KR20230170740A - Filter media and its manufacturing method and application - Google Patents

Filter media and its manufacturing method and application Download PDF

Info

Publication number
KR20230170740A
KR20230170740A KR1020237039027A KR20237039027A KR20230170740A KR 20230170740 A KR20230170740 A KR 20230170740A KR 1020237039027 A KR1020237039027 A KR 1020237039027A KR 20237039027 A KR20237039027 A KR 20237039027A KR 20230170740 A KR20230170740 A KR 20230170740A
Authority
KR
South Korea
Prior art keywords
filter medium
solution
filter
manufacturing
metal salt
Prior art date
Application number
KR1020237039027A
Other languages
Korean (ko)
Inventor
젠 장
증 가오
이 왕
야페이 바이
지아빈 유
촨준 페이
밍웨이 가오
타오 웨이
치 마
샤오베이 구오
신보 광
Original Assignee
난징 파이버글라스 리서치 앤 디자인 인스티튜트 씨오., 엘티디.
시노마 사이언스 앤 테크놀러지 씨오., 엘티디.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 난징 파이버글라스 리서치 앤 디자인 인스티튜트 씨오., 엘티디., 시노마 사이언스 앤 테크놀러지 씨오., 엘티디. filed Critical 난징 파이버글라스 리서치 앤 디자인 인스티튜트 씨오., 엘티디.
Publication of KR20230170740A publication Critical patent/KR20230170740A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0407Additives and treatments of the filtering material comprising particulate additives, e.g. adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Filtering Materials (AREA)

Abstract

본 발명은 필터 재료 제조 기술에 관한 것으로, 구체적으로 여과재 및 그 제조 방법, 그 응용에 관한 것이다. 해당 제조 방법은 (1) 55 - 70 ℃에서, 여과재 기재를 금속염 용액에 침지하는 단계; (2) 침지 후의 여과재 기재 표면에 요소 용액 및/또는 암모니아수 용액을 분사한 후, 또 여과재 기재 표면에 과산화수소 용액을 분사하는 단계; (3) 열처리를 거친 후 여과재를 얻는 단계를 포함한다. 해당 방법을 통해 얻은 탈질 제진 일체화 여과재는 여과재 기재와 촉매가 높은 결착력을 갖도록 확보할 수 있는 동시에, 촉매가 여과재 기재에 균일하게 분포되도록 할 수도 있으며, 또한 촉매의 존재는 여과재의 통기성에 영향을 미치지 않는다.The present invention relates to filter material manufacturing technology, and specifically relates to filter media, its manufacturing method, and its application. The manufacturing method includes (1) immersing the filter substrate in a metal salt solution at 55-70°C; (2) spraying a urea solution and/or aqueous ammonia solution on the surface of the filter medium after immersion, and then spraying a hydrogen peroxide solution on the surface of the filter medium; (3) It includes the step of obtaining a filter medium after heat treatment. The integrated denitrification and dust removal filter medium obtained through this method can ensure that the filter medium base and the catalyst have high binding force, and at the same time, the catalyst can be uniformly distributed on the filter medium base, and the presence of the catalyst does not affect the breathability of the filter medium. No.

Description

여과재와 그 제조 방법 및 응용Filter media and its manufacturing method and application

본 발명은 필터 재료 제조 기술에 관한 것으로, 구체적으로 여과재와 그 제조 방법 및 응용에 관한 것이다.The present invention relates to filter material manufacturing technology, and specifically to filter media, manufacturing methods and applications thereof.

에너지가 경제 사회의 발전 및 생활 수준의 향상의 중요한 물질적 기초이고, 경제의 급속한 발전에 따라, 중국에서 에너지에 대한 수요가 급격히 상승하여, 제련 및 발전과 같은 오염이 심한 중공업 산업이 급속하게 발전하였고, 이러한 산업은 대부분 석탄을 주요 연소 재료로 사용하여, 심각한 매연 오염을 초래하며, 인류의 생명 건강에 지대한 위협을 주고 있다. 중국에서 연진 배출에 대해 엄격히 제한하고 있고, 그 기준 또한 갈수록 엄격해지고 있다.Energy is an important material basis for economic and social development and improvement of living standards. With the rapid development of the economy, the demand for energy has risen rapidly in China, and highly polluting heavy industrial industries such as smelting and power generation have developed rapidly. , Most of these industries use coal as the main combustion material, causing serious smoke pollution and posing a great threat to human life and health. China has strict restrictions on smoke emissions, and the standards are becoming more stringent.

산업용 연기 후처리 분야에서, 봉투형 집진기(bag filter)는 제진 효율이 높고 작동 안정성이 우수하며, 회수가 용이한 등의 특징으로 인해 이미 석탄화력발전소, 쓰레기 소각, 시멘트 등의 분야에 널리 응용되고 있다. 그 중 유리섬유, PTFE 등과 같은 여과재(filter material)는 봉투형 집진기의 핵심이다. 종래의 봉투형 집진기 여과재의 사용 온도(150 ~ 200 ℃ 좌우)는 촉매 반응의 온도보다 훨씬 낮고, 이는 탈질 기능이 가지는 다기능 여과재의 발전을 제한하였다. 탈질 제진 일체화 여과재는 분진을 차단함과 동시에 질소산화물, 황산화물 또는 중금속 등의 오염 물질을 촉매 탈출하는 기능을 구비하는 재료이고, 다중 오염의 협동 제거를 실현하여, 상술한 문제를 효과적으로 피할 수 있다.In the field of industrial smoke post-treatment, bag filters have already been widely applied in fields such as coal-fired power plants, waste incineration, and cement due to their characteristics such as high dust removal efficiency, excellent operational stability, and easy recovery. there is. Among them, filter materials such as glass fiber and PTFE are the core of bag-type dust collectors. The operating temperature (ranging from 150 to 200°C) of conventional envelope-type dust collector filter media is much lower than the temperature of catalytic reaction, which has limited the development of multifunctional filter media with a denitrification function. The denitrification and dust removal integrated filter medium is a material that blocks dust and has the function of catalytically escaping contaminants such as nitrogen oxides, sulfur oxides or heavy metals, and realizes cooperative removal of multiple contaminants, effectively avoiding the above-mentioned problems. .

현재 탈질 제진 일체화 여과재의 구현 형태는 주로 촉매와 여과재 기재를 침지(impregnating) 또는 코팅(coating) 방식으로 조립하는 것으로, 이러한 방법은 촉매 분말과 여과재 기재 표면의 결착력이 낮고 분산이 불균일한 단점을 해결하기 어렵고, 여과재의 사용 수명 및 촉매 안정성이 부족하다. 종래 기술에서, 탈질 탈수은 다기능 복합 여과재 제조 시, 처리 후의 금속 섬유 펠트를 금속염 용액에 침지한 후 원위 증착제를 첨가하여 pH를 조절하고 소성하여 여과를 얻는 바, 촉매와 여과재 기재 표면의 결착력이 높으나, 얻어지는 여과재는 통기성이 떨어지고, 고결이 쉬워, 여과재 사용 수명이 짧은 동시에, 여과재 기재에서 해당 촉매의 분산이 불균일한 문제가 발생하기도 한다.Currently, the implementation form of integrated filter media for denitrification and dust removal is mainly to assemble the catalyst and filter media base by immersion or coating method. This method solves the shortcomings of low adhesion between the surface of catalyst powder and filter media base and uneven dispersion. It is difficult to do, and the service life of the filter medium and catalyst stability are insufficient. In the prior art, when manufacturing a denitrification dehydration multifunctional composite filter material, the treated metal fiber felt is immersed in a metal salt solution, and then a distal deposition agent is added to adjust the pH and sintered to obtain filtration. Although the adhesion between the catalyst and the surface of the filter material substrate is high, , the obtained filter medium has poor breathability and is prone to caking, which results in a short lifespan of the filter medium. At the same time, the problem of non-uniform dispersion of the catalyst in the filter medium substrate also occurs.

따라서, 본 발명이 해결하고자 하는 기술적 과제는 종래 기술의 탈질 제진 일체화 여과재가 여과재와 촉매의 높은 결착력 및 촉매 분포 균일화, 우수한 통기성 등을 동시에 확보할 수 없는 흠결을 극복함으로써, 여과재 및 그 제조 방법, 그 응용을 제공한다.Therefore, the technical problem to be solved by the present invention is to overcome the shortcomings of the conventional technology's integrated filter media for denitrification and dust removal, which cannot simultaneously secure high binding force between the filter media and the catalyst, uniform catalyst distribution, and excellent breathability, thereby providing a filter media and a method of manufacturing the same. Provides its application.

이에 본 발명은 이하의 기술적 방안을 제공한다.Accordingly, the present invention provides the following technical solution.

본 발명은 여과재의 제조 방법을 제공하고, 해당 방법은The present invention provides a method for producing a filter medium, the method comprising:

(1) 55 - 70 ℃에서, 여과재 기재를 금속염 용액에 침지하는 단계;(1) immersing the filter material substrate in a metal salt solution at 55-70°C;

(2) 침지 후의 여과재 기재 표면에 요소 용액(urea solution) 및/또는 암모니아수 용액(ammonia water solution)을 분사한 후, 또 여과재 기재 표면에 과산화수소 용액(hydrogen peroxide solution)을 분사하는 단계;(2) spraying a urea solution and/or ammonia water solution on the surface of the filter medium after immersion, and then spraying a hydrogen peroxide solution on the surface of the filter medium;

(3) 열처리를 거친 후 여과재를 얻는 단계를 포함한다.(3) It includes the step of obtaining a filter medium after heat treatment.

상기 요소 용액의 질량 농도는 5 - 40 %이고;The mass concentration of the urea solution is 5 - 40%;

상기 암모니아수 용액의 체적 농도는 35 - 60 %이며;The volume concentration of the aqueous ammonia solution is 35 - 60%;

상기 과산화수소의 체적 농도는 10 - 45 %이다.The volume concentration of hydrogen peroxide is 10 - 45%.

상기 단계 (2)에서, 55 - 80 ℃의 조건 하에서 여과재 기재 표면에 요소 용액 및/또는 암모니아수 용액을 분사하고, 또 55 - 80 ℃의 조건 하에서 여과재 기재 표면에 과산화수소 용액을 분사하며;In step (2), a urea solution and/or aqueous ammonia solution is sprayed on the surface of the filter medium base under conditions of 55 - 80°C, and a hydrogen peroxide solution is sprayed on the surface of the filter medium base under conditions of 55 - 80°C;

제곱 미터당 여과재 기재를 기준으로, 암모니아수 용액의 분사량은 150 - 330 ml/m2이고;Based on the filter material substrate per square meter, the spray amount of aqueous ammonia solution is 150 - 330 ml/m 2 ;

제곱 미터당 여과재 기재를 기준으로, 요소 용액의 분사량은 150 - 230 ml/m2이며;Based on the filter substrate per square meter, the spray amount of urea solution is 150 - 230 ml/m 2 ;

제곱 미터당 여과재 기재를 기준으로, 과산화수소 용액의 분사량은 120 - 300 ml/m2이다.Based on the filter substrate per square meter, the spray amount of hydrogen peroxide solution is 120 - 300 ml/m 2 .

단계 (1)에서, 여과재 기재를 금속염 용액에 침지하는 시간은 30 s를 초과하고;In step (1), the time for immersing the filter material substrate in the metal salt solution exceeds 30 s;

상기 금속염 용액은 티탄염, 세륨염 및 망간염 중 적어도 하나를 포함하며;The metal salt solution includes at least one of titanium salt, cerium salt, and manganese salt;

상기 금속염 용액의 질량 농도는 30 - 35 %이다.The mass concentration of the metal salt solution is 30 - 35%.

상기 금속염 용액은 티탄염(titanium salt), 세륨염(cerium salt) 및 망간염(manganese salt)을 포함하고;The metal salt solution includes titanium salt, cerium salt, and manganese salt;

상기 금속염 용액 중 티타늄, 세륨 및 망간의 몰비는 (10 - 12): (0.7 - 1.3): (4 - 5)이다.The molar ratio of titanium, cerium and manganese in the metal salt solution is (10 - 12): (0.7 - 1.3): (4 - 5).

상기 열처리의 온도는 250 - 300 ℃이고, 시간은 20 - 30 min이다.The temperature of the heat treatment is 250 - 300 ° C, and the time is 20 - 30 min.

상기 열처리 단계 후에 여과재 기재 표면에 폴리테트라플루오로에틸렌 복합 에멀션(polytetrafluoroethylene composite emulsion)을 분사하고, 소결을 거친 후 또 폴리테트라플루오로에틸렌 팽화 마이크로포러스 멤브레인(polytetrafluoroethylene expanded microporous membrane)과 열압착 피복을 진행하는 단계를 더 포함한다.After the heat treatment step, a polytetrafluoroethylene composite emulsion is sprayed on the surface of the filter substrate, sintered, and then heat-compressed and coated with a polytetrafluoroethylene expanded microporous membrane. It further includes steps.

상기 열압착 피복의 공정 변수에서 온도는 260 - 380 ℃이고, 속도는 1 - 10 m/min이며, 압력은 0.2 - 0.5 MPa이고;The process parameters of the thermocompression coating include a temperature of 260 - 380° C., a speed of 1 - 10 m/min, and a pressure of 0.2 - 0.5 MPa;

상기 폴리테트라플루오로에틸렌 복합 에멀션은 질량비 (20 - 50): (10 - 20): (0.5 - 1.5): (1.5 - 5)의 폴리테트라플루오로에틸렌 에멀션(polytetrafluoroethylene emulsion), 불소기 함유 실란 방수제(fluorine-containing silane waterproofing agent), 커플링제(coupling agent) 및 무기 방수제(inorganic waterproofing agent)를 포함하며;The polytetrafluoroethylene composite emulsion is a polytetrafluoroethylene emulsion with a mass ratio of (20 - 50): (10 - 20): (0.5 - 1.5): (1.5 - 5), a fluorine-containing silane waterproofing agent (fluorine-containing silane waterproofing agent), coupling agent and inorganic waterproofing agent;

상기 소결의 온도는 260 - 320 ℃이고, 소결 시간은 4 - 10min이다.The temperature of the sintering is 260 - 320 ° C, and the sintering time is 4 - 10 min.

열처리 및 폴리테트라플루오로에틸렌 복합 에멀션 분사 단계 사이에 건조 단계를 더 포함하고; 여기서,건조의 온도는 100 - 120 ℃이다.further comprising a drying step between the heat treatment and the polytetrafluoroethylene composite emulsion spraying step; Here, the drying temperature is 100 - 120 ℃.

본 발명은 상술한 방법으로 제조하여 얻은 여과재를 더 제공한다.The present invention further provides a filter medium obtained by manufacturing by the above-described method.

해당 여과재는 제진 탈질(denitration) 일체화 여과재이고, 제진(dust removal) 및 탈질(denitration)의 기능을 동시에 겸비할 수 있다.The filter medium is a filter medium that integrates dust removal and denitration, and can simultaneously serve the functions of dust removal and denitration.

또한, 본 발명은 상술한 방법으로 제조하여 얻은 여과재 또는 상술한 여과재의 촉매 탈질에서의 응용을 더 제공한다.In addition, the present invention further provides the filter medium produced by the above-described method or the application of the above-described filter medium in catalytic denitrification.

본 발명의 기술적 방안은 이하의 장점을 구비한다.The technical solution of the present invention has the following advantages.

1. 본 발명은 여과재의 제조 방법을 제공하고, 해당 방법은 (1) 55 - 70 ℃에서, 여과재 기재를 금속염 용액에 침지하는 단계; (2) 침지 후의 여과재 기재 표면에 요소 용액 및/또는 암모니아수 용액을 분사한 후, 또 여과재 기재 표면에 과산화수소 용액을 분사하는 단계; (3) 열처리를 거친 후 여과재를 얻는 단계를 포함한다. 해당 방법을 통해 얻은 탈질 제진 일체화 여과재는 여과재 기재와 촉매의 높은 결착력을 확보할 수 있는 동시에, 촉매가 여과재 기재에 균일하게 분포되도록 할 수도 있으며, 또한 촉매의 존재가 여과재의 통기성에 영향을 미치지 않는다. 여과재 기재는 55 - 70 ℃의 조건 하에서 금속염 용액에 침지되어, 한편 금속 용액의 균일한 상태를 확보할 수 있어, 금속 이온이 여과재 기재의 섬유 표층에 균일하게 적재되도록 하고, 요소 및/또는 암모니아수를 추가한 후, 여과재 기재 섬유 표층에서 촉매 형성 시, 촉매 입자가 여과재 공극을 막지 않고 여과재의 통기성에 영향을 미치지 않으며; 다른 한편, 해당 온도에서, 금속염 용액은 안정 상태를 나태내기에, 현탁액이 형성되지 않고, 여과재 기재에 대해 우수한 침윤성을 가져, 금속염 용액이 여과재 기재를 균일하게 피복하도록 하며, 여과재 기재는 우수한 침윤성을 가진다. 분사의 방식을 이용하여 요소 용액 및/또는 암모니아수 용액을 여과재 기재 표면에 분사하여, 요소 및/또는 암모니아수가 여과재 기재 표층의 금속 이온과 반응하도록 하여, 여과재 기재 표층에서 촉매 입자를 형성하고, 촉매 입자가 여과재 기재 표면에 견고하게 부착되도록 하며, 결착력이 강하고; 종래 기술에서 이용하는 직접 침지법에 비해, 본 발명에서 이용하는 분사 방법은 여과재의 통기성, 촉매 탈질 효율에 대한 영향이 작고, 여과재 표층에서 촉매 입자를 생성하여, 여과재 내부의 입자가 공극을 막는 현상 및 여과재에 고결이 발생하는 현상을 줄이며, 여과 효율 및 사용 수명을 향상시킨다.1. The present invention provides a method for producing a filter medium, the method comprising: (1) immersing the filter medium substrate in a metal salt solution at 55-70°C; (2) spraying a urea solution and/or aqueous ammonia solution on the surface of the filter medium after immersion, and then spraying a hydrogen peroxide solution on the surface of the filter medium; (3) It includes the step of obtaining a filter medium after heat treatment. The integrated denitrification and dust removal filter medium obtained through this method can secure high binding force between the filter medium base and the catalyst, while also allowing the catalyst to be uniformly distributed over the filter medium base, and the presence of the catalyst does not affect the breathability of the filter medium. . The filter material substrate is immersed in the metal salt solution under conditions of 55 - 70 ℃, while ensuring a uniform state of the metal solution, so that the metal ions are uniformly loaded on the surface layer of the fibers of the filter material substrate, and urea and/or ammonia water are added. After addition, when the catalyst is formed on the surface layer of the filter material base fiber, the catalyst particles will not block the filter material pores and will not affect the breathability of the filter material; On the other hand, at that temperature, the metal salt solution exhibits a stable state, so that no suspension is formed and has excellent permeability to the filter medium substrate, allowing the metal salt solution to uniformly coat the filter medium substrate, and the filter medium substrate has excellent permeability. have The urea solution and/or ammonia water solution is sprayed onto the surface of the filter medium substrate using a spraying method, and the urea and/or ammonia water reacts with the metal ions on the surface layer of the filter medium substrate to form catalyst particles on the surface layer of the filter medium substrate. ensures that it is firmly attached to the surface of the filter medium and has strong binding force; Compared to the direct immersion method used in the prior art, the spraying method used in the present invention has a small effect on the breathability of the filter medium and the catalytic denitrification efficiency, and generates catalyst particles on the surface layer of the filter medium, causing the particles inside the filter medium to block the pores and the filter medium. It reduces caking and improves filtration efficiency and service life.

요소 용액 및/또는 암모니아수 용액 분사는 환원 효과가 우수하고, 폭넓은 공급원을 가지기에, 산업용 연기 질소산화물 제거에 널리 응용될 수 있다.Spraying urea solution and/or aqueous ammonia solution has excellent reduction effect and has a wide range of sources, so it can be widely applied to remove nitrogen oxides from industrial smoke.

분사의 방식을 이용하여 여과재 기재에 과산화수소 용액을 분사하여 금속 착화합물 중 금속 이온의 원자가 상태의 안정성을 더욱 향상시킬 수 있고, 촉매 탈질 효율을 향상시키며, 사용 과정에서 다른 금속 이온이 유입되지 않기에, 촉매 체계의 안정성에 영향을 미치지 않고, 가격이 저렴하며, 오염이 없다.By spraying a hydrogen peroxide solution onto the filter substrate using a spraying method, the stability of the valence state of the metal ion in the metal complex can be further improved, the catalytic denitrification efficiency is improved, and other metal ions are not introduced during use. It does not affect the stability of the catalyst system, is inexpensive, and has no pollution.

본 발명에서 제공하는 여과재의 제조 방법은 유리 섬유, 폴리테트라플루오로에틸렌, 폴리이미드, 아라미드 섬유, 금속 섬유 등 내열성 여과재 기재에 적용된다.The method for producing a filter material provided by the present invention is applied to heat-resistant filter material substrates such as glass fiber, polytetrafluoroethylene, polyimide, aramid fiber, and metal fiber.

2. 본 발명에서 제공하는 여과재의 제조 방법에 있어서, 본 발명은 55 - 80 ℃의 조건 하에서, 여과재 기재 표면에 환원제 및 산화제를 분사하여, 금속염 용액 중의 금속 이온의 석출 및 침전의 발생을 방지할 수 있고, 금속염 용액이 환원제와 반응 시, 결집되는 문제가 발생하지 않으며, 금속염 용액이 환원제, 산화제와 충분히 접촉 반응하도록 하여, 촉매의 분포가 균일한 일체화 여과재를 얻는다.2. In the method for producing a filter medium provided by the present invention, the present invention sprays a reducing agent and an oxidizing agent on the surface of the filter medium substrate under conditions of 55 - 80 ° C. to prevent precipitation and precipitation of metal ions in the metal salt solution. When the metal salt solution reacts with the reducing agent, the problem of aggregation does not occur, and by allowing the metal salt solution to sufficiently contact and react with the reducing agent and the oxidizing agent, an integrated filter medium with uniform distribution of the catalyst is obtained.

3. 본 발명에서 제공하는 여과재의 제조 방법에 있어서, 해당 방법에서의 금속염 용액에 티탄염, 세륨염 및 망간염을 포함하고, 한편 촉매의 촉매 효율을 향상시킬 수 있고, 다른 한편, 해당 여과재를 촉매 탈질에 사용할 경우, 반응 온도를 낮출 수 있다.3. In the method for producing a filter medium provided by the present invention, the metal salt solution in the method includes titanium salt, cerium salt and manganese salt, on the one hand, the catalytic efficiency of the catalyst can be improved, and on the other hand, the filter medium can be When used for catalytic denitrification, the reaction temperature can be lowered.

열처리 온도를 250 - 280 ℃로 제어하여, 제진 탈질 일체화 여과재를 제조하여 얻는 동시에 열처리의 온도를 낮추어, 에너지를 절약하고 친환경적이다.By controlling the heat treatment temperature to 250 - 280 ℃, a filter medium with integrated dust removal and denitrification can be manufactured and the heat treatment temperature is lowered, saving energy and being environmentally friendly.

본 발명의 구체적인 실시 형태 또는 종래 기술 중의 기술 방안을 더욱 명백하게 설명하기 위해, 이하 구체적인 실시 형태 또는 종래 기술의 사용에 필요한 첨부 도면을 간단히 설명하도록 하고, 이하에서 설명하는 첨부 도면은 본 발명의 일부 실시 형태이고, 본 기술 분야의 통상의 기술자에게 있어서, 창조적인 노동을 들이지 않는 전제 하에서 이러한 도면을 기반으로 다른 도면을 얻을 수 있는 것은 자명한 것이다.
도 1은 본 발명의 실시예에 1의 여과재의 주사전자현미경 사진이다.
In order to more clearly explain the specific embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings necessary for use of the specific embodiments or the prior art will be briefly described below, and the accompanying drawings described below are some embodiments of the present invention. It is obvious to those skilled in the art that other drawings can be obtained based on these drawings under the premise that no creative labor is involved.
Figure 1 is a scanning electron microscope photograph of the filter medium in Example 1 of the present invention.

이하의 실시예는 본 발명을 더욱 명백하게 이해하기 위해 제공한 것이고, 이러한 최적의 실시 형태에 국한되지 않고, 본 발명의 내용 및 청구 범위를 한정하지 않으며, 누구든지 본 발명의 시사 또는 본 발명과 다른 종래 기술의 특징을 조합하여 얻을 수 있는 본 발명과 같거나 유사한 임의의 제품은 모두 본 발명의 청구 범위 내에 속한다.The following examples are provided to more clearly understand the present invention, and are not limited to these optimal embodiments, nor do they limit the content and claims of the present invention, and do not allow anyone to suggest or differ from the present invention. Any product that is the same or similar to the present invention that can be obtained by combining the features of the prior art falls within the scope of the claims of the present invention.

실시예에서 구체적인 실험 단계 및 조건을 명시하지 않은 경우, 본 기술 분야의 문헌에서 설명하는 통상적인 실험 단계의 조작 또는 조건을 참조하여 진행할 수 있다. 사용되는 시제 또는 기기는 제조업체를 명시하지 않는 한, 구매하여 얻을 수 있는 통상적인 시제 제품일 수 있다.If specific experimental steps and conditions are not specified in the examples, the procedure can be carried out by referring to the operations or conditions of typical experimental steps described in the literature in the present technical field. The prototype or device used may be any commercial prototype available for purchase, unless the manufacturer is specified.

이하 실시예 중의 비교예에서 사용하는 커플링제는 KH1100이고, 불소기 함유 실란 방수제는 FLW - 99형이며, 무기 방수제는 나노 무기 실리콘 방수제이다.The coupling agent used in the comparative examples in the following examples is KH1100, the fluorine-containing silane waterproofing agent is FLW-99 type, and the inorganic waterproofing agent is a nano-inorganic silicone waterproofing agent.

실시예 1Example 1

본 실시예는 여과재의 제조 방법을 제공하고, 해당 방법은 이하의 단계를 포함한다.This embodiment provides a method for producing a filter medium, and the method includes the following steps.

(1) 65 ℃의 조건 하에서, 유리 섬유 기재(glass fiber substrate)를 금속염 용액에 침지하고, 침지 시간은 1 min이며; 여기서, 금속염 용액은 몰비가 11: 1: 4.5의 산화황산티타닐, 질산세륨 및 초산망간을 포함하고, 상기 금속염 용액의 질량 농도는 15 wt%이다.(1) Under conditions of 65°C, a glass fiber substrate is immersed in a metal salt solution, and the immersion time is 1 min; Here, the metal salt solution includes titanyl oxide sulfate, cerium nitrate, and manganese acetate at a molar ratio of 11:1:4.5, and the mass concentration of the metal salt solution is 15 wt%.

(2) 그 후 유리 섬유 기재를 65 ℃의 분위기에 두고, 침지 후의 유리 섬유 기재 표면에 차례로 체적 농도 40 %의 암모니아수 용액 및 체적 농도 30 %의 과산화수소 용액을 분사하며, 제곱 미터당 여과재 기재를 기준으로, 암모니아수 용액의 분사량은 220 ml/m2이고, 과산화수소 용액의 분사량은 160 ml/m2이며, 분사 종료 후, 유리 섬유 기재를 120 ℃ 조건 하에 두어 건조시켜, 여분의 수분 등 액체를 제거한다.(2) The glass fiber substrate is then placed in an atmosphere at 65°C, and an aqueous ammonia solution with a volume concentration of 40% and a hydrogen peroxide solution with a volume concentration of 30% are sequentially sprayed on the surface of the immersed glass fiber substrate, based on the filter material substrate per square meter. , the spray amount of the ammonia solution is 220 ml/m 2 and the spray amount of the hydrogen peroxide solution is 160 ml/m 2 , and after completion of spraying, the glass fiber substrate is dried under conditions of 120° C. to remove liquid such as excess moisture.

(3) 건조 후의 유리 섬유 기재를 300 ℃에 두어 20분간 열처리한 후 그 표면에 한층의 폴리테트라플루오로에틸렌 복합 에멀션을 분사하고, 300 ℃에서 7분간 소결하며, 폴리테트라플루오로에틸렌 팽화 마이크로포러스 멤브레인과 열압착 피복 후 여과재를 얻는다. 여기서, 폴리테트라플루오로에틸렌 복합 에멀션은 질량비 45:15:1.5:1.5:37의 폴리테트라플루오로에틸렌 에멀션, 불소기 함유 실란 방수제, 커플링제, 무기 방수제 및 물을 포함하고, 분사량은 유리 섬유 기재 질량의 4 %이며; 열압착 피복의 온도는 345 ℃이고, 압력은 0.3 MPa이며, 속도는 4m/min이다.(3) After drying the glass fiber substrate at 300°C and heat treating it for 20 minutes, a layer of polytetrafluoroethylene composite emulsion is sprayed on the surface, sintered at 300°C for 7 minutes, and polytetrafluoroethylene expanded microporous After covering the membrane and thermocompression, the filter medium is obtained. Here, the polytetrafluoroethylene composite emulsion includes a polytetrafluoroethylene emulsion with a mass ratio of 45:15:1.5:1.5:37, a fluorine-containing silane waterproofing agent, a coupling agent, an inorganic waterproofing agent, and water, and the spray amount is based on the glass fiber base. It is 4% of the mass; The temperature of the thermocompression coating is 345°C, the pressure is 0.3 MPa, and the speed is 4m/min.

도 1은 본 실시예 여과재의 형태도이고, 도면으로부터 촉매가 여과재 기재 표면에 균일하게 분포되었음을 알 수 있다.Figure 1 is a schematic diagram of the filter medium of this example, and it can be seen from the figure that the catalyst was uniformly distributed on the surface of the filter medium substrate.

실시예 2Example 2

본 실시예는 여과재의 제조 방법을 제공하고, 해당 방법은 이하의 단계를 포함한다.This embodiment provides a method for producing a filter medium, and the method includes the following steps.

(1) 60 ℃의 조건 하에서, 폴리이미드 펀치 펠트 기재(polyimide needle felt substrate)를 금속염 용액에 침지하고, 침지 시간은 1.5 min이며; 여기서, 금속염 용액은 몰비 11: 1: 4.5의 산화황산티타닐, 질산세륨 및 초산망간을 포함하며, 상기 금속염 용액의 농도는 10 wt%이다.(1) Under conditions of 60°C, the polyimide needle felt substrate is immersed in the metal salt solution, and the immersion time is 1.5 min; Here, the metal salt solution includes titanyl oxide sulfate, cerium nitrate, and manganese acetate at a molar ratio of 11:1:4.5, and the concentration of the metal salt solution is 10 wt%.

(2) 그 후 폴리이미드 펀치 펠트 기재를 70 ℃의 분위기에 두고, 침지 후의 폴리이미드 펀치 펠트 기재 표면에 차례로 분사 질량 농도 40 %의 요소 수용액 및 체적 농도 12 %의 과산화수소 용액을 분사하며, 제곱 미터당 여과재 기재를 기준으로, 요소수용액의 분사량은 200 ml/m2이고, 과산화수소 용액의 분사량은 140 ml/m2이며, 분사 종료 후, 폴리이미드 펀치 펠트 기재를 120 ℃ 조건 하에 두어 건조시켜, 여분의 수분 등 액체를 제거한다.(2) Afterwards, the polyimide punch felt base material is placed in an atmosphere at 70°C, and an aqueous solution of urea with a mass concentration of 40% and a hydrogen peroxide solution with a volume concentration of 12% are sequentially sprayed on the surface of the immersed polyimide punch felt base material, at a rate per square meter. Based on the filter material base, the spray amount of the urea aqueous solution is 200 ml/m 2 and the spray amount of the hydrogen peroxide solution is 140 ml/m 2. After spraying, the polyimide punch felt base material is dried under conditions of 120°C to remove excess water. Remove liquids such as moisture.

(3) 건조 후의 폴리이미드 펀치 펠트 기재를 260 ℃에 두고 25분간 열처리한 후 그 표면에 한층의 폴리테트라플루오로에틸렌 복합 에멀션을 분사하고, 280 ℃에서 10분간 소열하며, 폴리테트라플루오로에틸렌 팽화 마이크로포러스 멤브레인와 열압착 피복 후 여과재를 얻는다. 여기서, 폴리테트라플루오로에틸렌 복합 에멀션은 질량비 40:15:1:2:42의 폴리테트라플루오로에틸렌 에멀션, 불소기 함유 실란 방수제, 커플링제, 무기 방수제 및 물을 포함하고, 분사량은 폴리이미드 펀치 펠트 기재 질량의 4 wt%이며; 열압착 피복의 온도는 328 ℃이고, 압력은 0.45 MPa이며, 속도는 5 m/min이다.(3) After drying the polyimide punch felt base material at 260°C and heat treating it for 25 minutes, a layer of polytetrafluoroethylene composite emulsion is sprayed on the surface and heat-treated at 280°C for 10 minutes to expand the polytetrafluoroethylene. A filter medium is obtained after coating with a microporous membrane and thermocompression. Here, the polytetrafluoroethylene composite emulsion includes a polytetrafluoroethylene emulsion with a mass ratio of 40:15:1:2:42, a fluorine-containing silane waterproofing agent, a coupling agent, an inorganic waterproofing agent, and water, and the injection amount is polyimide punch. 4 wt% of the mass of the felt substrate; The temperature of the thermocompression coating is 328°C, the pressure is 0.45 MPa, and the speed is 5 m/min.

실시예 3Example 3

본 실시예는 여과재의 제조 방법을 제공하고, 해당 방법은 이하의 단계를 포함한다.This embodiment provides a method for producing a filter medium, and the method includes the following steps.

(1) 70 ℃의 조건 하에서, 유리 섬유 및 폴리이미드 복합 펀치 펠트 기재를 금속염 용액에 침지하고, 침지 시간는 0.8 min이며; 여기서, 금속염 용액은 몰비 11:1:4.5의 산화황산티타닐, 질산세륨 및 초산망간을 포함하며, 상기 금속염 용액의 농도는 35 wt%이다.(1) Under the condition of 70°C, the glass fiber and polyimide composite punch felt substrate is immersed in the metal salt solution, and the immersion time is 0.8 min; Here, the metal salt solution includes titanyl oxide sulfate, cerium nitrate, and manganese acetate at a molar ratio of 11:1:4.5, and the concentration of the metal salt solution is 35 wt%.

(2) 그 후 복합 펀치 펠트 기재를 70 ℃의 분위기에 두고, 침지 후의 복합 펀치 펠트 기재 표면에 차례로 체적 농도 40 %의 암모니아수 용액 및 체적 농도 40 %의 과산화수소 용액을 분사하며, 제곱 미터당 여과재 기재를 기준으로, 암모니아수 용액의 분사량은 320 ml/m2이고, 과산화수소 용액의 분사량은 270 ml/m2이며, 분사 종료 후, 복합 펀치 펠트 기재를 120 ℃ 조건 하에 두어 건조시켜, 여분의 수분 등 액체를 제거한다.(2) After that, the composite punch felt substrate is placed in an atmosphere at 70°C, and an aqueous ammonia solution with a volume concentration of 40% and a hydrogen peroxide solution with a volume concentration of 40% are sequentially sprayed on the surface of the composite punch felt substrate after immersion, and the filter material substrate is applied per square meter. As a standard, the spray amount of the ammonia solution is 320 ml/m 2 and the spray amount of the hydrogen peroxide solution is 270 ml/m 2. After the spray is completed, the composite punch felt base material is dried under conditions of 120°C to remove excess moisture and other liquid. Remove.

(3) 건조 후의 복합 펀치 펠트 기재를 280 ℃에 두어 20분간 열처리한 후 그 표면에 한층의 폴리테트라플루오로에틸렌 복합 에멀션을 분사하고, 380 ℃에서 25분간 소결하며, 폴리테트라플루오로에틸렌 팽화 마이크로포러스 멤브레인와 열압착 피복 후 여과재를 얻는다. 여기서, 폴리테트라플루오로에틸렌 복합 에멀션는 질량비 50:10:1.5:1.5:37의 폴리테트라플루오로에틸렌 에멀션, 불소기 함유 실란 방수제, 커플링제, 무기 방수제 및 물을 포함하고, 분사량은 복합 펀치 펠트 기재 질량의 4 wt%이며; 열압착 피복의 온도는 320 ℃이고, 압력은 0.5 MPa이며, 속도는 10 m/min이다.(3) After drying the composite punch felt substrate at 280°C and heat treating it for 20 minutes, a layer of polytetrafluoroethylene composite emulsion is sprayed on the surface, sintered at 380°C for 25 minutes, and polytetrafluoroethylene puffing micro-emulsion is applied. A filter medium is obtained after coating with a porous membrane and thermocompression. Here, the polytetrafluoroethylene composite emulsion includes a polytetrafluoroethylene emulsion with a mass ratio of 50:10:1.5:1.5:37, a fluorine-containing silane waterproofing agent, a coupling agent, an inorganic waterproofing agent, and water, and the spray amount is based on the composite punch felt base material. 4 wt% of the mass; The temperature of the thermocompression coating is 320°C, the pressure is 0.5 MPa, and the speed is 10 m/min.

실시예 4Example 4

본 실시예는 여과재의 제조 방법을 제공하고, 해당 방법은 이하의 단계를 포함한다.This embodiment provides a method for producing a filter medium, and the method includes the following steps.

(1) 55 ℃의 조건 하에서, 유리 섬유 기재를 금속염 용액에 침지하고, 침지 시간은 1.5 min이며; 여기서, 금속염 용액은 몰비 11: 1: 4.5의 산화황산티타닐, 질산세륨 및 초산망간을 포함하며, 상기 금속염 용액의 농도는 10 wt%이다.(1) Under the condition of 55°C, the glass fiber substrate is immersed in the metal salt solution, and the immersion time is 1.5 min; Here, the metal salt solution includes titanyl oxide sulfate, cerium nitrate, and manganese acetate at a molar ratio of 11:1:4.5, and the concentration of the metal salt solution is 10 wt%.

(2) 그 후 유리 섬유 기재를 60 ℃의 분위기에 두고, 침지 후의 유리 섬유 기재 표면에 차례로 체적 농도 35 %의 암모니아수 용액 및 체적 농도 20 %의 과산화수소 용액을 분사하며, 제곱 미터당 여과재 기재를 기준으로, 암모니아수 용액의 분사량은 160 ml/m2이고, 과산화수소 용액의 분사량은 120 ml/m2이며, 분사 종료 후, 유리 섬유 기재를 120 ℃ 조건 하에 두어 건조시켜, 여분의 수분 등 액체를 제거한다.(2) The glass fiber substrate is then placed in an atmosphere at 60°C, and an aqueous ammonia solution with a volume concentration of 35% and a hydrogen peroxide solution with a volume concentration of 20% are sequentially sprayed on the surface of the immersed glass fiber substrate, based on the filter material substrate per square meter. , the spray amount of the ammonia solution is 160 ml/m 2 and the spray amount of the hydrogen peroxide solution is 120 ml/m 2 , and after completion of spraying, the glass fiber substrate is dried under conditions of 120° C. to remove liquid such as excess moisture.

(3) 건조 후의 유리 섬유 기재를 250 ℃에 두어 20분간 열처리한 후 표면에 한층의 폴리테트라플루오로에틸렌 복합 에멀션을 분사하고, 300 ℃에서 4분간 소결하며, 폴리테트라플루오로에틸렌 팽화 마이크로포러스 멤브레인과 열압착 피복 후 여과재를 얻는다. 여기서, 폴리테트라플루오로에틸렌 복합 에멀션은 질량비 50:10:1:2:36의 폴리테트라플루오로에틸렌에멀션, 불소기 함유 실란 방수제, 커플링제, 무기 방수제 및 물을 포함하고, 분사량은 유리 섬유 기재 질량의 4 wt%이며; 열압착 피복의 온도는 340 ℃이고, 압력은 0.35 MPa이며, 속도는 6 m/min이다.(3) The dried glass fiber substrate is heat treated at 250°C for 20 minutes, then a layer of polytetrafluoroethylene composite emulsion is sprayed on the surface, sintered at 300°C for 4 minutes, and a polytetrafluoroethylene expanded microporous membrane is formed. After heat compression and coating, the filter material is obtained. Here, the polytetrafluoroethylene composite emulsion includes a polytetrafluoroethylene emulsion with a mass ratio of 50:10:1:2:36, a fluorine-containing silane waterproofing agent, a coupling agent, an inorganic waterproofing agent, and water, and the spray amount is based on the glass fiber base. 4 wt% of the mass; The temperature of the thermocompression coating is 340°C, the pressure is 0.35 MPa, and the speed is 6 m/min.

비교예 1Comparative Example 1

본 비교예는 여과재의 제조 방법을 제공하고, 해당 방법은 이하의 단계를 포함한다.This comparative example provides a method for producing a filter medium, and the method includes the following steps.

(1) 80 ℃의 조건 하에서, 유리 섬유 기재를 금속염 용액에 침지하고, 침지 시간은 1 min이며; 여기서, 금속염 용액은 몰비 11: 1: 4.5의 산화황산티타닐, 질산세륨 및 초산망간을 포함하며, 상기 금속염 용액의 농도는 15 wt%이다.(1) Under the condition of 80°C, the glass fiber substrate is immersed in the metal salt solution, and the immersion time is 1 min; Here, the metal salt solution includes titanyl oxide sulfate, cerium nitrate, and manganese acetate at a molar ratio of 11:1:4.5, and the concentration of the metal salt solution is 15 wt%.

(2) 그 후 유리 섬유 기재를 70 ℃의 분위기에 두고, 침지 후의 유리 섬유 기재 표면에 차례로 체적 농도 40 %의 암모니아수 용액 및 체적 농도 30 %의 과산화수소 용액을 분사하며, 제곱 미터당 여과재 기재를 기준으로, 암모니아수 용액의 분사량은 220 ml/m2이고, 과산화수소 용액의 분사량은 160 ml/m2이며, 분사 종료 후, 유리 섬유 기재를 120 ℃ 조건 하에 두어 건조시켜, 여분의 수분 등 액체를 제거한다.(2) Afterwards, the glass fiber substrate is placed in an atmosphere at 70°C, and an ammonia solution with a volume concentration of 40% and a hydrogen peroxide solution with a volume concentration of 30% are sequentially sprayed on the surface of the immersed glass fiber substrate, based on the filter material substrate per square meter. , the spray amount of the ammonia solution is 220 ml/m 2 and the spray amount of the hydrogen peroxide solution is 160 ml/m 2 , and after completion of spraying, the glass fiber substrate is dried under conditions of 120° C. to remove liquid such as excess moisture.

(3) 건조 후의 유리 섬유 기재를 280 ℃에서 20분간 열처리한 후 그 표면에 한층의 폴리테트라플루오로에틸렌 복합 에멀션을 분사하고, 300 ℃에서 20분간 소결하며, 폴리테트라플루오로에틸렌 팽화 마이크로포러스 멤브레인과 열압착 피복 후 여과재를 얻는다. 여기서, 폴리테트라플루오로에틸렌복합 에멀션은 질량비 45: 15: 1.5: 1.5: 37의 폴리테트라플루오로에틸렌 에멀션, 불소기 함유 실란 방수제, 커플링제, 무기 방수제 및 물을 포함하고, 분사량은 유리 섬유 기재 질량의 4 wt%이며; 열압착 피복의 온도는 345 ℃이고, 압력은 0.3 MPa이며, 속도는 4 m/min이다.(3) The dried glass fiber substrate is heat treated at 280°C for 20 minutes, then a layer of polytetrafluoroethylene composite emulsion is sprayed on the surface, sintered at 300°C for 20 minutes, and a polytetrafluoroethylene expanded microporous membrane is formed. After heat compression and coating, the filter material is obtained. Here, the polytetrafluoroethylene composite emulsion includes a polytetrafluoroethylene emulsion with a mass ratio of 45:15:1.5:1.5:37, a fluorine-containing silane waterproofing agent, a coupling agent, an inorganic waterproofing agent, and water, and the spray amount is based on the glass fiber base. 4 wt% of the mass; The temperature of the thermocompression coating is 345°C, the pressure is 0.3 MPa, and the speed is 4 m/min.

비교예 2Comparative Example 2

본 비교예는 여과재의 제조 방법을 제공하고, 해당 방법은 이하의 단계를 포함한다.This comparative example provides a method for producing a filter medium, and the method includes the following steps.

(1) 65 ℃의 조건 하에서, 유리 섬유 기재를 금속염 용액에 침지하고, 또 암모니아수 용액을 추가하여 금속염 용액 pH를 9 - 10로 조절하며, 여과재 기재를 꺼내 반응기에 두어, 60 ℃에서 1시간 반응시키며, 건조를 거쳐 여분의 수분 등 액체를 제거한다. 여기서, 금속염 용액은 몰비 11: 1: 4.5의 산화황산티타닐, 질산세륨 및 초산망간을 포함하고, 상기 금속염 용액의 질량 농도는 15 wt%이다.(1) Under conditions of 65°C, the glass fiber substrate is immersed in the metal salt solution, and an aqueous ammonia solution is added to adjust the pH of the metal salt solution to 9 - 10. The filter material substrate is taken out and placed in the reactor, and reacted at 60°C for 1 hour. After drying, excess moisture and other liquid are removed. Here, the metal salt solution includes titanyl oxide sulfate, cerium nitrate, and manganese acetate at a molar ratio of 11:1:4.5, and the mass concentration of the metal salt solution is 15 wt%.

(2) 건조 후의 유리 섬유 기재를 280 ℃에서 20분간 열처리한 후 그 표면에 한층의 폴리테트라플루오로에틸렌 복합 에멀션을 분사하고, 300 ℃에서 7분간 소결하며, 폴리테트라플루오로에틸렌팽화 마이크로포러스 멤브레인과 열압착 피복 후 여과재를 얻는다. 여기서, 폴리테트라플루오로에틸렌 복합 에멀션은 질량비 45: 15: 1.5: 1.5: 37의 폴리테트라플루오로에틸렌에멀션, 불소기 함유 실란 방수제, 커플링제, 무기 방수제 및 물을 포함하고, 분사량은 유리 섬유 기재 질량의 4 wt%이며; 열압착 피복의 온도는 345 ℃이고, 압력은 0.3 MPa이며, 속도는 4 m/min이다.(2) The dried glass fiber substrate is heat-treated at 280°C for 20 minutes, then a layer of polytetrafluoroethylene composite emulsion is sprayed on the surface, sintered at 300°C for 7 minutes, and a polytetrafluoroethylene-bulged microporous membrane is formed. After heat compression and coating, the filter material is obtained. Here, the polytetrafluoroethylene composite emulsion includes a polytetrafluoroethylene emulsion with a mass ratio of 45:15:1.5:1.5:37, a fluorine-containing silane waterproofing agent, a coupling agent, an inorganic waterproofing agent, and water, and the spray amount is based on the glass fiber base. 4 wt% of the mass; The temperature of the thermocompression coating is 345°C, the pressure is 0.3 MPa, and the speed is 4 m/min.

실험예Experiment example

본 실험예는 실시예 1 - 4 및 비교예 1 - 2에서 제조된 여과재의 성능 테스트 및 테스트 결과를 제공하고, 테스트 방법은 이하와 같고, 테스트 결과는 표 1에 기재하였다.This experimental example provides performance tests and test results of the filter media prepared in Examples 1 to 4 and Comparative Examples 1 to 2, the test method is as follows, and the test results are listed in Table 1.

여과재 촉매 적재 제곱 미터 그램수 편차는 기준 GB/T6719 - 2009c 9.1 절에 따르고;Filter media catalyst loading square meter gram deviation is in accordance with the standard GB/T6719 - 2009c clause 9.1;

여과재의 통기성은 기준 GB/T6719 - 2009c 9.2 절에 따르며;The breathability of the filter media is in accordance with the standard GB/T6719 - 2009c section 9.2;

여과재의 여과 저항은 기준 GB/T6719 - 2009c 9.5 절에 따른다.The filtration resistance of the filter medium is in accordance with section 9.5 of the standard GB/T6719 - 2009c.

여과재 촉매 탈질 효율의 테스트 방법은 이하와 같다. 250 ℃에서 탈질 효율을 테스트하고, 구체적으로, 질소산화물을 함유하는 기체를 0.5 m/min의 속도로 직경 10 cm의 원판형 여과재를 통과시킨 후, 질소산화물 농도 감소 백분율을 측정한다.The test method for filter media catalyst denitrification efficiency is as follows. The denitrification efficiency is tested at 250°C, and specifically, the nitrogen oxide-containing gas is passed through a disk-shaped filter medium with a diameter of 10 cm at a speed of 0.5 m/min, and then the percent reduction in nitrogen oxide concentration is measured.

여과재의 성능 테스트 결과Performance test results of filter media 예시example 통기성
(cm/s)
breathable
(cm/s)
촉매 적재 제곱 미터 그램수 편차(%)Catalyst Loading Square Meter Grams Deviation (%) 촉매 탈질 효율(%)Catalytic denitrification efficiency (%) 여과 저항
(Pa)
filtration resistance
(Pa)
실시예 1Example 1 3.633.63 6.56.5 65.465.4 180180 실시예 2Example 2 3.643.64 6.86.8 66.366.3 176176 실시예 3Example 3 3.523.52 7.17.1 65.165.1 187187 실시예 4Example 4 3.413.41 6.46.4 67.667.6 194194 비교예 1Comparative Example 1 2.732.73 9.39.3 56.256.2 243243 비교예 2Comparative Example 2 2.072.07 12.412.4 42.742.7 308308

표 1로부터 알 수 있다시피, 본 발명에서 제조하여 얻은 촉매 적재 제곱 미터 그램수 편차가 작고, 이는 촉매가 여과재 기재에 균일하게 분포되었음을 설명하며, 해당 여과재를 탈질, 탈질에 사용하는 효율이 높고; 여과 저항이 작을 수록, 통기성이 더욱 크며, 이는 여과재의 통기성이 더욱 우수한 것을 설명한다.또한, 발명인은 응용 중에, 본 발명의 실시예 1 - 4에서 제조하여 얻은 제진 및 촉매 탈질 작용을 겸비하는 여과재는 사용 과정에서 쉽게 탈리되지 않으나, 비교예 1 - 2에서 제조하여 얻은 여과재는 사용 과정에서 정도 차이의 탈리 현상이 발생하였는바, 본 발명에서 제조하여 얻은 여과재와 촉매의 결착력이 더욱 높고, 결착력을 확보하는 기초 상에, 촉매의 분포 균일성 및 통기성을 더욱 향상시켰다.As can be seen from Table 1, the deviation of the square meter gram number of catalyst loading obtained by manufacturing in the present invention is small, which explains that the catalyst is uniformly distributed on the filter medium substrate, and the efficiency of using the filter medium for denitrification and denitrification is high; The smaller the filtration resistance, the greater the breathability, which explains the better breathability of the filter medium. In addition, during application, the inventors discovered that the filter medium with both dust removal and catalytic denitrification functions obtained by manufacturing in Examples 1 to 4 of the present invention. It is not easily detached during the use process, but the filter media prepared in Comparative Examples 1-2 experienced a detachment phenomenon of varying degrees during use, so the binding power of the filter medium and the catalyst obtained by manufacturing in the present invention was higher, and the binding power was higher. On the basis of ensuring catalyst distribution uniformity and breathability were further improved.

물론 상술한 실시예는 명백하게 설명하기 위한 예시에 불과하고, 실시 형태에 대해 한정하고자 하는 것이 아니다. 본 기술 분야의 통상의 기술자에게 있어서, 상술한 설명의 기초 상에 다른 형태의 변화 또는 변경을 실시할 수 있다. 여기에서 모든 실시형태에 대해 무한대로 열거할 필요가 없다. 이로부터 파생되는 자명한 변화 또는 변경은 모두 여전히 본 발명의 보호 범위 내에 속한다.Of course, the above-described embodiment is only an example for clear explanation and is not intended to limit the embodiment. For those skilled in the art, other changes or modifications may be made based on the above description. There is no need for an endless listing of all embodiments herein. Any obvious changes or modifications derived therefrom still fall within the protection scope of the present invention.

Claims (10)

여과재의 제조 방법에 있어서,
(1) 55 - 70 ℃에서, 여과재 기재를 금속염 용액에 침지하는 단계;
(2) 침지 후의 여과재 기재 표면에 요소 용액 및/또는 암모니아수 용액을 분사한 후, 또 여과재 기재 표면에 과산화수소 용액을 분사하는 단계;
(3) 열처리를 거친 후 여과재를 얻는 단계를 포함하는 것을 특징으로 하는 여과재의 제조 방법.
In the method of manufacturing a filter medium,
(1) immersing the filter material substrate in a metal salt solution at 55-70°C;
(2) spraying a urea solution and/or aqueous ammonia solution on the surface of the filter medium after immersion, and then spraying a hydrogen peroxide solution on the surface of the filter medium;
(3) A method for producing a filter medium, comprising the step of obtaining the filter medium after heat treatment.
제1항에 있어서,
상기 요소 용액의 질량 농도는 5 - 40 %이고;
상기 암모니아수 용액의 체적 농도는 35 - 60 %이며;
상기 과산화수소의 체적 농도는 10 - 45 %인 것을 특징으로 하는 제조 방법.
According to paragraph 1,
The mass concentration of the urea solution is 5 - 40%;
The volume concentration of the aqueous ammonia solution is 35 - 60%;
A production method, characterized in that the volume concentration of hydrogen peroxide is 10-45%.
제1항 또는 제2항에 있어서,
상기 단계 (2)에서, 55 - 80 ℃의 조건 하에서 여과재 기재 표면에 요소 용액 및/또는 암모니아수 용액을 분사하고, 또 55 - 80 ℃의 조건 하에서 여과재 기재 표면에 과산화수소 용액을 분사하며;
제곱 미터당 여과재 기재를 기준으로, 암모니아수 용액의 분사량은 150 - 330 ml/m2이고;
요소 용액의 분사량은 150 - 230 ml/m2이며;
과산화수소 용액의 분사량은 120 - 300 ml/m2인 것을 특징으로 하는 제조 방법.
According to claim 1 or 2,
In step (2), a urea solution and/or aqueous ammonia solution is sprayed on the surface of the filter medium base under conditions of 55 - 80°C, and a hydrogen peroxide solution is sprayed on the surface of the filter medium base under conditions of 55 - 80°C;
Based on the filter material substrate per square meter, the spray amount of aqueous ammonia solution is 150 - 330 ml/m 2 ;
The spray amount of urea solution is 150 - 230 ml/m 2 ;
A manufacturing method characterized in that the spray amount of hydrogen peroxide solution is 120 - 300 ml/m 2 .
제1항 내지 제3항 중 어느 한 항에 있어서,
단계 (1)에서, 여과재 기재를 금속염 용액에 침지하는 시간은 30 s를 초과하고;
상기 금속염 용액은 티탄염, 세륨염 및 망간염 중 적어도 하나를 포함하며;
상기 금속염 용액의 질량 농도는 30 - 35 %인 것을 특징으로 하는 제조 방법.
According to any one of claims 1 to 3,
In step (1), the time for immersing the filter material substrate in the metal salt solution exceeds 30 s;
The metal salt solution includes at least one of titanium salt, cerium salt, and manganese salt;
A production method, characterized in that the mass concentration of the metal salt solution is 30-35%.
제4항에 있어서,
상기 금속염 용액은 티탄염, 세륨염 및 망간염을 포함하고;
상기 금속염 용액 중 티타늄, 세륨 및 망간의 몰비가 (10 - 12): (0.7 - 1.3): (4 - 5)인 것을 특징으로 하는 제조 방법.
According to paragraph 4,
The metal salt solution includes titanium salt, cerium salt and manganese salt;
A manufacturing method, characterized in that the molar ratio of titanium, cerium and manganese in the metal salt solution is (10 - 12): (0.7 - 1.3): (4 - 5).
제1항 내지 제5항 중 어느 한 항에 있어서,
상기 열처리의 온도는 250 - 300 ℃이고, 시간은 20 - 30 min인 것을 특징으로 하는 제조 방법.
According to any one of claims 1 to 5,
A manufacturing method characterized in that the temperature of the heat treatment is 250 - 300 ° C, and the time is 20 - 30 min.
제1항 내지 제6항 중 어느 한 항에 있어서,
상기 열처리 단계 후에 여과재 기재 표면에 폴리테트라플루오로에틸렌 복합 에멀션을 분사하고, 소결을 거친 후 또 폴리테트라플루오로에틸렌 팽화 마이크로포러스 멤브레인과 열압착 피복을 진행하는 단계를 더 포함하는 것을 특징으로 하는 제조 방법.
According to any one of claims 1 to 6,
After the heat treatment step, spraying a polytetrafluoroethylene composite emulsion on the surface of the filter substrate, sintering, and then heat-compressing and coating with a polytetrafluoroethylene puffed microporous membrane. method.
제7항에 있어서,
상기 열압착 피복의 공정 변수에서 온도는 260 - 380 ℃이고, 속도는 1 - 10 m/min이며, 압력은 0.2 - 0.5 MPa이고;
상기 폴리테트라플루오로에틸렌 복합 에멀션은 질량비 (20 - 50): (10 - 20): (0.5 - 1.5): (1.5 - 5)의 폴리테트라플루오로에틸렌 에멀션, 불소기 함유 실란 방수제, 커플링제 및 무기 방수제를 포함하며;
상기 소결의 온도는 260 - 320 ℃이고, 소결 시간은 4 - 10min인 것을 특징으로 하는 제조 방법.
In clause 7,
The process parameters of the thermocompression coating include a temperature of 260 - 380° C., a speed of 1 - 10 m/min, and a pressure of 0.2 - 0.5 MPa;
The polytetrafluoroethylene composite emulsion is a polytetrafluoroethylene emulsion with a mass ratio of (20 - 50): (10 - 20): (0.5 - 1.5): (1.5 - 5), a fluorine group-containing silane waterproofing agent, a coupling agent, and Contains an inorganic water repellant;
A manufacturing method characterized in that the sintering temperature is 260 - 320 ° C, and the sintering time is 4 - 10 min.
제1항 내지 제8항 중 어느 한 항에 따른 방법으로 제조하여 얻은 여과재.
A filter medium obtained by manufacturing by the method according to any one of claims 1 to 8.
제1항 내지 제8항 중 어느 한 항에 따른 방법으로 제조하여 얻은 여과재 또는 제9항에 따른 여과재의 촉매 탈질에서의 응용.Application of the filter medium obtained by manufacturing by the method according to any one of claims 1 to 8 or the filter medium according to claim 9 in catalytic denitrification.
KR1020237039027A 2021-06-22 2021-11-25 Filter media and its manufacturing method and application KR20230170740A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110691710.3 2021-06-22
CN202110691710.3A CN113476958B (en) 2021-06-22 2021-06-22 Filter material and preparation method and application thereof
PCT/CN2021/133271 WO2022267335A1 (en) 2021-06-22 2021-11-25 Filter material, preparation method therefor, and application thereof

Publications (1)

Publication Number Publication Date
KR20230170740A true KR20230170740A (en) 2023-12-19

Family

ID=77935762

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237039027A KR20230170740A (en) 2021-06-22 2021-11-25 Filter media and its manufacturing method and application

Country Status (3)

Country Link
KR (1) KR20230170740A (en)
CN (1) CN113476958B (en)
WO (1) WO2022267335A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113476958B (en) * 2021-06-22 2022-07-12 南京玻璃纤维研究设计院有限公司 Filter material and preparation method and application thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68919505T2 (en) * 1988-04-08 1995-06-22 Mitsubishi Heavy Ind Ltd Catalyst filter, method for producing a catalyst filter and method for treating combustion gases with a catalyst filter.
DE10034045A1 (en) * 2000-07-13 2002-01-31 Schumacher Umwelt Trenntech Ceramic filter element and process for its manufacture
EP2484805B1 (en) * 2011-02-03 2016-07-20 Mott Corporation A method of making sinter bonded porous metallic coatings
CN103418187A (en) * 2012-05-16 2013-12-04 东丽纤维研究所(中国)有限公司 Filter material for dust removal and low-temperature denitration and application thereof
CN103230813A (en) * 2013-04-27 2013-08-07 北京工业大学 Preparation method of alkali-poisoning-resistant denitrifying catalyst applicable to cement kilns
CN103463871B (en) * 2013-09-02 2015-03-11 安徽锦鸿环保科技有限公司 Membrane-laminated fiberglass filter medium capable of denitration and dust removal
JP6915837B2 (en) * 2016-02-18 2021-08-04 ユニチカ株式会社 Glass fiber cloth for dust collection filter and bag filter provided with the cloth
CN107158799B (en) * 2017-06-23 2018-12-18 山东大学 A kind of composite filtering material fiber and preparation method for SCR dedusting denitration
CN108926911B (en) * 2018-06-26 2021-02-26 清华大学盐城环境工程技术研发中心 Preparation method of denitration and demercuration integral filter material
CN109126446A (en) * 2018-09-12 2019-01-04 广东格仑帝环保材料科技有限公司 Using paper as the method for framework construction core-shell structure honeycomb cleaning filtration screen of air
CN109513339B (en) * 2018-11-29 2021-09-24 北京工业大学 High-temperature catalytic reduction method for cement kiln flue gas denitration
CN109847580B (en) * 2019-03-21 2022-04-08 青岛大学 Denitration filter material based on plasma pretreatment and impregnation method and preparation method thereof
CN111871070B (en) * 2019-11-12 2021-02-19 南京工业大学 Integrated filter material
CN111282344A (en) * 2020-03-31 2020-06-16 辽宁新洪源环保材料有限公司 Double-side coating permeable membrane filter material and preparation method thereof
CN113476958B (en) * 2021-06-22 2022-07-12 南京玻璃纤维研究设计院有限公司 Filter material and preparation method and application thereof

Also Published As

Publication number Publication date
CN113476958A (en) 2021-10-08
WO2022267335A1 (en) 2022-12-29
CN113476958B (en) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2018045672A1 (en) Method for in-situ generation of nanoflower-like manganese dioxide catalyst on filter material
CN107837826B (en) Regeneration process method of inactivated flue gas denitration catalyst
CN110124390B (en) Preparation method of denitration filter material
CN109772463B (en) Catalyst ZIF-67-Me/CuO for CO reduction and low-temperature denitrationxAnd preparation method and application thereof
KR20230170740A (en) Filter media and its manufacturing method and application
CN109012690B (en) Medium-temperature hydrophobic ozonolysis catalyst, application and preparation method of application
CN106582581A (en) Preparation method for adsorption photochemical catalysis composite material
CN112403459A (en) Low-temperature SCR catalyst based on metal phase change microcapsules and preparation method thereof
CN107008338B (en) A kind of method of plasma method preparation SCO denitration catalyst
CN111001430A (en) Adsorption/catalysis material for waste gas treatment and preparation method thereof
CN102728347B (en) MnO2-TiO2 graphite-porous inorganic ceramic membrane low temperature catalyst denitration self-cleaning material and its preparation method
CN112588257B (en) Ordered mesoporous silicon-glass fiber paper composite material and preparation method and application thereof
CN110252375B (en) Iron, nitrogen and cobalt co-doped titanium dioxide/activated carbon compound, preparation method and application as photocatalyst
CN110508275B (en) Mesoporous material loaded manganese dioxide catalyst and preparation method thereof
CN109759078B (en) Gamma-Fe load 2 O 3 Preparation method of molded SCR catalyst
CN105435819B (en) A kind of cordierite loads MnOxF adulterates TiO2The method of active component and the MnO of preparationxF adulterates TiO2Cordierite composite catalyst
CN108404931B (en) Composite SCR denitration catalyst and preparation method thereof
CN108201889A (en) It is a kind of using porous ceramics as the photocatalyst air purifying material of carrier
CN114011379A (en) Nitrogen oxide adsorbent and preparation method thereof
JPH03221146A (en) Catalyst filter base material for treating combustion exhaust gas
CN103406127A (en) Non-toxic low-temperature denitrating catalytic catalyst and preparation method thereof
CN109092054B (en) Gas-phase in-situ oxidation preparation method of Mn-Ce-Fe-Co quaternary catalysis function PPS filter material
CN111617555A (en) High-temperature catalytic purification metal fiber filter material and preparation method thereof
CN111495410A (en) Honeycomb ceramic-porous carbon monolithic catalyst, honeycomb ceramic-porous carbon monolithic adsorbent and preparation method and application thereof
KR101938850B1 (en) Method of manufacturing filtering meterials