-sized transformers that require low core loss and high magnetic permeability. . In contrast, non-oriented electrical steel sheets have uniform magnetic properties regardless of the direction of the steel sheet, so they are widely used as iron core materials for small electric motors, small power transformers, and stabilizers.

대한민국 특허공개번호 제2015-0001467A호Republic of Korea Patent Publication No. 2015-0001467A

본 발명이 이루고자 하는 기술적 과제는 고주파 철손이 우수한 무방향성 전기강판 및 그 제조 방법을 제공하는 것이다. The technical problem to be achieved by the present invention is to provide a non-oriented electrical steel sheet with excellent high-frequency iron loss and a method of manufacturing the same.

그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.However, these tasks are illustrative and do not limit the scope of the present invention.

상기 과제를 해결하기 위한 본 발명의 일 관점에 따른 무방향성 전기강판은 실리콘(Si): 0.1 ~ 0.4 중량%, 망간(Mn): 0.2 ~ 0.5 중량%, 알루미늄(Al): 0 초과 0.1 중량%, 탄소(C): 0 초과 0.003 중량% 이하, 인(P): 0 초과 0.1 중량% 이하, 황(S): 0 초과 0.002 중량% 이하, 질소(N): 0 초과 0.003 중량% 이하, 티타늄(Ti): 0 초과 0.003 중량% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 무방향성 전기강판이며, 최종 미세조직에서 평균 결정립크기는 80 ~ 100㎛이며, 하기 수식1을 만족한다.The non-oriented electrical steel sheet according to one aspect of the present invention for solving the above problems includes silicon (Si): 0.1 to 0.4 wt%, manganese (Mn): 0.2 to 0.5 wt%, and aluminum (Al): 0 to 0.1 wt%. , Carbon (C): more than 0 and less than 0.003% by weight, phosphorus (P): more than 0 and less than 0.1% by weight, sulfur (S): more than 0 and less than 0.002% by weight, nitrogen (N): more than 0 and less than 0.003% by weight, titanium (Ti): It is a non-oriented electrical steel sheet containing more than 0 and less than 0.003% by weight and the remaining iron (Fe) and other inevitable impurities, and the average grain size in the final microstructure is 80 to 100㎛, satisfying Equation 1 below.

수식1: 20 ≤ [Mn] × [평균 결정립 크기] ≤ 50Formula 1: 20 ≤ [Mn] × [average grain size] ≤ 50

(단, 상기 [Mn]은 단위가 중량%인 망간의 함량값이며, 상기 [평균 결정립 크기]는 단위가 ㎛인 평균 결정립 크기의 값임)(However, the [Mn] is the manganese content in weight%, and the [average grain size] is the average grain size in ㎛.)

상기 무방향성 전기강판의 두께는 0.1 ~ 0.3mm 이며, 평균 철손(W10/400)이 40 ~ 50 W/kg일 수 있다. The thickness of the non-oriented electrical steel sheet is 0.1 to 0.3 mm, and the average iron loss (W 10/400 ) may be 40 to 50 W/kg.

상기 무방향성 전기강판에서, 이력(Hysteresis) 철손(W10/400)은 8 ~ 11W/kg이며, 와전류(Eddy current) 철손(W10/400)은 32 ~ 39W/kg일 수 있다.In the non-oriented electrical steel sheet, hysteresis iron loss (W 10/400 ) may be 8 to 11 W/kg, and eddy current iron loss (W 10/400 ) may be 32 to 39 W/kg.

상기 과제를 해결하기 위한 본 발명의 일 관점에 따른 무방향성 전기강판의 제조 방법은 (a) 실리콘(Si): 0.1 ~ 0.4 중량%, 망간(Mn): 0.2 ~ 0.5 중량%, 알루미늄(Al): 0 초과 0.1 중량%, 탄소(C): 0 초과 0.003 중량% 이하, 인(P): 0 초과 0.1 중량% 이하, 황(S): 0 초과 0.002 중량% 이하, 질소(N): 0 초과 0.003 중량% 이하, 티타늄(Ti): 0 초과 0.003 중량% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함하되 하기 수식1을 만족하는 강재를 제공하는 단계; (b) 상기 강재를 열간 압연하는 단계; (c) 상기 열간 압연된 강재를 냉간 압연하는 단계; 및 (d) 상기 냉간 압연된 강재를 소둔 열처리하는 단계;를 포함한다.A method of manufacturing a non-oriented electrical steel sheet according to one aspect of the present invention to solve the above problem is (a) silicon (Si): 0.1 to 0.4 wt%, manganese (Mn): 0.2 to 0.5 wt%, aluminum (Al) : More than 0 0.1% by weight, Carbon (C): More than 0 but less than 0.003% by weight, Phosphorus (P): More than 0 but less than 0.1% by weight, Sulfur (S): More than 0 but less than 0.002% by weight, Nitrogen (N): More than 0 Providing a steel material containing 0.003 wt% or less, titanium (Ti): more than 0 and 0.003 wt% or less, and the remaining iron (Fe) and other inevitable impurities, but satisfying Equation 1 below; (b) hot rolling the steel; (c) cold rolling the hot rolled steel; and (d) annealing and heat treating the cold rolled steel.

수식1: 20 ≤ [Mn] × [평균 결정립 크기] ≤ 50Formula 1: 20 ≤ [Mn] × [average grain size] ≤ 50

(단, 상기 [Mn]은 단위가 중량%인 망간의 함량값이며, 상기 [평균 결정립 크기]는 단위가 ㎛인 평균 결정립 크기의 값임)(However, the [Mn] is the manganese content in weight%, and the [average grain size] is the average grain size in ㎛.)

상기 무방향성 전기강판의 제조 방법에서, 상기 (b) 단계는 재가열온도(SRT): 1100 ~ 1250℃이고, 마무리 압연 온도(FDT): 800 ~ 1000℃이고, 권취온도(CT): 600 ~ 700℃인 조건으로 수행할 수 있다.In the method of manufacturing the non-oriented electrical steel sheet, step (b) includes reheating temperature (SRT): 1100 to 1250°C, finish rolling temperature (FDT): 800 to 1000°C, and coiling temperature (CT): 600 to 700. It can be performed under conditions of ℃.

상기 무방향성 전기강판의 제조 방법에서, 상기 (d) 단계는 900 ~ 1100℃의 온도범위에서 30 ~ 90초 동안 소둔하는 단계를 포함할 수 있다.In the method of manufacturing the non-oriented electrical steel sheet, step (d) may include annealing for 30 to 90 seconds at a temperature range of 900 to 1,100°C.

상기 무방향성 전기강판의 제조 방법에서, 상기 열간 압연 후 강판 두께는 1.6 ~ 2.6mm이며, 상기 냉간 압연 후 강판 두께는 0.1 ~ 0.3mm이며, 평균 철손(W10/400)이 40 ~ 50 W/kg일 수 있다.In the method of manufacturing the non-oriented electrical steel sheet, the steel sheet thickness after the hot rolling is 1.6 to 2.6 mm, the steel sheet thickness after the cold rolling is 0.1 to 0.3 mm, and the average iron loss (W 10/400 ) is 40 to 50 W/ It may be kg.

본 발명의 실시예에 따르면, 고주파 철손이 우수한 무방향성 전기강판 및 그 제조 방법을 제공할 수 있다.According to an embodiment of the present invention, a non-oriented electrical steel sheet with excellent high-frequency iron loss and a method for manufacturing the same can be provided.

물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.Of course, the scope of the present invention is not limited by this effect.

도 1은 본 발명의 일 실시예에 따른 무방향성 전기강판의 제조 방법을 나타내는 순서도이다.1 is a flowchart showing a method of manufacturing a non-oriented electrical steel sheet according to an embodiment of the present invention.

본 발명의 일 실시예에 따른 무방향성 전기강판의 제조 방법을 상세하게 설명한다. 후술되는 용어들은 본 발명에서의 기능을 고려하여 적절하게 선택된 용어들로서, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. A method for manufacturing a non-oriented electrical steel sheet according to an embodiment of the present invention will be described in detail. The terms described below are terms appropriately selected in consideration of their functions in the present invention, and definitions of these terms should be made based on the content throughout the present specification.

일반적으로 전기강판은 방향성 전기강판과 무방향성 전기강판으로 나뉜다. 방향성 전기강판의 경우 주로 변압기와 같은 정지기에 사용이 되고 무방향성 전기강판은 모터와 발전기 등 회전하는 회전기기에 주로 쓰인다. 최근 글로벌 환경 이슈에 대한 대응으로 기존 내연기관으로부터 이를 대체할 하이브리드자동차(HEV)나 전기자동차(EV) 그리고 수소자동차 등으로 기술이 급격히 전환되고 있다. 전기강판 소재의 특성은 자속밀도와 철손으로 평가할 수 있다. Generally, electrical steel is divided into oriented electrical steel and non-oriented electrical steel. Grain-oriented electrical steel sheets are mainly used in stationary equipment such as transformers, while non-oriented electrical steel sheets are mainly used in rotating equipment such as motors and generators. Recently, in response to global environmental issues, technology is rapidly changing from existing internal combustion engines to replacements such as hybrid vehicles (HEV), electric vehicles (EV), and hydrogen vehicles. The characteristics of electrical steel materials can be evaluated by magnetic flux density and iron loss.

철손은 전기 에너지가 자기 에너지와 기계 에너지로 순차로 에너지 변환되는 과정에서 철심재료인 무방향성 전기강판에서 발생하는 에너지 손실을 의미한다. 철손은 이력(Hysteresis) 철손과 와전류(Eddy current) 철손의 합으로 구성되며, 이력(Hysteresis) 철손과 달리 와전류(Eddy current) 철손은 주파수가 증가할수록 전체 철손 중 비율이 증가한다. 와전류(Eddy current) 철손은 판재 전체에 걸리는 손실과 결정립에 걸리는 손실로 구분된다. Iron loss refers to the energy loss that occurs in the non-oriented electrical steel sheet, which is an iron core material, in the process of sequential energy conversion of electrical energy into magnetic energy and mechanical energy. Iron loss is composed of the sum of hysteresis iron loss and eddy current iron loss. Unlike hysteresis iron loss, eddy current iron loss increases as a percentage of total iron loss as the frequency increases. Eddy current core loss is divided into loss across the entire sheet and loss across grains.

자속밀도는 B50, 철손의 경우 일반적으로 W15/50을 주로 평가하지만 전기자동차와 같이 고주파 특성이 요구되는 경우에는 W10/400 철손으로 평가하고 있다. B50은 5000A/m에서의 자속밀도를 나타내고, W15/50은 50Hz, 1.5T에서의 철손을 나타내고, W10/400은 400Hz, 1.0T에서의 철손을 나타낸다.The magnetic flux density is generally evaluated at B 50 , and the core loss is generally evaluated at W 15/50 , but in cases where high frequency characteristics are required, such as in electric vehicles, the core loss is evaluated at W 10/400 . B 50 represents the magnetic flux density at 5000A/m, W 15/50 represents the iron loss at 50Hz and 1.5T, and W 10/400 represents the iron loss at 400Hz and 1.0T.

기존 무방향성 전기강판들의 일부 강종의 경우, 철손보다는 자속밀도를 더 중요시하는 강종 그룹이 있다. 그러나 최근 전자제품의 발달에 따라 고주파에서의 철손 효율이 중요시되고 있기 때문에, 자속밀도가 더 중요한 등급의 전기강판에서도 고주파의 철손을 감소시켜야 하는 제품 수요가 증가하고 있다. 예를 들어, 실리콘의 함량이 1.6 중량% 이하인 일반재인 무방향성 전기강판에서도 고주파 철손을 감소시키는 방향으로 개발이 진행되고 있다.In the case of some types of existing non-oriented electrical steel sheets, there is a group of steel types that place more importance on magnetic flux density than core loss. However, with the recent development of electronic products, iron loss efficiency at high frequencies has become more important, so the demand for products that must reduce high frequency iron loss is increasing even in electrical steel grades where magnetic flux density is more important. For example, development is underway to reduce high-frequency iron loss in non-oriented electrical steel sheets, which are general materials with a silicon content of 1.6% by weight or less.

도 1은 본 발명의 일 실시예에 따른 무방향성 전기강판의 제조 방법을 나타내는 순서도이다.1 is a flowchart showing a method of manufacturing a non-oriented electrical steel sheet according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 일 실시예에 따른 무방향성 전기강판의 제조 방법은 실리콘(Si), 망간(Mn) 및 알루미늄(Al)을 함유하는 강재를 제공하는 단계(S10); 상기 강재를 열간 압연하는 단계(S20); 상기 열간 압연된 강재를 냉간 압연하는 단계(S40); 및 상기 냉간 압연된 강재를 소둔 열처리하는 단계(S50);를 포함한다. Referring to Figure 1, a method of manufacturing a non-oriented electrical steel sheet according to an embodiment of the present invention includes providing a steel containing silicon (Si), manganese (Mn), and aluminum (Al) (S10); Hot rolling the steel (S20); Cold rolling the hot rolled steel (S40); and a step of annealing and heat treating the cold rolled steel (S50).

한편, 본 발명의 변형된 일 실시예에 따른 무방향성 전기강판의 제조 방법은 선택적으로, 열간 압연하는 단계(S20)와 냉간 압연하는 단계(S40) 사이에 상기 열간 압연된 강재를 열연 소둔 열처리하는 단계(S30)를 더 포함할 수도 있다. Meanwhile, the method of manufacturing a non-oriented electrical steel sheet according to a modified embodiment of the present invention optionally includes hot rolling annealing heat treatment of the hot rolled steel between the hot rolling step (S20) and the cold rolling step (S40). Step S30 may be further included.

강재 제공 단계(S10)Steel provision step (S10)

열간 압연 공정에 투입되는 강재는 무방향성 전기강판을 제조하기 위한 강재이며, 예를 들어, 실리콘(Si): 0.1 ~ 0.4 중량%, 망간(Mn): 0.2 ~ 0.5 중량%, 알루미늄(Al): 0 초과 0.1 중량%, 탄소(C): 0 초과 0.003 중량% 이하, 인(P): 0 초과 0.1 중량% 이하, 황(S): 0 초과 0.002 중량% 이하, 질소(N): 0 초과 0.003 중량% 이하, 티타늄(Ti): 0 초과 0.003 중량% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 각각 포함한다. Steel materials used in the hot rolling process are steel materials for manufacturing non-oriented electrical steel sheets, for example, silicon (Si): 0.1 to 0.4 wt%, manganese (Mn): 0.2 to 0.5 wt%, aluminum (Al): More than 0 0.1 wt%, Carbon (C): More than 0 0.003 wt% or less, Phosphorus (P): More than 0 0.1 wt% or less, Sulfur (S): More than 0 0.002 wt% or less, Nitrogen (N): More than 0 0.003 wt% Weight% or less, titanium (Ti): greater than 0 and less than 0.003% by weight, and the remainder includes iron (Fe) and other unavoidable impurities.

이하에서는, 본 발명의 기술적 사상에 따른 무방향성 전기강판의 제조 방법이 적용될 수 있는 예시적인 조성 성분의 역할 및 함량에 대하여 설명한다. Below, the role and content of exemplary composition components to which the method for manufacturing a non-oriented electrical steel sheet according to the technical idea of the present invention can be applied will be described.

실리콘(Si): 0.1 ~ 0.4 중량%Silicon (Si): 0.1 to 0.4% by weight

실리콘(Si)은 비저항을 증가시켜서 철손(와전류 손실)을 낮추는 성분으로 주요 첨가 원소이다. 실리콘 첨가량이 0.1 중량% 미만으로 낮으면 원하는 고주파 저철손 값을 얻기 어려워지며, 첨가량이 증가할수록 투자율 및 자속밀도가 감소하게 된다. 또한 실리콘 첨가량이 0.4 중량%를 초과하면 취성이 증가하여 냉간 압연이 어렵게 되어 생산성이 저하된다.Silicon (Si) is a major added element that increases resistivity and lowers iron loss (eddy current loss). If the amount of silicon added is low, below 0.1% by weight, it becomes difficult to obtain the desired high-frequency low iron loss value, and as the amount added, the permeability and magnetic flux density decrease. Additionally, if the amount of silicon added exceeds 0.4% by weight, brittleness increases, making cold rolling difficult and productivity decreasing.

망간(Mn): 0.2 ~ 0.5 중량%Manganese (Mn): 0.2 to 0.5% by weight

망간(Mn)은 실리콘과 함께 비저항을 증가시키며 집합조직을 향상시킨다. 망간은 0.5 중량%를 초과하여 첨가하면 조대한 MnS 석출물이 형성되어 자속밀도가 감소되는 등 자기적 성질이 열화된다. 나아가, 망간 함량이 0.5 중량%를 초과하는 경우 첨가량에 비해 철손 감소량이 적은 반면 냉간 압연성 저하가 현저하게 발생한다. 나아가, 망간의 함량이 0.2 중량% 미만인 경우 미세한 MnS 석출물을 형성하여 결정립 성장을 억제할 수 있다는 점에서, 망간의 조성범위는 0.2 ~ 0.5중량%로 조절될 수 있다.Manganese (Mn), along with silicon, increases resistivity and improves texture. If manganese is added in excess of 0.5% by weight, coarse MnS precipitates are formed and magnetic properties are deteriorated, such as reducing magnetic flux density. Furthermore, when the manganese content exceeds 0.5% by weight, the reduction in iron loss is small compared to the addition amount, but cold rolling properties are significantly reduced. Furthermore, if the manganese content is less than 0.2% by weight, fine MnS precipitates can be formed to suppress grain growth, so the composition range of manganese can be adjusted to 0.2 to 0.5% by weight.

알루미늄(Al): 0 초과 0.1 중량%Aluminum (Al): 0 to 0.1% by weight

알루미늄(Al)은 실리콘과 함께 비저항을 증가시켜서 철손(와전류 손실)을 낮추는 성분으로 주요 첨가 원소이다. 알루미늄은 자기이방성을 감소시켜 자성 편차를 감소시키는 역할을 한다. 알루미늄은 질소와 만나 AlN 석출을 유도한다. 알루미늄의 함량이 존재하지 않는 경우 상술한 효과를 기대하기 어려우며 미세한 질화물을 형성하여 자기적 특성 편차를 증가시킬 수 있으며, 알루미늄의 함량이 0.1 중량%를 초과하는 경우 냉간 압연성 저하가 발생하며, 질화물을 과다하게 형성하여 자속밀도가 감소되어 자기적 성질이 열화된다.Aluminum (Al) is a major added element that, along with silicon, increases resistivity and lowers iron loss (eddy current loss). Aluminum plays a role in reducing magnetic deviation by reducing magnetic anisotropy. Aluminum meets nitrogen and induces AlN precipitation. If the aluminum content does not exist, it is difficult to expect the above-mentioned effects, and fine nitrides may be formed, which may increase the variation in magnetic properties. If the aluminum content exceeds 0.1% by weight, cold rolling properties will deteriorate, and nitrides may occur. If formed excessively, the magnetic flux density is reduced and the magnetic properties are deteriorated.

탄소(C): 0 초과 0.003 중량% 이하Carbon (C): greater than 0 and less than or equal to 0.003% by weight

탄소(C)는 TiC, NbC 등 탄화물을 형성하여 철손을 증가시키는 원소로 적을수록 바람직하며 0.003 중량% 이하로 제한한다. 탄소 함량이 0.003 중량%를 초과하는 경우 자기 시효를 일으켜서 자기 특성을 감소시키며 0.003 중량% 이하에서는 자기시효 현상이 억제된다.Carbon (C) is an element that increases iron loss by forming carbides such as TiC and NbC. The smaller the carbon, the more desirable it is, and it is limited to 0.003% by weight or less. If the carbon content exceeds 0.003% by weight, self-aging occurs and magnetic properties are reduced, and if the carbon content is less than 0.003% by weight, the self-aging phenomenon is suppressed.

인(P): 0 초과 0.1 중량% 이하Phosphorus (P): More than 0 and less than 0.1% by weight

인(P)은 결정립계 편석 원소로 집합 조직을 발달시키는 원소이다. 인의 함량이 0.1 중량%를 초과하는 경우 편석 효과로 결정립 성장 억제, 자성기적 성질이 열화되며 냉간압연성 저하가 발생한다.Phosphorus (P) is a grain boundary segregation element that develops texture. If the phosphorus content exceeds 0.1% by weight, grain growth is suppressed due to the segregation effect, magnetic properties are deteriorated, and cold rolling properties are deteriorated.

황(S): 0 초과 0.002 중량% 이하Sulfur (S): greater than 0 and less than or equal to 0.002% by weight

황(S)은 MnS, CuS 등 석출물을 형성하여 철손을 증가시키며, 결정립 성장을 억제시키므로 가능한 낮게 첨가하며 0.002 중량% 이하로 제한한다. 황의 함량이 0.002 중량%를 초과하면 철손이 증가하는 문제점이 나타난다.Sulfur (S) increases iron loss by forming precipitates such as MnS and CuS, and suppresses grain growth, so its addition is limited to 0.002% by weight or less. If the sulfur content exceeds 0.002% by weight, the problem of increased iron loss occurs.

질소(N): 0 초과 0.003 중량% 이하Nitrogen (N): greater than 0 and less than or equal to 0.003% by weight

질소(N)는 AlN, Tin, NbN 등 석출물을 형성하여 철손을 증가시키며, 결정립 성장을 억제시키므로 가능한 낮게 첨가하며 0.003 중량% 이하로 제한한다. 질소의 함량이 0.003 중량%를 초과하면 철손이 증가하는 문제점이 나타난다.Nitrogen (N) increases iron loss by forming precipitates such as AlN, Tin, and NbN, and suppresses grain growth, so its addition is limited to 0.003% by weight or less. If the nitrogen content exceeds 0.003% by weight, the problem of increased iron loss occurs.

티타늄(Ti): 0 초과 0.003 중량% 이하Titanium (Ti): More than 0 and less than 0.003% by weight

티타늄(Ti)은 TiC, TiN 등 미세한 석출물을 형성하여 결정립 성장을 억제시킨다. 티타늄이 첨가할수록 자기적 성질이 열위되므로 가능한 낮게 첨가하며 0.003 중량% 이하로 제한한다. 티타늄의 함량이 0.003 중량%를 초과하면 자기적 성질이 열화되는 문제점이 나타난다.Titanium (Ti) suppresses grain growth by forming fine precipitates such as TiC and TiN. The magnetic properties deteriorate as titanium is added, so the addition is limited to as low as possible and limited to 0.003% by weight or less. If the titanium content exceeds 0.003% by weight, the problem of magnetic properties deterioration occurs.

열간 압연 단계(S20)Hot rolling step (S20)

상술한 조성을 가지는 강재는 열간 압연 공정을 거치게 된다. 상기 강재를 열간 압연하는 단계(S20)는 재가열온도(SRT): 1100 ~ 1250℃이고, 마무리 압연 온도(FDT): 800 ~ 1000℃이고, 권취온도(CT): 600 ~ 700℃인 조건에서 수행될 수 있다. Steel having the above-described composition undergoes a hot rolling process. The step of hot rolling the steel (S20) is performed under the conditions of reheating temperature (SRT): 1100 to 1250°C, finish rolling temperature (FDT): 800 to 1000°C, and coiling temperature (CT): 600 to 700°C. It can be.

슬래브 재가열온도를 1250℃를 초과하는 경우 슬래브 내 C,S,N 등의 석출물이 재고용되어 추후 압연 및 소둔 공정에 미세한 석출물들이 발생하여 결정립 성장을 억제하고 자성이 열화될 수 있다. 슬래브 재가열온도가 1100℃ 미만이면 압연부하가 증가하게 되며 최종제품에서 철손이 높아지는 문제가 발생할 수 있다. If the slab reheating temperature exceeds 1250°C, precipitates such as C, S, and N in the slab may be re-dissolved and fine precipitates may be generated in the subsequent rolling and annealing process, suppressing grain growth and deteriorating magnetism. If the slab reheating temperature is less than 1100°C, the rolling load increases and a problem of increased iron loss in the final product may occur.

상기 강재를 열간 압연하는 단계(S20)를 수행한 후 열연판의 두께는, 예를 들어, 1.6 ~ 2.6mm일 수 있다. 열연판 두께가 두꺼울수록 냉간 압연 압하율이 증가하게 되어 집합조직이 열위되므로 두께를 2.6mm 이하로 제어하는 것이 바람직하다.After performing the step (S20) of hot rolling the steel, the thickness of the hot rolled sheet may be, for example, 1.6 to 2.6 mm. As the thickness of the hot-rolled sheet increases, the cold rolling reduction rate increases and the texture becomes inferior, so it is desirable to control the thickness to 2.6 mm or less.

상기 열간 압연된 강재는 권취온도(CT): 600 ~ 700℃인 조건에서 권취될 수 있다. 권취온도가 600℃ 미만인 경우 강재의 소둔 효과가 없어서 결정립 성장이 되지 않으며, 권취온도가 700℃를 초과하는 경우 냉각시 산화가 많아질 수 있어서 산세성이 나빠질 수 있다. The hot rolled steel may be coiled under conditions of coiling temperature (CT): 600 to 700°C. If the coiling temperature is less than 600°C, there is no annealing effect on the steel, so grain growth does not occur. If the coiling temperature is higher than 700°C, oxidation may increase during cooling, which may worsen pickling properties.

냉간 압연 단계(S40)Cold rolling step (S40)

상기 열간 압연된 강재를 냉간 압연하는 단계(S40)를 수행한다. 냉간 압연의 압하율은 81 ~ 92%이며, 냉연 후 강재의 두께는 0.1 ~ 0.3mm일 수 있다. 압연성을 부여하기 위하여 판온을 100 ~ 200℃로 상승시켜 온간 압연할 수 있다.A step (S40) of cold rolling the hot rolled steel is performed. The reduction rate of cold rolling is 81 to 92%, and the thickness of the steel after cold rolling can be 0.1 to 0.3 mm. In order to provide rolling properties, warm rolling can be performed by raising the plate temperature to 100 to 200°C.

소둔 열처리 단계(S50)Annealing heat treatment step (S50)

상기 냉간 압연된 강재를 소둔 열처리할 수 있다. 상기 소둔 열처리는 냉연판을 최종 소둔 하는 ACL(Annealing and Coating Line) 단계로서 냉연 소둔 처리로 이해할 수 있다. 상기 소둔 열처리하는 단계(S50)는 승온속도: 10℃/s 이상, 어닐링 온도: 900 ~ 1100℃, 유지 시간: 30 ~ 90초의 조건으로 어닐링하는 단계 및 냉각속도: 30℃/s 이상인 조건으로 냉각하는 단계를 포함할 수 있다. The cold rolled steel may be annealed and heat treated. The annealing heat treatment is the ACL (Annealing and Coating Line) step of final annealing the cold rolled sheet and can be understood as cold rolled annealing treatment. The annealing heat treatment step (S50) is annealing under the conditions of temperature increase rate: 10°C/s or more, annealing temperature: 900 to 1100°C, holding time: 30 to 90 seconds, and cooling under the conditions of cooling rate: 30°C/s or more. It may include steps.

소둔 열처리는 냉간 압연 후 얻어진 냉연판을 가지고 진행한다. 철손 향상 및 기계적 성질을 고려하여 최적의 결정립 크기를 도출하는 온도를 적용한다. 냉연 소둔에서 표면 산화 및 질화를 방지하기 위하여 혼합 분위기 조건으로 가열한다. 질소 및 수소의 혼합 분위기를 통해 표면 상태를 더욱 매끄럽게 한다. 냉연 소둔 온도가 900℃ 미만이면 결정립 크기가 미세하여 이력 손실이 증가할 수 있고, 냉연 소둔 온도가 1100℃를 초과하면 결정립 크기가 조대해지고 와전류 손실이 증가하게 된다. Annealing heat treatment is performed on the cold-rolled sheet obtained after cold rolling. The temperature that derives the optimal grain size is applied considering the improvement of iron loss and mechanical properties. In cold rolling annealing, heating is performed under mixed atmosphere conditions to prevent surface oxidation and nitriding. The surface condition becomes smoother through a mixed atmosphere of nitrogen and hydrogen. If the cold rolling annealing temperature is less than 900°C, the grain size may be fine and hysteresis loss may increase, and if the cold rolling annealing temperature exceeds 1100°C, the grain size may become coarse and eddy current loss may increase.

상기 냉연 소둔 열처리 후 최종 미세조직에서 평균 결정립크기는 80 ~ 100㎛일 수 있다.The average grain size in the final microstructure after the cold rolling annealing heat treatment may be 80 to 100 μm.

