KR20230173319A - Biomarker for determining major depressive disorder, polar disorder and zophrenia based on mass spectrometry and its use - Google Patents

Biomarker for determining major depressive disorder, polar disorder and zophrenia based on mass spectrometry and its use Download PDF

Info

Publication number
KR20230173319A
KR20230173319A KR1020220073915A KR20220073915A KR20230173319A KR 20230173319 A KR20230173319 A KR 20230173319A KR 1020220073915 A KR1020220073915 A KR 1020220073915A KR 20220073915 A KR20220073915 A KR 20220073915A KR 20230173319 A KR20230173319 A KR 20230173319A
Authority
KR
South Korea
Prior art keywords
mass spectrometry
protein
schizophrenia
disorder
bipolar disorder
Prior art date
Application number
KR1020220073915A
Other languages
Korean (ko)
Inventor
김영수
안용민
신동윤
이상진
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020220073915A priority Critical patent/KR20230173319A/en
Publication of KR20230173319A publication Critical patent/KR20230173319A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/30Psychoses; Psychiatry
    • G01N2800/304Mood disorders, e.g. bipolar, depression

Abstract

본원은 혈액 시료에서 대상체가 주요 정신 질환인 우울장애, 양극성 장애 또는 조현병인지를 질량분석법으로 검출할 수 있는 바이오마커 패널을 개시한다. 본원에 따른 패널은 혈액을 이용하여 정보를 제공할 수 있어 질환의 진행을 늦출 수 있어 환자의 삶의 질의 개선은 물론 병이 심화됨에 따라 추가될 수 있는 사회적 및 경제적 비용의 감소에 기여할 수 있다. We disclose a biomarker panel that can detect by mass spectrometry whether a subject has major mental illness such as depressive disorder, bipolar disorder, or schizophrenia in a blood sample. The panel according to this institute can provide information using blood, which can slow the progression of the disease, contributing to improving the patient's quality of life as well as reducing social and economic costs that may be added as the disease worsens.

Description

질량분석법 기반의 우울장애, 양극성장애 및 조현병 구분용 바이오마커 및 그 용도 {Biomarker for determining major depressive disorder, polar disorder and zophrenia based on mass spectrometry and its use}Biomarker for determining major depressive disorder, polar disorder and zophrenia based on mass spectrometry and its use}

본원은 주요정신 질환인 우울장애, 양극성 장애 및 조현병을 구분할 수 있는 바이오마커에 관한 것이다. This institute is concerned with biomarkers that can distinguish major mental disorders such as depressive disorder, bipolar disorder, and schizophrenia.

주요정신질환은 주요 우울장애 [major depressive disorder (MDD)], 양극성장애[bipolar disorder (BD)], 및 조현병[schizophrenia (SPR)]을 포함한다. 주요 우울장애는 감정 기복의 순환 (rapid cycling) 없이 일정한 우울 상태를 보이는 특성을 나타내며 양극성장애는 감정 기복의 상태 변화에 따라 BD-1, BD-2 상태 또는 BD-not otherwise specified (NOS)를 나타낸다. BD-1은 우울한 상태와 강한 조증 (hypermanic symptom)의 상태를 나타내며 BD-2는 우울한 상태와 약한 조증 (hypomanic symptom)상태를 나타낸다. 또한 BD-NOS는 무증상 상태를 나타낸다. 조현병은 환각 및 환영 증상 또한 인지 장애를 보이는 특성을 나타낸다.Major mental disorders include major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SPR). Major depressive disorder is characterized by a constant depressive state without rapid cycling, while bipolar disorder displays BD-1, BD-2 states, or BD-not otherwise specified (NOS) depending on the change in mood swings. . BD-1 represents a state of depression and strong manic symptoms (hypermanic symptoms), and BD-2 represents a state of depression and mild manic symptoms (hypomanic symptoms). Additionally, BD-NOS represents an asymptomatic state. Schizophrenia is characterized by hallucinations and hallucinations as well as cognitive impairment.

2016년 우리나라 정신질환 실태 역학조사에서, 주요 우울장애의 유병율은 5%, 일년 유병률은 1.5%, 그리고 양극성장애 유병률은 0.1%이다. 또한 건강보험심사평가원에 따르면 우울장애의 경우 2015년 약 60만명에서 2019년 약 79만명으로 4년간 연 평균 7.3% 증가하였으며, 최근에도 계속 증가되는 추세이다. 또한 건강보험심사평가원 국민관심질병통계에 따르면 최근 5년간 조현병 환자는 매년 증가추세로 2014년 대비 2018년은 6%가량 환자가 증가하였다. In the 2016 epidemiological survey of mental disorders in Korea, the prevalence of major depressive disorder was 5%, the annual prevalence was 1.5%, and the prevalence of bipolar disorder was 0.1%. In addition, according to the Health Insurance Review and Assessment Service, the number of depressive disorders increased by an average of 7.3% per year over the past four years from approximately 600,000 in 2015 to approximately 790,000 in 2019, and has continued to increase recently. In addition, according to the Health Insurance Review and Assessment Service's statistics on diseases of national interest, the number of patients with schizophrenia has been increasing every year for the past five years, with the number of patients increasing by about 6% in 2018 compared to 2014.

우울장애, 양극성장애, 및 조현병 환자의 진단은 임상의가 환자의 증상 과 행동을 관찰하여 주관적으로 판단하기 때문에 이 세가지 질환을 정확히 감별하는 것은 어렵다. 특히 양극성장애는 우울증상을 보일 때 주요 우울장애와 비슷한 증상을 보이며 양극성장애가 조증을 보일 때 조현병과 비슷한 증상을 보인다. 또한 우울장애 및 양극성장애에서 심각한 우울증상을 보이는 경우 조현병의 증상으로 잘못 판단될 수 있다. 양극성장애 환자의 약 40%가 우울장애로 잘못 진단된다. 또한 양극성장애 환자의 약 30%가 조현병으로 오진된다. 이러한 오진은 잘못된 처방을 야기하여 질환의 증상을 더욱더 악화시킨다. Because the diagnosis of patients with depressive disorder, bipolar disorder, and schizophrenia is made subjectively by clinicians by observing the patient's symptoms and behavior, it is difficult to accurately differentiate between these three disorders. In particular, bipolar disorder shows symptoms similar to major depressive disorder when depressive symptoms appear, and symptoms similar to schizophrenia when bipolar disorder shows mania. Additionally, severe depressive symptoms in depressive disorder and bipolar disorder may be mistaken for symptoms of schizophrenia. Approximately 40% of bipolar disorder patients are misdiagnosed as depressive disorder. Additionally, approximately 30% of bipolar disorder patients are misdiagnosed as schizophrenia. This misdiagnosis leads to incorrect prescriptions, which further worsens the symptoms of the disease.

따라서 이러한 문제점을 해결하기 위해 세가지 질환을 정확하게 구분할 수 있는 방법의 필요성이 대두되고 있지만 증상 및 행동관찰 결과를 기반으로 하는 방법 또는 환자와 임상의 간의 인터뷰를 통해 주로 진단이 수행된다. 사용되는 설문지의 종류가 다양하고 우울장애, 양극성장애, 조현병을 진단하는 기준이 통일되지 않아 설문지에 따라 서로 다른 진단 결과가 도출될 가능성이 있다. 우울장애, 양극성장애, 및 조현병을 보다 정확하게 진단해야 두 질환간 오진율을 줄일 수 있기 때문에 현재의 주관적 관찰 기반의 진단 방식 보다는 객관적인 수치를 기반의 기술의 개발이 필요하다. Therefore, in order to solve these problems, there is a need for a method that can accurately distinguish the three diseases, but diagnosis is mainly performed through methods based on symptom and behavioral observation results or through interviews between patients and clinicians. Because the types of questionnaires used are diverse and the criteria for diagnosing depressive disorder, bipolar disorder, and schizophrenia are not unified, there is a possibility that different diagnostic results may be derived depending on the questionnaire. Because depressive disorder, bipolar disorder, and schizophrenia must be diagnosed more accurately to reduce the misdiagnosis rate between the two disorders, it is necessary to develop technology based on objective values rather than the current subjective observation-based diagnosis method.

선행기술Prior art

KR 특허출원 공개 공보 10-2022-0034708 (2022.03.18.) KR Patent Application Publication Publication 10-2022-0034708 (2022.03.18.)

JP 특허출원 공개 공보 2021-185791 A (2021.12.13) JP Patent Application Publication 2021-185791 A (2021.12.13)

본원에서 질량분석법 기반의 주요정신 질환인 우울장애, 양극성 장애 및 조현병을 구분할 수 있는 바이오마커에 관한 것이다. 바이오마커 및 방법을 제공하고자 한다. This study relates to biomarkers that can distinguish major mental disorders such as depressive disorder, bipolar disorder, and schizophrenia based on mass spectrometry. We aim to provide biomarkers and methods.

한 양태에서 본원은 우울장애, 양극성 장애 및 조현병을 포함하는 주요 정신 질환인 구분, 진단 또는 판단하는 바이오마커 조합에 관한 것이다. In one aspect, the disclosure relates to a combination of biomarkers to distinguish, diagnose, or determine major mental disorders, including depressive disorders, bipolar disorders, and schizophrenia.

다른 양태에서 본원은 상기 바이오마커 조합의 발현 수준을 질량분석법으로 측정하기 위한 물질을 포함하는 주요 정신 질환 진단 또는 판단용 바이오마커 조성물에 관한 것이다. In another aspect, the present application relates to a biomarker composition for diagnosing or determining major mental disorders, including a substance for measuring the expression level of the biomarker combination by mass spectrometry.

일 구현예에서 상기 바이오마커 조합은 다음과 같다: In one embodiment, the biomarker combination is as follows:

상기 우울장애 및 양극성 장애를 구분하여 진단 또는 판단하는 바이오마커 조합은 ALDOC (Fructose-bisphosphate aldolase C), ANPEP (Aminopeptidase N), ARMH4 (Armadillo-like helical domain-containing protein 4), C1RL (Complement C1r subcomponent-like protein), CDH13 (Cadherin-13 ), CETP (Cholesteryl ester transfer protein ), COL10A1 (Collagen alpha-1), CTNND1 (Catenin delta-1), DDR1 (Epithelial discoidin domain-containing receptor 1), DBH (Dopamine beta-hydroxylase ), SERPING1 (Plasma protease C1 inhibitor), IL1RAP (Interleukin-1 receptor accessory protein), ITIH2 (Inter-alpha-trypsin inhibitor heavy chain H2), NPC2 (NPC intracellular cholesterol transporter 2), RAN (GTP-binding nuclear protein Ran), SAA1 (Serum amyloid A-1 protein), 및 TF (Serotransferrin)이고, 상기 우울장애와 조현병을 구분하여 진단 또는 판단하는 바이오마커 조합은 ALDOC (Fructose-bisphosphate aldolase C), IGFALS (Insulin-like growth factor-binding protein complex acid labile subunit ), NAGLU (Alpha-N-acetylglucosaminidase), ATP1A1 (Sodium/potassium-transporting ATPase subunit alpha-1), CTSS (Cathepsin S), SERPINA6 (Corticosteroid-binding globulin), CPB2 (Carboxypeptidase B2), COL10A1 (Collagen alpha-1), CRYM (Ketimine reductase mu-crystallin), GPX3 (Glutathione peroxidase 3), IGFBP3 (Insulin-like growth factor-binding protein 3), IGFBP5 (Insulin-like growth factor-binding protein 5), ITIH2 (Inter-alpha-trypsin inhibitor heavy chain H2), PGC (Gastricsin), PROC (Vitamin K-dependent protein C), PROS1 (Vitamin K-dependent protein S), RIDA (2-iminobutanoate/2-iminopropanoate deaminase), SAA1 (Serum amyloid A-1 protein), SAA4 (Serum amyloid A-4 protein), 및 TFPI (Tissue factor pathway inhibitor)이고, 상기 양극성장애 및 조현병을 구분하여 진단 또는 판단하는 바이오마커 조합은 SERPINA3 (Alpha-1-antichymotrypsin), ANPEPM (Aminopeptidase N), BPIFB1 (BPI fold-containing family B member 1), C1RL (Complement C1r subcomponent-like protein), CFB (Complement factor B), CLDN3 (Claudin-3), DBH (Dopamine beta-hydroxylase), GPR37 (Prosaposin receptor GPR37), SERPIND1 (Heparin cofactor 2), IGFBP5 (Insulin-like growth factor-binding protein 5), SERPING1 (Plasma protease C1 inhibitor), MBL2 (Mannose-binding protein C), NPC2 (NPC intracellular cholesterol transporter 2), PLXNC1 (Plexin-C1), PSMD1 (26S proteasome non-ATPase regulatory subunit 1), TFPI (Tissue factor pathway inhibitor), 및 UMOD (Uromodulin)이다. The combination of biomarkers for diagnosing or determining depressive disorder and bipolar disorder is ALDOC (Fructose-bisphosphate aldolase C), ANPEP (Aminopeptidase N), ARMH4 (Armadillo-like helical domain-containing protein 4), and C1RL (Complement C1r subcomponent). -like protein), CDH13 (Cadherin-13), CETP (Cholesteryl ester transfer protein), COL10A1 (Collagen alpha-1), CTNND1 (Catenin delta-1), DDR1 (Epithelial discoidin domain-containing receptor 1), DBH (Dopamine) beta-hydroxylase ), SERPING1 (Plasma protease C1 inhibitor), IL1RAP (Interleukin-1 receptor accessory protein), ITIH2 (Inter-alpha-trypsin inhibitor heavy chain H2), NPC2 (NPC intracellular cholesterol transporter 2), RAN (GTP-binding) nuclear protein Ran), SAA1 (Serum amyloid A-1 protein), and TF (Serotransferrin), and the combination of biomarkers for diagnosing or determining depressive disorder and schizophrenia is ALDOC (Fructose-bisphosphate aldolase C), IGFALS ( Insulin-like growth factor-binding protein complex acid labile subunit ), NAGLU (Alpha-N-acetylglucosaminidase), ATP1A1 (Sodium/potassium-transporting ATPase subunit alpha-1), CTSS (Cathepsin S), SERPINA6 (Corticosteroid-binding globulin) , CPB2 (Carboxypeptidase B2), COL10A1 (Collagen alpha-1), CRYM (Ketimine reductase mu-crystallin), GPX3 (Glutathione peroxidase 3), IGFBP3 (Insulin-like growth factor-binding protein 3), IGFBP5 (Insulin-like growth) factor-binding protein 5), ITIH2 (Inter-alpha-trypsin inhibitor heavy chain H2), PGC (Gastricsin), PROC (Vitamin K-dependent protein C), PROS1 (Vitamin K-dependent protein S), RIDA (2-iminobutanoate) /2-iminopropanoate deaminase), SAA1 (Serum amyloid A-1 protein), SAA4 (Serum amyloid A-4 protein), and TFPI (Tissue factor pathway inhibitor), and are used to diagnose or determine bipolar disorder and schizophrenia. The biomarker combination includes SERPINA3 (Alpha-1-antichymotrypsin), ANPEPM (Aminopeptidase N), BPIFB1 (BPI fold-containing family B member 1), C1RL (Complement C1r subcomponent-like protein), CFB (Complement factor B), and CLDN3 ( Claudin-3), DBH (Dopamine beta-hydroxylase), GPR37 (Prosaposin receptor GPR37), SERPIND1 (Heparin cofactor 2), IGFBP5 (Insulin-like growth factor-binding protein 5), SERPING1 (Plasma protease C1 inhibitor), MBL2 ( Mannose-binding protein C), NPC2 (NPC intracellular cholesterol transporter 2), PLXNC1 (Plexin-C1), PSMD1 (26S proteasome non-ATPase regulatory subunit 1), TFPI (Tissue factor pathway inhibitor), and UMOD (Uromodulin).

일 구현예에서 본원에 따른 각 조합의 각 바이오마커의 정량을 위한 질량 분석법은 탠덤 질량 분석법, 이온 트랩 질량 분석법, 삼중사극 질량 분석법, 하이브리드 이온 트랩/쿼드러폴 질량 분석법 또는 비행시간 질량 분석법을 포함한다. In one embodiment, the mass spectrometry method for quantification of each biomarker in each combination according to the present disclosure includes tandem mass spectrometry, ion trap mass spectrometry, triple quadrupole mass spectrometry, hybrid ion trap/quadrupol mass spectrometry, or time-of-flight mass spectrometry. .

다른 구현예에서 상기 질량 분석법에 사용되는 모드는 선택 반응 모니터링(Selected Reaction Monitoring, SRM) 또는 다중 반응 모니터링(Multiple Reaction Monitoring, MRM)을 포함한다. In other embodiments, the mode used for mass spectrometry includes Selected Reaction Monitoring (SRM) or Multiple Reaction Monitoring (MRM).

또 다른 구현예에서 상기 질량 분석법 모드는 MRM이고, 상기 MRM 분석에 사용되는 상기 각 바이오마커의 펩타이드는 표 1과 같다. In another embodiment, the mass spectrometry mode is MRM, and the peptides of each biomarker used in the MRM analysis are listed in Table 1.

다른 양태에서 본원은 주요 정신 질환인 우울장애, 양극성 장애 및 조현병을 구분 하여 판단 또는 진단에 필요한 대한 정보를 제공하는 방법 또는 상기 정보를 제공하기 위해 인비트로에서 우울장애, 양극성 장애 및 조현병를 구분하여 판단하기 위한 각 조합의 바이오마커 검출 방법에 관한 것이다. In another aspect, the hospital provides a method of providing information necessary for judgment or diagnosis by distinguishing between major mental disorders such as depressive disorder, bipolar disorder, and schizophrenia, or distinguishes depressive disorder, bipolar disorder, and schizophrenia in vitro to provide the above information. This relates to a method of detecting biomarkers for each combination to determine this.

본원에 따른 방법에서 바이오마커 조합은 필요에 따라 하나 이상의 조합이 테스트 될 수 있다. In the method according to the present application, more than one combination of biomarkers may be tested as needed.

일 구현예에서 상기 방법은 대상체로부터 분리된 혈액으로부터 표 1에 따른 각 바이오마커 조합의 각 바이오마커의 발현 수준을 질량분석법으로 측정 또는 정량하는 단계; 및 상기 측정 또는 정량 결과를 우울장애, 양극성 장애 또는 조현병과 연관시키는 단계를 포함한다. In one embodiment, the method includes measuring or quantifying the expression level of each biomarker of each biomarker combination according to Table 1 from blood isolated from a subject by mass spectrometry; and correlating the measurement or quantitative result with depressive disorder, bipolar disorder, or schizophrenia.

일 구현예에서 상기 질량 분석법은 탠덤 질량 분석법, 이온 트랩 질량 분석법, 삼중사극 질량 분석법, 하이브리드 이온 트랩/쿼드러폴 질량 분석법 또는 비행시간 질량 분석법을 포함한다. In one embodiment, the mass spectrometry method includes tandem mass spectrometry, ion trap mass spectrometry, triple quadrupole mass spectrometry, hybrid ion trap/quadrupole mass spectrometry, or time-of-flight mass spectrometry.

다른 구현예에서 상기 질량 분석법에 사용되는 모드는 선택 반응 모니터링(Selected Reaction Monitoring, SRM) 또는 다중 반응 모니터링(Multiple Reaction Monitoring, MRM)이다. In another embodiment, the mode used for mass spectrometry is Selected Reaction Monitoring (SRM) or Multiple Reaction Monitoring (MRM).

또 다른 구현예에서 상기 질량 분석법 모드는 MRM이고, 상기 MRM에 분석에 사용되는 각 바이오마커 조합을 구성하는 각 단백질 별 펩타이드는 표 1과 같다. In another embodiment, the mass spectrometry mode is MRM, and the peptides for each protein constituting each biomarker combination used for analysis in the MRM are shown in Table 1.

또 다른 구현예에서, 본원에 따른 방법은 상기 바이오마커 검출 또는 정량 결과에 추가하여 주요정신질환 증상 평가 지표[symptom Checklist 90-revised (SCL-90R)]의 점수 자료가 우울장애, 양극성 장애 및 조현병 판단, 진단 또는 구분에 사용된다. In another embodiment, the method according to the present application includes score data of the major mental disorder symptom evaluation index [Symptom Checklist 90-revised (SCL-90R)] in addition to the biomarker detection or quantitative results for depressive disorder, bipolar disorder, and schizophrenia. Used for judging, diagnosing, or classifying diseases.

일 구현예에서 본원 방법은 대상체의 주요정신질환 증상 평가 지표[symptom Checklist 90-revised (SCL-90R)]의 점수 자료를 수득하는 단계를 추가로 포함하며, 상기 연관시키는 단계에서 상기 바이오마커 검출 결과에 추가하여 상기 점수 자료가 우울장애, 양극성 장애 및 조현병 판단에 사용된다. In one embodiment, the method herein further includes the step of obtaining score data of the subject's major mental disorder symptom evaluation index [Symptom Checklist 90-revised (SCL-90R)], and the biomarker detection results in the linking step. In addition, the above score data is used to determine depressive disorder, bipolar disorder, and schizophrenia.

다른 구현예에서 본원 방법의 연관시키는 단계는 상기 바이오마커 검출 결과 및 주요정신질환 증상 평가 지표 점수 자료를 후술하는 식 I에 대입하여 결과를 수득하고, 그 결과를 각 바이오마커 조합별로 결정된 임계값과 비교한다.In another embodiment, the linking step of the method herein involves substituting the biomarker detection results and major mental disorder symptom evaluation index score data into Equation I described below to obtain a result, and dividing the result into a threshold value determined for each biomarker combination. Compare.

본원에 따른 바이오마커는 증상 및 행동관찰 결과를 기반으로 하는 현재의 우울장애, 양극성장애 및 조현병을 포함하는 주요 정신질환을 진단하는 방법과 비교하여 단백질의 정량 수치를 기반으로 진단하므로, 기존의 진단 방식보다 객관적으로 두 질환을 구별할 수 있어 두 질환 간 오진율이 감소할 수 있어 정확한 진단 및 이에 따른 처방이 가능하게 한다. 또한 본원에서 개발한 모델은 우울장애, 양극성장애, 및 조현병 이외에도 우울장애, 조현병과 양극성장애의 질병 하위 아형 (disease subtypes)도 감별 할 수 있도록 하였다. 또한 단백체 다중 마커 모델과 자가 보고 주요정신질환 증상 평가 지표 임상자료 변수를 결합한 앙상블 모델을 개발하였으며 보다 향상된 정확도로 우울장애, 양극성장애, 및 조현병의 감별 및 진단을 가능하게 하였다.The biomarker according to this institute diagnoses based on quantitative levels of protein compared to the current method of diagnosing major mental disorders, including depressive disorder, bipolar disorder, and schizophrenia, which is based on symptoms and behavioral observation results. Since the two diseases can be distinguished more objectively than the diagnostic method, the misdiagnosis rate between the two diseases can be reduced, enabling accurate diagnosis and prescription accordingly. In addition, the model developed at our center was able to distinguish disease subtypes of depressive disorder, schizophrenia, and bipolar disorder in addition to depressive disorder, bipolar disorder, and schizophrenia. In addition, an ensemble model was developed combining a proteomic multi-marker model and self-reported major mental illness symptom evaluation index clinical data variables, enabling differentiation and diagnosis of depressive disorder, bipolar disorder, and schizophrenia with improved accuracy.

도 1은 본 발명의 기술적 수단 핵심 모식도이다.
도 2는 주요정신질환 단백질 바이오마커 후보 군 리스트 구축 과정 모식도이다.
도 3은 혈액(Plasma) 시료 구성 및 전처리 모식도이다.
도 4는 본원의 일 구현예에 사용된 6490 Triple Quadrupole LC-MRM-MS 분석 모식도이다.
도 5는 본원의 마커 조합 발굴에 사용된 Multiprotein-marker model 및 Ensemble model 개발 모식도이다.
도 6a 내지 6c는 본원에서 개발된 각각 MDD vs BD, MDD vs SPR 및 BD vs SPR를 구분하는 단백체 다중 마커 모델의 감별 성능 결과이다. MDD와 BD를 감별하는 단백체 다중 마커 모델에는 17개의 단백질 마커가 조합되었으며 17개의 단백질 마커 중 7개의 단백질 마커는 MDD에서 상향 조절되었으며 10개의 단백질 마커는 BD에서 상향 조절되었다. 17개의 단백질 마커로 Training set에서는 84%의 확률로 MDD 와 BD를 감별하며 Validation set, Independent test set, 그리고 Total set에서는 각각 73%, 74%, 그리고 80%의 확률로 MDD와 BD를 감별한다. MDD와 SPR를 감별하는 단백체 다중 마커 모델에는 20개의 단백질 마커가 조합되었으며 20개의 단백질 마커 중 13개의 단백질 마커는 MDD에서 상향 조절되었으며 7개의 단백질 마커는 SPR에서 상향 조절되었다. 20개의 단백질 마커로 Training set에서는 87%의 확률로 MDD 와 SPR를 감별하며 Validation set, Independent test set, 그리고 Total set에서는 각각 74%, 82%, 그리고 84%의 확률로 MDD와 SPR를 감별한다. BD와 SPR를 감별하는 단백체 다중 마커 모델에는 17개의 단백질 마커가 조합되었으며 17개의 단백질 마커 중 10개의 단백질 마커는 BD에서 상향 조절되었으며 7개의 단백질 마커는 SPR에서 상향 조절되었다. 17개의 단백질 마커로 Training set에서는 88%의 확률로 MDD 와 SPR를 감별하며 Validation set, Independent test set, 그리고 Total set에서는 각각 72%, 78%, 그리고 83%의 확률로 BD와 SPR를 감별한다. 본원에서 개발된 단백체 다중 마커 모델들은 전체 데이터(Total set)에서 AUC > 0.8 (80%) 의 좋은 감별 성능을 나타내었으므로 정신질환의 객관적 감별 및 진단에 도움을 줄 것이라 사료된다.
도 7은 본원에서 개발된 단백체 다중 마커 모델의 우울장애, 조현병 및 양극성장애 하위 아형 그룹간 감별 성능 결과이다. 도 7a는 MDD와 BD의 하위 아형인 BD II 와 BD NOS간의 감별 성능을 나타내며 78%의 확률로 MDD와 BD-II+BD NOS를 감별한다. 도 7b는 SPR과 BD의 하위 아형인 BD-I간의 감별 성능을 나타내며 82%의 확률로 SPR과 BD-I를 감별한다. 도 7c는 MDD과 BD의 하위 아형인 BD without current hypomanic/manic/mixed symptoms간의 감별 성능을 나타내며 80%의 확률로 SPR과 BD without current hypomanic/manic/mixed symptoms를 감별한다. 본원에서 개발한 다중 마커 모델들은 BD의 하위 아형 그룹간 비교 분석에서 AUC > 0.75 (75%)의 준수한 감별 성능을 나타내었으므로 정신질환에서 증상이 비슷하여 감별하지 못하는 하위 아형 간의 객관적 감별 및 진단에 도움을 줄 것이라 사료된다.
도 8은 본원에서 개발된 앙상블모델의 감별 성능 및 진단 성능 결과이다. 도8a는 MDD와 BD를 감별하는 단백체 다중 마커 모델과 임상자료를 결합하여 개발한 앙상블모델의 감별 및 진단 성능 결과이다. 감별 성능의 경우 Training, Validation, Independent test, 그리고 Total set에서 각각 84%, 82%, 77%, 그리고 80%의 확률로 MDD와 BD를 감별한다. 특히 Indepedent test set에서의 진단 성능은 accuracy, sensitivity, specificity, postive predictive value, 그리고 negative predictive value 각각 76%, 71%, 82%, 77%, 그리고 75%를 보였다. 도8b는 MDD와 SPR를 감별하는 단백체 다중 마커 모델과 임상자료를 결합하여 개발한 앙상블모델의 감별 및 진단 성능 결과이다. 감별 성능의 경우 Training, Validation, Independent test, 그리고 Total set에서 각각 91%, 83%, 90%, 그리고 88%의 확률로 MDD와 SPR를 감별한다. 특히 Indepedent test set에서의 진단 성능은 accuracy, sensitivity, specificity, postive predictive value, 그리고 negative predictive value 각각 89%, 86%, 92%, 87%, 그리고 91%를 보였다. 도8c는 BD와 SPR를 감별하는 단백체 다중 마커 모델과 임상자료를 결합하여 개발한 앙상블모델의 감별 및 진단 성능 결과이다. 감별 성능의 경우 Training, Validation, Independent test, 그리고 Total set에서 각각 89%, 73%, 88%, 그리고 88%의 확률로 MDD와 SPR를 감별한다. 특히 Indepedent test set에서의 진단 성능은 accuracy, sensitivity, specificity, postive predictive value, 그리고 negative predictive value 각각 83%, 89%, 77%, 80%, 그리고 87%를 보였다. 결론적으로, 본원의 앙상블모델들은 기구축한 단백체 다중 마커 모델에 임상자료를 추가 결합하여 개발되었고 단백체 대중 마커 모델 보다 향상된 감별 및 진단 성능을 나타내었다.
도 9는 본원에서 개발된 앙상블모델과 CRSB 모델의 감별 성능 및 진단 성능 비교 결과이다. 도9a는 MDD와 BD를 감별하는 앙상블모델과 CRSB 모델간의 감별 성능 및 진단 성능의 비교 결과이다. 앙상블모델은 CRSB 모델 보다 전반적으로 Training, Validation, 그리고 Independent test에서는 높은 감별 성능을 나타내었다. 특히 Independent test에서는 전반적으로 앙상블모델이 CRSB 모델보다 accuracy, sensitivity, 그리고 negative predictive value에서 높은 진단 성능을 보였다. 도9b는 MDD와 SPR를 감별하는 앙상블모델과 CRSB 모델간의 감별 성능 및 진단 성능의 비교 결과이다. 앙상블모델은 CRSB 모델 보다 전반적으로 낮은 감별 성능을 나타내었으나 Independent test에서는 전반적으로 앙상블모델은 CRSB 모델과 비슷한 진단 성능을 나타내었다. 도9c는 BD와 SPR를 감별하는 앙상블모델과 CRSB 모델간의 감별 성능 및 진단 성능의 비교 결과이다. 앙상블모델은 CRSB 모델 보다 Training, Independent test, 그리고 Total set에서 높을 성능을 나타내었다. 특히 Independent test에서는 전반적으로 앙상블모델은 CRSB 모델 보다 높은 진단 성능을 나타내었다. 결론적으로, 본원의 앙상블모델들은 임상의 진단 평가 자료들을 결합하여 개발한 CRSB 모델들과 전반적으로 비슷한 감별 및 진단 성능을 나타내었다. 따라서 정신질환의 감별 및 진단에서의 앙상블모델의 가능성을 보였다.
Figure 1 is a schematic diagram of the core technical means of the present invention.
Figure 2 is a schematic diagram of the process of constructing a list of protein biomarker candidates for major mental disorders.
Figure 3 is a schematic diagram of blood (plasma) sample composition and pretreatment.
Figure 4 is a schematic diagram of 6490 Triple Quadrupole LC-MRM-MS analysis used in one embodiment of the present application.
Figure 5 is a schematic diagram of the development of the multiprotein-marker model and ensemble model used in the discovery of marker combinations at our institute.
Figures 6a to 6c show the discrimination performance results of the proteomic multi-marker model developed herein to distinguish MDD vs. BD, MDD vs. SPR, and BD vs. SPR, respectively. The proteomic multi-marker model that differentiates MDD from BD combined 17 protein markers. Among the 17 protein markers, 7 protein markers were upregulated in MDD and 10 protein markers were upregulated in BD. With 17 protein markers, the Training set discriminates between MDD and BD with a probability of 84%, and the Validation set, Independent test set, and Total set discriminate between MDD and BD with a probability of 73%, 74%, and 80%, respectively. The proteomic multi-marker model that differentiates MDD from SPR combined 20 protein markers. Among the 20 protein markers, 13 protein markers were up-regulated in MDD and 7 protein markers were up-regulated in SPR. With 20 protein markers, MDD and SPR are distinguished with a probability of 87% in the training set, and MDD and SPR are distinguished with a probability of 74%, 82%, and 84% in the validation set, independent test set, and total set, respectively. The proteomic multi-marker model for differentiating BD and SPR combined 17 protein markers. Among the 17 protein markers, 10 protein markers were up-regulated in BD and 7 protein markers were up-regulated in SPR. With 17 protein markers, MDD and SPR are distinguished with a probability of 88% in the training set, and BD and SPR are distinguished with a probability of 72%, 78%, and 83% in the validation set, independent test set, and total set, respectively. The proteomic multi-marker models developed at our institute showed good discrimination performance of AUC > 0.8 (80%) in the total data (total set), so it is believed that they will be helpful in objective discrimination and diagnosis of mental disorders.
Figure 7 shows the results of the discrimination performance between depressive disorder, schizophrenia, and bipolar disorder sub-subtype groups of the proteomic multi-marker model developed at our institute. Figure 7a shows the discrimination performance between BD II and BD NOS, which are subtypes of MDD and BD, and discriminates between MDD and BD-II+BD NOS with a probability of 78%. Figure 7b shows the discrimination performance between SPR and BD-I, a subtype of BD, and discriminates between SPR and BD-I with a probability of 82%. Figure 7c shows the discrimination performance between MDD and BD without current hypomanic/manic/mixed symptoms, a subtype of BD, and discriminates between SPR and BD without current hypomanic/manic/mixed symptoms with a probability of 80%. The multi-marker model developed at our center showed a good discrimination performance of AUC > 0.75 (75%) in the comparative analysis between sub-subtype groups of BD, so it can be used for objective discrimination and diagnosis between sub-subtypes in mental disorders that cannot be differentiated due to similar symptoms. I think it will help.
Figure 8 shows the discrimination and diagnostic performance results of the ensemble model developed in this institution. Figure 8a shows the discrimination and diagnostic performance results of the ensemble model developed by combining clinical data with a proteomic multi-marker model to differentiate MDD and BD. In terms of discrimination performance, MDD and BD are discriminated with probabilities of 84%, 82%, 77%, and 80% in Training, Validation, Independent test, and Total set, respectively. In particular, the diagnostic performance in the independent test set showed accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 76%, 71%, 82%, 77%, and 75%, respectively. Figure 8b shows the discrimination and diagnostic performance results of the ensemble model developed by combining clinical data with a proteomic multi-marker model to differentiate MDD and SPR. In case of discrimination performance, MDD and SPR are discriminated with a probability of 91%, 83%, 90%, and 88% in Training, Validation, Independent test, and Total set, respectively. In particular, the diagnostic performance in the independent test set showed accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 89%, 86%, 92%, 87%, and 91%, respectively. Figure 8c shows the discrimination and diagnostic performance results of the ensemble model developed by combining clinical data with a proteomic multi-marker model to differentiate BD and SPR. In case of discrimination performance, MDD and SPR are discriminated with a probability of 89%, 73%, 88%, and 88% in Training, Validation, Independent test, and Total set, respectively. In particular, the diagnostic performance in the independent test set showed accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 83%, 89%, 77%, 80%, and 87%, respectively. In conclusion, our ensemble models were developed by additionally combining clinical data with the established proteomic multi-marker model and showed improved discrimination and diagnostic performance than the proteomic public marker model.
Figure 9 shows the comparison results of the discrimination and diagnostic performance of the ensemble model developed in this institution and the CRSB model. Figure 9a shows the results of comparison of discrimination and diagnosis performance between the ensemble model and CRSB model that distinguish MDD and BD. The ensemble model showed overall higher discrimination performance than the CRSB model in training, validation, and independent tests. In particular, in the independent test, the ensemble model overall showed higher diagnostic performance in accuracy, sensitivity, and negative predictive value than the CRSB model. Figure 9b shows the comparison results of discrimination and diagnosis performance between the ensemble model and CRSB model that distinguish MDD and SPR. The ensemble model showed overall lower discrimination performance than the CRSB model, but in the independent test, the ensemble model showed overall similar diagnostic performance to the CRSB model. Figure 9c shows the comparison results of discrimination and diagnosis performance between the ensemble model and CRSB model that distinguish BD and SPR. The ensemble model showed higher performance in training, independent test, and total set than the CRSB model. In particular, in the independent test, the ensemble model overall showed higher diagnostic performance than the CRSB model. In conclusion, our ensemble models showed overall similar discrimination and diagnostic performance to the CRSB models developed by combining clinical diagnostic evaluation data. Therefore, the possibility of an ensemble model in the differentiation and diagnosis of mental illness was shown.

본원은 증상 및 행동관찰 결과를 기반으로 하는 현재의 주요 우울장애 [major depressive disorder (MDD)], 양극성장애[bipolar disorder (BD)], 및 조현병[schizophrenia (SPR)]를 진단하는 방법과 비교하여 바이오마커 단백질 정량 기반의 객관적 수치를 기반으로 하는 주요 정신질환 환자를 구별하여 진단할 수 있는 혈액 바이오마커 패널의 발견에 기반한 것이다. We compared the current diagnostic methods for major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SPR) based on symptoms and behavioral observations. It is based on the discovery of a blood biomarker panel that can distinguish and diagnose patients with major mental disorders based on objective values based on quantitative biomarker proteins.

주요 우울장애는 감정 기복의 순환 (rapid cycling) 없이 일정한 우울 상태를 보이는 특성을 나타내며 의욕 저하와 우울감을 주요 증상으로 하여 다양한 인지 및 정신 신체적 증상을 일으켜 일상 기능의 저하를 가져오는 질환을 말한다. 진단은 미국 정신의학회(American Psychiatric Association)의 정신장애 진단 통계편람(DSM-Ⅳ-TR)의 기준에 따라 임상의의 면담 및 설문조사에 따라 진행된다. Major depressive disorder is a disease characterized by a constant depressive state without rapid cycling, with decreased motivation and depression as the main symptoms, causing various cognitive and psychosomatic symptoms, leading to a decline in daily functioning. Diagnosis is made through a clinician's interview and survey according to the standards of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR).

양극성장애는 감정 기복이 있는 질환으로 감정 기복의 상태 변화에 따라 BD-1, BD-2 상태, BD-not otherwise specified (NOS), 또는 BD without current hypomanic/manic/mixed symptoms를 나타낸다. BD-1은 우울한 상태와 강한 조증 (hypermanic symptom)의 상태를 나타내며 BD-2는 우울한 상태와 약한 조증 (hypomanic symptom) 상태를 나타내고, BD-NOS는 무증상 상태를 나타낸다. Bipolar disorder is a disease with mood swings, and depending on the change in mood swings, it can be classified into BD-1, BD-2, BD-not otherwise specified (NOS), or BD without current hypomanic/manic/mixed symptoms. BD-1 represents a state of depression and strong mania (hypomanic symptoms), BD-2 represents a state of depression and mild mania (hypomanic symptoms), and BD-NOS represents an asymptomatic state.

조현병은 환각 및 환영 증상 또한 인지 장애를 보이는 특성을 나타낸다.Schizophrenia is characterized by hallucinations and hallucinations as well as cognitive impairment.

양극성 장애, 주요 우울장애, 및 조현병 환자들의 진단은 정신질환 진단 및 통계 매뉴얼 제5판 [Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5)](Regier, D. A., Kuhl, E. A., & Kupfer, D. J. (2013). The DSM-5: Classification and criteria changes. World psychiatry, 12(2), 92-98; American Psychiatric Association, & American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5. Arlington, VA)에 따라 수행하며 미니 국제 신경정신과 인터뷰 [Mini-International Neuropsychiatric Interview (MINI)]를 통해 최종 진단을 결정한다 (Lecrubier, Y., Sheehan, D. V., Weiller, E., Amorim, P., Bonora, I., Sheehan, K. H., ... & Dunbar, G. C. (1997). The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. European psychiatry, 12(5), 224-231; Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., ... & Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of clinical psychiatry, 59(20), 22-33.). The diagnosis of patients with bipolar disorder, major depressive disorder, and schizophrenia is based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) (Regier, D. A., Kuhl, E. A., & Kupfer, D. J. (2013). The DSM-5: Classification and criteria changes. World psychiatry, 12(2), 92-98; American Psychiatric Association, & American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5. Arlington, VA) and the final diagnosis is determined through the Mini-International Neuropsychiatric Interview (MINI) (Lecrubier, Y., Sheehan, D.V., Weiller, E., Amorim) , P., Bonora, I., Sheehan, K. H., ... & Dunbar, G. C. (1997). The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. European psychiatry, 12(5), 224-231;Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., ... & Dunbar, G. C. (1998).The Mini -International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of clinical psychiatry, 59(20), 22-33.).

또한 양극성 장애, 주요 우울장애, 및 조현병 환자들의 진단은 환자 자기보고식 간이정신진단검사 [symptom Checklist 90-revised (SCL-90R)](Derogatis LR. SCL-90-R : Administration, scoring & procedures manual-II for the R (evised) version and other instruments of the psychopathology rating scale series. Clinical Psychometric Research. 1992 1992:1-16.)의 9개의 증상차원인 신체화(Somatization, SOM) 12 문항, 강박증(Obesessive- Compulsive, O-C) 10 문항, 대인예민성(Interpersonal Sensitivity, I-S) 9 문항, 우울(Depression, DEP) 13문항, 불안(Anxiety, ANX) 10문항, 적대감(Hostility, HOS) 6 문항, 공포불안(Phobic Anxiety, PHOB) 7 문항, 편집증(Paranoid Ideation, PAR) 6 문항, 그리고 정신증(Psychoticism, PSY) 10문항에 해당하는 각 증상차원 문항의 점수의 평균값 (점수의 합산 값/문항수)을 (평균 값 1~2점: 증상이 전혀없다, 평균 값 2~3점: 증상이 약간있다, 평균 값 3~4점: 증상이 웬만큼 있다, 평균 값 4~5점 증상이 꽤 심하다, 평균 값 5점 이상: 증상이 아주 심하다) 통해 임상의가 최종 진단을 결정한다. Additionally, the diagnosis of patients with bipolar disorder, major depressive disorder, and schizophrenia can be made using the patient self-report brief psychiatric diagnostic test [Symptom Checklist 90-revised (SCL-90R)] (Derogatis LR. SCL-90-R: Administration, scoring & procedures) manual-II for the R (evised) version and other instruments of the psychopathology rating scale series. Clinical Psychometric Research . 1992 1992:1-16.)'s 9 symptom dimensions, Somatization (SOM), 12 items, Obsessive - Compulsive (OC) 10 questions, Interpersonal Sensitivity (IS) 9 questions, Depression (DEP) 13 questions, Anxiety (ANX) 10 questions, Hostility (HOS) 6 questions, Fear Anxiety ( The average value (sum of scores/number of items) of each symptom dimension item corresponding to 7 items for Phobic Anxiety (PHOB), 6 items for Paranoid Ideation (PAR), and 10 items for Psychoticism (PSY) is (mean value) 1~2 points: No symptoms at all, average value 2~3 points: Some symptoms, average value 3~4 points: Some symptoms, average value 4~5 points Symptoms are quite severe, average value 5 points or more : the symptoms are very severe), the clinician determines the final diagnosis.

본원에서는 주요정신질환인 주요 우울장애, 양극성장애 및 조현병 환자를 감별할 수 있는 혈액 단백체 기반 다중 바이오마커 모델을 개발하였다. At our center, we developed a blood proteome-based multiple biomarker model that can distinguish patients with major mental disorders such as major depressive disorder, bipolar disorder, and schizophrenia.

또한 개발한 혈액 단백체 다중 바이오마커 모델에 환자 자가 보고 주요정신질환 증상 평가 지표[symptom Checklist 90-revised (SCL-90R)]의 점수 자료를 결합하여 주요정신질환 감별 및 진단을 위한 정확도가 높은 앙상블 (Ensemble) 모델을 개발하였다. 앙상블 모델은 머신러닝 기법인 stacking ensemble 전략 (Dzeroski, S., & Zenko, B. (2004). Is combining classifiers with stacking better than selecting the best one?. Machine learning, 54(3), 255-273)을 통해 개발되었으며 본원에서 개발된 모델은 다음과 같은 회귀식 1로 나타낸다. In addition, by combining the score data of the patient self-reported major mental illness symptom evaluation index [Symptom Checklist 90-revised (SCL-90R)] with the developed blood proteome multi-biomarker model, a highly accurate ensemble for the differentiation and diagnosis of major mental illness ( Ensemble model was developed. The ensemble model is a machine learning technique called the stacking ensemble strategy (Dzeroski, S., & Zenko, B. (2004). Is combining classifiers with stacking better than selecting the best one?. Machine learning, 54(3), 255-273) It was developed through and the model developed here is represented by the following regression equation 1.

위 식에서 상수는 본원에서 개발한 모델의 회귀식의 절편값을 나타낸다. [protein 숫자]는 회귀식에 본원에 따른 방법에 의해 결정된 각 바이오마커의 농도를 의미하며 독립변수이다. [Demension 숫자]는 회귀식에 조합된 앞서 언급된 SCL-90R 증상차원을 의미하며 독립변수이다. B는 조합된 각 단백질이 모델에서 정신질환을 구분하는데 기여하는 정도를 상대적으로 나타내는 계수이다. C는 조합된 각 SCL-90R 증상차원이 모델에서 질환을 구분하는데 기여하는 정도를 상대적으로 나타내는 계수이다. B와 C는 +또는-값을 가진다. 예를 들어 우울장애와 양극성장애를 감별하는 앙상블모델의 경우 두 그룹을 우울장애 0, 양극성장애 1의 이분형 숫자 값으로 지정했으므로 계수값 (B 또는 C)이 +값인 경우 우울장애보다 양극성장애를 감별하는데 좀더 기여하고 -값인 경우 양극성장애보다 우울장애를 감별하는데 좀더 기여한다. p는 최종적으로 모델에서 산출된 두 가지 정신질환의 감별 확률이다. 개발한 모델은 최종적으로 산출된 p는 통해 두 가지 정신질환을 감별을 위해 사용 된다. In the above equation, the constant represents the intercept value of the regression equation of the model developed here. [Protein number] refers to the concentration of each biomarker determined by the method according to the present application in the regression equation and is an independent variable. [Dimension number] refers to the previously mentioned SCL-90R symptom dimension combined in the regression equation and is an independent variable. B is a coefficient that represents the relative contribution of each combined protein to distinguishing mental disorders in the model. C is a coefficient that represents the relative contribution of each combined SCL-90R symptom dimension to distinguishing diseases in the model. B and C have + or - values. For example, in the case of an ensemble model that discriminates between depressive disorder and bipolar disorder, the two groups were designated as dichotomous numeric values of 0 for depressive disorder and 1 for bipolar disorder, so if the coefficient value (B or C) is a + value, bipolar disorder is considered more important than depressive disorder. It contributes more to the differentiation, and if it is a -value, it contributes more to the differentiation of depressive disorder than bipolar disorder. p is the probability of discrimination between the two mental disorders finally calculated from the model. The developed model is used to differentiate between two mental disorders through the final calculated p.

또한 개발한 각 앙상블 모델에서 특정 기준에서 두 질환을 감별하기 위해 Youden’s index [J=max(sensitivity+specificity-1)] (Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1), 32-35.) 값을 최적 cutoff값을 설정하였다. 따라서 각 앙상블 모델에서 산출된 최적 임계값 (cutoff)을 기준으로 두 정신질환을 감별할 수 있다. In addition, Youden's index [J=max(sensitivity+specificity-1)] (Youden, W. J. (1950). Index for rating diagnostic tests. Cancer, 3(1)) was used to differentiate the two diseases based on specific criteria in each ensemble model developed. , 32-35.) value was set as the optimal cutoff value. Therefore, the two mental disorders can be distinguished based on the optimal threshold (cutoff) calculated from each ensemble model.

구체적으로 환자들의 혈액시료에서 개발한 앙상블 모델에 포함된 단백질들을 본원의 질량분석 장비인 MRM-MS를 사용하여 정량하고, 해당 환자들의 SCL-90R 임상자료와 함께 단백질 정량값 데이터를 개발한 모델에 적용하여 AUROC 분석을 통해 감별 성능을 산출할 수 있다. 이렇게 산출된 AUROC curve에는 각 환자에서 산출된 민감도 값과 특이도 값이 존재하고 따라서 모든 환자에 대한 민감도와 특이도 값의 분포가 존재한다. 각 환자별로 Youden index값을 sensitivity+specificity-1을 통해 구할 수 있고 따라서 모든 환자에 대한 Youden index값의 분포가 존재하게 된다. Youden index 값들 중 가장 큰 yonden index값을 최적 cutoff으로 결정하게 된다. 본원의 일 구현예에 따른 임계값 (cutoff)은 실시예5 등을 참조할 수 있다. Specifically, the proteins included in the ensemble model developed from the patients' blood samples were quantified using MRM-MS, our mass spectrometry equipment, and the protein quantitative value data was used in the model developed along with the SCL-90R clinical data of the patients. By applying this, discrimination performance can be calculated through AUROC analysis. In the AUROC curve calculated in this way, there are sensitivity and specificity values calculated for each patient, and therefore there is a distribution of sensitivity and specificity values for all patients. The Youden index value for each patient can be obtained through sensitivity+specificity-1, so there is a distribution of Youden index values for all patients. The largest Youden index value among the Youden index values is determined as the optimal cutoff. For the threshold value (cutoff) according to an implementation of the present application, refer to Example 5, etc.

구체적으로 본 발명에 등록된 피실험자는 주요 우울장애 174명, 양극성장애 170명, 조현병 171명, 그리고 정상대조군 160명이었다. 특히 양극성장애 170명 중 75명은 BD-1, 84명은 BD-2, 11명은 BD-NOS, 그리고 143명은 BD without current hypomanic/manic/mixed symptoms로 구성되었다. 총 675명의 피실험자의 혈액 (plasma)시료 675례에서 질량분석기반 다중반응검지법 (MRM-MS 또는 MRM)을 사용하여 기 구축한 우울장애, 양극성장애, 및 조현병 바이오마커 후보군 (우울장애, 양극성장애, 및 조현병 관련 유전체, 전사체, 그리고 단백체 데이터베이스 및 문헌 조사를 통해 바이오마커 후보군 리스트 확립)을 정량하여 단백체 데이터를 수집하였다. 수집한 단백체 데이터를 대상으로 the least absolute shrinkage and selection operator (LASSO)와 교차검증 (crossvalidation)을 사용한 머신 러닝 기법을 적용하여 단백체 기반 다중 마커 모델 [multiprotein-marker (MPM) model]을 구축하였고 개발한 모델의 주요정신질환의 감별성능을 Area under receiver operating characteristic (AUROC) 분석을 통해 측정하였다. 총 675명의 피실험자에 대한 환자 자가 보고 주요정신질환 증상 평가 지표[symptom Checklist 90-revised (SCL-90R)] 및 임상의 주요정신질환 증상 평가 지표[clinician rater score]에 대한 임상 자료를 수집하였다. 머신러닝기반 Stacking Ensemble 방법을 사용하여 기 구축한 단백체 다중 마커 모델과 환자 자가 보고 주요정신질환 증상 평가 지표 임상자료의 변수를 결합한 앙상블 (Ensemble) 모델 을 개발하였다. 또한 임상의 주요정신질환 증상 평가 지표의 임상 자료의 변수만 을 사용하여 Clinician rater score-based (CRSB) 모델을 개발하였다. 본원에서 개발한 앙상블 (Ensemble) 모델과 Clinician rater score-based (CRSB) 모델의 감별 및 진단 성능을 비교하여 임상의의 개입이 배체된 단백체 데이터와 환자 자가보고 진단 평가 임상자료 변수의 결합 모델이 주요정신질환의 객관적인 감별 및 진단에서의 가능성을 제시했다. 감별 성능은 Area under receiver operating characteristic (AUROC) 분석을 통해 측정하였고 진단성능은 Accuracy, Sensitivity, Specificity, Positive predictive value (PPV), 그리고 Negative predictive value (NPV) 진단 파라미터 분석을 통해 측정하였다.Specifically, the subjects registered in the present invention were 174 people with major depressive disorder, 170 people with bipolar disorder, 171 people with schizophrenia, and 160 normal controls. In particular, of the 170 patients with bipolar disorder, 75 had BD-1, 84 had BD-2, 11 had BD-NOS, and 143 had BD without current hypomanic/manic/mixed symptoms. Candidates for depressive disorder, bipolar disorder, and schizophrenia biomarkers (depressive disorder, bipolar disorder) established using mass spectrometry-based multiple reaction detection (MRM-MS or MRM) in 675 blood (plasma) samples from a total of 675 subjects. Proteomic data was collected by quantifying the disorder and schizophrenia-related genome, transcriptome, and proteome database and establishing a list of biomarker candidates through literature review. A proteome-based multi-marker model [multiprotein-marker (MPM) model] was constructed and developed by applying machine learning techniques using the least absolute shrinkage and selection operator (LASSO) and crossvalidation to the collected proteome data. The model's discriminatory performance of major mental disorders was measured through area under receiver operating characteristic (AUROC) analysis. Clinical data on patient self-reported major mental disorder symptom evaluation index [symptom checklist 90-revised (SCL-90R)] and clinical major mental disorder symptom evaluation index [clinician rater score] were collected for a total of 675 subjects. Using the machine learning-based Stacking Ensemble method, we developed an ensemble model that combines a previously constructed proteomic multi-marker model with variables from clinical data of patient self-reported major mental illness symptom evaluation indicators. In addition, a Clinician rater score-based (CRSB) model was developed using only the clinical data variables of the clinical major mental disorder symptom evaluation index. By comparing the discrimination and diagnostic performance of the Ensemble model developed at our center and the Clinician rater score-based (CRSB) model, the main model is a combination of proteomic data without clinician intervention and patient self-reported diagnostic evaluation clinical data variables. It presented the possibility of objective differentiation and diagnosis of mental illness. Discrimination performance was measured through Area under receiver operating characteristic (AUROC) analysis, and diagnostic performance was measured through Accuracy, Sensitivity, Specificity, Positive predictive value (PPV), and Negative predictive value (NPV) diagnostic parameter analysis.

본 기술은 다중반응검지법을 사용하여 한 번의 미량의 시료 주입으로 70분의 분석 시간 동안 최대 300개까지의 바이오마커의 정량을 수행할 수 있다. 항체 (antibody)를 사용하는 정량법과 비교했을 때 정량 결과의 변동성이 비교적 적고 보다 경제적으로 정량을 수행 할 수 있다. 질량분석기 기반의 다중반응검지법이 구축되어있는 병원에서는 적은 변동성, 높은 재현성 및 정확도로 혈액내 단백질 바이오마커를 정량하여 향상된 정확도로 주요 정신질환의 진단이 가능하다. This technology uses a multiple reaction detection method to quantify up to 300 biomarkers during an analysis time of 70 minutes with a single small amount of sample injection. Compared to quantitative methods using antibodies, the variability of quantitative results is relatively small and quantification can be performed more economically. In hospitals where mass spectrometry-based multiple reaction detection methods are established, it is possible to diagnose major mental disorders with improved accuracy by quantifying protein biomarkers in the blood with low variability, high reproducibility, and accuracy.

이에 한 양태에서 본원은 주요 정신 질환인 우울장애, 양극성 장애 및 조현병을 구분할 수 있는 바이오마커 조합에 관한 것이다. Accordingly, in one aspect, our research relates to a combination of biomarkers that can distinguish between major mental disorders such as depressive disorder, bipolar disorder, and schizophrenia.

일 구현예에서 우울장애 및 양극성 장애를 구분하는 바이오마커 조합은 ALDOC (Fructose-bisphosphate aldolase C), ANPEP (Aminopeptidase N), ARMH4 (Armadillo-like helical domain-containing protein 4), C1RL (Complement C1r subcomponent-like protein), CDH13 (Cadherin-13 ), CETP (Cholesteryl ester transfer protein ), COL10A1 (Collagen alpha-1), CTNND1 (Catenin delta-1), DDR1 (Epithelial discoidin domain-containing receptor 1), DBH (Dopamine beta-hydroxylase ), SERPING1 (Plasma protease C1 inhibitor), IL1RAP (Interleukin-1 receptor accessory protein), ITIH2 (Inter-alpha-trypsin inhibitor heavy chain H2), NPC2 (NPC intracellular cholesterol transporter 2), RAN (GTP-binding nuclear protein Ran), SAA1 (Serum amyloid A-1 protein), 및 TF (Serotransferrin)이다. In one embodiment, the combination of biomarkers for distinguishing between depressive disorder and bipolar disorder includes ALDOC (Fructose-bisphosphate aldolase C), ANPEP (Aminopeptidase N), ARMH4 (Armadillo-like helical domain-containing protein 4), and C1RL (Complement C1r subcomponent- like protein), CDH13 (Cadherin-13), CETP (Cholesteryl ester transfer protein), COL10A1 (Collagen alpha-1), CTNND1 (Catenin delta-1), DDR1 (Epithelial discoidin domain-containing receptor 1), DBH (Dopamine beta) -hydroxylase ), SERPING1 (Plasma protease C1 inhibitor), IL1RAP (Interleukin-1 receptor accessory protein), ITIH2 (Inter-alpha-trypsin inhibitor heavy chain H2), NPC2 (NPC intracellular cholesterol transporter 2), RAN (GTP-binding nuclear) protein Ran), SAA1 (Serum amyloid A-1 protein), and TF (Serotransferrin).

또 다른 구현예에서 우울장애와 조현병을 구분하는 바이오마커 조합은 ALDOC (Fructose-bisphosphate aldolase C), IGFALS (Insulin-like growth factor-binding protein complex acid labile subunit ), NAGLU (Alpha-N-acetylglucosaminidase), ATP1A1 (Sodium/potassium-transporting ATPase subunit alpha-1), CTSS (Cathepsin S), SERPINA6 (Corticosteroid-binding globulin), CPB2 (Carboxypeptidase B2), COL10A1 (Collagen alpha-1), CRYM (Ketimine reductase mu-crystallin), GPX3 (Glutathione peroxidase 3), IGFBP3 (Insulin-like growth factor-binding protein 3), IGFBP5 (Insulin-like growth factor-binding protein 5), ITIH2 (Inter-alpha-trypsin inhibitor heavy chain H2), PGC (Gastricsin), PROC (Vitamin K-dependent protein C), PROS1 (Vitamin K-dependent protein S), RIDA (2-iminobutanoate/2-iminopropanoate deaminase), SAA1 (Serum amyloid A-1 protein), SAA4 (Serum amyloid A-4 protein), 및 TFPI (Tissue factor pathway inhibitor)이다. In another embodiment, the combination of biomarkers for distinguishing between depressive disorder and schizophrenia includes ALDOC (Fructose-bisphosphate aldolase C), IGFALS (Insulin-like growth factor-binding protein complex acid labile subunit), and NAGLU (Alpha-N-acetylglucosaminidase). , ATP1A1 (Sodium/potassium-transporting ATPase subunit alpha-1), CTSS (Cathepsin S), SERPINA6 (Corticosteroid-binding globulin), CPB2 (Carboxypeptidase B2), COL10A1 (Collagen alpha-1), CRYM (Ketimine reductase mu-crystallin) ), GPX3 (Glutathione peroxidase 3), IGFBP3 (Insulin-like growth factor-binding protein 3), IGFBP5 (Insulin-like growth factor-binding protein 5), ITIH2 (Inter-alpha-trypsin inhibitor heavy chain H2), PGC ( Gastricsin), PROC (Vitamin K-dependent protein C), PROS1 (Vitamin K-dependent protein S), RIDA (2-iminobutanoate/2-iminopropanoate deaminase), SAA1 (Serum amyloid A-1 protein), SAA4 (Serum amyloid A) -4 protein), and TFPI (Tissue factor pathway inhibitor).

또 다른 구현예에서 양극성장애 및 조현병을 구분하는 바이오마커 조합은 SERPINA3 (Alpha-1-antichymotrypsin), ANPEPM (Aminopeptidase N), BPIFB1 (BPI fold-containing family B member 1), C1RL (Complement C1r subcomponent-like protein), CFB (Complement factor B), CLDN3 (Claudin-3), DBH (Dopamine beta-hydroxylase), GPR37 (Prosaposin receptor GPR37), SERPIND1 (Heparin cofactor 2), IGFBP5 (Insulin-like growth factor-binding protein 5), SERPING1 (Plasma protease C1 inhibitor), MBL2 (Mannose-binding protein C), NPC2 (NPC intracellular cholesterol transporter 2), PLXNC1 (Plexin-C1), PSMD1 (26S proteasome non-ATPase regulatory subunit 1), TFPI (Tissue factor pathway inhibitor), 및 UMOD (Uromodulin)이다. In another embodiment, the combination of biomarkers for distinguishing bipolar disorder and schizophrenia includes SERPINA3 (Alpha-1-antichymotrypsin), ANPEPM (Aminopeptidase N), BPIFB1 (BPI fold-containing family B member 1), and C1RL (Complement C1r subcomponent- like protein), CFB (Complement factor B), CLDN3 (Claudin-3), DBH (Dopamine beta-hydroxylase), GPR37 (Prosaposin receptor GPR37), SERPIND1 (Heparin cofactor 2), IGFBP5 (Insulin-like growth factor-binding protein) 5), SERPING1 (Plasma protease C1 inhibitor), MBL2 (Mannose-binding protein C), NPC2 (NPC intracellular cholesterol transporter 2), PLXNC1 (Plexin-C1), PSMD1 (26S proteasome non-ATPase regulatory subunit 1), TFPI ( Tissue factor pathway inhibitor), and UMOD (Uromodulin).

다른 양태에서 본원은 또한 상기 각 바이오마커 또는 상기 마커 조합의 바이오마커 발현 수준을 질량분석법으로 측정하기 위한 물질을 포함하는 주요 정신 질환 구분용 바이오마커 조성물에 관한 것이다. In another aspect, the present application also relates to a biomarker composition for distinguishing major mental disorders, including a substance for measuring the biomarker expression level of each biomarker or combination of markers by mass spectrometry.

본원에 따른 바이오마커 분석을 위한 질량 분석법은 탠덤 질량 분석법, 이온 트랩 질량 분석법, 삼중사극 질량 분석법, 하이브리드 이온 트랩/쿼드러폴 질량 분석법 또는 비행시간 질량 분석법을 포함한다. Mass spectrometry methods for biomarker analysis according to the present disclosure include tandem mass spectrometry, ion trap mass spectrometry, triple quadrupole mass spectrometry, hybrid ion trap/quadrupole mass spectrometry, or time-of-flight mass spectrometry.

일 구현예에서 본원에 따른 질량 분석법에 사용되는 모드는 선택 반응 모니터링(Selected Reaction Monitoring, SRM) 또는 다중 반응 모니터링(Multiple Reaction Monitoring, MRM)이다. In one embodiment, the mode used in mass spectrometry according to the present disclosure is Selected Reaction Monitoring (SRM) or Multiple Reaction Monitoring (MRM).

본원에 따른 방법에 사용되는 질량분석법은 탠덤 질량 분석법, 이온 트랩 질량 분석법, 삼중사극 질량 분석법, 하이브리드 이온 트랩/쿼드러폴 질량 분석법 및/또는 비행시간 질량 분석법을 포함할 수 있다. 이때 사용되는 질량 분석법 모드는, 예를 들어 선택 반응 모니터링(Selected Reaction Monitoring, SRM), 다중 반응 모니터링(Multiple Reaction Monitoring, MRM) 일 수 있다.Mass spectrometry methods used in the methods according to the present disclosure may include tandem mass spectrometry, ion trap mass spectrometry, triple quadrupole mass spectrometry, hybrid ion trap/quadrupole mass spectrometry, and/or time-of-flight mass spectrometry. The mass spectrometry mode used at this time may be, for example, Selected Reaction Monitoring (SRM) or Multiple Reaction Monitoring (MRM).

일 구현예에서는 특히 MRM 모드가 사용된다. MRM 질량분석법의 원리는 선정된 타겟 단백질들을 모두 펩타이드로 가수분해 시킨 후에, 각 타겟 단백질들에 특이적인 mass to charge (m/z)를 가지는 펩타이드(precursor ion, MS1)를 선택한다. 이 특이적인 펩타이드를 충돌시켰을 때(Quadruple 2, Q2), 발생하는 파편들 중에서 특징적인 m/z를 가지는 특이적 질량을 가진 단편(fragmentation ion, MS2)을 선택한다. MS1/MS2에서 각각 얻어지는 precursor ion/fragment ion의 쌍을 타겟 단백질의 특이적 transition(타겟 단백질의 특이적 질량 지문)이라 명명하며, 이 transition들을 모든 타겟 단백질(300 단백질 이상)에 대해서 측정하면 시료에 있는 모든 타겟 단백질의 양을 동시에 상대 혹은 절대 정량할 수 있다. 상대 혹은 절대 정량을 위해서는 SIS (동위원소 치환된 동일 아미노산 순서의) 펩타이드를 표준 물질로 사용하는데, 측정 시료의 input 표준 물질 (SIS 펩타이드) 양을 알고 있기 때문에 타겟 펩타이드 양을 비례적으로 계산할 수 있는 원리이다. MS2를 통과한 transition은 검출기에서 digital signal로 전환되어 peak chromatogram으로 전환되며 peak 면적을 계산하여 상대 및 절대 정량 분석을 수행할 수 있게 된다. In one implementation, in particular MRM mode is used. The principle of MRM mass spectrometry is to hydrolyze all selected target proteins into peptides and then select a peptide (precursor ion, MS1) with a mass to charge (m/z) specific to each target protein. When this specific peptide collides (Quadruple 2, Q2), a fragment (fragmentation ion, MS2) with a specific mass and a characteristic m/z is selected from the generated fragments. The pair of precursor ion/fragment ions obtained from MS1/MS2 is called the specific transition of the target protein (specific mass fingerprint of the target protein), and when these transitions are measured for all target proteins (more than 300 proteins), the sample The amount of all target proteins can be quantified simultaneously relative or absolute. For relative or absolute quantification, SIS (isotopically substituted identical amino acid sequence) peptide is used as a standard material. Since the amount of input standard material (SIS peptide) of the measurement sample is known, the amount of target peptide can be calculated proportionally. It is a principle. The transition that passes through MS2 is converted into a digital signal at the detector and converted into a peak chromatogram, and the peak area can be calculated to perform relative and absolute quantitative analysis.

본원에 따른 바이오마커를 질량 분석법으로 수행하는 경우 각 바이오마커에서 검출되는 펩타이드 서열은 다음과 같다. When the biomarkers according to the present application are performed by mass spectrometry, the peptide sequences detected in each biomarker are as follows.

[표 1][Table 1]

본원에 따른 바이오마커를 검출 수 있는 검체 또는 시료는 혈액, 전혈, 혈청 또는 혈장이다. 본원의 일 구현예에서 상기 시료는 혈액, 특히 혈장 시료이다. 시료로서 혈액을 이용하는 경우, 단백질 고갈 및 변성 후 단백질 분해 효소(예컨대, 트립신 및/또는 키모트립신)로 분해하여 사용할 수 있다. The specimen or sample that can detect the biomarker according to the present application is blood, whole blood, serum, or plasma. In one embodiment of the present application, the sample is blood, particularly plasma sample. When using blood as a sample, it can be used by depleting and denaturing the protein and then digesting it with a proteolytic enzyme (eg, trypsin and/or chymotrypsin).

본원에 따른 바이오마커 검출에 사용되는 검체 또는 시료는 포유류 특히 인간으로부터 수득된다. 인간 대상체는 기분장애 환자로서 주요 우울 장애와 양극성장애의 구분이 필요한 사람이다. Specimens or samples used for biomarker detection according to the present application are obtained from mammals, particularly humans. The human subject is a patient with a mood disorder who needs to distinguish between major depressive disorder and bipolar disorder.

본원에서 용어 진단 또는 판단은 특정 질병 또는 질환에 대하여 검사 대상자의 질환에 대한 감수성(susceptibility)을 판정하는 것, 특정 질병 또는 질환을 현재 가지고 있는지 여부를 판정하는 것 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링 하는 것)을 포함한다.The term diagnosis or judgment herein refers to determining the susceptibility of a test subject to a specific disease or condition, determining whether the subject currently has a specific disease or condition, or therametrics (e.g., and monitoring the condition of the subject to provide information about treatment efficacy.

다른 양태에서 본원은 주요 정신 질환인 우울장애, 양극성 장애 및 조현병을 구분하여 판단 또는 진단에 필요한 정보를 제공하는 방법 또는 상기 정보를 제공하기 위해 인비트로에서 우울장애, 양극성 장애 및 조현병을 구분하여 진단하기 위한 바이오마커 검출 방법에 관한 것이다. In another aspect, our hospital provides a method of providing information necessary for judgment or diagnosis by distinguishing between major mental disorders such as depressive disorder, bipolar disorder, and schizophrenia, or distinguishing depressive disorder, bipolar disorder, and schizophrenia in vitro to provide the above information. This relates to a method of detecting biomarkers for diagnosis.

상기 방법은 대상체로부터 분리된 혈액으로부터 표 1에 따른 바이오마커 조합의 각 바이오마커의 발현 수준을 질량분석법으로 측정하는 단계; 및 상기 측정 결과를 우울장애, 양극성 장애 또는 조현병과 연관시키는 단계를 포함한다. The method includes measuring the expression level of each biomarker of the biomarker combination according to Table 1 from blood isolated from the subject by mass spectrometry; and correlating the measurement result with depressive disorder, bipolar disorder, or schizophrenia.

본원에 따른 방법에 사용되는 질량분석법, 검체, 각 바이오마커의 펩타이드 서열은 앞서 언급한 바를 참조할 수 있다. The peptide sequences of mass spectrometry, samples, and each biomarker used in the method according to the present application can be referred to as mentioned above.

일 구현예에서 질량 분석법 모드는 MRM이고, 상기 MRM에 분석에 사용되는 상기 패널을 구성하는 각 단백질 별 펩타이드는 표 1과 같다. In one embodiment, the mass spectrometry mode is MRM, and the peptides for each protein constituting the panel used for MRM analysis are shown in Table 1.

다른 구현예에서 본원에 따른 방법은 상기 바이오마커 검출 결과에 추가하여 즉 이와 조합하여 주요정신질환 증상 평가 지표[symptom Checklist 90-revised (SCL-90R)]의 점수 자료를 우울장애, 양극성 장애 및 조현병 구분에 사용하는 것인, 우울장애, 양극성 장애 및 조현병의 진단에 사용할 수 있다. 이에 대하여는 앞서 언급한 바를 참조할 수 있다. In another embodiment, the method according to the present application uses score data of the major mental disorder symptom evaluation index [Symptom Checklist 90-revised (SCL-90R)] in addition to the biomarker detection results, i.e., in combination with depressive disorder, bipolar disorder, and schizophrenia. It can be used to diagnose depressive disorder, bipolar disorder, and schizophrenia, which is used to classify diseases. Regarding this, please refer to what was mentioned above.

이 경우, 본원에 따른 방법의 상기 연관시키는 단계는 상기 바이오마커 검출 결과 및 주요정신질환 증상 평가 지표 점수 자료를 다음 식 1에 대입하여 결과를 수득하고, 그 결과를 각 바이오마커 조합별로 결정된 임계값과 비교한다. In this case, the linking step of the method according to the present application obtains a result by substituting the biomarker detection result and major mental disorder symptom evaluation index score data into the following equation 1, and the result is adjusted to the threshold value determined for each biomarker combination. Compare with

이하, 본 발명의 이해를 돕기 위해서 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.Below, examples are presented to aid understanding of the present invention. However, the following examples are provided only for easier understanding of the present invention, and the present invention is not limited to the following examples.

실시예 1. 주요정신질환 혈액 시료 수집 및 인구통계학 및 임상 특성 분석Example 1. Collection of blood samples for major psychiatric disorders and analysis of demographic and clinical characteristics

주요 정신질환 관련 단백질 바이오마커 후보군의 검출 여부를 판단하기 위해 다기관/대규모 코호트에서 정상대조군 160례, 우울장애 174례, 양극성장애 170례, 조현병 171례의 혈액(plasma) 시료를 수집하였다. 특히 양극성장애 시료는 3가지의 질병 하위 아형 (BD-1 75례, BD-2 84례, BD-NOS 11례)로 구성되어 있어 이러한 아형의 진단에 본 발명의 결과물이 적용될 수 있도록 하였다. 또한 해당 환자 및 정상대조군에 대한 인구통계학 및 임상 자료를 수집하고 통계분석(univariate analysis)을 수행하여 인구통계학 및 임상 특성을 분석하였다. 본원은 최신판의 헬싱키 선언을 기반으로 수행하였으며 서울대병원 기관심사위위원회(IRB no. 1806-106-951) 및 모든 참여 병원에 의해 검토되었다. 본원은 환자들의 참여 및 환자 시료 사용에 대한 사전 동의를 얻었다.To determine whether candidate protein biomarkers related to major mental disorders were detected, blood (plasma) samples from 160 normal controls, 174 cases of depressive disorder, 170 cases of bipolar disorder, and 171 cases of schizophrenia were collected from a multicenter/large-scale cohort. In particular, the bipolar disorder sample consisted of three disease subtypes (75 cases of BD-1, 84 cases of BD-2, and 11 cases of BD-NOS), allowing the results of the present invention to be applied to the diagnosis of these subtypes. In addition, demographic and clinical data were collected for the patients and normal controls, and statistical analysis (univariate analysis) was performed to analyze demographic and clinical characteristics. Our hospital conducted the study based on the latest version of the Declaration of Helsinki and was reviewed by the Institutional Review Board of Seoul National University Hospital (IRB no. 1806-106-951) and all participating hospitals. Our hospital obtained informed consent from patients for participation and use of patient samples.

본 발병에 참여한 환자군 및 정상대조군의 인구통계학 및 임상적 특징은 다음 표 2과 같다. The demographic and clinical characteristics of the patient group and normal control group participating in this outbreak are shown in Table 2 below.

[표 2][Table 2]

AbbreviationsAbbreviations

BPRS: Brief Psychiatric Rating Scale BPRS: Brief Psychiatric Rating Scale

YMRS: Young Mania Rating Scale YMRS: Young Mania Rating Scale

MADRS: Montgomery-Asberg Depression Rating Scale MADRS: Montgomery-Asberg Depression Rating Scale

HAM-A: Hamilton Anxiety Scale  HAM-A: Hamilton Anxiety Scale

MDD: major depressive disorder MDD: major depressive disorder

BD: bipolar disorderBD: bipolar disorder

SPR: schizophreniaSPR: schizophrenia

HC: healthy controlHC: healthy control

BMI: body mass indexBMI: body mass index

실시예 2. 단백질 바이오마커 후보 군 리스트 구축 Example 2. Construction of a list of protein biomarker candidates

본 발명자의 기구축 질병 바이오마커 리스트 및 선행 문헌조사 및 데이터 마이닝을 통해 우울장애, 양극성장애, 및 조현병과 관련된 단백질 바이오마커 후보군 리스트를 구축하였다. 총 5개의 우울장애, 양극성장애, 및 조현병 관련 데이터 베이스 [PsyGeNET (http://www.psygenet.org), Schizophrenia Gene Resource 2 (SZGR2) (https://bioinfo.uth.edu/SZGR/), Laboratory of Neurophenomics (http://www.neurophenomics.info/), Comprehensive Database for Schizophrenia (SZDB2) (www.SPRdb.org), 그리고 The Stanley Neuropathology Consortium Integrative Database (SNCID) (http://sncid.stanleyresearch.org)]를 통해 우울장애, 양극성장애, 및 조현병관련 8081개의 유전자 리스트를 구축하였다. 이후 혈액 단백체 데이터 베이스인 The Human Blood Protein Atlas와 Plasma Proteome Database (PPD)를 통해 혈액에서 검출 가능성이 높은 1462개의 단백질을 선별하였다. 이후 8개의 질량분석기반 spectral libraries 사용하여 질량분석기에서 검출될 가능성이 높은 단백질을 407개를 선정하였다. 선행 연구 (Shin, D. et al. (2021). Quantitative Proteomic Approach for Discriminating Major Depressive Disorder and Bipolar Disorder by Multiple Reaction Monitoring-Mass Spectrometry. Journal of Proteome Research, 20(6), 3188-3203)에서 구축한 우울장애 및 양극성장애 관련 210개 단백질과 연구실 고유 구축 질병관련 1048개 단백질을 더하여 총 1667개의 단백질 타겟 리스트를 구축하였다. 다중반응검지법 (MRM-MS 또는 MRM)을 사용하여 우울장애, 양극성장애, 및 조현병 각 50례의 혈액 (plasma) pooling 시료에서 검출 및 정량성을 나타내는 최종 642개의 단백질 바이오마커 후보 군 리스트를 확립하였다 (도 2 참조). 이어 다음과 같이 분석하였다. A list of candidate protein biomarkers related to depressive disorder, bipolar disorder, and schizophrenia was constructed through the inventor's established list of disease biomarkers, prior literature search, and data mining. A total of 5 databases related to depressive disorder, bipolar disorder, and schizophrenia [PsyGeNET (http://www.psygenet.org), Schizophrenia Gene Resource 2 (SZGR2) (https://bioinfo.uth.edu/SZGR/) , Laboratory of Neurophenomics (http://www.neurophenomics.info/), Comprehensive Database for Schizophrenia (SZDB2) (www.SPRdb.org), and The Stanley Neuropathology Consortium Integrative Database (SNCID) (http://sncid.stanleyresearch .org)] to construct a list of 8081 genes related to depressive disorder, bipolar disorder, and schizophrenia. Afterwards, 1462 proteins with high detectability in blood were selected through the blood proteome databases The Human Blood Protein Atlas and Plasma Proteome Database (PPD). Afterwards, 407 proteins with a high probability of being detected by mass spectrometry were selected using 8 mass spectrometry-based spectral libraries. Constructed from previous research (Shin, D. et al. (2021). Quantitative Proteomic Approach for Discriminating Major Depressive Disorder and Bipolar Disorder by Multiple Reaction Monitoring-Mass Spectrometry. Journal of Proteome Research, 20(6), 3188-3203) A total of 1,667 protein target lists were constructed by adding 210 proteins related to depressive disorder and bipolar disorder and 1,048 disease-related proteins uniquely constructed by the laboratory. Using multiple reaction detection method (MRM-MS or MRM), a final list of 642 protein biomarker candidates showing detection and quantification in blood (plasma pooled samples) of 50 cases of depressive disorder, bipolar disorder, and schizophrenia each was created. established (see Figure 2). Then, it was analyzed as follows.

실시예 3. MRM-MS를 사용한 단백질 바이오마커 분석Example 3. Protein biomarker analysis using MRM-MS

01. Protein depletion 및 농축01. Protein depletion and concentration

혈액 시료에서 약 90%을 구성하고 있는 6가지의 high-abundant protein (albumin, IgG, IgA, haptoglobin, transferrin, alpha-1-antitrypsin)을 High performance liquid chromatogram (HPLC)와 MARS-6 column이 결합된 방식을 통해 제거 하였다. 대부분의 혈액 질병 바이오마커의 경우 혈액 내에 매우 낮은 농도로 존재하므로 high-abundant protein을 제거하여 혈액에서 low-abundant protein의 정량의 효율성을 높혔다.Six high-abundant proteins (albumin, IgG, IgA, haptoglobin, transferrin, alpha-1-antitrypsin), which make up about 90% of blood samples, were analyzed using a high performance liquid chromatogram (HPLC) combined with a MARS-6 column. It was removed through this method. Since most blood disease biomarkers exist at very low concentrations in the blood, high-abundant proteins were removed to increase the efficiency of quantifying low-abundant proteins in the blood.

02. 단백질 농도 측정 및 Rapigest In-solution digestion02. Protein concentration measurement and Rapigest In-solution digestion

BCA assay를 수행하여 혈액 단백질 농도를 측정하였다. 이후 100ug의 혈액 단백질을 Rapigest-SF(Waters) 와 Trypsin을 사용하여 제조자의 방법대로 In-solution digestion을 수행하였다.BCA assay was performed to measure blood protein concentration. Afterwards, 100ug of blood proteins were subjected to in-solution digestion using Rapigest-SF (Waters) and Trypsin according to the manufacturer's method.

03. SIS peptide spiking03. SIS peptide spiking

단백질 바이오마커의 상대 정량을 위해 stable isotope standard (SIS) 펩타이드를 시료에 주입하여 정량을 진행하였다. SIS 펩타이드는 혈액 내의 단백질 바이오마커와는 화학적 특성은 같아서 같은 retention time에 두 종류의 펩타이드가 분석이 되고, 질량값에는 차이가 있어서 peak integration을 할 때 두 펩타이드의 peak를 각각 얻을 수 있다. 두 펩타이드의 peak intensitiy의 비율을 (혈액 단백질의 펩타이드 intensity)/(SIS 펩타이드 intensity)로 계산하여 상대 정량을 하면 단백질 정량 시에 생길 수 있는 감도의 차이 등을 보정할 수 있다.For relative quantification of protein biomarkers, stable isotope standard (SIS) peptide was injected into the sample and quantification was performed. SIS peptides have the same chemical properties as protein biomarkers in the blood, so two types of peptides are analyzed at the same retention time, but there is a difference in mass values, so when performing peak integration, the peaks of the two peptides can be obtained separately. By performing relative quantification by calculating the ratio of the peak intensities of the two peptides as (peptide intensity of blood protein)/(SIS peptide intensity), differences in sensitivity that may occur during protein quantification can be corrected.

상기 분석방법은 도 3을 참조할 수 있다. The analysis method may refer to FIG. 3.

04. 6490 Triple Quadrupole LC-MS/MS 분석 (multiple reaction monitoring-mass spectrometry, MRM-MS 또는 MRM)04. 6490 Triple Quadrupole LC-MS/MS analysis (multiple reaction monitoring-mass spectrometry, MRM-MS or MRM)

다중반응검지법 [multiple reaction monitoring-mass spectrometry (MRM-MS 또는 MRM)]은 한 번의 미량의 시료를 주입하는 것으로 70분의 분석 시간동안 최대 800개의 단백질을 정량할 수 있는 기술이다. 시료의 전처리 과정을 통해 단백질을 펩타이드 단위로 단편화하여 이온화시킨 후 질량분석기에 주입한다. 이온화된 펩타이드는 Triple quadrupole mass spectrometry에 주입되면 Q1, Q2, Q3을 거치면서 특정 질량값을 가진 이온이 정량된다. Q1에서는 특정 질량값을 가진 펩타이드 단백질이 mass filter 기능에 의해 선별되어 Q2로 전달되고, Q2에서는 전달받은 펩타이드 이온에 Collision energy를 가하여 fragmentation을 하여 product ion으로 만든다. 이를 Q3에 전달하면 Q3에서는 특정 질량값을 가진 product ion을 mass filter 기능으로 선별한다. 다중 마커 모델을 구성하고 있는 단백질의 종류가 다수이고, 분석해야 하는 시료의 수도 총 675례로 비교적 많기 때문에 한 번의 분석으로 대량의 단백질을 정량할 수 있는 MRM-MS 기법을 사용하였다 (도 4 참조).Multiple reaction monitoring-mass spectrometry (MRM-MS or MRM) is a technology that can quantify up to 800 proteins during an analysis time of 70 minutes by injecting a small amount of sample once. Through the sample pretreatment process, the protein is fragmented into peptide units, ionized, and then injected into the mass spectrometer. When the ionized peptide is injected into triple quadrupole mass spectrometry, ions with a specific mass value are quantified as they pass through Q1, Q2, and Q3. In Q1, peptide proteins with a specific mass value are selected by the mass filter function and delivered to Q2. In Q2, collision energy is applied to the delivered peptide ion to fragment it and create a product ion. When this is passed to Q3, Q3 selects product ions with a specific mass value using the mass filter function. Since there are many types of proteins that make up the multi-marker model and the number of samples to be analyzed is relatively large (675 in total), we used the MRM-MS technique, which can quantify a large amount of proteins in one analysis (see Figure 4) .

총 515례의 혈액(plasma) 시료를 전처리 한 후에 6490 Triple Quadrupole 질량분석기를 사용하여 다중반응검지법 (multiple reaction monitoring-mass spectrometry)를 수행하였다. 질량분석 장비로 주입된 시료는 ACN gradient는 3%에서 40%로 증가시키면서 52분 동안 분획되었고, Q1에서 특정 질량값 (m/z)을 가진 peptide ion을 선별하여 Q2에서 product ion으로 fragmentation 했다. 이후 Q3에서 특정 질량값을 가진 product ion을 선별하였다. 분석 후 나온 raw data는 Skyline software을 사용하여 peak integration을 수행하였고 이를 통해 각 단백질 바이오마커 후보군의 상대 정량 값 (peak area ratio)를 산출하였다. After preprocessing a total of 515 blood (plasma) samples, multiple reaction monitoring-mass spectrometry was performed using a 6490 Triple Quadrupole mass spectrometer. The sample injected into the mass spectrometry equipment was fractionated for 52 minutes while increasing the ACN gradient from 3% to 40%, and peptide ions with a specific mass value (m/z) were selected in Q1 and fragmented into product ions in Q2. Afterwards, in Q3, product ions with specific mass values were selected. The raw data obtained after analysis was subjected to peak integration using Skyline software, and through this, the relative quantitative value (peak area ratio) of each protein biomarker candidate was calculated.

실시예 4. 머신러닝 기법을 통한 우울 장애 및 양극성장애 구분을 위한 다중마커 모델 제작 및 성능 평가Example 4. Production and performance evaluation of a multi-marker model for distinguishing depressive disorder and bipolar disorder using machine learning techniques

상기 정량한 642개의 단백질을 대상으로 머신러닝 기법 중 하나인 LASSO (Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1), 1.) 및 교차검증(5-fold crossvalidation)을 사용하여 다중 마커 모델을 구축하였다. 개발된 다중 마커 모델은 우울장애와 양극성장애, 우울장애와 조현병, 그리고 양극성장애와 조현병을 감별하고 우울장애 및 양극성장애의 하위 아형 (BD-2 그리고 BD-NOS), 우울장애 및 양극성장애의 하위 아형 (BD without current hypomanic/manic/mixed symptoms) 조현병 및 양극성장애의 하위 아형 (BD-1)을 감별하는 역할을 수행한다. 우울장애, 양극성장애, 그리고 조현병의 경우 발병 요인이 가족력, 생활환경, 및 생활습관 등 복합적이기 때문에 이를 단일의 바이오마커를 사용하여 감별 및 진단하기에는 적합하지 않다고 판단하여 복수의 단백질을 조합해서 다중 마커 진단 모델을 제작하였다.LASSO (Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, one of the machine learning techniques for the 642 proteins quantified above. , 33(1), 1.) and cross-validation (5-fold crossvalidation) was used to construct a multi-marker model. The developed multi-marker model differentiates between depressive disorder and bipolar disorder, depressive disorder and schizophrenia, and bipolar disorder and schizophrenia, and subtypes of depressive disorder and bipolar disorder (BD-2 and BD-NOS), depressive disorder and bipolar disorder. It plays a role in differentiating subtypes of schizophrenia and bipolar disorder (BD-1) of subtype (BD without current hypomanic/manic/mixed symptoms). In the case of depressive disorder, bipolar disorder, and schizophrenia, because the causative factors are complex, including family history, living environment, and lifestyle habits, it was judged that it was not appropriate to differentiate and diagnose them using a single biomarker, so multiple proteins were combined to determine the diagnosis. A marker diagnostic model was created.

구체적으로 환자군 515례의 (우울장애 174례, 양극성장애 170례, 그리고 조현병 171례)에 대한 MRM-MS 데이터를 Training set (우울장애 104례, 양극성장애 102례, 그리고 조현병 102례), validation set (우울장애 35례, 양극성장애 34례, 그리고 조현병 34례), 그리고 independent test set (우울장애 35례, 양극성장애 34례, 그리고 조현병 35례)으로 나누었다. Training set에서 머신러닝 기반 (LASSO regression 그리고 교차검증)의 모델 개발을 수행한 결과 총 3개의 단백체 다중 마커 모델이 구축되었다. 즉, 우울장애와 양극성장애 감별을 위한 단백체 다중 마커 모델 (MDD vs BD)에서는 총 17개의 단백질 (ALDOC, ANPEP, ARMH4, C1RL, CDH13, CETP, COL10A1, CTNND1, DDR1, DBH, SERPING1, IL1RAP, ITIH2, NPC2, RAN, SAA1, 그리고 TF)이 조합되었고, 우울장애와 조현병 감별을 위한 단백체 다중 마커 모델 (MDD vs SPR)에서는 총 20개의 단백질 (ALDOC, IGFALS, NAGLU, ATP1A1, CTSS, SERPINA6, CPB2, COL10A1, CRYM, GPX3, IGFBP3, IGFBP5, ITIH2, PGC, PROC, PROS1, RIDA, SAA1, SAA4, 그리고 TFPI)이 조합되었고, 양극성장애와 조현병 감별을 위한 단백체 다중 마커 모델 (BD vs SPR)에서는 총 17개의 단백질 (SERPINA3, ANPEPM BPIFB1, C1RL, CFB, CLDN3, DBH, GPR37, SERPIND1, IGFBP5, SERPING1, MBL2, NPC2, PLXNC1, PSMD1, TFPI, 그리고 UMOD) 이 조합되었다. Specifically, MRM-MS data for 515 patients (174 cases of depressive disorder, 170 cases of bipolar disorder, and 171 cases of schizophrenia) were used in the training set (104 cases of depressive disorder, 102 cases of bipolar disorder, and 102 cases of schizophrenia). It was divided into a validation set (35 cases of depressive disorder, 34 cases of bipolar disorder, and 34 cases of schizophrenia) and an independent test set (35 cases of depressive disorder, 34 cases of bipolar disorder, and 35 cases of schizophrenia). As a result of performing machine learning-based (LASSO regression and cross-validation) model development on the training set, a total of three proteomic multi-marker models were constructed. That is, in the proteomic multi-marker model (MDD vs BD) for differentiating depressive disorder and bipolar disorder, a total of 17 proteins (ALDOC, ANPEP, ARMH4, C1RL, CDH13, CETP, COL10A1, CTNND1, DDR1, DBH, SERPING1, IL1RAP, ITIH2 , NPC2, RAN, SAA1, and TF) were combined, and a total of 20 proteins (ALDOC, IGFALS, NAGLU, ATP1A1, CTSS, SERPINA6, CPB2) were combined in the proteomic multi-marker model (MDD vs SPR) for differentiating depressive disorder and schizophrenia. , COL10A1, CRYM, GPX3, IGFBP3, IGFBP5, ITIH2, PGC, PROC, PROS1, RIDA, SAA1, SAA4, and TFPI) were combined, and in the proteomic multi-marker model (BD vs SPR) for differentiating bipolar disorder and schizophrenia, A total of 17 proteins (SERPINA3, ANPEPM BPIFB1, C1RL, CFB, CLDN3, DBH, GPR37, SERPIND1, IGFBP5, SERPING1, MBL2, NPC2, PLXNC1, PSMD1, TFPI, and UMOD) were combined.

우울장애와 양극성장애 감별을 위한 단백체 다중 마커 모델은 Training set/validation set/independent test set에서 각각 AUROC=0.84, 0.73, 그리고 0.74의 감별 성능을 보였다. 우울장애와 조현병 감별을 위한 단백체 다중 마커 모델은 Training set/validation set/independent test set에서 각각 AUROC=0.87, 0.74, 그리고 0.72의 감별 성능을 보였다. 양극성장애 및 조현병 감별을 위한 단백체 다중 마커 모델은 Training set/validation set/independent test set에서 각각 AUROC=0.88, 0.72, 그리고 0.78의 감별 성능을 보였다 (도 6 참조). The proteomic multi-marker model for differentiating depressive disorder and bipolar disorder showed discrimination performance of AUROC=0.84, 0.73, and 0.74 in training set/validation set/independent test set, respectively. The proteomic multi-marker model for differentiating depressive disorder and schizophrenia showed discrimination performance of AUROC=0.87, 0.74, and 0.72 in training set/validation set/independent test set, respectively. The proteomic multi-marker model for distinguishing bipolar disorder and schizophrenia showed discrimination performance of AUROC=0.88, 0.72, and 0.78 in the training set/validation set/independent test set, respectively (see Figure 6).

또한 단백체 다중 마커 모델을 양극성장애 환자의 하위 아형 그룹 (BD-1, BD-2, BD-NOS, 그리고 BD without current hypomanic/manic/mixed symptoms)에 적용하여 개발한 모델들의 우울장애, 조현병, 그리고 양극성장애 환자의 하위 아형 그룹 간 감별 성능을 검증하였다. 우울장애와 양극성장애 감별을 위한 단백체 다중 마커 모델을 사용하여 174명의 우울장애 환자와 총 95명의 BD-2 와 BD-NOS 환자 간의 감별 성능은 UROC=0.78이었다. 또한 174명의 우울장애 환자와 총 143명의 BD without current hypomanic/manic/mixed symptoms 환자 간의 감별 성능은 AUROC=0.80이었다. 양극성장애와 조현병 감별을 위한 단백체 다중 마커 모델을 사용하여 171명의 조현병 환자와 총 75명의 BD-1 환자 간의 감별 성능은 AUROC=0.82이었다.(도 7 참조)In addition, models developed by applying the proteomic multi-marker model to sub-subtype groups (BD-1, BD-2, BD-NOS, and BD without current hypomanic/manic/mixed symptoms) of bipolar disorder patients showed depressive disorder, schizophrenia, In addition, the discrimination performance between sub-subtype groups of bipolar disorder patients was verified. Using a proteomic multi-marker model to differentiate between depressive disorder and bipolar disorder, the discrimination performance between 174 depressive disorder patients and a total of 95 BD-2 and BD-NOS patients was UROC=0.78. Additionally, the discrimination performance between 174 patients with depressive disorder and a total of 143 patients with BD without current hypomanic/manic/mixed symptoms was AUROC=0.80. Using the proteomic multi-marker model for differentiating bipolar disorder and schizophrenia, the discrimination performance between 171 schizophrenia patients and a total of 75 BD-1 patients was AUROC = 0.82 (see Figure 7).

실시예 5. 머신러닝 기법을 통한 앙상블 모델 [Ensemble (ES) model] 제작 및 성능 평가Example 5. Production and performance evaluation of an ensemble model [Ensemble (ES) model] using machine learning techniques

또한 머신러닝 기반의 Stacking ensemble method를 사용하여 기 구축한 단백체 다중 마커 모델에 환자 자가 보고 주요정신질환 증상 평가 지표[symptom Checklist 90-revised (SCL-90R)]의 임상변수들을 조합한 앙상블모델을 개발하였다(도 8참조). 기 구축한 단백체 다중 마커 모델에 임상 변수를 추가 조합하면 더 높은 정확도의 주요정신질환의 감별성능 및 진단 성능을 나타낼 수 있다고 판단하였다. 또한 임상의 주요정신질환 증상 평가 지표[clinician rater score]만을 조합하여 Clinician rater score-based (CRSB) 모델을 개발하였는데 이것은 앙상블모델과의 감별성능 및 진단성능을 비교 분석하기 위해 제작되었다(도 9 참조)In addition, using a machine learning-based stacking ensemble method, we developed an ensemble model that combined the clinical variables of the patient self-reported major mental illness symptom evaluation index [symptom checklist 90-revised (SCL-90R)] with the previously constructed proteomic multi-marker model. (see Figure 8). It was determined that combining additional clinical variables with the previously constructed proteomic multi-marker model could provide higher accuracy in discriminating and diagnosing major mental disorders. In addition, a Clinician rater score-based (CRSB) model was developed by combining only the clinical major mental disorder symptom evaluation index [clinician rater score], which was created to compare and analyze the discrimination and diagnostic performance with the ensemble model (see Figure 9). )

앙상블 모델은 구체적으로 본원에서 개발한 단백체 다중 마커 모델에 환자 자가 보고 주요정신질환 증상 평가 지표 [symptom Checklist 90-revised (SCL-90R)]의 임상 변수들을 머신러닝 기반 Stacking ensemble 기법을 사용하여 결합하여 개발하였다. 우울장애와 양극성장애 감별을 위한 단백체 다중 마커 모델 (MDD vs BD)에 5개의 SCL-90R의 항목 Somatization dimension, Psychoticism dimension, Depression dimension, Overeating item, Interpersonal sensitivity dimension을 결합하여 앙상블 모델 (MDD vs BD)을 개발하였다. 우울장애와 조현병 감별을 위한 단백체 다중 마커 모델 (MDD vs SPR)에 5개의 SCL-90R의 항목 Somatization dimension, Interpersonal sensitivity dimension, Psychoticism dimension, Paranoid ideation dimension, Depression dimension을 결합하여 앙상블 모델 (MDD vs SPR)을 개발하였다. 양극성장애와 조현병 감별을 위한 단백체 다중 마커 모델 (BD vs SPR)에는 6개의 SCL-90R의 항목 Obsessive-compulsive dimension, Interpersonal sensitivity dimension, Psychoticism dimension, Phobic anxiety dimension, Hostility dimension, Depression dimension을 결합하여 앙상블 모델 (BD vs SPR)을 개발하였다. 앙상블 모델 (MDD vs BD)의 감별력은 Training/validation/independent test set에서 AUROC=0.84, 0.82, 그리고 0.77을 보였으며 Independent test set에서의 최적 cutoff 값 (J)는 0.48 이였다. 이 값보다 크면 양극성장애로 감별하며 작으면 우울장애로 감별한다. 따라서 J=0.48을 기준으로 independent test set에서의 진단 성능은 Accuracy=0.76, Sensitivity=0.71, Specificity=0.82, PPV=0.77, 그리고 NPV=0.75를 보였다. 앙상블 모델 (MDD vs SPR)의 감별력은 Training/validation/independent test set에서 AUROC=0.91, 0.83, 그리고 0.90을 보였으며 Independent test set에서의 최적 cutoff 값 (J)는 0.50 이였다. 이 값보다 크면 조현병으로 감별하며 작으면 우울장애로 감별한다. 따라서 J=0.50을 기준으로 independent test set에서의 진단 성능은 Accuracy=0.89, Sensitivity=0.86, Specificity=0.92, PPV=0.87, 그리고 NPV=0.91를 보였다. 앙상블 모델 (BD vs SPR)의 감별력은 Training/validation/independent test set에서 AUROC=0.89, 0.73, 그리고 0.88을 보였으며 Independent test set에서의 최적 cutoff 값 (J)는 0.62 이였다. 이 값보다 크면 조현병으로 감별하며 작으면 양극성장애로 감별한다. 따라서 J=0.62을 기준으로 independent test set에서의 진단 성능은 Accuracy=0.83, Sensitivity=0.89, Specificity=0.77, PPV=0.80, 그리고 NPV=0.87를 보였다 (도 8 참조). The ensemble model specifically combines the clinical variables of the patient self-reported major mental illness symptom evaluation index [symptom checklist 90-revised (SCL-90R)] with the proteomic multi-marker model developed at our institute using a machine learning-based stacking ensemble technique. developed. An ensemble model (MDD vs BD) by combining the five SCL-90R items Somatization dimension, Psychoticism dimension, Depression dimension, Overeating item, and Interpersonal sensitivity dimension with the proteomic multi-marker model (MDD vs BD) for differentiating depressive disorder and bipolar disorder. was developed. An ensemble model (MDD vs SPR) was created by combining the 5 SCL-90R items Somatization dimension, Interpersonal sensitivity dimension, Psychoticism dimension, Paranoid ideation dimension, and Depression dimension with the proteomic multi-marker model (MDD vs SPR) for differentiating depressive disorder and schizophrenia. ) was developed. The proteomic multi-marker model (BD vs SPR) for differentiating bipolar disorder and schizophrenia was created by combining the six items of SCL-90R: Obsessive-compulsive dimension, Interpersonal sensitivity dimension, Psychoticism dimension, Phobic anxiety dimension, Hostility dimension, and Depression dimension. A model (BD vs SPR) was developed. The discriminatory power of the ensemble model (MDD vs BD) showed AUROC=0.84, 0.82, and 0.77 in the training/validation/independent test set, and the optimal cutoff value (J) in the independent test set was 0.48. If it is greater than this value, it is classified as bipolar disorder, and if it is smaller than this value, it is classified as depressive disorder. Therefore, based on J=0.48, the diagnostic performance in the independent test set showed Accuracy=0.76, Sensitivity=0.71, Specificity=0.82, PPV=0.77, and NPV=0.75. The discriminatory power of the ensemble model (MDD vs SPR) showed AUROC=0.91, 0.83, and 0.90 in the training/validation/independent test set, and the optimal cutoff value (J) in the independent test set was 0.50. If it is greater than this value, it is classified as schizophrenia, and if it is smaller than this value, it is classified as depressive disorder. Therefore, based on J=0.50, the diagnostic performance in the independent test set showed Accuracy=0.89, Sensitivity=0.86, Specificity=0.92, PPV=0.87, and NPV=0.91. The discriminatory power of the ensemble model (BD vs SPR) showed AUROC=0.89, 0.73, and 0.88 in the training/validation/independent test set, and the optimal cutoff value (J) in the independent test set was 0.62. If it is greater than this value, it is classified as schizophrenia, and if it is less than this value, it is classified as bipolar disorder. Therefore, based on J = 0.62, the diagnostic performance in the independent test set showed Accuracy = 0.83, Sensitivity = 0.89, Specificity = 0.77, PPV = 0.80, and NPV = 0.87 (see Figure 8).

나아가 본원에서 개발한 앙상블 모델의 성능과 임상의 주요정신질환 증상 평가 지표[clinician rater score]에 대한 임상 변수 [Brief Psychiatric Rating Scale (BPRS), Young Mania Rating Scale (YMRS), Montgomery-Asberg Depression Rating Scale (MADRS), Hamilton Anxiety Scale (HAM-A)]을 조합하여 Clinician’s rater score-based (CRSB) 모델을 개발하고 이의 성능을 비교하였다. 전반적으로 단백체 데이터와 환자 자가 보고 증상 평가 임상 데이터가 결합된 앙상블 모델의 감별 및 진단 성능과 Clinician’s rater score-based (CRSB) 모델의 성능은 비슷한 것으로 나타났다 (도 9참조). Furthermore, the performance of the ensemble model developed at our hospital and clinical variables for major mental illness symptom evaluation indices [clinician rater score] [Brief Psychiatric Rating Scale (BPRS), Young Mania Rating Scale (YMRS), Montgomery-Asberg Depression Rating Scale] (MADRS), Hamilton Anxiety Scale (HAM-A)] were combined to develop a Clinician's rater score-based (CRSB) model and compare its performance. Overall, the differential and diagnostic performance of the ensemble model combining proteomic data and patient self-reported symptom assessment clinical data and the performance of the Clinician’s rater score-based (CRSB) model were found to be similar (see Figure 9).

이러한 결과는 본원에서 개발한 앙상블 모델이 주요정신질환의 진단에 있어서 임상의의 적극적인 개입 및 주관성이 배제되는 상황에서도 높은 정확도로 주요정신질환의 감별 및 객관적인 진단이 가능함을 나타낸다. These results indicate that the ensemble model developed at our center is capable of differentiating and objectively diagnosing major mental disorders with high accuracy even in situations where the active intervention and subjectivity of clinicians are excluded in the diagnosis of major mental disorders.

이상에서 본원의 예시적인 실시예에 대하여 상세하게 설명하였지만 본원의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본원의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본원의 권리범위에 속하는 것이다. Although the exemplary embodiments of the present application have been described in detail above, the scope of the rights of the present application is not limited thereto, and various modifications and improvements made by those skilled in the art using the basic concept of the present application defined in the following claims are also included in the scope of the rights of the present application. belongs to

본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다. All technical terms used in the present invention, unless otherwise defined, are used with the same meaning as commonly understood by a person skilled in the art in the field related to the present invention. The contents of all publications incorporated by reference herein are hereby incorporated by reference.

<110> Seoul National University R&DB Foundation <120> Biomarker fo determining major depressive disorder, polar disorder and zophrenia based on mass spectrometry and its use <130> DP202203004P <160> 43 <170> KoPatentIn 3.0 <210> 1 <211> 11 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(11) <223> ALDOC <400> 1 Ala Leu Gln Ala Ser Ala Leu Asn Ala Trp Arg 1 5 10 <210> 2 <211> 15 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(15) <223> AMPN <400> 2 Ala Gln Ile Ile Asn Asp Ala Phe Asn Leu Ala Ser Ala His Lys 1 5 10 15 <210> 3 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> ARMD4 <400> 3 Thr Val Val Pro Ser Ile Thr Arg 1 5 <210> 4 <211> 14 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(14) <223> C1RL <400> 4 Gly Ser Glu Ala Ile Asn Ala Pro Gly Asp Asn Pro Ala Lys 1 5 10 <210> 5 <211> 16 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(16) <223> CAD13 <400> 5 Ile Asn Asn Thr His Ala Leu Val Ser Leu Leu Gln Asn Leu Asn Lys 1 5 10 15 <210> 6 <211> 10 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(10) <223> CETP <400> 6 Ala Ser Tyr Pro Asp Ile Thr Gly Glu Lys 1 5 10 <210> 7 <211> 10 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(10) <223> COAA1 <400> 7 Gly Thr His Val Trp Val Gly Leu Tyr Lys 1 5 10 <210> 8 <211> 12 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(12) <223> CTND1 <400> 8 Gly Tyr Glu Leu Leu Phe Gln Pro Glu Val Val Arg 1 5 10 <210> 9 <211> 12 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(12) <223> DDR1 <400> 9 Leu His Leu Val Ala Leu Val Gly Thr Gln Gly Arg 1 5 10 <210> 10 <211> 10 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(10) <223> DOPO <400> 10 Thr Pro Glu Gly Leu Thr Leu Leu Phe Lys 1 5 10 <210> 11 <211> 6 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(6) <223> IC1 <400> 11 Thr Thr Phe Asp Pro Lys 1 5 <210> 12 <211> 10 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(10) <223> IL1AP <400> 12 Asn Glu Val Trp Trp Thr Ile Asp Gly Lys 1 5 10 <210> 13 <211> 15 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(15) <223> ITIH2 <400> 13 Ile Gln Pro Ser Gly Gly Thr Asn Ile Asn Glu Ala Leu Leu Arg 1 5 10 15 <210> 14 <211> 11 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(11) <223> NPC2 <400> 14 Leu Val Val Glu Trp Gln Leu Gln Asp Asp Lys 1 5 10 <210> 15 <211> 11 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(11) <223> RAN <400> 15 Phe Asn Val Trp Asp Thr Ala Gly Gln Glu Lys 1 5 10 <210> 16 <211> 20 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(20) <223> SAA1 <400> 16 Phe Phe Gly His Gly Ala Glu Asp Ser Leu Ala Asp Gln Ala Ala Asn 1 5 10 15 Glu Trp Gly Arg 20 <210> 17 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> TRFE <400> 17 Ala Ser Tyr Leu Asp Cys Ile Arg 1 5 <210> 18 <211> 12 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(12) <223> ALS <400> 18 Asp Phe Ala Leu Gln Asn Pro Ser Ala Val Pro Arg 1 5 10 <210> 19 <211> 15 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(15) <223> ANAG <400> 19 Asp Phe Cys Gly Cys His Val Ala Trp Ser Gly Ser Gln Leu Arg 1 5 10 15 <210> 20 <211> 11 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(11) <223> AT1A1 <400> 20 Ile Val Glu Ile Pro Phe Asn Ser Thr Asn Lys 1 5 10 <210> 21 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> CATS <400> 21 Tyr Thr Glu Leu Pro Tyr Gly Arg 1 5 <210> 22 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> CBG <400> 22 His Leu Val Ala Leu Ser Pro Lys 1 5 <210> 23 <211> 12 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(12) <223> CBPB2 <400> 23 Asp Thr Gly Thr Tyr Gly Phe Leu Leu Pro Glu Arg 1 5 10 <210> 24 <211> 7 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(7) <223> CRYM <400> 24 Thr Val Val Pro Val Thr Lys 1 5 <210> 25 <211> 6 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(6) <223> GPX3 <400> 25 Phe Tyr Thr Phe Leu Lys 1 5 <210> 26 <211> 11 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(11) <223> IBP3 <400> 26 Tyr Gly Gln Pro Leu Pro Gly Tyr Thr Thr Lys 1 5 10 <210> 27 <211> 9 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(9) <223> IBP5 <400> 27 Ala Val Tyr Leu Pro Asn Cys Asp Arg 1 5 <210> 28 <211> 11 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(11) <223> PEPC <400> 28 Ala Glu Cys Gly Leu Gly Val Pro Thr Thr Arg 1 5 10 <210> 29 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> PROC <400> 29 Thr Phe Val Leu Asn Phe Ile Lys 1 5 <210> 30 <211> 10 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(10) <223> PROS <400> 30 Asn Asn Leu Glu Leu Ser Thr Pro Leu Lys 1 5 10 <210> 31 <211> 10 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(10) <223> RIDA <400> 31 Ala Ala Tyr Gln Val Ala Ala Leu Pro Lys 1 5 10 <210> 32 <211> 9 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(9) <223> SAA4 <400> 32 Gly Pro Gly Gly Val Trp Ala Ala Lys 1 5 <210> 33 <211> 9 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(9) <223> TFPI1 <400> 33 Ile Ala Tyr Glu Glu Ile Phe Val Lys 1 5 <210> 34 <211> 11 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(11) <223> AACT <400> 34 Ala Leu Glu Gln Asp Leu Pro Val Asn Ile Lys 1 5 10 <210> 35 <211> 12 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(12) <223> BPIB1 <400> 35 Asp Thr Gly Thr Tyr Gly Phe Leu Leu Pro Glu Arg 1 5 10 <210> 36 <211> 16 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(16) <223> CFAB <400> 36 Leu Asn Thr Ile Gly His Tyr Glu Ile Ser Asn Gly Ser Thr Ile Lys 1 5 10 15 <210> 37 <211> 12 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(12) <223> CLD3 <400> 37 Tyr Leu Ser Tyr Thr Leu Asn Pro Asp Leu Ile Arg 1 5 10 <210> 38 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> GPR37 <400> 38 Ile Pro Leu Asn Asp Leu Phe Arg 1 5 <210> 39 <211> 17 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(17) <223> HEP2 <400> 39 Ser Leu Glu Ala Gln Gly Asn Ser Ser His Leu Asp Ala Asp Thr Val 1 5 10 15 Arg <210> 40 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> MBL2 <400> 40 Leu Leu Glu Leu Thr Gly Pro Lys 1 5 <210> 41 <211> 9 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(9) <223> PLXC1 <400> 41 Asp Ile Ser Glu Val Val Thr Pro Arg 1 5 <210> 42 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> PSMD1 <400> 42 Ser Leu Glu Ser Ile Asn Ser Arg 1 5 <210> 43 <211> 14 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(14) <223> UROM <400> 43 Leu Leu Asn Leu Glu Gly Phe Pro Ser Gly Ser Gln Ser Arg 1 5 10 <110> Seoul National University R&DB Foundation <120> Biomarker for determining major depressive disorder, polar disorder and zophrenia based on mass spectrometry and its use <130> DP202203004P <160> 43 <170> KoPatentIn 3.0 <210> 1 <211> 11 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(11) <223> ALDOC <400> 1 Ala Leu Gln Ala Ser Ala Leu Asn Ala Trp Arg 1 5 10 <210> 2 <211> 15 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(15) <223> AMPN <400> 2 Ala Gln Ile Ile Asn Asp Ala Phe Asn Leu Ala Ser Ala His Lys 1 5 10 15 <210> 3 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> ARMD4 <400> 3 Thr Val Val Pro Ser Ile Thr Arg 1 5 <210> 4 <211> 14 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(14) <223>C1RL <400> 4 Gly Ser Glu Ala Ile Asn Ala Pro Gly Asp Asn Pro Ala Lys 1 5 10 <210> 5 <211> 16 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(16) <223>CAD13 <400> 5 Ile Asn Asn Thr His Ala Leu Val Ser Leu Leu Gln Asn Leu Asn Lys 1 5 10 15 <210> 6 <211> 10 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(10) <223> CETP <400> 6 Ala Ser Tyr Pro Asp Ile Thr Gly Glu Lys 1 5 10 <210> 7 <211> 10 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(10) <223> COAA1 <400> 7 Gly Thr His Val Trp Val Gly Leu Tyr Lys 1 5 10 <210> 8 <211> 12 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(12) <223>CTND1 <400> 8 Gly Tyr Glu Leu Leu Phe Gln Pro Glu Val Val Arg 1 5 10 <210> 9 <211> 12 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(12) <223>DDR1 <400> 9 Leu His Leu Val Ala Leu Val Gly Thr Gln Gly Arg 1 5 10 <210> 10 <211> 10 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(10) <223> DOPO <400> 10 Thr Pro Glu Gly Leu Thr Leu Leu Phe Lys 1 5 10 <210> 11 <211> 6 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(6) <223>IC1 <400> 11 Thr Thr Phe Asp Pro Lys 1 5 <210> 12 <211> 10 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(10) <223> IL1AP <400> 12 Asn Glu Val Trp Trp Thr Ile Asp Gly Lys 1 5 10 <210> 13 <211> 15 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(15) <223> ITIH2 <400> 13 Ile Gln Pro Ser Gly Gly Thr Asn Ile Asn Glu Ala Leu Leu Arg 1 5 10 15 <210> 14 <211> 11 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(11) <223> NPC2 <400> 14 Leu Val Val Glu Trp Gln Leu Gln Asp Asp Lys 1 5 10 <210> 15 <211> 11 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(11) <223> RAN <400> 15 Phe Asn Val Trp Asp Thr Ala Gly Gln Glu Lys 1 5 10 <210> 16 <211> 20 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(20) <223>SAA1 <400> 16 Phe Phe Gly His Gly Ala Glu Asp Ser Leu Ala Asp Gln Ala Ala Asn 1 5 10 15 Glu Trp Gly Arg 20 <210> 17 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> TRFE <400> 17 Ala Ser Tyr Leu Asp Cys Ile Arg 1 5 <210> 18 <211> 12 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(12) <223> ALS <400> 18 Asp Phe Ala Leu Gln Asn Pro Ser Ala Val Pro Arg 1 5 10 <210> 19 <211> 15 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(15) <223> ANAG <400> 19 Asp Phe Cys Gly Cys His Val Ala Trp Ser Gly Ser Gln Leu Arg 1 5 10 15 <210> 20 <211> 11 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(11) <223>AT1A1 <400> 20 Ile Val Glu Ile Pro Phe Asn Ser Thr Asn Lys 1 5 10 <210> 21 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> CATS <400> 21 Tyr Thr Glu Leu Pro Tyr Gly Arg 1 5 <210> 22 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> CBG <400> 22 His Leu Val Ala Leu Ser Pro Lys 1 5 <210> 23 <211> 12 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(12) <223> CBPB2 <400> 23 Asp Thr Gly Thr Tyr Gly Phe Leu Leu Pro Glu Arg 1 5 10 <210> 24 <211> 7 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(7) <223> CRYM <400> 24 Thr Val Val Pro Val Thr Lys 1 5 <210> 25 <211> 6 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(6) <223> GPX3 <400> 25 Phe Tyr Thr Phe Leu Lys 1 5 <210> 26 <211> 11 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(11) <223>IBP3 <400> 26 Tyr Gly Gln Pro Leu Pro Gly Tyr Thr Thr Lys 1 5 10 <210> 27 <211> 9 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(9) <223> IBP5 <400> 27 Ala Val Tyr Leu Pro Asn Cys Asp Arg 1 5 <210> 28 <211> 11 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(11) <223> PEPC <400> 28 Ala Glu Cys Gly Leu Gly Val Pro Thr Thr Arg 1 5 10 <210> 29 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> PROC <400> 29 Thr Phe Val Leu Asn Phe Ile Lys 1 5 <210> 30 <211> 10 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(10) <223> PROS <400>30 Asn Asn Leu Glu Leu Ser Thr Pro Leu Lys 1 5 10 <210> 31 <211> 10 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(10) <223> RIDA <400> 31 Ala Ala Tyr Gln Val Ala Ala Leu Pro Lys 1 5 10 <210> 32 <211> 9 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(9) <223> SAA4 <400> 32 Gly Pro Gly Gly Val Trp Ala Ala Lys 1 5 <210> 33 <211> 9 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(9) <223>TFPI1 <400> 33 Ile Ala Tyr Glu Glu Ile Phe Val Lys 1 5 <210> 34 <211> 11 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(11) <223> AACT <400> 34 Ala Leu Glu Gln Asp Leu Pro Val Asn Ile Lys 1 5 10 <210> 35 <211> 12 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(12) <223> BPIB1 <400> 35 Asp Thr Gly Thr Tyr Gly Phe Leu Leu Pro Glu Arg 1 5 10 <210> 36 <211> 16 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(16) <223> CFAB <400> 36 Leu Asn Thr Ile Gly His Tyr Glu Ile Ser Asn Gly Ser Thr Ile Lys 1 5 10 15 <210> 37 <211> 12 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(12) <223> CLD3 <400> 37 Tyr Leu Ser Tyr Thr Leu Asn Pro Asp Leu Ile Arg 1 5 10 <210> 38 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> GPR37 <400> 38 Ile Pro Leu Asn Asp Leu Phe Arg 1 5 <210> 39 <211> 17 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(17) <223>HEP2 <400> 39 Ser Leu Glu Ala Gln Gly Asn Ser Ser His Leu Asp Ala Asp Thr Val 1 5 10 15 Arg <210> 40 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> MBL2 <400> 40 Leu Leu Glu Leu Thr Gly Pro Lys 1 5 <210> 41 <211> 9 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(9) <223>PLXC1 <400> 41 Asp Ile Ser Glu Val Val Thr Pro Arg 1 5 <210> 42 <211> 8 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(8) <223> PSMD1 <400> 42 Ser Leu Glu Ser Ile Asn Ser Arg 1 5 <210> 43 <211> 14 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(14) <223> UROM <400> 43 Leu Leu Asn Leu Glu Gly Phe Pro Ser Gly Ser Gln Ser Arg 1 5 10

Claims (10)

주요 정신 질환인 우울장애, 양극성 장애 및 조현병을 구분하는 바이오마커 조합의 발현 수준을 질량분석법으로 측정하기 위한 물질을 포함하는 주요 정신 질환 진단용 바이오마커 조성물로,
상기 우울장애 및 양극성 장애를 구분하여 진단하는 바이오마커 조합은 ALDOC (Fructose-bisphosphate aldolase C), ANPEP (Aminopeptidase N), ARMH4 (Armadillo-like helical domain-containing protein 4), C1RL (Complement C1r subcomponent-like protein), CDH13 (Cadherin-13 ), CETP (Cholesteryl ester transfer protein ), COL10A1 (Collagen alpha-1), CTNND1 (Catenin delta-1), DDR1 (Epithelial discoidin domain-containing receptor 1), DBH (Dopamine beta-hydroxylase ), SERPING1 (Plasma protease C1 inhibitor), IL1RAP (Interleukin-1 receptor accessory protein), ITIH2 (Inter-alpha-trypsin inhibitor heavy chain H2), NPC2 (NPC intracellular cholesterol transporter 2), RAN (GTP-binding nuclear protein Ran), SAA1 (Serum amyloid A-1 protein), 및 TF (Serotransferrin)이고,
상기 우울장애와 조현병을 구분하여 진단하는 바이오마커 조합은 ALDOC (Fructose-bisphosphate aldolase C), IGFALS (Insulin-like growth factor-binding protein complex acid labile subunit ), NAGLU (Alpha-N-acetylglucosaminidase), ATP1A1 (Sodium/potassium-transporting ATPase subunit alpha-1), CTSS (Cathepsin S), SERPINA6 (Corticosteroid-binding globulin), CPB2 (Carboxypeptidase B2), COL10A1 (Collagen alpha-1), CRYM (Ketimine reductase mu-crystallin), GPX3 (Glutathione peroxidase 3), IGFBP3 (Insulin-like growth factor-binding protein 3), IGFBP5 (Insulin-like growth factor-binding protein 5), ITIH2 (Inter-alpha-trypsin inhibitor heavy chain H2), PGC (Gastricsin), PROC (Vitamin K-dependent protein C), PROS1 (Vitamin K-dependent protein S), RIDA (2-iminobutanoate/2-iminopropanoate deaminase), SAA1 (Serum amyloid A-1 protein), SAA4 (Serum amyloid A-4 protein), 및 TFPI (Tissue factor pathway inhibitor)이고,
상기 양극성장애 및 조현병을 구분하여 진단하는 바이오마커 조합은 SERPINA3 (Alpha-1-antichymotrypsin), ANPEPM (Aminopeptidase N), BPIFB1 (BPI fold-containing family B member 1), C1RL (Complement C1r subcomponent-like protein), CFB (Complement factor B), CLDN3 (Claudin-3), DBH (Dopamine beta-hydroxylase), GPR37 (Prosaposin receptor GPR37), SERPIND1 (Heparin cofactor 2), IGFBP5 (Insulin-like growth factor-binding protein 5), SERPING1 (Plasma protease C1 inhibitor), MBL2 (Mannose-binding protein C), NPC2 (NPC intracellular cholesterol transporter 2), PLXNC1 (Plexin-C1), PSMD1 (26S proteasome non-ATPase regulatory subunit 1), TFPI (Tissue factor pathway inhibitor), 및 UMOD (Uromodulin)인, 주요 정신 질환 구분용 바이오마커 조성물.
A biomarker composition for diagnosing major mental disorders containing a substance for measuring the expression level of a combination of biomarkers that distinguishes major mental disorders such as depressive disorder, bipolar disorder, and schizophrenia by mass spectrometry,
The combination of biomarkers for diagnosing depressive disorder and bipolar disorder is ALDOC (Fructose-bisphosphate aldolase C), ANPEP (Aminopeptidase N), ARMH4 (Armadillo-like helical domain-containing protein 4), and C1RL (Complement C1r subcomponent-like). protein), CDH13 (Cadherin-13), CETP (Cholesteryl ester transfer protein), COL10A1 (Collagen alpha-1), CTNND1 (Catenin delta-1), DDR1 (Epithelial discoidin domain-containing receptor 1), DBH (Dopamine beta-1) hydroxylase ), SERPING1 (Plasma protease C1 inhibitor), IL1RAP (Interleukin-1 receptor accessory protein), ITIH2 (Inter-alpha-trypsin inhibitor heavy chain H2), NPC2 (NPC intracellular cholesterol transporter 2), RAN (GTP-binding nuclear protein) Ran), SAA1 (Serum amyloid A-1 protein), and TF (Serotransferrin),
The combination of biomarkers used to distinguish and diagnose depressive disorder and schizophrenia is ALDOC (Fructose-bisphosphate aldolase C), IGFALS (Insulin-like growth factor-binding protein complex acid labile subunit), NAGLU (Alpha-N-acetylglucosaminidase), and ATP1A1. (Sodium/potassium-transporting ATPase subunit alpha-1), CTSS (Cathepsin S), SERPINA6 (Corticosteroid-binding globulin), CPB2 (Carboxypeptidase B2), COL10A1 (Collagen alpha-1), CRYM (Ketimine reductase mu-crystallin), GPX3 (Glutathione peroxidase 3), IGFBP3 (Insulin-like growth factor-binding protein 3), IGFBP5 (Insulin-like growth factor-binding protein 5), ITIH2 (Inter-alpha-trypsin inhibitor heavy chain H2), PGC (Gastricsin) , PROC (Vitamin K-dependent protein C), PROS1 (Vitamin K-dependent protein S), RIDA (2-iminobutanoate/2-iminopropanoate deaminase), SAA1 (Serum amyloid A-1 protein), SAA4 (Serum amyloid A-4) protein), and TFPI (Tissue factor pathway inhibitor),
The combination of biomarkers for diagnosing bipolar disorder and schizophrenia is SERPINA3 (Alpha-1-antichymotrypsin), ANPEPM (Aminopeptidase N), BPIFB1 (BPI fold-containing family B member 1), and C1RL (Complement C1r subcomponent-like protein). ), CFB (Complement factor B), CLDN3 (Claudin-3), DBH (Dopamine beta-hydroxylase), GPR37 (Prosaposin receptor GPR37), SERPIND1 (Heparin cofactor 2), IGFBP5 (Insulin-like growth factor-binding protein 5) , SERPING1 (Plasma protease C1 inhibitor), MBL2 (Mannose-binding protein C), NPC2 (NPC intracellular cholesterol transporter 2), PLXNC1 (Plexin-C1), PSMD1 (26S proteasome non-ATPase regulatory subunit 1), TFPI (Tissue factor) pathway inhibitor), and UMOD (Uromodulin), a biomarker composition for distinguishing major mental disorders.
제 1 항에 있어서,
상기 질량 분석법이 탠덤 질량 분석법, 이온 트랩 질량 분석법, 삼중사극 질량 분석법, 하이브리드 이온 트랩/쿼드러폴 질량 분석법 또는 비행시간 질량 분석법을 포함하는 것인, 주요 정신 질환 구분용 바이오마커 조성물.
According to claim 1,
A biomarker composition for distinguishing major mental disorders, wherein the mass spectrometry method includes tandem mass spectrometry, ion trap mass spectrometry, triple quadrupole mass spectrometry, hybrid ion trap/quadrupol mass spectrometry, or time-of-flight mass spectrometry.
제 2 항에 있어서,
상기 질량 분석법에 사용되는 모드는 선택 반응 모니터링(Selected Reaction Monitoring, SRM) 또는 다중 반응 모니터링(Multiple Reaction Monitoring, MRM)인 것인, 주요 정신 질환 구분용 바이오마커 조성물.
According to claim 2,
A biomarker composition for distinguishing major mental disorders, wherein the mode used in the mass spectrometry is Selected Reaction Monitoring (SRM) or Multiple Reaction Monitoring (MRM).
제 3 항에 있어서,
상기 질량 분석법 모드는 MRM이고, 상기 MRM에 분석에 사용되는 상기 각 바이오마커의 펩타이드는 다음 표와 같은 것인, 주요 정신 질환 구분용 바이오마커 조성물:


According to claim 3,
The mass spectrometry mode is MRM, and the peptides of each biomarker used for analysis in the MRM are as shown in the following table. Biomarker composition for distinguishing major mental disorders:


주요 정신 질환인 우울장애, 양극성 장애 및 조현병의 진단에 필요한 정보를 제공하기 위한 방법으로, 상기 방법은,
대상체로부터 분리된 혈액으로부터 제 1 항에 따른 각 바이오마커 조합의 각 바이오마커의 발현 수준을 질량분석법으로 측정하는 단계; 및
상기 측정 결과를 우울장애, 양극성 장애 또는 조현병과 연관시키는 단계를 포함하는 우울장애, 양극성 장애 및 조현병의 진단에 필요한 정보 제공 방법.
As a method for providing information necessary for the diagnosis of major mental disorders such as depressive disorder, bipolar disorder, and schizophrenia, the method includes,
Measuring the expression level of each biomarker of each biomarker combination according to claim 1 from blood isolated from the subject using mass spectrometry; and
A method of providing information necessary for the diagnosis of depressive disorder, bipolar disorder, and schizophrenia, comprising correlating the measurement results with depressive disorder, bipolar disorder, or schizophrenia.
제 5 항에 있어서,
상기 질량 분석법이 탠덤 질량 분석법, 이온 트랩 질량 분석법, 삼중사극 질 량 분석법, 하이브리드 이온 트랩/쿼드러폴 질량 분석법 또는 비행시간 질량 분석 법을 포함하는 것인, 우울장애, 양극성 장애 및 조현병의 진단에 필요한 정보 제공 방법.
According to claim 5,
For the diagnosis of depressive disorder, bipolar disorder, and schizophrenia, wherein the mass spectrometry method includes tandem mass spectrometry, ion trap mass spectrometry, triple quadrupole mass spectrometry, hybrid ion trap/quadrupole mass spectrometry, or time-of-flight mass spectrometry. How to provide the information you need.
제 6 항에 있어서,
상기 질량 분석법에 사용되는 모드는 선택 반응 모니터링(Selected Reaction Monitoring, SRM) 또는 다중 반응 모니터링(Multiple Reaction Monitoring, MRM)인 것인, 우울장애, 양극성 장애 및 조현병의 진단에 필요한 정보 제공 방법.
According to claim 6,
A method of providing information necessary for the diagnosis of depressive disorder, bipolar disorder, and schizophrenia, wherein the mode used in the mass spectrometry is Selected Reaction Monitoring (SRM) or Multiple Reaction Monitoring (MRM).
제 7 항에 있어서,
상기 질량 분석법 모드는 MRM이고, 상기 MRM에 분석에 사용되는 상기 패널을 구성하는 각 단백질 별 펩타이드는 다음 표와 같은 것인, 우울장애, 양극성 장애 및 조현병의 진단에 필요한 정보 제공 방법.


According to claim 7,
The mass spectrometry mode is MRM, and the peptides for each protein constituting the panel used for analysis in the MRM are as shown in the following table. A method of providing information necessary for the diagnosis of depressive disorder, bipolar disorder, and schizophrenia.


제 5 항 내지 제 8 항 중 어느 한 항에 있어서,
상기 방법은 대상체의 주요정신질환 증상 평가 지표[symptom Checklist 90-revised (SCL-90R)]의 점수 자료를 수득하는 단계를 추가로 포함하며,
상기 연관시키는 단계에서 상기 바이오마커 검출 결과에 추가하여 상기 점수 자료를 우울장애, 양극성 장애 및 조현병 판단에 사용하는 것인, 우울장애, 양극성 장애 및 조현병의 진단에 필요한 정보 제공 방법.
The method according to any one of claims 5 to 8,
The method further includes the step of obtaining score data on the subject's major mental illness symptom evaluation index [symptom checklist 90-revised (SCL-90R)],
A method of providing information necessary for the diagnosis of depressive disorder, bipolar disorder, and schizophrenia, wherein the score data in addition to the biomarker detection result in the linking step is used to determine depressive disorder, bipolar disorder, and schizophrenia.
제 9 항에 있어서,
상기 연관시키는 단계는 상기 바이오마커 검출 결과 및 주요정신질환 증상 평가 지표 점수 자료를 다음 식에 대입하여 결과를 수득하고, 그 결과를 각 바이오마커 조합별로 결정된 임계값과 비교하는 것인, 우울장애, 양극성 장애 및 조현병의 진단에 필요한 정보 제공 방법:

According to clause 9,
The linking step involves substituting the biomarker detection results and major mental disorder symptom evaluation index score data into the following equation to obtain a result, and comparing the result with the threshold value determined for each biomarker combination. Depressive disorder, How to provide information needed for a diagnosis of bipolar disorder and schizophrenia:

KR1020220073915A 2022-06-17 2022-06-17 Biomarker for determining major depressive disorder, polar disorder and zophrenia based on mass spectrometry and its use KR20230173319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220073915A KR20230173319A (en) 2022-06-17 2022-06-17 Biomarker for determining major depressive disorder, polar disorder and zophrenia based on mass spectrometry and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220073915A KR20230173319A (en) 2022-06-17 2022-06-17 Biomarker for determining major depressive disorder, polar disorder and zophrenia based on mass spectrometry and its use

Publications (1)

Publication Number Publication Date
KR20230173319A true KR20230173319A (en) 2023-12-27

Family

ID=89377876

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220073915A KR20230173319A (en) 2022-06-17 2022-06-17 Biomarker for determining major depressive disorder, polar disorder and zophrenia based on mass spectrometry and its use

Country Status (1)

Country Link
KR (1) KR20230173319A (en)

Similar Documents

Publication Publication Date Title
US11307208B2 (en) Biomarkers for cognitive impairment and methods for detecting cognitive impairment using such biomarkers
BRPI0709374A2 (en) apolipoprotein fingerprinting technique and related methods
US20180088126A1 (en) Method of identifying proteins in human serum indicative of pathologies of human lung tissues
CN105705652B (en) Method for assisting in the differential diagnosis of stroke
Tremlett et al. Serum proteomics in multiple sclerosis disease progression
Rossi et al. Biomarker discovery in asthma and COPD by proteomic approaches
CN115798712B (en) System for diagnosing whether person to be tested is breast cancer or not and biomarker
US20160018413A1 (en) Methods of Prognosing Preeclampsia
JP2010507093A (en) Biomarker
KR20230173319A (en) Biomarker for determining major depressive disorder, polar disorder and zophrenia based on mass spectrometry and its use
CN112946274B (en) Intracranial aneurysm diagnosis serum marker and intracranial aneurysm rupture potential prediction serum marker
KR102627953B1 (en) Biomarker fo determining major depressive disorder and bipolar disorder based on mass spectrometry and its use
US9880178B2 (en) Method for aiding diagnosis of Alzheimer&#39;s disease
WO2011127587A1 (en) Biomarkers for multiple sclerosis
WO2007139777A2 (en) Methods for the diagnosis and prognosis of alzheimer&#39;s disease using csf protein profiling
CN112394177B (en) Use of ApoF protein in preparation or screening of schizophrenia diagnostic products
CN117637160A (en) Amyotrophic lateral sclerosis prediction and prognosis evaluation system
CN116735892A (en) Alzheimer disease early diagnosis marker and application thereof
KR101912377B1 (en) Biomaker For Lung Cancer Differential Diagnosis and Method for Differential Diagnosis Information Service using thereof
Daubenspeck Proteomic Analysis of Ischemic Stroke Blood Biomarkers
KR20230120357A (en) Biomarker for predicting depression severity in mood disorder and its use
CN117723759A (en) Plasma protein biomarker combination and application thereof as well as diagnostic system for distinguishing various mental diseases of children and teenagers
CN117169504A (en) Biomarker for gastric cancer related parameter detection and related prediction system and application
CN116754772A (en) Peripheral blood protein marker for early diagnosis of senile dementia, application and auxiliary diagnosis system
WO2007022625A1 (en) Peptide reversion methods and uses thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal