KR20240001728A - Method for manufacturing dyeable polypropylene yarn and functional fabric mixed with graphene - Google Patents

Method for manufacturing dyeable polypropylene yarn and functional fabric mixed with graphene Download PDF

Info

Publication number
KR20240001728A
KR20240001728A KR1020220076786A KR20220076786A KR20240001728A KR 20240001728 A KR20240001728 A KR 20240001728A KR 1020220076786 A KR1020220076786 A KR 1020220076786A KR 20220076786 A KR20220076786 A KR 20220076786A KR 20240001728 A KR20240001728 A KR 20240001728A
Authority
KR
South Korea
Prior art keywords
graphene
coating
dyeing
spinning
fabric
Prior art date
Application number
KR1020220076786A
Other languages
Korean (ko)
Inventor
배은아
이정언
박재민
Original Assignee
주식회사 포이즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포이즈 filed Critical 주식회사 포이즈
Priority to KR1020220076786A priority Critical patent/KR20240001728A/en
Publication of KR20240001728A publication Critical patent/KR20240001728A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/07Addition of substances to the spinning solution or to the melt for making fire- or flame-proof filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H1/00Spinning or twisting machines in which the product is wound-up continuously
    • D01H1/02Spinning or twisting machines in which the product is wound-up continuously ring type
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/05Cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/0004General aspects of dyeing
    • D06P1/0012Effecting dyeing to obtain luminescent or phosphorescent dyeings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/79Polyolefins
    • D06P3/794Polyolefins using dispersed dyes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/20Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/11Oleophobic properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/25Resistance to light or sun, i.e. protection of the textile itself as well as UV shielding materials or treatment compositions therefor; Anti-yellowing treatments
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/021Moisture-responsive characteristics hydrophobic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/14Dyeability
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/22Physical properties protective against sunlight or UV radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

본 발명은 그래핀 함량 0.005 wt.%, ~ 0.1 wt% 를 포함하는 PP 원사 및 복합사가공사를 방사하는 단계;상기 그래핀을 혼입한 리사이클 PP 원사 및 복합사가공사를 방적하는 단계;상기 원단을 고일광염료로 염색 및 UV 코팅하는 단계; 친환경 발수 발유제를 처리하는 단계;상기 원단을 나노클레이, 그래핀, 탄소나노튜브, 그래핀나노플레이트, 은나노, 나노다이아몬드, 셀룰로스 나노피브릴 중 하나 이상을 포함하는 표면처리용 나노 코팅액으로 코팅하는 단계; 및 이면코팅제로 이면코팅하는 단계;를 포함하는 기능성 직물의 제조방법으로서, 그래핀을 섬유표면에 코팅할 경우의 문제점인 세탁 견뢰도 저하를 해결할 수 있고, PP 섬유의 단점인 염색성 저하문제를 보완할 수 있으며, 그래핀의 고유특성을 부여할 수 있다.The present invention includes the steps of spinning PP yarn and composite yarn including a graphene content of 0.005 wt.% and ~ 0.1 wt%; spinning recycled PP yarn and composite yarn incorporating the graphene; Dyeing and UV coating with high sunlight dye; Processing an eco-friendly water and oil repellent; coating the fabric with a nano-coating solution for surface treatment containing one or more of nanoclay, graphene, carbon nanotubes, graphene nanoplates, silver nano, nanodiamonds, and cellulose nanofibrils. step; A method of manufacturing a functional fabric including the step of coating the back side with a back coating agent, which can solve the problem of reduced washing fastness, which is a problem when coating graphene on the surface of the fiber, and complement the problem of reduced dyeability, which is a disadvantage of PP fiber. and can give graphene its unique properties.

Description

그래핀이 혼입된 가염성 폴리프로필렌 원사 및 기능성 직물의 제조방법{Method for manufacturing dyeable polypropylene yarn and functional fabric mixed with graphene}Method for manufacturing dyeable polypropylene yarn and functional fabric mixed with graphene}

본 발명은 리사이클 폴리프로필렌 스테이플 화이버와 그래핀을 첨가한 후염 가능한 폴리프로필렌 원사 및 기능성 직물에 관한 것이다.The present invention relates to piece-dyeable polypropylene yarn and functional fabrics containing recycled polypropylene staple fiber and graphene.

PP는 기능성 섬유를 제작하기에 최적의 장점을 가지고 있으나, 분자구조의 결정이 치밀하고, 소수성이므로 의류용 섬유에서 중요한 요소인 염색성이 떨어지는 문제점이 있다. 국내에서 발생하는 폴리프로필렌 스크랩의 대부분은 현실적으로 리사이클하여 사용하지 않고, 부분적으로만 재이용되고 있기는 하지만 현재까지 그래핀과의 혼용을 통해 염색성과 기능성을 발현하는 제품으로의 개발 및 상용화는 전무한 실정이다. 따라서 리사이클 폴리프로필렌 스테이플 화이버와 그래핀을 이용하여 고일광 염색을 통해 비의류용 아웃도어 직물 및 자동차용 커버 직물을 개발 및 판매할 필요가 있다. 세계적으로 PP와 그래핀은 함께 코팅하는 방식으로 사용되고 있으나, 그래핀을 코팅할 경우 세탁시 그래핀 코팅이 쉽게 떨어져 나갈 수 있어 세탁 내구성을 유지하기 힘들다.PP has the optimal advantage for producing functional fibers, but its molecular structure is dense and hydrophobic, so it has the problem of poor dyeability, which is an important factor in clothing fibers. Although most of the polypropylene scrap generated in Korea is not realistically recycled and is only partially reused, there has been no development or commercialization of products that exhibit dyeability and functionality through mixing with graphene to date. . Therefore, there is a need to develop and sell non-clothing outdoor fabrics and automobile cover fabrics through high-daylight dyeing using recycled polypropylene staple fiber and graphene. Globally, PP and graphene are used by coating together, but when coating with graphene, the graphene coating can easily come off during washing, making it difficult to maintain washing durability.

본 발명은 폴리프로필렌 섬유 제조과정에서 그래핀을 첨가함으로써 기존 폴리프로필렌 섬유의 장점을 극대화하고 리사이클 폴리프로필렌 스테이플 화이버를 사용하여 원가를 절감하고, 탄소발생량을 저감하는 후염이 가능한 새로운 폴리프로필렌 원사 및 기능성 직물을 제조하는 것을 목적으로 한다.The present invention maximizes the advantages of existing polypropylene fibers by adding graphene during the polypropylene fiber manufacturing process, reduces costs by using recycled polypropylene staple fiber, and provides a new polypropylene yarn and functionality that can be piece-dyed to reduce carbon emissions. The purpose is to manufacture textiles.

본 연구개발을 통하여 PP 섬유의 내열성 및 후염성의 단점을 보완하고, 150 ℃에서 용융되는 문제점과 PP 고유의 분자구조 및 소수성 특성 때문에 후염이 용이하지 않는 문제점을 해결할 수 있다.Through this research and development, the shortcomings of PP fiber's heat resistance and piece-dyeing properties can be corrected, and the problems of melting at 150 ℃ and the difficulty of piece-dyeing due to PP's unique molecular structure and hydrophobic characteristics can be solved.

현재 시장 제품으로 된 PP필라멘트 원사의 강도(5D, 40mm)를 그래핀을 혼입하여 향후 저데니어 강도(3D, 40mm)까지 개발하는 것을 목적으로 한다. The purpose is to develop the strength of the currently marketed PP filament yarn (5D, 40mm) to low denier strength (3D, 40mm) by incorporating graphene.

재 시장 제품으로 된 PP방적사 강도(300D/45F급)를 그래핀을 혼입하여 향후 저데니어 강도(200D/45F급)까지 개발하는 것을 목적으로 한다. The purpose is to develop the strength of remarketed PP spun yarn (300D/45F grade) to low denier strength (200D/45F grade) by incorporating graphene.

리사이클 폴리프로필렌 스테이플 화이버와 그래핀을 첨가하여 후염 가능한 3 denier급의 고데니어 원사를 제조하고 3 denier급의 원사를 이용하여 20수 옥스포드 직물 제직하는 것을 목적으로 한다.The purpose is to manufacture 3-denier high-denier yarn that can be piece-dyed by adding recycled polypropylene staple fiber and graphene, and to weave 20-count Oxford fabric using 3-denier yarn.

또한 고일광 염색 및 스프레이 코팅을 이용하여 리사이클이 가능한 아웃도어용 비의류 쿠션 배딩 커버 및 자동차 커버 직물 제작하는 것을 목적으로 한다.In addition, the purpose is to produce recyclable outdoor non-clothing cushion bedding covers and car cover fabrics using high-day light dyeing and spray coating.

본 발명은 하기를 포함하는 기능성 직물의 제조방법에 관한 것이다.The present invention relates to a method for producing functional fabrics comprising:

그래핀 함량 0.005 wt.%, ~ 0.1 wt% 를 포함하는 PP 원사 및 복합사가공사를 방사하는 단계;Spinning PP yarn and composite yarn containing graphene content of 0.005 wt.%, ~0.1 wt%;

상기 그래핀을 혼입한 리사이클 PP 원사 및 복합사가공사를 방적하는 단계;Spinning recycled PP yarn and composite yarn incorporating the graphene;

상기 원단을 고일광염료로 염색 및 UV 코팅하는 단계, Dyeing and UV coating the fabric with a high sunlight dye,

친환경 발수 발유제를 처리하는 단계;Processing an eco-friendly water and oil repellent agent;

상기 원단을 나노클레이, 그래핀, 탄소나노튜브, 그래핀나노플레이트, 은나노, 나노다이아몬드, 셀룰로스 나노피브릴 중 하나 이상을 포함하는 표면처리용 나노 코팅액으로 코팅하는 단계; 및Coating the fabric with a nano-coating solution for surface treatment containing one or more of nanoclay, graphene, carbon nanotubes, graphene nanoplates, silver nano, nanodiamonds, and cellulose nanofibrils; and

이면코팅제로 이면코팅하는 단계;A step of back coating with a back coating agent;

를 포함하는 기능성 직물의 제조방법.A method of manufacturing a functional fabric comprising.

여기서 상기 방사 단계에서는 50~150℃에서 건조, 방사온도 250℃~260℃, 커팅길이가 40mm(±2)인 것을 특징으로 한다.Here, the spinning step is characterized by drying at 50 to 150°C, spinning temperature of 250°C to 260°C, and cutting length of 40 mm (±2).

또한 방적시 Ring Compact 방식으로 방적하는 것을 특징으로 한다.In addition, it is characterized by spinning in the Ring Compact method.

또한 염색단계에서 NaOH+MSA 용액에 80℃에서 20분간 세정하는 것을 특징으로 한다.Additionally, the dyeing step is characterized by washing in NaOH+MSA solution at 80°C for 20 minutes.

상기 염색시 UV흡수제를 염료와 함께 투입하며, 안정된 염착 및 고일광 견뢰도를 위한 염착 승온 곡선의 승온속도 (2도/분), 135℃ 에서 60분 처리하는 것을 특징으로 한다.During the dyeing, a UV absorber is added together with the dye, and the dyeing temperature rise curve for stable dyeing and high sunlight fastness is characterized by a temperature increase rate (2 degrees/min) and treatment at 135°C for 60 minutes.

한편, 이면코팅시 공기투과도는 최소 5이상 최대 50이하인 것을 특징으로 한다.Meanwhile, when coating the back side, the air permeability is characterized as a minimum of 5 and a maximum of 50 or less.

최종적으로 상기 제조방법에 따라 그래핀이 혼입된 기능성 직물을 제공할 수 있다.Finally, a functional fabric incorporating graphene can be provided according to the above manufacturing method.

본 연구개발을 통하여 그래핀이 혼입되어 있는 폴리프로필렌을 방사함으로써, 그래핀을 섬유표면에 코팅할 경우의 문제점인 세탁 견뢰도 저하를 해결할 수 있고, PP 섬유의 단점인 염색성 저하문제를 보완할 수 있으며, 그래핀의 고유특성을 부여할 수 있다. PP 소재에 그래핀을 0.1%만 첨가하여도 내열성이 30% 향상되는 것으로 알려져 있어 PP 섬유의 단점은 보완하고, 장점은 더욱 부각시킬 수 있다.Through this research and development, by spinning polypropylene mixed with graphene, it is possible to solve the problem of reduced washing fastness, which is a problem when coating graphene on the fiber surface, and to complement the problem of reduced dyeability, which is a disadvantage of PP fiber. , can give graphene its unique properties. It is known that adding just 0.1% of graphene to PP material improves heat resistance by 30%, which can compensate for the shortcomings of PP fiber and further highlight its advantages.

폴리프로필렌 섬유에 그래핀을 첨가함으로써, 염색이 불가한 폴리프로필렌 섬유의 한계를 극복함과 동시에, 신규 폴리프로필렌 섬유 제조하고, 제조된 원사를 이용한 직물의 설계 및 제직 염색 후가공 공정을 통한 국내 및 해외 시장이 요구하는 제품화를 달성할 수 있다. By adding graphene to polypropylene fibers, the limitations of polypropylene fibers that cannot be dyed are overcome, and at the same time, new polypropylene fibers are manufactured, and the design and weaving of fabrics using manufactured yarns is carried out domestically and overseas through the dyeing post-processing process. It is possible to achieve the product that the market demands.

리사이클 폴리프로필렌 화이버에 그래핀 적용을 통해 고기능화 및 고부가가치화하고 폐기(소각, 매립 등) 대상인 폴리프로필렌 스크랩을 리사이클 하는데 있어 그래핀의 적용을 통해 고기능화 및 고부가가치화 함으로써 자원 재활용에 따른 신규 매출 효과와 폐기에 발생 되는 비용 절감 그리고 폐기 시 발생할 수 있는 CO2 발생을 저감할 수 있다.By applying graphene to recycled polypropylene fiber, it is made highly functional and adds value, and by applying graphene to recycle polypropylene scrap that is subject to disposal (incineration, landfill, etc.), it becomes highly functional and adds value, resulting in new sales and disposal through resource recycling. It can reduce costs and reduce CO2 emissions that may occur during disposal.

도 1은 리사이클 가염 PP 원사 및 복합사가공사 제조 전체 공정을 나타낸 도면
도 2는 Type1, Type2 1차 방사 비교표
도 3은 Type1, Type2 2차 방사 비교표
도 4는 Type1, Type2 3차 방사 비교표
도 5는 그래핀 PP 방적사 물성표
도 6은 랩스케일 rPP/그래핀 필름제조 공정 및 물성평가를 나타낸다.
도 7은 초고속 원심방사의 회전속도 조건에 따른 섬유 표면 분석 FE-SEM 이다.
도 8은 rPP 직물의 염색 및 코팅에 따른 표면특성을 확인하기 위한 개발 제품의 FE-SEM 이다.
도 9 및 도 10은 염색 및 코팅에 따른 복합직물(생지/염색시료/코팅시료)의 접촉각 평가 사진이다.
도 11은 개발제품의 물성 평가 모식도이다.
도 12 및 도 13은 본 발명의 원사 및 직물의 물성을 나타낸 표이다.
Figure 1 is a diagram showing the entire manufacturing process of recycled dyed PP yarn and composite yarn work.
Figure 2 is a comparison table of Type1 and Type2 primary radiation.
Figure 3 is a comparison table of Type1 and Type2 secondary radiation.
Figure 4 is a comparison table of Type1 and Type2 tertiary radiation.
Figure 5 is a physical property table of graphene PP spun yarn
Figure 6 shows the lab-scale rPP/graphene film manufacturing process and physical property evaluation.
Figure 7 is a FE-SEM analysis of the fiber surface according to the rotation speed conditions of ultra-high-speed centrifugal spinning.
Figure 8 is a FE-SEM of a developed product to confirm the surface characteristics of rPP fabric according to dyeing and coating.
Figures 9 and 10 are photos of the contact angle evaluation of composite fabric (raw material/dyed sample/coated sample) according to dyeing and coating.
Figure 11 is a schematic diagram of physical property evaluation of the developed product.
Figures 12 and 13 are tables showing the physical properties of the yarn and fabric of the present invention.

1. One. 그래핀graphene 분석 및 방사공정 개선 Improvement of analysis and radiation process

그래핀 코팅제를 효과적으로 제조하기 위해 유기 화합물이나 고분자들을 잘 용해시킬 수 있는 휘발성 유기 용매 활용방안 분석하였으며, 기능성 코팅액 개발을 위한 선행연구로 각 나노 재료의 분산성 향상을 위해 표면 개질연구를 진행하였으며, 용매에 따른 개질 전/후 분산성을 평가하였다.In order to effectively manufacture graphene coatings, we analyzed the use of volatile organic solvents that can easily dissolve organic compounds or polymers, and as a preliminary study to develop functional coating solutions, surface modification research was conducted to improve the dispersibility of each nanomaterial. Dispersibility was evaluated before and after modification depending on the solvent.

기존 Polyester 화이버 제작 설비를 참고하여 그래핀 PP 화이버 특성에 맞게 공정 개선 및 기술 개발하였다By referring to existing polyester fiber production facilities, we improved the process and developed technology to suit the characteristics of graphene PP fiber.

기존 화이버 라인의 문제점 및 해결방안Problems and solutions of existing fiber lines

1) 표면의 거칠기 1) Surface roughness

PP는 Polyester에 비해 표면의 거칠기가 좋지 않아 원사 및 원단의 부드럽지 못한 문제가 있었고, PP Fiber 방사시 공정개선(방사온조,건조방법)을 이용하여 공정효율 향상으로 인한 표면의 부드러움을 유지하였다. 또한, 그래핀 m/b의 첨가로 인한 원사의 코팅효과로 부드러운 터치를 유지하였다.Compared to polyester, PP has a poor surface roughness, so there was a problem with the yarn and fabric not being smooth. When spinning PP fiber, process improvement (spinning temperature, drying method) was used to maintain surface softness due to improved process efficiency. In addition, a soft touch was maintained due to the coating effect of the yarn due to the addition of graphene m/b.

2) 토출압력 2) Discharge pressure

방사시 실린더 히터(h1 ~ h9)의 온도 설정과 토출량의 상관관계를 보완하고, 건조온도 및 벨트속도을 조정하였다.During spinning, the correlation between the temperature settings of the cylinder heaters (h1 to h9) and the discharge amount was improved, and the drying temperature and belt speed were adjusted.

3) 경화 현상3) Hardening phenomenon

PP는 저온(165℃)의 융점을 지닌 소재로써 기존의 Polyester 화이버의 온도 조건과는 차별된 온도 컨트롤이 요구됨(MAX TEMP : 260℃) PP is a material with a low temperature (165℃) melting point, which requires temperature control that is different from that of existing polyester fibers (MAX TEMP: 260℃).

4) 커팅 길이4) Cutting length

그래핀 PP 화이버의 균제도 및 방적시 인장강도 향상을 안정적으로 유지하기 위하여 화이버의 커팅 길이의 조절은 매우 중요하므로, PP Fiber의 커팅길이를 40mm(±2) 사이로 조절하면서 화이버의 안정성을 찾았다.Controlling the cutting length of the fiber is very important in order to stably maintain the uniformity of the graphene PP fiber and improve the tensile strength during spinning. Therefore, the stability of the fiber was found by adjusting the cutting length of the PP fiber to between 40 mm (±2).

그래핀 M/B 개발Graphene M/B development

액상그래핀 코팅방식의 PP - 그래핀 M/B 생산, 싸이클론 방식PP with liquid graphene coating - graphene M/B production, cyclone method

당사의 방사기에 맞는 M/B의 농도 투입 - SIDE HOPPER 투입량 : 최대 10%Input M/B concentration suitable for our emitter - SIDE HOPPER input amount: up to 10%

원사 및 원단의 염색시 컬러 표출에 최대한 지장이 없는 WHITE GRAPHRNR 채택Adoption of WHITE GRAPHRNR with minimal disruption to color expression when dyeing yarn and fabric

방사조건확립 및 분석Establishment and analysis of radiation conditions

Graphene M/B 함량에 따라 Type1, Type2로 구분하여 방사 조건 확립하였다.Spinning conditions were established by dividing them into Type 1 and Type 2 according to the Graphene M/B content.

PP 화이버 생산 목표 수립Establishing PP fiber production goals

처음 방사로 그래핀의 특성을 확인하기 위해 방적사용 화이버 생산 방식 적용Applying a fiber production method for spinning to confirm the properties of graphene through first spinning.

유제 Mixing 조건 분석Analysis of emulsion mixing conditions

Emulsion Mixing 량, 농도, 순도 조절Control of emulsion mixing amount, concentration, and purity

유제 Mixing 조건표Emulsion Mixing Condition Table

방사 시험 radiation test

Graphene M/B 함량에 따라 Type1, Type2로 구분하고 방사 조건표와 유제 Mixing 조건에 맞춰 1차 방사 진행하였다.Depending on the Graphene M/B content, it was divided into Type 1 and Type 2, and the first spinning was performed according to the spinning condition table and emulsion mixing conditions.

1차 방사 조건표Primary radiation condition table

Type1 1차 방사 결과 Type1 primary radiation result

Type2 1차 방사 결과Type2 primary radiation result

○ 2차 방사 조건표○ Secondary radiation condition table

○ Type1 2차 방사 결과○ Type 1 secondary radiation result

○ Type2 2차 방사 결과○ Type 2 secondary radiation result

○ 1 ~2차 방사시 문제점 및 해결방안○ Problems and solutions during 1st and 2nd radiation

○ 그래핀이 함유됨에 따라 같은 온도에서 MI가 낮아짐○ As graphene is contained, MI decreases at the same temperature.

○ MI의 변화에 따라 전체적인 온도의 조건이 낮아짐○ As MI changes, the overall temperature conditions decrease.

○ 3차 방사 조건표○ Tertiary radiation condition table

○ Type1 3차 방사 결과 ○ Type 1 tertiary radiation result

○ Type2 3차 방사 결과○ Type2 tertiary radiation result

○ 3차례 방사 시험 결과, 그래핀 함량이 Type1 0.05%, Type2 0.1%로 두 배 차이가 나지만, 물성 결과값은 3차례 모두 큰 차이가 없는 것으로 확인됨○ As a result of three spinning tests, it was confirmed that the graphene content was two times different, at 0.05% for Type 1 and 0.1% for Type 2, but there was no significant difference in the physical property results for all three times.

○ 따라서 경제적 가치, 가성비, 시험성적서 결과 등을 고려하여 Type1 방사 조건으로 양산을 진행하겠음○ Therefore, considering economic value, cost-effectiveness, test report results, etc., we will proceed with mass production under Type 1 radiation conditions.

○ 최종 방사 조건표○ Final radiation condition table

○ Type1 최종 방사 결과 ○ Type1 final radiation result

○ 최종 PP 화이버 생산 목표 달성○ Achievement of final PP fiber production goal

*방적사 생산*Spun yarn production

생산된 PP (3 denier, 섬유장 40 mm) staple fiber를 이용한 100 % 방적사 제조하였다. 기존의 Ring 방식으로 방적시 제직 원단의 필링 상태가 좋지 않으므로, 따라서 Ring -> Ring Compact 으로 방적방식 변경하였다. 100% spun yarn was manufactured using produced PP (3 denier, fiber length 40 mm) staple fiber. When spinning with the existing ring method, the pilling condition of the woven fabric was not good, so the spinning method was changed from Ring to Ring Compact.

T/M 변동에 따른 원사의 인장 및 Tensile and tension of yarn according to T/M changes 제직weaving 가동률 분석을 위한 방적사제조 Spun yarn manufacturing for operation rate analysis

혼타 - 소면 - 정소면 - 연조 - 조방- 정방 - 권사(제품)의 공정 진행을 순차적으로 진행하였다.The processes of honta - carding - straight cotton - rolling - roughing - spinning - winding (product) were carried out sequentially.

최종 시제품 제작을 위해 정량적 목표에 따라 성능 평가Evaluate performance against quantitative objectives for final prototyping

- PP 그래핀 방적사 정량적 목표 - PP graphene spun yarn quantitative target

그래핀 PP 방적사 물성은 도 5에 나타내었다.The physical properties of graphene PP spun yarn are shown in Figure 5.

2. 2. 그래핀graphene 분산 및 배합 Dispersion and mixing

1) 그래핀 분산 및 배합 recipe 확립 연구1) Research on establishing graphene dispersion and mixing recipe

2) 그래핀의 작용기 도입을 통한 분산성 개선 연구2) Research on improving dispersibility through introduction of functional groups in graphene

개질 유무에 따른 그래핀의 분산성 평가 Evaluation of dispersibility of graphene with or without modification

<< 그래핀graphene 개질유무Modified or not 및 함량에 따른 and according to content rPPrPP // 그래핀graphene 나노 복합필름 제조 및 물성 평가> Nanocomposite film manufacturing and physical property evaluation>

그래핀 개질에 따른 나노복합필름의 물성 변화를 확인하기 위하여 물성평가를 실시하였다. 개질 전/후에 따른 차이가 크게 나타났으며, 개질 전 그래핀이 포함되는 경우 인장강도 저하가 확인되었으며, 함량이 증가할수록 크게 하락하는 것을 확인하였다. 이는 미개질 그래핀이 고분자 매트릭스 내 균일하게 분산되지 못하고 응집된 결과로 확인하였다. 반면, 개질 그래핀이 포함되는 경우 극소량(0.005 wt.%) 포함되는 경우에도 인장강도가 향상되는 것을 확인할 수 있었으며, 0.01 wt.% 이상에서 크게 향상되는 것을 확인할 수 있었다.(도 6 참조) A physical property evaluation was conducted to confirm changes in the physical properties of the nanocomposite film due to graphene modification. There was a significant difference before and after modification, and when graphene before modification was included, a decrease in tensile strength was confirmed, and it was confirmed that it decreased significantly as the content increased. This was confirmed to be the result of unmodified graphene not being uniformly dispersed within the polymer matrix and agglomerating. On the other hand, when modified graphene was included, it was confirmed that the tensile strength was improved even when a very small amount (0.005 wt.%) was included, and it was confirmed that it was significantly improved above 0.01 wt.% (see Figure 6).

<PP 및 <PP and rPPrPP matrix 강화를 위한 최적 Optimal for matrix reinforcement 그래핀graphene 조건 확립> Establishing conditions>

3) 3) 그래핀graphene 분산 나노복합섬유 방사 공정 최적화 Optimization of distributed nanocomposite fiber spinning process

- 나노복합섬유 방사 공정 중, 응고욕의 욕비에 따른 방사 공정 최적화 연구를 진행하였고, rPP/그래핀 용매:비용매 비율을 달리하여 고화 속도 조절을 통한 섬유 형태 및 물성 제어 연구를 실시하였다. - During the nanocomposite fiber spinning process, a study was conducted to optimize the spinning process according to the bath ratio of the coagulation bath, and a study was conducted to control the fiber shape and physical properties by controlling the solidification speed by varying the rPP/graphene solvent:non-solvent ratio.

<Lab. scale rPP/그래핀 방사 (욕비=70:30)><Lab. scale rPP/graphene radiation (bark ratio=70:30)>

<Lab. scale rPP/그래핀 방사 (욕비=75:25)><Lab. scale rPP/graphene radiation (bark ratio=75:25)>

<Lab. scale rPP/그래핀 방사 (욕비=80:20)><Lab. scale rPP/graphene radiation (bark ratio=80:20)>

<Lab. scale rPP/그래핀 방사 (욕비=85:15)><Lab. scale rPP/graphene radiation (bark ratio=85:15)>

r PP / 그래핀 나노복합섬유 그래핀 함량 최적화 r PP / graphene nanocomposite fiber graphene content optimization

rPP/그래핀 나노복합섬유의 최적 그래핀 함량 확인을 위해 그래핀 함량에 따른 방사거동 및 물성 거동을 확인하였다. 그래핀 함량이 0.005 wt.%에서 0.1 wt.%로 높아질수록 그래핀 응집 현상에 의한 섬유 표면의 불균일화가 일어났다. To confirm the optimal graphene content of the rPP/graphene nanocomposite fiber, the spinning behavior and physical property behavior according to the graphene content were confirmed. As the graphene content increased from 0.005 wt.% to 0.1 wt.%, the surface of the fiber became uneven due to graphene aggregation.

<그래핀 함량 0.005 wt.% 섬유 방사 공정도><Graphene content 0.005 wt.% fiber spinning process>

<그래핀 함량 0.01 wt.% 섬유 방사 공정도><Graphene content 0.01 wt.% fiber spinning process>

<그래핀 함량 0.05 wt.% 섬유 방사 공정도><Graphene content 0.05 wt.% fiber spinning process>

<그래핀 함량 0.1 wt.% 섬유 방사 공정도><Graphene content 0.1 wt.% fiber spinning process>

원심방사를 이용한 using centrifugal spinning rPPrPP // 그래핀graphene 나노복합섬유 제조 및 최적 조건 확립 Manufacturing nanocomposite fibers and establishing optimal conditions

- 초고속 용융원심방사 공정 중 회전속도(rpm) 조건에 따른 rPP/그래핀 나노복합섬유를 제조하였으며, 조건에 따른 나노복합섬유의 특성 평가를 진행하였다.- rPP/graphene nanocomposite fibers were manufactured according to rotation speed (rpm) conditions during the ultra-high-speed melt centrifugal spinning process, and the properties of the nanocomposite fibers were evaluated according to the conditions.

회전속도는 6,000 ~ 10,000rpm 범위에서 측정하였으며, 조건에 따른 표면 특성, 섬유 직경 및 직경 분포 특성 확인을 위해 FE-SEM 측정을 진행하였다. 낮은 회전속도(6,000 rpm)에서는 거친 표면 및 상대적으로 두꺼운 평균 직경(3 ㎛)을 가지는 반면, 속도가 증가할수록 표면이 매끄러워지고, 평균 직경이 줄어드는 것을 확인할 수 있었다. 또한, 섬유 직경의 편차도 회전속도가 증가할수록 줄어드는 경향을 확인할 수 있으며, 이는 회전속도가 높아짐에 따라 높은 점도의 방사 용융체에 가해지는 전단응력이 강해져 균일한 형상의 섬유 형태를 가지게 된 결과로 확인할 수 있다.The rotation speed was measured in the range of 6,000 to 10,000 rpm, and FE-SEM measurements were conducted to confirm surface characteristics, fiber diameter, and diameter distribution characteristics according to conditions. At low rotation speeds (6,000 rpm), it had a rough surface and a relatively thick average diameter (3 ㎛), while as the speed increased, the surface became smoother and the average diameter decreased. In addition, it can be seen that the variation in fiber diameter tends to decrease as the rotation speed increases. This can be confirmed as a result of the shear stress applied to the high-viscosity spinning melt becoming stronger as the rotation speed increases, resulting in a uniform fiber shape. You can.

초고속 용융원심방사 공정 중 방사온도(℃) 조건에 따른 rPP/그래핀 나노복합섬유를 제조하였으며, 조건에 따른 나노복합섬유의 특성 평가를 진행하였다. 온도 조건은 240 ~ 260℃ 범위에서 측정하였으며, 온도 조건에 따른 표면 특성, 섬유 직경 및 직경 분포 특성 확인을 위해 FE-SEM 측정을 진행하였다.rPP/graphene nanocomposite fibers were manufactured according to spinning temperature (°C) conditions during the ultra-high-speed melt centrifugal spinning process, and the properties of the nanocomposite fibers were evaluated according to the conditions. Temperature conditions were measured in the range of 240 to 260°C, and FE-SEM measurements were conducted to confirm surface characteristics, fiber diameter, and diameter distribution characteristics according to temperature conditions.

낮은 온도 조건(240℃)에서 방사된 섬유는 큰 섬유 직경을 가지며, 섬유 간 직경 편차도 크게 나타나는 반면, 250℃ 이상의 온도 조건에서는 섬유 직경이 가늘어지는 것을 확인하였다. 이는 240℃에서 방사를 위한 용융체가 충분한 흐름성을 가지지 못해 나타난 결과로 보인다.(도 7) It was confirmed that fibers spun at low temperature conditions (240°C) had large fiber diameters and large diameter differences between fibers, while the fiber diameters became thinner at temperature conditions above 250°C. This appears to be the result of the melt not having sufficient flowability for spinning at 240°C (Figure 7).

4) 기능성 나노입자 선정 및 기능성 코팅액 개발4) Selection of functional nanoparticles and development of functional coating solution

<용매에 따른 나노재료의 분산성 평가 및 기능성 코팅액 개발 연구><Evaluation of dispersibility of nanomaterials according to solvent and research on development of functional coating solution>

기능성 코팅액 개발을 위한 선행연구로 각 나노 재료의 분산성 향상을 위해 표면 개질연구를 진행하였으며, 용매에 따른 개질 전/후분산성을 평가하였다. 최적 기능성 부여를 위해 다양한 나노클레이, 그래핀, 탄소나노튜브, 그래핀나노플레이트, 은나노, 나노다이아몬드, 셀룰로스 나노피브릴 등 나노 재료를 기반으로 하는 코팅액을 제조하였으며, 분산 및 코팅 성능 평가를 진행하였다. As a preliminary study to develop a functional coating solution, surface modification research was conducted to improve the dispersibility of each nanomaterial, and dispersibility before and after modification was evaluated depending on the solvent. To provide optimal functionality, coating solutions based on various nanomaterials such as nanoclay, graphene, carbon nanotube, graphene nanoplate, silver nano, nanodiamond, and cellulose nanofibril were prepared, and dispersion and coating performance were evaluated. .

<나노입자 함량에 따른 기능성 코팅액 제조(MMT)><Manufacture of functional coating solution according to nanoparticle content (MMT)>

<나노입자 함량에 따른 기능성 코팅액 제조(Ag)><Manufacture of functional coating solution according to nanoparticle content (Ag)>

<나노입자 함량에 따른 기능성 코팅액 제조(ND)><Manufacture of functional coating solution according to nanoparticle content (ND)>

<나노입자 함량에 따른 기능성 코팅액 제조(GNP)><Manufacture of functional coating solution according to nanoparticle content (GNP)>

<나노입자 함량에 따른 기능성 코팅액 제조(GO)><Manufacture of functional coating solution according to nanoparticle content (GO)>

<나노입자 함량에 따른 기능성 코팅액 제조(CNT)><Manufacture of functional coating solution according to nanoparticle content (CNT)>

<코팅 조건에 따른 나노 복합직물 물성 확인 및 최적 조건 평가><Confirmation of nanocomposite fabric properties according to coating conditions and evaluation of optimal conditions>

코팅 공정 변수(점도/도포량)를 조절하여 코팅을 진행하였으며, 조건에 따른 물성 평가를 통해 최적의 코팅 조건을 확인하였다.Coating was performed by adjusting the coating process variables (viscosity/application amount), and optimal coating conditions were confirmed through evaluation of physical properties according to conditions.

박막형 코팅을 위한 점도 범위인 2.0 ~ 3.0 Pa.s 조건에서 코팅을 진행하였으며, 동일 도포량 조건에서 점도에 따른 물성비교를 실시하였다.Coating was carried out under conditions of 2.0 ~ 3.0 Pa.s, which is the viscosity range for thin film coating, and physical properties were compared according to viscosity under the same application amount conditions.

동일 도포량일 때 2.0 Pa.s 점도 조건에서 MD 방향으로 우수한 인장강도를 나타내는 것을 확인할 수 있었고, TD 방향으로 인장강도가 소폭 감소하는 것을 확인하였다. 또한 인열강도의 증가도 확인되었으며, 이는 2.0 Pa.s 조건에서 코팅액의 섬유 간 침투가 용이한 결과로 생각된다.It was confirmed that the same application amount showed excellent tensile strength in the MD direction under the viscosity condition of 2.0 Pa.s, and that the tensile strength decreased slightly in the TD direction. In addition, an increase in tear strength was confirmed, which is thought to be a result of the easy penetration of the coating liquid between fibers under the condition of 2.0 Pa.s.

기본적으로 도포량이 증가할수록 물성이 향상되는 것을 확인할 수 있으며, 기능성 코팅액 종류 및 농도의 최적 조건을 확인하기 위하여 각 나노필러의 함량에 따른 물성 평가를 진행하였다.Basically, it can be seen that the physical properties improve as the application amount increases. In order to confirm the optimal conditions for the type and concentration of the functional coating liquid, physical property evaluation was conducted according to the content of each nanofiller.

필러 함량은 각각 1, 3, 5 wt.%로 차이를 두고 비교하였으며, 점도 조건 (2 Pa.s)과 도포량 조건 (5g/m2)은 고정하여 진행하였다. 나노 필러의 종류와 상관없이 함량에 따른 물성의 큰 차이를 보이지는 않았으나, 나노 입자의 종류에 따라 물성 거동에 차이를 보인다.The filler content was compared at 1, 3, and 5 wt.%, respectively, and the viscosity condition (2 Pa.s) and application amount condition (5 g/m 2 ) were fixed. Regardless of the type of nanofiller, there was no significant difference in physical properties depending on the content, but there was a difference in physical property behavior depending on the type of nanoparticle.

MMT와 GO의 경우 물성이 가장 크게 향상되는 경향을 보였으며, 이는 개질에 의한 MMT 및 GO의 관능기에 의한 코팅액과 섬유 간 상호작용에 의한 결과로 보인다.In the case of MMT and GO, the physical properties tended to improve the most, and this appears to be the result of the interaction between the coating solution and the fiber due to the functional groups of MMT and GO through modification.

ND, GNP 및 CNT의 경우 3 wt.% 조건까지는 함량이 증가할수록 물성이 소폭 향상되는 경향을 보였으나, 5 wt.% 조건에서 오히려 하락하는 경향을 보였다. 이는 나노 복합체에서 보편적으로 나타나는 거동으로 일정 함량 이상의 나노 필러가 포함되는 경우 결점(defect)으로 작용한 결과로 보인다.In the case of ND, GNP, and CNT, the physical properties tended to improve slightly as the content increased up to 3 wt.%, but showed a tendency to decrease at 5 wt.%. This is a common behavior in nanocomposites and appears to be the result of a defect when more than a certain amount of nanofiller is included.

Ag의 경우 함량이 증가할수록 물성이 감소하는 경향을 보였으며, 이는 Ag 입자와 코팅액 간 상호작용이 약하게 작용한 결과이며, 또한 Ag의 구형 입자가 고분자 사슬간 미끄러짐을 유발한 결과로 보인다.In the case of Ag, the physical properties tended to decrease as the content increased, which appears to be the result of a weak interaction between Ag particles and the coating solution, and also the result of spherical Ag particles causing slippage between polymer chains.

5) 개발 제품 물성 평가 및 최적 조건5) Evaluation of developed product properties and optimal conditions

FE-SEM을 이용한 표면 분석 ;rPP 직물의 염색 및 코팅에 따른 표면특성을 확인하기 위하여 개발 제품의 FE-SEM 분석을 진행하였다. 매끄러운 표면과 원형 단면 등 PP 직물의 일반적인 특징을 SEM 이미지에서 확인할 수 있으며, 각 시료의 SEM 이미지를 비교하면 코팅된 rPP 직물은 표면에 코팅액 침투되어 있음을 확인하였다.Surface analysis using FE-SEM; FE-SEM analysis of the developed product was conducted to confirm the surface characteristics of rPP fabric according to dyeing and coating. General characteristics of PP fabrics, such as smooth surface and circular cross-section, can be confirmed in SEM images, and when comparing the SEM images of each sample, it was confirmed that the surface of the coated rPP fabric was penetrated with a coating solution.

rPP 직물을 구성하는 섬유 간 공간에도 코팅액이 일부 침투됨을 확인할 수 있으며, 해당 현상에 의한 나노 복합직물 특성을 코팅 전/후 인장강도 거동을 통해 확인하였다.(도 8)It was confirmed that some of the coating liquid penetrated into the space between the fibers that make up the rPP fabric, and the properties of the nanocomposite fabric due to this phenomenon were confirmed through the tensile strength behavior before and after coating (Figure 8).

- 염색 및 코팅에 따른 복합직물(생지/염색시료/코팅시료)의 접촉각 평가를 진행하였다. 앞/뒤 방향에 대해 각각 진행하였으며, 물과 오일에 대한 접촉각을 측정 후 평가하였다.- Contact angle evaluation of composite fabrics (raw material/dyed sample/coated sample) according to dyeing and coating was conducted. Each was conducted in the front and back directions, and the contact angles for water and oil were measured and evaluated.

- 염색 및 코팅 유무에 관계없이 앞면의 접촉각이 뒷면의 접촉각보다 크게 나타나는 것을 확인하였으며, 이는 제직, 염색 및 코팅 공정상 표면 차이가 발생한 결과로 보인다. - It was confirmed that the contact angle on the front side was larger than the contact angle on the back side regardless of the presence or absence of dyeing and coating. This appears to be the result of surface differences during the weaving, dyeing, and coating processes.

- 또한 코팅 시료의 앞면에서 물/오일에 대한 접촉각이 크게 나타나는 것을 확인 할 수 있었으며, 이는 개발 제품의 발수-발유 처리에 의한 결과로 확인되었다.(도 9, 도 10) - In addition, it was confirmed that the contact angle for water/oil was large on the front side of the coating sample, and this was confirmed to be the result of the water-repellent treatment of the developed product (Figures 9 and 10).

<개발제품의 물성 평가><Evaluation of physical properties of developed products>

- 코팅 전/후의 개발제품의 물성 거동 확인을 위한 미처리 rPP와 코팅된 rPP 직물의 인장강도를 측정 후 비교하였다. 모든 샘플은 경사 방향과 위사 방향 모두 측정을 진행하였으며, 각 시료는 5회 측정하였다.(도 11)- The tensile strengths of untreated rPP and coated rPP fabrics were measured and compared to confirm the physical behavior of the developed product before and after coating. All samples were measured in both the warp and weft directions, and each sample was measured 5 times (Figure 11).

- 미처리 rPP 직물 및 코팅된 rPP 직물의 CD 방향 인장강도는 55MPa와 28MPa로 이는 코팅직물의 미코팅된 섬유가닥이 미처리 rPP 직물보다 강한 인장강도를 나타내었는데, 이는 코팅액의 침투에 의한 섬유 간 거리가 벌어진 결과로 생각됨. 반면 MD 방향의 인장강도는 증가한 것으로 확인되었다. - The tensile strength in the CD direction of the untreated rPP fabric and the coated rPP fabric was 55 MPa and 28 MPa, which means that the uncoated fiber strands of the coated fabric showed a stronger tensile strength than the untreated rPP fabric, which is due to the distance between fibers due to penetration of the coating solution. I think it was the result of what happened. On the other hand, the tensile strength in the MD direction was confirmed to have increased.

- 코팅액 농도, 공정 중 장력 등 공정변수 조절 통해 최종 제품의 물성 조절이 가능할 것으로 생각되었다. - It was thought that it would be possible to control the physical properties of the final product by adjusting process variables such as coating solution concentration and tension during the process.

- rPP 직물의 인열강도를 측정결과, 미처리 직물과와 코팅직물 간의 유의미한 차이는 보이지 않았으나, 염색 공정 중 저하되는 인장-인열 강도를 보완한 것을 확인할 수 있었다. - As a result of measuring the tear strength of rPP fabric, there was no significant difference between the untreated fabric and the coated fabric, but it was confirmed that the tensile-tear strength that decreased during the dyeing process was compensated.

3. 직물의 제조3. Manufacturing of fabrics

1) 직물 소재 선정 및 1) Selection of fabric material and 제직weaving 조건 확립 Establishing conditions

현재 대부분의 아웃도어용 자동차 커버 제품의 경우, 대부분 고강도의 Polyester 원단을 사용하고 있으며, 이러한 제품들의 경우 야외에서 사용되므로 찢어지거나 스크래치가 일어나는 현상을 최소화하기 위해 강도가 높은 직물을 주로 사용한다. 현재 기존 제품의 경우 그래핀을 함유하지 않은 일반 Polyester DTY 직물로서 주로 옥스퍼드형 Plain 직물 구조를 가진다. 단 Rubicon 및 트럭 커버용 옥스퍼드 후직 직물의 설계에서 ㈜쏠텍에서 생산한 PP 그래핀 20S‘ 원사를 위사로 사용하여 자동차 커버 직물을 설계하였다. 기본 시장이 요구하는 제품 특성을 고려하여 다음과 같이 설계하였다.Currently, most outdoor car cover products use high-strength polyester fabric. Since these products are used outdoors, high-strength fabric is mainly used to minimize tearing or scratching. Currently, existing products are general polyester DTY fabrics that do not contain graphene and mainly have an Oxford-type plain fabric structure. However, in the design of the Oxford thick woven fabric for Rubicon and truck covers, a car cover fabric was designed using PP Graphene 20S' yarn produced by Soltech Co., Ltd. as the weft. Considering the product characteristics required by the basic market, it was designed as follows.

<제직 원단 1종 SPEC ><1 type of woven fabric SPEC>

이러한 제품들의 경우 야외에서 사용되므로 찢어지거나 스크래치가 일어나는 현상을 최소화하기 위해 강도가 높은 직물을 주로 사용하였다. P150d/72f 경사를 세우기 위해 원사 PES75d/36f DTY SD 약 250kg을 구매 후 2개의 원사를 합사하여 150d 경사 빔 및 사이징공정을 진행하여 생산하였다.Since these products are used outdoors, high-strength fabrics are mainly used to minimize tearing or scratching. To build the P150d/72f warp yarn, approximately 250kg of PES75d/36f DTY SD yarn was purchased, two yarns were combined, and a 150d warp beam and sizing process were performed to produce the yarn.

PP 그래핀 20'S 방적사 100kg을 준비하였다. 100 kg of PP graphene 20'S spun yarn was prepared.

직물의 설계를 시작으로 경사준비 - 경사 빔 제작 - 사이징 - 통경 - 직기 상대 - 제직의 공정 진행을 순차적으로 진행하였으며 생지 약 2000y를 준비하였다.Starting with the design of the fabric, the following processes were carried out sequentially: warp preparation - warp beam production - sizing - diameter - loom machine - weaving, and approximately 2000y of raw material was prepared.

2) 2) 고일광염료High-day light dye , , UV흡수제UV absorber 선정 및 염색조건 확립 : Establishment of selection and dyeing conditions: 아크로마사acromasa 염료 사용 dye use

PET용 고일광 3원색 및 Grey 염료 개발 - 분산 염료의 종류 및 특성Development of three primary colors and gray dyes for PET - Types and characteristics of disperse dyes

아조(Azo) 계열은 색상이 다양하고 Color strength 우수 (Anthra Quinone 계열의 2~4배), 습윤, 승화 견뢰도 우수, 경제성 우수한 반면, Dull Color 일광에 의해 분해되기 쉽고 일부 염료는 pH가 제한적이다. 안트라퀴논(Anthra Quinone) 계열은 밝은 컬러(옐로우, 블루, 레드), 일광견뢰도 탁월, 균염성 우수, 염색 재현성이 우수한 반면, Week Color Strength, 습윤견뢰도 열세(특히, Nylon)한 단점이 있다.The Azo series has a variety of colors, has excellent color strength (2 to 4 times that of the Anthra Quinone series), has excellent wetting and sublimation fastness, and is economical, while Dull Color is easily decomposed by sunlight and some dyes have limited pH. While the Anthra Quinone series has bright colors (yellow, blue, red), excellent light fastness, excellent leveling ability, and excellent dyeing reproducibility, it has the disadvantage of being inferior in week color strength and wet fastness (especially to Nylon).

3) 일광 3원색 염료 설정3) Daylight 3 primary color dye settings

3원색의 일광(63℃ X 300hr) 조건으로 테스트 후 우수한 성능의 염료를 선정하였다.After testing under three primary colors of sunlight (63℃

4) 컬러 또는 제형 개발4) Color or formulation development

각 염료의 제형 비율을 달리하여 개발을 위한 시험을 진행하였으며, 가장 최적화된 제형 비율인 표시된 8번 항목으로 Formulation 도출하여 최적의 Grey 제형 설정하였다. Tests were conducted for development by varying the formulation ratio of each dye, and the optimal gray formulation was established by deriving a formulation using item 8, which is the most optimized formulation ratio.

최적의 Grey 제형에 대한 각 염료 비율Ratio of each dye for optimal Gray formulation

5) 최적의 염색조건 확립 및 5) Establishment of optimal dyeing conditions and 염착성dyeing ability 향상을 위한 for improvement 염착곡선dyeing curve 수정 correction

최적의 염색 공정 개발Development of optimal dyeing process

6) 염색 공정 개발을 통한 6) Through dyeing process development 염착성dyeing ability 향상(온도 10도 상승) Improvement (temperature rises by 10 degrees)

○ 그래핀을 혼입한 PP 원사 염색 조건 확립○ Establishment of dyeing conditions for PP yarn incorporating graphene

7) 최적의 환원세정(R/C) 개선7) Optimal reduction cleaning (R/C) improvement

기존의 경우 NaOH+Hydro 용액에 80℃ 에서 10분간 세정하였으나, 세정 후 미고착된 분산염료의 제거가 잘 일어나지 않고 원단 표면에 남게 되어 견뢰도가 저하되었다. 이러한 견뢰도의 저하를 최대한 방지하기 위해 환원세정공정을 개선하였다.In the past, it was washed in NaOH+Hydro solution at 80℃ for 10 minutes, but after washing, the unfixed disperse dye was not easily removed and remained on the surface of the fabric, resulting in a decrease in fastness. In order to prevent this decrease in fastness as much as possible, the reduction cleaning process was improved.

NaOH+MSA 용액에 80℃에서 20분간 세정 후에는 기존의 방법보다 훨씬 많은 미고착 분산염료가 제거됨을 확인하였다. After washing with NaOH+MSA solution at 80°C for 20 minutes, it was confirmed that much more unfixed disperse dye was removed than with the existing method.

8) 8) 카커버용For car cover 자외선 흡수제의 선택 및 개발 Selection and development of ultraviolet absorbers

현재 상용화된 UV-흡수제 3종을 분석하여 자외선 B영역에서 가장 자외선 흡수율이 높은 제품을 선정하였다.We analyzed three types of currently commercialized UV-absorbers and selected the product with the highest UV absorption rate in the UV B region.

최적의 UV-흡수제 Optimal UV-absorber

- B영역의 흡수제를 선정- Select absorbent for area B

9) 양산 위한 9) For mass production 랩딥lap dip 및 염색공정 진행 and dyeing process progress

- S-Type의 고일광 염료의 선정 및 Recipe - S-Type high-daylight dye selection and recipe

당 연구개발에서는 가장 많은 판매량이 가능한 Grey color의 염료 및 레시피를 활용하여 진행하기로 결정하였다. In our research and development, we decided to proceed using gray color dye and recipe, which had the highest sales volume.

UV흡수제 Dorafast ST-New 농도 3% 설정 및 염색시 염료와 함께 투입이 핵심이며 안정된 염착 및 고일광 견뢰도를 위한 염착 승온 곡선의 승온속도 (2도/분), 최적 염색온도(135도) 및 시간(60분) 준수하며 실험을 통해 정해진 recipe를 이용하여 정원I&C에서 양산용 염색을 진행하기 위한 랩딥을 진행하였으며 이중 그레이칼라를 염색 투입하였다. 각 컬러별로 4~5가지 선택지 중 가장 적합한 컬러를 선정하여 염색공정을 진행하고자 하였으며, 이 컬러들을 토대로 염색, 발수·발유·방충·항균가공, 시레 가공을 차례로 진행해 시제품 제작을 위한 원단을 생산하였다.The key is to set the UV absorber Dorafast ST-New concentration to 3% and add it along with the dye when dyeing. For stable dyeing and high sunlight fastness, the temperature increase rate of the dyeing temperature rise curve (2 degrees/min), optimal dyeing temperature (135 degrees) and time ( 60 minutes) and using the recipe determined through experimentation, a lab dip was carried out for dyeing for mass production at Garden I&C, and gray color was dyed. We wanted to proceed with the dyeing process by selecting the most appropriate color out of 4 to 5 options for each color. Based on these colors, dyeing, water-repellent, oil-repellent, insect-repellent, anti-bacterial, and sire processing were sequentially performed to produce fabric for prototype production. .

10) 친환경 10) Eco-friendly 발수water repellent 발유제oil repellent 혼합에 따른 친환경 Eco-friendly by mixing 발수발유제Water and oil repellent 개발 및 처리 Development and processing

우선적으로, 각기 다른 발수제와 발유제의 혼합비를 이용하여 테스트를 진행하였다. 발수제의 경우 에이디씨코리아를 통해 구입한 C6 type 제품을 사용하였고, 발유제의 경우 스폰코리아를 통해 구매한 나노입자분산 실란 발유제를 사용하였다.First, tests were conducted using different mixing ratios of water and oil repellent. For the water repellent, a C6 type product purchased through ADC Korea was used, and for the oil repellent, a nanoparticle-dispersed silane oil repellent purchased from Spon Korea was used.

모든 테스트는 혼합비와 밀링시간을 제외한 나머지 조건은 모두 동일하게 진행하였다. 혼합액에 원단을 5분간 침지한 후 실험용 패딩기를 이용해 압력을 주어 200℃에서 3분간 건조하여 처리를 완료하였고, 발수/발유 처리 원단의 초기 발수도와 발유도 및 세탁 5회 후 발수도와 발유도를 측정하였다.All tests were conducted with the same conditions except for mixing ratio and milling time. After immersing the fabric in the mixed solution for 5 minutes, the treatment was completed by applying pressure using a laboratory padding machine and drying at 200°C for 3 minutes. The initial water and oil repellency of the water/oil repellent treated fabric was measured, and the water and oil repellency after 5 washes were measured. did.

초기 발수도, 초기 발유도 및 세탁 5회 후 발유도의 경우 혼합비율에 관계없이 일정한 결과 값이 도출되었으나 세탁 5회 후 발수도에서 성능 차이를 보였다.In the case of initial water repellency, initial oil repellency, and oil repellency after 5 washes, consistent result values were obtained regardless of the mixing ratio, but there was a performance difference in water repellency after 5 washes.

위의 표와 같이 총 5가지의 혼합비율 조건 중, 가장 발수성능이 우수한 조건은 발수제 60g/L와 발유제 60g/L의 혼합비율 조건이나, 발수제 55g/L와 발유제 55g/L의 혼합비율 조건 또한 우수한 성능을 나타내고 있으며 가교제 첨가 시, 더욱 향상된 성능을 기대할 수 있을 것으로 예상하였다.As shown in the table above, among the five mixing ratio conditions, the condition with the best water repellent performance is the mixing ratio of 60 g/L of water repellent and 60 g/L of oil repellent, or the mixing ratio of 55 g/L of water repellent and 55 g/L of oil repellent. The conditions also showed excellent performance, and it was expected that further improved performance could be expected when a cross-linking agent was added.

양산시 발수제와 발유제 사용량을 고려했을 때 후자의 조건이 더욱 유리하다고 판단하여, 이에 발수제 55g/L와 발유제 60g/L의 혼합비율 조건에서 가교제를 추가하여 2차 테스트를 진행하였다.Considering the amount of water and oil repellent used during mass production, the latter condition was judged to be more advantageous, so a second test was conducted by adding a crosslinking agent under the mixing ratio of 55 g/L of water repellent and 60 g/L of oil repellent.

가교제를 첨가한 각 혼합비율에 따른 혼합액을 이용해 시료를 제조하였으며, 이에 대한 초기 발수도, 초기 발유도 및 세탁 5회 후 발유도를 측정하였다. 발수제의 양은 조금 적게 하더라도 발유제를 증가할수록 좋은 결과를 나타내었으나. 과도한 발수제와 발유제 혼합은 원가 비중을 상승시켰다.Samples were prepared using mixed solutions with crosslinking agents added at each mixing ratio, and the initial water repellency, initial oil repellency, and oil repellency after washing 5 times were measured. Even if the amount of water repellent was slightly small, better results were obtained as the amount of oil repellent was increased. Excessive mixing of water and oil repellent increased the cost ratio.

본 출원인은 발유제 55g/L, 발수제 60g/L로 이번 제품의 경우 양산을 진행하더라도 카커버 직물이 요구하는 물성을 가질 수 있음을 확인하며 실험데이터는 추후 다른 신제품 개발에 활용하며 양산에서는 약간 조건을 변경하도록 결정하였다.The applicant confirms that this product can have the physical properties required for car cover fabric even if mass production is carried out with 55g/L of oil repellent and 60g/L of water repellent. The experimental data will be used in the development of other new products in the future, and there are some conditions for mass production. It was decided to change.

11) 나노입자 분산 실리콘 코팅 기술 확립11) Establishment of nanoparticle dispersed silicon coating technology

UV 내구성에 가장 중요한 요소인 표면처리용 코팅액의 제조를 위해서는 원단 표면에 박막 코팅이 가능한 혼합 수지 액의 점도를 설정하는 것이 중요한 요소이다.In order to manufacture a coating solution for surface treatment, which is the most important factor in UV durability, setting the viscosity of the mixed resin solution that allows thin film coating on the surface of the fabric is an important factor.

현재 나노실리카 콜로이드입자가 분산된 실리콘 제품의 경우 IPA(Iso-prophyl Alcohol) Base로 저 농도화가 가능하며 적정 점도의 혼합 코팅액을 만들기 위해 어느 정도의 IPA phr을 혼합해야 하는지에 대한 결정이 상당히 중요한 요소이다. Currently, in the case of silicone products with dispersed nano-silica colloidal particles, low concentration can be achieved with IPA (Iso-propyl Alcohol) Base, and the decision on how much IPA phr should be mixed to create a mixed coating solution of appropriate viscosity is a very important factor. am.

표면처리 코팅제의 매질인 실리콘의 점도를 작업성에 용의하도록 2,000~3000cp로 고정시켜 진행하였다.The viscosity of silicon, the medium for surface treatment coating, was fixed at 2,000 to 3,000 cp to ensure workability.

1~3 micron 이하의 박막의 코팅을 위해서는 line speed를 30~40m/min로 설정하는 것이 중요하며 knife의 thickness는 0.5mm이하가 적합하며 2,000-3,000cps 정도의 점도가 적당하며, 이는 다양한 예비 실험을 통해 이미 검증되었다.For coating thin films of 1 to 3 microns or less, it is important to set the line speed to 30 to 40 m/min, the thickness of the knife is less than 0.5 mm, and a viscosity of about 2,000 to 3,000 cps is appropriate, which can be used in various preliminary experiments. It has already been verified through .

따라서 나노입자 분산실리콘 50phr기준 IPA 함량의 적정 기준은 50phr로 배합을 할 경우 약 2,320cps 정도의 점도를 얻을 수 있다.Therefore, the appropriate standard for IPA content based on 50 phr of nanoparticle dispersed silicon is that when mixed at 50 phr, a viscosity of about 2,320 cps can be obtained.

이러한 결과를 토대로 당사에서는 아래와 같이 나노입자 분산실리콘 50phr기준으로 IPA 50phr의 배합 조건이 가능하도록 혼합수지 코팅용액을 제조하였다.Based on these results, we prepared a mixed resin coating solution to enable mixing conditions of 50 phr IPA based on 50 phr nanoparticle dispersed silicon as shown below.

사용된 나노입자 분산 실리콘의 종류로는 드라이트리트 사의 40SK 알코올 분산 실리콘 제품과 스폰코리아 사의 STP-18 나노 입자 콜리이드 분산제품을 혼합사용 하였으며 이 두 제품은 나노콜로이드 분산 및 축합반응을 통해 희석되어 만들어진 제품으로 자외선에 강한 특성이 있으며 제품의 소수성의 증대 및 결합력이 우수하고 자동차 표면에 스크래치나 도색의 변색을 유발하지 않는 특성을 가진다.The type of nanoparticle dispersed silicone used was a mixture of Drytreat's 40SK alcohol dispersion silicone product and Spon Korea's STP-18 nanoparticle colloidal dispersion product. These two products were diluted through nanocolloid dispersion and condensation reaction. This product is resistant to ultraviolet rays, increases the hydrophobicity of the product, has excellent bonding power, and does not cause scratches or discoloration of the car surface.

예상 나노콜로이드 고체 함량(%)의 경우 각 배합 후 코팅 시 알코올이 제거된 후 표면 코팅제 내부에 함유되는 Solid 함량으로서 표면상에 얼마만큼의 나노콜로이드 입자가 분산되어 있는지를 나타내며 이는 원가적인 측면과 기능을 감안하여 중요한 요소이다.In the case of the expected nanocolloid solid content (%), it is the solid content contained inside the surface coating agent after the alcohol is removed during coating after each formulation, and indicates how much nanocolloid particles are dispersed on the surface, which is related to cost aspects and functions. This is an important factor to consider.

* 이면 코팅 공정 기술* Backside coating process technology

이면 코팅층의 적정 Add on을 조사하기위해 아래와 같은 결과를 도출하였다.To investigate the appropriate add on of the back coating layer, the following results were derived.

실제 코팅이 너무 미세하게 Add on 될 경우 세탁후 발유도는 4급 이상으로 유지되나 발수도의 경우 세탁 후 내구성이 소실되어 낮은 수치를 나타내었으며, 이는 코팅층이 표면 발수 발유층을 지지하지 않을 경우 세탁후 내구성의 저하가 발생할 수 있어 적정 코팅제가 원단 내부로 침투해 들어가 발수 발유층을 지지하도록 해주어야 한다. 이때 코팅 전 단계의 공기투과도가 중요한 역할을 하는 침투를 위해서 공기투과도를 10이상으로 유지하는 것이 좋음. 특히 높은 공기투과성은 원단과 원단사이의 공극이 크다는 것을 의미하며 코팅제의 침투가 용이하지만, 너무 큰 공기 투과층으로 인해 코팅제가 많이 들어갈 경우 원단이 하드해 지는 경향이 있어 최소 5이상 최대 50이하이면 충분하다고 판단하였다.If the actual coating is added too finely, the oil repellency after washing is maintained at grade 4 or higher, but the water repellency shows a low value due to loss of durability after washing. This is because the coating layer does not support the surface water-repellent and oil-repellent layer. Since durability may deteriorate after use, an appropriate coating agent must penetrate into the fabric to support the water-repellent and oil-repellent layer. At this time, it is recommended to maintain air permeability above 10 for penetration, where air permeability in the pre-coating stage plays an important role. In particular, high air permeability means that the voids between the fabrics are large, making it easy for coatings to penetrate. However, if a large amount of coating agent is added due to an air permeability layer that is too large, the fabric tends to become hard. It was judged to be sufficient.

코팅후의 공기투과도의 경우에는 내수압의 증대를 위해 5이하로 컨트롤 하는 것이 적합하며 이는 5이하에서 투습도가 높은 제품을 선택하는 것이 우수하나 내수압을 고려해야 한다.In the case of air permeability after coating, it is appropriate to control it to 5 or less to increase the water pressure. It is better to select a product with high moisture permeability below 5, but the water pressure must be taken into consideration.

따라서 고내구성 발수를 위해 설정된 데이터를 분석해보면 Coating add on이 5gsm 이상에서는 공기투과도와 투습도가 급격히 저하하는 특징을 보이고 있으며, 발수도는 현저하게 강화되는 것을 보여준다.Therefore, analyzing the data set for high durability water repellency shows that air permeability and moisture permeability decrease rapidly when the coating add on is above 5gsm, and water repellency is significantly strengthened.

이러한 결과치를 이용하여 투습도 높으며 내수압은 실제 카커버 직물이 일상적인 비를 막을 수 있는 2000mmH2O의 내수압이 필요로 하는 약 4g~5g/sqm 코팅제 Add on을 가지는 코팅을 다음과 같은 Recipe와 실험 조건으로 진행하였다.Using these results, a coating with high moisture permeability and water resistance of about 4g~5g/sqm, which requires a water resistance of 2000mmH 2 O, which is enough for an actual car cover fabric to block everyday rain, was used with the following recipe and experimental conditions. proceeded with.

- Line Speed: 30~40m/min와 Knife는 0.5mm 작업으로 최종 제품에 표면 처리 코팅 시 4~5g/gsm정도 올라가도록 임의로 여러 번 연습 후 작업 진행하였다.- Line Speed: 30~40m/min and Knife is 0.5mm work. The work was carried out after randomly practicing several times to increase the speed to about 4~5g/gsm when coating the surface of the final product.

- Temp & Residual time: 알코올 희발 속도 및 완벽한 경화를 위한 Chamber 온도 및 잔류시간의 조건은 120도씨 60초이며 이는 PP위사가 고온에서 직물이 하드해지는 현상을 막기 위함이다. - Temp & Residual time: The chamber temperature and residual time conditions for alcohol rarefaction speed and complete curing are 120 degrees Celsius for 60 seconds to prevent the PP weft from hardening the fabric at high temperatures.

- 수분산 나노입자 분산 실리콘의 경우 150℃ 이상에서 40초 정도 경화조건을 요구함으로 Pilot Chamber 내부의 온도를 120℃에서 약 2분 정도 세팅하여 진행하여 경화가 가능하도록 시간을 늘렸다. - In the case of water-dispersed nanoparticle-dispersed silicon, curing conditions of approximately 40 seconds at 150℃ or higher are required, so the temperature inside the pilot chamber was set at 120℃ for approximately 2 minutes to extend the curing time.

12) 양산 코팅 샘플 제작12) Production of mass production coating samples

양산 조건은 기존 Pilot test 방법과 동일한 조건으로 준비된 Grey color의 타원단과 연결하여 진행하였다. 단 코팅 라인이 20m정도로 짧은 관계로 이차 Tentering 기계를 이용하여 잔류 알코올 건조 공정을 재현하였다.The mass production conditions were conducted by connecting with a gray colored oval fabric prepared under the same conditions as the existing pilot test method. However, since the coating line was short at about 20m, the residual alcohol drying process was reproduced using a secondary tentering machine.

Claims (7)

그래핀 함량 0.005 wt.%, ~ 0.1 wt% 를 포함하는 PP 원사 및 복합사가공사를 방사하는 단계;
상기 그래핀을 혼입한 리사이클 PP 원사 및 복합사가공사를 방적하는 단계;
상기 원단을 고일광염료로 염색 및 UV 코팅하는 단계,
친환경 발수 발유제를 처리하는 단계;
상기 원단을 나노클레이, 그래핀, 탄소나노튜브, 그래핀나노플레이트, 은나노, 나노다이아몬드, 셀룰로스 나노피브릴 중 하나 이상을 포함하는 표면처리용 나노 코팅액으로 코팅하는 단계; 및
이면코팅제로 이면코팅하는 단계;
를 포함하는 기능성 직물의 제조방법.
Spinning PP yarn and composite yarn containing graphene content of 0.005 wt.%, ~0.1 wt%;
Spinning recycled PP yarn and composite yarn incorporating the graphene;
Dyeing and UV coating the fabric with a high sunlight dye,
Processing an eco-friendly water and oil repellent agent;
Coating the fabric with a nano-coating solution for surface treatment containing one or more of nanoclay, graphene, carbon nanotubes, graphene nanoplates, silver nano, nanodiamonds, and cellulose nanofibrils; and
A step of back coating with a back coating agent;
A method of manufacturing a functional fabric comprising.
제1항에 있어서, 상기 방사 단계에서는 50~150℃에서 건조, 방사온도 250℃~260℃, 커팅길이가 40mm(±2)인 것을 특징으로 하는 제조방법.The manufacturing method according to claim 1, wherein in the spinning step, drying is performed at 50 to 150°C, the spinning temperature is 250°C to 260°C, and the cutting length is 40 mm (±2). 제1항에 있어서, Ring Compact 방식으로 방적하는 것을 특징으로 하는 제조방법.The manufacturing method according to claim 1, characterized in that spinning is performed using the Ring Compact method. 제1항에 있어서, 상기 염색단계에서 NaOH+MSA 용액에 80℃에서 20분간 세정하는 것을 특징으로 하는 제조방법.The manufacturing method according to claim 1, wherein in the dyeing step, the dyeing step is washed with NaOH+MSA solution at 80°C for 20 minutes. 제1항에 있어서, 상기 염색시 UV흡수제를 염료와 함께 투입하며, 안정된 염착 및 고일광 견뢰도를 위한 염착 승온 곡선의 승온속도 (2도/분), 135℃ 에서 60분 처리하는 것을 특징으로 하는 제조방법.The manufacturing method according to claim 1, wherein a UV absorber is added together with the dye during the dyeing, and the dyeing temperature rise curve for stable dyeing and high sunlight fastness is treated at a temperature increase rate (2 degrees/min) at 135° C. for 60 minutes. method. 제1항에 있어서, 상기 이면코팅시 공기투과도는 최소 5이상 최대 50이하인 것을 특징으로 하는 제조방법.The manufacturing method according to claim 1, wherein the air permeability when coating the back side is at least 5 and at most 50 or less. 제1항 내지 제6항 중 어느 한 항에 따라 제조된 그래핀이 혼입된 기능성 직물.A functional fabric incorporating graphene prepared according to any one of claims 1 to 6.
KR1020220076786A 2022-06-23 2022-06-23 Method for manufacturing dyeable polypropylene yarn and functional fabric mixed with graphene KR20240001728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220076786A KR20240001728A (en) 2022-06-23 2022-06-23 Method for manufacturing dyeable polypropylene yarn and functional fabric mixed with graphene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220076786A KR20240001728A (en) 2022-06-23 2022-06-23 Method for manufacturing dyeable polypropylene yarn and functional fabric mixed with graphene

Publications (1)

Publication Number Publication Date
KR20240001728A true KR20240001728A (en) 2024-01-04

Family

ID=89542540

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220076786A KR20240001728A (en) 2022-06-23 2022-06-23 Method for manufacturing dyeable polypropylene yarn and functional fabric mixed with graphene

Country Status (1)

Country Link
KR (1) KR20240001728A (en)

Similar Documents

Publication Publication Date Title
Morent et al. Non-thermal plasma treatment of textiles
US20160083294A1 (en) Thin film color coating method for hard-to-dye yarn
CN102628194B (en) Terylene air-jet textured yarn fabric with high color fastness
CN1083500C (en) Irregular thickness polyamide fiber and process for producing the same
TW201204897A (en) Coloured flame retardant shaped cellulosic article and products produced from it
CN108779583B (en) Dyeable polyolefin fiber and fiber structure comprising same
KR101248789B1 (en) Automobile interior fabric using PLA fiber and PET fiber
WO2014063037A1 (en) Disperse dyeing of textile fibers
US20100068516A1 (en) Thermoplastic fiber with excellent durability and fabric comprising the same
KR101216482B1 (en) Dyeing method of polyester textile for improving dyeing characteristics
JP2015510051A5 (en)
Oliveria et al. Dyeing of cotton and polyester blended fabric previously cationized with synthetic and natural polyelectrolytes
CN106987923A (en) A kind of original liquid coloring black sea-island fibre
CN102877154B (en) Method for preparing organic pigment microcapsule polyester color yarn
KR20240001728A (en) Method for manufacturing dyeable polypropylene yarn and functional fabric mixed with graphene
KR101621214B1 (en) Method of high-fastness dying yarn using ultraviolet ray hardning
EP3196352A1 (en) Method for high fastness dyeing of fibrous yarn employing uv curing
Tawiah et al. Advances in spun-dyeing of regenerated cellulose fibers
Adeakin et al. Effect of Solvent Pretreatment of Polyester Fiber on its Dye-Uptake Based on the Concept of Solubility Parameters
KR101934590B1 (en) Yarn dyeing for polyolefin fiber
KR101317606B1 (en) Polyester spun dyed yarn and preparation method thereof
US20130227759A1 (en) Fabrics Containing a Blend of Polyarylene Sulfide and Textile Fibers
Barraza et al. Performance of glass woven fabric composites with admicellar-coated thin elastomeric interphase
EP3902953A1 (en) Process for producing textile articles and textile articles obtained therefrom
KR20180051069A (en) Process Of Producing Excellent Light Resistant Sunshield Fabrics Using Modified Cross Sectional Dope Dyed Polypropylene