한편, 최종 냉연 소둔 후 절연 코팅층을 형성하기 위하여 코팅 공정을 실시할 수 있다. 절연 코팅층을 형성함으로써 타발성 향상 및 절연성을 확보할 수 있다. 냉연재 상부 및 하부에 각각 형성된 절연 코팅층의 두께는 약 1 ~ 2㎛일 수 있다.Meanwhile, after the final cold rolling annealing, a coating process may be performed to form an insulating coating layer. By forming an insulating coating layer, punchability can be improved and insulation properties can be secured. The thickness of the insulating coating layer formed on the top and bottom of the cold rolled material may be about 1 to 2 μm.

한편, 본 발명의 변형된 일 실시예에 따른 무방향성 전기강판의 제조 방법은 선택적으로, 열간 압연하는 단계(S20)와 냉간 압연하는 단계(S40) 사이에 상기 열간 압연된 강재를 열연 소둔 열처리하는 단계(S30)를 더 포함할 수도 있다. 상기 열연 소둔 열처리는 제 1 소둔 열처리로, 상기 냉연 소둔 열처리는 제 2 소둔 열처리로 구분할 수 있다. Meanwhile, the method of manufacturing a non-oriented electrical steel sheet according to a modified embodiment of the present invention optionally includes hot rolling annealing heat treatment of the hot rolled steel between the hot rolling step (S20) and the cold rolling step (S40). Step S30 may be further included. The hot rolling annealing heat treatment can be divided into a first annealing heat treatment, and the cold rolling annealing heat treatment can be divided into a second annealing heat treatment.

상기 열연 소둔 열처리는 열연판을 소둔 및 산세하는 APL(Annealing and Pickling Line) 단계로서 예비 소둔 처리로 이해할 수 있다. 상기 열연 소둔 열처리하는 단계(S30)는 승온속도: 10℃/s 이상으로 승온한 후에 900 ~ 1050℃의 온도에서 어닐링을 시작하여 30 ~ 90초 동안 유지하는 어닐링 공정을 포함할 수 있다. 어닐링 후에 상기 강재는 20℃/s 이상의 냉각 속도로 냉각될 수 있다. 냉각 후 산세 처리하는 단계를 더 포함할 수 있다.The hot-rolled annealing heat treatment is an APL (Annealing and Pickling Line) step of annealing and pickling a hot-rolled sheet and can be understood as a preliminary annealing treatment. The hot rolling annealing heat treatment step (S30) may include an annealing process in which annealing is started at a temperature of 900 to 1050°C after raising the temperature at a temperature increase rate of 10°C/s or more and maintained for 30 to 90 seconds. After annealing, the steel may be cooled at a cooling rate of 20° C./s or more. The step of pickling after cooling may be further included.

열간압연 후 미세조직 균일성 및 냉간압연성 확보를 위하여 열연 소둔 공정을 실시할 수 있다. 열연 소둔 온도는 연신된 주조조직이 제거된 균일한 미세조직을 형성할 있도록 900 ~ 1050℃에서 조절된다. 제 1 소둔 온도가 900℃ 미만으로 너무 낮은 경우 열간압연 후 잔류해 있는 연신된 주조조직이 잔류하여 미세조직 불균일을 유발하고 결정립이 작게 형성되어 냉간 압연의 방해 요소로 작용할 수 있다. 반면 열연 소둔 온도가 1050℃를 초과하여 너무 높을 경우 최종 제품의 집합조직 불균형을 유발하여 특성의 이방성이 나타나는 원인이 된다.After hot rolling, a hot rolling annealing process can be performed to ensure microstructure uniformity and cold rolling properties. The hot rolling annealing temperature is adjusted at 900 to 1050°C to form a uniform microstructure with the stretched cast structure removed. If the first annealing temperature is too low, below 900°C, the stretched cast structure remaining after hot rolling may remain, causing microstructure unevenness and forming small crystal grains, which may act as an obstacle to cold rolling. On the other hand, if the hot-rolled annealing temperature is too high, exceeding 1050℃, it causes an imbalance in the texture of the final product and causes anisotropy in properties.

상술한 제조 방법으로 구현된 무방향성 전기강판은, 실리콘(Si): 0.1 ~ 0.4 중량%, 망간(Mn): 0.2 ~ 0.5 중량%, 알루미늄(Al): 0 초과 0.1 중량%, 탄소(C): 0 초과 0.003 중량% 이하, 인(P): 0 초과 0.1 중량% 이하, 황(S): 0 초과 0.002 중량% 이하, 질소(N): 0 초과 0.003 중량% 이하, 티타늄(Ti): 0 초과 0.003 중량% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 무방향성 전기강판이며, 최종 미세조직에서 평균 결정립크기는 80 ~ 100㎛이며, 하기 수식1을 만족한다.The non-oriented electrical steel sheet implemented by the above-described manufacturing method includes silicon (Si): 0.1 to 0.4% by weight, manganese (Mn): 0.2 to 0.5% by weight, aluminum (Al): 0.1% by weight exceeding 0, and carbon (C). : More than 0 and less than or equal to 0.003% by weight, Phosphorus (P): More than 0 and less than or equal to 0.1% by weight, Sulfur (S): More than 0 and less than or equal to 0.002% by weight, Nitrogen (N): More than 0 and less than or equal to 0.003% by weight, Titanium (Ti): 0 It is a non-oriented electrical steel sheet containing less than 0.003% by weight of iron (Fe) and other inevitable impurities, and the average grain size in the final microstructure is 80 to 100㎛, satisfying Equation 1 below.

수식1: 20 ≤ [Mn] × [평균 결정립 크기] ≤ 50Formula 1: 20 ≤ [Mn] × [average grain size] ≤ 50

(단, 상기 [Mn]은 단위가 중량%인 망간의 함량값이며, 상기 [평균 결정립 크기]는 단위가 ㎛인 평균 결정립 크기의 값임)(However, the [Mn] is the manganese content in weight%, and the [average grain size] is the average grain size in ㎛.)

상기 전기강판의 두께는 0.1 ~ 0.3mm 이며, 평균 철손(W10/400)이 40 ~ 50 W/kg이며, 상기 평균 철손 중에서 이력(Hysteresis) 철손(W10/400)은 8 ~ 11W/kg이며, 와전류(Eddy current) 철손(W10/400)은 32 ~ 39W/kg일 수 있다. The thickness of the electrical steel sheet is 0.1 to 0.3 mm, the average iron loss (W 10/400 ) is 40 to 50 W/kg, and among the average iron losses, the hysteresis iron loss (W 10/400 ) is 8 to 11 W/kg. And the eddy current iron loss (W 10/400 ) may be 32 to 39 W/kg.

상술한 조성의 무방향성 전기강판은 자속밀도의 향상에 집중된 강종이기 때문에 고주파 철손의 효율이 떨어지는 문제점이 있었다. 본 발명에서는 조성 성분을 조절하고 결정립 크기를 제어하여 고주파 철손을 감소시킨 무방향성 전기강판 및 그 제조방법을 제공한다. Since the non-oriented electrical steel sheet of the above-described composition is a steel type focused on improving magnetic flux density, there is a problem in that the efficiency of high-frequency iron loss is low. The present invention provides a non-oriented electrical steel sheet and a manufacturing method thereof in which high-frequency iron loss is reduced by controlling the composition and grain size.

실험예Experiment example

이하 본 발명의 이해를 돕기 위해 바람직한 실험예를 제시한다. 다만, 다음의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 다음의 실험예에 의해 한정되는 것은 아니다. Below, preferred experimental examples are presented to aid understanding of the present invention. However, the following experimental examples are only intended to aid understanding of the present invention, and the present invention is not limited by the following experimental examples.

1. 시편의 조성1. Composition of the Psalm

본 실험예에서는 표 1의 합금 원소 조성(단위: 중량%)을 가지는 시편들을 제공한다.In this experimental example, specimens having the alloy element composition (unit: weight%) shown in Table 1 are provided.

SiSi MnMn AlAl CC PP SS NN TiTi Bal.Bal. 0.30.3 가변variable 0.0020.002 0.00250.0025 0.0050.005 0.00140.0014 0.00180.0018 0.00110.0011 FeFe

상기 조성을 가지는 슬래브를 1130℃로 재가열하고 마무리압연온도(FDT)가 850℃인 조건으로 열간 압연 실시 후 2.3mm두께를 가지는 열연판을 제조하였다. 열연판을 1000℃에서 예비소둔 열처리한 후 0.3mm의 두께로 냉간 압연하였다. 냉간 압연된 강판을 900 ~ 1100℃의 온도에서 60초동안 최종 소둔하여 무방향성 전기강판을 제조하였다.The slab having the above composition was reheated to 1130°C and hot rolled at a finish rolling temperature (FDT) of 850°C to produce a hot rolled sheet with a thickness of 2.3 mm. The hot-rolled sheet was pre-annealed at 1000°C and then cold-rolled to a thickness of 0.3 mm. Non-oriented electrical steel sheets were manufactured by final annealing the cold rolled steel sheets at a temperature of 900 to 1100°C for 60 seconds.

2. 공정 조건 및 물성 평가2. Evaluation of process conditions and physical properties

표 2는 본 실험예의 전기강판의 망간 조성(단위: 중량%), 냉연 소둔 열처리 온도와 조직 및 물성 평가 결과를 나타낸 것이다. 최종 소둔 분위기 온도는 수소 30% - 질소 70%의 혼합분위기에서 실시하였다. 이때 승온속도는 10℃/s, 냉각속도는 30℃/s로 진행하였다. Table 2 shows the manganese composition (unit: weight %), cold rolling annealing heat treatment temperature, and structure and physical property evaluation results of the electrical steel sheet of this experimental example. The final annealing atmosphere temperature was conducted in a mixed atmosphere of 30% hydrogen and 70% nitrogen. At this time, the temperature increase rate was 10°C/s and the cooling rate was 30°C/s.

Mn
(%)
Mn
(%)
ACL
소둔온도
(℃)
ACL
Annealing temperature
(℃)
평균
결정립
크기
(㎛)
average
grain
size
(㎛)
Mn (%) x
결정립(㎛)
Mn (%) x
Crystal grain (㎛)
평균 철손
W10/400
(W/kg)
average core loss
W 10/400
(W/kg)
이력
철손 W10/400
(W/kg)
Record
Core loss W 10/400
(W/kg)
와전류
철손 W10/400
(W/kg)
eddy current
Core loss W 10/400
(W/kg)
철손
표준편차
(W/kg)
iron loss
Standard Deviation
(W/kg)
실험예1Experimental Example 1 0.120.12 900900 66.966.9 8.708.70 57.857.8 11.111.1 46.746.7 0.40.4 실험예2Experimental Example 2 0.170.17 900900 64.164.1 10.9010.90 60.160.1 10.610.6 49.549.5 0.60.6 실험예3Experimental Example 3 0.190.19 900900 75.175.1 1515 52.652.6 13.213.2 39.439.4 0.60.6 실험예4Experimental Example 4 0.40.4 950950 81.081.0 32.432.4 47.647.6 9.19.1 38.538.5 0.50.5 실험예5Experimental Example 5 0.50.5 950950 82.582.5 41.2541.25 41.841.8 9.29.2 32.632.6 0.60.6 실험예6Experimental Example 6 0.350.35 950950 83.383.3 29.0529.05 43.943.9 9.99.9 3434 0.70.7 실험예7Experimental Example 7 0.650.65 10001000 115.9115.9 75.33575.335 51.651.6 7.77.7 43.943.9 0.40.4 실험예8Experimental Example 8 0.720.72 10501050 130.7130.7 94.10494.104 55.955.9 6.96.9 49.049.0 0.50.5

표 2를 참조하면, 실험예4 내지 실험예6은 실리콘(Si): 0.1 ~ 0.4 중량%, 망간(Mn): 0.2 ~ 0.5 중량%, 알루미늄(Al): 0 초과 0.1 중량%, 탄소(C): 0 초과 0.003 중량% 이하, 인(P): 0 초과 0.1 중량% 이하, 황(S): 0 초과 0.002 중량% 이하, 질소(N): 0 초과 0.003 중량% 이하, 티타늄(Ti): 0 초과 0.003 중량% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함하되 수식1(20 ≤ [Mn] × [평균 결정립 크기] ≤ 50)을 만족하는 강재에서, 900 ~ 1100℃의 온도범위에서 30 ~ 90초 동안 냉연 소둔 열처리를 적용한 경우, 최종 미세조직에서 평균 결정립크기는 80 ~ 100㎛을 만족하고, 전기강판의 두께가 0.3mm에서 평균 철손(W10/400)이 40 ~ 50 W/kg이며, 이력(Hysteresis) 철손(W10/400)은 8 ~ 11W/kg이며, 와전류(Eddy current) 철손(W10/400)은 32 ~ 39W/kg을 만족하는 것을 확인할 수 있다.Referring to Table 2, Experimental Examples 4 to 6 include silicon (Si): 0.1 to 0.4% by weight, manganese (Mn): 0.2 to 0.5% by weight, aluminum (Al): 0.1% by weight exceeding 0, and carbon (C ): more than 0 and less than 0.003% by weight, phosphorus (P): more than 0 and less than 0.1% by weight, sulfur (S): more than 0 and less than 0.002% by weight, nitrogen (N): more than 0 and less than 0.003% by weight, titanium (Ti): In steel that contains more than 0.003% by weight and the remaining iron (Fe) and other inevitable impurities, but satisfies Equation 1 (20 ≤ [Mn] × [average grain size] ≤ 50), in the temperature range of 900 to 1100°C When cold-rolled annealing heat treatment is applied for 30 to 90 seconds, the average grain size in the final microstructure satisfies 80 to 100㎛, and the average iron loss (W 10/400 ) is 40 to 50 W/ when the thickness of the electrical steel sheet is 0.3mm. kg, and the hysteresis iron loss (W 10/400 ) is 8 to 11 W/kg, and the eddy current iron loss (W 10/400 ) satisfies 32 to 39 W/kg.

이에 반하여, 실험예1 내지 실험예3은 망간(Mn): 0.2 ~ 0.5 중량%의 범위를 하회하여 만족하지 못하며, 평균 결정립크기: 80 ~ 100㎛의 범위를 하회하여 만족하지 못하며, [Mn] × [평균 결정립 크기]의 값이 20 미만이며, 전기강판의 두께가 0.3mm인 경우 평균 철손(W10/400)이 50 W/kg을 상회하며, 이력(Hysteresis) 철손(W10/400)은 11W/kg을 상회하며, 와전류(Eddy current) 철손(W10/400)이 39W/kg을 상회함을 확인할 수 있다.On the other hand, Experimental Examples 1 to 3 were not satisfied as the manganese (Mn): fell below the range of 0.2 to 0.5% by weight, and the average grain size: fell below the range of 80 to 100㎛, so [Mn] × If the value of [average grain size] is less than 20 and the thickness of the electrical steel sheet is 0.3mm, the average iron loss (W 10/400 ) exceeds 50 W/kg, and the hysteresis iron loss (W 10/400 ) It can be confirmed that it exceeds 11W/kg, and the eddy current iron loss (W 10/400 ) exceeds 39W/kg.

또한, 실험예7 내지 실험예8은 망간(Mn): 0.2 ~ 0.5 중량%의 범위를 상회하여 만족하지 못하며, 평균 결정립크기: 80 ~ 100㎛의 범위를 상회하여 만족하지 못하며, [Mn] × [평균 결정립 크기]의 값이 50을 초과하며, 전기강판의 두께가 0.3mm인 경우 평균 철손(W10/400)이 50 W/kg을 상회하며, 와전류(Eddy current) 철손(W10/400)이 39W/kg을 상회함을 확인할 수 있다.In addition, Experimental Examples 7 to 8 were not satisfied as the manganese (Mn): exceeded the range of 0.2 to 0.5% by weight, and the average grain size: was not satisfied as it exceeded the range of 80 to 100㎛, [Mn] × When the value of [average grain size] exceeds 50 and the thickness of the electrical steel sheet is 0.3 mm, the average iron loss (W 10/400 ) exceeds 50 W/kg, and the eddy current iron loss (W 10/400 ) ) can be confirmed to exceed 39W/kg.

결정립 크기가 너무 작으면 이력(Hysteresis) 철손이 커지고 이상(Anomalous) 철손은 작아진다. 반대로 결정립 크기가 너무 크면 이력(Hysteresis) 철손이 작아지고 이상(Anomalous) 철손은 작아진다. 이에 따라 결정립 크기는 적정 범위로 제어되어야 하며, 이를 위해 냉연 소둔(ACL 소둔) 온도로 결정립 크기가 제어된다. If the grain size is too small, the hysteresis iron loss becomes larger and the anomalous iron loss becomes smaller. Conversely, if the grain size is too large, the hysteresis iron loss becomes smaller and the anomalous iron loss becomes smaller. Accordingly, the grain size must be controlled within an appropriate range, and for this purpose, the grain size is controlled by the cold rolled annealing (ACL annealing) temperature.

실험예1 내지 실험예3은 비교예로서 기존 성분계와 유사하며, 평균 결정립 크기가 60 ~ 80 ㎛이며 Mn 함량도 0.2중량% 미만이다. 이에 따라 평균 고주파 철손인 W10/400 이 상대적으로 높으며, Mn 함량이 낮기 때문에 와전류 철손 값도 높다. Experimental Examples 1 to 3 are comparative examples and are similar to existing composition systems, with an average grain size of 60 to 80 ㎛ and an Mn content of less than 0.2% by weight. Accordingly, the average high-frequency iron loss, W 10/400 , is relatively high, and because the Mn content is low, the eddy current iron loss value is also high.

실험예4 내지 실험예6은 실시예로서 실험예1 내지 실험예3 대비 Mn 함량이 높고, 평균 결정립 크기를 80 ㎛ 이상으로 제어하였다. 이에 따라 와전류 철손이 크게 저하되면서, 고주파 철손값이 40~ 50 W/kg로 현저히 저감되었다. 이 때의 기준은 20 ≤ Mn(wt%) x 결정립 크기(㎛) ≤ 50이다. Experimental Examples 4 to 6 are examples, and the Mn content is higher than that of Experimental Examples 1 to 3, and the average grain size is controlled to 80 ㎛ or more. As a result, the eddy current iron loss was greatly reduced, and the high-frequency iron loss value was significantly reduced to 40~50 W/kg. The standard at this time is 20 ≤ Mn (wt%) x grain size (㎛) ≤ 50.

실험예7 내지 실험예8은 Mn 함량이 기준인 0.2 ~ 0.5%보다 높고, 평균 결정립 크기가 100 ㎛ 이상으로 조대하다. 결정립 크기 감소로 이력 철손은 상대적으로 감소하였으나, 와전류 철손의 측면에서는 오히려 이상 와전류(Anomalous eddy current) 철손이 증가했다. 이로 인해 Mn 첨가로 인한 와전류 철손 감소 효과와 상쇄되므로, 고주파 철손이 저감되지 못한 비교예이다. 또한 지나치게 높은 Mn 수치는 개재물/석출물 생성으로 자성 열화가 발생할 수 있다.In Experimental Examples 7 to 8, the Mn content is higher than the standard 0.2 to 0.5%, and the average grain size is coarse at 100 ㎛ or more. As the grain size decreased, the hysteresis iron loss was relatively reduced, but in terms of eddy current iron loss, the anomalous eddy current iron loss actually increased. This is a comparative example in which high-frequency iron loss is not reduced because the effect of reducing eddy current iron loss due to the addition of Mn is offset. Additionally, excessively high Mn levels may cause magnetic deterioration due to the formation of inclusions/precipitates.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.Although the above description focuses on the embodiments of the present invention, various changes and modifications can be made at the level of those skilled in the art. These changes and modifications can be said to belong to the present invention as long as they do not depart from the scope of the present invention. Therefore, the scope of rights of the present invention should be determined by the claims described below.

Claims (8)

실리콘(Si): 0.1 ~ 0.4 중량%, 망간(Mn): 0.2 ~ 0.5 중량%, 알루미늄(Al): 0 초과 0.1 중량%, 탄소(C): 0 초과 0.003 중량% 이하, 인(P): 0 초과 0.1 중량% 이하, 황(S): 0 초과 0.002 중량% 이하, 질소(N): 0 초과 0.003 중량% 이하, 티타늄(Ti): 0 초과 0.003 중량% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 무방향성 전기강판이며,
최종 미세조직에서 평균 결정립크기는 80 ~ 100㎛이며,
하기 수식1을 만족하는 것을 특징으로 하는,
무방향성 전기강판.
수식1: 20 ≤ [Mn] × [평균 결정립 크기] ≤ 50
(단, 상기 [Mn]은 단위가 중량%인 망간의 함량값이며, 상기 [평균 결정립 크기]는 단위가 ㎛인 평균 결정립 크기의 값임)
Silicon (Si): 0.1 to 0.4% by weight, Manganese (Mn): 0.2 to 0.5% by weight, Aluminum (Al): more than 0 to 0.1% by weight, Carbon (C): more than 0 to 0.003% by weight or less, phosphorus (P): Exceeding 0 and not exceeding 0.1% by weight, Sulfur (S): exceeding 0 and not exceeding 0.002% by weight, Nitrogen (N): exceeding 0 and not exceeding 0.003% by weight, Titanium (Ti): exceeding 0 and not exceeding 0.003% by weight, and the remaining iron (Fe) and others It is a non-oriented electrical steel sheet containing inevitable impurities.
The average grain size in the final microstructure is 80 to 100㎛,
Characterized by satisfying the following equation 1,
Non-oriented electrical steel sheet.
Formula 1: 20 ≤ [Mn] × [average grain size] ≤ 50
(However, the [Mn] is the manganese content in weight%, and the [average grain size] is the average grain size in ㎛.)
제 1 항에 있어서,
상기 전기강판의 두께는 0.1 ~ 0.3mm 이며, 평균 철손(W10/400)이 40 ~ 50 W/kg인 것을 특징으로 하는,
무방향성 전기강판.
According to claim 1,
The thickness of the electrical steel sheet is 0.1 to 0.3 mm, and the average iron loss (W 10/400 ) is 40 to 50 W/kg,
Non-oriented electrical steel sheet.
제 3 항에 있어서,
이력(Hysteresis) 철손(W10/400)은 8 ~ 11W/kg이며, 와전류(Eddy current) 철손(W10/400)은 32 ~ 39W/kg인 것을 특징으로 하는,
무방향성 전기강판.
According to claim 3,
Hysteresis iron loss (W 10/400 ) is 8 to 11 W/kg, and eddy current iron loss (W 10/400 ) is 32 to 39 W/kg.
Non-oriented electrical steel sheet.
(a) 실리콘(Si): 0.1 ~ 0.4 중량%, 망간(Mn): 0.2 ~ 0.5 중량%, 알루미늄(Al): 0 초과 0.1 중량%, 탄소(C): 0 초과 0.003 중량% 이하, 인(P): 0 초과 0.1 중량% 이하, 황(S): 0 초과 0.002 중량% 이하, 질소(N): 0 초과 0.003 중량% 이하, 티타늄(Ti): 0 초과 0.003 중량% 이하 및 나머지 철(Fe)과 기타 불가피한 불순물을 포함하되 하기 수식1을 만족하는 강재를 제공하는 단계;
(b) 상기 강재를 열간 압연하는 단계;
(c) 상기 열간 압연된 강재를 냉간 압연하는 단계; 및
(d) 상기 냉간 압연된 강재를 소둔 열처리하는 단계;를 포함하는,
무방향성 전기강판의 제조 방법.
수식1: 20 ≤ [Mn] × [평균 결정립 크기] ≤ 50
(단, 상기 [Mn]은 단위가 중량%인 망간의 함량값이며, 상기 [평균 결정립 크기]는 단위가 ㎛인 평균 결정립 크기의 값임)
(a) Silicon (Si): 0.1 to 0.4 wt%, Manganese (Mn): 0.2 to 0.5 wt%, Aluminum (Al): 0 to 0.1 wt%, Carbon (C): 0 to 0.003 wt% or less, phosphorus ( P): more than 0 and not more than 0.1% by weight, sulfur (S): more than 0 and not more than 0.002% by weight, nitrogen (N): more than 0 and not more than 0.003% by weight, titanium (Ti): more than 0 and not more than 0.003% by weight, and the remaining iron (Fe ) and other unavoidable impurities, but providing a steel that satisfies Equation 1 below;
(b) hot rolling the steel;
(c) cold rolling the hot rolled steel; and
(d) annealing heat treatment of the cold rolled steel; including,
Method for manufacturing non-oriented electrical steel sheet.
Formula 1: 20 ≤ [Mn] × [average grain size] ≤ 50
(However, the [Mn] is the manganese content in weight%, and the [average grain size] is the average grain size in ㎛.)
제 4 항에 있어서,
상기 (b) 단계는 재가열온도(SRT): 1100 ~ 1250℃이고, 마무리 압연 온도(FDT): 800 ~ 1000℃이고, 권취온도(CT): 600 ~ 700℃인 조건으로 수행하는,
무방향성 전기강판의 제조 방법.
According to claim 4,
Step (b) is performed under the conditions of reheating temperature (SRT): 1100 to 1250°C, finish rolling temperature (FDT): 800 to 1000°C, and coiling temperature (CT): 600 to 700°C.
Method for manufacturing non-oriented electrical steel sheet.
제 5 항에 있어서,
상기 (d) 단계는 900 ~ 1100℃의 온도범위에서 30 ~ 90초 동안 소둔하는 단계를 포함하는,
무방향성 전기강판의 제조 방법.
According to claim 5,
Step (d) includes annealing for 30 to 90 seconds at a temperature range of 900 to 1100°C.
Method for manufacturing non-oriented electrical steel sheet.
제 5 항에 있어서,
상기 (d) 단계 후 최종 미세조직에서 평균 결정립크기는 80 ~ 100㎛인,
무방향성 전기강판의 제조 방법.
According to claim 5,
The average grain size in the final microstructure after step (d) is 80 to 100 ㎛,
Method for manufacturing non-oriented electrical steel sheet.
제 6 항에 있어서,
상기 열간 압연 후 강판 두께는 1.6 ~ 2.6mm이며, 상기 냉간 압연 후 강판 두께는 0.1 ~ 0.3mm이며, 평균 철손(W10/400)이 40 ~ 50 W/kg인 것을 특징으로 하는,
무방향성 전기강판의 제조 방법.




According to claim 6,
The thickness of the steel sheet after the hot rolling is 1.6 to 2.6 mm, the thickness of the steel sheet after the cold rolling is 0.1 to 0.3 mm, and the average iron loss (W 10/400 ) is 40 to 50 W/kg,
Method for manufacturing non-oriented electrical steel sheet.




KR1020220091263A 2022-07-22 2022-07-22 Non-oriented electrical steel sheet and method for manufacturing the same KR20240013557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220091263A KR20240013557A (en) 2022-07-22 2022-07-22 Non-oriented electrical steel sheet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220091263A KR20240013557A (en) 2022-07-22 2022-07-22 Non-oriented electrical steel sheet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR20240013557A true KR20240013557A (en) 2024-01-30

Family

ID=89715454

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220091263A KR20240013557A (en) 2022-07-22 2022-07-22 Non-oriented electrical steel sheet and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR20240013557A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150001467A (en) 2013-06-27 2015-01-06 현대제철 주식회사 Oriented electrical steel sheet and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150001467A (en) 2013-06-27 2015-01-06 현대제철 주식회사 Oriented electrical steel sheet and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4804478B2 (en) Method for producing non-oriented electrical steel sheet with improved magnetic flux density
KR101223113B1 (en) Method for manufacturing non-oriented electrical steel sheets having excellent magnetic properties and high permeability and non-oriented electrical steel sheets thereof
JP7350063B2 (en) Non-oriented electrical steel sheet and its manufacturing method
KR102278897B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101728827B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101286245B1 (en) Semiprocess non-oriented electrical steel sheets with superior magnetic properties and method for manufacturing the same
KR20150016434A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102353673B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101707452B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101701195B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101919529B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20240013557A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20240012071A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150015308A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20240011530A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102513317B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102361872B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20240000243A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR100240984B1 (en) The manufacturing method for 0.5mm oriented electric steelsheet
KR20240015427A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR100321035B1 (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment
KR20240012072A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR100865317B1 (en) Non orient electric steel sheet and the manufacturing method thereof
KR100721865B1 (en) Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
KR20240000242A (en) Non-oriented electrical steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal