KR20240006986A - Method and apparatus for adjusting problem difficulty using a neural network - Google Patents

Method and apparatus for adjusting problem difficulty using a neural network Download PDF

Info

Publication number
KR20240006986A
KR20240006986A KR1020220083955A KR20220083955A KR20240006986A KR 20240006986 A KR20240006986 A KR 20240006986A KR 1020220083955 A KR1020220083955 A KR 1020220083955A KR 20220083955 A KR20220083955 A KR 20220083955A KR 20240006986 A KR20240006986 A KR 20240006986A
Authority
KR
South Korea
Prior art keywords
learning
learner
difficulty
check problem
server
Prior art date
Application number
KR1020220083955A
Other languages
Korean (ko)
Inventor
김성태
Original Assignee
주식회사 에이블에듀테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이블에듀테크 filed Critical 주식회사 에이블에듀테크
Priority to KR1020220083955A priority Critical patent/KR20240006986A/en
Publication of KR20240006986A publication Critical patent/KR20240006986A/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/20Education
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/20Education
    • G06Q50/205Education administration or guidance
    • G06Q50/2057Career enhancement or continuing education service
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B7/00Electrically-operated teaching apparatus or devices working with questions and answers
    • G09B7/06Electrically-operated teaching apparatus or devices working with questions and answers of the multiple-choice answer-type, i.e. where a given question is provided with a series of answers and a choice has to be made from the answers
    • G09B7/07Electrically-operated teaching apparatus or devices working with questions and answers of the multiple-choice answer-type, i.e. where a given question is provided with a series of answers and a choice has to be made from the answers providing for individual presentation of questions to a plurality of student stations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B7/00Electrically-operated teaching apparatus or devices working with questions and answers
    • G09B7/06Electrically-operated teaching apparatus or devices working with questions and answers of the multiple-choice answer-type, i.e. where a given question is provided with a series of answers and a choice has to be made from the answers
    • G09B7/08Electrically-operated teaching apparatus or devices working with questions and answers of the multiple-choice answer-type, i.e. where a given question is provided with a series of answers and a choice has to be made from the answers characterised by modifying the teaching programme in response to a wrong answer, e.g. repeating the question, supplying further information

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Mathematical Physics (AREA)
  • Tourism & Hospitality (AREA)
  • Human Resources & Organizations (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Strategic Management (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Mathematics (AREA)
  • Software Systems (AREA)
  • Primary Health Care (AREA)
  • Computing Systems (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Marketing (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Telephone Function (AREA)

Abstract

실시예들은 뉴럴 네트워크를 이용한 문제 난이도 조정 방법 및 장치를 제공한다. 실시예에 따른 뉴럴 네트워크를 이용한 문제 난이도 조정 방법은, 학습 서버에 의해, 데이터베이스에서 특정 과목의 특정 챕터로 분류되는 제1 학습 체크 문제를 선택하고, 학습자 단말에 상기 제1 학습 체크 문제를 송신하는 단계; 상기 학습자 단말로부터 상기 제1 학습 체크 문제에 대한 학습자의 제1 학습 체크 응답을 수신하는 단계; 상기 제1 학습 체크 문제에 대한 고유 난이도를 산출하는 단계; 상기 제1 학습 체크 문제에 대응하는 학습 컨텐츠에 대한 상기 학습자의 학습 성취도를 측정하는 단계; 상기 고유 난이도와 상기 학습 성취도를 기초로 상기 제1 학습 체크 문제에 대한 상기 학습자의 체감 난이도를 산출하는 단계; 상기 체감 난이도를 기초로 상기 데이터베이스에서 상기 제1 학습 체크 문제의 고유 난이도와 상이한 고유 난이도를 가지는 제2 학습 체크 문제를 선택하고, 상기 학습자 단말에 상기 제2 학습 체크 문제를 송신하는 단계;를 포함할 수 있다.Embodiments provide a method and device for adjusting problem difficulty using a neural network. The problem difficulty adjustment method using a neural network according to an embodiment includes selecting, by a learning server, a first learning check problem classified into a specific chapter of a specific subject in a database, and transmitting the first learning check problem to a learner terminal. step; Receiving the learner's first learning check response to the first learning check problem from the learner terminal; calculating a unique difficulty level for the first learning check problem; Measuring the learner's learning achievement for learning content corresponding to the first learning check problem; calculating the learner's perceived difficulty level for the first learning check problem based on the unique difficulty level and the learning achievement level; Selecting a second learning check problem having a unique difficulty level different from that of the first learning check problem from the database based on the perceived difficulty level, and transmitting the second learning check problem to the learner terminal. can do.

Description

뉴럴 네트워크를 이용한 문제 난이도 조정 방법 및 장치{METHOD AND APPARATUS FOR ADJUSTING PROBLEM DIFFICULTY USING A NEURAL NETWORK}Method and device for adjusting problem difficulty using a neural network {METHOD AND APPARATUS FOR ADJUSTING PROBLEM DIFFICULTY USING A NEURAL NETWORK}

본 발명의 실시예들은 뉴럴 네트워크를 이용한 문제 난이도 조정 방법 및 장치에 관한 것으로서, 보다 상세하게는 뉴럴 네트워크를 이용하여 문제에 대한 학습자의 응답을 기초로 학습자가 느끼는 체감 난이도를 산출하고, 체감 난이도에 따라 문제의 난이도를 조정하는 장치 및 방법에 관한 것이다.Embodiments of the present invention relate to a method and device for adjusting problem difficulty using a neural network. More specifically, using a neural network to calculate the perceived difficulty level felt by the learner based on the learner's response to the problem, It relates to a device and method for adjusting the difficulty level of a problem accordingly.

최근 통신 기술이 발전함에 따라 교육 분야에 있어서도 온라인 교육 서비스가 점차 증가하고 있다. 기존의 오프라인 교육의 경우 학습자가 직접 학원까지 이동해서 수업을 수강해야 하기 때문에 학원에서 멀리 떨어진 지역에 거주하는 학습자의 경우 수업을 수강하지 못하거나, 하나의 강의를 수강할 수 있는 학습자의 수가 제한되는 등 다양한 불편함이 있다. 그러나 온라인 교육 서비스의 경우, 그러한 불편함이 해소되고, 교육 서비스 제공자가 다양한 방식으로 학습자에게 서비스를 제공할 수 있기 때문에 실질적으로 학습 서비스의 퀄리티가 상승할 수 있다.As communication technology has recently developed, online education services are gradually increasing in the education field. In the case of existing offline education, learners must travel to the academy in person to take classes, so learners who live far away from the academy cannot take classes, or the number of learners who can take a single lecture is limited. There are various inconveniences. However, in the case of online education services, such inconveniences are eliminated and the quality of learning services can actually increase because education service providers can provide services to learners in various ways.

그러나, 기존의 온라인 교육 서비스의 경우 학습 컨텐츠를 제공하는 서비스제공자가 학습자의 학습 능력을 개별적으로 체크하기 어렵기 때문에, 학습자 개인에게 적합한 학습 컨텐츠를 제공할 수 없다는 단점이 있었다. 또한, 일반적으로 학습자에게 제공되는 문제의 객관적인 난이도는, 학습자의 학습량에 따라 학습자의 느끼는 체감 난이도는 상이하다. 이에 따라, 인공지능을 이용하여 학습자가 느끼는 체감 난이도를 정확하게 측정하여, 학습자의 현재 학습 상태에 따른 적절한 학습 컨텐츠를 제공하는 기술의 필요성이 대두된다.However, existing online education services have the disadvantage of not being able to provide learning content suitable for individual learners because it is difficult for service providers providing learning content to individually check learners' learning abilities. In addition, the objective difficulty of the problem provided to the learner generally varies depending on the learner's amount of learning. Accordingly, there is a need for technology that accurately measures the level of difficulty perceived by learners using artificial intelligence and provides appropriate learning content according to the learner's current learning status.

위에서 설명한 배경기술은 발명자가 본원의 개시 내용을 도출하는 과정에서 보유하거나 습득한 것으로서, 반드시 본 출원 전에 일반 공중에 공개된 공지기술이라고 할 수는 없다. The background technology described above is possessed or acquired by the inventor in the process of deriving the disclosure of the present application, and cannot necessarily be said to be known technology disclosed to the general public before this application.

실시예들은, 뉴럴 네트워크를 이용한 문제 난이도 조정 방법 및 장치를 제공한다. Embodiments provide a method and device for adjusting problem difficulty using a neural network.

실시예들에서 이루고자 하는 기술적 과제들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 다양한 실시예들로부터 당해 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.The technical challenges to be achieved in the embodiments are not limited to the matters mentioned above, and other technical challenges not mentioned may be considered by those skilled in the art from the various embodiments described below. You can.

본 발명의 일 실시예에 따른 뉴럴 네트워크를 이용한 문제 난이도 조정 방법은, 학습 서버에 의해, 데이터베이스에서 특정 과목의 특정 챕터로 분류되는 제1 학습 체크 문제를 선택하고, 학습자 단말에 상기 제1 학습 체크 문제를 송신하는 단계; 상기 학습자 단말로부터 상기 제1 학습 체크 문제에 대한 학습자의 제1 학습 체크 응답을 수신하는 단계; 상기 제1 학습 체크 문제에 대한 고유 난이도를 산출하는 단계; 상기 제1 학습 체크 문제에 대응하는 학습 컨텐츠에 대한 상기 학습자의 학습 성취도를 측정하는 단계; 상기 고유 난이도와 상기 학습 성취도를 기초로 상기 제1 학습 체크 문제에 대한 상기 학습자의 체감 난이도를 산출하는 단계; 상기 체감 난이도를 기초로 상기 데이터베이스에서 상기 제1 학습 체크 문제의 고유 난이도와 상이한 고유 난이도를 가지는 제2 학습 체크 문제를 선택하고, 상기 학습자 단말에 상기 제2 학습 체크 문제를 송신하는 단계;를 포함할 수 있다.In the problem difficulty adjustment method using a neural network according to an embodiment of the present invention, a learning server selects a first learning check problem classified into a specific chapter of a specific subject in a database, and sends the first learning check to a learner terminal. Submitting a problem; Receiving the learner's first learning check response to the first learning check problem from the learner terminal; calculating a unique difficulty level for the first learning check problem; Measuring the learner's learning achievement for learning content corresponding to the first learning check problem; calculating the learner's perceived difficulty level for the first learning check problem based on the unique difficulty level and the learning achievement level; Selecting a second learning check problem having a unique difficulty level different from that of the first learning check problem from the database based on the perceived difficulty level, and transmitting the second learning check problem to the learner terminal. can do.

상기 학습 성취도는, 상기 특정 과목에 대한 학습 성취도를 나타내는 제1 학습 성취도와, 상기 특정 챕터에 대한 학습 성취도를 나타내는 제2 학습 성취도를 포함할 수 있다.The learning achievement may include a first learning achievement indicating learning achievement for the specific subject and a second learning achievement indicating learning achievement for the specific chapter.

상기 고유 난이도는, 상기 학습자의 상기 제1 학습 체크 문제의 풀이시간 및 상기 제1 학습 체크 문제의 정답율을 기초로 산출될 수 있다.The unique difficulty level may be calculated based on the learner's solving time of the first learning check problem and the correct answer rate of the first learning check problem.

[수학식][Equation]

상기 학습 서버는, 상기 수학식을 이용하여 상기 체감 난이도를 산출하고, 상기 수학식에서, D_f는 체감 난이도, D_i는 고유 난이도, A는 학습 컨텐츠 분류 기준에 따른 학습자의 학습 성취도, k는 학습 컨텐츠 분류 기준을 식별하기 위한 자연수를 의미할 수 있다.The learning server calculates the perceived difficulty using the above equation. In the above equation, D_f is the perceived difficulty, D_i is the inherent difficulty, A is the learner's learning achievement according to the learning content classification standard, and k is the learning content classification. It may refer to a natural number for identifying a standard.

상기 학습 서버는, 난이도 보정 모델을 이용하여 상기 체감 난이도를 보정하고, 상기 난이도 보정 모델은 입력 레이어, 하나 이상의 히든 레이어 및 출력 레이어를 포함하고, 상기 고유 난이도, 상기 학습 성취도, 및 상기 체감 난이도에 관한 복수의 학습 데이터는 상기 난이도 보정 모델의 상기 입력 레이어에 입력되어, 상기 하나 이상의 히든 레이어 및 상기 출력 레이어를 통과하여 출력 벡터로 출력되고, 상기 출력 벡터는 상기 출력 레이어에 연결된 손실함수 레이어에 입력되고, 상기 손실함수 레이어는 상기 출력 벡터와 각각의 상기 학습 데이터에 대한 정답 벡터를 비교하는 손실 함수를 이용하여 손실값을 출력하고, 상기 난이도 보정 모델의 파라미터는 상기 손실값이 작아지는 방향으로 학습될 수 있다.The learning server corrects the perceived difficulty using a difficulty correction model, and the difficulty correction model includes an input layer, one or more hidden layers, and an output layer, and the inherent difficulty, the learning achievement, and the perceived difficulty A plurality of learning data is input to the input layer of the difficulty correction model, passes through the one or more hidden layers and the output layer, and is output as an output vector, and the output vector is input to a loss function layer connected to the output layer. The loss function layer outputs a loss value using a loss function that compares the output vector with the correct answer vector for each of the learning data, and the parameters of the difficulty correction model are learned in the direction of decreasing the loss value. It can be.

실시예들에 따르면, 뉴럴 네트워크를 이용한 문제 난이도 조정 방법은, 학습 체크 문제의 고유 난이도 및 학습 컨텐츠에 대한 학습자의 학습 성취도를 기초로 학습자에게 적합한 난이도의 학습 체크 문제를 제공할 수 있다. 즉, 학습자는 자신의 학습 진도, 학습 시간 등에 따라 측정되는 학습 성취도에 따른 적절한 학습 체크 문제를 받아 풀어봄으로써, 자신의 학습량에 따른 적절한 피드백을 얻을 수 있을 것이다.According to embodiments, the problem difficulty adjustment method using a neural network can provide a learning check problem with a difficulty level suitable for the learner based on the inherent difficulty of the learning check problem and the learner's learning achievement with respect to the learning content. In other words, the learner will be able to obtain appropriate feedback according to the amount of learning by solving appropriate learning check problems according to the learning achievement measured according to the learner's learning progress, learning time, etc.

실시예들로부터 얻을 수 있는 효과들은 이상에서 언급된 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 이하의 상세한 설명을 기반으로 당해 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다.The effects that can be obtained from the examples are not limited to the effects mentioned above, and other effects not mentioned can be clearly derived and understood by those skilled in the art based on the detailed description below. It can be.

실시예들에 대한 이해를 돕기 위해 상세한 설명의 일부로 포함된, 첨부 도면은 다양한 실시예들을 제공하고, 상세한 설명과 함께 다양한 실시예들의 기술적 특징을 설명한다.
도 1은 본 발명의 일 실시예에 따른 전자 장치의 구성을 나타내는 도면이다.
도 2는 본 발명의 일 실시예에 따른 프로그램의 구성을 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따른 학습 서버를 포함한 네트워크 환경을 개략적으로 도시한 도면이다.
도 4는 도 3에 도시된 학습 서버(300)를 설명하기 위한 블록도이다.
도 5는 본 발명의 일 실시예에 따른 학습 체크 문제의 난이도 조정 방법을 설명하기 위한 흐름도이다.
The accompanying drawings, which are included as part of the detailed description to aid understanding of the embodiments, provide various embodiments and together with the detailed description describe technical features of the various embodiments.
1 is a diagram showing the configuration of an electronic device according to an embodiment of the present invention.
Figure 2 is a diagram showing the structure of a program according to an embodiment of the present invention.
Figure 3 is a diagram schematically showing a network environment including a learning server according to an embodiment of the present invention.
FIG. 4 is a block diagram for explaining the learning server 300 shown in FIG. 3.
Figure 5 is a flowchart illustrating a method of adjusting the difficulty level of a learning check problem according to an embodiment of the present invention.

이하의 실시예들은 실시예들의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 다양한 실시예들을 구성할 수도 있다. 다양한 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine elements and features of the embodiments in a predetermined form. Each component or feature may be considered optional unless explicitly stated otherwise. Each component or feature may be implemented in a form that is not combined with other components or features. Additionally, various embodiments may be configured by combining some components and/or features. The order of operations described in various embodiments may change. Some features or features of one embodiment may be included in other embodiments or may be replaced with corresponding features or features of other embodiments.

도면에 대한 설명에서, 다양한 실시예들의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당해 기술분야에서 통상의 지식을 가진 자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.In the description of the drawings, procedures or steps that may obscure the gist of the various embodiments are not described, and procedures or steps that can be understood at the level of a person with ordinary knowledge in the relevant technical field are not described. did.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 다양한 실시예들을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.Throughout the specification, when a part is said to “comprise or include” a certain element, this means that it does not exclude other elements but may further include other elements, unless specifically stated to the contrary. do. In addition, terms such as "... unit", "... unit", and "module" used in the specification refer to a unit that processes at least one function or operation, which refers to hardware, software, or a combination of hardware and software. It can be implemented as: Additionally, the terms “a or an,” “one,” “the,” and similar related terms are used herein in the context of describing various embodiments (particularly in the context of the claims below). Unless otherwise indicated or clearly contradicted by context, it may be used in both singular and plural terms.

이하, 다양한 실시예들에 따른 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 다양한 실시예들의 예시적인 실시형태를 설명하고자 하는 것이며, 유일한 실시형태를 나타내고자 하는 것이 아니다.Hereinafter, embodiments according to various embodiments will be described in detail with reference to the attached drawings. The detailed description set forth below in conjunction with the accompanying drawings is intended to illustrate exemplary embodiments of various embodiments and is not intended to represent the only embodiment.

또한, 다양한 실시예들에서 사용되는 특정(特定) 용어들은 다양한 실시예들의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 다양한 실시예들의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.In addition, specific terms used in various embodiments are provided to aid understanding of the various embodiments, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the various embodiments. .

도 1은 본 발명의 일 실시예에 따른 전자 장치의 구성을 나타내는 도면이다.1 is a diagram showing the configuration of an electronic device according to an embodiment of the present invention.

도 1은, 다양한 실시예들에 따른, 네트워크 환경(100) 내의 전자 장치(101)의 블록도이다. 도 1을 참조하면, 네트워크 환경(100)에서 전자 장치(101)는 제 1 네트워크(198)(예: 근거리 무선 통신 네트워크)를 통하여 전자 장치(102)와 통신하거나, 또는 제 2 네트워크(199)(예: 원거리 무선 통신 네트워크)를 통하여 전자 장치(104) 또는 서버(108) 중 적어도 하나와 통신할 수 있다. 일실시예에 따르면, 전자 장치(101)는 서버(108)를 통하여 전자 장치(104)와 통신할 수 있다. 일실시예에 따르면, 전자 장치(101)는 프로세서(120), 메모리(130), 입력 모듈(150), 음향 출력 모듈(155), 디스플레이 모듈(160), 오디오 모듈(170), 센서 모듈(176), 인터페이스(177), 연결 단자(178), 햅틱 모듈(179), 카메라 모듈(180), 전력 관리 모듈(188), 배터리(189), 통신 모듈(190), 가입자 식별 모듈(196), 또는 안테나 모듈(197)을 포함할 수 있다. 어떤 실시예에서는, 전자 장치(101)에는, 이 구성요소들 중 적어도 하나(예: 연결 단자(178))가 생략되거나, 하나 이상의 다른 구성요소가 추가될 수 있다. 어떤 실시예에서는, 이 구성요소들 중 일부들(예: 센서 모듈(176), 카메라 모듈(180), 또는 안테나 모듈(197))은 하나의 구성요소(예: 디스플레이 모듈(160))로 통합될 수 있다. 전자 장치(101)는 클라이언트, 단말기 또는 피어로 지칭될 수도 있다.1 is a block diagram of an electronic device 101 in a network environment 100, according to various embodiments. Referring to FIG. 1, in the network environment 100, the electronic device 101 communicates with the electronic device 102 through a first network 198 (e.g., a short-range wireless communication network) or a second network 199. It is possible to communicate with at least one of the electronic device 104 or the server 108 through (e.g., a long-distance wireless communication network). According to one embodiment, the electronic device 101 may communicate with the electronic device 104 through the server 108. According to one embodiment, the electronic device 101 includes a processor 120, a memory 130, an input module 150, an audio output module 155, a display module 160, an audio module 170, and a sensor module ( 176), interface 177, connection terminal 178, haptic module 179, camera module 180, power management module 188, battery 189, communication module 190, subscriber identification module 196 , or may include an antenna module 197. In some embodiments, at least one of these components (eg, the connection terminal 178) may be omitted or one or more other components may be added to the electronic device 101. In some embodiments, some of these components (e.g., sensor module 176, camera module 180, or antenna module 197) are integrated into one component (e.g., display module 160). It can be. The electronic device 101 may also be referred to as a client, terminal, or peer.

프로세서(120)는, 예를 들면, 소프트웨어(예: 프로그램(140))를 실행하여 프로세서(120)에 연결된 전자 장치(101)의 적어도 하나의 다른 구성요소(예: 하드웨어 또는 소프트웨어 구성요소)를 제어할 수 있고, 다양한 데이터 처리 또는 연산을 수행할 수 있다. 일실시예에 따르면, 데이터 처리 또는 연산의 적어도 일부로서, 프로세서(120)는 다른 구성요소(예: 센서 모듈(176) 또는 통신 모듈(190))로부터 수신된 명령 또는 데이터를 휘발성 메모리(132)에 저장하고, 휘발성 메모리(132)에 저장된 명령 또는 데이터를 처리하고, 결과 데이터를 비휘발성 메모리(134)에 저장할 수 있다. 일실시예에 따르면, 프로세서(120)는 메인 프로세서(121)(예: 중앙 처리 장치 또는 어플리케이션 프로세서) 또는 이와는 독립적으로 또는 함께 운영 가능한 보조 프로세서(123)(예: 그래픽 처리 장치, 신경망 처리 장치(NPU: neural processing unit), 이미지 시그널 프로세서, 센서 허브 프로세서, 또는 커뮤니케이션 프로세서)를 포함할 수 있다. 예를 들어, 전자 장치(101)가 메인 프로세서(121) 및 보조 프로세서(123)를 포함하는 경우, 보조 프로세서(123)는 메인 프로세서(121)보다 저전력을 사용하거나, 지정된 기능에 특화되도록 설정될 수 있다. 보조 프로세서(123)는 메인 프로세서(121)와 별개로, 또는 그 일부로서 구현될 수 있다.The processor 120, for example, executes software (e.g., program 140) to operate at least one other component (e.g., hardware or software component) of the electronic device 101 connected to the processor 120. It can be controlled and various data processing or calculations can be performed. According to one embodiment, as at least part of data processing or computation, the processor 120 stores commands or data received from another component (e.g., sensor module 176 or communication module 190) in volatile memory 132. The commands or data stored in the volatile memory 132 can be processed, and the resulting data can be stored in the non-volatile memory 134. According to one embodiment, the processor 120 includes a main processor 121 (e.g., a central processing unit or an application processor) or an auxiliary processor 123 that can operate independently or together (e.g., a graphics processing unit, a neural network processing unit ( It may include a neural processing unit (NPU), an image signal processor, a sensor hub processor, or a communication processor). For example, if the electronic device 101 includes a main processor 121 and a secondary processor 123, the secondary processor 123 may be set to use lower power than the main processor 121 or be specialized for a designated function. You can. The auxiliary processor 123 may be implemented separately from the main processor 121 or as part of it.

보조 프로세서(123)는, 예를 들면, 메인 프로세서(121)가 인액티브(예: 슬립) 상태에 있는 동안 메인 프로세서(121)를 대신하여, 또는 메인 프로세서(121)가 액티브(예: 어플리케이션 실행) 상태에 있는 동안 메인 프로세서(121)와 함께, 전자 장치(101)의 구성요소들 중 적어도 하나의 구성요소(예: 디스플레이 모듈(160), 센서 모듈(176), 또는 통신 모듈(190))와 관련된 기능 또는 상태들의 적어도 일부를 제어할 수 있다. 일실시예에 따르면, 보조 프로세서(123)(예: 이미지 시그널 프로세서 또는 커뮤니케이션 프로세서)는 기능적으로 관련 있는 다른 구성요소(예: 카메라 모듈(180) 또는 통신 모듈(190))의 일부로서 구현될 수 있다. 일실시예에 따르면, 보조 프로세서(123)(예: 신경망 처리 장치)는 인공지능 모델의 처리에 특화된 하드웨어 구조를 포함할 수 있다. 인공지능 모델은 기계 학습을 통해 생성될 수 있다. 이러한 학습은, 예를 들어, 인공지능 모델이 수행되는 전자 장치(101) 자체에서 수행될 수 있고, 별도의 서버(예: 서버(108))를 통해 수행될 수도 있다. 학습 알고리즘은, 예를 들어, 지도형 학습(supervised learning), 비지도형 학습(unsupervised learning), 준지도형 학습(semi-supervised learning) 또는 강화 학습(reinforcement learning)을 포함할 수 있으나, 전술한 예에 한정되지 않는다. 인공지능 모델은, 복수의 인공 신경망 레이어들을 포함할 수 있다. 인공 신경망은 심층 신경망(DNN: deep neural network), CNN(convolutional neural network), RNN(recurrent neural network), RBM(restricted boltzmann machine), DBN(deep belief network), BRDNN(bidirectional recurrent deep neural network), 심층 Q-네트워크(deep Q-networks) 또는 상기 중 둘 이상의 조합 중 하나일 수 있으나, 전술한 예에 한정되지 않는다. 인공지능 모델은 하드웨어 구조 이외에, 추가적으로 또는 대체적으로, 소프트웨어 구조를 포함할 수 있다. The auxiliary processor 123 may, for example, act on behalf of the main processor 121 while the main processor 121 is in an inactive (e.g., sleep) state, or while the main processor 121 is in an active (e.g., application execution) state. ), together with the main processor 121, at least one of the components of the electronic device 101 (e.g., the display module 160, the sensor module 176, or the communication module 190) At least some of the functions or states related to can be controlled. According to one embodiment, co-processor 123 (e.g., image signal processor or communication processor) may be implemented as part of another functionally related component (e.g., camera module 180 or communication module 190). there is. According to one embodiment, the auxiliary processor 123 (eg, neural network processing unit) may include a hardware structure specialized for processing artificial intelligence models. Artificial intelligence models can be created through machine learning. For example, such learning may be performed in the electronic device 101 itself on which the artificial intelligence model is performed, or may be performed through a separate server (e.g., server 108). Learning algorithms may include, for example, supervised learning, unsupervised learning, semi-supervised learning, or reinforcement learning, but It is not limited. An artificial intelligence model may include multiple artificial neural network layers. Artificial neural networks include deep neural network (DNN), convolutional neural network (CNN), recurrent neural network (RNN), restricted boltzmann machine (RBM), belief deep network (DBN), bidirectional recurrent deep neural network (BRDNN), It may be one of deep Q-networks or a combination of two or more of the above, but is not limited to the examples described above. In addition to hardware structures, artificial intelligence models may additionally or alternatively include software structures.

메모리(130)는, 전자 장치(101)의 적어도 하나의 구성요소(예: 프로세서(120) 또는 센서 모듈(176))에 의해 사용되는 다양한 데이터를 저장할 수 있다. 데이터는, 예를 들어, 소프트웨어(예: 프로그램(140)) 및, 이와 관련된 명령에 대한 입력 데이터 또는 출력 데이터를 포함할 수 있다. 메모리(130)는, 휘발성 메모리(132) 또는 비휘발성 메모리(134)를 포함할 수 있다. The memory 130 may store various data used by at least one component (eg, the processor 120 or the sensor module 176) of the electronic device 101. Data may include, for example, input data or output data for software (e.g., program 140) and instructions related thereto. Memory 130 may include volatile memory 132 or non-volatile memory 134.

프로그램(140)은 메모리(130)에 소프트웨어로서 저장될 수 있으며, 예를 들면, 운영 체제(142), 미들 웨어(144) 또는 어플리케이션(146)을 포함할 수 있다. The program 140 may be stored as software in the memory 130 and may include, for example, an operating system 142, middleware 144, or application 146.

입력 모듈(150)은, 전자 장치(101)의 구성요소(예: 프로세서(120))에 사용될 명령 또는 데이터를 전자 장치(101)의 외부(예: 사용자)로부터 수신할 수 있다. 입력 모듈(150)은, 예를 들면, 마이크, 마우스, 키보드, 키(예: 버튼), 또는 디지털 펜(예: 스타일러스 펜)을 포함할 수 있다. The input module 150 may receive commands or data to be used in a component of the electronic device 101 (e.g., the processor 120) from outside the electronic device 101 (e.g., a user). The input module 150 may include, for example, a microphone, mouse, keyboard, keys (eg, buttons), or digital pen (eg, stylus pen).

음향 출력 모듈(155)은 음향 신호를 전자 장치(101)의 외부로 출력할 수 있다. 음향 출력 모듈(155)은, 예를 들면, 스피커 또는 리시버를 포함할 수 있다. 스피커는 멀티미디어 재생 또는 녹음 재생과 같이 일반적인 용도로 사용될 수 있다. 리시버는 착신 전화를 수신하기 위해 사용될 수 있다. 일실시예에 따르면, 리시버는 스피커와 별개로, 또는 그 일부로서 구현될 수 있다.The sound output module 155 may output sound signals to the outside of the electronic device 101. The sound output module 155 may include, for example, a speaker or a receiver. Speakers can be used for general purposes such as multimedia playback or recording playback. The receiver can be used to receive incoming calls. According to one embodiment, the receiver may be implemented separately from the speaker or as part of it.

디스플레이 모듈(160)은 전자 장치(101)의 외부(예: 사용자)로 정보를 시각적으로 제공할 수 있다. 디스플레이 모듈(160)은, 예를 들면, 디스플레이, 홀로그램 장치, 또는 프로젝터 및 해당 장치를 제어하기 위한 제어 회로를 포함할 수 있다. 일실시예에 따르면, 디스플레이 모듈(160)은 터치를 감지하도록 설정된 터치 센서, 또는 상기 터치에 의해 발생되는 힘의 세기를 측정하도록 설정된 압력 센서를 포함할 수 있다. The display module 160 can visually provide information to the outside of the electronic device 101 (eg, a user). The display module 160 may include, for example, a display, a hologram device, or a projector, and a control circuit for controlling the device. According to one embodiment, the display module 160 may include a touch sensor configured to detect a touch, or a pressure sensor configured to measure the intensity of force generated by the touch.

오디오 모듈(170)은 소리를 전기 신호로 변환시키거나, 반대로 전기 신호를 소리로 변환시킬 수 있다. 일실시예에 따르면, 오디오 모듈(170)은, 입력 모듈(150)을 통해 소리를 획득하거나, 음향 출력 모듈(155), 또는 전자 장치(101)와 직접 또는 무선으로 연결된 외부 전자 장치(예: 전자 장치(102))(예: 스피커 또는 헤드폰)를 통해 소리를 출력할 수 있다.The audio module 170 can convert sound into an electrical signal or, conversely, convert an electrical signal into sound. According to one embodiment, the audio module 170 acquires sound through the input module 150, the sound output module 155, or an external electronic device (e.g., directly or wirelessly connected to the electronic device 101). Sound may be output through the electronic device 102 (e.g., speaker or headphone).

센서 모듈(176)은 전자 장치(101)의 작동 상태(예: 전력 또는 온도), 또는 외부의 환경 상태(예: 사용자 상태)를 감지하고, 감지된 상태에 대응하는 전기 신호 또는 데이터 값을 생성할 수 있다. 일실시예에 따르면, 센서 모듈(176)은, 예를 들면, 제스처 센서, 자이로 센서, 기압 센서, 마그네틱 센서, 가속도 센서, 그립 센서, 근접 센서, 컬러 센서, IR(infrared) 센서, 생체 센서, 온도 센서, 습도 센서, 또는 조도 센서를 포함할 수 있다. The sensor module 176 detects the operating state (e.g., power or temperature) of the electronic device 101 or the external environmental state (e.g., user state) and generates an electrical signal or data value corresponding to the detected state. can do. According to one embodiment, the sensor module 176 includes, for example, a gesture sensor, a gyro sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a grip sensor, a proximity sensor, a color sensor, an IR (infrared) sensor, a biometric sensor, It may include a temperature sensor, humidity sensor, or light sensor.

인터페이스(177)는 전자 장치(101)가 외부 전자 장치(예: 전자 장치(102))와 직접 또는 무선으로 연결되기 위해 사용될 수 있는 하나 이상의 지정된 프로토콜들을 지원할 수 있다. 일실시예에 따르면, 인터페이스(177)는, 예를 들면, HDMI(high definition multimedia interface), USB(universal serial bus) 인터페이스, SD카드 인터페이스, 또는 오디오 인터페이스를 포함할 수 있다.The interface 177 may support one or more designated protocols that can be used to connect the electronic device 101 directly or wirelessly with an external electronic device (eg, the electronic device 102). According to one embodiment, the interface 177 may include, for example, a high definition multimedia interface (HDMI), a universal serial bus (USB) interface, an SD card interface, or an audio interface.

연결 단자(178)는, 그를 통해서 전자 장치(101)가 외부 전자 장치(예: 전자 장치(102))와 물리적으로 연결될 수 있는 커넥터를 포함할 수 있다. 일실시예에 따르면, 연결 단자(178)는, 예를 들면, HDMI 커넥터, USB 커넥터, SD 카드 커넥터, 또는 오디오 커넥터(예: 헤드폰 커넥터)를 포함할 수 있다.The connection terminal 178 may include a connector through which the electronic device 101 can be physically connected to an external electronic device (eg, the electronic device 102). According to one embodiment, the connection terminal 178 may include, for example, an HDMI connector, a USB connector, an SD card connector, or an audio connector (eg, a headphone connector).

햅틱 모듈(179)은 전기적 신호를 사용자가 촉각 또는 운동 감각을 통해서 인지할 수 있는 기계적인 자극(예: 진동 또는 움직임) 또는 전기적인 자극으로 변환할 수 있다. 일실시예에 따르면, 햅틱 모듈(179)은, 예를 들면, 모터, 압전 소자, 또는 전기 자극 장치를 포함할 수 있다.The haptic module 179 can convert electrical signals into mechanical stimulation (e.g., vibration or movement) or electrical stimulation that the user can perceive through tactile or kinesthetic senses. According to one embodiment, the haptic module 179 may include, for example, a motor, a piezoelectric element, or an electrical stimulation device.

카메라 모듈(180)은 정지 영상 및 동영상을 촬영할 수 있다. 일실시예에 따르면, 카메라 모듈(180)은 하나 이상의 렌즈들, 이미지 센서들, 이미지 시그널 프로세서들, 또는 플래시들을 포함할 수 있다.The camera module 180 can capture still images and moving images. According to one embodiment, the camera module 180 may include one or more lenses, image sensors, image signal processors, or flashes.

전력 관리 모듈(188)은 전자 장치(101)에 공급되는 전력을 관리할 수 있다. 일실시예에 따르면, 전력 관리 모듈(188)은, 예를 들면, PMIC(power management integrated circuit)의 적어도 일부로서 구현될 수 있다.The power management module 188 can manage power supplied to the electronic device 101. According to one embodiment, the power management module 188 may be implemented as at least a part of, for example, a power management integrated circuit (PMIC).

배터리(189)는 전자 장치(101)의 적어도 하나의 구성요소에 전력을 공급할 수 있다. 일실시예에 따르면, 배터리(189)는, 예를 들면, 재충전 불가능한 1차 전지, 재충전 가능한 2차 전지 또는 연료 전지를 포함할 수 있다.The battery 189 may supply power to at least one component of the electronic device 101. According to one embodiment, the battery 189 may include, for example, a non-rechargeable primary battery, a rechargeable secondary battery, or a fuel cell.

통신 모듈(190)은 전자 장치(101)와 외부 전자 장치(예: 전자 장치(102), 전자 장치(104), 또는 서버(108)) 간의 직접(예: 유선) 통신 채널 또는 무선 통신 채널의 수립, 및 수립된 통신 채널을 통한 통신 수행을 지원할 수 있다. 통신 모듈(190)은 프로세서(120)(예: 어플리케이션 프로세서)와 독립적으로 운영되고, 직접(예: 유선) 통신 또는 무선 통신을 지원하는 하나 이상의 커뮤니케이션 프로세서를 포함할 수 있다. 일실시예에 따르면, 통신 모듈(190)은 무선 통신 모듈(192)(예: 셀룰러 통신 모듈, 근거리 무선 통신 모듈, 또는 GNSS(global navigation satellite system) 통신 모듈) 또는 유선 통신 모듈(194)(예: LAN(local area network) 통신 모듈, 또는 전력선 통신 모듈)을 포함할 수 있다. 이들 통신 모듈 중 해당하는 통신 모듈은 제 1 네트워크(198)(예: 블루투스, WiFi(wireless fidelity) direct 또는 IrDA(infrared data association)와 같은 근거리 통신 네트워크) 또는 제 2 네트워크(199)(예: 레거시 셀룰러 네트워크, 5G 네트워크, 차세대 통신 네트워크, 인터넷, 또는 컴퓨터 네트워크(예: LAN 또는 WAN)와 같은 원거리 통신 네트워크)를 통하여 외부의 전자 장치(104)와 통신할 수 있다. 이런 여러 종류의 통신 모듈들은 하나의 구성요소(예: 단일 칩)로 통합되거나, 또는 서로 별도의 복수의 구성요소들(예: 복수 칩들)로 구현될 수 있다. 무선 통신 모듈(192)은 가입자 식별 모듈(196)에 저장된 가입자 정보(예: 국제 모바일 가입자 식별자(IMSI))를 이용하여 제 1 네트워크(198) 또는 제 2 네트워크(199)와 같은 통신 네트워크 내에서 전자 장치(101)를 확인 또는 인증할 수 있다. Communication module 190 is configured to provide a direct (e.g., wired) communication channel or wireless communication channel between electronic device 101 and an external electronic device (e.g., electronic device 102, electronic device 104, or server 108). It can support establishment and communication through established communication channels. Communication module 190 operates independently of processor 120 (e.g., an application processor) and may include one or more communication processors that support direct (e.g., wired) communication or wireless communication. According to one embodiment, the communication module 190 is a wireless communication module 192 (e.g., a cellular communication module, a short-range wireless communication module, or a global navigation satellite system (GNSS) communication module) or a wired communication module 194 (e.g., : LAN (local area network) communication module, or power line communication module) may be included. Among these communication modules, the corresponding communication module is a first network 198 (e.g., a short-range communication network such as Bluetooth, wireless fidelity (WiFi) direct, or infrared data association (IrDA)) or a second network 199 (e.g., legacy It may communicate with an external electronic device 104 through a telecommunication network such as a cellular network, a 5G network, a next-generation communication network, the Internet, or a computer network (e.g., LAN or WAN). These various types of communication modules may be integrated into one component (e.g., a single chip) or may be implemented as a plurality of separate components (e.g., multiple chips). The wireless communication module 192 uses subscriber information (e.g., International Mobile Subscriber Identifier (IMSI)) stored in the subscriber identification module 196 within a communication network such as the first network 198 or the second network 199. The electronic device 101 can be confirmed or authenticated.

무선 통신 모듈(192)은 4G 네트워크 이후의 5G 네트워크 및 차세대 통신 기술, 예를 들어, NR 접속 기술(new radio access technology)을 지원할 수 있다. NR 접속 기술은 고용량 데이터의 고속 전송(eMBB(enhanced mobile broadband)), 단말 전력 최소화와 다수 단말의 접속(mMTC(massive machine type communications)), 또는 고신뢰도와 저지연(URLLC(ultra-reliable and low-latency communications))을 지원할 수 있다. 무선 통신 모듈(192)은, 예를 들어, 높은 데이터 전송률 달성을 위해, 고주파 대역(예: mmWave 대역)을 지원할 수 있다. 무선 통신 모듈(192)은 고주파 대역에서의 성능 확보를 위한 다양한 기술들, 예를 들어, 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO(multiple-input and multiple-output)), 전차원 다중입출력(FD-MIMO: full dimensional MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 또는 대규모 안테나(large scale antenna)와 같은 기술들을 지원할 수 있다. 무선 통신 모듈(192)은 전자 장치(101), 외부 전자 장치(예: 전자 장치(104)) 또는 네트워크 시스템(예: 제 2 네트워크(199))에 규정되는 다양한 요구사항을 지원할 수 있다. 일실시예에 따르면, 무선 통신 모듈(192)은 eMBB 실현을 위한 Peak data rate(예: 20Gbps 이상), mMTC 실현을 위한 손실 Coverage(예: 164dB 이하), 또는 URLLC 실현을 위한 U-plane latency(예: 다운링크(DL) 및 업링크(UL) 각각 0.5ms 이하, 또는 라운드 트립 1ms 이하)를 지원할 수 있다.The wireless communication module 192 may support 5G networks after 4G networks and next-generation communication technologies, for example, NR access technology (new radio access technology). NR access technology provides high-speed transmission of high-capacity data (eMBB (enhanced mobile broadband)), minimization of terminal power and access to multiple terminals (mMTC (massive machine type communications)), or high reliability and low latency (URLLC (ultra-reliable and low latency). -latency communications)) can be supported. The wireless communication module 192 may support high frequency bands (eg, mmWave bands), for example, to achieve high data rates. The wireless communication module 192 uses various technologies to secure performance in high frequency bands, for example, beamforming, massive array multiple-input and multiple-output (MIMO), and full-dimensional multiplexing. It can support technologies such as input/output (FD-MIMO: full dimensional MIMO), array antenna, analog beam-forming, or large scale antenna. The wireless communication module 192 may support various requirements specified in the electronic device 101, an external electronic device (e.g., electronic device 104), or a network system (e.g., second network 199). According to one embodiment, the wireless communication module 192 supports Peak data rate (e.g., 20 Gbps or more) for realizing eMBB, loss coverage (e.g., 164 dB or less) for realizing mmTC, or U-plane latency (e.g., 164 dB or less) for realizing URLLC. Example: Downlink (DL) and uplink (UL) each of 0.5 ms or less, or round trip 1 ms or less) can be supported.

안테나 모듈(197)은 신호 또는 전력을 외부(예: 외부의 전자 장치)로 송신하거나 외부로부터 수신할 수 있다. 일실시예에 따르면, 안테나 모듈(197)은 서브스트레이트(예: PCB) 위에 형성된 도전체 또는 도전성 패턴으로 이루어진 방사체를 포함하는 안테나를 포함할 수 있다. 일실시예에 따르면, 안테나 모듈(197)은 복수의 안테나들(예: 어레이 안테나)을 포함할 수 있다. 이런 경우, 제 1 네트워크(198) 또는 제 2 네트워크(199)와 같은 통신 네트워크에서 사용되는 통신 방식에 적합한 적어도 하나의 안테나가, 예를 들면, 통신 모듈(190)에 의하여 상기 복수의 안테나들로부터 선택될 수 있다. 신호 또는 전력은 상기 선택된 적어도 하나의 안테나를 통하여 통신 모듈(190)과 외부의 전자 장치 간에 송신되거나 수신될 수 있다. 어떤 실시예에 따르면, 방사체 이외에 다른 부품(예: RFIC(radio frequency integrated circuit))이 추가로 안테나 모듈(197)의 일부로 형성될 수 있다. The antenna module 197 may transmit or receive signals or power to or from the outside (eg, an external electronic device). According to one embodiment, the antenna module 197 may include an antenna including a radiator made of a conductor or a conductive pattern formed on a substrate (eg, PCB). According to one embodiment, the antenna module 197 may include a plurality of antennas (eg, an array antenna). In this case, at least one antenna suitable for a communication method used in a communication network such as the first network 198 or the second network 199 is connected to the plurality of antennas by, for example, the communication module 190. can be selected Signals or power may be transmitted or received between the communication module 190 and an external electronic device through the at least one selected antenna. According to some embodiments, in addition to the radiator, other components (eg, radio frequency integrated circuit (RFIC)) may be additionally formed as part of the antenna module 197.

다양한 실시예에 따르면, 안테나 모듈(197)은 mmWave 안테나 모듈을 형성할 수 있다. 일실시예에 따르면, mmWave 안테나 모듈은 인쇄 회로 기판, 상기 인쇄 회로 기판의 제 1 면(예: 아래 면)에 또는 그에 인접하여 배치되고 지정된 고주파 대역(예: mmWave 대역)을 지원할 수 있는 RFIC, 및 상기 인쇄 회로 기판의 제 2 면(예: 윗 면 또는 측 면)에 또는 그에 인접하여 배치되고 상기 지정된 고주파 대역의 신호를 송신 또는 수신할 수 있는 복수의 안테나들(예: 어레이 안테나)을 포함할 수 있다.According to various embodiments, the antenna module 197 may form a mmWave antenna module. According to one embodiment, a mmWave antenna module includes: a printed circuit board, an RFIC disposed on or adjacent to a first side (e.g., bottom side) of the printed circuit board and capable of supporting a designated high frequency band (e.g., mmWave band); And a plurality of antennas (e.g., array antennas) disposed on or adjacent to the second side (e.g., top or side) of the printed circuit board and capable of transmitting or receiving signals in the designated high frequency band. can do.

상기 구성요소들 중 적어도 일부는 주변 기기들간 통신 방식(예: 버스, GPIO(general purpose input and output), SPI(serial peripheral interface), 또는 MIPI(mobile industry processor interface))을 통해 서로 연결되고 신호(예: 명령 또는 데이터)를 상호간에 교환할 수 있다.At least some of the components are connected to each other through a communication method between peripheral devices (e.g., bus, general purpose input and output (GPIO), serial peripheral interface (SPI), or mobile industry processor interface (MIPI)) and signal ( (e.g. commands or data) can be exchanged with each other.

일실시예에 따르면, 명령 또는 데이터는 제 2 네트워크(199)에 연결된 서버(108)를 통해서 전자 장치(101)와 외부의 전자 장치(104)간에 송신 또는 수신될 수 있다. 외부의 전자 장치(102, 또는 104) 각각은 전자 장치(101)와 동일한 또는 다른 종류의 장치일 수 있다. 일실시예에 따르면, 전자 장치(101)에서 실행되는 동작들의 전부 또는 일부는 외부의 전자 장치들(102, 104, 또는 108) 중 하나 이상의 외부의 전자 장치들에서 실행될 수 있다. 예를 들면, 전자 장치(101)가 어떤 기능이나 서비스를 자동으로, 또는 사용자 또는 다른 장치로부터의 요청에 반응하여 수행해야 할 경우에, 전자 장치(101)는 기능 또는 서비스를 자체적으로 실행시키는 대신에 또는 추가적으로, 하나 이상의 외부의 전자 장치들에게 그 기능 또는 그 서비스의 적어도 일부를 수행하라고 요청할 수 있다. 상기 요청을 수신한 하나 이상의 외부의 전자 장치들은 요청된 기능 또는 서비스의 적어도 일부, 또는 상기 요청과 관련된 추가 기능 또는 서비스를 실행하고, 그 실행의 결과를 전자 장치(101)로 전달할 수 있다. 전자 장치(101)는 상기 결과를, 그대로 또는 추가적으로 처리하여, 상기 요청에 대한 응답의 적어도 일부로서 제공할 수 있다. 이를 위하여, 예를 들면, 클라우드 컴퓨팅, 분산 컴퓨팅, 모바일 에지 컴퓨팅(MEC: mobile edge computing), 또는 클라이언트-서버 컴퓨팅 기술이 이용될 수 있다. 전자 장치(101)는, 예를 들어, 분산 컴퓨팅 또는 모바일 에지 컴퓨팅을 이용하여 초저지연 서비스를 제공할 수 있다. 다른 실시예에 있어서, 외부의 전자 장치(104)는 IoT(internet of things) 기기를 포함할 수 있다. 서버(108)는 기계 학습 및/또는 신경망을 이용한 지능형 서버일 수 있다. 일실시예에 따르면, 외부의 전자 장치(104) 또는 서버(108)는 제 2 네트워크(199) 내에 포함될 수 있다. 전자 장치(101)는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예: 스마트 홈, 스마트 시티, 스마트 카, 또는 헬스 케어)에 적용될 수 있다. According to one embodiment, commands or data may be transmitted or received between the electronic device 101 and the external electronic device 104 through the server 108 connected to the second network 199. Each of the external electronic devices 102 or 104 may be of the same or different type as the electronic device 101. According to one embodiment, all or part of the operations performed in the electronic device 101 may be executed in one or more of the external electronic devices 102, 104, or 108. For example, when the electronic device 101 needs to perform a certain function or service automatically or in response to a request from a user or another device, the electronic device 101 may perform the function or service instead of executing the function or service on its own. Alternatively, or additionally, one or more external electronic devices may be requested to perform at least part of the function or service. One or more external electronic devices that have received the request may execute at least part of the requested function or service, or an additional function or service related to the request, and transmit the result of the execution to the electronic device 101. The electronic device 101 may process the result as is or additionally and provide it as at least part of a response to the request. For this purpose, for example, cloud computing, distributed computing, mobile edge computing (MEC), or client-server computing technology can be used. The electronic device 101 may provide an ultra-low latency service using, for example, distributed computing or mobile edge computing. In another embodiment, the external electronic device 104 may include an Internet of Things (IoT) device. Server 108 may be an intelligent server using machine learning and/or neural networks. According to one embodiment, the external electronic device 104 or server 108 may be included in the second network 199. The electronic device 101 may be applied to intelligent services (e.g., smart home, smart city, smart car, or healthcare) based on 5G communication technology and IoT-related technology.

서버(108)는 전자 장치(101)가 접속되며, 접속된 전자 장치(101)로 서비스를 제공할 수 있다. 또한, 서버(108)는 회원 가입 절차를 진행하여 그에 따라 회원으로 가입된 사용자의 각종 정보를 저장하여 관리하고, 서비스에 관련된 각종 구매 및 결제 기능을 제공할 수도 있다. 또한, 서버(108)는, 사용자 간에 서비스를 공유할 수 있도록, 복수의 전자 장치(101) 각각에서 실행되는 서비스 애플리케이션의 실행 데이터를 실시간으로 공유할 수도 있다. 이러한 서버(108)는 하드웨어적으로는 통상적인 웹 서버(Web Server) 또는 왑 서버(WAP Server)와 동일한 구성을 가질 수 있다. 그러나, 소프트웨어적으로는, C, C++, Java, Visual Basic, Visual C 등 여하한 언어를 통하여 구현되어 여러 가지 기능을 하는 프로그램 모듈(Module)을 포함할 수 있다. 또한, 서버(108)는 일반적으로 인터넷과 같은 개방형 컴퓨터 네트워크를 통하여 불특정 다수 클라이언트 및/또는 다른 서버와 연결되어 있고, 클라이언트 또는 다른 서버의 작업수행 요청을 접수하고 그에 대한 작업 결과를 도출하여 제공하는 컴퓨터 시스템 및 그를 위하여 설치되어 있는 컴퓨터 소프트웨어(서버 프로그램)를 뜻하는 것이다. 또한, 서버(108)는, 전술한 서버 프로그램 이외에도, 서버(108) 상에서 동작하는 일련의 응용 프로그램(Application Program)과 경우에 따라서는 내부 또는 외부에 구축되어 있는 각종 데이터베이스(DB: Database, 이하 "DB"라 칭함)를 포함하는 넓은 개념으로 이해되어야 할 것이다. 따라서, 서버(108)는, 회원 가입 정보와, 게임에 대한 각종 정보 및 데이터를 분류하여 DB에 저장시키고 관리하는데, 이러한 DB는 서버(108)의 내부 또는 외부에 구현될 수 있다. 또한, 서버(108)는, 일반적인 서버용 하드웨어에 도스(DOS), 윈도우(windows), 리눅스(Linux), 유닉스(UNIX), 매킨토시(Macintosh) 등의 운영체제에 따라 다양하게 제공되고 있는 서버 프로그램을 이용하여 구현될 수 있으며, 대표적인 것으로는 윈도우 환경에서 사용되는 웹사이트(Website), IIS(Internet Information Server)와 유닉스환경에서 사용되는 CERN, NCSA, APPACH등이 이용될 수 있다. 또한, 서버(108)는, 서비스의 사용자 인증이나 서비스와 관련된 구매 결제를 위한 인증 시스템 및 결제 시스템과 연동할 수도 있다.The server 108 is connected to the electronic device 101 and can provide services to the connected electronic device 101. In addition, the server 108 may perform a membership registration process, store and manage various information of users who have registered as members, and provide various purchase and payment functions related to the service. Additionally, the server 108 may share execution data of service applications running on each of the plurality of electronic devices 101 in real time so that services can be shared between users. This server 108 may have the same hardware configuration as a typical web server or WAP server. However, in terms of software, it may be implemented through any language such as C, C++, Java, Visual Basic, and Visual C, and may include program modules that perform various functions. In addition, the server 108 is generally connected to an unspecified number of clients and/or other servers through an open computer network such as the Internet, and receives work performance requests from clients or other servers and derives and provides work results in response. It refers to a computer system and the computer software (server program) installed for it. In addition, in addition to the server program described above, the server 108 includes a series of application programs running on the server 108 and, in some cases, various databases (DBs) built internally or externally, hereinafter " It should be understood as a broad concept including “DB”). Accordingly, the server 108 classifies membership registration information and various information and data about games, stores them in a DB, and manages this DB, which may be implemented inside or outside the server 108. In addition, the server 108 uses a variety of server programs provided depending on the operating system such as DOS, Windows, Linux, UNIX, and Macintosh on general server hardware. Representative examples include Website, IIS (Internet Information Server) used in a Windows environment, and CERN, NCSA, and APPACH used in a Unix environment. Additionally, the server 108 may be linked with an authentication system and payment system for user authentication of the service or payment for purchases related to the service.

제1 네트워크(198) 및 제2 네트워크(199)는 단말들 및 서버들과 같은 각각의 노드 상호 간에 정보 교환이 가능한 연결 구조 또는 서버(108)와 전자 장치들(101, 104)을 연결하는 망(Network)을 의미한다. 제1 네트워크(198) 및 제2 네트워크(199)는 인터넷(Internet), LAN(Local Area Network), Wireless LAN(Wireless Local Area Network), WAN(Wide Area Network), PAN(Personal Area Network), 3G, 4G, LTE, 5G, Wi-Fi 등이 포함되나 이에 한정되지는 않는다. 제1 네트워크(198) 및 제2 네트워크(199)는 LAN, WAN 등의 폐쇄형 제1 네트워크(198) 및 제2 네트워크(199)일 수도 있으나, 인터넷(Internet)과 같은 개방형인 것이 바람직하다. 인터넷은 TCP/IP 프로토콜 및 그 상위계층에 존재하는 여러 서비스, 즉 HTTP(HyperText Transfer Protocol), Telnet, FTP(File Transfer Protocol), DNS(Domain Name System), SMTP(Simple Mail Transfer Protocol), SNMP(Simple Network Management Protocol), NFS(Network File Service), NIS(Network Information Service)를 제공하는 전 세계적인 개방형 컴퓨터 제1 네트워크(198) 및 제2 네트워크(199) 구조를 의미한다.The first network 198 and the second network 199 are a connection structure that allows information exchange between each node, such as terminals and servers, or a network connecting the server 108 and the electronic devices 101 and 104. It means (Network). The first network 198 and the second network 199 are the Internet, LAN (Local Area Network), Wireless LAN (Wireless Local Area Network), WAN (Wide Area Network), PAN (Personal Area Network), and 3G. , 4G, LTE, 5G, Wi-Fi, etc., but are not limited to these. The first network 198 and the second network 199 may be closed, such as a LAN or WAN, but are preferably open, such as the Internet. The Internet uses the TCP/IP protocol and several services existing at its upper layer, namely HTTP (HyperText Transfer Protocol), Telnet, FTP (File Transfer Protocol), DNS (Domain Name System), SMTP (Simple Mail Transfer Protocol), and SNMP ( It refers to a worldwide open computer first network (198) and second network (199) structure that provides Simple Network Management Protocol (NFS), Network File Service (NFS), and Network Information Service (NIS).

데이터베이스는 데이터베이스 관리 프로그램(DBMS)을 이용하여 컴퓨터 시스템의 저장공간(하드디스크 또는 메모리)에 구현된 일반적인 데이터구조를 가질 수 가질 수 있다. 데이터베이스는 데이터의 검색(추출), 삭제, 편집, 추가 등을 자유롭게 행할 수 있는 데이터 저장형태를 가질 수 있다. 데이터베이스는 오라클(Oracle), 인포믹스(Infomix), 사이베이스(Sybase), DB2와 같은 관계형 데이타베이스 관리 시스템(RDBMS)이나, 겜스톤(Gemston), 오리온(Orion), O2 등과 같은 객체 지향 데이타베이스 관리 시스템(OODBMS) 및 엑셀론(Excelon), 타미노(Tamino), 세카이주(Sekaiju) 등의 XML 전용 데이터베이스(XML Native Database)를 이용하여 본 개시의 일 실시예의 목적에 맞게 구현될 수 있고, 자신의 기능을 달성하기 위하여 적당한 필드(Field) 또는 엘리먼트들을 가질 수 있다.A database can have a general data structure implemented in the storage space (hard disk or memory) of a computer system using a database management program (DBMS). A database may have a data storage format that allows for free search (extraction), deletion, editing, addition, etc. of data. Databases are relational database management systems (RDBMS) such as Oracle, Infomix, Sybase, and DB2, or object-oriented database management such as Gemston, Orion, and O2. It can be implemented according to the purpose of an embodiment of the present disclosure using a system (OODBMS) and an XML native database such as Excelon, Tamino, and Sekaiju, and has its own functions. To achieve this, you can have appropriate fields or elements.

도 2는 본 발명의 일 실시예에 따른 프로그램의 구성을 나타내는 도면이다.Figure 2 is a diagram showing the structure of a program according to an embodiment of the present invention.

도 2은 다양한 실시예에 따른 프로그램(140)을 예시하는 블록도(200)이다. 일실시예에 따르면, 프로그램(140)은 전자 장치(101)의 하나 이상의 리소스들을 제어하기 위한 운영 체제(142), 미들웨어(144), 또는 상기 운영 체제(142)에서 실행 가능한 어플리케이션(146)을 포함할 수 있다. 운영 체제(142)는, 예를 들면, AndroidTM, iOSTM, WindowsTM, SymbianTM, TizenTM, 또는 BadaTM를 포함할 수 있다. 프로그램(140) 중 적어도 일부 프로그램은, 예를 들면, 제조 시에 전자 장치(101)에 프리로드되거나, 또는 사용자에 의해 사용 시 외부 전자 장치(예: 전자 장치(102 또는 104), 또는 서버(108))로부터 다운로드되거나 갱신될 수 있다. 프로그램(140)의 전부 또는 일부는 뉴럴 네트워크를 포함할 수 있다. Figure 2 is a block diagram 200 illustrating program 140 according to various embodiments. According to one embodiment, the program 140 includes an operating system 142, middleware 144, or an application 146 executable on the operating system 142 for controlling one or more resources of the electronic device 101. It can be included. Operating system 142 may include, for example, AndroidTM, iOSTM, WindowsTM, SymbianTM, TizenTM, or BadaTM. At least some of the programs 140 are preloaded into the electronic device 101, for example, at the time of manufacture, or are stored in an external electronic device (e.g., the electronic device 102 or 104, or a server) when used by a user. It can be downloaded or updated from 108)). All or part of the program 140 may include a neural network.

운영 체제(142)는 전자 장치(101)의 하나 이상의 시스템 리소스들(예: 프로세스, 메모리, 또는 전원)의 관리(예: 할당 또는 회수)를 제어할 수 있다. 운영 체제(142)는, 추가적으로 또는 대체적으로, 전자 장치(101)의 다른 하드웨어 디바이스, 예를 들면, 입력 모듈(150), 음향 출력 모듈(155), 디스플레이 모듈(160), 오디오 모듈(170), 센서 모듈(176), 인터페이스(177), 햅틱 모듈(179), 카메라 모듈(180), 전력 관리 모듈(188), 배터리(189), 통신 모듈(190), 가입자 식별 모듈(196), 또는 안테나 모듈(197)을 구동하기 위한 하나 이상의 드라이버 프로그램들을 포함할 수 있다.The operating system 142 may control management (eg, allocation or retrieval) of one or more system resources (eg, process, memory, or power) of the electronic device 101 . Operating system 142 may additionally or alternatively operate on other hardware devices of electronic device 101, such as input module 150, audio output module 155, display module 160, and audio module 170. , sensor module 176, interface 177, haptic module 179, camera module 180, power management module 188, battery 189, communication module 190, subscriber identification module 196, or It may include one or more driver programs for driving the antenna module 197.

미들웨어(144)는 전자 장치(101)의 하나 이상의 리소스들로부터 제공되는 기능 또는 정보가 어플리케이션(146)에 의해 사용될 수 있도록 다양한 기능들을 어플리케이션(146)으로 제공할 수 있다. 미들웨어(144)는, 예를 들면, 어플리케이션 매니저(201), 윈도우 매니저(203), 멀티미디어 매니저(205), 리소스 매니저(207), 파워 매니저(209), 데이터베이스 매니저(211), 패키지 매니저(213), 커넥티비티 매니저(215), 노티피케이션 매니저(217), 로케이션 매니저(219), 그래픽 매니저(221), 시큐리티 매니저(223), 통화 매니저(225), 또는 음성 인식 매니저(227)를 포함할 수 있다. The middleware 144 may provide various functions to the application 146 so that functions or information provided from one or more resources of the electronic device 101 can be used by the application 146. The middleware 144 includes, for example, an application manager 201, a window manager 203, a multimedia manager 205, a resource manager 207, a power manager 209, a database manager 211, and a package manager 213. ), connectivity manager (215), notification manager (217), location manager (219), graphics manager (221), security manager (223), call manager (225), or voice recognition manager (227). You can.

어플리케이션 매니저(201)는, 예를 들면, 어플리케이션(146)의 생명 주기를 관리할 수 있다. 윈도우 매니저(203)는, 예를 들면, 화면에서 사용되는 하나 이상의 GUI 자원들을 관리할 수 있다. 멀티미디어 매니저(205)는, 예를 들면, 미디어 파일들의 재생에 필요한 하나 이상의 포맷들을 파악하고, 그 중 선택된 해당하는 포맷에 맞는 코덱을 이용하여 상기 미디어 파일들 중 해당하는 미디어 파일의 인코딩 또는 디코딩을 수행할 수 있다. 리소스 매니저(207)는, 예를 들면, 어플리케이션(146)의 소스 코드 또는 메모리(130)의 메모리의 공간을 관리할 수 있다. 파워 매니저(209)는, 예를 들면, 배터리(189)의 용량, 온도 또는 전원을 관리하고, 이 중 해당 정보를 이용하여 전자 장치(101)의 동작에 필요한 관련 정보를 결정 또는 제공할 수 있다. 일실시예에 따르면, 파워 매니저(209)는 전자 장치(101)의 바이오스(BIOS: basic input/output system)(미도시)와 연동할 수 있다.The application manager 201 may, for example, manage the life cycle of the application 146. The window manager 203 may, for example, manage one or more GUI resources used on the screen. For example, the multimedia manager 205 identifies one or more formats required for playing media files, and encodes or decodes the corresponding media file using a codec suitable for the selected format. It can be done. The resource manager 207 may, for example, manage the source code of the application 146 or the memory space of the memory 130. The power manager 209 manages, for example, the capacity, temperature, or power of the battery 189, and may use this information to determine or provide related information necessary for the operation of the electronic device 101. . According to one embodiment, the power manager 209 may interface with a basic input/output system (BIOS) (not shown) of the electronic device 101.

데이터베이스 매니저(211)는, 예를 들면, 어플리케이션(146)에 의해 사용될 데이터베이스를 생성, 검색, 또는 변경할 수 있다. 패키지 매니저(213)는, 예를 들면, 패키지 파일의 형태로 배포되는 어플리케이션의 설치 또는 갱신을 관리할 수 있다. 커넥티비티 매니저(215)는, 예를 들면, 전자 장치(101)와 외부 전자 장치 간의 무선 연결 또는 직접 연결을 관리할 수 있다. 노티피케이션 매니저(217)는, 예를 들면, 지정된 이벤트(예: 착신 통화, 메시지, 또는 알람)의 발생을 사용자에게 알리기 위한 기능을 제공할 수 있다. 로케이션 매니저(219)는, 예를 들면, 전자 장치(101)의 위치 정보를 관리할 수 있다. 그래픽 매니저(221)는, 예를 들면, 사용자에게 제공될 하나 이상의 그래픽 효과들 또는 이와 관련된 사용자 인터페이스를 관리할 수 있다. Database manager 211 may create, search, or change a database to be used by application 146, for example. The package manager 213 may, for example, manage the installation or update of applications distributed in the form of package files. The connectivity manager 215 may manage, for example, a wireless connection or direct connection between the electronic device 101 and an external electronic device. For example, the notification manager 217 may provide a function for notifying the user of the occurrence of a designated event (eg, an incoming call, message, or alarm). The location manager 219 may, for example, manage location information of the electronic device 101. The graphics manager 221 may, for example, manage one or more graphic effects to be provided to the user or a user interface related thereto.

시큐리티 매니저(223)는, 예를 들면, 시스템 보안 또는 사용자 인증을 제공할 수 있다. 통화(telephony) 매니저(225)는, 예를 들면, 전자 장치(101)에 의해 제공되는 음성 통화 기능 또는 영상 통화 기능을 관리할 수 있다. 음성 인식 매니저(227)는, 예를 들면, 사용자의 음성 데이터를 서버(108)로 전송하고, 그 음성 데이터에 적어도 일부 기반하여 전자 장치(101)에서 수행될 기능에 대응하는 명령어(command), 또는 그 음성 데이터에 적어도 일부 기반하여 변환된 문자 데이터를 서버(108)로부터 수신할 수 있다. 일 실시예에 따르면, 미들웨어(244)는 동적으로 기존의 구성요소를 일부 삭제하거나 새로운 구성요소들을 추가할 수 있다. 일 실시예에 따르면, 미들웨어(144)의 적어도 일부는 운영 체제(142)의 일부로 포함되거나, 또는 운영 체제(142)와는 다른 별도의 소프트웨어로 구현될 수 있다.Security manager 223 may provide, for example, system security or user authentication. The telephony manager 225 may manage, for example, a voice call function or a video call function provided by the electronic device 101. For example, the voice recognition manager 227 transmits the user's voice data to the server 108 and provides a command corresponding to a function to be performed in the electronic device 101 based at least in part on the voice data, Alternatively, text data converted based at least in part on the voice data may be received from the server 108. According to one embodiment, the middleware 244 may dynamically delete some existing components or add new components. According to one embodiment, at least a portion of the middleware 144 may be included as part of the operating system 142 or may be implemented as separate software different from the operating system 142.

어플리케이션(146)은, 예를 들면, 홈(251), 다이얼러(253), SMS/MMS(255), IM(instant message)(257), 브라우저(259), 카메라(261), 알람(263), 컨택트(265), 음성 인식(267), 이메일(269), 달력(271), 미디어 플레이어(273), 앨범(275), 와치(277), 헬스(279)(예: 운동량 또는 혈당과 같은 생체 정보를 측정), 또는 환경 정보(281)(예: 기압, 습도, 또는 온도 정보 측정) 어플리케이션을 포함할 수 있다. 일실시예에 따르면, 어플리케이션(146)은 전자 장치(101)와 외부 전자 장치 사이의 정보 교환을 지원할 수 있는 정보 교환 어플리케이션(미도시)을 더 포함할 수 있다. 정보 교환 어플리케이션은, 예를 들면, 외부 전자 장치로 지정된 정보 (예: 통화, 메시지, 또는 알람)를 전달하도록 설정된 노티피케이션 릴레이 어플리케이션, 또는 외부 전자 장치를 관리하도록 설정된 장치 관리 어플리케이션을 포함할 수 있다. 노티피케이션 릴레이 어플리케이션은, 예를 들면, 전자 장치(101)의 다른 어플리케이션(예: 이메일 어플리케이션(269))에서 발생된 지정된 이벤트(예: 메일 수신)에 대응하는 알림 정보를 외부 전자 장치로 전달할 수 있다. 추가적으로 또는 대체적으로, 노티피케이션 릴레이 어플리케이션은 외부 전자 장치로부터 알림 정보를 수신하여 전자 장치(101)의 사용자에게 제공할 수 있다. The application 146 includes, for example, home 251, dialer 253, SMS/MMS (255), instant message (IM) 257, browser 259, camera 261, and alarm 263. , Contacts (265), Voice Recognition (267), Email (269), Calendar (271), Media Player (273), Album (275), Watch (277), Health (279) (such as exercise amount or blood sugar) It may include applications that measure biometric information) or environmental information 281 (e.g., measure atmospheric pressure, humidity, or temperature information). According to one embodiment, the application 146 may further include an information exchange application (not shown) that can support information exchange between the electronic device 101 and an external electronic device. The information exchange application may include, for example, a notification relay application configured to deliver designated information (e.g., calls, messages, or alarms) to an external electronic device, or a device management application configured to manage the external electronic device. there is. The notification relay application, for example, transmits notification information corresponding to a specified event (e.g., mail reception) generated in another application (e.g., email application 269) of the electronic device 101 to an external electronic device. You can. Additionally or alternatively, the notification relay application may receive notification information from an external electronic device and provide it to the user of the electronic device 101.

장치 관리 어플리케이션은, 예를 들면, 전자 장치(101)와 통신하는 외부 전자 장치 또는 그 일부 구성 요소(예: 외부 전자장치의 디스플레이 모듈 또는 카메라 모듈)의 전원(예: 턴-온 또는 턴-오프) 또는 기능(예: 밝기, 해상도, 또는 포커스)을 제어할 수 있다. 장치 관리 어플리케이션은, 추가적으로 또는 대체적으로, 외부 전자 장치에서 동작하는 어플리케이션의 설치, 삭제, 또는 갱신을 지원할 수 있다.The device management application, for example, controls the power (e.g., turn-on or turn-off) of an external electronic device or some component thereof (e.g., a display module or camera module of the external electronic device) that communicates with the electronic device 101. ) or functions (such as brightness, resolution, or focus). A device management application may additionally or alternatively support installation, deletion, or update of applications running on external electronic devices.

도 3은 본 발명의 일 실시예에 따른 학습 서버를 포함한 네트워크 환경을 개략적으로 도시한 도면이다.Figure 3 is a diagram schematically showing a network environment including a learning server according to an embodiment of the present invention.

도 3을 참조하면, 네트워크 환경에서 학습자 단말(400)은 네트워크(500)를 통하여 학습 서버(300)와 통신할 수 있다. 학습자 단말(400)은 네트워크(500)를 통해 학습 서버(300)로부터 제공된 학습 어플리케이션 설치 파일을 수신할 수 있다. 학습 서버(300)는 학습자 단말(400)에 학습 피드백을 제공할 수 있다. 또는, 학습 서버(300)는 학습자 단말(400)을 이용하는(학습자 단말(400)에 대응하는) 학습자의 메타인지 능력을 평가할 수 있다. 이에 따라, 학습 서버(300)는 학습 피드백 제공 장치 또는 메타인지 능력 평가 장치로 지칭될 수 있다.Referring to FIG. 3, in a network environment, the learner terminal 400 can communicate with the learning server 300 through the network 500. The learner terminal 400 may receive the learning application installation file provided from the learning server 300 through the network 500. The learning server 300 may provide learning feedback to the learner terminal 400. Alternatively, the learning server 300 may evaluate the metacognitive ability of a learner (corresponding to the learner terminal 400) using the learner terminal 400. Accordingly, the learning server 300 may be referred to as a learning feedback providing device or a metacognitive ability evaluation device.

일 실시예에서, 학습자 단말(400)은 프로세서, 메모리, 입력 모듈, 디스플레이 모듈, 카메라 모듈, 통신 모듈을 포함할 수 있다. 다른 실시예에서, 학습자 단말(400)은 이 구성요소들 중 적어도 하나가 생략되거나, 하나 이상의 다른 구성요소가 추가될 수 있다. 다른 설명이 없는 한, 학습자 단말(400)의 각 구성요소는 도 1을 참조하여 설명한 전자 장치(101)와 동일하거나 유사할 수 있다.In one embodiment, the learner terminal 400 may include a processor, memory, an input module, a display module, a camera module, and a communication module. In another embodiment, the learner terminal 400 may omit at least one of these components, or one or more other components may be added. Unless otherwise specified, each component of the learner terminal 400 may be the same or similar to the electronic device 101 described with reference to FIG. 1 .

학습자 단말(400)의 프로세서는, 예를 들면, 소프트웨어를 실행하여 프로세서에 연결된 학습자 단말(400)의 적어도 하나의 다른 구성요소를 제어할 수 있고, 다양한 데이터 처리 또는 연산을 수행할 수 있다. 일 실시예에서, 데이터 처리 또는 연산의 적어도 일부로서, 학습자 단말(400)의 프로세서는 다른 구성요소로부터 수신된 명령 또는 데이터를 휘발성 메모리에 저장하고, 휘발성 메모리에 저장된 명령 또는 데이터를 처리하고, 결과 데이터를 비휘발성 메모리에 저장할 수 있다. The processor of the learner terminal 400 may, for example, execute software to control at least one other component of the learner terminal 400 connected to the processor and perform various data processing or calculations. In one embodiment, as at least part of data processing or computation, the processor of the learner terminal 400 stores commands or data received from other components in a volatile memory, processes the commands or data stored in the volatile memory, and produces a result. Data can be stored in non-volatile memory.

학습자 단말(400)의 메모리는 학습 어플리케이션 설치 파일을 저장할 수 있다. 학습자 단말(400)의 프로세서는, 학습자 단말(400)의 메모리에 저장된 학습 어플리케이션 설치 파일을 실행하여 학습 어플리케이션을 학습자 단말(400)에 설치할 수 있다. 일 실시예에서, 학습 어플리케이션의 컨텐츠는, 예를 들면, 수학 교육에 관한 학습 컨텐츠를 포함할 수 있다. 학습 어플리케이션의 컨텐츠는 하나 이상의 수학개념 및 정의, 문제 데이터를 포함할 수 있다. 학습 어플리케이션의 컨텐츠는 하나 이상의 수학개념 설명 영상을 포함할 수 있다. 학습 어플리케이션 컨텐츠는 후술할 학습 컨텐츠에 대응할 수 있다.The memory of the learner terminal 400 may store a learning application installation file. The processor of the learner terminal 400 may install the learning application on the learner terminal 400 by executing the learning application installation file stored in the memory of the learner terminal 400. In one embodiment, the content of the learning application may include learning content related to mathematics education, for example. The content of the learning application may include one or more mathematical concepts and definitions, and problem data. The content of the learning application may include one or more videos explaining mathematical concepts. Learning application content may correspond to learning content that will be described later.

입력 모듈은 예를 들면 마이크, 마우스, 키보드, 키(예: 버튼), 또는 디지털 펜을 포함할 수 있다. 입력 모듈은 문제에 대한 학습자의 응답 내용을 입력받을 수 있다. 학습자 단말(400)은 학습자의 응답 내용을 기초로 문제에 대한 응답을 생성할 수 있다.The input module may include, for example, a microphone, mouse, keyboard, keys (e.g. buttons), or digital pen. The input module can receive the learner's response to the problem. The learner terminal 400 may generate a response to the problem based on the content of the learner's response.

디스플레이 모듈은 학습자 단말(400)의 외부로 정보를 시각적으로 제공할 수 있다. 디스플레이 모듈은 학습자 단말(400)의 프로세서의 제어에 기초하여 학습 어플리케이션의 컨텐츠를 시각적으로 제공할 수 있다. 예를 들면, 디스플레이 모듈은 학습자 단말(400)의 프로세서의 제어에 기초하여 상기 수학개념 설명 영상을 시각적으로 제공할 수 있다. 디스플레이 모듈은, 터치를 감지하도록 설정된 터치 센서, 또는 상기 터치에 의해 발생되는 힘의 세기를 측정하도록 설정된 압력 센서를 포함하는 터치 디스플레이 모듈을 포함할 수 있다. The display module can visually provide information to the outside of the learner terminal 400. The display module can visually provide content of the learning application based on control of the processor of the learner terminal 400. For example, the display module may visually provide an image explaining the mathematical concept based on control of the processor of the learner terminal 400. The display module may include a touch sensor configured to detect a touch, or a pressure sensor configured to measure the intensity of force generated by the touch.

카메라 모듈은 정지 영상 및 동영상을 촬영할 수 있다. 카메라 모듈은 하나 이상의 렌즈들, 이미지 센서들, 이미지 시그널 프로세서들, 또는 플래시들을 포함할 수 있다. 학습자가 제공된 문제를 보고 종이 등에 필기구를 이용하여 응답 내용을 작성한 경우, 카메라 모듈은 응답 내용을 촬영할 수 있다. 학습자 단말(400)의 프로세서는 상기 촬영된 내용을 기초로 광학 문자 인식(Optical Character Recognition) 기술을 이용하여 응답을 생성할 수 있다.The camera module can shoot still images and videos. A camera module may include one or more lenses, image sensors, image signal processors, or flashes. If the learner looks at the provided problem and writes a response using paper or a writing instrument, the camera module can capture the response. The processor of the learner terminal 400 may generate a response using optical character recognition technology based on the captured content.

통신 모듈은 학습자 단말(400)과 네트워크(500)를 통해 연결된 학습 서버(300) 간의 통신 채널의 수립, 및 수립된 통신 채널을 통한 통신 수행을 지원할 수 있다. The communication module may support establishment of a communication channel between the learner terminal 400 and the learning server 300 connected through the network 500, and communication through the established communication channel.

학습 서버(300)는 학습자 단말(400)이 접속되며, 접속된 학습자 단말(400)로 개인 맞춤형 학습 서비스를 제공할 수 있다. 또한, 학습 서버(300)는 회원 가입 절차를 진행하여 그에 따라 회원으로 가입된 사용자의 각종 정보를 저장하여 관리하고, 서비스에 관련된 각종 구매 및 결제 기능을 제공할 수도 있다. 또한, 학습 서버(300)는, 이러한 학습 서버(300)는 하드웨어적으로는 통상적인 웹 서버(Web Server) 또는 왑 서버(WAP Server)와 동일한 구성을 가질 수 있다. 또한, 학습 서버(300)는, 서비스의 사용자 인증이나 서비스와 관련된 구매 결제를 위한 인증 시스템 및 결제 시스템과 연동할 수도 있다.The learning server 300 is connected to the learner terminal 400 and can provide a personalized learning service to the connected learner terminal 400. In addition, the learning server 300 may perform a membership registration process, store and manage various information of users who have registered as members, and provide various purchase and payment functions related to the service. Additionally, the learning server 300 may have the same hardware configuration as a typical web server or WAP server. Additionally, the learning server 300 may be linked with an authentication system and payment system for user authentication of the service or payment for purchases related to the service.

학습 서버(300)는 복수의 학습 컨텐츠를 학습자 단말(400)에 송신할 수 있다. 복수의 학습 컨텐츠는 복수의 과목 및 복수의 챕터(chapter)분류될 수 있다. 복수의 챕터는 제1 챕터, 제2 챕터, 제3 챕터를 포함할 수 있다. 여기서, 제1, 제2 및 제3은 복수의 챕터를 특정하기 위한 요소일 뿐, 복수의 챕터의 순서를 한정하는 것은 아니다. 제1 챕터로 분류되는 학습 컨텐츠는, 학습자가 제2 챕터로 분류되는 학습 컨텐츠를 학습하기 위해(즉, 학습자가 제2 챕터로 분류되는 학습 컨텐츠를 인지하고 이를 이해하기 위해) 선행되어야 하는 학습 컨텐츠를 포함할 수 있다. The learning server 300 may transmit a plurality of learning contents to the learner terminal 400. Multiple learning contents may be classified into multiple subjects and multiple chapters. The plurality of chapters may include the first chapter, the second chapter, and the third chapter. Here, the first, second, and third are only elements for specifying a plurality of chapters and do not limit the order of the plurality of chapters. Learning content classified as Chapter 1 is learning content that must be preceded in order for the learner to learn learning content classified as Chapter 2 (i.e., for the learner to recognize and understand the learning content classified as Chapter 2). may include.

학습 서버(300)는 학습자 단말(400)로부터 학습자 정보를 수신할 수 있다. 학습자 정보는 학습자가 학습자 단말(400)을 통해 입력하는 데이터를 포함하거나, 학습자가 학습자 단말(400)을 통해 입력하는 데이터를 기초로 학습자 단말(400)이 생성하는 데이터일 수 있다. 학습자 정보는 학습자의 학습 수준을 나타내는 데이터일 수 있다. 예를 들면, 학습자 정보는 학습자의 나이, 공부 기간, 테스트 점수 등에 대응하는 정보를 포함할 수 있다. 학습 서버(300)는 학습자가 본 발명의 일 실시예에 따른 개인 맞춤형 학습 서비스에 가입하는 경우, 가입 단계에서 학습자 단말(400)로부터 상기 학습자 정보를 수신할 수 있다.The learning server 300 may receive learner information from the learner terminal 400. The learner information may include data that the learner inputs through the learner terminal 400, or may be data generated by the learner terminal 400 based on data input by the learner through the learner terminal 400. Learner information may be data indicating the learner's learning level. For example, learner information may include information corresponding to the learner's age, study period, test score, etc. When a learner subscribes to a personalized learning service according to an embodiment of the present invention, the learning server 300 may receive the learner information from the learner terminal 400 at the subscription stage.

도 3에 도시된 학습 서버(300), 학습자 단말(400)은 무선 또는 유선으로 연결된 네트워크(500)를 통해 데이터를 송신하거나 수신할 수 있다. 네트워크(500)는 유선 인터넷 기술, 무선 인터넷 기술 및 근거리 통신 기술에 의한 네트워크를 포함할 수 있다. 유선 인터넷 기술은 예를 들어, 근거리 통신망(LAN, Local area network) 및 광역 통신망(WAN, wide area network) 중 적어도 하나를 포함할 수 있다.The learning server 300 and the learner terminal 400 shown in FIG. 3 can transmit or receive data through the network 500 connected wirelessly or wired. The network 500 may include networks based on wired Internet technology, wireless Internet technology, and short-range communication technology. Wired Internet technology may include, for example, at least one of a local area network (LAN) and a wide area network (WAN).

무선 인터넷 기술은 예를 들어, 무선랜(Wireless LAN: WLAN), DLNA(Digital Living Network Alliance), 와이브로(Wireless Broadband: Wibro), 와이맥스(World Interoperability for Microwave Access: Wimax), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), IEEE 802.16, 롱 텀 에볼루션(Long Term Evolution: LTE), LTE-A(Long Term Evolution-Advanced), 광대역 무선 이동 통신 서비스(Wireless Mobile Broadband Service: WMBS) 및 5G NR(New Radio) 기술 중 적어도 하나를 포함할 수 있다. 단, 본 실시예가 이에 제한되는 것은 아니다.Wireless Internet technologies include, for example, Wireless LAN (WLAN), DLNA (Digital Living Network Alliance), Wibro (Wireless Broadband), Wimax (World Interoperability for Microwave Access: Wimax), and HSDPA (High Speed Downlink Packet). Access), HSUPA (High Speed Uplink Packet Access), IEEE 802.16, Long Term Evolution (LTE), LTE-A (Long Term Evolution-Advanced), Wireless Mobile Broadband Service (WMBS) and 5G NR (New Radio) technology. However, this embodiment is not limited to this.

학습 서버(300), 학습자 단말(400)이 무선 통신 방식으로 데이터를 송/수신하는 경우, 학습 서버(300), 학습자 단말(400)은 이동통신을 위한 기술표준 및 표준 통신 방식을 준수할 수 있다. 예를 들어, 표준 통신 방식은 GSM(Global System for Mobilommunication), CDMA(Code Division Multi Access), CDMA2000(Code Division Multi Access 2000), EV-DO(Enhanced Voice-Data Optimized or Enhanced Voice-Data Only), WCDMA(Wideband CDMA), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTEA(Long Term Evolution-Advanced) 및 5G NR(New Radio) 중 적어도 하나를 포함할 수 있다. 단, 본 실시예가 이에 제한되는 것은 아니다.When the learning server 300 and the learner terminal 400 transmit/receive data by wireless communication, the learning server 300 and the learner terminal 400 can comply with technical standards and standard communication methods for mobile communication. there is. For example, standard communication methods include GSM (Global System for Mobilommunication), CDMA (Code Division Multi Access), CDMA2000 (Code Division Multi Access 2000), EV-DO (Enhanced Voice-Data Optimized or Enhanced Voice-Data Only), At least one of Wideband CDMA (WCDMA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Long Term Evolution (LTE), Long Term Evolution-Advanced (LTEA), and 5G New Radio (NR) It can be included. However, this embodiment is not limited to this.

도 4는 도 3에 도시된 학습 서버(300)를 설명하기 위한 블록도이다. FIG. 4 is a block diagram for explaining the learning server 300 shown in FIG. 3.

도 4를 참조하면, 학습 서버(300)는 데이터베이스, 프로세서, 학습자 관리 모듈을 포함할 수 있다.Referring to FIG. 4, the learning server 300 may include a database, a processor, and a learner management module.

데이터베이스는 복수의 학습 컨텐츠를 저장할 수 있다. 학습 컨텐츠는, 예를 들면, 수학 교육에 관한 학습 컨텐츠를 포함할 수 있다. 학습 컨텐츠는 하나 이상의 수학개념 및 정의, 문제 데이터를 포함할 수 있다. 학습 컨텐츠는 하나 이상의 수학개념 설명 영상을 포함할 수 있다. 학습 서버(300)는 데이터베이스에 저장된 하나 이상의 학습 컨텐츠 중 어느 하나를 선택하여 학습자 단말(400)에 송신할 수 있다. 학습자 단말(400)의 디스플레이 모듈은 학습자 단말(400)의 프로세서의 제어에 기초하여 상기 선택된 학습 컨텐츠를 시각적으로 출력할 수 있다. 복수의 학습 컨텐츠가 복수의 챕터로 분류되는 경우, 데이터베이스는 각각의 챕터로 분류되는 학습 컨텐츠 저장 구조를 가질 수 있다. The database can store multiple learning contents. Learning content may include, for example, learning content related to mathematics education. Learning content may include one or more mathematical concepts, definitions, and problem data. Learning content may include one or more videos explaining mathematical concepts. The learning server 300 may select one of one or more learning contents stored in the database and transmit it to the learner terminal 400. The display module of the learner terminal 400 may visually output the selected learning content based on the control of the processor of the learner terminal 400. When a plurality of learning contents are classified into a plurality of chapters, the database may have a storage structure for the learning contents classified into each chapter.

데이터베이스는 하나 이상의 학습 컨텐츠 각각에 대응하는 학습 체크 문제를 저장할 수 있다. 학습 체크 문제는, 학습자가 학습 컨텐츠를 이해했는지 여부를 판단하기 위해 제공되는 문제일 수 있다. 예를 들면, 학습 컨텐츠가 삼각비 정의에 대한 내용을 설명하는 컨텐츠인 경우, 상기 학습 컨텐츠에 대응하는 학습 체크 문제는 삼각비 정의를 묻는 문제일 수 있다. 또한, 데이터베이스는 학습 체크 문제에 대응하는 학습 체크 문제 정답 및 학습 체크 문제 해설을 저장할 수 있다. 이 경우, 데이터베이스는 학습 체크 문제와 학습 체크 문제 정답 및 학습 체크 문제 해설을 한 쌍으로 하여 컨텐츠들을 저장할 수 있다. 예를 들면, 제1 학습 체크 문제와, 제1 학습 체크 문제에 대응하는 제1 학습 체크 문제 정답은 동일한 제1 메타 정보를 데이터 패킷의 일부로서 포함할 수 있다. 프로세서는 제1 메타 정보를 기초로, 복수의 학습 체크 문제 정답 중에서 제1 학습 체크 문제에 대응하는 학습 체크 문제 정답을 제1 학습 체크 문제 정답으로 결정할 수 있다.The database may store learning check problems corresponding to each of one or more learning contents. A learning check problem may be a problem provided to determine whether the learner has understood the learning content. For example, if the learning content is content explaining the definition of the trigonometric ratio, the learning check problem corresponding to the learning content may be a question asking about the definition of the trigonometric ratio. Additionally, the database may store learning check problem answers and learning check problem explanations corresponding to the learning check problems. In this case, the database can store contents as a pair of learning check problems, learning check problem answers, and learning check problem explanations. For example, the first learning check problem and the first learning check problem answer corresponding to the first learning check problem may include the same first meta information as part of the data packet. Based on the first meta information, the processor may determine the learning check problem answer corresponding to the first learning check problem among the plurality of learning check problem answers as the first learning check problem answer.

데이터베이스는 데이터베이스 관리 프로그램(DBMS)을 이용하여 학습 서버(300)의 저장공간에 구현된 일반적인 데이터구조를 가질 수 가질 수 있다. 데이터베이스는 데이터베이스 관리 프로그램을 이용하여, 프로세서의 제어 신호에 응답하여, 데이터베이스 내에 저장된 하나 이상의 학습 컨텐츠 중 어느 하나를 선택할 수 있다.The database may have a general data structure implemented in the storage space of the learning server 300 using a database management program (DBMS). The database may use a database management program to select one of one or more learning contents stored in the database in response to a control signal from the processor.

데이터베이스는 데이터베이스 관리 프로그램(DBMS)을 이용하여 컴퓨터 시스템의 저장공간(하드디스크 또는 메모리)에 구현된 일반적인 데이터구조를 가질 수 가질 수 있다. 데이터베이스는 데이터의 검색(추출), 삭제, 편집, 추가 등을 자유롭게 행할 수 있는 데이터 저장형태를 가질 수 있다. 데이터베이스는 오라클(Oracle), 인포믹스(Infomix), 사이베이스(Sybase), DB2와 같은 관계형 데이타베이스 관리 시스템(RDBMS)이나, 겜스톤(Gemston), 오리온(Orion), O2 등과 같은 객체 지향 데이타베이스 관리 시스템(OODBMS) 및 엑셀론(Excelon), 타미노(Tamino), 세카이주(Sekaiju) 등의 XML 전용 데이터베이스(XML Native Database)를 이용하여 본 개시의 일 실시예의 목적에 맞게 구현될 수 있고, 자신의 기능을 달성하기 위하여 적당한 필드(Field) 또는 엘리먼트들을 가질 수 있다.A database can have a general data structure implemented in the storage space (hard disk or memory) of a computer system using a database management program (DBMS). A database may have a data storage form that allows for free search (extraction), deletion, editing, addition, etc. of data. Databases are relational database management systems (RDBMS) such as Oracle, Infomix, Sybase, and DB2, or object-oriented database management such as Gemston, Orion, and O2. It can be implemented according to the purpose of an embodiment of the present disclosure using a system (OODBMS) and an XML native database such as Excelon, Tamino, and Sekaiju, and has its own functions. To achieve this, you can have appropriate fields or elements.

프로세서는 데이터베이스에 저장된 하나 이상의 학습 컨텐츠 중 어느 하나를 선택하여 학습자 단말(400)에 송신할 수 있다. 프로세서는 또한, 상기 선택된 학습 컨텐츠에 대응하는 학습 체크 문제를 학습자 단말(400)에 송신할 수 있다. 프로세서는 상기 학습 체크 문제에 대응하는 학습 체크 응답을 학습자 단말(400)로부터 수신할 수 있다. 프로세서는 수신한 학습 체크 응답의 정답 또는 오답 여부를 판단할 수 있다. 또한 프로세서는 수신한 학습 체크 응답을 기초로 학습자 단말(400)에 대응하는 학습자 능력을 결정할 수 있다.The processor may select one of one or more learning contents stored in the database and transmit it to the learner terminal 400. The processor may also transmit a learning check problem corresponding to the selected learning content to the learner terminal 400. The processor may receive a learning check response corresponding to the learning check problem from the learner terminal 400. The processor may determine whether the received learning check response is correct or incorrect. Additionally, the processor may determine the learner ability corresponding to the learner terminal 400 based on the received learning check response.

학습자 관리 모듈은 학습 서버(300)에서 제공되는 개인 맞춤형 학습 서비스에 가입된 학습자의 정보를 수신하고, 상기 정보를 관리할 수 있다. 학습자 관리 모듈은 학습 서버(300)에 연결된 학습자 단말(400)의 고유 정보를 기초로 학습자의 정보를 저장할 수 있다. 여기서 학습자의 정보는, 학습자의 나이, 사전 테스트에 대한 학습자의 평가 점수, 학습자의 누적 학습 시간, 특정 학습 컨텐츠에 대한 학습자의 이해 여부 등에 대응하는 정보를 포함할 수 있다. The learner management module can receive information about learners who have subscribed to the personalized learning service provided by the learning server 300 and manage the information. The learner management module may store learner information based on unique information of the learner terminal 400 connected to the learning server 300. Here, the learner's information may include information corresponding to the learner's age, the learner's evaluation score on the pre-test, the learner's accumulated learning time, and whether the learner understands specific learning content.

학습 서버(300)에 포함된 각 구성요소는 장치 내부의 소프트웨어적인 모듈 또는 하드웨어적인 모듈을 연결하는 통신 경로에 연결되어 상호 간에 유기적으로 동작할 수 있다. 이러한 구성요소는 하나 이상의 통신 버스 또는 신호선을 이용하여 통신할 수 있다. 학습 서버(300)의 각 구성요소는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 소프트웨어적인 모듈, 하드웨어적인 모듈 또는 소프트웨어와 하드웨어의 결합으로 구현될 수 있다.Each component included in the learning server 300 is connected to a communication path connecting software modules or hardware modules within the device and can operate organically with each other. These components may communicate using one or more communication buses or signal lines. Each component of the learning server 300 refers to a unit that processes at least one function or operation, and may be implemented as a software module, a hardware module, or a combination of software and hardware.

도 4에 도시된 학습 서버(300)의 구성은 반드시 필수적인 것은 아니고, 필요에 따라 몇몇 구성을 생략하거나, 도 4에 도시되지 않은 다른 구성을 추가할 수 있을 것이다. 즉, 도 4에 도시된 구성은 설명의 편의를 위한 것이지, 실시예들이 이에 제한되는 것은 아니다. 본 발명의 기술 분야에서 통상의 지식을 가진 자는 본 발명의 범위를 벗어나지 않고 본 발명의 실시예들을 변형하여 실시할 수 있을 것이다.The configuration of the learning server 300 shown in FIG. 4 is not necessarily essential, and some configurations may be omitted or other configurations not shown in FIG. 4 may be added as needed. That is, the configuration shown in FIG. 4 is for convenience of explanation, and the embodiments are not limited thereto. A person skilled in the art will be able to modify and practice the embodiments of the present invention without departing from the scope of the present invention.

도 5는 본 발명의 일 실시예에 따른 학습 체크 문제의 난이도 조정 방법을 설명하기 위한 흐름도이다.Figure 5 is a flowchart illustrating a method of adjusting the difficulty level of a learning check problem according to an embodiment of the present invention.

도 5를 참조하면, 먼저, 학습자 단말(400)이 학습 서버(300)에 접속(연결)되면, 프로세서는 데이터베이스에 저장된 복수의 학습 컨텐츠 중 하나 이상을 선택하여 학습자 단말(400)에 송신한다(S510). Referring to Figure 5, first, when the learner terminal 400 is connected to the learning server 300, the processor selects one or more of the plurality of learning contents stored in the database and transmits it to the learner terminal 400 ( S510).

프로세서는 상기 학습자의 학습자 정보를 기초로 데이터베이스에 저장된 복수의 학습 컨텐츠 중 어느 하나를 선택하여 학습자 단말(400)에 송신할 수 있다.The processor may select one of a plurality of learning contents stored in the database based on the learner's learner information and transmit it to the learner terminal 400.

일 실시예에서, 복수의 학습 컨텐츠는 복수의 분류 기준에 따라 분류될 수 있다. 여기서, 복수의 분류 기준은, 과목, 챕터 등을 포함할 수 있다. 즉, 복수의 학습 컨텐츠는 복수의 과목으로 분류될 수 있다. 예를 들면, 복수의 학습 컨텐츠는 수학 학습 컨텐츠, 영어 학습 컨텐츠, 국어 학습 컨텐츠로 분류될 수 있다. 또한, 특정 과목의 복수의 학습 컨텐츠는 복수의 챕터(chapter)분류될 수 있다. 복수의 챕터는 제1 챕터, 제2 챕터, 제3 챕터를 포함할 수 있다. 여기서, 제1, 제2 및 제3은 복수의 챕터를 특정하기 위한 요소일 뿐, 복수의 챕터의 순서를 한정하는 것은 아니다. 제1 챕터로 분류되는 학습 컨텐츠는, 학습자가 제2 챕터로 분류되는 학습 컨텐츠를 학습하기 위해(즉, 학습자가 제2 챕터로 분류되는 학습 컨텐츠를 인지하고 이를 이해하기 위해) 선행되어야 하는 학습 컨텐츠를 포함할 수 있다. 이에 따라, 프로세서는 데이터베이스에 저장된 복수의 학습 컨텐츠 중에서 제1 챕터로 분류되는 학습 컨텐츠들을 선택하여 학습자 단말(400)에 송신하고, 이에 후속하여 제2 챕터로 분류되는 학습 컨텐츠들을 선택하여 학습자 단말(400)에 송신할 수 있다. 그러나 본 발명의 실시예가 이에 제한되는 것은 아니고, 복수의 분류 기준은 과목, 챕터 외에도 다양한 분류 기준을 포함할 수 있다.In one embodiment, a plurality of learning contents may be classified according to a plurality of classification criteria. Here, the plurality of classification criteria may include subjects, chapters, etc. That is, a plurality of learning contents can be classified into a plurality of subjects. For example, a plurality of learning contents may be classified into math learning content, English learning content, and Korean learning content. Additionally, multiple learning contents of a specific subject may be classified into multiple chapters. The plurality of chapters may include the first chapter, the second chapter, and the third chapter. Here, the first, second, and third are only elements for specifying a plurality of chapters and do not limit the order of the plurality of chapters. Learning content classified as Chapter 1 is learning content that must be preceded in order for the learner to learn learning content classified as Chapter 2 (i.e., for the learner to recognize and understand the learning content classified as Chapter 2). may include. Accordingly, the processor selects learning contents classified into the first chapter from among the plurality of learning contents stored in the database and transmits them to the learner terminal 400, and subsequently selects learning contents classified into the second chapter to the learner terminal ( 400). However, the embodiment of the present invention is not limited to this, and the plurality of classification criteria may include various classification criteria in addition to subjects and chapters.

학습자 단말(400)이 선택된 학습 컨텐츠를 수신하는 경우, 학습자 단말(400)의 디스플레이 모듈은 상기 학습 컨텐츠를 출력할 수 있다. 학습자는 학습자 단말(400)의 디스플레이 모듈을 통해 상기 학습 컨텐츠를 인지하고, 상기 학습 컨텐츠에 포함된 설명 내용을 학습할 수 있다.When the learner terminal 400 receives the selected learning content, the display module of the learner terminal 400 may output the learning content. The learner can recognize the learning content through the display module of the learner terminal 400 and learn the explanation content included in the learning content.

이어서, 데이터베이스에 저장된 복수의 학습 체크 문제 중 송신한 학습 컨텐츠에 대응하는 제1 학습 체크 문제를 선택하여 학습자 단말(400)에 송신한다(S520). Next, the first learning check problem corresponding to the transmitted learning content is selected from among the plurality of learning check problems stored in the database and transmitted to the learner terminal 400 (S520).

프로세서는 데이터베이스에 저장된 복수의 학습 체크 문제 중에서, S510에서 선택한 학습 컨텐츠에 대응하는 학습 체크 문제를 선택하여 학습자 단말(400)에 송신할 수 있다. 예를 들면, 프로세서가 S510에서 선택한 학습 컨텐츠가 삼각비 정의에 대한 내용을 설명하는 데이터인 경우, 프로세서는 데이터베이스에 저장된 복수의 학습 체크 문제 중에서 삼각비 정의를 묻는 문제를 포함하는 학습 체크 문제를 학습자 단말(400)에 송신할 수 있다. 이 경우, 학습 체크 문제는 학습 컨텐츠의 분류에 따라 분류될 수 있다. 예를 들면, 학습 컨텐츠가 '수학'과목 및 '삼각비'챕터로 분류되는 경우, 학습 체크 문제 또한 '수학'과목 및 '삼각비'챕터로 분류될 수 있다.The processor may select a learning check problem corresponding to the learning content selected in S510 from among a plurality of learning check problems stored in the database and transmit it to the learner terminal 400. For example, if the learning content selected by the processor in S510 is data explaining the content of the definition of trigonometric ratio, the processor sends a learning check problem including a question asking for the definition of a trigonometric ratio among a plurality of learning check problems stored in the database to the learner terminal ( 400). In this case, learning check problems can be classified according to the classification of learning content. For example, if learning content is classified into a 'mathematics' subject and a 'trigonometric ratio' chapter, learning check problems may also be classified into a 'mathematics' subject and a 'trigonometric ratio' chapter.

학습자 단말(400)이 학습 체크 문제를 수신하는 경우, 학습자 단말(400)의 디스플레이 모듈은 상기 학습 체크 문제를 출력할 수 있다. 즉, 학습자 단말(400)의 디스플레이 모듈에는 학습 체크 문제에 포함된 학습 체크 문제가 출력될 수 있다. 학습자는 학습자 단말(400)의 디스플레이 모듈에 출력된 학습 체크 문제를 인지하고 학습 체크 문제에 대한 응답을 학습자 단말(400)에 입력할 수 있다. 학습자가 학습자 단말(400)에 학습 체크 문제에 대한 응답을 입력하는 방법은 다양할 수 있다. 예를 들면, 학습자는 학습자 단말(400)에 포함된 터치 디스플레이(touch display)를 통해 학습 체크 문제에 대한 풀이 과정을 입력할 수 있다. 이 경우, 학습자 단말(400)은 광학 문자 인식(Optical character recognition; OCR) 방식을 이용하여 상기 입력된 학습 체크 문제에 대한 풀이 과정을 기초로 학습 체크 응답을 생성할 수 있다. 본 발명의 실시예가 이에 한정되는 것은 아니고, 학습자 단말(400)이 학습자가 입력한 학습 체크 문제에 대한 풀이 과정을 기초로 학습 체크 응답을 생성하는 방식은 다양할 수 있으며, 특정한 방식에 제한되는 것은 아니다. 여기서, 학습 체크 응답은 상기 학습 체크 문제에 대응하는 학습자의 문제 풀이 내용(응답 내용)을 포함할 수 있다. 예를 들면, 학습 체크 문제가 삼각비의 정의를 묻는 문제를 포함하는 경우, 학습 체크 응답은 삼각비에 대한 정의를 설명하는 학습자의 텍스트를 포함할 수 있을 것이다.When the learner terminal 400 receives a learning check problem, the display module of the learner terminal 400 may output the learning check problem. That is, the learning check problem included in the learning check problem may be displayed on the display module of the learner terminal 400. The learner may recognize the learning check problem output on the display module of the learner terminal 400 and input a response to the learning check problem into the learner terminal 400. There may be various ways for a learner to input a response to a learning check question into the learner terminal 400. For example, a learner may input a solution process for a learning check problem through a touch display included in the learner terminal 400. In this case, the learner terminal 400 may generate a learning check response based on the solution process for the input learning check problem using an optical character recognition (OCR) method. The embodiment of the present invention is not limited to this, and the method by which the learner terminal 400 generates a learning check response based on the solution process for the learning check problem entered by the learner may vary, and is not limited to a specific method. no. Here, the learning check response may include the learner's problem solving content (response content) corresponding to the learning check problem. For example, if the learning check problem includes a question asking for the definition of a trigonometric ratio, the learning check response may include the learner's text explaining the definition of the trigonometric ratio.

학습 서버(300)의 프로세서는, 상기 학습자 단말로부터 제1 학습 체크 문제에 대응하는 제1 학습 체크 응답을 수신한다(S530).The processor of the learning server 300 receives a first learning check response corresponding to the first learning check problem from the learner terminal (S530).

일 실시예에서, 상기 선택된 학습 체크 문제가 복수의 학습 체크 문제를 포함하는 경우, 학습 서버(300)의 프로세서는 학습자 단말로부터 상기 복수의 학습 체크 문제 각각에 대응하는 복수의 학습 체크 응답을 수신할 수 있다. In one embodiment, when the selected learning check problem includes a plurality of learning check problems, the processor of the learning server 300 receives a plurality of learning check responses corresponding to each of the plurality of learning check problems from the learner terminal. You can.

학습 서버(300)의 프로세서는, 수신한 학습 체크 응답에 대해 정답 또는 오답 여부를 판단할 수 있다. 학습 서버(300)의 프로세서는 학습 체크 문제에 대한 학습 체크 응답을, 상기 학습 체크 문제에 대응하는 학습 체크 문제 정답과 비교할 수 있다. 학습 서버(300)의 프로세서는 학습 체크 응답을 학습 체크 문제 정답 과 비교하여 학습 체크 응답에 대한 정답 또는 오답 여부를 판별할 수 있다.The processor of the learning server 300 may determine whether the received learning check response is correct or incorrect. The processor of the learning server 300 may compare the learning check response to the learning check problem with the learning check problem answer corresponding to the learning check problem. The processor of the learning server 300 may determine whether the learning check response is correct or incorrect by comparing the learning check response with the correct answer to the learning check problem.

일 실시예에서, 학습 서버(300)의 프로세서가 학습자 단말로부터 복수의 학습 체크 문제 각각에 대응하는 복수의 학습 체크 응답을 수신하는 경우, 학습 서버(300)의 프로세서는 상기 복수의 학습 체크 응답 각각에 대한 정답 또는 오답 여부를 판별할 수 있다. In one embodiment, when the processor of the learning server 300 receives a plurality of learning check responses corresponding to each of a plurality of learning check problems from the learner terminal, the processor of the learning server 300 receives each of the plurality of learning check responses. You can determine whether the answer is correct or incorrect.

다음으로, 학습 서버(300)의 프로세서는, 제1 학습 체크 문제에 대한 고유 난이도를 산출한다(S540).Next, the processor of the learning server 300 calculates the unique difficulty level for the first learning check problem (S540).

일 실시예에서, 고유 난이도는, 학습자의 제1 학습 체크 문제의 풀이시간을 기초로 산출될 수 있다. 즉, 학습 서버(300)의 프로세서는, 학습자의 제1 학습 체크 문제에 대한 풀이시간을 기초로 제1 학습 체크 문제에 대한 고유 난이도를 산출할 수 있다. 이를 위해, 학습 서버(300)의 프로세서는, 학습자의 제1 학습 체크 문제에 대한 풀이시간을 측정할 수 있다. 학습 서버(300)의 프로세서는, 학습자의 제1 학습 체크 문제에 대한 실제 풀이시간을 기초로 고유 난이도를 산출할 수 있다.In one embodiment, the inherent difficulty level may be calculated based on the solving time of the learner's first learning check problem. That is, the processor of the learning server 300 may calculate a unique difficulty level for the first learning check problem based on the learner's solving time for the first learning check problem. To this end, the processor of the learning server 300 can measure the solving time for the learner's first learning check problem. The processor of the learning server 300 may calculate a unique difficulty level based on the learner's actual solving time for the first learning check problem.

다른 실시예에서, 고유 난이도는 제1 학습 체크 문제의 정답율을 기초로 산출될 수 있다. 즉, 학습 서버(300)의 프로세서는, 제1 학습 체크 문제에 대한 정답율을 기초로 제1 학습 체크 문제에 대한 난이도를 산출할 수 있다. 학습 서버(300)의 프로세서는, 학습 서버(300)에 접속(연결)된 복수의 학습자 단말 각각에 제1 학습 체크 문제를 송신하고, 제1 학습 체크 문제에 대응하는 복수의 제1 학습 체크 응답을 각각의 학습자 단말로부터 수신할 수 있다. 학습 서버(300)의 프로세서는 상기 복수의 제1 학습 체크 응답 각각의 정답 여부를 판별할 수 있다. 학습 서버(300)의 프로세서는 상기 복수의 제1 학습 체크 응답 중 정답으로 판별되는 제1 학습 체크 응답의 비율, 즉 정답율을 기초로 상기 제1 학습 체크 문제에 대한 난이도를 산출할 수 있다. In another embodiment, the inherent difficulty level may be calculated based on the correct answer rate of the first learning check problem. That is, the processor of the learning server 300 may calculate the difficulty level of the first learning check problem based on the percentage of correct answers to the first learning check problem. The processor of the learning server 300 transmits a first learning check problem to each of a plurality of learner terminals connected to the learning server 300, and a plurality of first learning check responses corresponding to the first learning check problem. can be received from each learner terminal. The processor of the learning server 300 may determine whether each of the plurality of first learning check responses is correct. The processor of the learning server 300 may calculate the difficulty level for the first learning check problem based on the ratio of the first learning check response that is determined to be correct among the plurality of first learning check responses, that is, the percentage of correct answers.

또 다른 실시예에서, 고유 난이도는 제1 학습 체크 문제의 풀이시간 및 제1 학습 체크 문제의 정답율을 기초로 산출될 수 있다. 즉, 학습 서버(300)의 프로세서는, 학습자의 제1 학습 체크 문제의 풀이시간 및 제1 학습 체크 문제에 대한 정답율을 기초로 제1 학습 체크 문제에 대한 고유 난이도를 산출할 수 있다.In another embodiment, the inherent difficulty level may be calculated based on the solving time of the first learning check problem and the correct answer rate of the first learning check problem. That is, the processor of the learning server 300 may calculate a unique difficulty level for the first learning check problem based on the learner's solving time of the first learning check problem and the percentage of correct answers to the first learning check problem.

일 실시예에서, 고유 난이도는 0~100의 값을 가질 수 있다. 즉, 고유 난이도는 0~100 범위의 수로 표현될 수 있다. 그러나 본 발명의 실시예는 이에 제한되지 않고, 고유 난이도의 범위는 다양할 수 있다.In one embodiment, the intrinsic difficulty can have a value from 0 to 100. In other words, the inherent difficulty can be expressed as a number in the range of 0 to 100. However, embodiments of the present invention are not limited thereto, and the range of inherent difficulty may vary.

일 실시예에서, 학습 서버(300)의 프로세서는, [수학식 1]을 이용하여 제1 학습 체크 문제의 고유 난이도를 산출할 수 있다. [수학식 1]에서, D_i는 고유 난이도, t는 학습자의 제1 학습 체크 문제에 대한 문제풀이 시간, P_c는 제1 학습 체크 문제의 정답율, m, n은 고유 상수를 의미할 수 있다.In one embodiment, the processor of the learning server 300 may calculate the inherent difficulty of the first learning check problem using [Equation 1]. In [Equation 1], D_i is the inherent difficulty level, t is the problem solving time for the learner's first learning check problem, P_c is the correct answer rate of the first learning check problem, and m and n are unique constants.

학습 서버(300)의 프로세서는, 제1 학습 체크 문제에 대응하는 학습 컨텐츠에 대한 학습자의 학습 성취도를 측정한다(S550).The processor of the learning server 300 measures the learner's learning achievement level for the learning content corresponding to the first learning check problem (S550).

일 실시예에서, 학습 성취도는, 학습 컨텐츠의 복수의 분류 기준 각각에 따라 측정될 수 있다. 예를 들면, 학습 성취도는 특정 과목에 대한 학습 성취도를 나타내는 제1 학습 성취도와, 특정 챕터에 대한 학습 성취도를 나타내는 제2 학습 성취도를 포함할 수 있다. 즉, 학습 컨텐츠가 복수의 분류 기준에 따라 분류되는 경우, 학습 서버(300)의 프로세서는, 분류 기준 각각에 따라 학습 컨텐츠에 대한 학습자의 학습 성취도를 측정할 수 있다.In one embodiment, learning achievement may be measured according to each of a plurality of classification criteria of learning content. For example, the learning achievement may include a first learning achievement indicating learning achievement for a specific subject, and a second learning achievement indicating learning achievement for a specific chapter. That is, when learning content is classified according to a plurality of classification criteria, the processor of the learning server 300 can measure the learner's learning achievement for the learning content according to each classification criterion.

학습 서버(300)의 프로세서는 학습 컨텐츠에 대한 학습자의 학습 성취도를 측정하기 위해, 학습 컨텐츠에 대한 학습자의 학습 시간, 학습 진도 등을 참고할 수 있다. 또한, 학습 서버(300)의 프로세서는 학습자에 대응하는 학습자 단말(400)에 특정 과목의 특정 챕터로 분류되는 복수의 학습 체크 문제를 송신하고, 학습자 단말(400)로부터 상기 복수의 학습 체크 문제 각각에 대응하는 복수의 학습 체크 응답을 수신할 수 있다. 이 경우 학습 서버(300)의 프로세서는 복수의 학습 체크 응답 중 정답이라고 판단되는 학습 체크 응답의 개수를 기초로 학습자의 학습 성취도를 측정할 수 있다.The processor of the learning server 300 may refer to the learner's learning time and learning progress for the learning content in order to measure the learner's learning achievement for the learning content. In addition, the processor of the learning server 300 transmits a plurality of learning check problems classified into a specific chapter of a specific subject to the learner terminal 400 corresponding to the learner, and each of the plurality of learning check problems is sent from the learner terminal 400. A plurality of learning check responses corresponding to may be received. In this case, the processor of the learning server 300 may measure the learner's learning achievement based on the number of learning check responses that are determined to be correct among a plurality of learning check responses.

예를 들면, 학습 컨텐츠가 삼각비 정의에 대한 내용을 설명하는 데이터인 경우, 학습 컨텐츠는 1차적으로'수학'과목으로 분류될 수 있고, 2차적으로 '삼각비'챕터로 분류될 수 있다. 이 경우, 학습 서버(300)의 프로세서는 학습자의 '수학'과목에 대한 학습 성취도를 제1 학습 성취도로 측정하고, 학습자의 '수학'과목 '삼각비'챕터에 대한 학습 성취도를 제2 학습 성취도로 측정할 수 있다. 학습 성취도는 0~100의 값을 가질 수 있다. 즉, 학습 성취도는 0~100 범위의 수로 표현될 수 있다. 그러나 본 발명의 실시예는 이에 제한되지 않고, 학습 성취도의 범위는 다양할 수 있다.For example, if the learning content is data explaining the definition of trigonometric ratios, the learning content may be primarily classified as a 'mathematics' subject and secondarily as a 'trigonometric ratio' chapter. In this case, the processor of the learning server 300 measures the learner's learning achievement for the 'mathematics' subject as the first learning achievement, and the learner's learning achievement for the 'trigonometric ratio' chapter of the 'mathematics' subject as the second learning achievement. It can be measured. Learning achievement can have values from 0 to 100. In other words, learning achievement can be expressed as a number ranging from 0 to 100. However, embodiments of the present invention are not limited thereto, and the range of learning achievement may vary.

학습 서버(300)의 프로세서는, 고유 난이도와 학습 성취도를 기초로 제1 학습 체크 문제에 대한 학습자의 체감 난이도를 산출한다(S560).The processor of the learning server 300 calculates the learner's perceived difficulty level for the first learning check problem based on the inherent difficulty level and learning achievement level (S560).

일 실시예에서, 학습 서버(300)의 프로세서는 [수학식 2]를 이용하여 체감 난이도를 산출할 수 있다. [수학식 2]에서, D_f는 체감 난이도, D_i는 고유 난이도, A는 학습 컨텐츠 분류 기준에 따른 학습자의 학습 성취도, k는 학습 컨텐츠 분류 기준을 식별하기 위한 자연수를 의미할 수 있다.In one embodiment, the processor of the learning server 300 may calculate the perceived difficulty level using [Equation 2]. In [Equation 2], D_f is the perceived difficulty, D_i is the inherent difficulty, A is the learner's learning achievement according to the learning content classification standard, and k is a natural number for identifying the learning content classification standard.

일 실시예에서, 학습 서버(300)의 프로세서는 난이도 보정 모델을 이용하여 체감 난이도를 보정할 수 있다. 이를 위해, 난이도 보정 모델은 입력 레이어, 하나 이상의 히든 레이어 및 출력 레이어를 포함할 수 있다. 난이도 보정 모델은 학습 과정을 통해 체감 난이도를 정확하게 보정할 수 있도록 미리 학습될 수 있다. 이를 위하여, 학습 성취도, 고유 난이도, 및 체감 난이도에 관한 학습 데이터는 난이도 보정 모델의 입력 레이어에 입력되어 하나 이상의 히든 레이어 및 출력 레이어를 통과하여 출력 벡터가 출력될 수 있다. 출력 벡터는 출력 레이어에 연결된 손실함수 레이어에 입력될 수 있다. 손실함수 레이어는 출력 벡터와 각각의 학습 데이터에 대한 정답 벡터를 비교하는 손실 함수를 이용하여 손실값을 출력할 수 있다. 난이도 보정 모델의 파라미터는 손실값이 작아지는 방향으로 학습될 수 있다.In one embodiment, the processor of the learning server 300 may correct the perceived difficulty level using a difficulty correction model. To this end, the difficulty correction model may include an input layer, one or more hidden layers, and an output layer. The difficulty correction model can be learned in advance so that the perceived difficulty can be accurately corrected through the learning process. To this end, learning data regarding learning achievement, intrinsic difficulty, and perceived difficulty may be input to the input layer of the difficulty correction model and pass through one or more hidden layers and output layers to output an output vector. The output vector can be input to the loss function layer connected to the output layer. The loss function layer can output loss values using a loss function that compares the output vector with the correct answer vector for each training data. The parameters of the difficulty correction model can be learned in a direction that reduces the loss value.

예를 들어, 손실 함수는 <수학식 3>을 따라 손실 값을 계산할 수 있다. <수학식 3>에서, N은 복수의 학습 데이터의 수, n은 학습 데이터를 식별하는 자연수, k는 n번째 학습 데이터의 값을 식별하는 자연수, nk는 n번째 학습 데이터의 k번째 값을 의미하고, t는 정답 데이터를 의미하고, y는 출력 벡터를 의미하고, E는 손실값을 의미할 수 있다.For example, the loss function can calculate the loss value according to Equation 3. In <Equation 3>, N is the number of a plurality of learning data, n is a natural number identifying the learning data, k is a natural number identifying the value of the nth learning data, and nk is the kth value of the nth learning data. , t may mean the correct answer data, y may mean the output vector, and E may mean the loss value.

또는, 손실 함수는 <수학식 4>를 따라 손실 값을 계산할 수 있다. <수학식 4>에서, n은 클래스 별 학습 데이터의 수, y와 j는 클래스를 나타내는 식별자, C는 상수값, M은 클래스의 개수, x_y는 학습 데이터가 클래스 y에 속할 확률값, x_j는 학습 데이터가 클래스 j에 속할 확률값, L은 손실값을 의미할 수 있다.Alternatively, the loss function can calculate the loss value according to Equation 4. In <Equation 4>, n is the number of training data for each class, y and j are identifiers representing the classes, C is a constant value, M is the number of classes, x_y is the probability that the training data belongs to class y, and x_j is the learning data. The probability value that the data belongs to class j, L may mean the loss value.

이를 위해, 학습 서버(300)의 프로세서는 인공지능 기계학습 모델을 포함할 수 있다. 학습 서버(300)가 하드웨어로 구현되는 경우, 학습 서버(300)의 프로세서는 기계학습 모델의 처리에 특화된 하드웨어 구조를 포함할 수 있다. 기계학습 모델은 인공지능 기계 학습을 통해 생성될 수 있다.To this end, the processor of the learning server 300 may include an artificial intelligence machine learning model. When the learning server 300 is implemented as hardware, the processor of the learning server 300 may include a hardware structure specialized for processing machine learning models. Machine learning models can be created through artificial intelligence machine learning.

기계 학습 알고리즘은, 예를 들어, 지도형 학습(supervised learning), 비지도형 학습(unsupervised learning), 준지도형 학습(semi-supervised learning) 또는 강화 학습(reinforcement learning)을 포함할 수 있으나, 전술한 예에 한정되지 않는다. 인공지능 모델은, 복수의 인공 신경망 레이어들을 포함할 수 있다. 인공 신경망은 심층 신경망(DNN: deep neural network), CNN(convolutional neural network), RNN(recurrent neural network), RBM(restricted boltzmann machine), DBN(deep belief network), BRDNN(bidirectional recurrent deep neural network), 심층 Q-네트워크(deep Q-networks) 또는 상기 중 둘 이상의 조합 중 하나일 수 있으나, 전술한 예에 한정되지 않는다. 인공지능 모델은 하드웨어 구조 이외에, 추가적으로 또는 대체적으로, 소프트웨어 구조를 포함할 수 있다.Machine learning algorithms may include, for example, supervised learning, unsupervised learning, semi-supervised learning, or reinforcement learning, but examples of the foregoing It is not limited to An artificial intelligence model may include multiple artificial neural network layers. Artificial neural networks include deep neural network (DNN), convolutional neural network (CNN), recurrent neural network (RNN), restricted boltzmann machine (RBM), belief deep network (DBN), bidirectional recurrent deep neural network (BRDNN), It may be one of deep Q-networks or a combination of two or more of the above, but is not limited to the examples described above. In addition to hardware structures, artificial intelligence models may additionally or alternatively include software structures.

학습 서버(300)의 프로세서는, 체감 난이도를 기초로 데이터베이스에서 제1 학습 체크 문제와 고유 난이도가 상이한 제2 학습 체크 문제를 선택하고, 학습자 단말에 상기 제2 학습 체크 문제를 송신한다(S570).The processor of the learning server 300 selects a second learning check problem with a unique difficulty level different from the first learning check problem from the database based on the perceived difficulty level, and transmits the second learning check problem to the learner terminal (S570) .

학습 서버(300)의 프로세서는, 제1 학습 체크 문제의 고유 난이도와 제1 학습 문제에 대한 학습자의 체감 난이도를 비교할 수 있다. 제1 학습 체크 문제의 고유 난이도가 제1 학습 문제에 대한 학습자의 체감 난이도보다 높은 경우, 학습 서버(300)의 프로세서는 데이터베이스에서 제1 학습 체크 문제보다 고유 난이도가 높은 학습 체크 문제를 제2 학습 체크 문제로 선택하여 학습자 단말(400)에 송신할 수 있다.The processor of the learning server 300 may compare the inherent difficulty of the first learning check problem with the learner's perceived difficulty of the first learning problem. If the intrinsic difficulty of the first learning check problem is higher than the learner's perceived difficulty of the first learning problem, the processor of the learning server 300 selects a learning check problem in the database that has a higher intrinsic difficulty than the first learning check problem as a second learner. It can be selected as a check problem and transmitted to the learner terminal 400.

제1 학습 체크 문제의 고유 난이도가 제1 학습 문제에 대한 학습자의 체감 난이도보다 낮은 경우, 학습 서버(300)의 프로세서는 데이터베이스에서 제1 학습 체크 문제보다 고유 난이도가 낮은 학습 체크 문제를 제2 학습 체크 문제로 선택하여 학습자 단말(400)에 송신할 수 있다.If the intrinsic difficulty of the first learning check problem is lower than the learner's perceived difficulty of the first learning problem, the processor of the learning server 300 selects a learning check problem in the database that has a lower intrinsic difficulty than the first learning check problem for second learning. It can be selected as a check problem and transmitted to the learner terminal 400.

전술한 바와 같이, 본 발명의 실시예에 따른 문제 난이도 조정 방법은, 학습 체크 문제의 고유 난이도 및 학습 컨텐츠에 대한 학습자의 학습 성취도를 기초로 학습자에게 적합한 난이도의 학습 체크 문제를 제공할 수 있다. 즉, 학습자는 자신의 학습 진도, 학습 시간 등에 따라 측정되는 학습 성취도에 따른 적절한 학습 체크 문제를 받아 풀어봄으로써, 자신의 학습량에 따른 적절한 피드백을 얻을 수 있을 것이다.As described above, the problem difficulty adjustment method according to an embodiment of the present invention can provide a learning check problem with a difficulty level suitable for the learner based on the unique difficulty of the learning check problem and the learner's learning achievement with respect to the learning content. In other words, the learner will be able to obtain appropriate feedback according to the amount of learning by solving appropriate learning check problems according to the learning achievement measured according to the learner's learning progress, learning time, etc.

이상에서 설명된 실시예들은 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치, 방법 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.The embodiments described above may be implemented with hardware components, software components, and/or a combination of hardware components and software components. For example, the devices, methods, and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, and a field programmable gate (FPGA). It may be implemented using one or more general-purpose or special-purpose computers, such as an array, programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions. A processing device may execute an operating system (OS) and one or more software applications that run on the operating system. Additionally, a processing device may access, store, manipulate, process, and generate data in response to the execution of software. For ease of understanding, a single processing device may be described as being used; however, those skilled in the art will understand that a processing device includes multiple processing elements and/or multiple types of processing elements. It can be seen that it may include. For example, a processing device may include a plurality of processors or one processor and one controller. Additionally, other processing configurations, such as parallel processors, are possible.

소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 송신되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.Software may include a computer program, code, instructions, or a combination of one or more of these, which may configure a processing unit to operate as desired, or may be processed independently or collectively. You can command the device. Software and/or data may be used on any type of machine, component, physical device, virtual equipment, computer storage medium or device to be interpreted by or to provide instructions or data to a processing device. , or may be permanently or temporarily embodied in a transmitted signal wave. Software may be distributed over networked computer systems and stored or executed in a distributed manner. Software and data may be stored on one or more computer-readable recording media.

실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.The method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer-readable medium. The computer-readable medium may include program instructions, data files, data structures, etc., singly or in combination. Program instructions recorded on the medium may be specially designed and configured for the embodiment or may be known and available to those skilled in the art of computer software. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks. -Includes optical media (magneto-optical media) and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, etc. Examples of program instructions include machine language code, such as that produced by a compiler, as well as high-level language code that can be executed by a computer using an interpreter, etc. The hardware devices described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.Although the embodiments have been described with limited drawings as described above, those skilled in the art can apply various technical modifications and variations based on the above. For example, the described techniques are performed in a different order than the described method, and/or components of the described system, structure, device, circuit, etc. are combined or combined in a different form than the described method, or other components are used. Alternatively, appropriate results may be achieved even if substituted or substituted by an equivalent.

그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.Therefore, other implementations, other embodiments, and equivalents of the claims also fall within the scope of the claims described below.

Claims (5)

학습 서버에 의해, 데이터베이스에서 특정 과목의 특정 챕터로 분류되는 제1 학습 체크 문제를 선택하고, 학습자 단말에 상기 제1 학습 체크 문제를 송신하는 단계;
상기 학습자 단말로부터 상기 제1 학습 체크 문제에 대한 학습자의 제1 학습 체크 응답을 수신하는 단계;
상기 제1 학습 체크 문제에 대한 고유 난이도를 산출하는 단계;
상기 제1 학습 체크 문제에 대응하는 학습 컨텐츠에 대한 상기 학습자의 학습 성취도를 측정하는 단계;
상기 고유 난이도와 상기 학습 성취도를 기초로 상기 제1 학습 체크 문제에 대한 상기 학습자의 체감 난이도를 산출하는 단계;
상기 체감 난이도를 기초로 상기 데이터베이스에서 상기 제1 학습 체크 문제의 고유 난이도와 상이한 고유 난이도를 가지는 제2 학습 체크 문제를 선택하고, 상기 학습자 단말에 상기 제2 학습 체크 문제를 송신하는 단계;를 포함하는,
뉴럴 네트워크를 이용한 문제 난이도 조정 방법.
selecting, by a learning server, a first learning check problem classified into a specific chapter of a specific subject in a database, and transmitting the first learning check problem to a learner terminal;
Receiving the learner's first learning check response to the first learning check problem from the learner terminal;
calculating a unique difficulty level for the first learning check problem;
Measuring the learner's learning achievement for learning content corresponding to the first learning check problem;
calculating the learner's perceived difficulty level for the first learning check problem based on the unique difficulty level and the learning achievement level;
Selecting a second learning check problem having a unique difficulty level different from that of the first learning check problem from the database based on the perceived difficulty level, and transmitting the second learning check problem to the learner terminal. doing,
How to adjust problem difficulty using a neural network.
제1항에 있어서,
상기 학습 성취도는, 상기 특정 과목에 대한 학습 성취도를 나타내는 제1 학습 성취도와, 상기 특정 챕터에 대한 학습 성취도를 나타내는 제2 학습 성취도를 포함하는,
뉴럴 네트워크를 이용한 문제 난이도 조정 방법.
According to paragraph 1,
The learning achievement includes a first learning achievement indicating learning achievement for the specific subject and a second learning achievement indicating learning achievement for the specific chapter,
How to adjust problem difficulty using a neural network.
제1항에 있어서,
상기 고유 난이도는, 상기 학습자의 상기 제1 학습 체크 문제의 풀이시간 및 상기 제1 학습 체크 문제의 정답율을 기초로 산출되는,
뉴럴 네트워크를 이용한 문제 난이도 조정 방법.
According to paragraph 1,
The unique difficulty level is calculated based on the learner's solving time of the first learning check problem and the correct answer rate of the first learning check problem,
How to adjust problem difficulty using a neural network.
제1항에 있어서,
[수학식]

상기 학습 서버는, 상기 수학식을 이용하여 상기 체감 난이도를 산출하고,
상기 수학식에서, D_f는 체감 난이도, D_i는 고유 난이도, A는 학습 컨텐츠 분류 기준에 따른 학습자의 학습 성취도, k는 학습 컨텐츠 분류 기준을 식별하기 위한 자연수를 의미하는,
뉴럴 네트워크를 이용한 문제 난이도 조정 방법.
According to paragraph 1,
[Equation]

The learning server calculates the perceived difficulty level using the above equation,
In the above equation, D_f is the perceived difficulty, D_i is the inherent difficulty, A is the learner's learning achievement according to the learning content classification standard, and k is a natural number for identifying the learning content classification standard.
How to adjust problem difficulty using a neural network.
제1항에 있어서,
상기 학습 서버는, 난이도 보정 모델을 이용하여 상기 체감 난이도를 보정하고,
상기 난이도 보정 모델은 입력 레이어, 하나 이상의 히든 레이어 및 출력 레이어를 포함하고,
상기 고유 난이도, 상기 학습 성취도, 및 상기 체감 난이도에 관한 복수의 학습 데이터는 상기 난이도 보정 모델의 상기 입력 레이어에 입력되어, 상기 하나 이상의 히든 레이어 및 상기 출력 레이어를 통과하여 출력 벡터로 출력되고,
상기 출력 벡터는 상기 출력 레이어에 연결된 손실함수 레이어에 입력되고, 상기 손실함수 레이어는 상기 출력 벡터와 각각의 상기 학습 데이터에 대한 정답 벡터를 비교하는 손실 함수를 이용하여 손실값을 출력하고,
상기 난이도 보정 모델의 파라미터는 상기 손실값이 작아지는 방향으로 학습되는,
뉴럴 네트워크를 이용한 문제 난이도 조정 방법.
According to paragraph 1,
The learning server corrects the perceived difficulty level using a difficulty correction model,
The difficulty correction model includes an input layer, one or more hidden layers, and an output layer,
A plurality of learning data regarding the unique difficulty, the learning achievement, and the perceived difficulty are input to the input layer of the difficulty correction model, pass through the one or more hidden layers and the output layer, and are output as an output vector,
The output vector is input to a loss function layer connected to the output layer, and the loss function layer outputs a loss value using a loss function that compares the output vector with the correct answer vector for each of the training data,
The parameters of the difficulty correction model are learned in the direction of decreasing the loss value,
How to adjust problem difficulty using a neural network.
KR1020220083955A 2022-07-07 2022-07-07 Method and apparatus for adjusting problem difficulty using a neural network KR20240006986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220083955A KR20240006986A (en) 2022-07-07 2022-07-07 Method and apparatus for adjusting problem difficulty using a neural network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220083955A KR20240006986A (en) 2022-07-07 2022-07-07 Method and apparatus for adjusting problem difficulty using a neural network

Publications (1)

Publication Number Publication Date
KR20240006986A true KR20240006986A (en) 2024-01-16

Family

ID=89719816

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220083955A KR20240006986A (en) 2022-07-07 2022-07-07 Method and apparatus for adjusting problem difficulty using a neural network

Country Status (1)

Country Link
KR (1) KR20240006986A (en)

Similar Documents

Publication Publication Date Title
KR102413770B1 (en) Method and apparatus for psychotheraphy using neural network
KR102692403B1 (en) System for managing production line of the manufacturing method of various small quantities
KR102463860B1 (en) Method for providing couple matching service using saju-myeongri based on artificial intelligence
KR102414167B1 (en) Method and apparatus for security using packet sending using neural networks
KR102474122B1 (en) Method and apparatus for recommending products using augmented reality based on user type and user-related information
KR102627731B1 (en) Apparatus and method for providing service of setting customized learning direction for student&#39;s academic achievement
KR102476292B1 (en) System for processing pedal box photographing image data of a vehicle using artificial intelligence
KR102702940B1 (en) Method and apparatus for determining a similarity of webtoons based on genre values of webtoons
KR102714419B1 (en) Method and apparatus for providing information related to a psychological state based on an order in which color images are selected and the color images using neural network
KR20220087410A (en) Method and apparatus for psychotheraphy using neural network
KR20240006986A (en) Method and apparatus for adjusting problem difficulty using a neural network
KR20230103172A (en) A user terminal in which an artificial intelligence-based motion data analysis method and a golf coaching method are stored
KR20240006983A (en) Apparatus and method for providing learning feedback using a neural network
KR102563678B1 (en) Server and operation method that provide customized learning service using learned neural network
KR102446665B1 (en) A server providing a teaching system using a multi-party video conferencing service and an operation method thereof
KR102600656B1 (en) Method for providing basketball player matching service based on active-passive matching algorithm
KR20240006984A (en) Method and apparatus for evaluating metacognitive ability using neural networks
KR102450024B1 (en) Neural network based building fire detection system
KR102590839B1 (en) System and method for providing career counseling contents through neural network-based context analysis
KR102464057B1 (en) Device and method for providing credit score-based rental service using artificial intelligent
KR102585090B1 (en) Method and apparatus for providing a game linked with webtoon to a user terminal using neural networks
KR20240015467A (en) Study management method and apparatus thereof using neural networks
KR102562282B1 (en) Propensity-based matching method and apparatus
KR102554242B1 (en) Method and apparatus for providing a message related an event to a terminal using a neural network by a server
KR102539564B1 (en) Voice message transmission system for providing quality assurance service related to a voice message based on a neural network

Legal Events

Date Code Title Description
AMND Amendment
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination