KR20240002094A - Baculovirus Infected Cell Stock for AAV vector production and Method for manufacturing AAV vector - Google Patents

Baculovirus Infected Cell Stock for AAV vector production and Method for manufacturing AAV vector Download PDF

Info

Publication number
KR20240002094A
KR20240002094A KR1020220079310A KR20220079310A KR20240002094A KR 20240002094 A KR20240002094 A KR 20240002094A KR 1020220079310 A KR1020220079310 A KR 1020220079310A KR 20220079310 A KR20220079310 A KR 20220079310A KR 20240002094 A KR20240002094 A KR 20240002094A
Authority
KR
South Korea
Prior art keywords
aav
bic
cells
baculovirus
culture
Prior art date
Application number
KR1020220079310A
Other languages
Korean (ko)
Inventor
배경동
주연수
김석현
Original Assignee
주식회사 헬릭스미스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 헬릭스미스 filed Critical 주식회사 헬릭스미스
Priority to KR1020220079310A priority Critical patent/KR20240002094A/en
Publication of KR20240002094A publication Critical patent/KR20240002094A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0601Invertebrate cells or tissues, e.g. insect cells; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14041Use of virus, viral particle or viral elements as a vector
    • C12N2710/14044Chimeric viral vector comprising heterologous viral elements for production of another viral vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector

Abstract

본 발명은 AAV 벡터 생산을 위한 배큘로바이러스 감염 세포 스탁 및 AAV 벡터의 제조방법에 관한 것이다. 본 발명의 아데노-관련 바이러스 벡터를 생성하는 배큘로바이러스 감염 세포 스탁을 이용하는 경우 아데노-관련 바이러스 벡터 생성에 걸리는 시간을 줄이고 보관안정성을 크게 향상시킬 수 있으며, AAV 벡터의 생산성을 크게 향상시킬 수 있다.The present invention relates to baculovirus-infected cell stocks for AAV vector production and methods for producing AAV vectors. When using a baculovirus-infected cell stock that produces the adeno-related viral vector of the present invention, the time required to produce the adeno-related viral vector can be reduced, storage stability can be greatly improved, and the productivity of the AAV vector can be greatly improved. .

Description

AAV 벡터 생산을 위한 배큘로바이러스 감염 세포 스탁 및 AAV 벡터의 제조방법 {Baculovirus Infected Cell Stock for AAV vector production and Method for manufacturing AAV vector}Baculovirus Infected Cell Stock for AAV vector production and Method for manufacturing AAV vector}

본 발명은 AAV 벡터 생산을 위한 배큘로바이러스 감염 세포 스탁 및 AAV 벡터의 제조방법에 관한 것이다.The present invention relates to baculovirus-infected cell stocks for AAV vector production and methods for producing AAV vectors.

아데노-관련 바이러스 (Adenovirus-associated Virus, AAV)는 인간의 유전자 치료를 위하여 사용되는 가장 유망한 바이러스 벡터 중 하나이다. AAV는 인간의 증식세포 뿐만 아니라 비증식 세포도 효과적으로 감염시키는 능력을 가지며, 비교적 무해한 면역원성 프로파일을 가지고, 어떠한 질병과도 관련되지 않는다. 이러한 관점에서 재조합 아데노-관련 바이러스는 혈우병, 낭포성 섬유증 등 여러가지 질환에 대한 유전자 치료의 임상시험에서 평가되고 있다. 2012년 AAV 기반 약물인 유니큐어의 글리베라가 유럽의약품청(EMA)에서 신약으로 시판허가를 받았으며, 노바티스의 척수성근위축증(SMA) 치료제 졸겐스마 등 AAV를 이용한 치료제가 개발되고 있는 상황이다. Adenovirus-associated virus (AAV) is one of the most promising viral vectors used for human gene therapy. AAV has the ability to effectively infect human proliferating as well as non-proliferating cells, has a relatively harmless immunogenic profile, and is not associated with any disease. From this perspective, recombinant adeno-related viruses are being evaluated in clinical trials of gene therapy for various diseases such as hemophilia and cystic fibrosis. In 2012, Unicur's Glybera, an AAV-based drug, received marketing approval as a new drug from the European Medicines Agency (EMA), and treatments using AAV, such as Novartis' spinal muscular atrophy (SMA) treatment Zolgensma, are being developed.

AAV의 생산에는 HEK 293T 세포, HeLa 세포 및 다른 포유류 세포주가 사용된다. 이러한 AAV의 생산에는 복제 단백질에 대한 유전자 Rep78, Rep68, Rep52, 및 Rep40과 비리온 또는 구조 단백질인 VP1, VP2 및 VP3을 포함하며, 치료 유전자(GOI, gene of interest)를 포함하는 DNA 플라스미드가 제공된다. 그러나 이들 포유류 세포를 이용한 대량생산 및 상업적 규모에서의 생산에는 한계가 있으며, 포유류 세포에서 배양된 벡터는 포유류 세포에 존재하는 원치않는 병원체로 오염될 가능성이 있다. 이러한 포유류 생산 시스템의 문제를 극복하기 위해 최근 곤충 세포를 이용한 생산 시스템이 개발된 바 있다. HEK 293T cells, HeLa cells and other mammalian cell lines are used for the production of AAV. The production of these AAVs is provided by a DNA plasmid containing the genes for replication proteins Rep78, Rep68, Rep52, and Rep40 and the virion or structural proteins VP1, VP2, and VP3, as well as a therapeutic gene of interest (GOI). do. However, there are limitations to mass production and commercial scale production using these mammalian cells, and vectors cultured in mammalian cells are likely to be contaminated with unwanted pathogens present in mammalian cells. To overcome these problems of mammalian production systems, a production system using insect cells has recently been developed.

배큘로바이러스(Baculovirus)는 곤충 세포에 감염되는 바이러스 중 한 종류로, 유전자 전달 등의 연구 및 본 발명의 AAV 생산을 비롯한 각종 생물의약품의 생산에 사용된다. 배큘로바이러스는 표면이 멤브레인 구조로 이루어져 있어 액체 배큘로바이러스 스탁(Liquid baculovirus stock, LBS)으로 바이러스를 보존하는 경우 다소 안정성이 떨어질 수 있다. 따라서, 본 발명자들은 배큘로바이러스를 포함하는 액체 배큘로바이러스 스탁(Liquid baculovirus stock, LBS)으로 바이러스를 보존하기 보다, 배큘로바이러스를 생산할 수 있는 배큘로바이러스 감염 세포 스탁(baculovirus infected cell stock, BICS)를 제작하고자 하였으며, 이를 이용해 AAV의 생산성을 향상시키고자 하였다.Baculovirus is a type of virus that infects insect cells, and is used for research on gene transfer and the production of various biological drugs, including the production of AAV of the present invention. Baculovirus has a membrane structure on its surface, so its stability may be somewhat reduced when the virus is preserved in liquid baculovirus stock (LBS). Therefore, rather than preserving the virus with a liquid baculovirus stock (LBS) containing baculovirus, the present inventors used a baculovirus infected cell stock (BICS) capable of producing baculovirus. ), and used it to improve the productivity of AAV.

본 발명자들은 AAV 벡터를 대량으로 생산하기에 적합한 대량생산 방법을 개발하고자 예의 연구 노력하였다. 그 결과 AAV 벡터를 생산하기 위한 배큘로바이러스 감염 세포 스탁(baculovirus infected cell stock, BICS)을 제작하였으며, AAV 벡터의 생산성을 향상시키기 위한 상기 스탁 및 AAV 생산 방법을 확립하였다. The present inventors have made extensive research efforts to develop a mass production method suitable for mass production of AAV vectors. As a result, a baculovirus infected cell stock (BICS) was created to produce AAV vectors, and the stock and AAV production method were established to improve the productivity of AAV vectors.

따라서, 본 발명의 목적은 아데노-관련 바이러스(adeno-associated virus, AAV) 벡터를 생성하는 배큘로바이러스 감염 세포(baculovirus infected cell, BIC) 스탁(stock)의 제조방법을 제공하는 것이다. Accordingly, the purpose of the present invention is to provide a method for producing a baculovirus infected cell (BIC) stock that produces an adeno-associated virus (AAV) vector.

본 발명의 다른 목적은 상술한 방법에 의해 제조된 BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for generating an AAV vector using the BIC stock prepared by the above-described method.

본 발명의 일 양태에 따르면, 본 발명은 아데노-관련 바이러스(adeno-associated virus, AAV) 벡터를 생성하는 배큘로바이러스 감염 세포(baculovirus infected cell, BIC) 스탁(stock)의 제조방법을 제공한다:According to one aspect of the present invention, the present invention provides a method for producing a baculovirus infected cell (BIC) stock producing an adeno-associated virus (AAV) vector:

(a) 곤충 세포를 배양하고, 배양된 곤충 세포에 AAV 벡터 발현 컨스트럭트를 포함하는 배큘로바이러스를 감염시키는 단계; 및(a) culturing insect cells and infecting the cultured insect cells with a baculovirus containing an AAV vector expression construct; and

(b) 상기 배큘로바이러스 감염 세포를 배양하는 단계.(b) cultivating the baculovirus-infected cells.

본 명세서에서 "아데노-관련 바이러스"는 파보비리데(Parvoviridae)과 디펜도바이러스(Dependovirus) 속에 속하는 바이러스에 해당하고, 가장 작은 DNA 바이러스의 하나로 바이러스 입자의 지름이 18 내지 25 nm이고, single stranded DNA 바이러스이다. 아데노-관련 바이러스는 복제를 위하여 헬퍼 아데노바이러스가 필요한 비병원성의 위성바이러스로, 상대적으로 작은 ~4.7 kb 크기의 유전자를 탑재할 수 있다. AAV의 게놈에는 ITR(Inverted terminal repeats)이 포함되고, 비-구조(non-structural) 복제(Rep) 단백질 및 구조(VP) 단백질을 위한 독특한 코딩 뉴클레오티드 서열의 옆(flank)에 위치한다. 상기 VP 단백질(VP1, -2 및 -3)은 캡시드를 형성한다. 상기 ITR의 말단은 약 100 내지 150 nt의 길이를 가지며 자기-상보적(self-complementary)이고 따라서 T형 헤어핀의 형태일 수 있는 에너지적으로 안정한 분자 내 이중 구조로 구성되어 있다. 이러한 헤어핀 구조는 바이러스 DNA 복제를 위한 원점(origin)으로 작용하며 세포 DNA 폴리머라제 복합체에 대한 프라이머로 작용한다. In this specification, “adeno-related virus” corresponds to a virus belonging to the genus Parvoviridae and Dependovirus, and is one of the smallest DNA viruses, with a virus particle diameter of 18 to 25 nm and single stranded DNA. It's a virus. Adeno-related viruses are non-pathogenic satellite viruses that require a helper adenovirus for replication and can carry relatively small genes of ~4.7 kb in size. The genome of AAV contains inverted terminal repeats (ITRs), which flank unique coding nucleotide sequences for non-structural replication (Rep) and structural (VP) proteins. The VP proteins (VP1, -2 and -3) form the capsid. The terminal of the ITR has a length of about 100 to 150 nt and is self-complementary and therefore consists of an energetically stable intramolecular duplex structure that may be in the form of a T-type hairpin. This hairpin structure serves as the origin for viral DNA replication and as a primer for the cellular DNA polymerase complex.

상기 AAV는 AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8 또는 AAV9의 혈청형을 가지나, 이에 한정되는 것은 아니고, 이외에도 다양한 천연 또는 재조합 AAV의 혈청형이 알려져 있다. 이들 혈청형의 ITR, Rep, 또는 VP는 적어도 70%, 75%, 80%, 85%, 90%, 또는 95% 이상의 뉴클레오티드 및/또는 아미노산 서열의 상동성을 가진다. 본 발명의 일 구현예에 있어서 사용된 AAV는 AAV1의 혈청형이다.The AAV has serotypes of AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8 or AAV9, but is not limited thereto, and various other serotypes of natural or recombinant AAV are known. The ITR, Rep, or VP of these serotypes have at least 70%, 75%, 80%, 85%, 90%, or 95% nucleotide and/or amino acid sequence homology. AAV used in one embodiment of the present invention is a serotype of AAV1.

본 발명의 일 구현예에 있어서, 상기 배큘로바이러스 감염 세포(baculovirus infected cell, BIC) 스탁(stock)의 제조방법은 (c) 상기 배큘로바이러스 감염 세포를 동결시키는 단계를 추가적으로 포함한다.In one embodiment of the present invention, the method for producing the baculovirus infected cell (BIC) stock additionally includes the step of (c) freezing the baculovirus infected cells.

상기 동결은 상기 BIC의 세포 생존율이 적어도 95%인 경우에 이루어지는 것이 바람직하다.The freezing is preferably performed when the cell viability of the BIC is at least 95%.

상기 배큘로바이러스 감염 세포(BIC)는 액상의 배큘로바이러스를 곤충세포에 감염시켜 제조한 것이 1계대이고, 상기 1계대의 배큘로바이러스 감염세포를 새로운 곤충세포에 감염시켜 계대한 세포가 2계대의 배큘로바이러스 감염 세포(BIC)이다. 상기 동결은 1계대 또는 2계대의 배큘로바이러스 감염 세포를 대상으로 이루어지는 것이 바람직하다. The baculovirus-infected cells (BIC) are prepared by infecting insect cells with liquid baculovirus in the first passage, and the cells passaged by infecting new insect cells with the baculovirus-infected cells of the first passage are the second passage. of baculovirus infected cells (BIC). The freezing is preferably performed on first- or second-passage baculovirus-infected cells.

상기 액상의 배큘로바이러스는, Sf9 등의 곤충세포를 배양하고, 여기에 배큘로바이러스를 발현시키는 pDNA를 트랜스펙션시킨 후, pDNA를 발현시킴으로써 배큘로바이러스가 제조된 상층액을 회수하고, 이로부터 선별한 배큘로바이러스를 포함하는 액체 배양배지를 의미한다.The liquid baculovirus is obtained by culturing insect cells such as Sf9, transfecting them with pDNA expressing the baculovirus, and recovering the supernatant in which the baculovirus is produced by expressing the pDNA. It refers to a liquid culture medium containing selected baculoviruses.

본 발명의 일 구현예에 있어서, 상기 AAV 벡터 발현 컨스트럭트는 i) AAV 복제 단백질(AAV replication protein) 및 AAV 캡시드(AAV capsid protein)를 발현하는 Rep-Cap 서열; 및 ii) 관심 유전자(gene of interest, GOI)를 발현하는 GOI 서열을 포함한다. In one embodiment of the present invention, the AAV vector expression construct includes i) a Rep-Cap sequence expressing AAV replication protein and AAV capsid protein; and ii) a GOI sequence expressing a gene of interest (GOI).

본 발명의 일 구현예에 있어서, 상기 Rep-Cap 서열은 제조하고자 하는 AAV의 혈청형에 따라 이미 알려진 뉴클레오타이드 서열 중에서 선택 및 조합하여 사용할 수 있다. 그 예로, AAV1을 제조하기 위해서는 AAV2 Rep78 및 AAV1 Cap 서열을 사용할 수 있으며 이의 각 뉴클레오타이드 서열의 서열정보는 서열번호 2 또는 3, 서열번호 4 또는 5이나, 상기 서열정보는 예시적인 것일 뿐 이에 한정되는 것은 아니다. In one embodiment of the present invention, the Rep-Cap sequence can be used by selecting and combining known nucleotide sequences depending on the serotype of AAV to be produced. For example, to produce AAV1, AAV2 Rep78 and AAV1 Cap sequences can be used, and the sequence information of each nucleotide sequence is SEQ ID NO: 2 or 3, SEQ ID NO: 4 or 5, but the sequence information is illustrative and limited thereto. That is not the case.

본 발명의 일 구현예에 있어서, 상기 GOI 뉴클레오타이드 서열은 서열번호 1의 HGF 유전자를 포함하는 것이나, 이에 한정되지 않고 다양한 관심 유전자의 뉴클레오타이드 서열이 도입될 수 있다.In one embodiment of the present invention, the GOI nucleotide sequence includes the HGF gene of SEQ ID NO: 1, but is not limited to this and nucleotide sequences of various genes of interest may be introduced.

본 명세서에서 용어 '뉴클레오타이드'는 자연의 뉴클레오타이드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)도 포함한다(Scheit, Nucleotide Analogs, John Wiley, New York(1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584(1990)). In this specification, the term 'nucleotide' includes not only natural nucleotides, but also analogues in which sugar or base sites are modified (Scheit, Nucleotide Analogs , John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews , 90:543-584 (1990)).

상기 뉴클레오타이드 서열은 상기 관심 유전자가 인코딩하는 단백질 또는 폴리펩타이드와 동일한 단백질 또는 폴리펩타이드를 인코딩하는 뉴클레오타이드 서열인 것으로 족하며, 어느 특정 뉴클레오타이드 서열에 한정되지 않는다는 것은 당업자에게 자명하다.It is clear to those skilled in the art that the nucleotide sequence suffices to be a nucleotide sequence encoding a protein or polypeptide identical to the protein or polypeptide encoded by the gene of interest, and is not limited to any specific nucleotide sequence.

이는 뉴클레오타이드 서열의 변이가 발생하더라도 변이된 뉴클레오타이드 서열을 단백질 또는 폴리펩타이드로 발현하면 단백질 또는 폴리펩타이드의 아미노산 서열에서 변화를 가져오지 않는 경우도 있기 때문이다. 이를 코돈의 축퇴성이라고 한다. 따라서 상기 뉴클레오타이드 서열은 기능적으로 균등한 코돈 또는 동일한 아미노산을 코딩하는 코돈 (예를 들어, 코돈의 축퇴성에 의해, 아르기닌 또는 세린에 대한 코돈은 여섯 개이다), 또는 생물학적으로 균등한 아미노산을 코딩하는 코돈을 포함하는 뉴클레오타이드 서열을 포함한다.This is because even if a mutation in the nucleotide sequence occurs, when the mutated nucleotide sequence is expressed as a protein or polypeptide, there are cases where there is no change in the amino acid sequence of the protein or polypeptide. This is called codon degeneracy. Accordingly, the nucleotide sequence can be either a functionally equivalent codon, or a codon encoding the same amino acid (e.g., due to codon degeneracy, there are six codons for arginine or serine), or a codon encoding a biologically equivalent amino acid. It contains a nucleotide sequence containing.

상술한 생물학적 균등 활성을 갖는 변이를 고려한다면, 상기 단백질 또는 폴리펩타이드를 인코딩하는 본 발명의 뉴클레오타이드 서열은 이와 실질적인 동일성(substantial identity)을 나타내는 서열도 포함하는 것으로 해석된다. 상기의 실질적인 동일성은, 상기한 본 발명의 서열과 임의의 다른 서열을 최대한 대응되도록 얼라인(align)하고, 당업계에서 통상적으로 이용되는 알고리즘을 이용하여 얼라인된 서열을 분석한 경우에, 최소 60% 이상의 상동성(예컨대 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 또는 69%), 보다 구체적으로는 70% 이상의 상동성(예컨대 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 또는 79%), 보다 더 구체적으로는 80% 이상의 상동성(예컨대 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 또는 89%), 보다 더욱더 구체적으로는 90% 이상의 상동성(예컨대 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 또는 99%), 가장 구체적으로는 95% 이상의 상동성(예컨대 95%, 96%, 97%, 98%, 또는 99%)을 나타내는 서열을 의미한다. 상기 60% 이상 100% 이하의 모든 정수 및 이 사이에 존재하는 소수는 % 상동성과 관련하여 본 발명의 범위 내에 포함된다. Considering the mutations having the above-mentioned biological equivalent activity, the nucleotide sequence of the present invention encoding the protein or polypeptide is interpreted to also include sequences showing substantial identity thereto. The above substantial identity is achieved by aligning the sequence of the present invention and any other sequence to correspond as much as possible, and analyzing the aligned sequence using an algorithm commonly used in the art. 60% or more homology (e.g., 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, or 69%), more specifically 70% or more homology (e.g., 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, or 79%), more specifically 80% or more homology (e.g., 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, or 89%), and even more specifically, at least 90% homology (e.g., 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%), and most specifically refers to a sequence that exhibits at least 95% homology (e.g., 95%, 96%, 97%, 98%, or 99%). All integers between 60% and 100% and decimal numbers in between are included within the scope of the present invention with respect to % homology.

서열비교를 위한 얼라인먼트 방법은 당업계에 공지되어 있다. 얼라인먼트에 대한 다양한 방법 및 알고리즘은 Smith and Waterman, Adv. Appl. Math. 2:482(1981); Needleman and Wunsch, J. Mol. Bio. 48:443(1970); Pearson and Lipman, Methods in Mol. Biol. 24: 307-31(1988); Higgins and Sharp, Gene 73:237-44(1988); Higgins and Sharp, CABIOS 5:151-3(1989); Corpet et al., Nuc. Acids Res. 16:10881-90(1988); Huang et al., Comp. Appl. BioSci. 8:155-65(1992) and Pearson et al., Meth. Mol. Biol. 24:307-31(1994)에 개시되어 있다. NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., J. Mol. Biol. 215:403-10(1990))은 NCBI(National Center for Biological Information) 등에서 접근 가능하며, 인터넷 상에서 blastp, blastn, blastx, tblastn 및 tblastx와 같은 서열 분석 프로그램과 연동되어 이용할 수 있다. BLAST는 ncbi 웹사이트의 BLAST 페이지를 통하여 접속 가능하다. 이 프로그램을 이용한 서열 상동성 비교 방법은 ncbi 웹사이트의 BLAST help 페이지에서 확인할 수 있다.Alignment methods for sequence comparison are known in the art. Various methods and algorithms for alignment are discussed in Smith and Waterman, Adv. Appl. Math. 2:482(1981) ; Needleman and Wunsch, J. Mol. Bio. 48:443 (1970); Pearson and Lipman, Methods in Mol. Biol. 24: 307-31 (1988); Higgins and Sharp, Gene 73:237-44 (1988); Higgins and Sharp, CABIOS 5:151-3 (1989); Corpet et al., Nuc. Acids Res. 16:10881-90 (1988); Huang et al., Comp. Appl. BioSci. 8:155-65 (1992) and Pearson et al., Meth. Mol. Biol. 24:307-31 (1994). NCBI Basic Local Alignment Search Tool (BLAST) (Altschul et al., J. Mol. Biol. 215:403-10 (1990)) is accessible from NCBI (National Center for Biological Information), etc., and can be accessed on the Internet using blastp, blastn, It can be used in conjunction with sequence analysis programs such as blastx, tblastn, and tblastx. BLAST can be accessed through the BLAST page on the ncbi website. The sequence homology comparison method using this program can be found on the BLAST help page of the ncbi website.

본 발명의 일 구현예에 있어서, 상기 i) Rep-Cap 서열 및 ii) GOI 서열은 서로 다른 DNA 단편에 포함된다. 예컨대, 본 발명의 일 구현예에 따른 배큘로 바이러스 감염세포는 상기 i) AAV 복제 단백질(AAV replication protein) 및 AAV 캡시드(AAV capsid protein)를 발현하는 Rep-Cap 서열을 포함하는 배큘로바이러스에 의하여 감염된 제1 BIC와, 상기 ii) 관심 유전자(gene of interest, GOI)를 발현하는 GOI 서열을 포함하는 배큘로바이러스에 의하여 감염된 제2 BIC 이다. 본 발명의 일 구현예에 있어서, 상기 GOI 서열을 포함하는 DNA 단편은 이와 작동적으로 연결된 프로모터를 포함한다. 본 명세서에서 "프로모터" 또는 "전사 조절 서열(transcription regulatory sequence)"은 하나 혹은 그 이상의 코딩 서열의 전사를 조절하기 위해 작용하며, 코딩 서열의 전사 개시 지점의 전사 방향에 대한 관점으로 상류에 위치하고, 구조적으로 DNA-의존 RNA 폴리머라제(DNA-dependent RNA polymerase) 결합 위치, 전사 개시 지점 및 전사 인자 결합 지점, 억제 및 활성 단백질 결합 지점, 및 당해 기술 분야의 숙련자에게 직접적으로 혹은 간접적으로 프로모터로부터의 전사량 조절에 작용하는 것으로 알려진 뉴클레오타이드의 다른 어떠한 서열을 포함하나, 이에 제한되는 것은 아니다. In one embodiment of the present invention, i) the Rep-Cap sequence and ii) the GOI sequence are included in different DNA fragments. For example, the baculovirus-infected cell according to one embodiment of the present invention is i) baculovirus containing a Rep-Cap sequence expressing AAV replication protein and AAV capsid protein. A first BIC is infected, and ii) a second BIC is infected with a baculovirus comprising a GOI sequence expressing a gene of interest (GOI). In one embodiment of the present invention, the DNA fragment containing the GOI sequence includes a promoter operably linked thereto. As used herein, a "promoter" or "transcription regulatory sequence" acts to regulate transcription of one or more coding sequences and is located upstream with respect to the direction of transcription of the transcription start point of the coding sequence, Structurally, DNA-dependent RNA polymerase binding sites, transcription initiation points and transcription factor binding points, repressor and activating protein binding points, and transcription from promoters directly or indirectly to those skilled in the art. It includes, but is not limited to, any other sequence of nucleotides known to act in dose control.

본 발명의 일 구현예에 있어서, 상기 프로모터는 포유동물 세포의 지놈으로부터 유래된 프로모터(예: 메탈로티오닌 프로모터, beta-액틴 프로모터, EF-1alpha 프로모터, 사람 헤로글로빈 프로모터 및 사람 근육 크레아틴 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터(예: 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터, HSV의 tk 프로모터, 마우스 유방 종양 바이러스(MMTV) 프로모터, HIV의 LTR 프로모터, 몰로니 바이러스의 프로모터 엡스타인 바 바이러스(EBV)의 프로모터 및 로우스 사코마 바이러스(RSV)의 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.In one embodiment of the present invention, the promoter is a promoter derived from the genome of a mammalian cell (e.g., metallothioneine promoter, beta-actin promoter, EF-1alpha promoter, human heroglobin promoter, and human muscle creatine promoter) or promoters derived from mammalian viruses (e.g., adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, cytomegalovirus promoter, tk promoter of HSV, mouse mammary tumor virus (MMTV) promoter, LTR promoter of HIV, The promoters of Moloney virus (the promoter of Epstein Barr virus (EBV) and the promoter of Rouss sarcoma virus (RSV)) can be used and generally have a polyadenylation sequence as the transcription termination sequence.

본 발명의 일 구현예에 있어서, 상기 GOI 서열을 포함하는 DNA 단편은 적어도 하나의 폴리아데닐화 서열을 포함한다. 상기 폴리아데닐화 서열은 길이가 약 500 nt의 범위일 수 있다.In one embodiment of the present invention, the DNA fragment containing the GOI sequence includes at least one polyadenylation sequence. The polyadenylation sequence may range from about 500 nt in length.

본 발명의 일 구현예에 있어서, 상기 GOI 서열을 포함하는 DNA 단편은 양 측면에 ITR 서열을 포함한다. 본 발명의 일 구현예에 있어서, 상기 곤충 세포는 Se301, SeIZD2109, SeUCR1, Sf9, Sf900+, Sf21, BTI-TN-5B1-4, MG-1, Tn368, HzAm1, Ha2302, Hz2E5, High Five(Invitrogen, CA, USA) 및 expresSF+® (US 6,103,526; Protein Sciences Corp., CT, USA) 등을 포함하나, 이에 한정되는 것은 아니다.In one embodiment of the present invention, the DNA fragment containing the GOI sequence includes ITR sequences on both sides. In one embodiment of the present invention, the insect cells are Se301, SeIZD2109, SeUCR1, Sf9, Sf900+, Sf21, BTI-TN-5B1-4, MG-1, Tn368, HzAm1, Ha2302, Hz2E5, High Five (Invitrogen, CA, USA) and expresSF+® (US 6,103,526; Protein Sciences Corp., CT, USA), etc., but are not limited thereto.

본 발명의 구체적인 구현예에 있어서, 상기 곤충 세포는 Sf9 세포이다.In a specific embodiment of the invention, the insect cells are Sf9 cells.

본 발명의 보다 구체적인 구현예에 있어서, 상기 Sf9 세포는 랍도바이러스 음성 Sf9 세포(rhabdovirus-negative Sf9 cell)이다.In a more specific embodiment of the present invention, the Sf9 cell is a rhabdovirus-negative Sf9 cell.

본 발명의 일 구현예에 있어서, 상기 배양에 사용되는 배양 배지로는 Gibco사의 Sf-900 III SFM, 또는 Lonza사의 Insect X-Press가 사용될 수 있다.In one embodiment of the present invention, the culture medium used for the culture may be Gibco's Sf-900 III SFM, or Lonza's Insect X-Press.

본 발명의 일 구현예에 있어서, 상기 배양은 110 내지 150 rpm의 혼합 조건으로 배양되는 것이다. 보다 구체적으로는 110 내지 140 rpm, 110 내지 130 rpm, 110 내지 120 rpm, 120 내지 150 rpm, 130 내지 150 rpm, 또는 140 내지 150 rpm일 수 있으나, 이에 한정되는 것은 아니고 본 발명의 구체적인 구현예에 따르면 상기 범위 내에서의 배양 효율에는 유의적인 차이가 없다.In one embodiment of the present invention, the culture is cultured under mixing conditions of 110 to 150 rpm. More specifically, it may be 110 to 140 rpm, 110 to 130 rpm, 110 to 120 rpm, 120 to 150 rpm, 130 to 150 rpm, or 140 to 150 rpm, but is not limited to this and is not limited to specific embodiments of the present invention. According to this, there is no significant difference in culture efficiency within the above range.

본 발명의 일 구현예에 있어서, 상기 배양은 30 내지 70 mL 부피의 배양 용액에서 이루어지는 것이다. 보다 구체적으로는 30 내지 60 mL, 30 내지 50 mL, 40 내지 70 mL, 50 내지 70 mL, 30 mL, 40 mL, 50 mL, 60 mL, 70 mL 등 일 수 있으나, 이에 한정되는 것은 아니고, 본 발명의 구체적인 구현예에 따르면 상기 범위 내에서의 배양 효율에는 유의적인 차이가 없다.In one embodiment of the present invention, the culture is performed in a culture solution with a volume of 30 to 70 mL. More specifically, it may be 30 to 60 mL, 30 to 50 mL, 40 to 70 mL, 50 to 70 mL, 30 mL, 40 mL, 50 mL, 60 mL, 70 mL, etc., but is not limited thereto. According to specific embodiments of the invention, there is no significant difference in culture efficiency within the above range.

본 발명의 일 구현예에 있어서, 상기 배양은 26 내지 30℃에서 이루어지는 것이다. 보다 구체적으로, 상기 배양은 26 내지 29℃, 26 내지 28℃, 27 내지 29℃, 28 내지 29℃, 26℃, 27℃, 28℃, 29℃, 또는 30℃에서 이루어질 수 있으나, 이에 한정되는 것은 아니다. In one embodiment of the present invention, the culturing is performed at 26 to 30°C. More specifically, the culturing may be carried out at 26 to 29°C, 26 to 28°C, 27 to 29°C, 28 to 29°C, 26°C, 27°C, 28°C, 29°C, or 30°C, but is limited thereto. That is not the case.

본 발명의 일 구현예에 있어서, 상기 배양은 pH 6.0 내지 6.4에서 이루어지는 것이나, 이에 한정되는 것은 아니다. 본 발명의 곤충 세포 배양 및 BIC 제조에 있어서, 상기 pH 조건은 특별히 조절되지 않아도 상기 범위 내에서 유지되었다. In one embodiment of the present invention, the culture is performed at pH 6.0 to 6.4, but is not limited thereto. In the insect cell culture and BIC production of the present invention, the pH conditions were maintained within the above range even without special adjustment.

본 발명의 일 구현예에 있어서, 상기 (a) 단계의 배양은 초기 배양 세포 밀도(initial cell density)가 0.5 x 106 내지 1.2 x 106 cells/mL이다. In one embodiment of the present invention, the culture in step (a) has an initial cell density of 0.5 x 10 6 to 1.2 x 10 6 cells/mL.

본 발명의 일 구현예에 있어서, 상기 배양에서 배양액의 Osmolarity는 360-380 mOsm/kg 인 것이 바람직하다. In one embodiment of the present invention, the Osmolarity of the culture medium in the above culture is preferably 360-380 mOsm/kg.

본 발명의 일 구현예에 있어서, 상기 배큘로바이러스의 감염은 0.1 내지 3 MOI(multiplicity of infection)로 이루어지는 것이다. In one embodiment of the present invention, the infection with the baculovirus is performed at a multiplicity of infection (MOI) of 0.1 to 3.

본 발명의 구체적인 구현예에 있어서, 상기 배큘로바이러스의 감염은 0.1 내지 3, 0.1 내지 2.5, 0.1 내지 2, 0.1 내지 1.5, 0.1 내지 1.0, 0.1 내지 0.5, 0.1 내지 0.4, 0.1 내지 0.3, 0.1 내지 0.2, 또는 0.1 MOI(multiplicity of infection)로 이루어지나, 이에 한정되는 것은 아니며, 상기 범위 내에서의 배양 효율에는 유의적인 차이가 없다. In a specific embodiment of the present invention, the infection of the baculovirus is 0.1 to 3, 0.1 to 2.5, 0.1 to 2, 0.1 to 1.5, 0.1 to 1.0, 0.1 to 0.5, 0.1 to 0.4, 0.1 to 0.3, 0.1 to 1.0. It consists of 0.2 or 0.1 MOI (multiplicity of infection), but is not limited thereto, and there is no significant difference in culture efficiency within the above range.

본 발명의 일 구현예에 있어서, 상기 (b) 단계에서의 배양시간은 배큘로바이러스 감염 후 18 내지 24시간이나, 이에 한정되는 것은 아니다.In one embodiment of the present invention, the culture time in step (b) is 18 to 24 hours after baculovirus infection, but is not limited thereto.

본 발명의 다른 일 양태에 따르면, 본 발명은 상기 배큘로바이러스 감염 세포 (BIC) 스탁 제조방법에 의해 제조된 BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법을 제공한다:According to another aspect of the present invention, the present invention provides a method of producing an AAV vector using the BIC stock prepared by the above baculovirus infected cell (BIC) stock production method:

(a) 상기 아데노-관련 바이러스(adeno-associated virus, AAV) 벡터를 생성하는 배큘로바이러스 감염 세포(baculovirus infected cell, BIC) 스탁(stock)에서 BIC 세포를 꺼내어, 상기 BIC와 동종의 숙주 세포의 집단을 포함하는 배양액에 첨가하고, 바이오리액터에서 배양하는 단계; 및(a) BIC cells are taken out from the baculovirus infected cell (BIC) stock producing the adeno-associated virus (AAV) vector, and the host cells of the same type as the BIC are Adding to the culture containing the population and culturing in a bioreactor; and

(b) 상기 (a) 단계에서 배양이 완료된 배양액으로부터 AAV 벡터를 분리하는 단계.(b) Isolating the AAV vector from the culture medium in which the culture was completed in step (a).

본 발명의 일 구현예에 있어서, 상기 배큘로바이러스 감염 세포는 i) AAV 복제 단백질(AAV replication protein) 및 AAV 캡시드(AAV capsid protein)를 발현하는 Rep-Cap 서열을 포함하는 배큘로바이러스; 및 ii) 관심 유전자(gene of interest, GOI)를 발현하는 GOI 서열을 포함하는 배큘로바이러스가 각각 감염된 2종의 세포이다. In one embodiment of the present invention, the baculovirus-infected cells include i) a baculovirus comprising a Rep-Cap sequence expressing an AAV replication protein and an AAV capsid protein; and ii) a baculovirus containing a GOI sequence expressing a gene of interest (GOI).

상기 Rep-Cap 서열을 포함하는 배큘로바이러스가 감염된 세포 및 관심 유전자(gene of interest, GOI)를 발현하는 GOI 서열을 포함하는 배큘로바이러스가 감염된 세포는 동결되어 보존되어 있던 상태에서 해동되고 배양되어 증식된다. 이들 배큘로바이러스가 감염된 세포(BIC)는 배큘로바이러스가 비감염된 숙주 세포와 공감염시킨다. 공감염된 세포는 바이오리액터(bioreactor, 생물반응기)에서 배양 및 증식되어 AAV 입자를 생성한다.Cells infected with a baculovirus containing the Rep-Cap sequence and cells infected with a baculovirus containing a GOI sequence expressing a gene of interest (GOI) are thawed and cultured in a frozen and preserved state. It proliferates. These baculovirus-infected cells (BIC) co-infect non-baculovirus-infected host cells. The co-infected cells are cultured and propagated in a bioreactor to produce AAV particles.

본 발명의 일 구현예에 있어서, 상기 AAV 생산을 위한 비감염된 숙주 세포의 초기 배양 세포 밀도(initial cell density)는 0.5 x 106 내지 1.2 x 106 cells/mL이다. 본 발명의 구체적인 구현예에 있어서, 상기 조건 보다 높은 세포 밀도, 예컨대 1.5 x 106 cells/mL의 초기 세포 밀도로 세포를 배양하는 경우, AAV의 생산이 충분히 이루어지기 전에 세포가 초기에 사멸하고 배지 내 영양물질이 고갈된다.In one embodiment of the present invention, the initial cell density of the uninfected host cells for AAV production is 0.5 x 10 6 to 1.2 x 10 6 cells/mL. In a specific embodiment of the present invention, when cells are cultured at a cell density higher than the above conditions, for example, an initial cell density of 1.5 x 10 6 cells/mL, the cells initially die before sufficient production of AAV occurs and the medium My nutrients are depleted.

본 발명의 일 구현예에 있어서, 상기 바이오리액터의 용적은 적어도 1L, 3L, 5L, 10L, 20L, 50L, 100L, 150L, 200L, 또는 300L일 수 있으나, 이에 한정되는 것은 아니다.In one embodiment of the present invention, the volume of the bioreactor may be at least 1L, 3L, 5L, 10L, 20L, 50L, 100L, 150L, 200L, or 300L, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 바이오리액터는 자동화 된 바이오리액터로, 펌프, 필터, 등의 조합을 사용하여 바이오리액터 내의 세포를 배양함과 동시에, 세포 소비 생성물을 계속적으로 제거하면서, 세포 대사에 의해 영양소가 고갈된 배지를 치환할 수 있다. In one embodiment of the present invention, the bioreactor is an automated bioreactor that uses a combination of pumps, filters, etc. to culture the cells in the bioreactor while continuously removing cell consumption products and performing cell metabolism. A medium depleted of nutrients can be replaced.

본 발명의 일 구현예에 있어서, 상기 (a) 단계의 배양은 배양 도중에 세포 영양 성분을 추가적으로 첨가하며 이루어지는 것이다. In one embodiment of the present invention, the culture in step (a) is performed by additionally adding cell nutrients during the culture.

본 발명의 일 구현예에 있어서, 상기 추가적으로 첨가되는 세포 영양 성분은 글루코스, 글루타민, 효모추출물 또는 이들의 조합을 포함하는 것이다.In one embodiment of the present invention, the additionally added cell nutritional component includes glucose, glutamine, yeast extract, or a combination thereof.

본 발명의 구체적인 구현예에 있어서, 상기 추가적으로 첨가되는 세포 영양성분은 배지 내 글루코스 농도가 5 g/L까지 보충되도록 첨가되는 것이나, 이에 한정되는 것은 아니며, 보충 전 배지에 포함된 농도 또는 비율을 가진 글루코스, 글루타민, 및 효모추출물이 포함될 수 있다.In a specific embodiment of the present invention, the additionally added cell nutrient is added to supplement the glucose concentration in the medium up to 5 g/L, but is not limited thereto, and has the concentration or ratio contained in the medium before supplementation. May contain glucose, glutamine, and yeast extract.

본 발명의 구체적인 구현예에 있어서, 상기 추가적으로 첨가되는 글루코스, 글루타민 및 효모추출물은 글루코스 30 내지 60 g/L, 글루타민 10 내지 60 g/L, 및 효모추출물 20 내지 60 g/L의 농도 또는 상기 비율로 포함하는 보충 배지(feeding media)를 첨가하여 보충될 수 있으나, 이에 한정되는 것은 아니다.In a specific embodiment of the present invention, the additionally added glucose, glutamine and yeast extract are at a concentration of 30 to 60 g/L of glucose, 10 to 60 g/L of glutamine, and 20 to 60 g/L of yeast extract or the above ratio. It can be supplemented by adding a supplementary feeding media containing, but is not limited to this.

본 발명의 구체적인 구현예에 있어서, 상기 추가적으로 첨가되는 글루코스, 글루타민 및 효모추출물은 글루코스 30 내지 60 g/L, 글루타민 12 내지 24 g/L, 및 효모추출물 20 내지 50 g/L; 글루코스 60 g/L, 글루타민 12 내지 18 g/L, 및 효모추출물 20 내지 40 g/L; 또는 글루코스 60 g/L, 글루타민 12 내지 18 g/L, 및 효모추출물 20 내지 30 g/L의 농도 또는 상기 비율로 포함하는 보충 배지(feeding media)를 첨가하여 보충될 수 있으나, 이에 한정되는 것은 아니다.In a specific embodiment of the present invention, the additionally added glucose, glutamine, and yeast extract include 30 to 60 g/L of glucose, 12 to 24 g/L of glutamine, and 20 to 50 g/L of yeast extract; Glucose 60 g/L, glutamine 12 to 18 g/L, and yeast extract 20 to 40 g/L; Alternatively, it may be supplemented by adding feeding media containing 60 g/L of glucose, 12 to 18 g/L of glutamine, and 20 to 30 g/L of yeast extract or in the above ratio, but is limited thereto. no.

본 발명의 일 구현예에 있어서, 상기 보충배지의 첨가 횟수는 AAV 회수 전 1회, 2회, 또는 3회 일 수 있으나, 이에 한정되는 것은 아니다.In one embodiment of the present invention, the number of additions of the supplementary medium may be once, twice, or three times before AAV recovery, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 (a) 단계의 배양시 anti-foaming agent를 1 내지 5%의 농도로 첨가할 수 있다. 보다 구체적으로는 1%, 2%, 3%, 4%, 또는 5%의 anti-foaming agent를 첨가할 수 있으나, 상기 범위 내에서는 유의적인 차이가 없다.In one embodiment of the present invention, an anti-foaming agent may be added at a concentration of 1 to 5% during the culture in step (a). More specifically, 1%, 2%, 3%, 4%, or 5% of anti-foaming agent can be added, but there is no significant difference within the above range.

본 발명의 일 구현예에 있어서, 상기 anti-foaming agent는 실리콘 계열, 또는 오일계열의 anti-foaming agent 일 수 있으나, 이에 한정되는 것은 아니다. 상기 실리콘 계열의 anti-foaming agent는 폴리디메틸실록산을 포함할 수 있다. 상기 오일계열의 anti-foaming agent는 에틸렌 비스 스테아르아마이드(ethylene bis stearamide, EBS), 파라핀 왁스, 및 에스터 왁스(ester wax) 등을 포함할 수 있다.In one embodiment of the present invention, the anti-foaming agent may be a silicone-based or oil-based anti-foaming agent, but is not limited thereto. The silicone-based anti-foaming agent may include polydimethylsiloxane. The oil-based anti-foaming agent may include ethylene bis stearamide (EBS), paraffin wax, and ester wax.

본 발명의 일 구현예에 있어서, 상기 (a) 단계의 배양시 상기 BIC 스탁은 0.01 내지 0.05, 0.01 내지 0.04, 0.01 내지 0.03, 0.02 내지 0.05, 0.02 내지 0.04, 0.02 내지 0.03의 MOI(multiplicity of infection)로 BIC와 동종의 숙주 세포 집단에 첨가된다. 상기 BIC와 동종의 숙주 세포 집단은 예컨대, 곤충세포, 보다 구체적으로는 Sf9일 수 있다.In one embodiment of the present invention, during the culture in step (a), the BIC stock has a multiplicity of infection (MOI) of 0.01 to 0.05, 0.01 to 0.04, 0.01 to 0.03, 0.02 to 0.05, 0.02 to 0.04, and 0.02 to 0.03. ) is added to a host cell population homologous to BIC. The host cell population homologous to the BIC may be, for example, insect cells, more specifically Sf9.

본 발명의 일 구현예에 있어서, 상기 (a) 단계의 배양시 상기 BIC의 첨가는 상기 BIC와 동종의 숙주 세포의 배양 시작 후 8 내지 18시간 후에 이루어진 것이다. In one embodiment of the present invention, the addition of the BIC during the culture in step (a) is done 8 to 18 hours after the start of the culture of the host cells of the same species as the BIC.

본 발명의 구체적인 구현예에 있어서, 상기 BIC 스탁의 첨가시, BIC와 동종의 숙주 세포, 예컨대 곤충세포를 배양한 후 20 내지 28 시간에서 감염시킨 결과 20시간 이하로 생산성이 증가하였으며, 추가적으로 16시간 내지 22시간에서 감염시킨 결과16시간 이하로 생산성이 증가한 바 있다. 또한, 추가적으로 12시간 내지 18시간에서 감염시킨 결과, 12시간 이하로 생산성이 증가한 바 있다. 따라서, 상술한 감염시간은 곤충세포 배양 후 10 시간 내지 18시간이 적합하나, 시간이 짧아질수록 AAV 생산 효율이 우수한 특징이 있다. In a specific embodiment of the present invention, upon addition of the BIC stock, the productivity increased to 20 hours or less as a result of infection at 20 to 28 hours after culturing host cells of the same species as BIC, such as insect cells, and an additional 16 hours. As a result of infection from 22 hours to 16 hours or less, productivity has increased. Additionally, as a result of additional infection at 12 to 18 hours, productivity increased to 12 hours or less. Therefore, the above-mentioned infection time is suitable to be 10 to 18 hours after culturing insect cells, but the shorter the time, the higher the AAV production efficiency.

본 발명의 일 구현예에 있어서, 상기 (a) 단계의 배양시 상기 배큘로바이러스 감염 세포는 1 내지 2계대, 또는 1계대의 배큘로바이러스 감염 세포이다. 보다 구체적으로 상기 배큘로바이러스 감염 세포는 1 내지 2계대인 것을 사용하여도 무방하나, 계대수가 적을수록 AAV 생산성이 우수한 특징이 있다.In one embodiment of the present invention, in the culture in step (a), the baculovirus-infected cells are 1 to 2 passages, or 1 passage baculovirus-infected cells. More specifically, the baculovirus-infected cells may be 1 to 2 passages old, but the lower the number of passages, the better AAV productivity.

상기 1계대의 배큘로바이러스 감염 세포(BIC)는 액상의 배큘로바이러스를 곤충세포에 감염시켜 제조한 것이고, 상기 2계대의 배큘로바이러스 감염세포는 상기 1계대의 배큘로바이러스 감염세포를 새로운 곤충세포에 감염시켜 계대한 세포를 의미한다. The first-passage baculovirus-infected cells (BIC) were prepared by infecting insect cells with liquid baculovirus, and the second-passage baculovirus-infected cells were prepared by infecting the first-passage baculovirus-infected cells with new insects. It refers to cells that have been infected and passaged.

본 발명의 일 구현예에 있어서, 상기 (a) 단계의 배양시 배양액의 DO(dissolved oxygen, %)는 8 내지 16%이다.In one embodiment of the present invention, DO (dissolved oxygen, %) of the culture medium during the culture in step (a) is 8 to 16%.

본 발명의 구체적인 구현예에 있어서, 상기 (a) 단계의 배양시 배양액의 DO를 20 내지 40% 조건에서 배양한 결과, 30% 조건에서 AAV의 생산성이 가장 낮았으며, 20% 이하에서 생산성이 향상됨을 확인하였고, 추가적으로 DO를 10 내지 30% 조건에서 배양한 결과 DO가 낮아질수록 AAV 생산성이 향상됨을 확인하였다. 또한, 추가적으로 DO를 10 내지 16% 조건에서 배양한 결과에서도 DO가 낮아질수록 AAV 생산성이 향상됨을 확인하였다. In a specific embodiment of the present invention, as a result of culturing in step (a) under conditions where the DO of the culture medium was 20 to 40%, the productivity of AAV was lowest at 30%, and productivity improved at 20% or less. was confirmed, and additionally, as a result of culturing under DO conditions of 10 to 30%, it was confirmed that AAV productivity improved as DO decreased. Additionally, the results of culturing under DO conditions of 10 to 16% confirmed that AAV productivity improved as DO decreased.

본 발명의 일 구현예에 있어서, 상기 (b) 단계에서 배양 완료 시점은 BIC 첨가 후 96시간 내지 132시간이다. 본 명세서에서 상기 배양 완료 시점은 회수시점 또는 harvest time으로 표현된다. In one embodiment of the present invention, the completion time of culture in step (b) is 96 to 132 hours after addition of BIC. In this specification, the time of completion of the culture is expressed as a recovery time or harvest time.

본 발명의 구체적인 구현예에 있어서, 상기 배양 완료시점은 BIC의 첨가 후 96시간 내지 120시간, 96시간 내지 114시간, 96시간 내지 108시간, 96시간 내지 102시간, 102시간 내지 120시간, 102시간 내지 114시간, 102시간 내지 108시간, 108시간 내지 120시간, 또는 108시간 내지 114시간 등일 수 있으나, 이에 한정되는 것은 아니다. In a specific embodiment of the present invention, the culture completion time is 96 hours to 120 hours, 96 hours to 114 hours, 96 hours to 108 hours, 96 hours to 102 hours, 102 hours to 120 hours, and 102 hours after addition of BIC. It may be from 102 hours to 114 hours, 102 hours to 108 hours, 108 hours to 120 hours, or 108 hours to 114 hours, but is not limited thereto.

본 발명의 일 구현예에 있어서, 상기 (b) 단계에서 배양액은 생산된 AAV를 포함하는 배양액으로, 배양액 내 세포의 파괴 및 용해를 1회 이상 수행한 배양액이다.In one embodiment of the present invention, the culture medium in step (b) is a culture medium containing the produced AAV, and is a culture medium in which destruction and lysis of cells in the culture medium have been performed at least once.

본 발명의 구체적인 구현예에 있어서, 상기 세포파괴 및 용해는 기계적, 물리적 또는 화학적 용해로 이루어질 수 있다. 상기 기계적 용해는 예컨대 초고압유화(Microfluidizer)와 같은 세포파쇄기를 이용한 용해일 수 있고, 물리적 용해는 예컨대 동결 및 융해(freeze and thawing) 일 수 있고, 화학적 용해는 세포 소화효소 및 뉴클레아제 처리일 수 있으나, 이에 한정되는 것은 아니다. In a specific embodiment of the present invention, the cell destruction and lysis may be accomplished by mechanical, physical or chemical lysis. The mechanical lysis may be, for example, lysis using a cell disruptor such as an ultra-high pressure emulsifier (Microfluidizer), the physical lysis may be, for example, freezing and thawing, and the chemical lysis may be treatment with cell digestion enzymes and nucleases. However, it is not limited to this.

본 발명의 일 구현예에 있어서, 상기 본 발명의 AAV 벡터의 제조방법은 제조된 AAV 입자 및 증식된 곤충세포 수확물로부터 정제하는 단계를 추가적으로 포함할 수 있다. In one embodiment of the present invention, the method for producing the AAV vector of the present invention may additionally include the step of purifying the produced AAV particles and the grown insect cell harvest.

본 발명의 일 구현예에 있어서, 상기 정제는 친화성 크로마토그래피, 이온교환 크로마토그래피(AEX 또는 CEX)를 포함하는 하나 이상의 크로마토그래피 및 정제공정에 의해 이루어질 수 있다. In one embodiment of the present invention, the purification may be performed by one or more chromatography and purification processes including affinity chromatography and ion exchange chromatography (AEX or CEX).

본 발명의 다른 구현예에 있어서, 상기 정제는 하나 이상의 나노여과, 한외여과, 또는 정밀여과 공정이 사용될 수 있다. 상기 나노여과, 한외여과, 또는 정밀여과 공정은 예컨대 EMD Millipore Express SHC XL10 0.5/0.2 μm 필터, EMD Millipore Express SHCXL6000 0.5/0.2 μm 필터, EMD Millipore Express SHCXL150 필터, EMD Millipore Millipak Gamma Gold 0.22 μm 필터, Pall Supor EKV, 0.2 μm 멸균 그레이드 필터, Asahi Planova 35 N, Asahi Planova 20 N, Asahi Planova 75 N, Asahi Planova BioEx, Millipore Viresolve NFR 또는 Sartorius Sartopore 2 XLG, 0.8/0.2 μm일 수 있다.In another embodiment of the present invention, the purification may be performed using one or more nanofiltration, ultrafiltration, or microfiltration processes. The nanofiltration, ultrafiltration, or microfiltration processes include, for example, EMD Millipore Express SHC XL10 0.5/0.2 μm filter, EMD Millipore Express SHCXL6000 0.5/0.2 μm filter, EMD Millipore Express SHCXL150 filter, EMD Millipore Millipak Gamma Gold 0.22 μm filter, Pall It may be Supor EKV, 0.2 μm sterile grade filter, Asahi Planova 35 N, Asahi Planova 20 N, Asahi Planova 75 N, Asahi Planova BioEx, Millipore Viresolve NFR or Sartorius Sartopore 2 XLG, 0.8/0.2 μm.

본 발명의 또 다른 구현예에 있어서, 상기 정제는 크기배제 크로마토그래피 공정에 의해 이루어질 수 있다. In another embodiment of the present invention, the purification may be performed by a size exclusion chromatography process.

본 발명의 일 구현예에 있어서, 상기 AAV 입자의 역가는 게놈 카피수에 따라 측정된다 (vg/mL). 게놈 입자의 농도는 벡터 DNA의 qPCR 결과에 기초할 수 있으나, 역가의 측정방법은 이에 한정되는 것은 아니다. 상기 vg/mL는 밀리미터 당 벡터게놈을 나타낸다. In one embodiment of the invention, the titer of the AAV particles is measured according to genome copy number (vg/mL). The concentration of genomic particles may be based on the results of qPCR of vector DNA, but the method of measuring titer is not limited thereto. The vg/mL represents vector genome per millimeter.

상술한 본 발명의 다른 일 양태에 따른 AAV 벡터의 생성 방법은 AAV 벡터를 생성하기 위하여 숙주세포인 곤충세포를 배양하는 공정을 수반하므로, 본 발명의 일 양태에 따른 BIC 스탁의 제조방법과 관련하여 곤충 세포의 배양 조건, 배양 방법, 배큘로바이러스의 감염 방법 등 양 발명 사이에 공통적으로 적용될 수 있는 내용은 동일하게 적용된다. Since the method for producing an AAV vector according to another aspect of the present invention described above involves culturing insect cells, which are host cells, to produce the AAV vector, in relation to the method for producing a BIC stock according to an aspect of the present invention, Contents that can be commonly applied between the two inventions, such as culture conditions for insect cells, culture methods, and baculovirus infection methods, are equally applied.

본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:

(a) 본 발명은 아데노-관련 바이러스(adeno-associated virus, AAV) 벡터를 생성하는 배큘로바이러스 감염 세포(baculovirus infected cell, BIC) 스탁(stock)의 제조방법을 제공한다.(a) The present invention provides a method for producing a baculovirus infected cell (BIC) stock producing an adeno-associated virus (AAV) vector.

(b) 본 발명은 상기 배큘로바이러스 감염 세포 (BIC) 스탁 제조방법에 의해 제조된 BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법을 제공한다.(b) The present invention provides a method of producing an AAV vector using the BIC stock prepared by the above baculovirus infected cell (BIC) stock production method.

(i) 본 발명의 아데노-관련 바이러스(adeno-associated virus, AAV) 벡터를 생성하는 배큘로바이러스 감염 세포(baculovirus infected cell, BIC) 스탁(stock)을 이용하는 경우 아데노-관련 바이러스 벡터 생성에 걸리는 시간을 줄이고 보관안정성을 크게 향상시킬 수 있으며, AAV 벡터의 생산성을 크게 향상시킬 수 있다.(i) Time required to produce an adeno-associated virus vector when using a baculovirus infected cell (BIC) stock producing the adeno-associated virus (AAV) vector of the present invention It can reduce storage stability and greatly improve the productivity of AAV vectors.

도 1은 본 발명의 배양배지 종류가 Specific growth rate, viable cell density, glucose 및 glutamine concentration의 면에서 곤충세포의 성장에 미치는 영향을 나타낸 도이다.
도 2는 본 발명의 배양배지 종류가 배양시간에 따른 곤충 세포 밀도에 미치는 영향을 나타낸 도이다.
도 3은 본 발명의 배양배지 종류가 세포성장률 및 최대 세포 밀도에 미치는 영향을 나타낸 도이다.
도 4 및 도 5는 본 발명의 배양 배지의 영양분 보충(feeding) 시간이 Specific growth rate, viable cell density, osmolarity, glucose 및 glutamine concentration 등 곤충 세포 성장에 미치는 영향을 나타낸 도이다.
도 6은 본 발명의 배양 배지의 영양분 보충(feeding) 시간이 lactate 농도의 면에서 곤충 세포 성장에 미치는 영향을 나타낸 도이다.
도 7은 본 발명의 최초 세포 농도 및 MOI에 따른 AAV의 역가 변화를 나타낸 도이다.
도 8은 본 발명의 최초 세포 농도에 따른 AAV의 역가 변화를 나타낸 도이다.
도 9는 본 발명의 배큘로바이러스 감염 세포의 회수 시점에 따른 AAV 생성 역가를 나타낸 도이다.
도 10은 본 발명의 배큘로바이러스 감염 세포를 DO, MOI, 감염시간, 및 Anti-foam agent의 농도에 따라 배양하였을 때 본 발명의 AAV1 벡터의 생산성에 미치는 영향을 나타낸 그래프이다.
도 11은 본 발명의 배큘로바이러스 감염 세포를 DO, 감염시간, 및 rpm 속도에 따라 배양하였을 때 본 발명의 AAV1 벡터의 생산성에 미치는 영향을 나타낸 그래프이다.
도 12은 본 발명의 배큘로바이러스 감염 세포를 DO, 및 감염시간에 따라서 배양하였을 때 본 발명의 AAV1 벡터의 생산성에 미치는 영향을 나타낸 그래프이다.
도 13은 본 발명의 배큘로바이러스 감염 세포를 DO, 및 MOI에 따라서 배양하였을 때 본 발명의 AAV1 벡터의 생산성에 미치는 영향을 나타낸 그래프이다.
도 14는 본 발명의 베큘로바이러스 감염 세포를 MOI, 및 감염시간에 따라서 배양하였을 때 본 발명의 AAV1 벡터의 생산성에 미치는 영향을 나타낸 그래프이다.
도 15는 본 발명의 실시예로부터 도출해 낸 AAV1 역가에 대한 회귀분석 방정식과, 각 조건 (DO, 감염 시간, 및 MOI) 별로 본 발명의 AAV1 벡터의 생산성에 미치는 영향력(정규화 효과)을 나타낸 그래프이다.
도 16은 본 발명의 실시예로부터 도출해 낸 최대 세포 수에 대한 회귀분석 방정식과, 각 조건(DO, 감염시간, 및 MOI) 별로 본 발명의 AAV1 벡터의 생산성에 미치는 영향력(정규화 효과)을 나타낸 그래프이다.
Figure 1 is a diagram showing the effect of the type of culture medium of the present invention on the growth of insect cells in terms of specific growth rate, viable cell density, glucose, and glutamine concentration.
Figure 2 is a diagram showing the effect of the type of culture medium of the present invention on insect cell density according to culture time.
Figure 3 is a diagram showing the effect of the type of culture medium of the present invention on cell growth rate and maximum cell density.
Figures 4 and 5 are diagrams showing the effect of the feeding time of the culture medium of the present invention on insect cell growth, such as specific growth rate, viable cell density, osmolarity, glucose and glutamine concentration.
Figure 6 is a diagram showing the effect of nutrient feeding time of the culture medium of the present invention on insect cell growth in terms of lactate concentration.
Figure 7 is a diagram showing the change in titer of AAV according to the initial cell concentration and MOI of the present invention.
Figure 8 is a diagram showing the change in titer of AAV according to the initial cell concentration of the present invention.
Figure 9 is a diagram showing the AAV production titer according to the recovery time of baculovirus-infected cells of the present invention.
Figure 10 is a graph showing the effect on the productivity of the AAV1 vector of the present invention when baculovirus-infected cells of the present invention were cultured according to DO, MOI, infection time, and concentration of anti-foam agent.
Figure 11 is a graph showing the effect on the productivity of the AAV1 vector of the present invention when baculovirus-infected cells of the present invention were cultured according to DO, infection time, and rpm speed.
Figure 12 is a graph showing the effect on the productivity of the AAV1 vector of the present invention when baculovirus-infected cells of the present invention are cultured according to DO and infection time.
Figure 13 is a graph showing the effect on the productivity of the AAV1 vector of the present invention when baculovirus-infected cells of the present invention are cultured according to DO and MOI.
Figure 14 is a graph showing the effect on the productivity of the AAV1 vector of the present invention when baculovirus-infected cells of the present invention are cultured according to MOI and infection time.
Figure 15 is a graph showing the regression analysis equation for AAV1 titer derived from the examples of the present invention and the influence (normalization effect) on the productivity of the AAV1 vector of the present invention for each condition (DO, infection time, and MOI). .
Figure 16 is a graph showing the regression analysis equation for the maximum cell number derived from the examples of the present invention and the influence (normalization effect) on the productivity of the AAV1 vector of the present invention for each condition (DO, infection time, and MOI) am.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

실시예Example

본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "%"는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량) %, 고체/액체는 (중량/부피) %, 그리고 액체/액체는 (부피/부피) %이다.Throughout this specification, “%” used to indicate the concentration of a specific substance means (weight/weight) % for solid/solid, (weight/volume) % for solid/liquid, and Liquid/liquid is (volume/volume) %.

<BICS를 이용한 AAV 배양 공정 및 AAV 생산 개발><Development of AAV culture process and AAV production using BICS>

장비 및 실험재료Equipment and experimental materials

(1) 장비(1) Equipment

EquipmentEquipment Productor Part No.Productor Part No. CompanyCompany BSCBSC #AC2-6G8-TAPGB#AC2-6G8-TAPGB EscoEsco CentrifugeCentrifuge #5942 000 315#5942 000 315 EffendorfEffendorf IncubatorIncubator 160i160i ThermofisherThermofisher ShakerShaker NB101-SRCNB101-SRC N-BiotectN-Biotect Automated Cell CounterAutomated Cell Counter #Countess II(AMQAXIOOO)#Countess II(AMQAXIOOO) ThermofisherThermofisher

(2) 재료(2) Materials

MaterialsMaterials Product No.Product No. CompanyCompany Sf-RVN CellSF-RVN Cell #SFRVNLIC-1EA#SFRVNLIC-1EA MerckMerck 1000mL Erlenmeyer Flask with Vented Cap1000mL Erlenmeyer Flask with Vented Cap 431147431147 CorningCorning 125mL Erlenmeyer Flask with Vented Cap125mL Erlenmeyer Flask with Vented Cap 431403431403 CorningCorning 50mL Conical Tube50mL Conical Tube 5005050050 SPLS.P.L. 5mL Pipet Aid Tip5mL Pipet Aid Tip 9100591005 SPLS.P.L. 10mL Pipet Aid Tip10mL Pipet Aid Tip 9101091010 SPLS.P.L. 50mL Pipet Aid Tip50mL Pipet Aid Tip 9105091050 SPLS.P.L. Pipet AidPipe Aid 075232075232 DrummondDrummond 1000P Pipet1000P Pipet QN71810QN71810 GlisonGlison 1000P Pipet Tip1000P Pipet Tip BT1000.96BT1000.96 NeptuneNeptune 20P pipet20P pipet RD73364RD73364 GilsonGilson 20P Pipet Tip20P Pipet Tip BT20BT20 NeptuneNeptune Insect-XPRESS mediaInsect-XPRESS media BEBP12-730QBEBP12-730Q LonzaLonza Merck CDMerck CD 74405CP74405CP MerckMerck Sf-900 II SFMSf-900 II SFM 1090208810902088 ThermofisherThermofisher Sf-900 III SFMSf-900 III SFM 1265802712658027 ThermofisherThermofisher Trypan blue solution, 0.4% (Trypan blue)Trypan blue solution, 0.4% (Trypan blue) 1525006115250061 ThermoFisherThermoFisher 1.7mL microtube1.7mL microtube MCT-175-CMCT-175-C AxygenAxygen Cell Counting Chamber Slides (C-Chip)Cell Counting Chamber Slides (C-Chip) InvitrogenInvitrogen C10283C10283

실시예 1. Sf-RVN 세포의 기본 배양조건 선정Example 1. Selection of basic culture conditions for Sf-RVN cells

AAV는 곤충 세포에 Rep-Cap baculovirus와 GOI baculovirus를 공동감염하여 생산한다. AAV is produced by co-infecting insect cells with Rep-Cap baculovirus and GOI baculovirus.

본 발명자들은 본 발명의 AAV 벡터의 생산에 사용되는 곤충세포인 Sf-RVN 세포의 기본 배양조건을 설정하기 위하여 다음과 같은 실험을 수행하였다.The present inventors performed the following experiment to establish basic culture conditions for Sf-RVN cells, which are insect cells used for production of the AAV vector of the present invention.

Sf-RVN® Insect Cell Line은 랍도바이러스 음성 Sf9 세포주(rhabdovirus-negative Sf9 cell line)로 부착 및 현탁 배양 모두에서 성장할 수 있다. Sf-RVN® 곤충 세포주는 본 발명의 아데노 관련 바이러스(AAV) 뿐만 아니라, 재조합 단백질, 및 바이러스 유사 입자(VLP)의 생산에 사용된다. Sf-RVN® Insect Cell Line is a rhabdovirus-negative Sf9 cell line that can be grown in both adherent and suspension cultures. The Sf-RVN® insect cell line is used for the production of adeno-associated viruses (AAV) of the invention, as well as recombinant proteins, and virus-like particles (VLPs).

Merck사에서 배포한 Sf-RVN 배양 가이드라인에 따른 기본 배양조건은 하기 표 3에 나타낸 바와 같다. Basic culture conditions according to the Sf-RVN culture guidelines distributed by Merck are shown in Table 3 below.

Cell Cuture volume (mL)Cell cut volume (mL) RPMRPM TemperatureTemperature Initial Cell Density
(e6 cells/mL)
Initial Cell Density
(e 6 cells/mL)
20-50mL in 125mL Flask20-50mL in 125mL Flask 130-140130-140 27-2827-28 1One 30-100mL in 250mL Flask30-100mL in 250mL Flask 130-140130-140 27-2827-28 1One 60-150mL in 500mL Flask60-150mL in 500mL Flask 130-140130-140 27-2827-28 1One 100-300mL in 1L Flask100-300mL in 1L Flask 90-10090-100 27-2827-28 1One

세포 배양용기와 배양액의 부피를 125 mL 플라스크에서 50 mL에서 배앙하는 것으로 고정하였다. 추천 RPM인 130을 기준으로 110, 150 RPM으로 변경하였고, 추천 온도인 28℃를 기준으로 26, 27, 28℃로 변경하였으며, 최초 세포 밀도를 추천 밀도인 1 e6 cell/mL를 기준으로 0.5, 0.75, 1.0, 1.5 e6 cell/mL의 밀도로 변경하여 세포 성장에 미치는 영향을 확인하였다. 실험의 오차를 감안하여 각 실험군 당 2개의 플라스크를 이용하여 배양하였다.The volume of the cell culture vessel and culture medium was fixed by culturing at 50 mL in a 125 mL flask. Based on the recommended RPM of 130, it was changed to 110 and 150 RPM, and the recommended temperature of 28℃ was changed to 26, 27, and 28℃, and the initial cell density was changed to 0.5 based on the recommended density of 1 e 6 cell/mL. , 0.75, 1.0, 1.5 e 6 cell/mL were changed to check the effect on cell growth. To account for experimental errors, culture was performed using two flasks per experimental group.

Experimental
Group (n=2)
Experimental
Group (n=2)
RPMRPM TemperatureTemperature Cell Cuture volume (mL)Cell cut volume (mL) Initial pHInitial pH initial Cell Density (e6 cells/mL)initial Cell Density (e6 cells/mL)
ControlControl 130130 2727 5050 6.256.25 1.01.0 1One 110110 2727 5050 6.256.25 1.01.0 22 150150 2727 5050 6.256.25 1.01.0 33 130130 2626 5050 6.256.25 1.01.0 44 130130 2828 5050 6.256.25 1.01.0 55 130130 2727 3030 6.256.25 1.01.0 66 130130 2727 7070 6.256.25 1.01.0 77 130130 2727 5050 6.106.10 1.01.0 88 130130 2727 5050 6.406.40 1.01.0 99 130130 2727 5050 6.256.25 0.500.50 1010 130130 2727 5050 6.256.25 0.750.75 1111 130130 2727 5050 6.256.25 1.501.50

각 실험군마다 24시간 마다 1 ml를 샘플링하여 cell count, viability, 및 glucose와 glutamine의 농도를 측정하였다. For each experimental group, 1 ml was sampled every 24 hours to measure cell count, viability, and concentrations of glucose and glutamine.

(1) 조건에 따른 viable cell density 및 cell viability(1) Viable cell density and cell viability according to conditions

상기 조건에 따라 viable cell density 및 cell viability를 측정한 결과, 최초 세포 밀도(initial cell density)를 1.5 e6 cells/mL로 배양시 최초 세포 밀도가 더 낮은 0.5, 0.75, 1 e6 cells/mL로 배양한 것보다 세포가 더 빨리 사멸하였고, 다른 조건은 큰 영향이 없었다. As a result of measuring viable cell density and cell viability according to the above conditions, when culturing with an initial cell density of 1.5 e 6 cells/mL, the initial cell density was lower at 0.5, 0.75, and 1 e 6 cells/mL. Cells died faster than in culture, and other conditions had no significant effect.

(2) 조건에 따른 viable cell density 및 specific growth rate(2) Viable cell density and specific growth rate according to conditions

상기 (1)과 마찬가지로 최초 세포 밀도(initial cell density)를 제외하고는 specific growth rate에 큰 영향을 미치는 조건은 없었다.As in (1) above, there were no conditions that had a significant effect on the specific growth rate except for the initial cell density.

(3) 조건에 따른 Average specific growth rate(3) Average specific growth rate according to conditions

RPM 조건의 경우 실험된 110 내지 150 RPM에서 Average specific growth rate에 큰 차이를 나타내지 않았으므로, 일반적인 130 RPM으로 선정하였다. In the case of RPM conditions, there was no significant difference in average specific growth rate among the tested 110 to 150 RPM, so the general 130 RPM was selected.

배양 부피(working volume)도 실험된 배양 부피 30 내지 70 mL에서 Average specific growth rate에 큰 차이를 나타내지 않았으므로, 30-70 mL 중 중간 값인 50 mL의 부피에서 배양하는 것으로 정하였다. Since the culture volume (working volume) did not show a significant difference in average specific growth rate among the tested culture volumes of 30 to 70 mL, it was decided to culture at a volume of 50 mL, which is the middle value among 30-70 mL.

최초 pH 조건도 실험된 pH 6.1 내지 pH 6.4에서 Average specific growth rate에 큰 차이를 나타내지 않았으므로 조절하지 않는 것으로 정하였다.The initial pH conditions did not show a significant difference in average specific growth rate between pH 6.1 and pH 6.4, so it was decided not to adjust them.

배양온도 26-28℃에 따라 Average specific growth rate에 큰 차이를 나타내지 않았으므로 일반적인 배양온도인 28℃로 선정하였다.Since there was no significant difference in average specific growth rate depending on the culture temperature of 26-28°C, the general culture temperature of 28°C was selected.

초기 배양 세포 밀도(Initial cell Density)가 1.5 e6 cells/mL인 경우 Average Specific Growth Rate이 극적으로 증가하였으나, 배지의 양분을 빠르게 소모하여 빠른 세포의 사멸이 야기되었다. 0.5 내지 1 e6 cells/mL의 나머지 조건에서는 Average Specific Growth Rate이 모두 비슷하게 나타나, 1.5 e6 cells/mL 조건을 제외하고, 나머지 조건 중 중간 값인 0.75 e6 cells/mL를 선정하였다.When the initial cell density was 1.5 e 6 cells/mL, the Average Specific Growth Rate increased dramatically, but nutrients in the medium were quickly consumed, causing rapid cell death. In the remaining conditions of 0.5 to 1 e 6 cells/mL, the Average Specific Growth Rate was similar in all conditions, so, except for the 1.5 e 6 cells/mL condition, the middle value of 0.75 e 6 cells/mL was selected among the remaining conditions.

상기 조건별 배양 결과에 따라 선정한 기본 배양 조건은 표 5에 나타내었다.The basic culture conditions selected according to the culture results for each condition above are shown in Table 5.

RPMRPM Temperature (℃)Temperature (°C) Cell Culture volume (mL)Cell Culture volume (mL) Initial pHInitial pH initial Cell Density
(e6 cells/mL)
initial Cell Density
(e 6 cells/mL)
130130 2828 5050 Not controlNot control 0.750.75

(4) Fed-batch의 배양 배지 및 배양 시간 설정(4) Fed-batch culture medium and culture time settings

먼저 상기 조건에 따라 Glucose 및 Glutamine 농도 변화를 측정한 결과, 초기 배양 세포 밀도(Initial cell Density)가 낮을수록 Glucose가 고갈되는 속도가 느렸고, Glutamine보다 Glucose의 고갈 속도가 더 빨랐다. First, as a result of measuring changes in glucose and glutamine concentration according to the above conditions, the lower the initial cell density, the slower the rate of glucose depletion, and the depletion rate of glucose was faster than that of glutamine.

Feed Media의 성분은Glucose, Glutamine, 및 Yeast Extract를 사용하였다. The ingredients of the feed media used were glucose, glutamine, and yeast extract.

상술한 바와 같이, Glutamine 보다 Glucose가 더 빨리 소모되므로, Feeding 주입 시기는 Glucose의 농도에 따라서 넣어주었다.As mentioned above, since glucose is consumed faster than glutamine, the timing of feeding injection was adjusted according to the concentration of glucose.

또한, Glucose 및 Glutamine 의 소모 비율을 측정한 결과, 글루코스 1g/L를 소모하게 되면, glutamine 0.34 g/L를 소모하였다. Additionally, as a result of measuring the consumption rate of glucose and glutamine, when 1 g/L of glucose was consumed, 0.34 g/L of glutamine was consumed.

Yeast Extract 및 Glucose 비율은 향후 실험을 해야 하지만, 일단은 1:1 로 하였다. 이때 Yeast Extract의 용해도가 대략 100g/L 이므로,포화되지 않도록 임시로 Yeast Extract 60g/L, Glucose 60g/L,및 Glutamine: 18g/L 로 만들었다.The ratio of Yeast Extract and Glucose needs to be tested in the future, but for now it was set at 1:1. At this time, since the solubility of Yeast Extract is approximately 100g/L, it was temporarily made with Yeast Extract 60g/L, Glucose 60g/L, and Glutamine: 18g/L to prevent saturation.

Feeding Time에 대한 연구는 필요하지만,현재 분석 결과는 72 시간에 Glutamine 이 모두 소모되는 것으로 나타나므로, 48 시간에 Feed를 보충하여 초기 배지 Glucose 농도인 4-6g/L 로 맞줘주었다.Research on Feeding Time is necessary, but the current analysis results show that all Glutamine is consumed in 72 hours, so the feed was replenished at 48 hours to bring the initial medium glucose concentration to 4-6g/L.

(5) 배양배지의 종류 선택(5) Selection of type of culture medium

본 발명자들은 Lonza 사의 Insect-Xpress, Merck 사의 CD, Gibco 사의 Sf-900 II, Gibco 사의 Sf-900 III SFM이 적응된 곤충 세포를 이용하여 곤충 세포가 잘 성장하는 배지를 선택하고자 하였다. The present inventors attempted to select a medium in which insect cells grow well using insect cells adapted to Lonza's Insect-Xpress, Merck's CD, Gibco's Sf-900 II, and Gibco's Sf-900 III SFM.

배양 조건은 상기 (3)의 배양 조건과 동일하게 선정하였으며 실험의 오차를 감안하여 실험군 당 3개의 플라스크에 배양하였고, 24시간마다 1ml씩 샘플링하여, Viable Cell Density 및 Viability, Glucose 및 Glutamine Concentration을 측정하였다. The culture conditions were selected the same as those in (3) above, and considering the error of the experiment, each experimental group was cultured in 3 flasks, and 1 ml was sampled every 24 hours to measure Viable Cell Density, Viability, Glucose, and Glutamine Concentration. did.

Experimental
Group (n=3)
Experimental
Group (n=3)
MediaMedia RPMRPM Temperature
(°C)
Temperature
(°C)
Initial Cell DensityInitial Cell Density Volume (mL)Volume (mL)
1One Gibco 社 Sf-900 IIGibco Sf-900 II 130130 2828 0.75 e6 cells/mL0.75 e6 cells/mL 5050 22 Lonza 社: Insect-XpressLonza Company: Insect-Xpress 33 Merck 社iCDMerck iCD 44 Gibco 社 Sf-900 III SFMGibco Sf-900 III SFM

결과는 도 1 내지 도 3에 나타내었다.The results are shown in Figures 1 to 3.

도 1 내지 도 3에 나타낸 바와 같이, Average Specific Growth Rate 및 Media 간 큰 차이는 없었지만, Max Viable Cell Density는 Gibco 사의 Sf-900 III가 가장 좋았으므로, Growth Media는 Gibco 사의 Sf-900 III 로 선정하였다.As shown in Figures 1 to 3, there was no significant difference between Average Specific Growth Rate and Media, but Gibco's Sf-900 III had the best Max Viable Cell Density, so Gibco's Sf-900 III was selected as the Growth Media. .

(6) Feed 조건 선정(6) Selection of feed conditions

예비 실험에서 임의로 선정한 Glucose: 60g/L, Yeast Extract: 60g/L, Glutamine: 24g/L을 기준으로, Glucose 와 Glutamine 그리고 Yeast Extract의 농도 비율을 알기 위해, Glucose는 6Og/L 로 고정하고 Glutamine 및 Yeast Extract 농도를 조절하였다. Yeast Extract의 Solubility 가 100g/L 임으로, 90g/L, 60g/L, 30g/L 로 변화시켰으며, Glutamine의 농도는 24g/L 률 기준으로 12g/L,18g/L 로 변화시켰다. 상기 도 1 및 2에 나타낸 바와 같이, 배양 후 72시간 시점에 Glutamine 고갈을 막기 위해, 48시간에 Feed를 보충하였다. 실험의 오차를 감안하여 실험군 당 2개의 플라스크에 배양하였다.Based on the randomly selected values of Glucose: 60g/L, Yeast Extract: 60g/L, and Glutamine: 24g/L in the preliminary experiment, in order to know the concentration ratio of Glucose, Glutamine, and Yeast Extract, Glucose was fixed at 6Og/L and Glutamine and Yeast extract concentration was adjusted. Since the solubility of Yeast Extract was 100g/L, it was changed to 90g/L, 60g/L, and 30g/L, and the concentration of Glutamine was changed to 12g/L and 18g/L based on a rate of 24g/L. As shown in Figures 1 and 2, to prevent glutamine depletion at 72 hours after culture, feed was supplemented at 48 hours. To account for experimental errors, culture was performed in two flasks per experimental group.

상기 실험 조건은 표 7에 나타내었고, 24시간 마다 배양액을 1mL씩 샘플링하여 viable cell density, viability, 글루코스 농도, 글루타민 농도, 삼투압, 및 젖산 농도를 측정하였다.The experimental conditions are shown in Table 7, and 1 mL of culture medium was sampled every 24 hours to measure viable cell density, viability, glucose concentration, glutamine concentration, osmotic pressure, and lactic acid concentration.

Feed의 조성 및 농도 조건Feed composition and concentration conditions 실험군 (n=2)Experimental group (n=2) 글루코스 (g/L)Glucose (g/L) 글루타민 (g/L)Glutamine (g/L) 효모 추출물 (g/L)Yeast extract (g/L) 대조군(No feeding)Control group (No feeding) -- -- -- 1One 6060 1212 3030 22 6060 1818 3030 33 6060 2424 3030 44 6060 1212 6060 55 6060 1818 6060 66 6060 2424 6060 77 6060 1212 9090 88 6060 1818 9090 99 6060 2424 9090

결과는 도 4 및 도 5에 나타내었다. The results are shown in Figures 4 and 5.

도 4 및 도 5에 나타낸 바와 같이 48시간에 feeding을 하는 경우 대조군 대비 실험군의 specific growth rate가 증가하였으나, 실험군간 차이는 크지 않았다.As shown in Figures 4 and 5, when feeding was performed at 48 hours, the specific growth rate of the experimental group increased compared to the control group, but the difference between the experimental groups was not significant.

곤충 세포의 최적 Osmolarity는 360-380 mOsm/kg 이므로, Osmolarity가 배양시 360-380 mOsm/kg을 유지하는 것이 좋다. Feeding시 다소 Osmolarity가 증가하였으나, 모든 실험군에서 360-380 mOsm/kg 사이에 있으므로 무방할 것이다.Since the optimal osmolarity of insect cells is 360-380 mOsm/kg, it is recommended that the osmolarity be maintained at 360-380 mOsm/kg during culture. Osmolarity increased slightly during feeding, but it is acceptable as it is between 360-380 mOsm/kg in all experimental groups.

세포 배양의 부산물인 젖산이 다량 생성되면, 곤충 세포의 성장 및 생산에 좋지 않은 영향을 끼치므로 젖산 농도를 측정하였고, 그 결과 효모추출물을 30 g/L으로 포함하는 Feed를 첨가하였을 때와 비교하여, 60 g/L 및 90 g/L의 효모추출물을 첨가하였을 때 젖산 농도가 높게 나타났으므로, Feed 내 효모 추출물(yeast extract)의 농도는 30 g/L으로 설정하였다.If a large amount of lactic acid, a by-product of cell culture, is produced, it has a negative effect on the growth and production of insect cells, so the lactic acid concentration was measured, and as a result, compared to when feed containing 30 g/L of yeast extract was added. Since the lactic acid concentration was high when 60 g/L and 90 g/L of yeast extract were added, the concentration of yeast extract in the feed was set to 30 g/L.

실시예 2. AAV 생산을 위한 기본 배양조건 선정Example 2. Selection of basic culture conditions for AAV production

MOI(multiplicity of infection) 및 CDI(cell density at infection) 조건에 따른 AAV의 생산량 비교Comparison of AAV production according to MOI (multiplicity of infection) and CDI (cell density at infection) conditions

본 발명자는 AAV 생산에 영향을 주는 공정상 파라미터인 MOI(multiplicity of infection), CDI(cell density at infection) 및 feeding time을 결정하기 위하여 아래와 같이 실험하였다.The present inventor conducted the following experiment to determine multiplicity of infection (MOI), cell density at infection (CDI), and feeding time, which are process parameters that affect AAV production.

먼저 Baculovirus infected cell stock(BICS)을 제조하기 위하여 Sf-RVN 세포를 0.6 e6 cells/mL의 농도로 125 mL 플라스크에 X-PRESS 또는 SFM III media를 이용하여 50 ml subculture를 진행하였다. 130 rcf (relative centrifugal force)로 28℃에서 1일간 배양을 진행하였다. 상기 세포의 농도가 1.2 e6 cells/ml가 되었을 때 Rep/Cap 유전자를 포함하는 액상 배큘로바이러스 및 GOI 유전자를 포함하는 액상 배큘로바이러스를 3 MOI 농도로 각각 Sf-RVN 세포에 첨가하고 18시간을 배양하였다. 이후 세포를 수거하여 그 pellet을 X-press media 또는 SFM III media로 희석하고 10% DMSO를 첨가하여 최종적으로 LN2 tank에 보관하였다. 이렇게 제조된 BICS 중 X-press media를 이용한 BICS는 BICCX0001 및 BICCX0002으로, SFM III media를 이용한 BICS는 BICCX0007 및 BICCX0008으로 명명하였다. 상기 BICCX로 명명된 홀수 번 BICS는 Rep-Cap 유전자(서열번호 3 및 5)를 포함하고 짝수 번 BICS는 GOI 유전자(서열번호1)를 포함한다.First, to prepare baculovirus infected cell stock (BICS), Sf-RVN cells were subcultured at a concentration of 0.6 e 6 cells/mL in 50 ml of a 125 mL flask using X-PRESS or SFM III media. Cultivation was performed for 1 day at 28°C at 130 rcf (relative centrifugal force). When the concentration of the cells reached 1.2 e 6 cells/ml, liquid baculovirus containing the Rep/Cap gene and liquid baculovirus containing the GOI gene were added to the Sf-RVN cells at a concentration of 3 MOI, respectively, and incubated for 18 hours. was cultured. Afterwards, cells were collected, the pellet was diluted with X-press media or SFM III media, 10% DMSO was added, and finally stored in LN2 tank. Among the BICS manufactured in this way, the BICS using X-press media were named BICCX0001 and BICCX0002, and the BICS using SFM III media were named BICCX0007 and BICCX0008. The odd-numbered BICS, named BICCX, contains Rep-Cap genes (SEQ ID NO: 3 and 5) and the even-numbered BICS contains the GOI gene (SEQ ID NO: 1).

상기 BICCX 중 BICCX0001 및 BICCX0002을0.01, 0.025, 0.05, 및 0.075 MOI로 접종하여 AAV 생산량을 비교하였다. 이 때 CDI(cell density at infection)는 1.5, 3, 및 6 e6 cells/mL로 하여 AAV 생산량을 비교하였다.Among the BICCXs, BICCX0001 and BICCX0002 were inoculated at MOIs of 0.01, 0.025, 0.05, and 0.075, and AAV production was compared. At this time, AAV production was compared with CDI (cell density at infection) set at 1.5, 3, and 6 e 6 cells/mL.

Harvest 시간은 예비 실험에서 감염 후 120시간에 가장 역가가 높게 나타났으므로, 감염 후 120시간에 세포를 수거하였다. AAV의 회수는 세포를 포함하는 배양액을 2500xg에서 40분 동안 원심분리하고, 상층액으로부터 AAV를 회수하여 qPCR을 통해 AAV의 역가를 검출하였다.Harvest time showed that the highest titer was observed at 120 hours after infection in preliminary experiments, so cells were harvested at 120 hours after infection. To recover AAV, the culture medium containing the cells was centrifuged at 2500xg for 40 minutes, AAV was recovered from the supernatant, and the titer of AAV was detected through qPCR.

각 배양 실험조건은 하기 표 8에 나타내었다.Each culture experimental condition is shown in Table 8 below.

실험군experimental group MOI MOI CDI (e6 cells/mL)CDI (e 6 cells/mL) ControlControl -- -- 1One 0.010.01 1.51.5 22 0.0250.025 1.51.5 33 0.050.05 1.51.5 44 0.0750.075 1.51.5 55 0.050.05 1.51.5 66 0.010.01 33 77 0.0250.025 33 88 0.050.05 33 99 0.050.05 66

결과는 도 7에 나타내었다.The results are shown in Figure 7.

도 7에 나타낸 바와 같이, CDI를 3 e6 cell/mL 이상으로 세포 밀도를 높이는 경우 AAV의 생산성이 감소됨을 확인하였다. 또한, MOI의 경우는 0.01 내지 0.05 범위에서 생산성이 우수함을 확인하였다. As shown in Figure 7, it was confirmed that the productivity of AAV decreased when the cell density of CDI was increased to 3 e 6 cells/mL or more. Additionally, it was confirmed that productivity was excellent in the MOI range of 0.01 to 0.05.

상기 결과로부터 일차적으로 CDI는 1.5 e6 cell/mL 이하, MOI는 0.01~0.05가 우수하므로 0.02 MOI로 선정하였다.From the above results, CDI of 1.5 e 6 cell/mL or less and MOI of 0.01 to 0.05 were excellent, so 0.02 MOI was selected.

본 발명자들은 추가적으로 하기 표 9에 나타낸 CDI 조건에 따른 AAV 생산성 변화를 관찰하였다. The present inventors additionally observed changes in AAV productivity according to CDI conditions shown in Table 9 below.

실험군experimental group MOI MOI CDI (e6 cells/mL)CDI (e 6 cells/mL) Volume (mL)Volume (mL) 1One 0.020.02 1.21.2 250250 22 0.020.02 1.21.2 100100 33 0.020.02 0.80.8 5050 44 0.020.02 1.01.0 5050 55 0.020.02 1.21.2 5050

결과는 도 9에 나타내었다.The results are shown in Figure 9.

도 9에 나타낸 바와 같이, 50 내지 250 mL의 배양 volume이나, 0.8 내지 1.2 e6 cells/mL 사이의 CDI 변화에 따른 AAV 생산성에는 큰 영향이 없었다.As shown in Figure 9, there was no significant effect on AAV productivity depending on the culture volume of 50 to 250 mL or CDI change between 0.8 and 1.2 e 6 cells/mL.

결론적으로는 CDI는 0.8 내지 1.2 e6 cells/mL, MOI는 0.02로 선정하였다.In conclusion, CDI was selected as 0.8 to 1.2 e 6 cells/mL and MOI as 0.02.

<AAV 생산을 위한 Viral Stock 제조방법 개발><Development of Viral Stock Manufacturing Method for AAV Production>

Baculovirus는 곤충 세포에 감염되는 바이러스 중 한 종류로, 유전자 전달 등의 연구 및 본 발명의 AAV 생산을 비롯한 각종 생물의약품의 생산에 사용된다. Baculovirus는 표면이 멤브레인 구조로 이루어져 있어 Liquid baculovirus stock (LBS)으로 바이러스를 보존하는 경우 다소 안정성이 떨어질 수 있다. 따라서, 본 발명자들은 baculovirus를 포함하는 Liquid baculovirus stock (LBS)으로 바이러스를 보존하기 보다, baculovirus를 생산할 수 있는 baculovirus infected cell stock(BICS)를 제작하고자 하였으며, 아래 실시예 3 내지 5와 같이 BIC의 생산조건 및 계대(passage)에 따른 안정성을 확인하였다.Baculovirus is a type of virus that infects insect cells, and is used for research on gene transfer and the production of various biological drugs, including the production of AAV of the present invention. Baculovirus has a membrane structure on its surface, so its stability may be somewhat reduced when the virus is preserved using Liquid baculovirus stock (LBS). Therefore, rather than preserving the virus with Liquid baculovirus stock (LBS) containing baculovirus, the present inventors attempted to produce a baculovirus infected cell stock (BICS) capable of producing baculovirus, and produced BIC as in Examples 3 to 5 below. Stability was confirmed according to conditions and passage.

실시예 3. baculovirus infected cell stock(BICS)의 AAV 생산성 확인Example 3. Confirmation of AAV productivity of baculovirus infected cell stock (BICS)

본 발명자들은 다음과 같이 BICS의 감염 농도에 따른 AAV의 생산성을 확인하였다.The present inventors confirmed the productivity of AAV according to the infection concentration of BICS as follows.

AAV를 생산하기 위하여 Sf-RVN 세포를 0.6 e6 cells/mL의 농도로 125 mL 플라스크에 X-PRESS media를 이용하여 50 ml subculture를 진행하였다. 130 rcf (relative centrifugal force)로 28℃에서 1일간 배양을 진행하였다. 배양된 Sf-RVN 세포를 계수하여 세포 밀도(cell density)가 약 1.2 e6 cell/ml가 되었을 때, BICCX0001 및 BICCX0002, 2종의 BIC stock을 플라스크에 0.05, 0.1, 0.5 MOI 만큼 첨가하였다(총 3 셋트). 24시간 간격으로 6일간 각 플라스크에서 샘플링을 진행하였고, 각 샘플들은 AAV 역가 분석 전까지 -80℃의 Deepfreezer에서 보관하였다.To produce AAV, Sf-RVN cells were subcultured at a concentration of 0.6 e 6 cells/mL in 50 ml of a 125 mL flask using X-PRESS media. Cultivation was performed for 1 day at 28°C at 130 rcf (relative centrifugal force). Cultured Sf-RVN cells were counted and when the cell density reached approximately 1.2 e 6 cell/ml, two types of BIC stocks, BICCX0001 and BICCX0002, were added to the flask at 0.05, 0.1, and 0.5 MOI (total 3 sets). Sampling was performed from each flask for 6 days at 24-hour intervals, and each sample was stored in a Deepfreezer at -80°C until AAV titer analysis.

역가 분석을 위해, 상기 샘플들을 액체질소를 이용하여 freezing/thawing을 3회 반복 후, 3000 rcf로 25분간 원심분리를 한 후 상층액을 회수하였다. 상층액을 AAV pro titration kit (TAKARA, Cat. 6233)을 사용하여 역가를 분석하였다. For titer analysis, the samples were repeated three times by freezing/thawing using liquid nitrogen, centrifuged at 3000 rcf for 25 minutes, and the supernatant was recovered. The titer of the supernatant was analyzed using the AAV pro titration kit (TAKARA, Cat. 6233).

결과는 다음 표 10 및 도 9와 같았다.The results were as shown in Table 10 and Figure 9 below.

Post infection
Time
Post infection
Time
24 hr24 hours 48 hr
(feeding)
48hrs
(feeding)
72 hr72 hours 96 hr96hrs 120 hr120hrs 144 hr144 hours
BICS 0.05 MOIBICS 0.05 MOI 1.78 E+101.78 E+10 9.81 E+119.81 E+11 6.63 E+126.63 E+12 6.89 E+126.89 E+12 1.01 E+131.01 E+13 1.00 E+131.00 E+13 BICS 0.1 MOIBICS 0.1 MOI 3.92 E+093.92 E+09 2.62 E+122.62 E+12 8.65 E+128.65 E+12 8.94 E+128.94 E+12 1.04 E+131.04 E+13 8.43 E+128.43 E+12 BICS 0.5 MOIBICS 0.5 MOI 3.19 E+103.19 E+10 4.10 E+124.10 E+12 1.03 E+131.03 E+13 8.83 E+128.83 E+12 1.17 E+131.17 E+13 1.22 E+131.22 E+13

상기 표 10 및 도 9에 나타낸 바와 같이, 0.05 내지 0.5의 MOI 범위 내에서 AAV 역가에 큰 영향은 없었고, 바이러스의 역가는 120 hpi에서 우수한 것으로 확인되었다. 이후에서는 상기 실시예 2에서 선정된 바와 마찬가지로 0.02 MOI 감염 및 120 hr 회수로 배양 조건을 설정하였다. As shown in Table 10 and Figure 9, there was no significant effect on AAV titer within the MOI range of 0.05 to 0.5, and the virus titer was confirmed to be excellent at 120 hpi. Hereafter, culture conditions were set to 0.02 MOI infection and 120 hr recovery as selected in Example 2 above.

실시예 4. Lonza insect X-PRESS media를 이용한 BICS 생산 및 BICS의 계대(passage)에 따른 AAV 생산성 확인Example 4. Confirmation of AAV productivity according to BICS production and passage of BICS using Lonza insect X-PRESS media

BICS의 계대 증가를 위한 최적의 BICS 생산 조건 설정을 위하여, 본 발명자들은 다음과 같이 Lonza insect X-PRESS media에서의 BICS의 계대 수에 따른 AAV의 생산성을 확인하였다.In order to set optimal BICS production conditions for increasing passage of BICS, the present inventors confirmed the productivity of AAV according to the number of passages of BICS in Lonza insect X-PRESS media as follows.

2종의Rep/CAP BIC과 GOI BIC을 AAV 생산에 사용하였다.Two types of Rep/CAP BIC and GOI BIC were used for AAV production.

공정 변수는 하기 표 11와 같았다. BICS 1 cell 당 감염성을 100 pfu로 가정하고 감염을 진행하였으며, AAV 생산은 50 mL 스케일로 진행하였다.The process variables were as shown in Table 11 below. Infection was performed assuming an infectivity of 100 pfu per BICS cell, and AAV production was performed on a 50 mL scale.

-- 공정변수process variable Set No.Set No. MediaMedia Passage No.Passage No. MOIMOI hpi (hr)hpi (hr) 1One Lonza X-PRESSLonza 22 0.10.1 2222 22 Lonza X-PRESSLonza 22 0.10.1 2424 33 Lonza X-PRESSLonza 22 0.50.5 2222 44 Lonza X-PRESSLonza 22 0.50.5 2424 55 Lonza X-PRESSLonza 22 1One 2222 66 Lonza X-PRESSLonza 22 1One 2424 77 Lonza X-PRESSLonza 33 0.10.1 2424 88 Lonza X-PRESSLonza 22 0.10.1 2424 99 Lonza X-PRESSLonza 22 1One 2424 1010 Lonza X-PRESSLonza 33 1One 2424

상기와 같은 조건으로 제조된 BICS를 이용하여 AAV를 생산하였다. 이때 MOI는 기존 AAV 생산 조건인 0.02 MOI로 하였으나, 추가 시험이 필요한 경우 MOI를 조정하였다. AAV 생산은 50 mL 플라스크에서 진행하였고, 감염 후 48시간에 glucose 농도를 측정하고 5 g/L의 농도가 되도록 feed를 첨가하였다. 각 샘플을 108(±12) 시간에 회수하였으며, 분석 전까지 -80℃ deepfreezer에서 보관하였다. AAV was produced using BICS prepared under the same conditions as above. At this time, the MOI was set to 0.02 MOI, which is the existing AAV production condition, but the MOI was adjusted if additional testing was necessary. AAV production was carried out in a 50 mL flask, glucose concentration was measured 48 hours after infection, and feed was added to reach a concentration of 5 g/L. Each sample was recovered at 108 (±12) hours and stored in a -80°C deepfreezer until analysis.

실시예 3과 같은 방법으로 샘플을 처리하여 AAV의 역가를 측정하였으며, 결과는 표 12에 나타내었다. Samples were processed in the same manner as in Example 3 to measure the titer of AAV, and the results are shown in Table 12.

PassagePassage BICS MOIBICS MOI BICS Harvest time (hr)BICS Harvest time (hr) MediaMedia AAV MOIAAV MOI Titer(vg/L)Titer(vg/L) 1One 33 1818 X-PRESSX-PRESS 0.020.02 1.0 E+131.0 E+13 22 0.10.1 2222 X-PRESSX-PRESS 0.10.1 6.6 E+126.6 E+12 22 0.50.5 2222 X-PRESSX-PRESS 0.10.1 2.9 E+122.9 E+12 22 1One 2222 X-PRESSX-PRESS 0.10.1 2.6 E+122.6 E+12 22 0.10.1 2424 X-PRESSX-PRESS 0.10.1 6.2 E+126.2 E+12 22 0.50.5 2424 X-PRESSX-PRESS 0.10.1 2.2 E+122.2 E+12 22 1One 2424 X-PRESSX-PRESS 0.10.1 1.8 E+121.8 E+12

구체적으로 상기 BICS MOI는 BIC의 생산을 위해 접종한 배큘로바이러스의 MOI를 의미한다. 또한, 상기 AAV MOI는 AAV를 생산하기 위해 첨가한 배큘로바이러스 감염 세포(BICS)의 MOI를 의미한다. Specifically, the BICS MOI refers to the MOI of the baculovirus inoculated for the production of BIC. Additionally, the AAV MOI refers to the MOI of baculovirus-infected cells (BICS) added to produce AAV.

상기와 같이 BICS 생산시 배큘로바이러스 0.1 MOI 농도에서 가장 높은 AAV 생산량을 나타내었고, harvest time의 경우 22 내지 24시간의 조건에서 큰 차이는 없었다.As mentioned above, during BICS production, the highest AAV production was achieved at a baculovirus MOI concentration of 0.1, and there was no significant difference in harvest time under conditions of 22 to 24 hours.

위 결과를 토대로 passage 2 및 0.1 과 1의 MOI로 감염한 배큘로바이러스로 생산된 BICS를 사용하여 BICS 농도를 0.05 내지 0.2 MOI 농도로 넓은 범위에서 처리하여 AAV 생산을 진행하였으며 결과는 다음과 같았다.Based on the above results, AAV production was performed using BICS produced with baculovirus infected at passage 2 and MOI of 0.1 and 1, and the BICS concentration was treated over a wide range of 0.05 to 0.2 MOI concentration, and the results were as follows.

PassagePassage BICS MOIBICS MOI BICS Harvest time (hr)BICS Harvest time (hr) MediaMedia AAV MOIAAV MOI Titer(vg/L)Titer(vg/L) 22 0.10.1 2222 X-PRESSX-PRESS 0.010.01 9.7 E+119.7 E+11 22 0.10.1 2222 X-PRESSX-PRESS 0.010.01 1.0 E+121.0 E+12 22 0.10.1 2222 X-PRESSX-PRESS 0.020.02 1.4 E+121.4 E+12 22 0.10.1 2222 X-PRESSX-PRESS 0.020.02 1.2 E+121.2 E+12 22 0.10.1 2222 X-PRESSX-PRESS 0.050.05 6.4 E+126.4 E+12 22 0.10.1 2222 X-PRESSX-PRESS 0.050.05 7.1 E+127.1 E+12 22 0.10.1 2222 X-PRESSX-PRESS 0.10.1 6.4 E+126.4 E+12 22 0.10.1 2222 X-PRESSX-PRESS 0.10.1 8.3 E+128.3 E+12 22 0.10.1 2222 X-PRESSX-PRESS 0.20.2 5.6 E+125.6 E+12 22 0.10.1 2222 X-PRESSX-PRESS 0.20.2 4.8 E+124.8 E+12 22 1One 2424 X-PRESSX-PRESS 0.050.05 3.7 E+123.7 E+12 22 1One 2424 X-PRESSX-PRESS 0.050.05 3.1 E+123.1 E+12 22 1One 2424 X-PRESSX-PRESS 0.010.01 5.0 E+125.0 E+12 22 1One 2424 X-PRESSX-PRESS 0.010.01 3.2 E+123.2 E+12 22 1One 2424 X-PRESSX-PRESS 0.020.02 3.6 E+123.6 E+12 22 1One 2424 X-PRESSX-PRESS 0.020.02 4.1 E+124.1 E+12 22 1One 2424 X-PRESSX-PRESS 0.050.05 2.7 E+122.7 E+12 22 1One 2424 X-PRESSX-PRESS 0.050.05 1.9 E+121.9 E+12 22 1One 2424 X-PRESSX-PRESS 0.10.1 2.1 E+122.1 E+12 22 1One 2424 X-PRESSX-PRESS 0.10.1 2.0 E+122.0 E+12 33 0.10.1 2424 X-PRESSX-PRESS 0.020.02 2.2 E+102.2 E+10 33 0.10.1 2424 X-PRESSX-PRESS 0.020.02 2.7 E+102.7 E+10 33 0.10.1 2424 X-PRESSX-PRESS 0.10.1 1.5 E+111.5 E+11 33 0.10.1 2424 X-PRESSX-PRESS 0.10.1 2.4 E+112.4 E+11

상기 나타낸 바와 같이 배큘로바이러스를 0.1 MOI로 감염하여 생산한 passage 2 (P2) BICS의 경우에는 BICS를 0.05 MOI 이상 감염하였을 때 적어도 5 E+12 vg/L의 AAV 생산량을 나타내었고, 배큘로바이러스를 1 MOI로 생산한 P2 BICS의 경우 오히려 BICS를 0.02 MOI 이하의 낮은 농도에서 감염시켰을 때 조금 더 높은 값의 역가를 나타내었다. As shown above, passage 2 (P2) BICS produced by infection with baculovirus at 0.1 MOI showed an AAV production of at least 5 E+12 vg/L when BICS was infected with 0.05 MOI or more, and baculovirus In the case of P2 BICS produced at an MOI of 1, the titer was slightly higher when BICS was infected at a lower concentration of 0.02 MOI or less.

P3 BICS를 이용한 AAV 생산의 경우에는 BICS를 0.1 MOI 이상 감염하여 생산하였을 때 약 2 E+11 vg/L 정도로 역가가 상승하였으나, P1 또는 P2와 비교시 최소 열배 이상 낮은 AAV 생산성을 나타내었다. 동등한 조건으로 Passage가 올라가더라도 Passage 증가에 따라 AAV의 생산성이 저하되는 것을 보여준다.In the case of AAV production using P3 BICS, the titer increased to about 2 E+11 vg/L when infected with BICS at an MOI of 0.1 MOI or more, but AAV productivity was at least ten times lower than that of P1 or P2. It shows that even if the passage increases under equal conditions, the productivity of AAV decreases as the passage increases.

2계대 및 3계대시 BICS를 기존의 X-PRESS 보다 더 영양이 많은 media인 SFM III media를 사용하였을 때 AAV의 생산량은 하기 표 14와 같았다.When SFM III media, which is a more nutritious media than the existing

PassagePassage BICS MOIBICS MOI BICS Harvest time (hr)BICS Harvest time (hr) MediaMedia AAV MOIAAV MOI Titer(vg/L)Titer(vg/L) 22 0.10.1 2424 SFM IIISFM III 0.020.02 2.7 E+112.7 E+11 22 0.10.1 2424 SFM IIISFM III 0.020.02 5.6 E+115.6 E+11 22 0.10.1 2424 SFM IIISFM III 0.10.1 9.0 E+129.0 E+12 22 0.10.1 2424 SFM IIISFM III 0.10.1 4.5 E+124.5 E+12 22 1One 2424 SFM IIISFM III 0.020.02 1.1 E+131.1 E+13 22 1One 2424 SFM IIISFM III 0.020.02 7.1 E+127.1 E+12 22 1One 2424 SFM IIISFM III 0.10.1 6.3 E+126.3 E+12 22 1One 2424 SFM IIISFM III 0.10.1 5.5 E+125.5 E+12 33 1One 2424 SFM IIISFM III 0.020.02 3.2 E+123.2 E+12 33 1One 2424 SFM IIISFM III 0.020.02 2.3 E+122.3 E+12 22 1One 2424 SFM IIISFM III 0.050.05 5.3 E+125.3 E+12 33 1One 2424 SFM IIISFM III 0.050.05 6.1 E+126.1 E+12 33 1One 2424 SFM IIISFM III 0.10.1 5.2 E+125.2 E+12 33 1One 2424 SFM IIISFM III 0.10.1 3.6 E+123.6 E+12

상기와 같이 SFM III media를 이용하여 BICS의 계대수를 증가시키면, X-PRESS 보다 높은 농도인 1 MOI로 BICS를 생산하는 경우, AAV의 생산성이 비슷하거나 조금 더 높아지는 것을 확인하였다. AAV 생산 농도 또한 계대수 1 조건보다는 조금 낮지만 7.5E+12 vg/L 정도의 생산성을 나타내었다. As described above, when the number of passages of BICS was increased using SFM III media, it was confirmed that when BICS was produced at 1 MOI, which is a higher concentration than X-PRESS, the productivity of AAV was similar or slightly higher. The AAV production concentration was also slightly lower than the passage number 1 condition, but showed productivity of about 7.5E+12 vg/L.

계대수 3의 경우에도 SFM III media를 사용하는 경우, X-PRESS media를 사용하는 경우보다 생산된 AAV가 높은 역가를 나타내었다. 그러나, 이 경우도 계대수 2보다는 AAV의 생산성이 낮아졌으며, 더 많은 양의 BICS를 첨가하여야 충분한 AAV 생산성을 유지할 수 있을 것으로 보인다. Even at passage number 3, when SFM III media was used, the produced AAV showed higher titers than when X-PRESS media was used. However, in this case as well, the productivity of AAV was lower than at passage number 2, and it appears that sufficient AAV productivity can be maintained only by adding a larger amount of BICS.

전체적인 경향상, SFM III를 이용한 BICS의 passage stability 가 X-PRESS에 비해 높은 것으로 확인되었다. 그러나, 본 실험의 경우 P1 생산시 X-PRESS 배지를 사용하였으므로, 이하에서는 초기 BICS를 X-PRESS가 아니라 SFM III로 생산되었을 경우의 영향을 확인하고자 하였다. In terms of overall trend, the passage stability of BICS using SFM III was confirmed to be higher than that of X-PRESS. However, in the case of this experiment, since

실시예 5. SFM III media를 이용한 BICS 생산 및 BICS 계대(passage)에 따른 AAV 생산성 확인Example 5. Confirmation of AAV productivity according to BICS production and BICS passage using SFM III media

상기 실시예 4에서 언급된 바와 같이, X-PRESS와 SFM III 배지에 따른 passage stability를 비교하기 위하여 SFM III를 사용하여 초기 BICS를 생산하였다. SFM III를 사용하여 생산된 BICS의 Lot 번호는 BICCX0007, BICCX0008이었다. 본 실험은 BICCX0007 (Rep-Cap BICS) 및 BICCX0008 (GOI (HGF gene) BIC)을 토대로 진행하였으며, 본 발명자들은 하기 표 15와 같은 공정 변수로 BIC를 제작하고, SFM III media에서의 BICS의 계대에 따른 AAV의 생산성을 확인하였다.As mentioned in Example 4 above, initial BICS was produced using SFM III to compare passage stability according to X-PRESS and SFM III media. The lot numbers of BICS produced using SFM III were BICCX0007 and BICCX0008. This experiment was conducted based on BICCX0007 (Rep-Cap BICS) and BICCX0008 (GOI (HGF gene) BIC), and the present inventors produced BIC with the process variables shown in Table 15 below and passed the BICS on SFM III media. The productivity of AAV was confirmed.

Set No.Set No. Batch recordBatch record MediaMedia PassagePassage MOIMOI hpi (hr)hpi (hr) 1One BICCX0001, BICCX0002BICCX0001, BICCX0002 SFM IIISFM III 22 0.10.1 1818 22 2222 33 2424 44 0.50.5 1818 55 2222 66 2424 77 1One 1818 88 2222 99 2424 1010 33 1One 2424 1111 BICCX0007, BICCX0008BICCX0007, BICCX0008 SFM IIISFM III 22 0.10.1 1818 1212 2424 1313 0.50.5 2424 1414 1One 1818 1515 2424 1616 1.51.5 2424 1717 33 2424 1818 33 1One 2424 1919 1.51.5 2424 2020 33 2424

상기와 같은 조건으로 제조된 BICS를 이용하여 AAV를 생산하였다. 이때 MOI는 기존 AAV 생산 조건인 BICS 기준 0.02 MOI로 하였으나, 추가 시험이 필요한 경우 MOI를 조정하였다. AAV 생산은 50 mL 플라스크에서 진행하였고, 감염 후 48시간에 glucose 농도를 측정하고 5 g/L의 농도가 되도록 feed를 첨가하였다. 각 샘플을 108(±12) 시간에 회수하였으며, 분석 전까지 -80℃ deepfreezer에서 보관하였다. 실시예 3과 같은 방법으로 샘플을 처리하여 AAV의 역가를 측정하였다. AAV was produced using BICS prepared under the same conditions as above. At this time, the MOI was set at 0.02 MOI based on BICS, the existing AAV production conditions, but the MOI was adjusted if additional testing was necessary. AAV production was carried out in a 50 mL flask, glucose concentration was measured 48 hours after infection, and feed was added to reach a concentration of 5 g/L. Each sample was recovered at 108 (±12) hours and stored in a -80°C deepfreezer until analysis. Samples were processed in the same manner as in Example 3 to measure the titer of AAV.

첫 시험으로 BICCX0007 및 BICCX0008에 대해서 AAV 생산 감염농도 0.02 내지 0.1 MOI로 AAV 생산을 1차 진행하였다. AAV 생산량에 대한 결과는 하기 표 16에 나타내었다. As a first test, AAV production was conducted for BICCX0007 and BICCX0008 at an AAV production infection concentration of 0.02 to 0.1 MOI. The results for AAV production are shown in Table 16 below.

Batch recordBatch record PassagePassage BICS MOIBICS MOI BICS harvest time (hr)BICS harvest time (hr) MediaMedia AAV MOIAAV MOI vg/Lvg/L BICCX0007, 0008BICCX0007, 0008 1One 33 1818 SFM IIISFM III 0.020.02 1.6 E+131.6 E+13 0.020.02 2.3 E+132.3 E+13 0.050.05 1.2 E+131.2 E+13 0.050.05 1.7 E+131.7 E+13 0.10.1 1.4 E+131.4 E+13 0.10.1 1.4 E+131.4 E+13

상기와 같이, AAV 생산 감염 농도에 상관없이 넓은 범위에서 AAV 생산량이 안정적으로 나왔으며, 생산량 또한 BICCX0001과 BICCX0002와 비교하여 높은 생산량(약 1 E+13 vg/L)을 나타내는 것으로 확인되었다.As described above, AAV production was stable over a wide range regardless of the AAV production infection concentration, and production was also confirmed to be higher (approximately 1 E+13 vg/L) compared to BICCX0001 and BICCX0002.

또한, BICCX0007-0008의 passage 2에서의 AAV 생산량은 다음과 같았다. BICS 감염 농도조건만을 변수로 하였으며, AAV 생산시의 감염 농도는 0.02로 통일하였다.In addition, AAV production at passage 2 of BICCX0007-0008 was as follows. Only the BICS infection concentration condition was used as a variable, and the infection concentration during AAV production was unified at 0.02.

Batch recordBatch record PassagePassage BICS MOIBICS MOI BICS harvest time (hr)BICS harvest time (hr) MediaMedia AAV MOIAAV MOI vg/Lvg/L BICCX0007, 0008BICCX0007, 0008 22 0.10.1 1818 SFM IIISFM III 0.020.02 4.4 E+104.4 E+10 0.10.1 1818 5.2 E+105.2 E+10 1One 1818 1.4 E+111.4 E+11 1One 1818 1.0 E+111.0 E+11 0.10.1 2424 1.8 E+21.8 E+2 0.10.1 2424 2.1 E+122.1 E+12 0.50.5 2424 4.1 E+124.1 E+12 0.50.5 2424 5.1 E+25.1 E+2 1One 2424 7.4 E+127.4 E+12 1One 2424 8.9 E+128.9 E+12 1.51.5 2424 1.2 E+131.2 E+13 1.51.5 2424 6.3 E+126.3 E+12 33 2424 6.1 E+126.1 E+12 33 2424 8.5 E+128.5 E+12

상기 표에 나타낸 바와 같이, BICS 생산시 회수 시간은 24시간 이상, 감염 MOI는 1 에서 가장 우수한 생산성을 나타냈다. AAV 생산성은 약 8.2 E+12 vg/L 정도로 BICS passage 1보다는 다소 감소한 경향을 보였으나, X-PRESS를 사용한 BICS passage 2보다는 다소 높은 AAV 역가를 나타내었다.BICS passage 3에서의 AAV 생산량은 하기 표 18에 나타내었다. As shown in the table above, when producing BICS, the recovery time was more than 24 hours and the infection MOI was 1, which showed the best productivity. AAV productivity was approximately 8.2 E+12 vg/L, which showed a tendency to slightly decrease compared to BICS passage 1, but showed a slightly higher AAV titer than BICS passage 2 using X-PRESS. AAV production in BICS passage 3 is shown in the table below. Shown in 18.

Batch recordBatch record PassagePassage BICS MOIBICS MOI BICS harvest time (hr)BICS harvest time (hr) MediaMedia AAV MOIAAV MOI vg/Lvg/L BICCX0007, 0008BICCX0007, 0008 33 0.50.5 2424 SFM IIISFM III 0.020.02 1.4 E+121.4 E+12 0.50.5 1.1 E+121.1 E+12 1One 1.6 E+121.6 E+12 1One 1.4 E+121.4 E+12 33 3.3 E+123.3 E+12 33 3.8 E+123.8 E+12

상기 표에 나타낸 바와 같이, passage 3에서는 AAV 생산량이 1.5 E+12 vg/L 정도로 앞의 계대수 2 보다 확연히 생산량이 감소하는 것을 확인할 수 있었다. BICS의 MOI를 증가시키면 약 4 E+12 vg/L 정도로 증가하였다. 상기 실시예 4에서 확인한 X-PRESS 배지를 이용한 경우와 비교하면, passage 3에서 AAV 생산량의 급격한 감소는 확인되지 않았다. 따라서, X-PRESS 배지보다 SFM III 배지에서의 BICS 안정성이 우수함을 알 수 있었다. As shown in the table above, in passage 3, it was confirmed that AAV production was approximately 1.5 E+12 vg/L, which was significantly reduced compared to the previous passage number 2. When the MOI of BICS was increased, it increased to about 4 E+12 vg/L. Compared to the case of using the X-PRESS medium confirmed in Example 4, no rapid decrease in AAV production was confirmed at passage 3. Therefore, it was found that BICS stability was better in SFM III medium than in X-PRESS medium.

<AAV 생산을 위한 Bioreactor 생산 조건의 설정><Setting of bioreactor production conditions for AAV production>

본 발명자들은 상기 실시예에서 확립 한 BICS를 이용하여 Bioreactor에서의 AAV1 생산 조건 설정을 위해 15 ml Ambr vessel에서 연구를 진행하였다.The present inventors conducted research in a 15 ml Ambr vessel to set the conditions for AAV1 production in a bioreactor using the BICS established in the above example.

실험 장비laboratory equipment 장비equipment Model No. Model No. CompanyCompany 클린 벤치clean bench AC2-6G8-TAPGBAC2-6G8-TAPGB ESCOESCO Ambr15Ambr15 Ambr® 15 cell culture generation 2Ambr® 15 cell culture generation 2 SatoriusSatorius CentrifugeCentrifuge 5910R5910R EffendorfEffendorf IncubatorIncubator 160i160i ThermofisherThermofisher ShakerShaker NB101-SRCNB101-SRC N-biotechN-biotech Automated Cell CounterAutomated Cell Counter Countess II (AMQAX1000)Countess II (AMQAX1000) ThermofisherThermofisher Bioreactorbioreactor Biostat-B-DCI-2FLBiostat-B-DCI-2FL SatoriusSatorius

실시예 6. Ambr 15 에서의 AAV1 생산 조건 설정Example 6. Setting of AAV1 production conditions in Ambr 15

본 발명자들은 DO(dissolved oxygen), infect time, MOI, Antifoam 4가지 조건에 대한 생산성 확인을 하였다. 이 때 사용된 BICS는 BICCX0011B 및 BICCX0012B로, BICCX0007 및 BICCX0008과 동일한 공정으로 제조되었습니다.The present inventors confirmed productivity for four conditions: DO (dissolved oxygen), infect time, MOI, and antifoam. The BICS used at this time were BICCX0011B and BICCX0012B, manufactured in the same process as BICCX0007 and BICCX0008.

(1) 변수 설정(1) Variable setting

- DO: 20%, 30%, 및 40%, - DO: 20%, 30%, and 40%;

- infect time: 배양 후 20 hr, 24 hr, 및 28 hr,- infect time: 20 hr, 24 hr, and 28 hr after incubation,

- MOI: 0.01, 0.02, 및 0.03, - MOI: 0.01, 0.02, and 0.03;

- antifoam agent:배양 단계에서 15 ml 당 20 μl의 1%, 3%, 5%의 antifoam agent를 첨가 - Antifoam agent: Add 20 μl of 1%, 3%, and 5% antifoam agent per 15 ml in the culture stage.

(2) 고정값 설정 (2) Fixed value setting

나머지 배양조건은 이전 시험에 진행했던 조건과 동일하게 설정하였다. The remaining culture conditions were set the same as those used in the previous test.

- 최초 세포 밀도(initial cell density): 6 E+5 cells/mL- Initial cell density: 6 E+5 cells/mL

- 배지: Lonza Insect X-PRESS- Badge: Lonza Insect X-PRESS

- Feed time: 48, 96 hpi- Feed time: 48, 96 hpi

- Feed media: Glucose/Glutamine/yeast extract=60/12/30 (g/L)- Feed media: Glucose/Glutamine/yeast extract=60/12/30 (g/L)

- Feed up to 5 g/L at timepoint- Feed up to 5 g/L at timepoint

- harvest time: 120 hr hpi-harvest time: 120 hr hpi

- RC:HGF = 1:1- RC:HGF = 1:1

- RPM 947 (200 rpm in Bioreactor)- RPM 947 (200 rpm in Bioreactor)

- pH 6.2 (단, Ambr 설정 상 pH 6.5 이하로 설정 불가하여 조절하지 않음)- pH 6.2 (However, due to Ambr settings, pH cannot be set below 6.5, so it is not adjusted)

(3) 시험조건 설정 및 결과(3) Test condition settings and results

위 변수에 따라서 운용한 Ambr 15의 시험 조건 및 시험 결과는 하기 표 20에 나타내었다.The test conditions and test results of Ambr 15 operated according to the above variables are shown in Table 20 below.

Std orderstd order Run orderRun order Pt typePT type BlockBlock DO%DO% Infection timeInfection time MOIMOI Antifoam %Antifoam% vg/Lvg/L 88 1One 22 1One 20%20% 2828 0.010.01 3%3% 3.21 E+133.21 E+13 1010 22 1One 1One 20%20% 2020 0.020.02 1%One% 6.20 E+136.20 E+13 66 33 22 1One 20%20% 2828 0.00.0 1%One% 4.07 E+134.07 E+13 55 44 22 1One 40%40% 2828 0.020.02 5%5% 3.89 E+133.89 E+13 44 55 22 1One 20%20% 2424 0.010.01 5%5% 4.87 E+134.87 E+13 77 66 22 1One 30%30% 2424 0.020.02 3%3% 4.22 E+134.22 E+13 33 77 22 1One 40%40% 2828 0.010.01 1%One% 2.45 E+132.45 E+13 22 88 22 1One 30%30% 2020 0.010.01 1%One% 3.85 E+133.85 E+13 1111 99 1One 1One 40%40% 2424 0.030.03 1%One% 4.65 E+134.65 E+13 1212 1010 1One 1One 20%20% 2020 0.030.03 5%5% 4.59 E+134.59 E+13 1313 1111 00 1One 30%30% 2424 0.020.02 3%3% 4.22 E+134.22 E+13 1One 1212 22 1One 30%30% 2828 0.030.03 5%5% 3.17 E+133.17 E+13 99 1313 1One 1One 40%40% 2020 0.010.01 5%5% 4.24 E+134.24 E+13

상기 조건 및 결과에 대한 AAV1의 생산성에 관한 그래프는 도 10에 나타내었다. A graph regarding the productivity of AAV1 for the above conditions and results is shown in Figure 10.

도 10에 나타낸 바와 같이, DO의 경우는 20% 보다 낮은 범위에서 생산성이 증가하였고, infection time은 20시간 이하에서 생산성이 증가하였다. As shown in Figure 10, in the case of DO, productivity increased in a range lower than 20%, and productivity increased in infection time below 20 hours.

MOI는 0.02 내지 0.03에서 생산성이 최대였으며, antifoam agent의 경우 농도에 따른 생산성의 변화가 없었다.Productivity was highest at MOI of 0.02 to 0.03, and in the case of antifoam agent, there was no change in productivity depending on concentration.

또한 배양시 pH는 6.2에서 6.0 정도로 서서히 감소하는 것을 확인하였다.Additionally, it was confirmed that the pH gradually decreased from 6.2 to about 6.0 during cultivation.

실시예 7. Ambr 15 에서의 AAV1 생산 조건 설정 2Example 7. Setting of AAV1 production conditions at Ambr 15 2

본 발명자들은 상기 실시예 6의 결과를 근거로 추가 생산 조건을 설정하고자 하였다. 본 실시예에서는 DO(dissolved oxygen), infect time, 및 rpm 조건에 대한 생산성 확인을 하였다. The present inventors attempted to set additional production conditions based on the results of Example 6. In this example, productivity was confirmed for DO (dissolved oxygen), infect time, and rpm conditions.

(1) 변수 설정(1) Variable setting

- DO: 10%, 20%, 및 30%, - DO: 10%, 20%, and 30%;

- infect time: 배양 후 16 hr, 19 hr, 및 22 hr,-infect time: 16 hr, 19 hr, and 22 hr after incubation,

- RPM: 100, 200 rpm (bioreactor 기준)- RPM: 100, 200 rpm (based on bioreactor)

(2) 고정값 설정 (2) Fixed value setting

나머지 배양조건은 이전 시험에 진행했던 조건과 동일하게 설정하였다. The remaining culture conditions were set the same as those used in the previous test.

- 최초 세포 밀도(initial cell density): 6 E+5 cells/mL- Initial cell density: 6 E+5 cells/mL

- 배지: Lonza Insect X-PRESS- Badge: Lonza Insect X-PRESS

- Feed time: 48, 96 hpi- Feed time: 48, 96 hpi

- Feed media: Glucose/Glutamine/yeast extract=60/12/30 (g/L)- Feed media: Glucose/Glutamine/yeast extract=60/12/30 (g/L)

- Feed up to 5 g/L at timepoint- Feed up to 5 g/L at timepoint

- harvest time: 120 hr hpi-harvest time: 120 hr hpi

- RC:HGF = 1:1- RC:HGF = 1:1

- RPM 947 (200 rpm in Bioreactor)- RPM 947 (200 rpm in Bioreactor)

- antifoam agent 5% 고정- Antifoam agent 5% fixed

- MOI: 0.02 고정- MOI: fixed at 0.02

(3) 시험조건 설정 및 결과(3) Test condition settings and results

위 변수에 따라서 운용한 Ambr 15의 시험 조건 및 시험 결과는 하기 표 21, 표 22, 및 도 11에 나타내었다.The test conditions and test results of Ambr 15 operated according to the above variables are shown in Table 21, Table 22, and Figure 11 below.

Std orderstd order Run orderRun order Pt typePT type BlockBlock Infection timeInfection time DO %DO% RPMRPM vg/Lvg/L 1111 1One 1One 1One 2222 3030 100100 2.49 E+132.49 E+13 1414 22 00 1One 1919 2020 200200 5.12 E+135.12 E+13 1One 33 22 1One 1919 3030 200200 5.45 E+135.45 E+13 55 44 1One 1One 2222 3030 100100 2.24 E+132.24 E+13 1212 55 1One 1One 1616 1010 200200 6.09 E+136.09 E+13 1313 66 00 1One 1919 2020 100100 4.04 E+134.04 E+13 33 77 22 1One 2222 2020 200200 4.51 E+134.51 E+13 44 88 22 1One 1616 2020 100100 5.21 E+135.21 E+13 1010 99 1One 1One 1616 3030 200200 4.98 E+134.98 E+13 77 1010 1One 1One 2222 1010 200200 5.16 E+135.16 E+13 99 1111 1One 1One 2222 1010 100100 4.25 E+134.25 E+13 66 1212 1One 1One 1616 1010 200200 7.45 E+137.45 E+13 22 1313 22 1One 1919 1010 100100 5.69 E+135.69 E+13 88 1414 1One 1One 1616 3030 100100 4.64 E+134.64 E+13

Std orderstd order Run orderRun order Viable cell No. at infection time
(cells/ml)
Viable cell no. at infection time
(cells/ml)
Total cell No.
(cells/ml, at harvest)
Total cell No.
(cells/ml, at harvest)
Viable cell No.
(cells/ml, at harvest)
Viable cell no.
(cells/ml, at harvest)
Viability
(at harvest)
Viability
(at harvest)
vg/Lvg/l
1111 1One 1.30 E+061.30 E+06 5.42 E+065.42 E+06 1.41 E+061.41 E+06 26%26% 2.49 E+132.49 E+13 1414 22 1.16 E+061.16 E+06 5.05 E+065.05 E+06 3.74 E+063.74 E+06 74%74% 5.12 E+135.12 E+13 1One 33 1.20 E+061.20 E+06 5.46 E+065.46 E+06 4.59 E+064.59 E+06 84%84% 5.45 E+135.45 E+13 55 44 1.05 E+061.05 E+06 6.06 E+066.06 E+06 1.88 E+061.88 E+06 31%31% 2.24 E+132.24 E+13 1212 55 1.26 E+061.26 E+06 4.72 E+064.72 E+06 3.92 E+063.92 E+06 83%83% 6.09 E+136.09 E+13 1313 66 1.20 E+061.20 E+06 4.14 E+064.14 E+06 2.73 E+062.73 E+06 66%66% 4.04 E+134.04 E+13 33 77 1.07 E+061.07 E+06 4.29 E+064.29 E+06 2.53 E+062.53 E+06 59%59% 4.51 E+134.51 E+13 44 88 1.01 E+061.01 E+06 3.65 E+063.65 E+06 2.30 E+062.30 E+06 63%63% 5.21 E+135.21 E+13 1010 99 1.16 E+061.16 E+06 3.71 E+063.71 E+06 2.89 E+062.89 E+06 78%78% 4.98 E+134.98 E+13 77 1010 1.34 E+061.34 E+06 5.20 E+065.20 E+06 4.47 E+064.47 E+06 86%86% 5.16 E+135.16 E+13 99 1111 1.30 E+061.30 E+06 4.70 E+064.70 E+06 3.43 E+063.43 E+06 73%73% 4.25 E+134.25 E+13 66 1212 1.13 E+061.13 E+06 5.05 E+065.05 E+06 4.04 E+064.04 E+06 80%80% 7.45 E+137.45 E+13 22 1313 1.20 E+061.20 E+06 4.86 E+064.86 E+06 3.89 E+063.89 E+06 80%80% 5.69 E+135.69 E+13 88 1414 1.23 E+061.23 E+06 4.08 E+064.08 E+06 2.45 E+062.45 E+06 60%60% 4.64 E+134.64 E+13

도 11에 나타낸 바와 같이, DO의 경우는 10% 보다 낮은 범위에서 생산성이 증가하였고, infection time의 경우 16시간 이하에서 생산성이 증가하였다. Rpm의 경우 200 보다 높은 rpm에서 생산성이 증가하였다.As shown in Figure 11, in the case of DO, productivity increased in a range lower than 10%, and in the case of infection time, productivity increased in a range of 16 hours or less. In the case of RPM, productivity increased at rpm higher than 200.

실시예 8. Ambr 15 에서의 AAV1 생산 조건 설정 3Example 8. Setting of AAV1 production conditions in Ambr 15 3

본 발명자들은 상기 실시예 6 및 7의 결과를 근거로 추가 생산 조건을 설정하고자 하였다. 본 실시예에서는 DO(dissolved oxygen), infect time, MOI 및 harvest time 조건에 대한 생산성 확인을 하였다. The present inventors attempted to set additional production conditions based on the results of Examples 6 and 7 above. In this example, productivity was confirmed for DO (dissolved oxygen), infect time, MOI, and harvest time conditions.

(1) 변수 설정(1) Variable setting

- DO: 8%, 12%, 및 16%, - DO: 8%, 12%, and 16%;

- infect time: 배양 후 12 hr, 15 hr, 및 18 hr,- infect time: 12 hr, 15 hr, and 18 hr after incubation,

- MOI: 0.015, 0.0225, 0.03- MOI: 0.015, 0.0225, 0.03

- harvest time: 117, 120, 123 hr-harvest time: 117, 120, 123 hr

(2) 고정값 설정 (2) Fixed value setting

나머지 배양조건은 이전 시험에 진행했던 조건과 동일하게 설정하였다. The remaining culture conditions were set the same as those used in the previous test.

- 최초 세포 밀도(initial cell density): 6 E+5 cells/mL- Initial cell density: 6 E+5 cells/mL

- 배지: Lonza Insect X-PRESS- Badge: Lonza Insect X-PRESS

- Feed time: 48, 96 hpi- Feed time: 48, 96 hpi

- Feed media: Glucose/Glutamine/yeast extract=60/12/30 (g/L)- Feed media: Glucose/Glutamine/yeast extract=60/12/30 (g/L)

- Feed up to 5 g/L at timepoint- Feed up to 5 g/L at timepoint

- harvest time: 120 hr hpi-harvest time: 120 hr hpi

- RC:HGF = 1:1- RC:HGF = 1:1

- RPM 947 (200 rpm in Bioreactor)- RPM 947 (200 rpm in Bioreactor)

- antifoam agent 5% 고정- Antifoam agent 5% fixed

- rpm: 200 고정 (bioreactor 기준)- rpm: fixed at 200 (based on bioreactor)

(3) 시험조건 설정 및 결과(3) Test condition settings and results

위 변수에 따라서 운용한 Ambr 15의 시험 조건 및 시험 결과는 하기 표 23, 표 24, 및 도 12 내지 도 16에 나타내었다.The test conditions and test results of Ambr 15 operated according to the above variables are shown in Table 23, Table 24, and Figures 12 to 16 below.

Std orderstd order Run orderRun order Pt typePT type BlockBlock DO%DO% Infection time(h)Infection time(h) MOIMOI Harvest time(h)Harvest time(h) CS1-3CS1-3 1010 1One 22 1One 1313 1818 0.0150.015 120120 CS1-4CS1-4 44 22 22 1One 1616 1818 0.02250.0225 120120 CS1-5CS1-5 1313 33 00 1One 1313 1515 0.02250.0225 120120 CS1-6CS1-6 1One 44 22 1One 1010 1212 0.02250.0225 120120 CS1-6CS1-6 123123 CS1-7CS1-7 88 55 22 1One 1616 1515 0.030.03 120120 CS1-8CS1-8 77 66 22 1One 1010 1515 0.030.03 120120 CS1-9CS1-9 1515 77 00 1One 1313 1515 0.02250.0225 120120 CS1-10CS1-10 1111 88 22 1One 1313 1212 0.030.03 120120 CS1-11CS1-11 99 117117 CS1-11CS1-11 33 22 1One 1010 1818 0.02250.0225 120120 CS1-11CS1-11 123123 CS1-12CS1-12 1212 1010 22 1One 1313 1818 0.030.03 120120 CS2-3CS2-3 1414 1111 00 1One 1313 1515 0.02250.0225 120120 CS2-4CS2-4 66 1212 22 1One 1616 1515 0.0150.015 120120 CS2-5CS2-5 22 1313 22 1One 1616 1212 0.02250.0225 120120 CS2-6CS2-6 99 1414 22 1One 1313 1212 0.0150.015 120120 CS2-7CS2-7 55 1515 22 1One 1010 1515 0.0150.015 120120 CS2-12CS2-12 117117 CS2-12CS2-12 1010 1515 0.02250.0225 120120 CS2-12CS2-12 123123

Viable cell No. at infection time
(cells/ml)
Viable cell no. at infection time
(cells/ml)
Total cell No.
(cells/ml, at harvest)
Total cell No.
(cells/ml, at harvest)
Viabler cell No.
(cells/ml, at harvest)
Viabler cell No.
(cells/ml, at harvest)
Viability
(at harvest)
Viability
(at harvest)
vg/L averagevg/L average
CS1-3CS1-3 1.11 E+061.11 E+06 4.51 E+064.51 E+06 3.69 E+063.69 E+06 82%82% 4.08 E+134.08 E+13 CS1-4CS1-4 1.09 E+061.09 E+06 4.46 E+064.46 E+06 3.30 E+063.30 E+06 74%74% 4.54 E+134.54 E+13 CS1-5CS1-5 1.02 E+061.02 E+06 3.93 E+063.93 E+06 3.14 E+063.14 E+06 80%80% 4.90 E+134.90 E+13 CS1-6CS1-6 7.80 E+057.80 E+05 3.76 E+063.76 E+06 2.92 E+062.92 E+06 77%77% 5.16 E+135.16 E+13 CS1-6CS1-6 4.02 E+064.02 E+06 3.42 E+063.42 E+06 85%85% 4.81 E+134.81 E+13 CS1-7CS1-7 9.60 E+059.60 E+05 2.61 E+062.61 E+06 1.83 E+061.83 E+06 70%70% 3.58 E+133.58 E+13 CS1-8CS1-8 9.40 E+059.40 E+05 3.39 E+063.39 E+06 2.85 E+062.85 E+06 84%84% 4.19 E+134.19 E+13 CS1-9CS1-9 1.04 E+061.04 E+06 3.88 E+063.88 E+06 3.18 E+063.18 E+06 82%82% 4.84 E+134.84 E+13 CS1-10CS1-10 8.68 E+058.68 E+05 3.25 E+063.25 E+06 2.32 E+062.32 E+06 71%71% 3.69 E+133.69 E+13 CS1-11CS1-11 3.77 E+063.77 E+06 3.13 E+063.13 E+06 83%83% 4.70 E+134.70 E+13 CS1-11CS1-11 1.02 E+061.02 E+06 3.71 E+063.71 E+06 3.04 E+063.04 E+06 82%82% 4.27 E+134.27 E+13 CS1-11CS1-11 3.43 E+063.43 E+06 2.64 E+062.64 E+06 77%77% 4.13 E+134.13 E+13 CS1-12CS1-12 1.02 E+061.02 E+06 4.28 E+064.28 E+06 3.34 E+063.34 E+06 78%78% 4.21 E+134.21 E+13 CS2-3CS2-3 9.70 E+059.70 E+05 4.01 E+064.01 E+06 3.25 E+063.25 E+06 81%81% 5.25 E+135.25 E+13 CS2-4CS2-4 1.10 E+061.10 E+06 3.91 E+063.91 E+06 3.00 E+063.00 E+06 77%77% 4.00 E+134.00 E+13 CS2-5CS2-5 8.97 E+058.97 E+05 3.48 E+063.48 E+06 2.82 E+062.82 E+06 81%81% 4.04 E+134.04 E+13 CS2-6CS2-6 8.80 E+058.80 E+05 8.94 E+068.94 E+06 1.43 E+061.43 E+06 16%16% 4.41 E+134.41 E+13 CS2-7CS2-7 1.16 E+061.16 E+06 3.89 E+063.89 E+06 2.84 E+062.84 E+06 73%73% 3.78 E+133.78 E+13 CS2-12CS2-12 3.91 E+063.91 E+06 2.74 E+062.74 E+06 70%70% 3.63 E+133.63 E+13 CS2-12CS2-12 9.70 E+059.70 E+05 3.38 E+063.38 E+06 2.47 E+062.47 E+06 73%73% 3.81 E+133.81 E+13 CS2-12CS2-12 4.09 E+064.09 E+06 3.07 E+063.07 E+06 75%75% 4.49 E+134.49 E+13

상기 표 23-24 및 도 12-16에 나타낸 바와 같이, MOI를 0.021로 고정하였을 때 10~11% DO 및 10~11시간의 infection time에서 최대 AAV titer를 기대할 수 있었으며(도 12), infection time을 12시간으로 고정하였을 때 10~11% DO 및 0.02~0.0225 MOI에서 최대 AAV titer를 기대할 수 있었으며(도 13), DO를 11%로 고정하였을 때 infection time 10~11시간 및 0.02~0.0225 MOI에서 최대 AAV titer를 기대할 수 있었다(도 14). 이를 통해 공정변수 중 DO, infection time 및 MOI 가 생산공정에 많은 영향을 미침을 알 수 있었는데, 도 15에서는 그 중 MOI가 가장 큰 영향을 미치고 있음을 보여주고, 도 16에서는 그 중 MOI 및 infection time이 가장 큰 영향을 미치고 있음을 보여주었다. 최종적으로 DO 10.8%, 배양 후 BIC 감염시간 (infection time 12시간) 및 MOI 0.0215 에서 최적의 AAV 생산량을 보임을 확인할 수 있었다. As shown in Table 23-24 and Figure 12-16, when the MOI was fixed at 0.021, the maximum AAV titer could be expected at 10-11% DO and an infection time of 10-11 hours (Figure 12), infection time When fixed at 12 hours, the maximum AAV titer could be expected at 10-11% DO and 0.02-0.0225 MOI (Figure 13), and when DO was fixed at 11%, infection time was 10-11 hours and 0.02-0.0225 MOI. The maximum AAV titer could be expected (Figure 14). Through this, it was found that among the process variables, DO, infection time, and MOI have a great influence on the production process. Figure 15 shows that MOI has the greatest influence, and Figure 16 shows that among them, MOI and infection time This was shown to have the greatest impact. Ultimately, it was confirmed that optimal AAV production was achieved at DO 10.8%, BIC infection time after culture (12 hours), and MOI 0.0215.

실시예 9. Bioreactor testExample 9. Bioreactor test

본 발명자들은 상기 실시예 6 내지 8의 결과로부터 얻은 조건으로 bioreactor에서 AAV1에 대한 생산성 테스트를 진행하였다.The present inventors conducted a productivity test for AAV1 in a bioreactor under the conditions obtained from the results of Examples 6 to 8 above.

(1) 조건 설정(1) Condition setting

- scale: 1 L- scale: 1 L

- MOI: 0.0215- MOI: 0.0215

- infection time: 12hr-infection time: 12hr

- DO: 10.8%- DO: 10.8%

- antifoam agent: 5%- Antifoam agent: 5%

- feed time: 48h, 96,- feed time: 48h, 96,

- 그 외 조건은 실시예 8과 동일하였다. - Other conditions were the same as Example 8.

(2) Bioreactor 운용 결과(2) Bioreactor operation results

상기 조건에 따른 bioreactor 운용 결과는 하기 표 25에 나타내었다.The bioreactor operation results according to the above conditions are shown in Table 25 below.

-- -- 48hr48hrs 96hr96hrs 120hr120hrs AAV titerAAV titer NameName ScaleScale Live cell No.
(cells/ml)
Live cell No.
(cells/ml)
ViabilityViability Live cell No.
(cells/ml)
Live cell No.
(cells/ml)
ViabilityViability Live cell No.
(cells/ml)
Live cell No.
(cells/ml)
ViabilityViability vg/Lvg/l
Reactor 1Reactor 1 1 L1 L 1.75 E+061.75 E+06 71%71% 1.23 E+061.23 E+06 29%29% 6.10 E+056.10 E+05 15%15% 2.99 E+132.99 E+13 Reactor 2Reactor 2 1 L1 L 1.76 E+061.76 E+06 68%68% 9.50 E+059.50 E+05 23%23% 5.70 E+055.70 E+05 14%14% 3.02 E+133.02 E+13 Flask 1Flask 1 50 mL50mL 3.45 E+063.45 E+06 98%98% 3.40 E+063.40 E+06 84%84% 5.20 E+055.20 E+05 11%11% 2.48 E+132.48 E+13 Flask 2Flask 2 50 mL50mL 3.33 E+063.33 E+06 98%98% 3.55 E+063.55 E+06 78%78% 8.80 E+058.80 E+05 18%18% 3.39 E+133.39 E+13 Flask 3Flask 3 50 mL50mL 3.28 E+063.28 E+06 95%95% 2.91 E+062.91 E+06 71%71% 5.20 E+055.20 E+05 12%12% 2.80 E+132.80 E+13

(3) 최종 배양 조건(3) Final culture conditions

최종 배양 조건은 다음과 같았다:Final culture conditions were as follows:

- DO: 10.8%- DO: 10.8%

- infection time: 12 hr-infection time: 12 hours

- MOI: 0.0215- MOI: 0.0215

- R-C:HFG=1:1- R-C:HFG=1:1

- 초기 세포 수: 6 E+5 cells/ml- Initial cell count: 6 E+5 cells/ml

- 배양배지: Lonza insect X-PRESS- Culture medium: Lonza insect X-PRESS

- feed time: 48, 96 hr hpi, feed up to 5g/L at timepoint- feed time: 48, 96 hr hpi, feed up to 5g/L at timepoint

- harvest time: 120 hr hpi-harvest time: 120 hr hpi

- rpm: 200 rpm in bioreactor- rpm: 200 rpm in bioreactor

- pH: not controlled- pH: not controlled

<110> Helixmith Co., Ltd <120> Baculovirus Infected Cell Stock for AAV vector production and Method for manufacturing AAV vector <130> PN220161 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 2879 <212> DNA <213> Artificial Sequence <220> <223> HGF-X7d4(opti) <400> 1 atgtgggtca ccaagctgct tcctgctctg ctgctccagc acgtgctgct gcacctgctg 60 ctgctgccta tcgccatccc ctacgccgag ggccagagaa agcggagaaa cacaatccac 120 gagttcaaga aaagcgccaa gacgaccctg atcaagatcg accccgccct gaagatcaag 180 accaagaagg tgaacaccgc cgaccagtgc gccaaccggt gcaccagaaa caagggcctg 240 cctttcacct gtaaagcctt cgtgttcgac aaggccagaa agcagtgtct gtggttcccc 300 ttcaacagca tgagcagcgg cgtgaagaag gaattcggcc acgagtttga tctgtacgag 360 aacaaggact acatcagaaa ttgcatcatc ggcaagggca gaagctacaa gggtacagtg 420 tccatcacta agagtggcat caaatgtcag ccctggagtt ccatgatacc acacgaacac 480 aggtaagaac agtatgaaga aaagagatga agcctctgtc ttttttacat gttaacagtc 540 tcatattagt ccttcagaat aattctacaa tcctaaaata acttagccaa cttgctgaat 600 tgtattacgg caaggtttat atgaattcat gactgatatt tagcaaatga ttaattaata 660 tgttaataaa atgtagccaa aacaatatct taccttaatg cctcaatttg tagatctcgg 720 tatttgtgga tccttataag aaaagcaata aacaaacaag taatgatctc aaataagtaa 780 tgcaagaaat agtgagattt caaaatcagt ggcagcgatt tctcagttct gtcctaagtg 840 gccttgctca atcacctgct atcttttagt ggagctttga aattatgttt cagacaactt 900 cgattcagtt ctagaatgtt tgactcagca aattcacagg ctcatctttc taacttgatg 960 gtgaatatgg aaattcagct aaatggatgt taataaaatt caaacgtttt aaggacagat 1020 ggaaatgaca gaattttaag gtaaaatata tgaaggaata taagataaag gatttttcta 1080 ccttcagcaa aaacataccc actaattagt aaaattaata ggcgaaaaaa agttgcatgc 1140 tcttatactg taatgattat cattttaaaa ctagcttttt gccttcgagc tatcggggta 1200 aagacttgca ggagaactat tgccggaacc ccagaggcga ggaaggcggc ccctggtgct 1260 tcaccagcaa ccccgaggtg agatacgagg tgtgcgacat cccccagtgc agcgaggtcg 1320 agtgcatgac gtgcaacggc gagagctacc ggggcctgat ggaccatacc gagtctggga 1380 agatctgcca gagatgggac caccagacac ctcaccggca caagttcctg ccagaaagat 1440 atcctgacaa gggcttcgac gataactact gcagaaaccc tgacggccaa cctagacctt 1500 ggtgttacac gctggacccc cacaccagat gggaatactg tgctattaag acatgtgccg 1560 acaataccat gaacgacaca gacgtgcctc tcgagacaac agaatgcatc cagggccagg 1620 gagaaggata tagaggtaca gtgaacacca tctggaacgg aattccatgt cagcggtggg 1680 acagccaata cccccacgag cacgatatga cccctgagaa cttcaagtgt aaagacctgc 1740 gggaaaacta ttgcagaaac ccagatggct ctgaatctcc ttggtgcttc acaaccgacc 1800 ctaatatcag agtgggctac tgcagccaga tccccaattg cgacatgagc cacggacagg 1860 actgctacag gggcaatggc aagaactaca tgggaaacct gagccagacc agaagcggcc 1920 tgacctgcag catgtgggat aagaacatgg aagatctgca cagacacatc ttctgggagc 1980 ctgatgcttc taagctgaat gagaactact gccggaaccc tgatgatgat gcccacggcc 2040 cctggtgcta cactggcaac cccctgatcc catgggacta ctgtcctatc agcagatgtg 2100 aaggcgacac cacacctacc atagttaacc tggaccaccc cgtgatcagt tgcgccaaga 2160 ccaagcagct gagagtggtg aacggcatcc ctacaagaac caacatcgga tggatggtgt 2220 ccctgagata cagaaacaag cacatctgcg gcggcagcct gatcaaggaa agctgggtcc 2280 tcaccgccag acagtgtttt cctagccggg acctgaagga ctacgaggcc tggctgggca 2340 tccacgacgt gcacggcaga ggcgacgaga agtgcaagca ggtgcttaac gtgtcccaac 2400 tggtgtacgg ccccgagggc agtgatctgg tgctgatgaa actggccaga cccgccgtgc 2460 tcgacgactt cgtgtctaca atcgacctgc ctaactacgg ctgtaccatc cccgagaaga 2520 ccagctgcag cgtgtacggc tggggctata caggcctcat taactacgac ggactgctga 2580 gagtggctca cctgtacatc atgggcaacg agaaatgctc ccagcaccac agaggcaagg 2640 tgaccctgaa cgagagcgag atctgtgcag gcgccgagaa gatcggcagc ggcccttgcg 2700 agggcgatta cggaggacct ctggtctgcg agcagcacaa gatgcggatg gtcctgggag 2760 tgatcgttcc tggcagagga tgtgccatcc ctaacagacc aggaatcttt gtgcgggtgg 2820 cctactacgc caagtggatc cacaaaatca tcctgaccta caaggtgcca cagtcttga 2879 <210> 2 <211> 1866 <212> DNA <213> Artificial Sequence <220> <223> AAV2 Rep78 original <400> 2 atgccggggt tttacgagat tgtgattaag gtccccagcg accttgacga gcatctgccc 60 ggcatttctg acagctttgt gaactgggtg gccgagaagg aatgggagtt gccgccagat 120 tctgacatgg atctgaatct gattgagcag gcacccctga ccgtggccga gaagctgcag 180 cgcgactttc tgacggaatg gcgccgtgtg agtaaggccc cggaggccct tttctttgtg 240 caatttgaga agggagagag ctacttccac atgcacgtgc tcgtggaaac caccggggtg 300 aaatccatgg ttttgggacg tttcctgagt cagattcgcg aaaaactgat tcagagaatt 360 taccgcggga tcgagccgac tttgccaaac tggttcgcgg tcacaaagac cagaaatggc 420 gccggaggcg ggaacaaggt ggtggatgag tgctacatcc ccaattactt gctccccaaa 480 acccagcctg agctccagtg ggcgtggact aatatggaac agtatttaag cgcctgtttg 540 aatctcacgg agcgtaaacg gttggtggcg cagcatctga cgcacgtgtc gcagacgcag 600 gagcagaaca aagagaatca gaatcccaat tctgatgcgc cggtgatcag atcaaaaact 660 tcagccaggt acatggagct ggtcgggtgg ctcgtggaca aggggattac ctcggagaag 720 cagtggatcc aggaggacca ggcctcatac atctccttca atgcggcctc caactcgcgg 780 tcccaaatca aggctgcctt ggacaatgcg ggaaagatta tgagcctgac taaaaccgcc 840 cccgactacc tggtgggcca gcagcccgtg gaggacattt ccagcaatcg gatttataaa 900 attttggaac taaacgggta cgatccccaa tatgcggctt ccgtctttct gggatgggcc 960 acgaaaaagt tcggcaagag gaacaccatc tggctgtttg ggcctgcaac taccgggaag 1020 accaacatcg cggaggccat agcccacact gtgcccttct acgggtgcgt aaactggacc 1080 aatgagaact ttcccttcaa cgactgtgtc gacaagatgg tgatctggtg ggaggagggg 1140 aagatgaccg ccaaggtcgt ggagtcggcc aaagccattc tcggaggaag caaggtgcgc 1200 gtggaccaga aatgcaagtc ctcggcccag atagacccga ctcccgtgat cgtcacctcc 1260 aacaccaaca tgtgcgccgt gattgacggg aactcaacga ccttcgaaca ccagcagccg 1320 ttgcaagacc ggatgttcaa atttgaactc acccgccgtc tggatcatga ctttgggaag 1380 gtcaccaagc aggaagtcaa agactttttc cggtgggcaa aggatcacgt ggttgaggtg 1440 gagcatgaat tctacgtcaa aaagggtgga gccaagaaaa gacccgcccc cagtgacgca 1500 gatataagtg agcccaaacg ggtgcgcgag tcagttgcgc agccatcgac gtcagacgcg 1560 gaagcttcga tcaactacgc agacaggtac caaaacaaat gttctcgtca cgtgggcatg 1620 aatctgatgc tgtttccctg cagacaatgc gagagaatga atcagaattc aaatatctgc 1680 ttcactcacg gacagaaaga ctgtttagag tgctttcccg tgtcagaatc tcaacccgtt 1740 tctgtcgtca aaaaggcgta tcagaaactg tgctacattc atcatatcat gggaaaggtg 1800 ccagacgctt gcactgcctg cgatctggtc aatgtggatt tggatgactg catctttgaa 1860 caataa 1866 <210> 3 <211> 1866 <212> DNA <213> Artificial Sequence <220> <223> AAV2 Rep78 example <400> 3 ctggcggggt tttacgagat tgtgattaag gtccccagcg accttgacga gcatctgccc 60 ggcatttctg acagctttgt gaactgggtg gccgagaagg agtgggagtt gccgccagat 120 tctgacttgg atctgaatct gattgagcag gcacccctga ccgtggccga gaagctgcag 180 cgcgactttc tgacggagtg gcgccgtgtg agtaaggccc cggaggccct tttctttgtg 240 caatttgaga agggagagag ctacttccac ttacacgtgc tcgtggaaac caccggggtg 300 aaatccttag ttttgggacg tttcctgagt cagattcgcg aaaaactgat tcagagaatt 360 taccgcggga tcgagccgac tttgccaaac tggttcgcgg tcacaaagac cagaaacggc 420 gccggaggcg ggaacaaggt ggtggacgag tgctacatcc ccaattactt gctccccaaa 480 acccagcctg agctccagtg ggcgtggact aatttagaac agtatttaag cgcctgtttg 540 aatctcacgg agcgtaaacg gttggtggcg cagcatctga cgcacgtgtc gcagacgcag 600 gagcagaaca aagagaatca gaatcccaat tctgacgcgc cggtgatcag atcaaaaact 660 tcagccaggt acatggagct ggtcgggtgg ctcgtggaca aggggattac ctcggagaag 720 cagtggatcc aggaggacca ggcctcatac atctccttca atgcggcctc caactcgcgg 780 tcccaaatca aggctgcctt ggacaatgcg ggaaagatta tgagcctgac taaaaccgcc 840 cccgactacc tggtgggcca gcagcccgtg gaggacattt ccagcaatcg gatttataaa 900 attttggaac taaacgggta cgatccccaa tatgcggctt ccgtctttct gggatgggcc 960 acgaaaaagt tcggcaagag gaacaccatc tggctgtttg ggcctgcaac taccgggaag 1020 accaacatcg cggaggccat agcccacact gtgcccttct acgggtgcgt aaactggacc 1080 aatgagaact ttcccttcaa cgactgtgtc gacaagatgg tgatctggtg ggaggagggg 1140 aagatgaccg ccaaggtcgt ggagtcggcc aaagccattc tcggaggaag caaggtgcgc 1200 gtggaccaga aatgcaagtc ctcggcccag atagacccga ctcccgtgat cgtcacctcc 1260 aacaccaaca tgtgcgccgt gattgacggg aactcaacga ccttcgaaca ccagcagccg 1320 ttgcaagacc ggatgttcaa atttgaactc acccgccgtc tggatcatga ctttgggaag 1380 gtcaccaagc aggaagtcaa agactttttc cggtgggcaa aggatcacgt ggttgaggtg 1440 gagcatgaat tctacgtcaa aaagggtgga gccaagaaaa gacccgcccc cagtgacgca 1500 gatataagtg agcccaaacg ggtgcgcgag tcagttgcgc agccatcgac gtcagacgcg 1560 gaagcttcga tcaactacgc agacaggtac caaaacaaat gttctcgtca cgtgggcatg 1620 aatctgatgc tgtttccctg cagacaatgc gagagaatga atcagaattc aaatatctgc 1680 ttcactcacg gacagaaaga ctgtttagag tgctttcccg tgtcagaatc tcaacccgtt 1740 tctgtcgtca aaaaggcgta tcagaaactg tgctacattc atcatatcat gggaaaggtg 1800 ccagacgctt gcactgcctg cgatctggtc aatgtggatt tggatgactg catctttgaa 1860 caataa 1866 <210> 4 <211> 2211 <212> DNA <213> Artificial Sequence <220> <223> AAV1 CAP original <400> 4 atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acttgaaacc tggagccccg aagcccaaag ccaaccagca aaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420 ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctcctc gggcatcggc 480 aagacaggcc agcagcccgc taaaaagaga ctcaattttg gtcagactgg cgactcagag 540 tcagtccccg atccacaacc tctcggagaa cctccagcaa cccccgctgc tgtgggacct 600 actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga 660 gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc 720 accaccagca cccgcacctg ggccttgccc acctacaata accacctcta caagcaaatc 780 tccagtgctt caacgggggc cagcaacgac aaccactact tcggctacag caccccctgg 840 gggtattttg atttcaacag attccactgc cacttttcac cacgtgactg gcagcgactc 900 atcaacaaca attggggatt ccggcccaag agactcaact tcaaactctt caacatccaa 960 gtcaaggagg tcacgacgaa tgatggcgtc acaaccatcg ctaataacct taccagcacg 1020 gttcaagtct tctcggactc ggagtaccag cttccgtacg tcctcggctc tgcgcaccag 1080 ggctgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcaatacgg ctacctgacg 1140 ctcaacaatg gcagccaagc cgtgggacgt tcatcctttt actgcctgga atatttccct 1200 tctcagatgc tgagaacggg caacaacttt accttcagct acacctttga ggaagtgcct 1260 ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac 1320 caatacctgt attacctgaa cagaactcaa aatcagtccg gaagtgccca aaacaaggac 1380 ttgctgttta gccgtgggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct 1440 ggaccctgtt atcggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaat 1500 tttacctgga ctggtgcttc aaaatataac ctcaatgggc gtgaatccat catcaaccct 1560 ggcactgcta tggcctcaca caaagacgac gaagacaagt tctttcccat gagcggtgtc 1620 atgatttttg gaaaagagag cgccggagct tcaaacactg cattggacaa tgtcatgatt 1680 acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg 1740 gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga 1800 gcattacctg gcatggtgtg gcaagataga gacgtgtacc tgcagggtcc catttgggcc 1860 aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc 1920 aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg 1980 gagttttcag ctacaaagtt tgcttcattc atcacccaat actccacagg acaagtgagt 2040 gtggaaattg aatgggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag 2100 tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt 2160 tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a 2211 <210> 5 <211> 2211 <212> DNA <213> Artificial Sequence <220> <223> AAV1 CAP example <400> 5 acggctgccg acggttatct acccgattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acttgaaacc tggagccccg aagcccaaag ccaaccagca aaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420 ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctcctc gggcatcggc 480 aagacaggcc agcagcccgc taaaaagaga ctcaattttg gtcagactgg cgactcagag 540 tcagtccccg atccacaacc tctcggagaa cctccagcaa cccccgctgc tgtgggacct 600 actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga 660 gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc 720 accaccagca cccgcacctg ggccttgccc acctacaata accacctcta caagcaaatc 780 tccagtgctt caacgggggc cagcaacgac aaccactact tcggctacag caccccctgg 840 gggtattttg atttcaacag attccactgc cacttttcac cacgtgactg gcagcgactc 900 atcaacaaca attggggatt ccggcccaag agactcaact tcaaactctt caacatccaa 960 gtcaaggagg tcacgacgaa tgatggcgtc acaaccatcg ctaataacct taccagcacg 1020 gttcaagtct tctcggactc ggagtaccag cttccgtacg tcctcggctc tgcgcaccag 1080 ggctgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcaatacgg ctacctgacg 1140 ctcaacaatg gcagccaagc cgtgggacgt tcatcctttt actgcctgga atatttccct 1200 tctcagatgc tgagaacggg caacaacttt accttcagct acacctttga ggaagtgcct 1260 ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac 1320 caatacctgt attacctgaa cagaactcaa aatcagtccg gaagtgccca aaacaaggac 1380 ttgctgttta gccgtgggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct 1440 ggaccctgtt atcggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaat 1500 tttacctgga ctggtgcttc aaaatataac ctcaatgggc gtgaatccat catcaaccct 1560 ggcactgcta tggcctcaca caaagacgac gaagacaagt tctttcccat gagcggtgtc 1620 atgatttttg gaaaagagag cgccggagct tcaaacactg cattggacaa tgtcatgatt 1680 acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg 1740 gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga 1800 gcattacctg gcatggtgtg gcaagataga gacgtgtacc tgcagggtcc catttgggcc 1860 aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc 1920 aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg 1980 gagttttcag ctacaaagtt tgcttcattc atcacccaat actccacagg acaagtgagt 2040 gtggaaattg aatgggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag 2100 tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt 2160 tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a 2211 <110> Helixmith Co., Ltd <120> Baculovirus Infected Cell Stock for AAV vector production and Method for manufacturing AAV vector <130> PN220161 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 2879 <212> DNA <213> Artificial Sequence <220> <223> HGF-X7d4(opti) <400> 1 atgtgggtca ccaagctgct tcctgctctg ctgctccagc acgtgctgct gcacctgctg 60 ctgctgccta tcgccatccc ctacgccgag ggccagagaa agcggagaaa cacaatccac 120 gagttcaaga aaagcgccaa gacgaccctg atcaagatcg accccgccct gaagatcaag 180 accaagaagg tgaacaccgc cgaccagtgc gccaaccggt gcaccagaaa caagggcctg 240 cctttcacct gtaaagcctt cgtgttcgac aaggccagaa agcagtgtct gtggttcccc 300 ttcaacagca tgagcagcgg cgtgaagaag gaattcggcc acgagtttga tctgtacgag 360 aacaaggact acatcagaaa ttgcatcatc ggcaagggca gaagctacaa gggtacagtg 420 tccatcacta agagtggcat caaatgtcag ccctggagtt ccatgatacc acacgaacac 480 aggtaagaac agtatgaaga aaagagatga agcctctgtc ttttttacat gttaacagtc 540 tcatattagt ccttcagaat aattctacaa tcctaaaata acttagccaa cttgctgaat 600 tgtattacgg caaggtttat atgaattcat gactgatatt tagcaaatga ttaattaata 660 tgttaataaa atgtagccaa aacaatatct taccttaatg cctcaatttg tagatctcgg 720 tatttgtgga tccttataag aaaagcaata aacaaacaag taatgatctc aaataagtaa 780 tgcaagaaat agtgagattt caaaatcagt ggcagcgatt tctcagttct gtcctaagtg 840 gccttgctca atcacctgct atcttttagt ggagctttga aattatgttt cagacaactt 900 cgattcagtt ctagaatgtt tgactcagca aattcacagg ctcatctttc taacttgatg 960 gtgaatatgg aaattcagct aaatggatgt taataaaatt caaacgtttt aaggacagat 1020 ggaaatgaca gaattttaag gtaaaatata tgaaggaata taagataaag gatttttcta 1080 ccttcagcaa aaacataccc actaattagt aaaattaata ggcgaaaaaa agttgcatgc 1140 tcttatactg taatgattat cattttaaaa ctagcttttt gccttcgagc tatcggggta 1200 aagacttgca ggagaactat tgccggaacc ccagaggcga ggaaggcggc ccctggtgct 1260 tcaccagcaa ccccgaggtg agatacgagg tgtgcgacat cccccagtgc agcgaggtcg 1320 agtgcatgac gtgcaacggc gagagctacc ggggcctgat ggaccatacc gagtctggga 1380 agatctgcca gagatgggac caccagacac ctcaccggca caagttcctg ccagaaagat 1440 atcctgacaa gggcttcgac gataactact gcagaaaccc tgacggccaa cctagacctt 1500 ggtgttacac gctgggacccc cacaccagat gggaatactg tgctattaag acatgtgccg 1560 acaataccat gaacgacaca gacgtgcctc tcgagacaac agaatgcatc cagggccagg 1620 gagaaggata tagaggtaca gtgaacacca tctggaacgg aattccatgt cagcggtggg 1680 acagccaata cccccacgag cacgatatga cccctgagaa cttcaagtgt aaagacctgc 1740 gggaaaacta ttgcagaaac ccagatggct ctgaatctcc ttggtgcttc acaaccgacc 1800 ctaatatcag agtgggctac tgcagccaga tccccaattg cgacatgagc cacggacagg 1860 actgctacag gggcaatggc aagaactaca tgggaaacct gagccagacc agaagcggcc 1920 tgacctgcag catgtgggat aagaacatgg aagatctgca cagacacatc ttctgggagc 1980 ctgatgcttc taagctgaat gagaactact gccggaaccc tgatgatgat gcccacggcc 2040 cctggtgcta cactggcaac cccctgatcc catgggacta ctgtcctatc agcagatgtg 2100 aaggcgacac cacacctacc atagttaacc tggaccaccc cgtgatcagt tgcgccaaga 2160 ccaagcagct gagagtggtg aacggcatcc ctacaagaac caacatcgga tggatggtgt 2220 ccctgagata cagaaacaag cacatctgcg gcggcagcct gatcaaggaa agctgggtcc 2280 tcaccgccag acagtgtttt cctagccggg acctgaagga ctacgaggcc tggctgggca 2340 tccacgacgt gcacggcaga ggcgacgaga agtgcaagca ggtgcttaac gtgtcccaac 2400 tggtgtacgg ccccgagggc agtgatctgg tgctgatgaa actggccaga cccgccgtgc 2460 tcgacgactt cgtgtctaca atcgacctgc ctaactacgg ctgtaccatc cccgagaaga 2520 ccagctgcag cgtgtacggc tggggctata caggcctcat taactacgac ggactgctga 2580 gagtggctca cctgtacatc atgggcaacg agaaatgctc ccagcaccac agaggcaagg 2640 tgaccctgaa cgagagcgag atctgtgcag gcgccgagaa gatcggcagc ggcccttgcg 2700 agggcgatta cggaggacct ctggtctgcg agcagcacaa gatgcggatg gtcctgggag 2760 tgatcgttcc tggcagagga tgtgccatcc ctaacagacc aggaatcttt gtgcgggtgg 2820 cctactacgc caagtggatc cacaaaatca tcctgaccta caaggtgcca cagtcttga 2879 <210> 2 <211> 1866 <212> DNA <213> Artificial Sequence <220> <223> AAV2 Rep78 original <400> 2 atgccggggt tttacgagat tgtgattaag gtccccagcg accttgacga gcatctgccc 60 ggcatttctg acagctttgt gaactgggtg gccgagaagg aatgggagtt gccgccagat 120 tctgacatgg atctgaatct gattgagcag gcacccctga ccgtggccga gaagctgcag 180 cgcgactttc tgacggaatg gcgccgtgtg agtaaggccc cggaggccct tttctttgtg 240 caatttgaga agggagagag ctacttccac atgcacgtgc tcgtggaaac caccggggtg 300 aaatccatgg ttttgggacg tttcctgagt cagattcgcg aaaaactgat tcagagaatt 360 taccgcggga tcgagccgac tttgccaaac tggttcgcgg tcacaaagac cagaaatggc 420 gccggaggcg ggaacaaggt ggtggatgag tgctacatcc ccaattactt gctccccaaaa 480 acccagcctg agctccagtg ggcgtggact aatatggaac agtatttaag cgcctgtttg 540 aatctcacgg agcgtaaacg gttggtggcg cagcatctga cgcacgtgtc gcagacgcag 600 gagcagaaca aagagaatca gaatcccaat tctgatgcgc cggtgatcag atcaaaaact 660 tcagccaggt acatggagct ggtcgggtgg ctcgtggaca aggggattac ctcggagaag 720 cagtggatcc aggaggacca ggcctcatac atctccttca atgcggcctc caactcgcgg 780 tcccaaatca aggctgcctt ggacaatgcg ggaaagatta tgagcctgac taaaaccgcc 840 cccgactacc tggtgggcca gcagcccgtg gaggacattt ccagcaatcg gatttataaa 900 attttggaac taaacgggta cgatccccaa tatgcggctt ccgtctttct gggatgggcc 960 acgaaaaagt tcggcaagag gaacaccatc tggctgtttg ggcctgcaac taccgggaag 1020 accaacatcg cggaggccat agcccacact gtgcccttct acgggtgcgt aaactggacc 1080 aatgagaact ttcccttcaa cgactgtgtc gacaagatgg tgatctggtg ggaggagggg 1140 aagatgaccg ccaaggtcgt ggagtcggcc aaagccattc tcggaggaag caaggtgcgc 1200 gtggaccaga aatgcaagtc ctcggcccag atagacccga ctcccgtgat cgtcacctcc 1260 aacaccaaca tgtgcgccgt gattgacggg aactcaacga ccttcgaaca ccagcagccg 1320 ttgcaagacc ggatgttcaa atttgaactc acccgccgtc tggatcatga ctttgggaag 1380 gtcaccaagc aggaagtcaa agactttttc cggtgggcaa aggatcacgt ggttgaggtg 1440 gagcatgaat tctacgtcaa aaagggtgga gccaagaaaa gacccgcccc cagtgacgca 1500 gatataagtg agcccaaacg ggtgcgcgag tcagttgcgc agccatcgac gtcagacgcg 1560 gaagcttcga tcaactacgc agacaggtac caaaacaaat gttctcgtca cgtgggcatg 1620 aatctgatgc tgtttccctg cagacaatgc gagagaatga atcagaattc aaatatctgc 1680 ttcactcacg gacagaaaga ctgtttagag tgctttcccg tgtcagaatc tcaacccgtt 1740 tctgtcgtca aaaaggcgta tcagaaactg tgctacattc atcatatcat gggaaaggtg 1800 ccagacgctt gcactgcctg cgatctggtc aatgtggatt tggatgactg catctttgaa 1860 caataa 1866 <210> 3 <211> 1866 <212> DNA <213> Artificial Sequence <220> <223> AAV2 Rep78 example <400> 3 ctggcggggt tttacgagat tgtgattaag gtccccagcg accttgacga gcatctgccc 60 ggcatttctg acagctttgt gaactgggtg gccgagaagg agtgggagtt gccgccagat 120 tctgacttgg atctgaatct gattgagcag gcacccctga ccgtggccga gaagctgcag 180 cgcgactttc tgacggagtg gcgccgtgtg agtaaggccc cggaggccct tttctttgtg 240 caatttgaga agggagagag ctacttccac ttacacgtgc tcgtggaaac caccggggtg 300 aaatccttag ttttgggacg tttcctgagt cagattcgcg aaaaactgat tcagagaatt 360 taccgcggga tcgagccgac tttgccaaac tggttcgcgg tcacaaagac cagaaacggc 420 gccggaggcg ggaacaaggt ggtggacgag tgctacatcc ccaattactt gctccccaaaa 480 acccagcctg agctccagtg ggcgtggact aatttagaac agtatttaag cgcctgtttg 540 aatctcacgg agcgtaaacg gttggtggcg cagcatctga cgcacgtgtc gcagacgcag 600 gagcagaaca aagagaatca gaatcccaat tctgacgcgc cggtgatcag atcaaaaact 660 tcagccaggt acatggagct ggtcgggtgg ctcgtggaca aggggattac ctcggagaag 720 cagtggatcc aggaggacca ggcctcatac atctccttca atgcggcctc caactcgcgg 780 tcccaaatca aggctgcctt ggacaatgcg ggaaagatta tgagcctgac taaaaccgcc 840 cccgactacc tggtgggcca gcagcccgtg gaggacattt ccagcaatcg gatttataaa 900 attttggaac taaacgggta cgatccccaa tatgcggctt ccgtctttct gggatgggcc 960 acgaaaaagt tcggcaagag gaacaccatc tggctgtttg ggcctgcaac taccgggaag 1020 accaacatcg cggaggccat agcccacact gtgcccttct acgggtgcgt aaactggacc 1080 aatgagaact ttcccttcaa cgactgtgtc gacaagatgg tgatctggtg ggaggagggg 1140 aagatgaccg ccaaggtcgt ggagtcggcc aaagccattc tcggaggaag caaggtgcgc 1200 gtggaccaga aatgcaagtc ctcggcccag atagacccga ctcccgtgat cgtcacctcc 1260 aacaccaaca tgtgcgccgt gattgacggg aactcaacga ccttcgaaca ccagcagccg 1320 ttgcaagacc ggatgttcaa atttgaactc acccgccgtc tggatcatga ctttgggaag 1380 gtcaccaagc aggaagtcaa agactttttc cggtgggcaa aggatcacgt ggttgaggtg 1440 gagcatgaat tctacgtcaa aaagggtgga gccaagaaaa gacccgcccc cagtgacgca 1500 gatataagtg agcccaaacg ggtgcgcgag tcagttgcgc agccatcgac gtcagacgcg 1560 gaagcttcga tcaactacgc agacaggtac caaaacaaat gttctcgtca cgtgggcatg 1620 aatctgatgc tgtttccctg cagacaatgc gagagaatga atcagaattc aaatatctgc 1680 ttcactcacg gacagaaaga ctgtttagag tgctttcccg tgtcagaatc tcaacccgtt 1740 tctgtcgtca aaaaggcgta tcagaaactg tgctacattc atcatatcat gggaaaggtg 1800 ccagacgctt gcactgcctg cgatctggtc aatgtggatt tggatgactg catctttgaa 1860 caataa 1866 <210> 4 <211> 2211 <212> DNA <213> Artificial Sequence <220> <223> AAV1 CAP original <400> 4 atggctgccg atggttatct tccagattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acttgaaacc tggagccccg aagcccaaag ccaaccagca aaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420 ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctcctc gggcatcggc 480 aagacaggcc agcagcccgc taaaaagaga ctcaattttg gtcagactgg cgactcagag 540 tcagtccccg atccacaacc tctcggagaa cctccagcaa cccccgctgc tgtgggacct 600 actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga 660 gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc 720 accaccagca cccgcacctg ggccttgccc acctacaata accacctcta caagcaaatc 780 tccagtgctt caacgggggc cagcaacgac aaccactact tcggctacag caccccctgg 840 gggtattttg atttcaacag attccactgc cacttttcac cacgtgactg gcagcgactc 900 atcaacaaca attggggatt ccggcccaag agactcaact tcaaactctt caacatccaa 960 gtcaaggagg tcacgacgaa tgatggcgtc acaaccatcg ctaataacct taccagcacg 1020 gttcaagtct tctcggactc ggagtaccag cttccgtacg tcctcggctc tgcgcaccag 1080 ggctgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcaatacgg ctacctgacg 1140 ctcaacaatg gcagccaagc cgtgggacgt tcatcctttt actgcctgga atatttccct 1200 tctcagatgc tgagaacggg caacaacttt accttcagct acacctttga ggaagtgcct 1260 ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac 1320 caatacctgt attacctgaa cagaactcaa aatcagtccg gaagtgccca aaaacaaggac 1380 ttgctgttta gccgtgggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct 1440 ggaccctgtt atcggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaat 1500 tttacctgga ctggtgcttc aaaatataac ctcaatgggc gtgaatccat catcaaccct 1560 ggcactgcta tggcctcaca caaagacgac gaagacaagt tctttcccat gagcggtgtc 1620 atgatttttg gaaaagagag cgccggagct tcaaacactg cattggacaa tgtcatgatt 1680 acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg 1740 gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga 1800 gcattacctg gcatggtgtg gcaagataga gacgtgtacc tgcagggtcc catttgggcc 1860 aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc 1920 aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg 1980 gagttttcag ctacaaagtt tgcttcattc atcacccaat actccacagg acaagtgagt 2040 gtggaaattg aatggggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag 2100 tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt 2160 tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a 2211 <210> 5 <211> 2211 <212> DNA <213> Artificial Sequence <220> <223> AAV1 CAP example <400> 5 acggctgccg acggttatct acccgattgg ctcgaggaca acctctctga gggcattcgc 60 gagtggtggg acttgaaacc tggagccccg aagcccaaag ccaaccagca aaagcaggac 120 gacggccggg gtctggtgct tcctggctac aagtacctcg gacccttcaa cggactcgac 180 aagggggagc ccgtcaacgc ggcggacgca gcggccctcg agcacgacaa ggcctacgac 240 cagcagctca aagcgggtga caatccgtac ctgcggtata accacgccga cgccgagttt 300 caggagcgtc tgcaagaaga tacgtctttt gggggcaacc tcgggcgagc agtcttccag 360 gccaagaagc gggttctcga acctctcggt ctggttgagg aaggcgctaa gacggctcct 420 ggaaagaaac gtccggtaga gcagtcgcca caagagccag actcctcctc gggcatcggc 480 aagacaggcc agcagcccgc taaaaagaga ctcaattttg gtcagactgg cgactcagag 540 tcagtccccg atccacaacc tctcggagaa cctccagcaa cccccgctgc tgtgggacct 600 actacaatgg cttcaggcgg tggcgcacca atggcagaca ataacgaagg cgccgacgga 660 gtgggtaatg cctcaggaaa ttggcattgc gattccacat ggctgggcga cagagtcatc 720 accaccagca cccgcacctg ggccttgccc acctacaata accacctcta caagcaaatc 780 tccagtgctt caacgggggc cagcaacgac aaccactact tcggctacag caccccctgg 840 gggtattttg atttcaacag attccactgc cacttttcac cacgtgactg gcagcgactc 900 atcaacaaca attggggatt ccggcccaag agactcaact tcaaactctt caacatccaa 960 gtcaaggagg tcacgacgaa tgatggcgtc acaaccatcg ctaataacct taccagcacg 1020 gttcaagtct tctcggactc ggagtaccag cttccgtacg tcctcggctc tgcgcaccag 1080 ggctgcctcc ctccgttccc ggcggacgtg ttcatgattc cgcaatacgg ctacctgacg 1140 ctcaacaatg gcagccaagc cgtgggacgt tcatcctttt actgcctgga atatttccct 1200 tctcagatgc tgagaacggg caacaacttt accttcagct acacctttga ggaagtgcct 1260 ttccacagca gctacgcgca cagccagagc ctggaccggc tgatgaatcc tctcatcgac 1320 caatacctgt attacctgaa cagaactcaa aatcagtccg gaagtgccca aaaacaaggac 1380 ttgctgttta gccgtgggtc tccagctggc atgtctgttc agcccaaaaa ctggctacct 1440 ggaccctgtt atcggcagca gcgcgtttct aaaacaaaaa cagacaacaa caacagcaat 1500 tttacctgga ctggtgcttc aaaatataac ctcaatgggc gtgaatccat catcaaccct 1560 ggcactgcta tggcctcaca caaagacgac gaagacaagt tctttcccat gagcggtgtc 1620 atgatttttg gaaaagagag cgccggagct tcaaacactg cattggacaa tgtcatgatt 1680 acagacgaag aggaaattaa agccactaac cctgtggcca ccgaaagatt tgggaccgtg 1740 gcagtcaatt tccagagcag cagcacagac cctgcgaccg gagatgtgca tgctatggga 1800 gcattacctg gcatggtgtg gcaagataga gacgtgtacc tgcagggtcc catttgggcc 1860 aaaattcctc acacagatgg acactttcac ccgtctcctc ttatgggcgg ctttggactc 1920 aagaacccgc ctcctcagat cctcatcaaa aacacgcctg ttcctgcgaa tcctccggcg 1980 gagttttcag ctacaaagtt tgcttcattc atcacccaat actccacagg acaagtgagt 2040 gtggaaattg aatggggagct gcagaaagaa aacagcaagc gctggaatcc cgaagtgcag 2100 tacacatcca attatgcaaa atctgccaac gttgatttta ctgtggacaa caatggactt 2160 tatactgagc ctcgccccat tggcacccgt taccttaccc gtcccctgta a 2211

Claims (22)

아데노-관련 바이러스(adeno-associated virus, AAV) 벡터를 생성하는 배큘로바이러스 감염 세포(baculovirus infected cell, BIC) 스탁(stock)의 제조방법:
(a) 곤충 세포를 배양하고, 배양된 곤충 세포에 AAV 벡터 발현 컨스트럭트를 포함하는 배큘로바이러스를 감염시키는 단계; 및
(b) 상기 배큘로바이러스 감염 세포를 배양하는 단계.
Method for preparing baculovirus infected cell (BIC) stocks producing adeno-associated virus (AAV) vectors:
(a) culturing insect cells and infecting the cultured insect cells with a baculovirus containing an AAV vector expression construct; and
(b) cultivating the baculovirus-infected cells.
제1항에 있어서, (c) 상기 배큘로바이러스 감염 세포를 동결시키는 단계를 추가적으로 포함하는, AAV 벡터를 생성하는 BIC 스탁의 제조방법.
The method of claim 1, further comprising the step of (c) freezing the baculovirus-infected cells.
제1항에 있어서, 상기 AAV 벡터 발현 컨스트럭트는
i) AAV 복제 단백질(AAV replication protein) 및 AAV 캡시드(AAV capsid protein)를 발현하는 Rep-Cap 서열; 또는 ii) 관심 유전자(gene of interest, GOI)를 발현하는 GOI 서열을 포함하는 것인, AAV 벡터를 생성하는 BIC 스탁의 제조방법.
The method of claim 1, wherein the AAV vector expression construct is
i) Rep-Cap sequence expressing AAV replication protein and AAV capsid protein; or ii) a method for producing a BIC stock for producing an AAV vector, comprising a GOI sequence expressing a gene of interest (GOI).
제3항에 있어서, 상기 i) Rep-Cap 서열 및 ii) GOI 서열은 서로 다른 DNA 단편에 포함되는 것인, AAV 벡터를 생성하는 BIC 스탁의 제조방법.
The method of claim 3, wherein the i) Rep-Cap sequence and ii) GOI sequence are contained in different DNA fragments.
제1항에 있어서, 상기 곤충 세포는 Sf9 세포인, AAV 벡터를 생성하는 BIC 스탁의 제조방법.
The method of claim 1, wherein the insect cells are Sf9 cells.
제1항에 있어서, 상기 배양은 110 내지 150 rpm의 혼합 조건으로 배양되는 것인, AAV 벡터를 생성하는 BIC 스탁의 제조방법.
The method of claim 1, wherein the culture is performed under mixing conditions of 110 to 150 rpm.
제1항에 있어서, 상기 배양은 30 내지 70 mL 부피의 배양 용액에서 이루어지는 것인, AAV 벡터를 생성하는 BIC 스탁의 제조방법.
The method of claim 1, wherein the culturing is performed in a culture solution with a volume of 30 to 70 mL.
제1항에 있어서, 상기 배양은 26 내지 30℃에서 이루어지는 것인, AAV 벡터를 생성하는 BIC 스탁의 제조방법.
The method of claim 1, wherein the culturing is performed at 26 to 30°C.
제1항에 있어서, 상기 배양은 pH 6.0 내지 6.4에서 이루어지는 것인, AAV 벡터를 생성하는 BIC 스탁의 제조방법.
The method of claim 1, wherein the culturing is performed at pH 6.0 to 6.4.
제1항에 있어서, 상기 배큘로바이러스의 감염은 0.1 내지 3의 MOI(multiplicity of infection)로 이루어지는 것인, AAV 벡터를 생성하는 BIC 스탁의 제조방법.
The method of claim 1, wherein the baculovirus infection is performed at a multiplicity of infection (MOI) of 0.1 to 3.
제1항 내지 제10항 중 어느 한 항에 방법에 의해 제조된 BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법:
(a) 상기 아데노-관련 바이러스(adeno-associated virus, AAV) 벡터를 생성하는 배큘로바이러스 감염 세포(baculovirus infected cell, BIC) 스탁(stock)에서 BIC 세포를 꺼내어, 상기 BIC와 동종의 곤충 세포의 집단을 포함하는 배양액에 첨가하고, 바이오리액터에서 배양하는 단계; 및
(b) 상기 (a) 단계에서 배양이 완료된 배양액으로부터 AAV 벡터를 분리하는 단계.
A method of producing an AAV vector using the BIC stock prepared by the method according to any one of claims 1 to 10:
(a) BIC cells are taken out from the baculovirus infected cell (BIC) stock producing the adeno-associated virus (AAV) vector, and the insect cells of the same species as the BIC are Adding to the culture containing the population and culturing in a bioreactor; and
(b) Isolating the AAV vector from the culture medium in which the culture was completed in step (a).
제11항에 있어서, 상기 (a) 단계의 배양은 초기 배양 세포 밀도(initial cell density)가 0.5 x 106 내지 1.2 x 106 cells/mL인, BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법.
The method of claim 11, wherein the culture in step (a) has an initial cell density of 0.5 x 10 6 to 1.2 x 10 6 cells/mL.
제11항에 있어서, 상기 (a) 단계의 배양은 배양 도중에 세포 영양 성분을 추가적으로 첨가하며 이루어지는 것인, BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법.
The method of claim 11, wherein the culturing in step (a) is performed by additionally adding cell nutrients during the culturing.
제13항에 있어서, 상기 세포 영양 성분은 글루코스, 글루타민, 효모추출물 또는 이들의 조합을 포함하는 것인, BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법.
The method of claim 13, wherein the cell nutritional component includes glucose, glutamine, yeast extract, or a combination thereof.
제11항에 있어서, 상기 배큘로바이러스 감염 세포는 i) AAV 복제 단백질(AAV replication protein) 및 AAV 캡시드(AAV capsid protein)를 발현하는 Rep-Cap 서열을 포함하는 배큘로바이러스; 및 ii) 관심 유전자(gene of interest, GOI)를 발현하는 GOI 서열을 포함하는 배큘로바이러스가 각각 감염된 2종의 세포인, BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법.
The method of claim 11, wherein the baculovirus-infected cell is: i) a baculovirus comprising a Rep-Cap sequence expressing an AAV replication protein and an AAV capsid protein; and ii) a method of producing an AAV vector using a BIC stock, which is two types of cells each infected with a baculovirus containing a GOI sequence expressing a gene of interest (GOI).
제11항에 있어서, 상기 (a) 단계의 배양시 anti-foaming agent를 1 내지 5%의 농도로 첨가하는, BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법.
The method of claim 11, wherein an anti-foaming agent is added at a concentration of 1 to 5% during culturing in step (a).
제11항에 있어서, 상기 (a) 단계의 배양시 상기 BIC는 0.01 내지 0.05의 MOI(multiplicity of infection)로 BIC와 동종의 곤충 세포 집단에 감염되는 것인, BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법.
The method of claim 11, wherein during the culture in step (a), the BIC is infected with the same insect cell population as the BIC at an MOI (multiplicity of infection) of 0.01 to 0.05. An AAV vector is generated using the BIC stock. How to.
제11항에 있어서, 상기 (a) 단계의 배양시 상기 BIC의 첨가는 상기 BIC와 동종의 곤충 세포의 배양 시작 후 8 내지 18시간 후에 이루어지는 것인, BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법.
The method of producing an AAV vector using a BIC stock according to claim 11, wherein the addition of the BIC during the culture in step (a) is performed 8 to 18 hours after the start of culture of the insect cells of the same species as the BIC. .
제11항에 있어서, 상기 (a) 단계의 배양시 상기 배큘로바이러스 감염 세포(BIC)는 1 내지 2계대의 배큘로바이러스 감염 세포인, BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법.
The method of claim 11, wherein the baculovirus-infected cells (BIC) in the culture in step (a) are 1 to 2 passage baculovirus-infected cells.
제11항에 있어서, 상기 (a) 단계의 배양시 배양액의 DO(dissolved oxygen, %)는 8 내지 16%인, BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법.
The method of claim 11, wherein DO (dissolved oxygen, %) of the culture medium during the culture in step (a) is 8 to 16%.
제11항에 있어서, 상기 (b) 단계에서 배양 완료 시점은 (a) 단계에서 BIC를 BIC와 동종의 숙주 세포 집단을 포함하는 배양액에 첨가한 후 96시간 내지 132시간인, BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법.
The method of claim 11, wherein the completion time of culture in step (b) is 96 to 132 hours after adding BIC to the culture medium containing the same host cell population as BIC in step (a), using a BIC stock. How to generate AAV vectors.
제11항에 있어서, 상기 (b) 단계에서 배양액은 생산된 AAV를 포함하는 배양액으로, 배양액 내 세포의 세포파괴 및 용해를 1회 이상 수행한 배양액인, BIC 스탁을 이용하여 AAV 벡터를 생성하는 방법.
The method of claim 11, wherein in step (b), the culture medium is a culture medium containing the produced AAV, and an AAV vector is produced using a BIC stock, which is a culture medium in which cell destruction and lysis of cells in the culture medium have been performed at least once. method.
KR1020220079310A 2022-06-28 2022-06-28 Baculovirus Infected Cell Stock for AAV vector production and Method for manufacturing AAV vector KR20240002094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220079310A KR20240002094A (en) 2022-06-28 2022-06-28 Baculovirus Infected Cell Stock for AAV vector production and Method for manufacturing AAV vector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220079310A KR20240002094A (en) 2022-06-28 2022-06-28 Baculovirus Infected Cell Stock for AAV vector production and Method for manufacturing AAV vector

Publications (1)

Publication Number Publication Date
KR20240002094A true KR20240002094A (en) 2024-01-04

Family

ID=89542582

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220079310A KR20240002094A (en) 2022-06-28 2022-06-28 Baculovirus Infected Cell Stock for AAV vector production and Method for manufacturing AAV vector

Country Status (1)

Country Link
KR (1) KR20240002094A (en)

Similar Documents

Publication Publication Date Title
US6566118B1 (en) Methods for generating high titer helper-free preparations of released recombinant AAV vectors
US6989264B2 (en) Methods for generating high titer helper-free preparations of released recombinant AAV vectors
US9567607B2 (en) Adeno-associated virus serotype I nucleic acid sequences, vectors and host cells containing same
US9441206B2 (en) Cell line for production of adeno-associated virus
EP1127150B1 (en) Adeno-associated virus serotype 1 nucleic acid sequences, vectors and host cells containing same
EP1009808B1 (en) Methods for generating high titer helper-free preparations of recombinant aav vectors
KR20200130337A (en) AAV chimera
US7091029B2 (en) High titer recombinant AAV production
CN114150021A (en) Expression cassette of gene containing overlapped open reading frames and application of expression cassette in insect cells
US20040248288A1 (en) Compositions and methods for efficient aav vector production
US20020177222A1 (en) Replication competent AAV helper functions
EP1845163A2 (en) Adeno-associated virus serotype l nucleic acid sequences, vetors and host cells containing same
KR20240002094A (en) Baculovirus Infected Cell Stock for AAV vector production and Method for manufacturing AAV vector
CN115997006A (en) Dual bifunctional vectors for AAV production
AU2003204921B2 (en) Methods for generating high titer helper-free preparations of recombinant AAV vectors
AU2022292164A1 (en) Aav manufacturing methods