KR20240001542A - Estimation method for age evaluation of solar salt using relative magnesium concentration to sodium - Google Patents
Estimation method for age evaluation of solar salt using relative magnesium concentration to sodium Download PDFInfo
- Publication number
- KR20240001542A KR20240001542A KR1020220078324A KR20220078324A KR20240001542A KR 20240001542 A KR20240001542 A KR 20240001542A KR 1020220078324 A KR1020220078324 A KR 1020220078324A KR 20220078324 A KR20220078324 A KR 20220078324A KR 20240001542 A KR20240001542 A KR 20240001542A
- Authority
- KR
- South Korea
- Prior art keywords
- sodium
- sea salt
- magnesium
- relative
- salt
- Prior art date
Links
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 title claims abstract description 58
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 239000011777 magnesium Substances 0.000 title claims abstract description 58
- 229910052749 magnesium Inorganic materials 0.000 title claims abstract description 58
- 229910052708 sodium Inorganic materials 0.000 title claims abstract description 58
- 239000011734 sodium Substances 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 17
- 150000003839 salts Chemical class 0.000 title description 31
- 238000011156 evaluation Methods 0.000 title 1
- 235000002639 sodium chloride Nutrition 0.000 claims abstract description 124
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 96
- 239000011780 sodium chloride Substances 0.000 claims abstract description 94
- 238000004519 manufacturing process Methods 0.000 claims abstract description 67
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 claims abstract description 20
- 241001131796 Botaurus stellaris Species 0.000 claims description 6
- 230000008901 benefit Effects 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 description 9
- 239000013535 sea water Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 239000000470 constituent Substances 0.000 description 6
- 230000009467 reduction Effects 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052785 arsenic Inorganic materials 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000000573 anti-seizure effect Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- KLMCZVJOEAUDNE-UHFFFAOYSA-N francium atom Chemical compound [Fr] KLMCZVJOEAUDNE-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
Landscapes
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Seasonings (AREA)
Abstract
본 발명은, 천일염이 장시간 방치되면 구성 불용 원소들이 일정 비율로 빠져나가는 성질을 이용하여 ICP-AES를 통해 나트륨에 대한 상대적 마그네슘 농도를 측정함으로써 천일염의 생산연도를 보다 용이하게 추정할 수 있도록 한 나트륨에 대한 상대적 마그네슘 농도 계측에 의한 천일염 생산연도 추정방법을 제공함에 그 목적이 있다.The present invention makes it possible to more easily estimate the production year of sea salt by measuring the relative magnesium concentration to sodium through ICP-AES by taking advantage of the property that insoluble elements escape at a certain rate when sea salt is left for a long time. The purpose is to provide a method for estimating the production year of sea salt by measuring the relative magnesium concentration.
Description
본 발명은 천일염 생산연도 추정방법에 관한 것으로, 더욱 상세하게는 천일염의 제조년도와 제조지의 위변조 등으로 인한 유통과정의 불투명성을 해소하고자 ICP-AES를 이용한 나트륨에 대한 상대적 마그네슘의 농도 측정을 통해 천일염의 생산연도를 추정함으로써 천일염 유통구조의 투명성을 확보하고자 하는 나트륨에 대한 마그네슘의 상대적 농도 계측에 의한 천일염의 생산연도 추정방법에 관한 것이다.The present invention relates to a method for estimating the production year of sea salt. More specifically, in order to resolve the opacity of the distribution process due to forgery and falsification of the year of manufacture and place of manufacture of sea salt, the concentration of magnesium relative to sodium using ICP-AES is measured to determine the concentration of magnesium relative to sodium. This relates to a method of estimating the production year of sea salt by measuring the relative concentration of magnesium to sodium in order to ensure transparency in the distribution structure of sea salt by estimating the production year.
일반적으로, 국내 소금산업이 본격적으로 발달하기 시작한 것은 2008년 3월 천일염이 광물에서 식품으로 전환되면서 관련 업무가 지식경제부에서 농림수산식품부로 이관된 이후부터 소금산업이 발달하기 시작하였다. 그 동안 소금이 광물로 구분되어 관리되어오다 최근에 식용 천일염 생산에 사용되는 바닷물, 해역, 갯벌, 염전 및 기구, 자재 등에 대한 안전관리 기준이 규정되었다(해양수산부 소금산업자흥법, 법률 제11700호, 2013.03.23.자 개정).In general, the domestic salt industry began to develop in earnest in March 2008, when sea salt was converted from a mineral to a food product and related tasks were transferred from the Ministry of Knowledge Economy to the Ministry for Food, Agriculture, Forestry and Fisheries. Until now, salt has been classified and managed as a mineral, but recently, safety management standards for seawater, sea areas, mudflats, salt farms, equipment, and materials used in the production of edible sea salt have been stipulated (Ministry of Oceans and Fisheries Salt Industry Promotion Act, Law No. 11700) , revised on March 23, 2013).
그리고, 소금검사는 국립수산품질관리원(소금산업진흥법 시행령 제15조), 대한염업조합(소금산업진흥법 제35조 제1항), 목포대학교와 한국화학융합시험연구원(소금산업진흥법 시행령 제16조)에서 수행하고 있다.In addition, salt inspection is conducted by the National Fisheries Quality Management Institute (Article 15 of the Enforcement Decree of the Salt Industry Promotion Act), the Korea Salt Industry Association (Article 35 (1) of the Salt Industry Promotion Act), Mokpo University, and the Korea Testing and Research Institute (Article 16 of the Enforcement Decree of the Salt Industry Promotion Act). ) is being carried out.
아울러, 소금 품질향상과 소금산업에 대한 체계적인 육성을 통해 경쟁력 강화를 위하여 식용 천일염 생산 금지해역 지정 기준, 천일염 인증 신청기준 및 방버, 천일염 인증기관 지정, 천일염 인증품에 대한 시정명력 등을 규정하고 있다.In addition, in order to improve competitiveness by improving salt quality and systematically fostering the salt industry, it stipulates standards for designating sea salt production prohibited areas, standards and measures to apply for sea salt certification, designation of a sea salt certification body, and corrective action for sea salt certified products.
한편, 안전관리 기준에 의한 천일염 생산을 위한 해수구역 바닷물 규정은 수소이온(pH 6.5∼8.5) 농도와 총 대장균 수(1,000 이하/100ml)를 포함한 생활환경 기준, 생태기반 해수 수질 기준, 비소, 카드뮴, 납, 수은 별 해역 및 저수지 설정기준을 포함한 사람의 건강보호 기준을 포함하고 있다. 염전시설은 식용 천일염 생산과정에서 함수 또는 천일염과 직접 접촉하는 결정지 바닥재, 채염도구, 이송도구, 기계류, 임시보관을 위한 덮개 등의 기준도 포함하고 있다.Meanwhile, the seawater regulations in the seawater area for the production of sea salt according to safety management standards include living environment standards including hydrogen ion (pH 6.5∼8.5) concentration and total number of E. coli (less than 1,000/100ml), ecology-based seawater quality standards, arsenic, and cadmium. , includes standards for human health protection, including standards for setting sea areas and reservoirs for each lead and mercury. Salt farm facilities also include standards for crystallizing ground materials, salt extraction tools, transport tools, machinery, and covers for temporary storage that come into direct contact with water or sea salt during the production of edible sea salt.
또한, 제재소금, 태움-용융소금, 정제소금, 가공소금에 천일염 생산에 대한 안전관리 기준(해양수산부 고시 제2013-216호)을 새롭게 추가하고 품질기준으로 염화나트륨(70% 이상), 총 염소(40% 이상), 수분(15 % 이하), 황산이온(5% 이하) 농도 하한선을 제시하였다. 청결성 기준으로 불용분(0.15%), 모래·흙(0.2% 이하)과 페로시인화 이온(불검출, 고졀방지제) 농도를 제시하였다. 해열과 저수지에 대하여 비소(50㎍/L), 납(50㎍/L), 카드뮴(10㎍/L), 수은(0.5㎍/L) 농도를 제시하였다.In addition, new safety management standards for the production of sea salt (Ministry of Oceans and Fisheries Notification No. 2013-216) for the production of sea salt were added to sawn salt, burnt-melted salt, refined salt, and processed salt, and the quality standards were sodium chloride (more than 70%), total chlorine ( Lower limits for concentration (more than 40%), moisture (less than 15%), and sulfate ions (less than 5%) were suggested. As standards for cleanliness, the concentrations of insoluble matter (0.15%), sand/soil (less than 0.2%), and ferrophosphorus ion (non-detectable, anti-seizure agent) were presented. Concentrations of arsenic (50 ㎍/L), lead (50 ㎍/L), cadmium (10 ㎍/L), and mercury (0.5 ㎍/L) were presented for fever and reservoir.
그러나, 국내에서도 2013년도부터 수입 천일염과 국산 천일염 구분 및 유통구조 투명성 제고를 위해 국내산 천일염 포대에 부착된 라벨에 생산지역, 생산자, 생산연도를 기입하는 방법으로 국산 천일염의 이력을 관리하고 있지만, 위변조와 복제가 가능해 신뢰성이 낮다는 문제가 있다.However, in Korea, since 2013, the history of domestic sea salt has been managed by entering the production area, producer, and year of production on the label attached to the domestic sea salt bag to distinguish between imported and domestic sea salt and to improve the transparency of the distribution structure. However, forgery and alteration have been managed in Korea. There is a problem with low reliability because it can be copied.
본 발명은 종래 기술의 제반 문제점을 해결하기 위해 안출된 것으로, 천일염이 장시간 방치되면 구성 불용 원소들이 일정 비율로 빠져나가는 성질을 이용하여 ICP-AES를 통해 나트륨에 대한 상대적 마그네슘의 양을 검출함으로써 천일염의 생산연도를 보다 용이하게 추정할 수 있도록 한 나트륨에 대한 상대적 마그네슘 농도 계측에 의한 천일염 생산연도 추정방법을 제공함에 그 목적이 있다.The present invention was developed to solve all problems of the prior art. When sea salt is left for a long time, the insoluble elements in its composition escape at a certain rate by detecting the amount of magnesium relative to sodium through ICP-AES. The purpose is to provide a method for estimating the production year of sea salt by measuring the relative magnesium concentration to sodium so that the production year of can be more easily estimated.
또한, 본 발명에 따른 기술의 다른 목적은 천일염이 장시간 방치되면 구성 불용 원소들이 일정 비율로 빠져나가는 성질을 이용하여 ICP-AES를 통해 나트륨에 대한 상대적 마그네슘의 양을 검출함으로써 천일염의 생산연도를 추정함으로써 천일염의 이력관리를 통해 품질을 관리할 수 있도록 함에 그 목적이 있다.In addition, another purpose of the technology according to the present invention is to estimate the production year of the sea salt by detecting the amount of magnesium relative to sodium through ICP-AES, using the property that the constituent insoluble elements escape at a certain rate when the sea salt is left for a long time. The purpose is to manage the quality of sea salt through traceability management.
아울러, 본 발명에 따른 기술의 다른 목적은 천일염이 장시간 방치되면 구성 불용 원소들이 일정 비율로 빠져나가는 성질을 이용하여 ICP-AES를 통해 나트륨에 대한 상대적 마그네슘의 양을 검출하여 천일염의 생산연도를 추정함으로써 유통과정의 투명성을 확보할 수 있도록 함에 그 목적이 있다.In addition, another purpose of the technology according to the present invention is to estimate the production year of the sea salt by detecting the amount of magnesium relative to sodium through ICP-AES, using the property that the constituent insoluble elements escape at a certain rate when the sea salt is left for a long time. The purpose is to ensure transparency in the distribution process.
본 발명은 (1) ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectroscopy)를 통해 천일염 또는 해당 천일염으로부터 녹아 나오는 간수를 대상으로 나트륨 및 마그네슘의 농도를 측정하는 단계; (2) 측정된 나트륨 및 마그네슘 농도로부터 나트륨에 대한 상대적 마그네슘 농도를 계산하는 단계; 및 (3) 상기 나트륨에 대한 상대적 마그네슘 농도를 통해 해당 천일염의 생산연도를 추정하는, 나트륨에 대한 상대적 마그네슘 농도 계측에 의한 천일염 생산연도 추정방법을 제공한다.The present invention provides the following steps: (1) measuring the concentration of sodium and magnesium in sea salt or bittern dissolved from the sea salt through ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy); (2) calculating the relative magnesium concentration to sodium from the measured sodium and magnesium concentrations; and (3) providing a method for estimating the production year of sea salt by measuring the relative magnesium concentration to sodium, which estimates the production year of the corresponding sea salt through the relative magnesium concentration to sodium.
본 발명의 기술에 따르면 천일염이 장시간 방치되면 구성 불용 원소들이 일정 비율로 빠져나가는 성질을 이용하여 ICP-AES를 통해 나트륨에 대한 상대적 마그네슘의 양을 검출함으로써 천일염의 생산연도를 보다 용이하고, 정확하게 추정할 수가 있다.According to the technology of the present invention, when sea salt is left for a long time, the production year of sea salt is more easily and accurately estimated by detecting the amount of magnesium relative to sodium through ICP-AES by using the property that the constituent insoluble elements escape at a certain rate. I can do it.
또한, 본 발명에 따른 기술은 천일염이 장시간 방치되면 구성 불용 원소들이 일정 비율로 빠져나가는 성질을 이용하여 ICP-AES를 통해 나트륨에 대한 상대적 마그네슘의 양을 검출함으로써 천일염의 생산연도를 추정하여 천일염의 이력관리를 통해 품질을 관리할 수 있다는 장점이 발현된다.In addition, the technology according to the present invention uses the property that the constituent insoluble elements escape at a certain rate when sea salt is left for a long time to estimate the production year of sea salt by detecting the amount of magnesium relative to sodium through ICP-AES. The advantage of being able to manage quality through history management is revealed.
아울러, 본 발명에 따른 기술은 천일염이 장시간 방치되면 구성 불용 원소들이 일정 비율로 빠져나가는 성질을 이용하여 ICP-AES를 통해 나트륨에 대한 상대적 마그네슘의 양을 검출하여 천일염의 제조시기를 추정함으로써 유통과정의 투명성을 확보할 수가 있다.In addition, the technology according to the present invention utilizes the property that the constituent insoluble elements escape at a certain rate when sea salt is left for a long time, detects the amount of magnesium relative to sodium through ICP-AES, and estimates the production time of sea salt, thereby estimating the distribution process. transparency can be secured.
도 1 은 천일염 주요 구성성분인 나트륨에 대한 마그네슘의 상대적 농도를 바탕으로 도출된 생산연도를 추정할 수 있는 회귀방정식을 나타낸 그래프이다.Figure 1 is a graph showing a regression equation that can estimate the production year derived based on the relative concentration of magnesium to sodium, a major component of sea salt.
이하에서는 첨부된 도면을 참조하여 본 발명에 따른 천일염 주요 구성성분인 나트륨에 대한 마그네슘의 상대적 농도를 바탕으로 도출된 생산연도를 추정할 수 있는 회귀방정식 농도 계측에 의한 천일염 생산연도 추정방법의 바람직한 실시 예를 상세히 설명하기로 한다.Hereinafter, with reference to the attached drawings, a preferred implementation of a method for estimating the production year of sea salt by measuring the concentration of a regression equation that can estimate the production year derived based on the relative concentration of magnesium to sodium, the main component of sea salt according to the present invention, will be described. Let us explain the example in detail.
도 1 은 천일염 주요 구성성분인 나트륨에 대한 마그네슘의 상대적 농도를 바탕으로 도출된 생산연도를 추정할 수 있는 회귀방정식을 나타낸 그래프이다.Figure 1 is a graph showing a regression equation that can estimate the production year derived based on the relative concentration of magnesium to sodium, a major component of sea salt.
먼저, 본 발명에 따른 기술을 설명하기에 앞서 종래 기술의 문제점을 해결하기 위한 발명의 기술적 원리를 요약하면 다음과 같다. 천일염 생산단계는 바닷물을 햇볕에 증발시켜 소금결정을 완성하는 단계로 요약할 수 있다. 바닷물 품질안전 규정에는 수소이온 농도, 총 대장균 수와 같은 수질기준, 불용분과 모래·흙 및 페로시인화 이온과 같은 청결성 여부, 비소·납·카드뮴·수은과 같은 중금속 오염 기준을 제시하고 있다.First, before explaining the technology according to the present invention, the technical principles of the invention to solve the problems of the prior art are summarized as follows. The sea salt production stage can be summarized as the stage of completing salt crystals by evaporating seawater in the sun. Seawater quality and safety regulations present water quality standards such as hydrogen ion concentration and total number of E. coli, cleanliness such as insoluble matter, sand, soil, and ferrophosphorus ions, and heavy metal contamination standards such as arsenic, lead, cadmium, and mercury.
한편, 2013년도부터 국내 천일염 유통구조 투명성 확보를 위해 포대에 생산지역, 생산자 및 생산연도를 확인할 수 있는 라벨을 부착하는 방법으로 국산 천일염의 이력관리를 하고 있으나, 유통단계에서 천일염 생산연도를 확인할 수 있는 방법이 없다는 문제가 있다.Meanwhile, since 2013, in order to ensure transparency in the distribution structure of domestic sea salt, the history of domestic sea salt has been managed by attaching a label to the bag that identifies the production area, producer, and year of production. However, the year of sea salt production cannot be confirmed at the distribution stage. The problem is that there is no way.
따라서, 본 발명은 전술한 바와 같이 유통단계에서 천일염 생산연도를 확인할 수 있는 방법이 없다는 것에 착안하여 소금을 생산 보관하는 단계에서 소금을 구성하는 성분이 간수를 통해 일정하게 빠져나가는 특성을 이용하여 생산연도를 구분하고자 기획하게 되었다.Therefore, as described above, the present invention focuses on the fact that there is no way to confirm the production year of sea salt at the distribution stage, and produces salt by taking advantage of the characteristic that the components that make up salt are constantly released through salt water during the salt production and storage stage. It was planned to differentiate by year.
본 발명에서는 천일염 속에 포함되어 있는 나트륨에 대한 마그네슘의 상대적 농도를 ICP-AES(Inductively Coupled Plasma-Atmic Emission Spectroscopy)를 이용하여 측정하고, 측정된 나트륨에 대한 마그네슘의 상대적 농도를 통해 해당 천일염의 생산연도를 추정하는 구성으로 이루어진다.In the present invention, the relative concentration of magnesium to sodium contained in sea salt is measured using ICP-AES (Inductively Coupled Plasma-Atmic Emission Spectroscopy), and the production year of the sea salt is determined through the measured relative concentration of magnesium to sodium. It consists of a configuration that estimates .
다시 말해서, 본 발명에 따른 나트륨에 대한 마그네슘의 상대적 농도 계측에 의한 천일염의 생산연도 추정방법은 ICP-AES를 통해 소금밭이나 시장에 유통되는 천일염 또는 해당 천일염으로부터 녹아 나오는 간수를 대상으로 나트륨에 대한 마그네슘의 상대적 농도를 측정한 다음, 측정된 나트륨에 대한 마그네슘의 상대적 농도를 통해 해당 천일염의 생산연도를 추정할 수 있도록 한 구성으로 이루어진다.In other words, the method of estimating the production year of sea salt by measuring the relative concentration of magnesium to sodium according to the present invention is to estimate the production year of sea salt through ICP-AES for the sea salt distributed in salt fields or markets or the bittern dissolved from the sea salt. It is configured to measure the relative concentration of magnesium and then estimate the production year of the corresponding sea salt through the measured relative concentration of magnesium to sodium.
보다 구체적으로, 간수를 대상으로 나트륨과 마그네슘의 농도를 각각 측정하고, 마그네슘의 농도를 나트륨의 농도로 나누어서 나트륨에 대한 마그네슘의 상대적 농도를 측정한다. 천일염 내 나트륨의 농도는 일정하기 때문에, 나트륨에 대한 마그네슘의 상대적 농도를 이용하면 보다 정확하게 천일염의 생산연도를 추정할 수 있다.More specifically, the concentrations of sodium and magnesium are measured separately in jailers, and the relative concentration of magnesium to sodium is measured by dividing the concentration of magnesium by the concentration of sodium. Since the concentration of sodium in sea salt is constant, the production year of sea salt can be more accurately estimated by using the relative concentration of magnesium to sodium.
한편, 전술한 바와 같이 천일염의 생산연도를 추정하기 위하여 다양한 염전에서 실제 생산연도별 천일염을 샘플 시료로 채취하여 나트륨에 대한 마그네슘의 상대적 농도를 측정한 다음, 관련된 표를 도출함으로써 생산연도를 구분할 수 있도록 하는 이력관리 기준을 마련하였다.Meanwhile, as mentioned above, in order to estimate the production year of sea salt, samples of sea salt by actual production year were collected from various salt farms, the relative concentration of magnesium to sodium was measured, and the production year could be distinguished by deriving the related table. We have established standards for history management to ensure that
전술한 바와 같이 이력관리 기준을 통해 시중에 유통되는 천일염을 무작위로 구입하여 천일염 또는 해당 천일염으로부터 녹아 나오는 간수를 대상으로 나트륨에 대한 마그네슘의 상대적 농도를 측정한 다음, 나트륨에 대한 마그네슘의 상대적 농도를 이력관리 기준표에 의거 해당 천일염 또는 해당 천일염으로부터 녹아 나오는 간수의 생산연도를 추정하였다.As mentioned above, we randomly purchase commercially available sea salt through traceability management standards, measure the relative concentration of magnesium to sodium in the sea salt or the bittern dissolved from the sea salt, and then measure the relative concentration of magnesium to sodium. Based on the history management standard, the production year of the sea salt or the bittern dissolved from the sea salt was estimated.
한편, 전술한 바와 같은 이력관리 기준에 따른 천일염의 생산연도 추정은 ICP-AES를 통해 측정 및 계산된 감소율이 15% 이하인 경우에는 해당 천일염의 생산연도를 1년으로 추정하고, 계산된 감소율이 44% 이하인 경우에는 해당 천일염의 생산연도를 2년으로 추정하고, 계산된 감소율이 76% 이하인 경우에는 해당 천일염의 생산연도를 3년으로 추정하고, 계산된 감소율이 99% 이하인 경우에는 해당 천일염의 생산연도를 5년으로 추정한다.Meanwhile, when the production year of sea salt is estimated according to the history management standards described above, if the reduction rate measured and calculated through ICP-AES is less than 15%, the production year of the sea salt is estimated as 1 year, and the calculated reduction rate is 44%. If it is % or less, the production year of the relevant sea salt is assumed to be 2 years. If the calculated reduction rate is 76% or less, the production year of the relevant sea salt is assumed to be 3 years. If the calculated reduction rate is 99% or less, the production year of the relevant sea salt is assumed to be 3 years. The year is estimated to be 5 years.
그리고, 전술한 바와 같이 천일염 속에 반드시 포함되어 있는 나트륨에 대한 마그네슘의 상대적 농도를 측정하는 ICP-AES는 한국기초과학지원연구원에 의뢰하여 ICP-AES 장치(모델명: ULTIMA 2C, 제조사: HORIBA JOBIN YVON)을 이용하여 해상도 0.005nm(UV), 0.5nm(Visible) 법에 의해 나트륨에 대한 마그네슘의 상대적 함량을 ppm 단위로 측정하였다.And, as mentioned above, ICP-AES, which measures the relative concentration of magnesium to sodium, which is necessarily contained in sea salt, was commissioned by the Korea Basic Science Institute to use an ICP-AES device (model name: ULTIMA 2C, manufacturer: HORIBA JOBIN YVON). The relative content of magnesium to sodium was measured in ppm by a method with a resolution of 0.005 nm (UV) and 0.5 nm (Visible).
일반적으로, 바닷물의 염분농도는 35%이며, 염화나트륨(27 g/kg), 염화마그네슘(3.8 g/kg), 황산마그네슘(1.7 g/kg), 황산칼슘(1.3 g/kg), 황산칼륨(0.9 g/kg), 탄산칼슘(0.1 g/kg), 브롬화마그네슘(0.1 g/kg)으로 구성되며, 염류 사이의 상대적 비율은 염분에 상관없이 세계 어느 바다에서나 일정하다.Generally, the salinity concentration of seawater is 35%, including sodium chloride (27 g/kg), magnesium chloride (3.8 g/kg), magnesium sulfate (1.7 g/kg), calcium sulfate (1.3 g/kg), potassium sulfate ( It consists of calcium carbonate (0.9 g/kg), calcium carbonate (0.1 g/kg), and magnesium bromide (0.1 g/kg), and the relative ratios between salts are constant in all oceans of the world regardless of salinity.
한편, 바닷물에는 알칼리 금속(수소, 리튬, 나트륨, 칼륨, 루비듐, 세슘, 프랑슘)이 항상 일정한 비율로 존재하게 된다. 소금밭에서 햇빛에 의하여 수분이 증발하고 남은 천일염 결정체에도 이들 원소가 일정한 비율로 구성되며 장시간 정치시키면 구성 원소들이 일정한 비율로 빠져나가게 된다.Meanwhile, alkali metals (hydrogen, lithium, sodium, potassium, rubidium, cesium, and francium) are always present in seawater at a constant rate. The sea salt crystals remaining after moisture evaporates from the salt field due to sunlight are composed of these elements in a certain ratio, and if left to stand for a long time, the constituent elements are released at a certain rate.
전술한 바와 같이 본 발명에서는 천일염에 잔존하는 나트륨에 대한 마그네슘의 상대적 농도를 ICP-AES를 통해 측정하고, 측정된 나트륨에 대한 마그네슘의 상대적 농도를 이력관리 기준에 따라 천일염의 생산연도 추정하게 된다. As described above, in the present invention, the relative concentration of magnesium to sodium remaining in sea salt is measured through ICP-AES, and the production year of sea salt is estimated based on the measured relative concentration of magnesium to sodium according to history management standards.
[실시예 1][Example 1]
본 발명에 따른 기술을 위해서 국내 천일염 대표 생산지인 신안군 증도면 소재 소금밭에서 소금 생산을 위한 농축 바닷물과 매년 5월에서 8월 사이에 생산된 소금을 생산연도별로 구매하였다. 구매한 천일염을 마리네리 비이커에 1 Kg 충진하고, ICP-AES를 이용하여 나트륨 및 마그네슘의 농도를 측정하고, 나트륨에 대한 마그네슘의 상대적 농도를 계산하였다. 나트륨에 대한 마그네슘의 상대적 농도를 이용하여 도출한 그래프를 도 1에 나타낸다. 생산연도(x) 별 나트륨에 대한 마그네슘의 상대적 농도(y)에 관한 회귀방정식은 다음과 같다.For the technology according to the present invention, concentrated seawater for salt production and salt produced between May and August each year were purchased from a salt field located in Jeungdo-myeon, Shinan-gun, a representative production area of sea salt in Korea, by year of production. 1 Kg of purchased sea salt was filled into a marinara beaker, the concentrations of sodium and magnesium were measured using ICP-AES, and the relative concentration of magnesium to sodium was calculated. A graph derived using the relative concentration of magnesium to sodium is shown in Figure 1. The regression equation for the relative concentration of magnesium to sodium (y) by production year (x) is as follows.
y = , R² = 0.93,y = , R² = 0.93,
나트륨에 대한 마그네슘의 상대적 농도를 이용하였기 때문에, R²값(결정계수; Coefficient of Determination)이 1에 가깝고, 신뢰할 수 있음을 확인하였다. Because the relative concentration of magnesium to sodium was used, the R² value (Coefficient of Determination) was close to 1 and confirmed to be reliable.
[실시예 2][Example 2]
국내 천일염 생산지를 대표하는 신안군 증도면 소재 소금밭에서 5∼8월 사이에 생산된 천일염을 선택하여 천일염내 나트륨에 대한 마그네슘의 상대적 농도를 측정하고, 관련된 표를 도출함으로써 생산연도를 구분할 수 있는 이력관리 기준을 새롭게 제시하였다. History management that allows you to select sea salt produced between May and August in a salt field located in Jeungdo-myeon, Shinan-gun, which represents the domestic sea salt production area, measure the relative concentration of magnesium to sodium in the sea salt, and distinguish the year of production by deriving a related table. A new standard was presented.
상기 감소율은 다음과 같은 식을 통해 구해진다.The reduction rate is obtained through the following equation.
감소율(%)=생산연령 n년도의 나트륨에 대한 마그네슘의 상대적 농도/생산연령 0년도의 나트륨에 대한 마그네슘의 상대적 농도Decrease rate (%) = relative concentration of magnesium to sodium at production age n years/relative concentration of magnesium to sodium at production age 0
시중에 유통되는 천일염을 무작위로 구입하더라도 무작위로 구입한 천일염 또는 해당 천일염으로부터 녹아 나오는 간수를 대상으로 나트륨에 대한 마그네슘의 상대적 농도를 측정하게 되면 회귀 방정식을 통해 해당 천일염의 생산연도를 추정할 수가 있게 된다.Even if commercially distributed sea salt is purchased at random, if the relative concentration of magnesium to sodium is measured for the randomly purchased sea salt or the bittern dissolved from the sea salt, the year of production of the sea salt can be estimated through a regression equation. do.
이상에서와 같이 본 발명에 따른 기술은 ICP-AES를 통해 나트륨에 대한 마그네슘의 상대적 농도를 측정함으로써 천일염의 생산연도를 보다 용이하게 추정할 수가 있음은 물론, 천일염의 생산연도를 추정하여 천일염의 이력관리를 통해 품질을 관리할 수 있다. 또한, 천일염의 제조시기를 추정함으로써 유통과정의 투명성을 확보할 수가 있다.As described above, the technology according to the present invention can more easily estimate the production year of sea salt by measuring the relative concentration of magnesium to sodium through ICP-AES, as well as the history of sea salt by estimating the production year of sea salt. Quality can be controlled through management. Additionally, transparency in the distribution process can be secured by estimating the manufacturing time of sea salt.
본 발명은 전술한 실시 예에 국한되지 않고 본 발명의 기술사상이 허용하는 범위 내에서 다양하게 변형하여 실시할 수가 있다.The present invention is not limited to the above-described embodiments and can be implemented with various modifications within the scope permitted by the technical idea of the present invention.
Claims (3)
(2) 측정된 나트륨 및 마그네슘 농도로부터 나트륨에 대한 상대적 마그네슘 농도를 계산하는 단계; 및
(3) 상기 나트륨에 대한 상대적 마그네슘 농도를 통해 해당 천일염의 생산연도를 추정하는, 나트륨에 대한 상대적 마그네슘 농도 계측에 의한 천일염 생산연도 추정방법.(1) Measuring the concentration of sodium and magnesium in sea salt or bittern dissolved from the sea salt through ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy);
(2) calculating the relative magnesium concentration to sodium from the measured sodium and magnesium concentrations; and
(3) A method of estimating the production year of sea salt by measuring the relative magnesium concentration to sodium, which estimates the production year of the corresponding sea salt through the relative magnesium concentration to sodium.
상기 나트륨에 대한 상대적 마그네슘 농도는 하기 식에 의해 계산되는, 나트륨에 대한 상대적 마그네슘 농도 계측에 의한 천일염 생산연도 추정방법:
나트륨에 대한 상대적 마그네슘 농도=마그네슘 농도/나트륨 농도.According to claim 1,
Method for estimating the production year of sea salt by measuring the relative magnesium concentration to sodium, where the relative magnesium concentration to sodium is calculated by the following equation:
Magnesium concentration relative to sodium = magnesium concentration/sodium concentration.
상기 천일염의 생산연도는 하기 식에 의해 추정되는 나트륨에 대한 마그네슘의 상대적 농도 계측에 의한 천일염 생산연도 추정방법:
y = , R² = 0.93, x=생산연도, y=나트륨에 대한 상대적 마그네슘 농도.The method of claim 1 or 2,
The production year of the sea salt is estimated by the following formula: Method of estimating the production year of the sea salt by measuring the relative concentration of magnesium to sodium:
y = , R² = 0.93, x=year of production, y=magnesium concentration relative to sodium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220078324A KR20240001542A (en) | 2022-06-27 | 2022-06-27 | Estimation method for age evaluation of solar salt using relative magnesium concentration to sodium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220078324A KR20240001542A (en) | 2022-06-27 | 2022-06-27 | Estimation method for age evaluation of solar salt using relative magnesium concentration to sodium |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240001542A true KR20240001542A (en) | 2024-01-03 |
Family
ID=89538889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220078324A KR20240001542A (en) | 2022-06-27 | 2022-06-27 | Estimation method for age evaluation of solar salt using relative magnesium concentration to sodium |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20240001542A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101431709B1 (en) | 2012-12-11 | 2014-09-22 | (주)헤스코 | Mobile Gamma Radiation Survey Meter With Target Isotope Detection |
KR20160072907A (en) | 2014-12-15 | 2016-06-24 | 한국수력원자력 주식회사 | Salt production year estimation method |
-
2022
- 2022-06-27 KR KR1020220078324A patent/KR20240001542A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101431709B1 (en) | 2012-12-11 | 2014-09-22 | (주)헤스코 | Mobile Gamma Radiation Survey Meter With Target Isotope Detection |
KR20160072907A (en) | 2014-12-15 | 2016-06-24 | 한국수력원자력 주식회사 | Salt production year estimation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yadav et al. | GIS-based evaluation of groundwater geochemistry and statistical determination of the fate of contaminants in shallow aquifers from different functional areas of Agra city, India: levels and spatial distributions | |
Braaten et al. | Environmental factors influencing mercury speciation in Subarctic and Boreal lakes | |
Nájera et al. | Evaluation of soil fertility and fertilisation practices for irrigated maize (Zea mays L.) under Mediterranean conditions in central Chile | |
Lesturgez et al. | Soil acidification without pH drop under intensive cropping systems in Northeast Thailand | |
Angel et al. | Lead solubility in seawater: an experimental study | |
KR101654711B1 (en) | Salt production year estimation method | |
KR20240001542A (en) | Estimation method for age evaluation of solar salt using relative magnesium concentration to sodium | |
Sakyi et al. | Assessment of groundwater quality and its suitability for domestic and agricultural purposes in parts of the Central Region, Ghana | |
Hamid et al. | Water quality index: A case study of Vishav stream, Kulgam, Kashmir | |
KR102723929B1 (en) | Estimation method for age evaluation of solar salt using magnesium concentration | |
KR102722937B1 (en) | Estimation method for age evaluation of solar salt using potassium concentration | |
KR102711920B1 (en) | Estimation method for age evaluation of solar salt using calcium concentration | |
KR20230111963A (en) | Estimation method for age evaluation of solar salt using potassium concentration | |
Galczynska et al. | Influence of water contamination on the accumulation of some metals in Hydrocharis morsus-ranae L. | |
KR20230111962A (en) | Estimation method for age evaluation of solar salt using magnesium concentration | |
Ephraim et al. | Compositional evaluation and quality status of surface waters of Mbat-Abiati and Oberekkai Creeks of the Great Kwa River, Southeastern Nigeria | |
Onwudike | Effect of land use types on vulnerability potential and degradation rate of soils of similar lithology in a tropical soil of Owerri, Southeastern Nigeria | |
Verma et al. | Assessment of irrigation water quality collected from different sources and effect of seasonal variation in canning block, 24 south Parganas, West Bengal | |
Chand et al. | Hydrochemical evaluation of groundwater suitability for irrigation in lower Sindh, Pakistan. | |
Odontuya et al. | Hydrochemical study of water supply of Ulaanbaatar city | |
Afolabi | Assessment of Potential Suitability of Groundwater for Irrigation in Emure Ekiti, South-Western Nigeria | |
GBAGUIDI et al. | Contributions to the protection of a lentic system in the tropical region against chemical pollutions: A case study of “Toho Lake” in Southeastern Benin, West Africa | |
Annapoorani et al. | Assessing the water quality in coastal aquifer of Chennai, India-a case study | |
Christensen | Improved bromide measurements using chloramine-T shows, bromide depletion in the Gulf of Maine | |
Sanda et al. | Assessment of irrigation water quality of the Jega floodplains and their influence on soil properties |