KR20240009387A - Manufacturing method of high-capacity low-voltage electrode foil for automotive electronics - Google Patents

Manufacturing method of high-capacity low-voltage electrode foil for automotive electronics Download PDF

Info

Publication number
KR20240009387A
KR20240009387A KR1020237034833A KR20237034833A KR20240009387A KR 20240009387 A KR20240009387 A KR 20240009387A KR 1020237034833 A KR1020237034833 A KR 1020237034833A KR 20237034833 A KR20237034833 A KR 20237034833A KR 20240009387 A KR20240009387 A KR 20240009387A
Authority
KR
South Korea
Prior art keywords
foil
stage
conversion
controlled
minutes
Prior art date
Application number
KR1020237034833A
Other languages
Korean (ko)
Inventor
지엔중 왕
천 천
중쥔 쉬
홍옌 저우
후이 리우
후이민 마오
구이리 허
구이저우 왕
쉬에쥔 진
Original Assignee
난통 하이싱 일렉트로닉스 리미티드 라이어빌러티 컴퍼니
난통 하이이 일렉트로닉스 컴퍼니 리미티드
닝시아 하이리 일렉트로닉스 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 난통 하이싱 일렉트로닉스 리미티드 라이어빌러티 컴퍼니, 난통 하이이 일렉트로닉스 컴퍼니 리미티드, 닝시아 하이리 일렉트로닉스 컴퍼니 리미티드 filed Critical 난통 하이싱 일렉트로닉스 리미티드 라이어빌러티 컴퍼니
Publication of KR20240009387A publication Critical patent/KR20240009387A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/77Controlling or regulating of the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

본 발명은 자동차 전자용 고비용량 저전압 전극 포일의 제조 방법에 관한 것으로, 먼저 부식 포일에 대해 1단계 화성, 2단계 화성, 3단계 화성 및 4단계 화성 작업을 순차적으로 수행하고, 단일 회차 화성 실행 중 모두 각각 사용하는 전압, 온도, 시간 및 화성액 성분, 배합비를 조정하며, 1단계 화성 시 아민류 처리액을 첨가하여, 성형 산화막 중 산화알루미늄 결정의 함량을 대폭 증가시키고, 이어서 화성 포일을 여러 번 인산염 용액에 담가 후처리 작업을 실행하여, 성형 산화막 상에 잔존한 결함점을 보수하는 단계를 포함한다. 이러한 방식으로 전극 포일의 비등 수명을 효과적으로 개선할 수 있을 뿐만 아니라 알루미늄 전극 포일의 비정전용량도 크게 향상시킬 수 있다.The present invention relates to a method of manufacturing a high-capacity low-voltage electrode foil for automotive electronics. First, the first-stage forming, second-stage forming, third-stage forming, and fourth-stage forming operations are sequentially performed on the corrosion foil, and a single-round forming process is performed. The voltage, temperature, time, chemical composition, and mixing ratio used are adjusted, and an amine treatment liquid is added during the first stage of chemical conversion to significantly increase the content of aluminum oxide crystals in the formed oxide film. Then, the chemical conversion foil is phosphated several times. It includes a step of repairing defects remaining on the molded oxide film by immersing it in a solution and performing a post-treatment operation. In this way, not only can the boiling life of the electrode foil be effectively improved, but the specific capacitance of the aluminum electrode foil can also be greatly improved.

Description

자동차 전자용 고비용량 저전압 전극 포일의 제조 방법Manufacturing method of high-capacity low-voltage electrode foil for automotive electronics

본 발명은 전극 포일 제조 기술 분야에 관한 것으로, 보다 상세하게는 자동차 전자용 고비용량 저전압 전극 포일 제조 방법에 관한 것이다.The present invention relates to the field of electrode foil manufacturing technology, and more specifically, to a method for manufacturing high-specific capacity, low-voltage electrode foils for automotive electronics.

오늘날 전 세계적으로 자동차의 전기화 수준이 끊임없이 높아지고 있으며, 특히 전기차와 자율 주행의 발달로 자동차의 지능화, 네트워크화 및 전자화 수준이 지속적으로 높아지면서, 자동차에서 전자 부품의 사용이 점점 더 많아지고 있다. 자동차 전자 시스템에 사용되는 커패시터는 유형이 다양하고 수량이 많고 품질 기준이 높으며 커패시터의 발전 전망이 더 광범위해졌다. 커패시터는 자동차 전자 부품의 기본 부품으로서, 자동차 전자 부품 개발에 중요한 역할을 한다. 소형화되고 수명이 길며 신뢰성이 높은 커패시터는 자동차 전자 설계 집적화와 다양화에 도움이 되며, 전극 포일의 용량 개선은 알루미늄 전해 커패시터의 소형화 및 고성능화를 구현하는 키포인트이다.Today, the level of electrification of automobiles is continuously increasing worldwide. In particular, as the level of intelligence, networking, and electrification of automobiles continues to increase due to the development of electric vehicles and autonomous driving, the use of electronic components in automobiles is increasing. The capacitors used in automotive electronic systems are of various types, large in quantity, high quality standards, and the development prospects of capacitors have become broader. Capacitors are basic components of automotive electronic components and play an important role in the development of automotive electronic components. Capacitors that are compact, have a long lifespan, and are highly reliable are helpful in integrating and diversifying automotive electronic design, and improving the capacity of electrode foils is a key point in realizing miniaturization and high performance of aluminum electrolytic capacitors.

현재, 통상적으로 부식 포일은 다단계 화성의 방식을 채택하여 전극 포일을 제조한다. 이는 대체적으로 4단계 화성으로 이루어진다. 1단계 화성: 7% 암모늄 아디페이트, 1% 붕산염, 온도 70℃, 시간 7분, 물세척; 2단계 화성: 5% 암모늄 아디페이트, 1% 붕산염, 온도 70℃, 시간 6분; 3단계 화성: 3% 암모늄 아디페이트, 1% 붕산염, 온도 70℃, 시간 8분, 물세척; 4단계 화성: 5% 인산염, 온도 70℃, 시간 15분; 이후 1차: 1% 인산염, 온도 80℃, 시간 12분, 물세척 후 7% 인산 용액에 유입, 시간 5분, 물세척 후 고온(450 내지 500℃) 처리 1.5분, 이후 2차: 3% 인산염, 온도 70℃, 시간 5분; 이후 3차: 1% 인산염, 온도 70℃, 시간 5.5분, 물세척 후 건조. 제조 과정이 간단하고 비용이 저렴하지만, 제조된 전극 포일의 정전 용량과 비등 수명이 낮고 불량률이 여전히 높다. 그 이유는 전극 포일 표면의 산화막에 산화알루미늄 결정 함량이 낮고, 화성 처리 후 산화막에 많은 결함점이 남아 있기 때문이므로, 당업자는 상기 문제점의 해결이 시급하다.Currently, electrode foils are generally manufactured by adopting a multi-step chemical conversion method. This generally consists of four stages of harmony. Step 1: 7% ammonium adipate, 1% borate, temperature 70°C, time 7 minutes, water washing; Step 2: 5% ammonium adipate, 1% borate, temperature 70°C, time 6 minutes; Step 3: 3% ammonium adipate, 1% borate, temperature 70°C, time 8 minutes, water washing; Stage 4 Formation: 5% phosphate, temperature 70°C, time 15 minutes; After 1st time: 1% phosphate, temperature 80℃, time 12 minutes, wash with water, pour into 7% phosphoric acid solution, time 5 minutes, wash with water, high temperature (450 to 500℃) treatment for 1.5 minutes, then 2nd time: 3% Phosphate, temperature 70°C, time 5 min; After the 3rd time: 1% phosphate, temperature 70℃, time 5.5 minutes, water washing and drying. Although the manufacturing process is simple and low cost, the capacitance and boiling life of the manufactured electrode foil are low, and the defect rate is still high. This is because the content of aluminum oxide crystals in the oxide film on the surface of the electrode foil is low and many defect points remain in the oxide film after chemical treatment, so those skilled in the art urgently need to solve the above problems.

따라서, 본 발명의 설계자는 상기 기존 문제점 및 결함을 고려하여, 관련 자료를 수집하고, 다방면의 평가 및 고려를 통해, 당업계에 종사하는 수년간의 연구 개발 경험을 가진 기술자의 지속적인 실험 및 수정을 거쳐, 최종적으로 상기 자동차 전자용 고비용량 저전압 전극 포일의 제조 방법을 제안한다.Therefore, the designer of the present invention took into account the above-mentioned existing problems and defects, collected related data, evaluated and considered various aspects, and continued experiments and modifications by technicians with many years of research and development experience in the industry. , Finally, we propose a method for manufacturing the high-capacity low-voltage electrode foil for automotive electronics.

상기와 같은 기술적 과제를 해결하기 위해, 본 발명은 자동차 전자용 고비용량 저전압 전극 포일의 제조 방법에 관한 것으로, 이하의 단계를 포함한다.In order to solve the above technical problems, the present invention relates to a method of manufacturing a high-specific capacity, low-voltage electrode foil for automotive electronics, and includes the following steps.

S1 부식 포일의 제조: 순도 99.9% 이상의 알루미늄 포일을 산성 용액에 담가 표면을 부식시킨다.Preparation of S1 corrosion foil: Aluminum foil with a purity of 99.9% or higher is immersed in an acidic solution and the surface is corroded.

S2 다단계 화성으로, 이하 하위 단계를 포함한다.S2 is a multi-stage harmonization, including the following sub-stages.

S21 1단계 화성: 단계 S1에서 얻은 부식 포일을 온도가 65 내지 85℃로 제어된, 5 내지 10wt% 황산암모늄, 1 내지 2wt% 붕산염 및 0.5 내지 1wt% 아민염을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 5 내지 10분으로 제어하여, 1단계 화성 포일을 제조한다.S21 Stage 1 conversion: The corrosion foil obtained in step S1 is immersed in a mixed solution containing 5 to 10 wt% ammonium sulfate, 1 to 2 wt% borate and 0.5 to 1 wt% amine salt, the temperature being controlled at 65 to 85° C., 20 The conversion is performed under a voltage of 160 V to 160 V, and the time is controlled to 5 to 10 minutes to produce a first-stage conversion foil.

S22 표면 세척: 단계 S21에서 수득한 1단계 화성 포일에 대해 물세척 및 공기 건조 작업을 수행한다.S22 Surface cleaning: The first-stage conversion foil obtained in step S21 is subjected to water washing and air drying.

S23 2단계 화성: 단계 S22를 거쳐 처리된 1단계 화성 포일을 온도가 65 내지 85℃로 제어된, 3 내지 7wt% 황산암모늄 및 1 내지 2wt% 붕산염을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 5 내지 10분으로 제어하여, 2단계 화성 포일을 제조한다.S23 Second-stage conversion: The first-stage conversion foil treated through step S22 is immersed in a mixed solution containing 3 to 7 wt% ammonium sulfate and 1 to 2 wt% borate, temperature controlled at 65 to 85° C., voltage 20 to 160 V. A two-step chemical conversion foil is manufactured by performing conversion under the following conditions and controlling the time to 5 to 10 minutes.

S24 3단계 화성: 단계 S23에서 수득된 2단계 화성 포일을 온도가 65 내지 85℃로 제어된, 3 내지 5wt% 황산암모늄 및 1 내지 2wt% 붕산염을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 7 내지 15분으로 제어하여, 3단계 화성 포일을 제조한다.S24 3-step conversion: The 2-step conversion foil obtained in step S23 is immersed in a mixed solution containing 3 to 5 wt% ammonium sulfate and 1 to 2 wt% borate, the temperature of which is controlled at 65 to 85° C., under a voltage of 20 to 160 V. The conversion is performed and the time is controlled from 7 to 15 minutes to produce a three-stage conversion foil.

S25 표면 세척: 단계 S24에서 수득한 3단계 화성 포일에 대해 물세척 및 공기 건조 작업을 수행한다.S25 Surface cleaning: The three-stage conversion foil obtained in step S24 is subjected to water washing and air drying.

S26 중간 처리: 단계 S25에서 처리된 3단계 화성 포일을 온도가 40 내지 60℃로 제어된, 5 내지 10wt%의 4차 암모늄염 수용액에 담그고, 시간은 5 내지 10분으로 제어한다.S26 Intermediate treatment: The three-stage conversion foil treated in step S25 is immersed in an aqueous solution of 5 to 10 wt% of quaternary ammonium salt, the temperature of which is controlled at 40 to 60° C., and the time is controlled to be 5 to 10 minutes.

S27 4단계 화성: 단계 S26에서 수득한 3단계 화성 포일을 온도가 65 내지 85℃로 제어된, 5 내지 7wt% 인산염을 함유하는 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하며, 시간은 15 내지 20분으로 제어하여, 4단계 화성 포일을 제조한다.S27 4-step conversion: The 3-step conversion foil obtained in step S26 is immersed in a solution containing 5 to 7 wt% phosphate, the temperature of which is controlled at 65 to 85 ° C., and conversion is performed under a voltage of 20 to 160 V, and the time is 15 Controlled from 1 to 20 minutes, a 4-step chemical conversion foil is produced.

S3 후처리: 다음 하위 단계를 포함한다.S3 post-processing: includes the following substeps:

S31 1단계 후처리: 단계 S27에서 수득한 4단계 화성 포일을 온도가 65 내지 85℃로 제어된 1 내지 5wt%의 인산염 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 10 내지 15분으로 제어하여 1단계 처리 포일을 제조한다.S31 1st stage post-treatment: The 4th stage chemical conversion foil obtained in step S27 is immersed in a 1 to 5 wt% phosphate aqueous solution whose temperature is controlled at 65 to 85°C, a voltage of 20 to 160V is applied, and the time is 10 to 15 minutes. Manufacture a first-stage processing foil by controlling.

S32 표면 세척: 단계 S31에서 수득한 1단계 처리 포일에 대해 물세척 및 공기 건조 작업을 수행한다.S32 Surface cleaning: Water washing and air drying are performed on the first-stage treated foil obtained in step S31.

S33 산 담금 처리: 단계 S32에서 처리된 1단계 처리 포일을 7 내지 10wt% 인산과 산화성 산을 함유하는 혼합 용액에 담그고, 시간을 5 내지 10분으로 제어한다.S33 Acid soak treatment: The first-stage treatment foil treated in step S32 is immersed in a mixed solution containing 7 to 10 wt% phosphoric acid and oxidizing acid, and the time is controlled to 5 to 10 minutes.

S34 열처리: 단계 S33에서 수득한 1단계 처리 호일에 대해 물세척 및 건조 작업을 수행하며, 건조 온도는 450 내지 500℃로 제어하고, 시간은 1 내지 2분으로 제어한다.S34 heat treatment: Water washing and drying operations are performed on the first-stage treated foil obtained in step S33, the drying temperature is controlled to 450 to 500 ° C., and the time is controlled to 1 to 2 minutes.

S35 2단계 후처리: 단계 S34에서 수득한 1단계 처리 포일을 온도가 65 내지 85℃로 제어된 1 내지 5wt%의 인산염 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 5 내지 10분으로 제어하여 2단계 처리 포일을 제조한다.S35 2nd stage post-treatment: The 1st stage treated foil obtained in step S34 is immersed in 1 to 5 wt% phosphate aqueous solution whose temperature is controlled at 65 to 85°C, a voltage of 20 to 160V is applied, and the time is 5 to 10 minutes. Manufacture a two-step processing foil by controlling.

S36 3단계 후처리: 단계 S35에서 수득한 2단계 처리 포일을 온도가 65 내지 85℃로 제어된 1 내지 5wt%의 인산염 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 5 내지 10분으로 제어하여 3단계 처리 포일을 제조한다.S36 3-step post-treatment: The 2-step treatment foil obtained in step S35 is immersed in 1 to 5 wt% phosphate aqueous solution whose temperature is controlled at 65 to 85°C, a voltage of 20 to 160 V is applied, and the time is 5 to 10 minutes. Manufacture a three-step processing foil by controlling.

S37 표면 세척: 단계 S36에서 수득한 3단계 처리 포일에 대해 물세척 및 공기 건조 작업을 수행하여, 고비용량 저전압 전극 포일을 수득한다.S37 Surface cleaning: Water washing and air drying operations are performed on the three-stage treated foil obtained in step S36 to obtain a high specific capacity low voltage electrode foil.

본 발명에 개시된 기술적 해결책에 있어서 더 바람직하게는, 붕산염은 바람직하게는 붕사, 메타붕산나트륨 중 어느 하나 또는 이들의 혼합물이다.More preferably, in the technical solution disclosed in the present invention, the borate is preferably any one of borax, sodium metaborate, or a mixture thereof.

본 발명에 개시된 기술적 해결책에 있어서 더 바람직하게는, 아민염은 바람직하게는 헥실벤질아민염, 디시클로헥실아민염, BOC-HIS(BOC)-OH DCHA, 디메틸아민염산염, 트리에탄올아민, 피록톤 올아민 중 어느 하나 또는 이들의 혼합물이다.More preferably in the technical solution disclosed in the present invention, the amine salt is preferably hexylbenzylamine salt, dicyclohexylamine salt, BOC-HIS(BOC)-OH DCHA, dimethylamine hydrochloride, triethanolamine, piroctone ol. It is any one of amines or a mixture thereof.

본 발명에 개시된 기술적 해결책에 있어서 더 바람직하게는, 4차 암모늄염은 바람직하게는 도데실황산나트륨, 브롬화 도데실트리메틸암모늄, 도데실 알코올 에테르 황산암모늄 중 어느 하나 또는 이들의 혼합물이다.More preferably in the technical solution disclosed in the present invention, the quaternary ammonium salt is preferably any one of sodium dodecyl sulfate, dodecyltrimethylammonium bromide, dodecyl alcohol ether ammonium sulfate, or a mixture thereof.

본 발명에 개시된 기술적 해결책에 있어서 더 바람직하게는, 인산염은 바람직하게는 인산이암모늄, 헥사메타인산나트륨, 인산수소이나트륨 중 어느 하나 또는 이들의 혼합물이다.More preferably in the technical solution disclosed in the present invention, the phosphate salt is preferably any one of diammonium phosphate, sodium hexametaphosphate, disodium hydrogen phosphate, or a mixture thereof.

본 발명에 개시된 기술적 해결책에 있어서 더 바람직하게는, 산화성 산은 바람직하게는 질산, 과망간산, 차아염소산 중 어느 하나이고, 중량을 기준으로 혼합산의 비율은 인산:산화성 산=2:1이다.More preferably, in the technical solution disclosed in the present invention, the oxidizing acid is preferably any one of nitric acid, permanganic acid, and hypochlorous acid, and the ratio of the mixed acid by weight is phosphoric acid:oxidizing acid = 2:1.

실제 산업 응용에서 자동차 전자용 고비용량 저전압 전극 포일의 제조 방법은 적어도 다음과 같은 몇 가지 유익한 효과를 얻는다.In actual industrial applications, the manufacturing method of high-capacity low-voltage electrode foil for automotive electronics achieves at least several beneficial effects:

1) 1단계 화성 단계이든, 2단계 화성, 3단계 화성 또는 4단계 화성 단계이든, 모두 일정한 밀도의 전류가 화성 탱크액에 인가되어, 산화막이 부식 포일 표면에서 안정적이고 빠르게 생성되고, 상이한 영역 내에 성형된 홀의 분포 형태가 더욱 균형을 이루도록 보장한다.1) Whether it is the 1st stage formation, 2nd stage formation, 3rd stage formation or 4th stage formation stage, a constant density of current is applied to the conversion tank liquid, so that the oxide film is stably and quickly created on the surface of the corrosion foil, and within different areas. It ensures that the distribution shape of the formed holes is more balanced.

2) 매회 화성 단계에 대해, 사용 전압, 온도, 시간 및 사용 화성액 성분, 배합비를 조정함으로써, 성형 산화막 각 분층의 치밀도를 일관되게 하여, 전극 포일의 비등 수명을 개선하는 데 도움이 되도록 한다.2) By adjusting the voltage, temperature, time, components of the chemical solution used, and mixing ratio for each chemical conversion step, the density of each layer of the molded oxide film is made consistent, helping to improve the boiling life of the electrode foil. .

3) 단계 S21에서, 1단계 화성 시 아민류 처리액을 첨가하여 산화막 중 γ` 또는 γ-Al2O3의 함량을 높일 수 있다. 그 이유는 약알칼리성 환경에서 부식 포일의 미세 다공성 표면에 일수화물 베마이트 증착막이 형성되어, 후속 고온 처리 후에 필연적으로 분해되어 γ` 또는 γ-Al2O3를 생성하기 때문이다.3) In step S21, the content of γ` or γ-Al 2 O 3 in the oxide film can be increased by adding an amine treatment solution during the first stage chemical conversion. This is because a monohydrate boehmite deposition film is formed on the microporous surface of the corrosion foil in a slightly alkaline environment, and is inevitably decomposed after subsequent high temperature treatment to produce γ′ or γ-Al 2 O 3 .

4) 후속 처리 단계에서, 화성 중의 산화막 상에 형성된 결함점(산 침지 또는 고온 처리 후 노출)을 보수하여, 비등 수명 연장에 도움이 된다. 4) In the subsequent treatment step, defect points formed on the oxide film during chemical conversion (exposed after acid immersion or high temperature treatment) are repaired, which helps extend the boiling life.

본 발명의 실시예 또는 선행기술의 기술방안을 보다 명확하게 설명하기 위해, 이하에서는 실시예 또는 선행기술의 설명에 사용될 첨부 도면을 간략히 소개하며, 이하 설명에서의 첨부 도면은 본 발명의 실시예 중 일부에 불과하며, 당업계의 통상의 기술자는 이러한 첨부 도면에 기초하여 창작의 노력 없이 다른 첨부 도면을 얻을 수 있음이 명백할 것이다.
도 1은 배경기술에 설명된 상기 일반 다단계 화성에 의해 제조된 성형 전극 포일의 금속 조직 사진이다.
도 2는 실시예 1의 방법을 사용하여 제조된 성형 전극 포일의 금속 조직 사진이다.
도 3은 실시예 2의 방법을 사용하여 제조된 성형 전극 포일의 금속 조직 사진이다.
도 4는 실시예 3의 방법을 사용하여 제조된 성형 전극 포일의 금속 조직 사진이다.
도 5는 실시예 4의 방법을 사용하여 제조된 성형 전극 포일의 금속 조직 사진이다.
In order to more clearly explain the embodiments of the present invention or the technical solutions of the prior art, the following briefly introduces the accompanying drawings to be used in the description of the embodiments or the prior art, and the accompanying drawings in the following description are among the embodiments of the present invention. These are only some of the drawings, and it will be clear that a person skilled in the art can obtain other attached drawings without creative effort based on these attached drawings.
1 is a photo of the metal structure of a molded electrode foil manufactured by the general multi-step conversion described in the background art.
Figure 2 is a photograph of the metal structure of the molded electrode foil manufactured using the method of Example 1.
Figure 3 is a photograph of the metal structure of the molded electrode foil manufactured using the method of Example 2.
Figure 4 is a photograph of the metal structure of the molded electrode foil manufactured using the method of Example 3.
Figure 5 is a photograph of the metal structure of the molded electrode foil manufactured using the method of Example 4.

본 발명에 대한 이해를 돕기 위하여 이하에서는 실시예를 통해 본 발명을 더욱 상세하게 설명하며, 상기 실시예는 본 발명을 해석하기 위한 것으로 본 발명의 보호범위를 제한하지 않는다. 설명된 방법은 달리 명시되지 않는 한 모두 일반적인 방법이다.In order to facilitate understanding of the present invention, the present invention will be described in more detail below through examples, and the examples are for interpreting the present invention and do not limit the scope of protection of the present invention. The methods described are all general methods unless otherwise specified.

비교예 1Comparative Example 1

전극 포일은 전술한 배경기술에 개시된 다단계 화성 방법을 참조하여 제조된다.The electrode foil is manufactured with reference to the multi-step forming method disclosed in the background art described above.

실시예 1Example 1

자동차 전자용 고비용량 저전압 전극 포일의 제조 방법은 이하의 단계를 포함한다.A method of manufacturing a high-capacity low-voltage electrode foil for automotive electronics includes the following steps.

S1 부식 포일의 제조: 순도 99.9% 이상, 두께 100μm의 알루미늄 포일을 산성 용액에 담가 그 표면을 부식시킨다.Preparation of S1 corrosion foil: Aluminum foil with a purity of 99.9% or higher and a thickness of 100 μm is immersed in an acidic solution and the surface is corroded.

S2 다단계 화성으로, 이하 하위 단계를 포함한다.S2 is a multi-stage harmonization, including the following sub-stages.

S21 1단계 화성: 단계 S1에서 얻은 부식 포일을 온도가 65 내지 85℃로 제어된, 5wt% 황산암모늄, 1wt% 메타붕산나트륨 및 0.5wt% 헥실벤질아민염을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 10분으로 제어하여, 1단계 화성 포일을 제조한다.S21 Step 1 formation: The corrosion foil obtained in Step S1 is immersed in a mixed solution containing 5 wt% ammonium sulfate, 1 wt% sodium metaborate and 0.5 wt% hexylbenzylamine salt, the temperature of which is controlled at 65 to 85°C, and the temperature is controlled at 65 to 85° C. Formation is performed under a voltage of 160V, and the time is controlled to 10 minutes to produce a first-stage conversion foil.

S22 표면 세척: 단계 S21에서 수득한 1단계 화성 포일에 대해 물세척 및 공기 건조 작업(공기 건조 온도는 20℃ 이하)을 수행한다.S22 Surface cleaning: The first-stage conversion foil obtained in step S21 is subjected to water washing and air drying (air drying temperature is 20° C. or lower).

S23 2단계 화성: 단계 S22를 거쳐 처리된 1단계 화성 포일을 온도가 65 내지 85℃로 제어된, 3wt% 황산암모늄 및 1wt% 메타붕산나트륨을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 10분으로 제어하여, 2단계 화성 포일을 제조한다.S23 Second-stage conversion: The first-stage conversion foil treated through step S22 is immersed in a mixed solution containing 3 wt% ammonium sulfate and 1 wt% sodium metaborate, the temperature of which is controlled at 65 to 85°C, and converted under a voltage of 20 to 160 V. is performed, and the time is controlled to 10 minutes to produce a second-stage chemical conversion foil.

S24 3단계 화성: 단계 S23에서 수득된 2단계 화성 포일을 온도가 65 내지 85℃로 제어된, 3wt% 황산암모늄 및 1wt% 메타붕산나트륨을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 15분으로 제어하여, 3단계 화성 포일을 제조한다.S24 3-step conversion: The 2-step conversion foil obtained in step S23 is immersed in a mixed solution containing 3 wt% ammonium sulfate and 1 wt% sodium metaborate, the temperature of which is controlled at 65 to 85° C., and conversion is performed under a voltage of 20 to 160 V. The process is performed, and the time is controlled to 15 minutes to produce a three-stage chemical conversion foil.

S25 표면 세척: 단계 S24에서 수득한 3단계 화성 포일에 대해 물세척 및 공기 건조 작업을 수행한다.S25 Surface cleaning: The three-stage conversion foil obtained in step S24 is subjected to water washing and air drying.

S26 중간 처리: 단계 S25에서 처리된 3단계 화성 포일을 온도가 40 내지 60℃로 제어된, 5wt%의 도데실황산나트륨 수용액에 담그고, 시간은 10분으로 제어한다.S26 Intermediate treatment: The three-stage conversion foil treated in step S25 is immersed in a 5 wt% aqueous solution of sodium dodecyl sulfate, the temperature of which is controlled at 40 to 60° C., and the time is controlled at 10 minutes.

S27 4단계 화성: 단계 S26에서 수득한 3단계 화성 포일을 온도가 65 내지 85℃로 제어된, 5wt% 헥사메타인산나트륨을 함유하는 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하며, 시간은 20분으로 제어하여, 4단계 화성 포일을 제조한다.S27 4-step conversion: The 3-step conversion foil obtained in step S26 is immersed in a solution containing 5 wt% sodium hexametaphosphate, the temperature of which is controlled at 65 to 85° C., and conversion is performed under a voltage of 20 to 160 V, and the time is Controlled to 20 minutes, a 4-step conversion foil is manufactured.

S3 후처리: 다음 하위 단계를 포함한다.S3 post-processing: includes the following substeps:

S31 1단계 후처리: 단계 S27에서 수득한 4단계 화성 포일을 온도가 65 내지 85℃로 제어된 1wt%의 헥사메타인산나트륨 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 15분으로 제어하여 1단계 처리 포일을 제조한다.S31 1st stage post-treatment: The 4th stage chemical conversion foil obtained in step S27 is immersed in 1 wt% sodium hexametaphosphate aqueous solution whose temperature is controlled at 65 to 85°C, a voltage of 20 to 160V is applied, and the time is 15 minutes. Control to produce a first-stage processed foil.

S32 표면 세척: 단계 S31에서 수득한 1단계 처리 포일에 대해 물세척 및 공기 건조 작업을 수행한다.S32 Surface cleaning: Water washing and air drying are performed on the first-stage treated foil obtained in step S31.

S33 산 담금 처리: 단계 S32에서 처리된 1단계 처리 포일을 7wt% 인산:과염소산이 1:1인 산성 혼합 용액에 담그고, 시간을 6분으로 제어한다.S33 acid soak treatment: The first-stage treatment foil treated in step S32 is immersed in an acidic mixed solution of 7 wt% phosphoric acid:perchloric acid at a ratio of 1:1, and the time is controlled to 6 minutes.

S34 열처리: 단계 S33에서 수득한 1단계 처리 포일에 대해 물세척 및 건조 작업을 수행하며, 건조 온도는 450 내지 500℃로 제어하고, 시간은 1.5분으로 제어한다.S34 heat treatment: Water washing and drying operations are performed on the first-stage treated foil obtained in step S33, the drying temperature is controlled to 450 to 500 ° C., and the time is controlled to 1.5 minutes.

S35 2단계 후처리: 단계 S34에서 수득한 1단계 처리 포일을 온도가 65 내지 85℃로 제어된 1wt%의 헥사메타인산나트륨 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 10분으로 제어하여 2단계 처리 포일을 제조한다.S35 Second-stage post-treatment: The first-stage treatment foil obtained in step S34 is immersed in a 1 wt% sodium hexametaphosphate aqueous solution whose temperature is controlled at 65 to 85 ° C., a voltage of 20 to 160 V is applied, and the time is 10 minutes. Control the two-stage processing foil.

S36 3단계 후처리: 단계 S35에서 수득한 2단계 처리 포일을 온도가 65 내지 85℃로 제어된 1wt%의 헥사메타인산나트륨 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 10분으로 제어하여 3단계 처리 포일을 제조한다.S36 3-step post-treatment: The 2-step treatment foil obtained in step S35 is immersed in a 1 wt% sodium hexametaphosphate aqueous solution whose temperature is controlled at 65 to 85 ° C., a voltage of 20 to 160 V is applied, and the time is 10 minutes. Control the three-stage processing foil.

S37 표면 세척: 단계 S36에서 수득한 3단계 처리 포일에 대해 물세척 및 공기 건조 작업을 수행하여, 고비용량 저전압 전극 포일을 수득한다.S37 Surface cleaning: Water washing and air drying operations are performed on the three-stage treated foil obtained in step S36 to obtain a high specific capacity low voltage electrode foil.

실시예 2Example 2

자동차 전자용 고비용량 저전압 전극 포일의 제조 방법은 이하의 단계를 포함한다.A method of manufacturing a high-capacity low-voltage electrode foil for automotive electronics includes the following steps.

S1 부식 포일의 제조: 순도 99.9% 이상, 두께 100μm의 알루미늄 포일을 산성 용액에 담가 그 표면을 부식시킨다.Preparation of S1 corrosion foil: Aluminum foil with a purity of 99.9% or higher and a thickness of 100 μm is immersed in an acidic solution and the surface is corroded.

S2 다단계 화성으로, 이하 하위 단계를 포함한다.S2 is a multi-stage harmonization, including the following sub-stages.

S21 1단계 화성: 단계 S1에서 얻은 부식 포일을 온도가 65 내지 85℃로 제어된, 8wt% 황산암모늄, 1.5wt% 메타붕산나트륨 및 0.7wt% 헥실벤질아민염을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 10분으로 제어하여, 1단계 화성 포일을 제조한다.S21 Stage 1 formation: The corrosion foil obtained in step S1 is immersed in a mixed solution containing 8 wt% ammonium sulfate, 1.5 wt% sodium metaborate and 0.7 wt% hexylbenzylamine salt, temperature controlled at 65 to 85° C., 20 The conversion is performed under a voltage of 160 V to 160 V, and the time is controlled to 10 minutes to produce a first-stage conversion foil.

S22 표면 세척: 단계 S21에서 수득한 1단계 화성 포일에 대해 물세척 및 공기 건조 작업(공기 건조 온도는 20℃ 이하)을 수행한다.S22 Surface cleaning: The first-stage conversion foil obtained in step S21 is subjected to water washing and air drying (air drying temperature is 20° C. or lower).

S23 2단계 화성: 단계 S22를 거쳐 처리된 1단계 화성 포일을 온도가 65 내지 85℃로 제어된, 5wt% 황산암모늄 및 1.5wt% 메타붕산나트륨을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 10분으로 제어하여, 2단계 화성 포일을 제조한다.S23 Second-stage conversion: The first-stage conversion foil treated through step S22 is immersed in a mixed solution containing 5 wt% ammonium sulfate and 1.5 wt% sodium metaborate, the temperature of which is controlled at 65 to 85° C., under a voltage of 20 to 160 V. The conversion is performed and the time is controlled to 10 minutes to produce a two-stage conversion foil.

S24 3단계 화성: 단계 S23에서 수득된 2단계 화성 포일을 온도가 65 내지 85℃로 제어된, 4wt% 황산암모늄 및 1.5wt% 메타붕산나트륨을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 15분으로 제어하여, 3단계 화성 포일을 제조한다.S24 3-step conversion: The 2-step conversion foil obtained in step S23 is immersed in a mixed solution containing 4 wt% ammonium sulfate and 1.5 wt% sodium metaborate, the temperature of which is controlled at 65 to 85° C., and converted under a voltage of 20 to 160 V. is performed, and the time is controlled to 15 minutes to produce a 3-step chemical conversion foil.

S25 표면 세척: 단계 S24에서 수득한 3단계 화성 포일에 대해 물세척 및 공기 건조 작업을 수행한다.S25 Surface cleaning: The three-stage conversion foil obtained in step S24 is subjected to water washing and air drying.

S26 중간 처리: 단계 S25에서 처리된 3단계 화성 포일을 온도가 40 내지 60℃로 제어된, 8wt%의 도데실황산나트륨 수용액에 담그고, 시간은 10분으로 제어한다.S26 Intermediate treatment: The three-stage conversion foil treated in step S25 is immersed in an 8 wt% aqueous solution of sodium dodecyl sulfate, the temperature of which is controlled to 40 to 60 ° C., and the time is controlled to 10 minutes.

S27 4단계 화성: 단계 S26에서 수득한 3단계 화성 포일을 온도가 65 내지 85℃로 제어된, 6wt% 헥사메타인산나트륨을 함유하는 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하며, 시간은 20분으로 제어하여, 4단계 화성 포일을 제조한다.S27 4-step conversion: The 3-step conversion foil obtained in step S26 is immersed in a solution containing 6 wt% sodium hexametaphosphate, the temperature of which is controlled at 65 to 85° C., and conversion is performed under a voltage of 20 to 160 V, and the time is Controlled to 20 minutes, a 4-step conversion foil is manufactured.

S3 후처리: 다음 하위 단계를 포함한다.S3 post-processing: includes the following substeps:

S31 1단계 후처리: 단계 S27에서 수득한 4단계 화성 포일을 온도가 65 내지 85℃로 제어된 3wt%의 헥사메타인산나트륨 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 15분으로 제어하여 1단계 처리 포일을 제조한다.S31 1st stage post-treatment: The 4th stage chemical conversion foil obtained in step S27 is immersed in a 3wt% sodium hexametaphosphate aqueous solution whose temperature is controlled at 65 to 85°C, a voltage of 20 to 160V is applied, and the time is 15 minutes. Control to produce a first-stage processed foil.

S32 표면 세척: 단계 S31에서 수득한 1단계 처리 포일에 대해 물세척 및 공기 건조 작업을 수행한다.S32 Surface cleaning: Water washing and air drying are performed on the first-stage treated foil obtained in step S31.

S33 산 담금 처리: 단계 S32에서 처리된 1단계 처리 포일을 8wt% 인산:과염소산이 1:1인 산성 혼합 용액에 담그고, 시간을 6분으로 제어한다.S33 acid soak treatment: The first-stage treatment foil treated in step S32 is immersed in an acidic mixed solution of 8 wt% phosphoric acid:perchloric acid at a ratio of 1:1, and the time is controlled to 6 minutes.

S34 열처리: 단계 S33에서 수득한 1단계 처리 포일에 대해 물세척 및 건조 작업을 수행하며, 건조 온도는 450 내지 500℃로 제어하고, 시간은 1.5분으로 제어한다.S34 heat treatment: Water washing and drying operations are performed on the first-stage treated foil obtained in step S33, the drying temperature is controlled to 450 to 500 ° C., and the time is controlled to 1.5 minutes.

S35 2단계 후처리: 단계 S34에서 수득한 1단계 처리 포일을 온도가 65 내지 85℃로 제어된 3wt%의 헥사메타인산나트륨 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 10분으로 제어하여 2단계 처리 포일을 제조한다.S35 Second-stage post-treatment: The first-stage treatment foil obtained in step S34 is immersed in a 3 wt% sodium hexametaphosphate aqueous solution whose temperature is controlled at 65 to 85 ° C., a voltage of 20 to 160 V is applied, and the time is 10 minutes. Control the two-stage processing foil.

S36 3단계 후처리: 단계 S35에서 수득한 2단계 처리 포일을 온도가 65 내지 85℃로 제어된 3wt%의 헥사메타인산나트륨 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 10분으로 제어하여 3단계 처리 포일을 제조한다.S36 3-step post-treatment: The 2-step treatment foil obtained in step S35 is immersed in a 3 wt% sodium hexametaphosphate aqueous solution whose temperature is controlled at 65 to 85 ° C., a voltage of 20 to 160 V is applied, and the time is 10 minutes. Control the three-stage processing foil.

S37 표면 세척: 단계 S36에서 수득한 3단계 처리 포일에 대해 물세척 및 공기 건조 작업을 수행하여, 고비용량 저전압 전극 포일을 수득한다.S37 Surface cleaning: Water washing and air drying operations are performed on the three-stage treated foil obtained in step S36 to obtain a high specific capacity low voltage electrode foil.

실시예 3Example 3

자동차 전자용 고비용량 저전압 전극 포일의 제조 방법은 이하의 단계를 포함한다.A method of manufacturing a high-capacity low-voltage electrode foil for automotive electronics includes the following steps.

S1 부식 포일의 제조: 순도 99.9% 이상, 두께 100μm의 알루미늄 포일을 산성 용액에 담가 그 표면을 부식시킨다.Preparation of S1 corrosion foil: Aluminum foil with a purity of 99.9% or higher and a thickness of 100 μm is immersed in an acidic solution and the surface is corroded.

S2 다단계 화성으로, 이하 하위 단계를 포함한다.S2 is a multi-stage harmonization, including the following sub-stages.

S21 1단계 화성: 단계 S1에서 얻은 부식 포일을 온도가 65 내지 85℃로 제어된, 10wt% 황산암모늄, 2wt% 메타붕산나트륨 및 1wt% 헥실벤질아민염을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 10분으로 제어하여, 1단계 화성 포일을 제조한다.S21 Stage 1 formation: The corrosion foil obtained in step S1 is immersed in a mixed solution containing 10 wt% ammonium sulfate, 2 wt% sodium metaborate and 1 wt% hexylbenzylamine salt, temperature controlled at 65 to 85° C., 20 to 160 V. Formation is performed under voltage, and the time is controlled to 10 minutes to produce a first-stage conversion foil.

S22 표면 세척: 단계 S21에서 수득한 1단계 화성 포일에 대해 물세척 및 공기 건조 작업(공기 건조 온도는 20℃ 이하)을 수행한다.S22 Surface cleaning: The first-stage conversion foil obtained in step S21 is subjected to water washing and air drying (air drying temperature is 20° C. or lower).

S23 2단계 화성: 단계 S22를 거쳐 처리된 1단계 화성 포일을 온도가 65 내지 85℃로 제어된, 7wt% 황산암모늄 및 2wt% 메타붕산나트륨을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 10분으로 제어하여, 2단계 화성 포일을 제조한다.S23 Second-stage conversion: The first-stage conversion foil treated through step S22 is immersed in a mixed solution containing 7 wt% ammonium sulfate and 2 wt% sodium metaborate, the temperature of which is controlled at 65 to 85°C, and converted under a voltage of 20 to 160 V. is performed, and the time is controlled to 10 minutes to produce a second-stage chemical conversion foil.

S24 3단계 화성: 단계 S23에서 수득된 2단계 화성 포일을 온도가 65 내지 85℃로 제어된, 5wt% 황산암모늄 및 2wt% 메타붕산나트륨을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 15분으로 제어하여, 3단계 화성 포일을 제조한다.S24 3-step conversion: The 2-step conversion foil obtained in step S23 is immersed in a mixed solution containing 5 wt% ammonium sulfate and 2 wt% sodium metaborate, the temperature of which is controlled at 65 to 85° C., and conversion is performed under a voltage of 20 to 160 V. The process is performed, and the time is controlled to 15 minutes to produce a three-stage chemical conversion foil.

S25 표면 세척: 단계 S24에서 수득한 3단계 화성 포일에 대해 물세척 및 공기 건조 작업을 수행한다.S25 Surface cleaning: The three-stage conversion foil obtained in step S24 is subjected to water washing and air drying.

S26 중간 처리: 단계 S25에서 처리된 3단계 화성 포일을 온도가 40 내지 60℃로 제어된, 10wt%의 도데실황산나트륨 수용액에 담그고, 시간은 10분으로 제어한다.S26 Intermediate treatment: The three-stage conversion foil treated in step S25 is immersed in a 10 wt% aqueous solution of sodium dodecyl sulfate, the temperature of which is controlled at 40 to 60° C., and the time is controlled at 10 minutes.

S27 4단계 화성: 단계 S26에서 수득한 3단계 화성 포일을 온도가 65 내지 85℃로 제어된, 7wt% 헥사메타인산나트륨을 함유하는 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하며, 시간은 20분으로 제어하여, 4단계 화성 포일을 제조한다.S27 4-step conversion: The 3-step conversion foil obtained in step S26 is immersed in a solution containing 7 wt% sodium hexametaphosphate, the temperature of which is controlled at 65 to 85° C., and conversion is performed under a voltage of 20 to 160 V, and the time is Controlled to 20 minutes, a 4-step conversion foil is manufactured.

S3 후처리: 다음 하위 단계를 포함한다.S3 post-processing: includes the following substeps:

S31 1단계 후처리: 단계 S27에서 수득한 4단계 화성 포일을 온도가 65 내지 85℃로 제어된 5wt%의 헥사메타인산나트륨 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 15분으로 제어하여 1단계 처리 포일을 제조한다.S31 1st stage post-treatment: The 4th stage chemical conversion foil obtained in step S27 is immersed in a 5 wt% sodium hexametaphosphate aqueous solution whose temperature is controlled at 65 to 85°C, a voltage of 20 to 160V is applied, and the time is 15 minutes. Control to produce a first-stage processed foil.

S32 표면 세척: 단계 S31에서 수득한 1단계 처리 포일에 대해 물세척 및 공기 건조 작업을 수행한다.S32 Surface cleaning: Water washing and air drying are performed on the first-stage treated foil obtained in step S31.

S33 산 담금 처리: 단계 S32에서 처리된 1단계 처리 포일을 10wt% 인산:과염소산이 1:1인 산성 혼합 용액에 담그고, 시간을 6분으로 제어한다.S33 acid soak treatment: The first-stage treatment foil treated in step S32 is immersed in an acidic mixed solution of 10 wt% phosphoric acid:perchloric acid at a ratio of 1:1, and the time is controlled to 6 minutes.

S34 열처리: 단계 S33에서 수득한 1단계 처리 포일에 대해 물세척 및 건조 작업을 수행하며, 건조 온도는 450 내지 500℃로 제어하고, 시간은 1.5분으로 제어한다.S34 heat treatment: Water washing and drying operations are performed on the first-stage treated foil obtained in step S33, the drying temperature is controlled to 450 to 500 ° C., and the time is controlled to 1.5 minutes.

S35 2단계 후처리: 단계 S34에서 수득한 1단계 처리 포일을 온도가 65 내지 85℃로 제어되는 5wt%의 헥사메타인산나트륨 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 10분으로 제어하여 2단계 처리 포일을 제조한다.S35 Second-stage post-treatment: The first-stage treatment foil obtained in step S34 is immersed in a 5 wt% sodium hexametaphosphate aqueous solution whose temperature is controlled at 65 to 85 ° C., a voltage of 20 to 160 V is applied, and the time is 10 minutes. Control the two-stage processing foil.

S36 3단계 후처리: 단계 S35에서 수득한 2단계 처리 포일을 온도가 65 내지 85℃로 제어된 5wt%의 헥사메타인산나트륨 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 10분으로 제어하여 3단계 처리 포일을 제조한다.S36 3-step post-treatment: The 2-step treatment foil obtained in step S35 is immersed in a 5 wt% sodium hexametaphosphate aqueous solution whose temperature is controlled at 65 to 85 ° C., a voltage of 20 to 160 V is applied, and the time is 10 minutes. Control the three-stage processing foil.

S37 표면 세척: 단계 S36에서 수득한 3단계 처리 포일에 대해 물세척 및 공기 건조 작업을 수행하여, 고비용량 저전압 전극 포일을 수득한다.S37 Surface cleaning: Water washing and air drying operations are performed on the three-stage treated foil obtained in step S36 to obtain a high specific capacity low voltage electrode foil.

실시예 4Example 4

자동차 전자용 고비용량 저전압 전극 포일의 제조 방법은 이하의 단계를 포함한다.A method of manufacturing a high-capacity low-voltage electrode foil for automotive electronics includes the following steps.

S1 부식 포일의 제조: 순도 99.9% 이상, 두께 100μm의 알루미늄 포일을 산성 용액에 담가 그 표면을 부식시킨다.Preparation of S1 corrosion foil: Aluminum foil with a purity of 99.9% or higher and a thickness of 100 μm is immersed in an acidic solution and the surface is corroded.

S2 다단계 화성으로, 이하 하위 단계를 포함한다.S2 is a multi-stage harmonization, including the following sub-stages.

S21 1단계 화성: 단계 S1에서 얻은 부식 포일을 온도가 65 내지 85℃로 제어된, 5wt% 황산암모늄, 1wt% 메타붕산나트륨 및 0.5wt% 헥실벤질아민염을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 5분으로 제어하여, 1단계 화성 포일을 제조한다.S21 Step 1 formation: The corrosion foil obtained in Step S1 is immersed in a mixed solution containing 5 wt% ammonium sulfate, 1 wt% sodium metaborate and 0.5 wt% hexylbenzylamine salt, the temperature of which is controlled at 65 to 85°C, and the temperature is controlled at 65 to 85° C. Formation is performed under a voltage of 160V, and the time is controlled to 5 minutes to produce a first-stage conversion foil.

S22 표면 세척: 단계 S21에서 수득한 1단계 화성 포일에 대해 물세척 및 공기 건조 작업(공기 건조 온도는 20℃ 이하)을 수행한다.S22 Surface cleaning: The first-stage conversion foil obtained in step S21 is subjected to water washing and air drying (air drying temperature is 20° C. or lower).

S23 2단계 화성: 단계 S22를 거쳐 처리된 1단계 화성 포일을 온도가 65 내지 85℃로 제어된, 3wt% 황산암모늄 및 1wt% 메타붕산나트륨을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 5분으로 제어하여, 2단계 화성 포일을 제조한다.S23 Second-stage conversion: The first-stage conversion foil treated through step S22 is immersed in a mixed solution containing 3 wt% ammonium sulfate and 1 wt% sodium metaborate, the temperature of which is controlled at 65 to 85°C, and converted under a voltage of 20 to 160 V. is performed, and the time is controlled to 5 minutes to produce a two-stage chemical conversion foil.

S24 3단계 화성: 단계 S23에서 수득된 2단계 화성 포일을 온도가 65 내지 85℃로 제어된, 3wt% 황산암모늄 및 1wt% 메타붕산나트륨을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 7분으로 제어하여, 3단계 화성 포일을 제조한다.S24 3-step conversion: The 2-step conversion foil obtained in step S23 is immersed in a mixed solution containing 3 wt% ammonium sulfate and 1 wt% sodium metaborate, the temperature of which is controlled at 65 to 85° C., and conversion is performed under a voltage of 20 to 160 V. The process is performed, and the time is controlled to 7 minutes to produce a three-stage chemical conversion foil.

S25 표면 세척: 단계 S24에서 수득한 3단계 화성 포일에 대해 물세척 및 공기 건조 작업을 수행한다.S25 Surface cleaning: The three-stage conversion foil obtained in step S24 is subjected to water washing and air drying.

S26 중간 처리: 단계 S25에서 처리된 3단계 화성 포일을 온도가 40 내지 60℃로 제어된, 5wt%의 도데실황산나트륨 수용액에 담그고, 시간은 10분으로 제어한다.S26 Intermediate treatment: The three-stage conversion foil treated in step S25 is immersed in a 5 wt% aqueous solution of sodium dodecyl sulfate, the temperature of which is controlled at 40 to 60° C., and the time is controlled at 10 minutes.

S27 4단계 화성: 단계 S26에서 수득한 3단계 화성 포일을 온도가 65 내지 85℃로 제어된, 5wt% 헥사메타인산나트륨을 함유하는 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하며, 시간은 15분으로 제어하여, 4단계 화성 포일을 제조한다.S27 4-step conversion: The 3-step conversion foil obtained in step S26 is immersed in a solution containing 5 wt% sodium hexametaphosphate, the temperature of which is controlled at 65 to 85° C., and conversion is performed under a voltage of 20 to 160 V, and the time is Controlled to 15 minutes, a four-step chemical foil is manufactured.

S3 후처리: 다음 하위 단계를 포함한다.S3 post-processing: includes the following substeps:

S31 1단계 후처리: 단계 S27에서 수득한 4단계 화성 포일을 온도가 65 내지 85℃로 제어된 1wt%의 헥사메타인산나트륨 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 10분으로 제어하여 1단계 처리 포일을 제조한다.S31 1st stage post-treatment: The 4th stage chemical conversion foil obtained in step S27 is immersed in 1 wt% sodium hexametaphosphate aqueous solution whose temperature is controlled at 65 to 85°C, a voltage of 20 to 160V is applied, and the time is 10 minutes. Control the first-stage processing foil.

S32 표면 세척: 단계 S31에서 수득한 1단계 처리 포일에 대해 물세척 및 공기 건조 작업을 수행한다.S32 Surface cleaning: Water washing and air drying are performed on the first-stage treated foil obtained in step S31.

S33 산 담금 처리: 단계 S32에서 처리된 1단계 처리 포일을 7wt% 인산:과염소산이 1:1인 산성 혼합 용액에 담그고, 시간을 6분으로 제어한다.S33 acid soak treatment: The first-stage treatment foil treated in step S32 is immersed in an acidic mixed solution of 7 wt% phosphoric acid:perchloric acid at a ratio of 1:1, and the time is controlled to 6 minutes.

S34 열처리: 단계 S33에서 수득한 1단계 처리 포일에 대해 물세척 및 건조 작업을 수행하며, 건조 온도는 450 내지 500℃로 제어하고, 시간은 1.5분으로 제어한다.S34 heat treatment: Water washing and drying operations are performed on the first-stage treated foil obtained in step S33, the drying temperature is controlled to 450 to 500 ° C., and the time is controlled to 1.5 minutes.

S35 2단계 후처리: 단계 S34에서 수득한 1단계 처리 포일을 온도가 65 내지 85℃로 제어된 1wt%의 헥사메타인산나트륨 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 5분으로 제어하여 2단계 처리 포일을 제조한다.S35 Second-stage post-treatment: The first-stage treatment foil obtained in step S34 is immersed in a 1 wt% sodium hexametaphosphate aqueous solution whose temperature is controlled at 65 to 85 ° C., a voltage of 20 to 160 V is applied, and the time is 5 minutes. Control the two-stage processing foil.

S36 3단계 후처리: 단계 S35에서 수득한 2단계 처리 포일을 온도가 65 내지 85℃로 제어된 1wt%의 헥사메타인산나트륨 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 5분으로 제어하여 3단계 처리 포일을 제조한다.S36 3-step post-treatment: The 2-step treatment foil obtained in step S35 is immersed in a 1 wt% sodium hexametaphosphate aqueous solution whose temperature is controlled at 65 to 85 ° C., a voltage of 20 to 160 V is applied, and the time is 5 minutes. Control the three-step processing foil.

S37 표면 세척: 단계 S36에서 수득한 3단계 처리 포일에 대해 물세척 및 공기 건조 작업을 수행하여, 고비용량 저전압 전극 포일을 수득한다.S37 Surface cleaning: Water washing and air drying operations are performed on the three-stage treated foil obtained in step S36 to obtain a high specific capacity low voltage electrode foil.

도 1과 도 2, 3, 4, 5의 비교 분석에서 알 수 있듯이, 제조된 전극 포일의 공극률이 대폭 개선되고, 평균 입경이 더욱 작으며, 분포 형태가 더욱 균일하여, 전극 포일의 전기적 성능 지수를 더욱 향상시키는 데 도움이 된다. 또한 구체적인 실험 결과를 통해 전극 포일 전압 저항 성능과 전기 용량이 효과적으로 향상되고, 비등 승압 시간이 현저하게 단축되는 것으로 확인되었다(구체적인 성능 테스트 데이터는 표 1과 같음).As can be seen from the comparative analysis of Figures 1 and Figures 2, 3, 4, and 5, the porosity of the manufactured electrode foil is significantly improved, the average particle diameter is smaller, and the distribution shape is more uniform, resulting in a higher electrical performance index of the electrode foil. It helps to further improve. In addition, through specific experimental results, it was confirmed that the electrode foil voltage resistance performance and electric capacity were effectively improved, and the boiling step-up time was significantly shortened (specific performance test data are shown in Table 1).

표 1은 비교예 및 실시예 1 내지 4에서 획득한 전극 포일의 성능 테스트 결과를 요약한 것이다.Table 1 summarizes the performance test results of the electrode foils obtained in Comparative Examples and Examples 1 to 4.

표 1Table 1

Vfe-미화성 포일에 대해 형성 처리를 수행할 때, 인가된 최종 전압;Vfe - the final voltage applied when performing a forming process on an unoxidized foil;

Vt-화성 포일의 내전압 값;Vt - the withstand voltage value of the Mars foil;

그 이유는 다음과 같다.The reason for this is as follows.

1) 1단계 화성 단계이든, 2단계 화성, 3단계 화성 또는 4단계 화성 단계이든, 모두 일정한 밀도의 전류가 화성 탱크액에 인가되어, 산화막이 부식 포일 표면에서 안정적이고 빠르게 생성되고, 상이한 영역 내에 성형된 홀의 분포 형태가 더욱 균형을 이루도록 보장한다.1) Whether it is the 1st stage formation, 2nd stage formation, 3rd stage formation or 4th stage formation stage, a constant density of current is applied to the conversion tank liquid, so that the oxide film is stably and quickly created on the surface of the corrosion foil, and within different areas. It ensures that the distribution shape of the formed holes is more balanced.

2) 매회 화성 단계에 대해, 사용 전압, 온도, 시간 및 사용 화성액 성분, 배합비를 조정함으로써, 성형 산화막 각 분층의 치밀도를 일관되게 하여, 전극 포일의 비등 수명을 개선하는 데 도움이 되도록 한다.2) For each chemical conversion step, by adjusting the voltage, temperature, time, components of the chemical liquid used, and mixing ratio, the density of each layer of the molded oxide film is made consistent, helping to improve the boiling life of the electrode foil. .

3) 단계 S21에서, 1단계 화성 시 아민류 처리액을 첨가하여 산화막 중 γ` 또는 γ-Al2O3의 함량을 높일 수 있다. 그 이유는 약알칼리성 환경에서 부식 포일의 미세 다공성 표면에 일수화물 베마이트 증착막이 형성되어, 후속 고온 처리 후에 필연적으로 분해되어 γ` 또는 γ-Al2O3를 생성하기 때문이다.3) In step S21, the content of γ` or γ-Al 2 O 3 in the oxide film can be increased by adding an amine treatment solution during the first stage chemical conversion. This is because a monohydrate boehmite deposition film is formed on the microporous surface of the corrosion foil in a slightly alkaline environment, and is inevitably decomposed after subsequent high temperature treatment to produce γ′ or γ-Al 2 O 3 .

여기에서, 후처리 단계에서는 화성 중 산화막 상에 형성된 결함점(산 침지 또는 고온 처리 후 노출)을 효과적이고 충분히 보수할 수 있으며, 알루미늄 전극 포일의 비정전용량을 대폭 향상시킬 수 있음에 유의한다.Here, it should be noted that in the post-processing step, defect points formed on the oxide film during chemical conversion (acid immersion or exposure after high-temperature treatment) can be effectively and sufficiently repaired, and the specific capacitance of the aluminum electrode foil can be significantly improved.

원리는 다음과 같이 간단히 설명된다: 후처리 단계에서, 산 처리 시:The principle is briefly explained as follows: In the post-treatment stage, upon acid treatment:

양극 anode

음극 cathode

강한 산화성 산의 존재로 인해 음극은 다음과 같다:Due to the presence of strong oxidizing acids, the cathode:

두 상의 계면에서, 산도 감소로 인해 Al3+ 및 Mn2+의 인산염 막 증착이 발생하는 동시에 일수화물 베마이트 구조 증착이 일어나, 전극 포일 표면 보수가 구현된다.At the interface of the two phases, the decrease in acidity causes the deposition of phosphate films of Al 3+ and Mn 2+ while at the same time the deposition of monohydrate boehmite structures occurs, realizing electrode foil surface repair.

형성된 화학적 변형막은 고온 처리 없이도 그 바닥층에 γ' 또는 γ-Al2O3 성분을 함유하여, 산화막 중 산화알루미늄 결정 함량이 증가하였다. 결정질 Al2O3의 유전 상수는 비정질 Al2O3보다 높기 때문에, 유전막 중의 결정질 Al2O3의 함량이 효과적으로 증가하여, 알루미늄 전극 포일의 비정전용량을 대폭 증가시키는 데 초석이 된다.The formed chemically modified film contained γ' or γ-Al 2 O 3 component in its bottom layer even without high temperature treatment, and the aluminum oxide crystal content in the oxide film increased. Since the dielectric constant of crystalline Al 2 O 3 is higher than that of amorphous Al 2 O 3 , the content of crystalline Al 2 O 3 in the dielectric film is effectively increased, which serves as a cornerstone for significantly increasing the specific capacitance of the aluminum electrode foil.

마지막으로 다음 몇 가지 사항에 유의한다.Lastly, keep in mind a few things:

1) 부식 포일에서 화성 처리를 수행함에 있어서, 상기 실시예에서 개시된 메타붕산나트륨 이외에, 실제 상황에 따라 붕사 등 붕산염 및 메타붕산나트륨과 붕사의 혼합물을 바람직하게 선택할 수도 있다.1) When performing chemical treatment on a corrosion foil, in addition to the sodium metaborate disclosed in the above examples, borates such as borax and a mixture of sodium metaborate and borax may be preferably selected depending on the actual situation.

2) 부식 포일의 화성 처리를 실행함에 있어서, 상기 실시예에 개시된 헥실벤질아민염 이외에, 실제 상황에 따라 디시클로헥실아민염, BOC-HIS(BOC)-OH DCHA, 디메틸아민염산염, 트리에탄올아민, 피록톤 올아민 등 아민염 중 어느 하나 또는 이들의 혼합물을 바람직하게 선택할 수도 있다.2) In carrying out the chemical treatment of the corrosion foil, in addition to the hexylbenzylamine salt disclosed in the above examples, dicyclohexylamine salt, BOC-HIS(BOC)-OH DCHA, dimethylamine hydrochloride, triethanolamine, Any one of amine salts such as piroctone olamine or a mixture thereof may be preferably selected.

3) 부식 포일의 화성 처리를 실행함에 있어서, 상기 실시예에 개시된 도데실황산나트륨 이외에, 실제 상황에 따라 브롬화 도데실트리메틸암모늄, 도데실 알코올 에테르 황산암모늄 등 4차 암모늄염 중 어느 하나 또는 이들의 혼합물을 바람직하게 선택할 수도 있다.3) In carrying out the chemical treatment of the corrosion foil, in addition to the sodium dodecyl sulfate disclosed in the above examples, any one of quaternary ammonium salts such as dodecyltrimethylammonium bromide and dodecyl alcohol ether ammonium sulfate or a mixture thereof may be used depending on the actual situation. You may select it as desired.

4) 화성 포일에 대해 후처리를 실행하는 공정에서, 상기 실시예에서 개시된 헥사메타인산나트륨 이외에, 실제 상황에 따라 인산이암모늄, 인산수소이나트륨 등 인산염 중 어느 하나 또는 이들의 혼합물을 바람직하게 선택할 수도 있다.4) In the process of performing post-treatment on the chemical conversion foil, in addition to the sodium hexametaphosphate disclosed in the above examples, any one of phosphates such as diammonium phosphate and disodium hydrogen phosphate, or a mixture thereof, may be preferably selected depending on the actual situation. there is.

전술한 개시된 실시예에 대한 설명은 당업자가 본 발명을 실현하거나 사용할 수 있도록 한다. 이러한 실시예에 대한 다양한 수정은 당업자에게 명백할 것이며, 본 명세서에 정의된 일반적인 원리는 본 발명의 정신 또는 범위를 벗어나지 않고 다른 실시예에서 구현될 수 있다. 따라서, 본 발명은 본원에 개시된 실시예에 한정되지 않고, 본원에 개시된 원리 및 신규 특징에 부합하는 가장 넓은 범위의 적용을 받는다.The foregoing description of the disclosed embodiments enables any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Accordingly, the present invention is not limited to the embodiments disclosed herein but is subject to the widest scope consistent with the principles and novel features disclosed herein.

Claims (6)

자동차 전자용 고비용량 저전압 전극 포일의 제조 방법에 있어서,
이하의 단계,
S1 부식 포일의 제조: 순도 99.9% 이상의 알루미늄 포일을 산성 용액에 담가 표면을 부식시키고;
S2 이하의 하위 단계를 포함하는 다단계 화성;
S21 1단계 화성: 단계 S1에서 얻은 부식 포일을 온도가 65 내지 85℃로 제어된, 5 내지 10wt% 황산암모늄, 1 내지 2wt% 붕산염 및 0.5 내지 1wt% 아민염을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 5 내지 10분으로 제어하여, 1단계 화성 포일을 제조하고;
S22 표면 세척: 단계 S21에서 수득한 1단계 화성 포일에 대해 물세척 및 공기 건조 작업을 수행하고;
S23 2단계 화성: 단계 S22를 거쳐 처리된 1단계 화성 포일을 온도가 65 내지 85℃로 제어된, 3 내지 7wt% 황산암모늄 및 1 내지 2wt% 붕산염을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 5 내지 10분으로 제어하여, 2단계 화성 포일을 제조하고;
S24 3단계 화성: 단계 S23에서 수득된 2단계 화성 포일을 온도가 65 내지 85℃로 제어된, 3 내지 5wt% 황산암모늄 및 1 내지 2wt% 붕산염을 함유하는 혼합 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하고, 시간은 7 내지 15분으로 제어하여, 3단계 화성 포일을 제조하고;
S25 표면 세척: 단계 S24에서 수득한 3단계 화성 포일에 대해 물세척 및 공기 건조 작업을 수행하고;
S26 중간 처리: 단계 S25에서 처리된 3단계 화성 포일을 온도가 40 내지 60℃로 제어된, 5 내지 10wt%의 4차 암모늄염 수용액에 담그고, 시간은 5 내지 10분으로 제어하고;
S27 4단계 화성: 단계 S26에서 수득한 3단계 화성 포일을 온도가 65 내지 85℃로 제어된, 5 내지 7wt% 인산염을 함유하는 용액에 담그고, 20 내지 160V 전압 하에서 화성을 수행하며, 시간은 15 내지 20분으로 제어하여, 4단계 화성 포일을 제조하고;
S3 이하의 하위 단계를 포함하는 후처리
S31 1단계 후처리: 단계 S27에서 수득한 4단계 화성 포일을 온도가 65 내지 85℃로 제어된 1 내지 5wt%의 인산염 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 10 내지 15분으로 제어하여 1단계 처리 포일을 제조하고;
S32 표면 세척: 단계 S31에서 수득한 1단계 처리 포일에 대해 물세척 및 공기 건조 작업을 수행하고;
S33 산 담금 처리: 단계 S32에서 처리된 1단계 처리 포일을 7 내지 10wt% 인산과 산화성 산을 함유하는 혼합 용액에 담그고, 시간을 5 내지 10분으로 제어하고;
S34 열처리: 단계 S33에서 수득한 1단계 처리 호일에 대해 물세척 및 건조 작업을 수행하며, 건조 온도는 450 내지 500℃로 제어하고, 시간은 1 내지 2분으로 제어하고;
S35 2단계 후처리: 단계 S34에서 수득한 1단계 처리 포일을 온도가 65 내지 85℃로 제어된 1 내지 5wt%의 인산염 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 5 내지 10분으로 제어하여 2단계 처리 포일을 제조하고;
S36 3단계 후처리: 단계 S35에서 수득한 2단계 처리 포일을 온도가 65 내지 85℃로 제어된 1 내지 5wt%의 인산염 수용액에 담그고, 20 내지 160V의 전압을 인가하며, 시간은 5 내지 10분으로 제어하여 3단계 처리 포일을 제조하고;
S37 표면 세척: 단계 S36에서 수득한 3단계 처리 포일에 대해 물세척 및 공기 건조 작업을 수행하여, 고비용량 저전압 전극 포일을 수득하는 단계;를 포함하는 것을 특징으로 하는 자동차 전자용 고비용량 저전압 전극 포일의 제조 방법.
In the manufacturing method of high-capacity low-voltage electrode foil for automotive electronics,
The following steps,
Preparation of S1 corrosion foil: Aluminum foil with a purity of 99.9% or higher is immersed in an acidic solution to corrode the surface;
multi-stage harmony with sub-stages S2 and below;
S21 Stage 1 conversion: The corrosion foil obtained in step S1 is immersed in a mixed solution containing 5 to 10 wt% ammonium sulfate, 1 to 2 wt% borate and 0.5 to 1 wt% amine salt, the temperature being controlled at 65 to 85° C., 20 The conversion is performed under a voltage of 160 V to 160 V, and the time is controlled to 5 to 10 minutes to produce a first-stage conversion foil;
S22 Surface cleaning: water washing and air drying are performed on the first-stage conversion foil obtained in step S21;
S23 Second-stage conversion: The first-stage conversion foil treated through step S22 is immersed in a mixed solution containing 3 to 7 wt% ammonium sulfate and 1 to 2 wt% borate, temperature controlled at 65 to 85° C., voltage 20 to 160 V. A two-stage chemical conversion foil is manufactured by performing conversion under the following conditions and controlling the time to 5 to 10 minutes;
S24 3-step conversion: The 2-step conversion foil obtained in step S23 is immersed in a mixed solution containing 3 to 5 wt% ammonium sulfate and 1 to 2 wt% borate, the temperature of which is controlled at 65 to 85° C., under a voltage of 20 to 160 V. Carry out conversion and control the time between 7 and 15 minutes to produce a three-stage conversion foil;
S25 Surface cleaning: water washing and air drying are performed on the three-stage conversion foil obtained in step S24;
S26 intermediate treatment: the three-stage chemical conversion foil treated in step S25 is immersed in a 5 to 10 wt% aqueous quaternary ammonium salt solution, the temperature of which is controlled at 40 to 60° C., and the time is controlled to be 5 to 10 minutes;
S27 4-step conversion: The 3-step conversion foil obtained in step S26 is immersed in a solution containing 5 to 7 wt% phosphate, the temperature of which is controlled at 65 to 85 ° C., and conversion is performed under a voltage of 20 to 160 V, and the time is 15 to 20 minutes to prepare a four-step conversion foil;
Post-processing including substeps below S3
S31 1st stage post-treatment: The 4th stage chemical conversion foil obtained in step S27 is immersed in a 1 to 5 wt% phosphate aqueous solution whose temperature is controlled at 65 to 85°C, a voltage of 20 to 160V is applied, and the time is 10 to 15 minutes. Manufacture a first-stage processing foil by controlling;
S32 Surface cleaning: water washing and air drying are performed on the first-stage treated foil obtained in step S31;
S33 acid soak treatment: the first-stage treatment foil treated in step S32 is immersed in a mixed solution containing 7 to 10 wt% phosphoric acid and oxidizing acid, and the time is controlled to 5 to 10 minutes;
S34 heat treatment: water washing and drying operations are performed on the first-stage treated foil obtained in step S33, the drying temperature is controlled to 450 to 500 ° C., and the time is controlled to 1 to 2 minutes;
S35 2nd stage post-treatment: The 1st stage treated foil obtained in step S34 is immersed in 1 to 5 wt% phosphate aqueous solution whose temperature is controlled at 65 to 85°C, a voltage of 20 to 160V is applied, and the time is 5 to 10 minutes. Manufacture a two-step processing foil by controlling;
S36 3-step post-treatment: The 2-step treatment foil obtained in step S35 is immersed in 1 to 5 wt% phosphate aqueous solution whose temperature is controlled at 65 to 85°C, a voltage of 20 to 160 V is applied, and the time is 5 to 10 minutes. Manufacture a three-step processing foil by controlling;
S37 Surface cleaning: performing water washing and air drying on the 3-step treated foil obtained in step S36 to obtain a high specific capacity low voltage electrode foil. High specific capacity low voltage electrode foil for automotive electronics, comprising: Manufacturing method.
제1항에 있어서,
붕산염은 붕사 또는 메타붕산나트륨 중 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 자동차 전자용 고비용량 저전압 전극 포일의 제조 방법.
According to paragraph 1,
A method of manufacturing a high specific capacity low voltage electrode foil for automotive electronics, wherein the borate is either borax or sodium metaborate or a mixture thereof.
제1항에 있어서,
아민염은 헥실벤질아민염, 디시클로헥실아민염, BOC-HIS(BOC)-OH DCHA, 디메틸아민염산염, 트리에탄올아민, 피록톤 올아민 중 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 자동차 전자용 고비용량 저전압 전극 포일의 제조 방법.
According to paragraph 1,
The amine salt is for automotive electronics, characterized in that it is any one of hexylbenzylamine salt, dicyclohexylamine salt, BOC-HIS(BOC)-OH DCHA, dimethylamine hydrochloride, triethanolamine, and piroctone olamine, or a mixture thereof. Method for manufacturing high specific capacity low voltage electrode foil.
제1항에 있어서,
4차 암모늄염은 도데실황산나트륨, 브롬화 도데실트리메틸암모늄, 도데실 알코올 에테르 황산암모늄 중 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 자동차 전자용 고비용량 저전압 전극 포일의 제조 방법.
According to paragraph 1,
A method for producing a high-specific capacity low-voltage electrode foil for automotive electronics, wherein the quaternary ammonium salt is any one of sodium dodecyl sulfate, dodecyltrimethylammonium bromide, and dodecyl alcohol ether ammonium sulfate, or a mixture thereof.
제1항에 있어서,
인산염은 인산이암모늄, 헥사메타인산나트륨, 인산수소이나트륨 중 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 자동차 전자용 고비용량 저전압 전극 포일의 제조 방법.
According to paragraph 1,
A method of manufacturing a high-specific capacity low-voltage electrode foil for automotive electronics, wherein the phosphate is any one of diammonium phosphate, sodium hexametaphosphate, and disodium hydrogen phosphate, or a mixture thereof.
제1항에 있어서,
산화성 산은 질산, 과망간산, 차아염소산 중 어느 하나이고, 중량을 기준으로 혼합산의 비율은 인산:산화성 산=2:1인 것을 특징으로 하는 자동차 전자용 고비용량 저전압 전극 포일의 제조 방법.
According to paragraph 1,
The oxidizing acid is one of nitric acid, permanganic acid, and hypochlorous acid, and the ratio of the mixed acid based on weight is phosphoric acid:oxidizing acid = 2:1. A method of manufacturing a high-specific capacity low-voltage electrode foil for automotive electronics.
KR1020237034833A 2022-06-07 2023-02-10 Manufacturing method of high-capacity low-voltage electrode foil for automotive electronics KR20240009387A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202210632100.0 2022-06-07
CN202210632100.0A CN114703526B (en) 2022-06-07 2022-06-07 Preparation method of high specific volume low-voltage electrode foil for automotive electronics
PCT/CN2023/075328 WO2023236573A1 (en) 2022-06-07 2023-02-10 Method for preparing high-specific-volume low-voltage electrode foil for automotive electronics

Publications (1)

Publication Number Publication Date
KR20240009387A true KR20240009387A (en) 2024-01-22

Family

ID=82177640

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237034833A KR20240009387A (en) 2022-06-07 2023-02-10 Manufacturing method of high-capacity low-voltage electrode foil for automotive electronics

Country Status (3)

Country Link
KR (1) KR20240009387A (en)
CN (1) CN114703526B (en)
WO (1) WO2023236573A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703526B (en) * 2022-06-07 2022-11-01 南通海星电子股份有限公司 Preparation method of high specific volume low-voltage electrode foil for automotive electronics

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098445A1 (en) * 2005-03-17 2006-09-21 Showa Denko K.K. Process for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, process for producing electrolytic capacitor electrode material, anode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
US20100219079A1 (en) * 2006-05-07 2010-09-02 Synkera Technologies, Inc. Methods for making membranes based on anodic aluminum oxide structures
JP2008091358A (en) * 2006-09-29 2008-04-17 Nichicon Corp Solid-state electrolytic capacitor, and its manufacturing process
CN100524558C (en) * 2006-11-06 2009-08-05 乳源瑶族自治县东阳光化成箔有限公司 A low-voltage anode foil used for aluminium electrolytic capacitor and its manufacturing method
CN101093751B (en) * 2006-11-17 2010-05-19 深圳清华大学研究院 Method for preparing cathode foil with high specific volume
CN101593628A (en) * 2008-05-26 2009-12-02 南通海一电子有限公司 The five-stage manufacturing method of low voltage electrode foil for aluminum electrolytic capacitor
CN101425383B (en) * 2008-07-24 2011-04-20 东莞市东阳光电容器有限公司 Formed foil production method for low voltage high dielectric aluminum electrolysis capacitor
CN101651049A (en) * 2009-06-24 2010-02-17 吴江飞乐天和电子材料有限公司 Method for increasing specific volume of electrode foil of low-voltage aluminum electrolytic capacitor
CN105097286B (en) * 2015-09-01 2017-10-31 广西贺州市桂东电子科技有限责任公司 A kind of caustic solution of super-pressure energy storage material
CN108511195A (en) * 2018-03-19 2018-09-07 南通海星电子股份有限公司 A kind of post-processing approach improving middle-high voltage electrode foil coating mass
CN109402700A (en) * 2018-11-01 2019-03-01 青海瑞合铝箔有限公司 A kind of improved Waste Acid From Hua Cheng Foil manufacturing process
CN111139508B (en) * 2019-01-23 2021-11-05 东莞东阳光科研发有限公司 Chemical conversion solution, chemical conversion method, and anode foil
CN110016702B (en) * 2019-04-18 2020-12-11 内蒙古乌兰察布东阳光化成箔有限公司 Ultrahigh-voltage foil formation process for aluminum electrolytic capacitor
CN110055571B (en) * 2019-04-18 2020-05-22 宜都东阳光化成箔有限公司 Pretreatment solution for improving medium-high voltage formed foil capacity for aluminum electrolytic capacitor and forming process
US11230786B2 (en) * 2019-06-17 2022-01-25 Nanopec, Inc. Nano-porous anodic aluminum oxide membrane for healthcare and biotechnology
CN110219032B (en) * 2019-06-20 2020-10-13 新疆众和股份有限公司 Formation method of anode foil of ultra-high voltage aluminum electrolytic capacitor
CN110760913B (en) * 2019-09-30 2021-04-20 东莞东阳光科研发有限公司 Formation liquid, low-pressure formation foil and preparation method thereof
CN113862750A (en) * 2021-08-23 2021-12-31 南通南辉电子材料股份有限公司 Manufacturing method of electrode foil for special capacitor of electric automobile
CN113897651A (en) * 2021-08-23 2022-01-07 南通南辉电子材料股份有限公司 Method for manufacturing electrode foil for aluminum electrolytic capacitor with wide temperature, low impedance, shrinkage, large ripple current resistance and long service life
CN114411157A (en) * 2021-12-31 2022-04-29 乳源县立东电子科技有限公司 Cleaning method for residual chloride ions in aluminum foil and application of cleaning method
CN114703526B (en) * 2022-06-07 2022-11-01 南通海星电子股份有限公司 Preparation method of high specific volume low-voltage electrode foil for automotive electronics

Also Published As

Publication number Publication date
CN114703526B (en) 2022-11-01
CN114703526A (en) 2022-07-05
WO2023236573A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
CN109609991B (en) Formed foil, preparation method and application thereof
CN105097286B (en) A kind of caustic solution of super-pressure energy storage material
CN106653373B (en) A kind of aluminium electrolutic capacitor Waste Acid From Hua Cheng Foil and its production technology
KR102317276B1 (en) Method for manufacturing electrode foil for surface mount aluminum electrolytic capacitors
KR102598338B1 (en) Manufacturing method of nano-microporous aluminum electrode foil for automotive electronics
KR20240009387A (en) Manufacturing method of high-capacity low-voltage electrode foil for automotive electronics
CN110055571B (en) Pretreatment solution for improving medium-high voltage formed foil capacity for aluminum electrolytic capacitor and forming process
CN100472680C (en) Method for preparing solid electrolytic capacitor cathode
CN101345137A (en) Anode foil corrosion technology of electrolytic capacitor
CN109378218B (en) Method for manufacturing high-stability low-voltage aluminum electrolytic capacitor formed foil
KR20180108807A (en) METHOD FOR MANUFACTURING ALUMINUM PLATE
CN109554746B (en) Method for manufacturing high-pressure high-specific-volume corrosion foil
JP2011252229A (en) Method for producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, anode material for aluminum electrolytic capacitor, method for producing anode material for electrolytic capacitor, and aluminum electrolytic capacitor
CN104357886A (en) Method for chemically depositing diffused tin-zinc crystal nucleus on surface of high-purity aluminum foil for medium/high-voltage positive electrode
CN113436891A (en) Method for inducing medium-high voltage anode foil to uniformly corrode and form pores by adopting nano pits after anodic oxidation
JP2002158144A (en) Manufacturing method of solid electrolytic capacitor and the electrolytic capacitor
CN109786113A (en) A kind of aluminium electrolutic capacitor Waste Acid From Hua Cheng Foil and its production technology
CN114808076A (en) Preparation method of electrode foil with good bending performance
CN110085429A (en) A kind of method of aluminium electrolutic capacitor mesohigh anode aluminium foil pulsed deposition nanometer tin point
JP6675996B2 (en) Method for manufacturing electrode for aluminum electrolytic capacitor
JP4690221B2 (en) Method for producing anode foil for electrolytic capacitor
JP4308552B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
CN112117130B (en) Six-stage formation process of high-stability high-voltage anode foil
JPH08241832A (en) Manufacture of electrode foil for aluminum electrolytic capacitor