KR20230171576A - Method and apparatus for synthesizing polycarbosilane for silicon carbide fiber precursor - Google Patents
Method and apparatus for synthesizing polycarbosilane for silicon carbide fiber precursor Download PDFInfo
- Publication number
- KR20230171576A KR20230171576A KR1020220071913A KR20220071913A KR20230171576A KR 20230171576 A KR20230171576 A KR 20230171576A KR 1020220071913 A KR1020220071913 A KR 1020220071913A KR 20220071913 A KR20220071913 A KR 20220071913A KR 20230171576 A KR20230171576 A KR 20230171576A
- Authority
- KR
- South Korea
- Prior art keywords
- pdms
- reactor
- polycarbosilane
- lps
- molecular weight
- Prior art date
Links
- 229920003257 polycarbosilane Polymers 0.000 title claims abstract description 102
- 239000000835 fiber Substances 0.000 title claims abstract description 47
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims description 23
- 239000002243 precursor Substances 0.000 title claims description 18
- 230000002194 synthesizing effect Effects 0.000 title claims description 7
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 35
- 239000000843 powder Substances 0.000 claims abstract description 34
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 32
- 238000006243 chemical reaction Methods 0.000 claims abstract description 15
- 239000007788 liquid Substances 0.000 claims abstract description 11
- 239000004205 dimethyl polysiloxane Substances 0.000 claims abstract 18
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims abstract 18
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims abstract 18
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims abstract 18
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims abstract 18
- 239000007789 gas Substances 0.000 claims description 56
- 239000012298 atmosphere Substances 0.000 claims description 19
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 11
- 229920000548 poly(silane) polymer Polymers 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- 238000005292 vacuum distillation Methods 0.000 claims description 8
- 238000000746 purification Methods 0.000 claims description 6
- 238000001308 synthesis method Methods 0.000 claims description 6
- 238000005507 spraying Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 4
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 239000008096 xylene Substances 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 238000003763 carbonization Methods 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 230000035484 reaction time Effects 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 229920000555 poly(dimethylsilanediyl) polymer Polymers 0.000 description 95
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 238000005227 gel permeation chromatography Methods 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 238000003756 stirring Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000002074 melt spinning Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/008—Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/10—Vacuum distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/008—Feed or outlet control devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J6/00—Heat treatments such as Calcining; Fusing ; Pyrolysis
- B01J6/008—Pyrolysis reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/0015—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/005—Separating solid material from the gas/liquid stream
- B01J8/006—Separating solid material from the gas/liquid stream by filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/08—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
- B01J8/082—Controlling processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/08—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
- B01J8/087—Heating or cooling the reactor
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/571—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/06—Preparatory processes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Structural Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Silicon Polymers (AREA)
- Inorganic Fibers (AREA)
Abstract
본 발명은 폴리카보실란 합성이 상압에서 이루어지지만, PDMS 파우더가 LPS 액상부의 표면에 머물면서 아래층의 LPS로부터 휘발되는 가스의 상승을 억제하여 닫힌계처럼 반응을 일으킨다. 이는 고압 합성에서 닫힌계 반응으로 휘발 물질이 외부로 날아가지 못하고 다시 반응에 참여하여 수율이 증가하고 합성 시간도 짧은 시간에 이루어지는 원리와 유사하다. 이로 인해, 기존의 합성 반응에 비하여 반응시간을 30~60% 단축할 수 있는 특징을 가지며, 분자량의 제어가 기존의 상압 합성에 비하여 용이하다. 따라서 이러한 방식으로 합성된 폴리카보실란은 폴리카보실란섬유의 직경을 감소시켜 궁극적으로 이로부터 합성된 탄화규소섬유의 강도를 향상시킬 수 있다.In the present invention, polycarbosilane synthesis is carried out at normal pressure, but the PDMS powder stays on the surface of the LPS liquid portion and suppresses the rise of gas volatilized from the LPS in the lower layer, causing a reaction like a closed system. This is similar to the principle that in high-pressure synthesis, volatile substances cannot escape to the outside due to a closed system reaction and instead participate in the reaction again, increasing the yield and reducing the synthesis time. Due to this, it has the feature of being able to shorten the reaction time by 30-60% compared to existing synthesis reactions, and controlling the molecular weight is easier than existing atmospheric pressure synthesis. Therefore, polycarbosilane synthesized in this way can reduce the diameter of polycarbosilane fibers and ultimately improve the strength of silicon carbide fibers synthesized therefrom.
Description
본 발명은 탄화규소섬유 전구체용 폴리카보실란 합성 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for synthesizing polycarbosilane for silicon carbide fiber precursors.
탄화규소섬유(SiC fiber)를 강화재로 하고 탄화규소(SiC)를 매트릭스로 하는 SiCf/SiC 복합재는 고온 기계적 강도가 우수하고, 가볍고, 내산화성 및 내부식성이 강하며, 전파 차폐 및 흡수 특성을 갖는 특이한 특성을 갖고 있어, 항공기 엔진, 발전소 터빈, 방위산업용 부품 소재 등 점차 사용이 확산되고 있다. 여기서, SiCf/SiC 복합재를 구성하고 있는 탄화규소섬유는 무엇보다도 고온에서 열구조 특성 기여에 중요한 역할을 한다.SiC f /SiC composite, which uses silicon carbide (SiC fiber) as a reinforcement material and silicon carbide (SiC) as a matrix, has excellent high-temperature mechanical strength, is lightweight, has strong oxidation and corrosion resistance, and has radio wave shielding and absorption properties. Due to its unique characteristics, its use is gradually spreading in aircraft engines, power plant turbines, and defense industry parts. Here, the silicon carbide fibers that make up the SiC f /SiC composite play an important role in contributing to thermal structural properties at high temperatures.
탄화규소섬유 제조에는 크게 고분자 프리세라믹(preceramic) 전구체로부터 얻는 방법과 화학기상증착에 의하여 얻는 방법으로 대별된다. 전자는 오늘날 가장 널리 사용되고 있는 기술로서, 폴리카보실란(Polycarbosilane: PCS)을 합성하여 이로부터 폴리카보실란섬유(PCS fiber)를 방사하고, 공기 혹은 전자빔 조사로 불융화섬유(Infusible fiber)로 처리하고, 이어서 불활성분위기에서 1200~1800℃서 열분해를 통하여 탄화규소섬유를 제조한다.Silicon carbide fiber production is largely divided into methods obtained from polymer preceramic precursors and methods obtained by chemical vapor deposition. The former is the most widely used technology today. Polycarbosilane (PCS) is synthesized, polycarbosilane (PCS) fiber is spun from it, and then processed into infusible fiber by air or electron beam irradiation. , then silicon carbide fiber is manufactured through thermal decomposition at 1200~1800℃ in an inert atmosphere.
탄화규소섬유의 강도는 섬유의 직경에 크게 의존하고 있다. Wang 등의 연구에 의하면 섬유의 강도는 직경이 굵어지면 최대 50%까지 감소하고 있다(Melt Spun of Continuous Polycarbosilane Fibers(Yingde Wang', Yanmo Chen, Meifang Zhu ,2000). 따라서, 탄화규소섬유의 직경은 작을수록 좋은데, 폴리카보실란섬유의 직경이 작을려면 탄화규소섬유부터 가늘게 만들어야 한다. 탄화규소섬유의 직경이 작으려면 폴리카보실란섬유부터 가늘게 만들어야 한다.The strength of silicon carbide fibers greatly depends on the diameter of the fiber. According to a study by Wang et al., the strength of the fiber decreases by up to 50% as the diameter increases (Melt Spun of Continuous Polycarbosilane Fibers (Yingde Wang', Yanmo Chen, Meifang Zhu, 2000). Therefore, the diameter of silicon carbide fiber The smaller the better, but if the diameter of the polycarbosilane fiber is to be small, the silicon carbide fiber must be made thinner. If the diameter of the silicon carbide fiber is to be small, the polycarbosilane fiber must be made thinner first.
폴리카보실란섬유의 직경에 영향을 주는 것은 무엇보다도 폴리카보실란의 분자량 관련 물성이다. 폴리카보실란섬유는 용융방사(melt spinning)로부터 얻는데, 용융 폴리카보실란의 용융강도가 크면 강한 드로잉(drawing)에도 견딜 수 있어 섬유의 직경을 작게 만들 수 있다. 이 모든 특성은 폴리카보실란의 분자량 및 분자구조, 분자량 분포 등에 달려있다. 따라서 탄화규소섬유의 강도를 증가하기 위해서는 이의 원료인 폴리카보실란을 분자량을 제어해야 한다.What affects the diameter of polycarbosilane fiber is, above all, the physical properties related to the molecular weight of polycarbosilane. Polycarbosilane fiber is obtained from melt spinning. If the melt strength of the molten polycarbosilane is high, it can withstand strong drawing and the diameter of the fiber can be made small. All these properties depend on the molecular weight, molecular structure, and molecular weight distribution of the polycarbosilane. Therefore, in order to increase the strength of silicon carbide fiber, the molecular weight of polycarbosilane, its raw material, must be controlled.
한편, 폴리카보실란 합성에는 고압과 상압 조건에서의 공정이 있다. 고압 공정은, 고압이라는 조건으로 인해 제한된 양의 합성과, 고압의 위험성, 합성 장비가 고가라고 단점을 갖고 있다. 그러나 고압 공정은 닫힌계(closed system)에서 이루어지기 때문에 분해된 물질이 외부로 날아가지 못하고 다시 반응에 참여하게 되므로 수율이 50~60%로 높고, 분자량 및 분자량 분포의 제어가 우수한 장점을 가진다.Meanwhile, polycarbosilane synthesis includes processes under high pressure and normal pressure conditions. The high-pressure process has the disadvantages of a limited amount of synthesis due to the high pressure conditions, the risk of high pressure, and the expensive synthesis equipment. However, since the high-pressure process is carried out in a closed system, the decomposed material cannot fly out and participates in the reaction again, so the yield is high at 50 to 60% and has the advantage of excellent control of molecular weight and molecular weight distribution.
반면, 상압에서의 합성 공정은 대량 합성이 가능한 기술로 합성시의 위험성이 낮고, 장비 비용이 크지 않다는 장점을 갖고 있다. 그러나 상압 합성은 반응 중에 발생하는 저분자량의 휘발로 인하여 고압 합성에 비하여 수율이 적고, 반응 시간이 긴 단점을 가진다. 또한, 분자량 및 분자량 분포의 제어가 어렵다는 단점을 가진다.On the other hand, the synthesis process at normal pressure is a technology that allows mass synthesis and has the advantage of low risk during synthesis and low equipment costs. However, normal pressure synthesis has the disadvantage of lower yield and longer reaction time compared to high pressure synthesis due to volatilization of low molecular weights that occur during the reaction. Additionally, it has the disadvantage that it is difficult to control molecular weight and molecular weight distribution.
이에, 대량 합성이 가능한 상압 공정을 취하면서도 고압 공정에서와 같이 분자량 및 분자량 분포의 제어가 쉬운 폴리카보실란 합성 방안이 필요하다.Accordingly, there is a need for a polycarbosilane synthesis method that uses an atmospheric pressure process that allows mass synthesis while easily controlling the molecular weight and molecular weight distribution as in the high pressure process.
본 발명의 목적은, 상술한 문제점을 해결할 수 있는 탄화규소섬유 전구체용 폴리카보실란 합성 장치 및 방법을 제공하는 데 있다.The purpose of the present invention is to provide an apparatus and method for synthesizing polycarbosilane for silicon carbide fiber precursors that can solve the above-mentioned problems.
상기 목적을 달성하기 위한 탄화규소섬유 전구체용 폴리카보실란 합성 장치는,A polycarbosilane synthesis device for silicon carbide fiber precursor to achieve the above object,
LPS(Liquid polysilane)가 투입되며, 불활성 분위기를 가진 반응기;A reactor in which LPS (Liquid polysilane) is introduced and has an inert atmosphere;
상기 LPS가 폴리카보실란으로 합성되도록 상기 반응기를 가열하는 히터; A heater that heats the reactor to synthesize the LPS into polycarbosilane;
PDMS 파우더를 저장하며, 불활성 분위기를 가진 PDMS 챔버;A PDMS chamber that stores PDMS powder and has an inert atmosphere;
상기 반응기와 PDMS 챔버에 연결되며, 상기 반응기에 담긴 LPS 표면에 상기 PDMS 챔버에 저장된 상기 PDMS 파우더를 설정된 양만큼 뿌려주는 PDMS 공급부;A PDMS supply unit connected to the reactor and the PDMS chamber and spraying a set amount of the PDMS powder stored in the PDMS chamber on the surface of the LPS contained in the reactor;
상기 반응기의 상부에 연결되며, 상기 LPS 표면에 뿌려진 상기 PDMS 파우더가 분해되어 가스화되어 상승하면서 통과하는 퍼니스;A furnace connected to the upper part of the reactor, through which the PDMS powder sprinkled on the LPS surface is decomposed, gasified, and passes through it as it rises;
상기 퍼니스를 통과하면서 분자량이 증가된 PDMS 가스 중 일부를 응축시켜 상기 반응기로 환류하는 응축기; 및A condenser that condenses a portion of the PDMS gas whose molecular weight increases as it passes through the furnace and returns it to the reactor; and
상기 퍼니스를 통과하면서 초저분자량이 된 PDMS 가스를 배출하는 가스 배기관을 포함하는 것을 특징으로 한다.It is characterized by including a gas exhaust pipe that discharges ultra-low molecular weight PDMS gas while passing through the furnace.
또한, 상기 목적은, In addition, the above purpose is to
불활성 분위기를 가진 반응기에 LPS를 투입하고 가열하는 제1단계;A first step of adding LPS to a reactor with an inert atmosphere and heating it;
상기 반응기가 설정된 온도에 도달하면 상기 LPS 표면에 PDMS 파우더를 설정된 양만큼 뿌려주는 제2단계;A second step of spraying a set amount of PDMS powder on the LPS surface when the reactor reaches the set temperature;
상기 반응기를 설정된 온도로 가열하며, 가열에 의해 상기 PDMS 파우더가 분해되어 가스화되어 상승하는 PDMS 가스를 퍼니스로 통과시켜 가열하는 제3단계;A third step of heating the reactor to a set temperature and passing the PDMS gas, which decomposes and gasifies the PDMS powder and rises through the furnace, into a furnace to heat the reactor;
상기 퍼니스를 통과하면서 분자량이 증가된 PDMS 가스 중 일부를 응축시켜 상기 반응기로 환류하고, 상기 퍼니스를 통과하면서 초저분자량이 된 PDMS 가스를 배출하는 제4단계; 및A fourth step of condensing some of the PDMS gas with an increased molecular weight while passing through the furnace, returning it to the reactor, and discharging PDMS gas with an ultra-low molecular weight while passing through the furnace; and
상기 반응기를 상온으로 냉각하여 고상의 폴리카보실란을 얻은 후 필터링하고 진공 증류 정제를 하여 최종 폴리카보실란을 얻는 제5단계를 포함하는 것을 특징으로 하는 탄화규소섬유 전구체용 폴리카보실란 합성 방법에 의해 달성된다.By a polycarbosilane synthesis method for a silicon carbide fiber precursor, comprising a fifth step of cooling the reactor to room temperature to obtain solid polycarbosilane, followed by filtering and vacuum distillation purification to obtain the final polycarbosilane. achieved.
본 발명은 폴리카보실란 합성이 상압에서 이루어지지만, PDMS 파우더가 LPS 액상부의 표면에 머물면서 아래층의 LPS로부터 휘발되는 가스의 상승을 억제하여 닫힌계처럼 반응을 일으킨다. 이는 고압 합성에서 닫힌계 반응으로 휘발 물질이 외부로 날아가지 못하고 다시 반응에 참여하여 수율이 증가하고 합성 시간도 짧은 시간에 이루어지는 원리와 유사하다. 이로 인해, 기존의 합성 반응에 비하여 반응시간을 30~60% 단축할 수 있는 특징을 가지며, 분자량의 제어가 기존의 상압 합성에 비하여 용이하다. 따라서 이러한 방식으로 합성된 폴리카보실란은 폴리카보실란섬유의 직경을 감소시켜 궁극적으로 이로부터 합성된 탄화규소섬유의 강도를 향상시킬 수 있다.In the present invention, polycarbosilane synthesis is carried out at normal pressure, but the PDMS powder stays on the surface of the LPS liquid portion and suppresses the rise of gas volatilized from the LPS in the lower layer, causing a reaction like a closed system. This is similar to the principle that in high-pressure synthesis, volatile substances cannot escape to the outside due to a closed system reaction and instead participate in the reaction again, increasing the yield and reducing the synthesis time. Due to this, it has the feature of being able to shorten the reaction time by 30-60% compared to existing synthesis reactions, and controlling the molecular weight is easier than existing atmospheric pressure synthesis. Therefore, polycarbosilane synthesized in this way can reduce the diameter of polycarbosilane fibers and ultimately improve the strength of silicon carbide fibers synthesized therefrom.
도 1은 본 발명의 일 실시예에 따른 탄화규소섬유 전구체용 폴리카보실란 합성 장치를 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 탄화규소섬유 전구체용 폴리카보실란 합성 방법을 나타낸 순서도이다.
도 3은 비교예(종래 방법)에서 얻은 폴리카보실란의 GPC 크로마토그램(Chromatogram)과 GPC 곡선과, 분자량 분포 곡선이다.
도 4는 실시예1에서 얻은 폴리카보실란의 FT-IR 스펙트럼이다.
도 5는 실시예1에서 얻은 폴리카보실란의 GPC 크로마토그램(Chromatogram)과 GPC 곡선이다.Figure 1 is a diagram showing a polycarbosilane synthesis apparatus for silicon carbide fiber precursor according to an embodiment of the present invention.
Figure 2 is a flowchart showing a method for synthesizing polycarbosilane for a silicon carbide fiber precursor according to an embodiment of the present invention.
Figure 3 shows the GPC chromatogram, GPC curve, and molecular weight distribution curve of polycarbosilane obtained in a comparative example (conventional method).
Figure 4 is an FT-IR spectrum of polycarbosilane obtained in Example 1.
Figure 5 is a GPC chromatogram and GPC curve of polycarbosilane obtained in Example 1.
이하, 본 발명의 일 실시예에 따른 탄화규소섬유 전구체용 폴리카보실란 합성 장치를 자세히 설명한다.Hereinafter, a polycarbosilane synthesis apparatus for silicon carbide fiber precursor according to an embodiment of the present invention will be described in detail.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 탄화규소섬유 전구체용 폴리카보실란 합성 장치는, 반응기(10), 히터(20), PDMS 챔버(30), PDMS 공급부(40), 퍼니스(50), 응축기(60), 가스 배기관(70)으로 구성된다.As shown in FIG. 1, the polycarbosilane synthesis apparatus for silicon carbide fiber precursor according to an embodiment of the present invention includes a reactor 10, a heater 20, a PDMS chamber 30, a PDMS supply unit 40, It consists of a furnace (50), a condenser (60), and a gas exhaust pipe (70).
[반응기(10), 히터(20)][Reactor (10), Heater (20)]
반응기(10)는 LPS(Liquid polysilane)가 투입되며, 불활성 분위기를 가진다. 반응기(10)에는 반응기(10) 내부를 불활성 분위기로 제어하기 위해 진공 및 불활성 가스 투입기(11)가 연결된다.Liquid polysilane (LPS) is introduced into the reactor 10 and has an inert atmosphere. A vacuum and inert gas injector 11 is connected to the reactor 10 to control the inside of the reactor 10 to an inert atmosphere.
히터(20)는 LPS가 폴리카보실란으로 합성되도록 반응기(10)를 가열한다. 히터(20)는 반응기(10)의 외면을 둘러싸 반응기(10) 내부에 투입되는 반응물을 가열한다.The heater 20 heats the reactor 10 so that LPS is synthesized into polycarbosilane. The heater 20 surrounds the outer surface of the reactor 10 and heats the reactants introduced into the reactor 10.
[PDMS 챔버(30), PDMS 공급부(40)][PDMS chamber (30), PDMS supply unit (40)]
PDMS 챔버(30)는 PDMS(Polydimethylsilane) 파우더를 저장하며, 불활성 분위기를 가진다. PDMS 챔버(30)에는 PDMS 챔버(30) 내부를 불활성 분위기로 제어하기 위해 진공 및 불활성 가스 투입기(31)가 연결된다.The PDMS chamber 30 stores PDMS (polydimethylsilane) powder and has an inert atmosphere. A vacuum and inert gas injector 31 is connected to the PDMS chamber 30 to control the inside of the PDMS chamber 30 to an inert atmosphere.
PDMS 공급부(40)는 반응기(10)와 PDMS 챔버(30)에 연결되며, 반응기(10)에 담긴 LPS 표면에 PDMS 챔버(30)에 저장된 PDMS 파우더를 설정된 양만큼 뿌려준다. PDMS 공급부(40)는 폴리카보실란의 합성량과 합성속도를 제어하기 위하여, PDMS 파우더를 LPS 무게 대비 10~100%까지 LPS 표면에 뿌린다.The PDMS supply unit 40 is connected to the reactor 10 and the PDMS chamber 30, and sprinkles a set amount of PDMS powder stored in the PDMS chamber 30 on the surface of the LPS contained in the reactor 10. The PDMS supply unit 40 sprinkles PDMS powder on the LPS surface in an amount of 10 to 100% of the weight of the LPS in order to control the amount and speed of polycarbosilane synthesis.
한편, PDMS 공급부(40)에는 블로워가 더 구비될 수 있다. 블로워는 LPS 표면에 뿌려진 PDMS 파우더에 바람을 불어, PDMS 파우더를 LPS 표면에 고르게 퍼트린다. LPS 표면에 PDMS 파우더가 고르게 퍼지면, PDMS 파우더의 두께가 얇은 쪽으로 저분자량의 폴리카보실란 가스가 뚫고 나오는 것을 막을 수 있다. 이로 인해, 반응기(10) 내에서 폴리카보실란 합성 반응이 많이 일어날 수 있다.Meanwhile, the PDMS supply unit 40 may be further equipped with a blower. The blower blows air on the PDMS powder sprinkled on the LPS surface, spreading the PDMS powder evenly on the LPS surface. If PDMS powder is spread evenly on the LPS surface, low-molecular-weight polycarbosilane gas can be prevented from penetrating through the thinner PDMS powder. Because of this, many polycarbosilane synthesis reactions may occur within the reactor 10.
[퍼니스(50), 응축기(60), 가스 배기관(70)][furnace (50), condenser (60), gas exhaust pipe (70)]
퍼니스(50)는 반응기(10)의 상부에 연결되며, LPS 표면에 뿌려진 PDMS 파우더가 분해되어 가스화되어 상승하면서 통과한다. 퍼니스(50)는 400~500℃ 온도 상태이기 때문에 PDMS 가스는 통과하면서 승온되어 분자량이 증가한다.The furnace 50 is connected to the upper part of the reactor 10, and the PDMS powder sprinkled on the LPS surface is decomposed, gasified, and passes as it rises. Since the furnace 50 is at a temperature of 400 to 500° C., the temperature of the PDMS gas increases as it passes through and the molecular weight increases.
응축기(60)는 퍼니스(50)를 통과하면서 분자량이 증가된 PDMS 가스 중 일부를 응축시켜 반응기(10)로 환류한다. 퍼니스(50)를 통과한 PDMS 가스 중 일부 즉, 무거운 PDMS 가스는 다시 반응기(10)로 하강하고, 하강한 PDMS 가스보다 분자량이 작은 가스는 상승하여 응축기(60)에서 응축된다. 응축기(60)는 길이 및 반응 시간에 따라 복수 개가 연결될 수 있다.The condenser 60 condenses some of the PDMS gas with increased molecular weight as it passes through the furnace 50 and returns it to the reactor 10. Some of the PDMS gas that has passed through the furnace 50, that is, the heavy PDMS gas, falls back into the reactor 10, and the gas with a molecular weight lower than the PDMS gas that fell rises and is condensed in the condenser 60. A plurality of condensers 60 may be connected depending on the length and reaction time.
가스 배기관(70)은 퍼니스(50)를 통과하면서 초저분자량이 된 PDMS 가스를 배출한다. 가스 배기관(70)은 퍼니스(50) 및 응축기(60)에 연결되며, 퍼니스(50) 및 응축기(60)보다 상부에 위치하여 퍼니스(50)에서 응축기(60)로 분기되지 못한 초저분자량의 PDMS 가스가 통과한다. 퍼니스(50)를 통과한 PDMS 가스 중 분자량이 낮은 초저분자량의 PDMS 가스는 가스 배기관(70)을 통해 외부로 날아가게 된다.The gas exhaust pipe 70 discharges ultra-low molecular weight PDMS gas while passing through the furnace 50. The gas exhaust pipe 70 is connected to the furnace 50 and the condenser 60, and is located above the furnace 50 and the condenser 60, so that the ultra-low molecular weight PDMS cannot branch from the furnace 50 to the condenser 60. Gas passes through. Among the PDMS gases that have passed through the furnace 50, ultra-low molecular weight PDMS gases are blown out through the gas exhaust pipe 70.
한편, 응축기(60)에서 반응기(10)로 PDMS 가스가 환류되는 경로에 유량계를 달아, 응축기(60)에서 응축되어 반응기(10)로 환류되는 PDMS 가스의 유량을 측정할 수 있다.Meanwhile, a flow meter can be installed on the path through which the PDMS gas is refluxed from the condenser 60 to the reactor 10 to measure the flow rate of the PDMS gas condensed from the condenser 60 and refluxed into the reactor 10.
반응기(10)로 환류되는 PDMS 가스는 기존 반응물과 반응하여 분자량 증가에 참여하게 되는데, 이때 환류되는 PDMS 가스의 양을 알면, 현재 LPS 표면에 뿌려진 PDMS 파우더의 양이 적당한지도 알 수 있다. 또한, 실시간으로 LPS 표면에 뿌려진 PDMS 파우더의 양을 조절할 수도 있다.The PDMS gas refluxed into the reactor 10 reacts with the existing reactants and participates in increasing the molecular weight. At this time, by knowing the amount of PDMS gas refluxed, it is possible to know whether the amount of PDMS powder currently sprinkled on the LPS surface is appropriate. Additionally, it is possible to control the amount of PDMS powder sprinkled on the LPS surface in real time.
즉, 환류되는 PDMS 가스의 양이 기준보다 작으면 PDMS 파우더를 LPS 표면에 좀 더 뿌려주고, 환류되는 PDMS 가스의 양이 기준보다 많으면 PDMS 파우더를 LPS 표면에 좀 더 적게 뿌려준다. 이로 인해, PDMS 공급부(40)는 LPS 표면에 뿌려지는 PDMS 파우더를 실시간으로 조절하여, 폴리카보실란의 합성량과 합성속도를 좀 더 정밀하게 제어할 수 있다.In other words, if the amount of refluxing PDMS gas is less than the standard, more PDMS powder is sprinkled on the LPS surface. If the amount of refluxing PDMS gas is more than the standard, less PDMS powder is sprinkled on the LPS surface. Because of this, the PDMS supply unit 40 can control the amount and speed of polycarbosilane synthesis more precisely by controlling the PDMS powder sprinkled on the LPS surface in real time.
이하, 본 발명의 일 실시예에 따른 탄화규소섬유 전구체용 폴리카보실란 합성 방법을 자세히 설명한다. 도 1을 기본적으로 참조한다. Hereinafter, a method for synthesizing polycarbosilane for a silicon carbide fiber precursor according to an embodiment of the present invention will be described in detail. Reference is made primarily to Figure 1.
도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 탄화규소섬유 전구체용 폴리카보실란 합성 방법은,As shown in Figure 2, the polycarbosilane synthesis method for silicon carbide fiber precursor according to an embodiment of the present invention,
불활성 분위기를 가진 반응기에 LPS를 투입하고 가열하는 제1단계(S11);A first step (S11) of adding LPS to a reactor with an inert atmosphere and heating it;
상기 반응기가 설정된 온도에 도달하면 상기 LPS 표면에 PDMS 파우더를 설정된 양만큼 뿌려주는 제2단계(S12);A second step (S12) of spraying a set amount of PDMS powder on the surface of the LPS when the reactor reaches the set temperature;
상기 반응기를 설정된 온도로 가열하며, 가열에 의해 상기 PDMS 파우더가 분해되어 가스화되어 상승하는 PDMS 가스를 퍼니스로 통과시켜 가열하는 제3단계(S13);A third step (S13) in which the reactor is heated to a set temperature, and the PDMS powder is decomposed and gasified by heating to pass the rising PDMS gas through a furnace.
상기 퍼니스를 통과하면서 분자량이 증가된 PDMS 가스 중 일부를 응축시켜 상기 반응기로 환류하고, 상기 퍼니스를 통과하면서 초저분자량이 된 PDMS 가스를 배출하는 제4단계(S14); 및A fourth step (S14) of condensing some of the PDMS gas with an increased molecular weight while passing through the furnace, returning it to the reactor, and discharging PDMS gas with an ultra-low molecular weight while passing through the furnace; and
상기 반응기를 상온으로 냉각하여 고상의 폴리카보실란을 얻은 후 필터링하고 진공 증류 정제를 하여 최종 폴리카보실란을 얻는 제5단계(S15)로 구성된다.The reactor is cooled to room temperature to obtain solid polycarbosilane, followed by filtering and vacuum distillation purification to obtain the final polycarbosilane (S15).
이하, 제1단계(S11)를 설명한다.Hereinafter, the first step (S11) will be described.
반응기(10) 내부에 질소를 넣고 빼서 진공으로 만들어주는 것을 수회 반복하여, 반응기(10) 내부를 불활성 분위기로 만든다.Entering and removing nitrogen into the reactor 10 to create a vacuum is repeated several times to create an inert atmosphere inside the reactor 10.
불활성 분위기를 가진 반응기(10)에 액상폴리실란(LPS)을 투입한다.Liquid polysilane (LPS) is introduced into the reactor 10 with an inert atmosphere.
LPS 투입 방법LPS injection method
DMDCS(Dimethyldichlorosilane)와 금속 나트륨을 톨루엔 또는 자일렌 용매에서 반응시킨 후 세척 및 건조하여 PDMS(Polydimethylsilane)를 합성한다.Dimethyldichlorosilane (DMDCS) and sodium metal are reacted in toluene or xylene solvent, then washed and dried to synthesize PDMS (polydimethylsilane).
불활성 분위기를 가진 반응기(10)에 PDMS를 넣고, 온도를 360~420℃까지 서서히 올린다. 이 과정 중에 PDMS는 분해가 일어나 아래 화학식과 같은 구조를 갖는 액상폴리실란(LPS)이 생긴다. 한편, 반응기(10)에서 분해된 저분자량의 폴리실란 가스는 반응기(10) 위에 설치한 응축기(60)를 거쳐 응축되어 반응기(10)로 수집된 후 액상폴리실란(LPS)이 된다. 반응기(10)에 모인 LPS는 이러한 방식으로, 반응기(10)에 LPS가 투입된다.PDMS is placed in a reactor (10) with an inert atmosphere, and the temperature is gradually raised to 360-420°C. During this process, PDMS decomposes and produces liquid polysilane (LPS) with the structure shown in the formula below. Meanwhile, the low molecular weight polysilane gas decomposed in the reactor 10 is condensed through the condenser 60 installed on the reactor 10 and collected into the reactor 10 to become liquid polysilane (LPS). The LPS collected in the reactor 10 is introduced into the reactor 10 in this manner.
[화학식][Chemical formula]
반응기(10)를 히터(20)로 가열하여 0.5~2℃/min의 속도로 200℃로 승온시킨다.The reactor 10 is heated with a heater 20 to raise the temperature to 200°C at a rate of 0.5 to 2°C/min.
이하, 제2단계(S12)를 설명한다.Hereinafter, the second step (S12) will be described.
반응기(10)가 설정된 온도, 즉 200℃에 도달하면, PDMS 파우더가 저장된 PDMS 챔버(30)에 연결된 PDMS 공급부(40)가, LPS 표면에 PDMS 파우더를 설정된 양만큼 뿌려준다.When the reactor 10 reaches the set temperature, that is, 200°C, the PDMS supply unit 40 connected to the PDMS chamber 30 where the PDMS powder is stored sprinkles a set amount of PDMS powder on the LPS surface.
PDMS 파우더는 LPS 무게 대비 10~100%까지 뿌려진다. PDMS는 밀도가 0.5g/㎤로 낮아 LPS와 혼합시 LPS 표면에 존재한다.PDMS powder is sprinkled at 10 to 100% of the weight of LPS. PDMS has a low density of 0.5g/cm3, so it exists on the surface of LPS when mixed with LPS.
이하, 제3단계(S13)를 설명한다.Hereinafter, the third step (S13) will be described.
반응기(10)를 설정된 온도로 가열한다.Heat the reactor 10 to the set temperature.
일 예로, 가열은 반응기(10)의 온도를 300~380℃까지 올려 반응을 3시간 이상 진행한 후, 반응기(10)의 온도를 400~460℃까지 올려 유지시간을 2시간 이상 반응시키는 2단계로 이루어진다.As an example, heating involves raising the temperature of the reactor 10 to 300 to 380°C and allowing the reaction to proceed for more than 3 hours, then raising the temperature of the reactor 10 to 400 to 460°C and holding the reaction for more than 2 hours. It consists of
온도가 상승하면서 반응기(10)의 내부에 있는 LPS는 분해, 재결합으로 분자량이 신속하게 증가하게 되어 점도는 높아진다. 폴리카보실란이 합성된다. 이 과정에서 LPS가 저분자량의 폴리카보실란으로 전환되면서 발생하는 저분자량의 폴리카보실란 가스는, 표면층에 존재하는 PDMS로 인하여 표면층을 뚫고 상승하기가 어려워진다.As the temperature rises, the molecular weight of the LPS inside the reactor 10 rapidly increases due to decomposition and recombination, and the viscosity increases. Polycarbosilane is synthesized. In this process, the low-molecular-weight polycarbosilane gas generated as LPS is converted to low-molecular-weight polycarbosilane becomes difficult to rise through the surface layer due to the PDMS present in the surface layer.
이로 인해, 저분자량의 폴리카보실란 가스가 휘발되어 응축기(60)로 올라가는 것이 억제되어, 반응기(10) 내에서 폴리카보실란 합성이 많이 일어나게 된다. 이렇게, PDMS 파우더가 LPS 액상부의 표면에 머물면서 아래층의 LPS로부터 휘발되는 가스의 상승을 억제하여 닫힌계처럼 반응이 일어나는 것은, 고압 합성에서 닫힌계 반응으로 휘발 물질이 외부로 날아가지 못하고 다시 반응에 참여하여 수율이 증가하고 합성 시간도 짧은 시간에 이루어지는 원리와 유사하다.As a result, the volatilization of low molecular weight polycarbosilane gas is suppressed from rising to the condenser 60, and a large amount of polycarbosilane synthesis occurs within the reactor 10. In this way, the PDMS powder stays on the surface of the LPS liquid phase and suppresses the rise of gas volatilized from the LPS in the lower layer, causing a reaction like a closed system. In high-pressure synthesis, the volatile substances cannot fly out and participate in the reaction again due to a closed system reaction. It is similar to the principle that yield increases and synthesis time is shortened.
폴리카보실란 합성이 일어나는 동안에 표면층의 고상의 PDMS 파우더는 액상인 LPS로 전환된다. 또한, 가열에 의해 PDMS 파우더는 분해되어 가스화된다. PDMS 가스는 상승하여 퍼니스(50)로 통과하고, 퍼니스(50)를 통과하는 동안 다시 가열된다.During polycarbosilane synthesis, the solid PDMS powder of the surface layer is converted to liquid LPS. Additionally, PDMS powder is decomposed and gasified by heating. The PDMS gas rises and passes into furnace 50 and is heated again while passing through furnace 50.
퍼니스(50)의 온도는 400~500℃이다. PDMS 가스가 질소와 함께 400~500℃의 퍼니스(50)에 도달하면서 분자량이 증가한다.The temperature of the furnace 50 is 400 to 500°C. As the PDMS gas reaches the furnace 50 at 400-500°C together with nitrogen, the molecular weight increases.
이하, 제4단계(S14)를 설명한다.Hereinafter, the fourth step (S14) will be described.
분자량이 증가된 PDMS 가스 중 일부 즉 무거운 PDMS 가스는 다시 반응기(10)로 하강하여 LPS가 되어 폴리카보실란 합성에 참여한다.Some of the PDMS gas with increased molecular weight, that is, heavy PDMS gas, descends back into the reactor 10 to become LPS and participate in polycarbosilane synthesis.
또한, 퍼니스(50)를 통과하면서 분자량이 증가된 PDMS 가스 중 일부 즉, 반응기(10)로 하강한 PDMS 가스보다 분자량이 낮은 가스는 상승하여 응축기(60)에서 응축시켜 반응기(10)로 환류된다. 환류된 PDMS 가스는 LPS가 되어 폴리카보실란 합성에 참여한다.In addition, some of the PDMS gas with an increased molecular weight as it passes through the furnace 50, that is, a gas with a lower molecular weight than the PDMS gas that descended into the reactor 10, rises and is condensed in the condenser 60 and returned to the reactor 10. . The refluxed PDMS gas becomes LPS and participates in polycarbosilane synthesis.
또한, 퍼니스(50)를 통과하면서 초저분자량이 된 PDMS 가스 즉, 응축된 PDMS 가스보다 분자량이 낮은 초저분자량의 PDMS 가스는 가스 배기관(70)을 통해 외부로 날아가게 된다.In addition, the PDMS gas that has an ultra-low molecular weight as it passes through the furnace 50, that is, the ultra-low molecular weight PDMS gas with a lower molecular weight than the condensed PDMS gas, flies out through the gas exhaust pipe 70.
이하, 제5단계(S15)를 설명한다.Hereinafter, the fifth step (S15) will be described.
반응기(10)를 상온으로 냉각하여 고상의 폴리카보실란을 얻은 후 필터링하고 진공 증류 정제한다.The reactor 10 is cooled to room temperature to obtain solid polycarbosilane, which is then filtered and purified by vacuum distillation.
일 예로, 고상의 폴리카보실란을 톨루엔 용매에 용해하고 필터링하며, 진공 분위기하 280℃에서 진공 증류 정제를 하여 최종 폴리카보실란을 얻는다.As an example, solid polycarbosilane is dissolved in toluene solvent, filtered, and purified by vacuum distillation at 280°C in a vacuum atmosphere to obtain the final polycarbosilane.
이렇게 얻은 폴리카보실란의 중량평균분자량(이하, Mw라 칭함)은 2000~3000이고, 분자지수(이하 PDI라 칭함)는 2.3~2.9이며, 고분자량과 중분자량이 차지하는 양의 비가 0.5~1.2인 폴리카보실란으로서 용융방사시 폴리카보실란섬유의 직경을 12μm 이하로 얻을 수 있다.The weight average molecular weight (hereinafter referred to as Mw) of the polycarbosilane obtained in this way is 2000 to 3000, the molecular index (hereinafter referred to as PDI) is 2.3 to 2.9, and the ratio of the high molecular weight to the middle molecular weight is 0.5 to 1.2. As polycarbosilane, when melt spinning, the diameter of polycarbosilane fibers can be obtained with a diameter of 12μm or less.
비교예(종래 방법)Comparative example (conventional method)
DMDCS와 금속 나트륨을 톨루엔 용매에서 반응하여 PDMS를 얻는다. PDMS 1000g을 반응기(10)에 넣고, 질소와 진공으로 수 회 걸쳐서 처리한다. 질소 분위기에서 반응기(10)의 온도 1~5℃/min의 속도로 360℃로 승온하고 15~20시간 유지한다. 그리고 450℃까지 온도를 승온하여 10시간 유지한다. 상온으로 냉각하여 고상의 폴리카보실란을 얻는다. 폴리카보실란을 톨루엔에 용해하고 필터링한다. 진공분위기하 280℃에서 진공 증류 정제를 하여 최종 폴리카보실란을 얻는다.PDMS is obtained by reacting DMDCS and metallic sodium in toluene solvent. 1000 g of PDMS is placed in the reactor 10 and treated several times with nitrogen and vacuum. In a nitrogen atmosphere, the temperature of the reactor 10 is raised to 360°C at a rate of 1 to 5°C/min and maintained for 15 to 20 hours. Then, the temperature is raised to 450°C and maintained for 10 hours. Cool to room temperature to obtain solid polycarbosilane. Polycarbosilane is dissolved in toluene and filtered. The final polycarbosilane is obtained by vacuum distillation and purification at 280°C under a vacuum atmosphere.
GPC(Gel Permeation Chromatography)로 측정한 Mw은 3104, 수평균분자량(이하 Mn라 칭함)은 951, PDI는 3.26이다. 도 3에 도시된 바와 같이, GPC의 크로마토그램(Chromatogram) 곡선에서, 유출시간 27.850min까지의 면적을 고분자영역(이하 AHM라 칭함)으로, 28.686min까지의 면적을 중분자 영역(이하 AMM라 칭함)으로, 그리고 30.117min 이후의 면적을 저분자영역(이하 ALM라 칭함)으로 하여 면적을 계산하였다. 면적은 각각 47.3, 38.3, 14.4%이다. 고분자량과 중분자량의 비가 1.27로서 고분자량이 중분자량보다 많이 존재한다. 얻어진 폴리카보실란으로 폴리카보실란섬유를 제조하였다. 모노-홀 방사장비에서 폴리카보실란 30g을 용융챔버에 넣고 질소-진공을 수회 치환 한 후에 질소 분위기로 만든다. 챔버 온도를 280℃로 올리고 1bar의 압력하에서 0.2mm 노즐로 용융 폴리카보실란을 토출하여 220rpm로 권취하였다. 얻어진 폴리카보실란섬유의 직경은 평균 15μm다. 종래 방법으로는 폴리카보실란섬유의 직경을 15μm 이하로 만들기 어렵다.Mw measured by GPC (Gel Permeation Chromatography) was 3104, number average molecular weight (hereinafter referred to as Mn) was 951, and PDI was 3.26. As shown in Figure 3, in the chromatogram curve of GPC, the area up to the effusion time of 27.850 min is the high molecular area (hereinafter referred to as AHM), and the area up to 28.686 min is the middle molecule area (hereinafter referred to as AMM). ), and the area after 30.117 min was calculated as the low molecule region (hereinafter referred to as ALM). The areas are 47.3, 38.3, and 14.4%, respectively. The ratio between high molecular weight and middle molecular weight is 1.27, so the high molecular weight exists more than the middle molecular weight. Polycarbosilane fiber was manufactured from the obtained polycarbosilane. In a mono-hole spinning equipment, 30 g of polycarbosilane is placed in a melting chamber, and the nitrogen-vacuum is replaced several times before creating a nitrogen atmosphere. The chamber temperature was raised to 280°C, and molten polycarbosilane was discharged through a 0.2 mm nozzle under a pressure of 1 bar and wound at 220 rpm. The average diameter of the obtained polycarbosilane fibers was 15 μm. It is difficult to make polycarbosilane fibers with a diameter of 15 μm or less using conventional methods.
실시예1Example 1
DMDCS와 금속 나트륨을 톨루엔 용매에서 반응하여 PDMS를 얻는다. PDMS 1000g을 반응기(10)에 넣고, 질소와 진공으로 수 회 걸쳐서 처리한다. 반응기(10)의 온도 1~5℃/min의 속도로 승온하면서 질소를 넣어주고, 진공 상태에 둔다. 최종 반응기(10)의 온도는 400℃를 하고 이 공정에서 분해되어 휘발되어 나오는 가스는 응축기(60)를 거쳐 액상폴리실란(LPS)이 되어 반응기(10)로 들어온다. 액상폴리실란(LPS)의 수율은 80~90%에 달한다. GPC로 분자량을 측정하였다. 분자량은 Mw은 510, Mn은 440이었다.PDMS is obtained by reacting DMDCS and metallic sodium in toluene solvent. 1000 g of PDMS is placed in the reactor 10 and treated several times with nitrogen and vacuum. Nitrogen is added while the temperature of the reactor 10 is raised at a rate of 1 to 5°C/min, and placed in a vacuum state. The temperature of the final reactor (10) is 400°C, and the gas decomposed and volatilized in this process becomes liquid polysilane (LPS) through the condenser (60) and enters the reactor (10). The yield of liquid polysilane (LPS) reaches 80-90%. Molecular weight was measured by GPC. The molecular weight was 510 for Mw and 440 for Mn.
이렇게 합성된 LPS 500g만을 기존 반응기(10)에 남겨서 폴리카보실란을 합성하거나, 또는 이렇게 합성된 LPS 500g을 폴리카보실란 합성 전용 반응기(10)에 투입해서 폴리카보실란을 합성한다. 이하, 반응기(10)는 어느 것이든 될 수 있다.Only 500 g of the LPS synthesized in this way is left in the existing reactor (10) to synthesize polycarbosilane, or 500 g of LPS synthesized in this way is put into the reactor (10) dedicated for polycarbosilane synthesis to synthesize polycarbosilane. Hereinafter, the reactor 10 may be any.
반응기(10) 내부를 질소와 진공으로 수회에 걸쳐서 치환하고 질소를 흘려준다. 교반을 하면서 반응기(10)의 히터(20)를 작동하여 0.5~2℃/min의 속도로 200℃ 승온하고, 이 온도에서 PDMS를 100g(LPS의 20wt%)을 서서히 반응기(10) 내부로 투입하면서 교반한다. 온도를 300℃까지 승온하고, 6시간 유지한다. 410℃까지 반응기(10)의 온도를 올려 8시간 동안 유지한다. 그리고 실온으로 냉각을 한다. 고상의 폴리카보실란을 얻는다. 폴리카보실란을 톨루엔에 용해하고 필터링한다. 이이서 진공분위기하 280℃에서 진공 증류 정제를 하여 폴리카보실란을 얻는다. 이때의 수율은 40%이다. 도 4에 도시된 바와 같이, FT-IR 스펙트럼으로 폴리카보실란의 결합들이 형성되었음을 확인하였다.The inside of the reactor (10) is purged several times with nitrogen and vacuum, and then nitrogen is supplied. While stirring, operate the heater 20 of the reactor 10 to raise the temperature to 200°C at a rate of 0.5 to 2°C/min, and 100g of PDMS (20wt% of LPS) is slowly introduced into the reactor 10 at this temperature. Stir while stirring. Raise the temperature to 300°C and maintain it for 6 hours. The temperature of the reactor (10) is raised to 410°C and maintained for 8 hours. Then cool to room temperature. Solid polycarbosilane is obtained. Polycarbosilane is dissolved in toluene and filtered. Then, polycarbosilane is obtained by vacuum distillation and purification at 280°C under a vacuum atmosphere. The yield at this time is 40%. As shown in Figure 4, the FT-IR spectrum confirmed that polycarbosilane bonds were formed.
GPC로 폴리카보실란의 분자량을 측정하였다. Mw은 2391, Mn은 803, PDI는 2.97이다. 도 5에 도시된 바와 같이, GPC의 크로마토그램(Chromatogram) 곡선에서, 유출시간 27.492min까지의 면적을 고분자영역(AHM)으로, 28.959min까지의 면적을 중분자 영역(AMM)으로, 그리고 30.033min 이후의 면적을 저분자영역(ALM)으로 하여 면적을 계산하였다. 면적은 각각 33.50, 48.11, 18.37%이다. 저분자가 약 18% 존재하고 있다. 고분자와 중분자의 비는 0.69로서 전제적으로 고분자량 보다는 중분자량이 많이 존재한다.The molecular weight of polycarbosilane was measured by GPC. Mw is 2391, Mn is 803, and PDI is 2.97. As shown in Figure 5, in the GPC chromatogram curve, the area up to the effusion time of 27.492 min is referred to as the high molecular area (AHM), the area up to 28.959 min is referred to as the intermediate molecular area (AMM), and 30.033 min. The area was calculated by considering the subsequent area as the low molecular area (ALM). The areas are 33.50, 48.11, and 18.37%, respectively. Approximately 18% of small molecules exist. The ratio of polymers and middle molecules is 0.69, which means that there is more middle molecular weight than high molecular weight.
얻은 폴리카보실란으로 용융방사를 하였다. 폴리카보실란 30g을 용융챔버에 넣고, 질소와 진공을 수차례에 걸쳐 치환한다. 질소 분위기에서 온도를 240℃로 승온하여 폴리카보실란을 용융하고 3시간 유지한다. 0.2mm 노즐로 용융 폴리카보실란을 토출하여 230rpm서 폴리카보실란섬유를 권취하였다. 얻어진 폴리카보실란섬유의 직경은 평균 12μm로 작다. Melt spinning was performed with the obtained polycarbosilane. Add 30 g of polycarbosilane to the melting chamber, and replace nitrogen and vacuum several times. The temperature is raised to 240°C in a nitrogen atmosphere to melt the polycarbosilane and maintained for 3 hours. Molten polycarbosilane was discharged with a 0.2 mm nozzle and polycarbosilane fibers were wound at 230 rpm. The diameter of the obtained polycarbosilane fibers is small, averaging 12 μm.
실시예2Example 2
실시예1과 같이 PDMS로부터 LPS를 제조한다.LPS was prepared from PDMS as in Example 1.
이렇게 합성된 LPS 500g만을 기존 반응기(10)에 남겨서 폴리카보실란을 합성하거나, 또는 이렇게 합성된 LPS 500g을 폴리카보실란 합성 전용 반응기(10)에 투입해서 폴리카보실란을 합성한다. 이하, 반응기(10)는 어느 것이든 될 수 있다.Only 500 g of the LPS synthesized in this way is left in the existing reactor (10) to synthesize polycarbosilane, or 500 g of LPS synthesized in this way is put into the reactor (10) dedicated for polycarbosilane synthesis to synthesize polycarbosilane. Hereinafter, the reactor 10 may be any.
반응기(10) 내부를 질소와 진공으로 수회에 걸쳐서 치환하고 질소를 흘려준다. 교반을 하면서 반응기(10)의 히터(20)를 작동하여 0.5~2℃/min의 속도로 200℃ 승온하고, 이 온도에서 PDMS를 200g(LPS의 40wt%)을 서서히 반응기(10) 내부로 투입하면서 교반한다. 온도를 340℃까지 승온하고, 15시간 유지한다. 이어서 온도를 430℃로 승온하여 8시간 동안 유지한다. 그리고 실온으로 냉각을 한다. 고상의 폴리카보실란을 얻는다. 폴리카보실란을 톨루엔에 용해하고 필터링한다. 이이서 진공분위기하 280℃에서 진공 증류 정제를 하여 폴리카보실란을 얻는다.The inside of the reactor (10) is purged several times with nitrogen and vacuum, and then nitrogen is supplied. While stirring, operate the heater 20 of the reactor 10 to raise the temperature to 200°C at a rate of 0.5 to 2°C/min, and at this temperature, 200g of PDMS (40wt% of LPS) is slowly introduced into the reactor 10. Stir while stirring. Raise the temperature to 340°C and maintain it for 15 hours. The temperature is then raised to 430°C and maintained for 8 hours. Then cool to room temperature. Solid polycarbosilane is obtained. Polycarbosilane is dissolved in toluene and filtered. Then, polycarbosilane is obtained by vacuum distillation and purification at 280°C under a vacuum atmosphere.
GPC로 분자량을 측정하였다. Mw는 2278, Mn은 931, 그리고 PDI은 2.44이다. GPC의 크로마토그램에서 분자량 면적을 계산하였다. 고분자영역(AHM) 32.55%, 중분자 영역(AMM) 54.96%, 저분자영역(ALM) 12.47%이다. 저분자량이 약 12% 존재한다. AHM/AMM의 비는 0.59로서 중분자가 고분자에 비하여 상당히 많이 존재하고 있다. 실시예1과 같이 폴리카보실란을 용융방사를 하였다. 250℃로 승온하여 폴리카보실란을 용융하고 3시간 유지한다. 0.2mm 노즐로 용융 폴리카보실란을 토출하여 240rpm서 폴리카보실란섬유를 권취하였다. 얻어진 폴리카보실란섬유의 직경은 평균 12μm로 작다. Molecular weight was measured by GPC. Mw is 2278, Mn is 931, and PDI is 2.44. The molecular weight area was calculated from the GPC chromatogram. The high molecular area (AHM) is 32.55%, the medium molecular area (AMM) is 54.96%, and the low molecular area (ALM) is 12.47%. Low molecular weight exists at about 12%. The ratio of AHM/AMM is 0.59, which means that there are significantly more middle molecules than polymers. Polycarbosilane was melt-spun as in Example 1. Raise the temperature to 250℃, melt the polycarbosilane, and keep it for 3 hours. Molten polycarbosilane was discharged with a 0.2 mm nozzle and polycarbosilane fibers were wound at 240 rpm. The diameter of the obtained polycarbosilane fibers is small, averaging 12 μm.
10: 반응기
20: 히터
30: PDMS 챔버
40: PDMS 공급부
50: 퍼니스
60: 응축기
70: 가스 배기관10: reactor 20: heater
30: PDMS chamber 40: PDMS supply section
50: Furnace 60: Condenser
70: gas exhaust pipe
Claims (6)
상기 LPS가 폴리카보실란으로 합성되도록 상기 반응기를 가열하는 히터;
PDMS 파우더를 저장하며, 불활성 분위기를 가진 PDMS 챔버;
상기 반응기와 PDMS 챔버에 연결되며, 상기 반응기에 담긴 LPS 표면에 상기 PDMS 챔버에 저장된 상기 PDMS 파우더를 설정된 양만큼 뿌려주는 PDMS 공급부;
상기 반응기의 상부에 연결되며, 상기 LPS 표면에 뿌려진 상기 PDMS 파우더가 분해되어 가스화되어 상승하면서 통과하는 퍼니스;
상기 퍼니스를 통과하면서 분자량이 증가된 PDMS 가스 중 일부를 응축시켜 상기 반응기로 환류하는 응축기; 및
상기 퍼니스를 통과하면서 초저분자량이 된 PDMS 가스를 배출하는 가스 배기관을 포함하는 것을 특징으로 하는 탄화규소섬유 전구체용 폴리카보실란 합성 장치.A reactor in which LPS (Liquid polysilane) is introduced and has an inert atmosphere;
A heater that heats the reactor to synthesize the LPS into polycarbosilane;
A PDMS chamber that stores PDMS powder and has an inert atmosphere;
A PDMS supply unit connected to the reactor and the PDMS chamber and spraying a set amount of the PDMS powder stored in the PDMS chamber on the surface of the LPS contained in the reactor;
A furnace connected to the upper part of the reactor, through which the PDMS powder sprinkled on the LPS surface is decomposed, gasified, and passes through it as it rises;
A condenser that condenses a portion of the PDMS gas whose molecular weight increases as it passes through the furnace and returns it to the reactor; and
A polycarbosilane synthesis device for silicon carbide fiber precursor, comprising a gas exhaust pipe for discharging ultra-low molecular weight PDMS gas while passing through the furnace.
상기 반응기가 설정된 온도에 도달하면 상기 LPS 표면에 PDMS 파우더를 설정된 양만큼 뿌려주는 제2단계;
상기 반응기를 설정된 온도로 가열하며, 가열에 의해 상기 PDMS 파우더가 분해되어 가스화되어 상승하는 PDMS 가스를 퍼니스로 통과시켜 가열하는 제3단계;
상기 퍼니스를 통과하면서 분자량이 증가된 PDMS 가스 중 일부를 응축시켜 상기 반응기로 환류하고, 상기 퍼니스를 통과하면서 초저분자량이 된 PDMS 가스를 배출하는 제4단계; 및
상기 반응기를 상온으로 냉각하여 고상의 폴리카보실란을 얻은 후 필터링하고 진공 증류 정제를 하여 최종 폴리카보실란을 얻는 제5단계를 포함하는 것을 특징으로 하는 탄화규소섬유 전구체용 폴리카보실란 합성 방법.A first step of adding LPS to a reactor with an inert atmosphere and heating it;
A second step of spraying a set amount of PDMS powder on the LPS surface when the reactor reaches the set temperature;
A third step of heating the reactor to a set temperature and heating the PDMS powder by decomposing and gasifying the PDMS gas, which rises by heating, by passing it through a furnace;
A fourth step of condensing some of the PDMS gas with an increased molecular weight while passing through the furnace, returning it to the reactor, and discharging PDMS gas with an ultra-low molecular weight while passing through the furnace; and
A method for synthesizing polycarbosilane for a silicon carbide fiber precursor, comprising a fifth step of cooling the reactor to room temperature to obtain solid polycarbosilane, followed by filtering and vacuum distillation purification to obtain final polycarbosilane.
상기 LPS는 DMDCS와 금속 나트륨을 톨루엔 또는 자일렌 용매에서 반응시킨 후 세척 및 건조하여 PDMS를 합성하고, 상기 PDMS를 질소분위기에서 360~420℃까지 온도를 승온하여 열분해하여 합성하는 것을 특징으로 하는 탄화규소섬유 전구체용 폴리카보실란 합성 방법.The method of claim 2, wherein in the first step,
The LPS is synthesized by reacting DMDCS and metallic sodium in toluene or xylene solvent, washing and drying to synthesize PDMS, and pyrolyzing the PDMS by raising the temperature to 360-420°C in a nitrogen atmosphere. Carbonization. Polycarbosilane synthesis method for silicon fiber precursor.
상기 PDMS 파우더를 상기 LPS 무게 대비 10~100%까지 투입하는 것을 특징으로 하는 탄화규소섬유 전구체용 폴리카보실란 합성 방법.The method of claim 2, wherein in the second step,
A polycarbosilane synthesis method for silicon carbide fiber precursor, characterized in that the PDMS powder is added up to 10 to 100% of the weight of the LPS.
상기 반응기는 0.5~2℃ /min의 속도로 200℃로 승온되는 것을 특징으로 하는 탄화규소섬유 전구체용 폴리카보실란 합성 방법.The method of claim 2, wherein in the second step,
A method for synthesizing polycarbosilane for a silicon carbide fiber precursor, characterized in that the reactor is heated to 200°C at a rate of 0.5 to 2°C/min.
상기 가열은 상기 반응기의 온도를 300~380℃까지 올려 반응을 3시간 이상 진행한 후, 상기 반응기의 온도를 400~460℃까지 올려 유지시간을 2시간 이상 반응시키는 2단계로 이루어지는 것을 특징으로 하는 탄화규소섬유 전구체용 폴리카보실란 합성 방법.The method of claim 2, wherein in the third step,
The heating is characterized in that it consists of two steps: raising the temperature of the reactor to 300 to 380 ℃ and allowing the reaction to proceed for more than 3 hours, then raising the temperature of the reactor to 400 to 460 ℃ and holding the reaction for more than 2 hours. Polycarbosilane synthesis method for silicon carbide fiber precursor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220071913A KR102664191B1 (en) | 2022-06-14 | 2022-06-14 | Method and apparatus for synthesizing polycarbosilane for silicon carbide fiber precursor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220071913A KR102664191B1 (en) | 2022-06-14 | 2022-06-14 | Method and apparatus for synthesizing polycarbosilane for silicon carbide fiber precursor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230171576A true KR20230171576A (en) | 2023-12-21 |
KR102664191B1 KR102664191B1 (en) | 2024-05-08 |
Family
ID=89320811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220071913A KR102664191B1 (en) | 2022-06-14 | 2022-06-14 | Method and apparatus for synthesizing polycarbosilane for silicon carbide fiber precursor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102664191B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106633080A (en) * | 2016-12-30 | 2017-05-10 | 江西星火狮达科技有限公司 | New process of producing polycarbosilane at medium and low pressure and production device thereof |
US9815944B2 (en) | 2014-06-28 | 2017-11-14 | Institute Of Chemistry, Chinese Academy Of Sciences | Method for preparing polycarbosilane by catalytic rearranging |
CN109704775A (en) * | 2018-12-13 | 2019-05-03 | 湖南博翔新材料有限公司 | A kind of continuous carbofrax fibre and preparation method thereof of beryllium gradient distribution |
-
2022
- 2022-06-14 KR KR1020220071913A patent/KR102664191B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9815944B2 (en) | 2014-06-28 | 2017-11-14 | Institute Of Chemistry, Chinese Academy Of Sciences | Method for preparing polycarbosilane by catalytic rearranging |
CN106633080A (en) * | 2016-12-30 | 2017-05-10 | 江西星火狮达科技有限公司 | New process of producing polycarbosilane at medium and low pressure and production device thereof |
CN109704775A (en) * | 2018-12-13 | 2019-05-03 | 湖南博翔新材料有限公司 | A kind of continuous carbofrax fibre and preparation method thereof of beryllium gradient distribution |
Non-Patent Citations (2)
Title |
---|
Enhancing the yield of polycarbosilane synthesis via recycling of liquid by-product at atmospheric pressure, Ceramics International, Volume 44, Issue 6, 15 April 2018, Pages 6474-6478 * |
Influence of Temperature on the Properties of Polycarbosilane, Journal of Inorganic and Organometallic Polymers and Materials, Vol. 15, No. 2, June 2005 * |
Also Published As
Publication number | Publication date |
---|---|
KR102664191B1 (en) | 2024-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108277555B (en) | Preparation method for preparing low-oxygen-content silicon carbide fiber by using thermocurable polycarbosilane | |
CN107473748B (en) | Preparation method of beryllium-containing silicon carbide ceramic fiber | |
US7125514B2 (en) | Process for producing reinforcing SiC fiber for SiC composite material | |
KR20180080454A (en) | Method of manufacturing high performance silicon carbide fiber having reduced oxygen content | |
KR102664191B1 (en) | Method and apparatus for synthesizing polycarbosilane for silicon carbide fiber precursor | |
Zhang et al. | Structure and properties development during the conversion of polyethylene precursors to carbon fibers | |
He et al. | Amorphous fine-diameter SiC-based fiber from a boron-modified polytitanocarbosilane precursor | |
CN107555997B (en) | Preparation method of beryllium-containing polycarbosilane ceramic precursor | |
Xie et al. | Synthesis and characterization of molybdenum‐modified polycarbosilane for SiC (Mo) ceramics | |
CN111364125B (en) | Preparation method of silicon carbide ceramic fiber | |
CN109704775B (en) | Beryllium-gradient-distributed continuous silicon carbide fiber and preparation method thereof | |
US5470933A (en) | Preparation of polyaminoborazines | |
Xie et al. | Fabrication of SiC ultrafine fiber with low oxygen content by electrospinning, thermal curing and pyrolysis of cyano-polycarbosilane | |
CN108708000A (en) | A kind of preparation method of high antioxidant borosilicate doping carbon fiber | |
KR102227071B1 (en) | Method for manufacturing isotropic pitch from low-grade coal and ashfreechol and method for application of manufacturing low-cost high-strength isotropic carbon fiber using the same | |
CN110117842B (en) | Preparation method of hollow silicon carbide ceramic fiber | |
WO2024095990A1 (en) | Method for producing polycarbosilane for silicon carbide fibers, and method for producing silicon carbide fibers | |
KR20180006252A (en) | METHOD FOR FABRICATING LOW TEMPERATURE INFUSIBLE PCS BY TREATMENT AND DOPING, METHOD FOR FABRICATING SiC FIBER WITH HIGH STRENGTH AND HEAT RESISTANCE USING THE SAME | |
Hasegawa | Factors affecting the thermal stability of continuous SiC fibres | |
WO2024095991A1 (en) | Polycarbosilane for silicon carbide fibers, method for producing same, and method for producing silicon carbide fibers | |
KR20170037211A (en) | Synthetic method of pcs, and pcs precursor and pcs fiber manufactured by usig the same | |
EP0048957B1 (en) | Continuous inorganic fibers and process for production thereof | |
Sun et al. | Ceramization of Carborane-POSS and Coating on Carbon Fiber via Precursor Infiltration-Pyrolysis (PIP) Method | |
JPH02258870A (en) | Polycarbosilane treating method,product thereby obtained,and utilization of said treatment for manufacture of fibrous silicon carbide ceramic product in particular | |
KR101356893B1 (en) | Preparation method of carbon-carbon composite fiber, application to carbon heater and cooker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |