KR20230167250A - Ultra fastening high performance grout composition and grout construction method using the same - Google Patents

Ultra fastening high performance grout composition and grout construction method using the same Download PDF

Info

Publication number
KR20230167250A
KR20230167250A KR1020220066905A KR20220066905A KR20230167250A KR 20230167250 A KR20230167250 A KR 20230167250A KR 1020220066905 A KR1020220066905 A KR 1020220066905A KR 20220066905 A KR20220066905 A KR 20220066905A KR 20230167250 A KR20230167250 A KR 20230167250A
Authority
KR
South Korea
Prior art keywords
weight
parts
ultra
performance
cement
Prior art date
Application number
KR1020220066905A
Other languages
Korean (ko)
Other versions
KR102655981B1 (en
Inventor
하상욱
황재남
Original Assignee
빌드켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 빌드켐 주식회사 filed Critical 빌드켐 주식회사
Priority to KR1020220066905A priority Critical patent/KR102655981B1/en
Publication of KR20230167250A publication Critical patent/KR20230167250A/en
Application granted granted Critical
Publication of KR102655981B1 publication Critical patent/KR102655981B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/08Diatomaceous earth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/20Mica; Vermiculite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/305Titanium oxide, e.g. titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/48Metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0675Macromolecular compounds fibrous from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0683Polyesters, e.g. polylactides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0048Fibrous materials
    • C04B20/0052Mixtures of fibres of different physical characteristics, e.g. different lengths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/0093Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/143Calcium-sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • C04B24/06Carboxylic acids; Salts, anhydrides or esters thereof containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • C04B24/126Urea
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2676Polystyrenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/28Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/283Polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • C09K17/42Inorganic compounds mixed with organic active ingredients, e.g. accelerators
    • C09K17/44Inorganic compounds mixed with organic active ingredients, e.g. accelerators the inorganic compound being cement
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/60Glass compositions containing organic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/30Additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/50Defoamers, air detrainers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/56Opacifiers
    • C04B2103/58Shrinkage reducing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/601Agents for increasing frost resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 초속경 고성능 그라우트 조성물 및 이를 이용한 그라우트 시공 공법에 관한 것으로서, 더욱 상세하게는 시멘트 모르타르 조성물로서 고함량의 시멘트 함유로 초속경성 특성을 갖고 섬유 보강재를 포함함으로써 압축강도 및 휨강도 등 고강도 특성과 고인성 특성을 발휘함과 동시에 내화학성, 내부식성 특성도 우수하여 고강도 및 고인성 특성이 요구되는 구조물, 예를 들어 초고층 건물, 댐, 장대교량 등에 적용되기 적합하고 동시에 콘크리트 구조물의 수명을 획기적으로 연장시킬 수 있는 고성능 그라우트 조성물 및 이를 이용한 그라우트 시공 공법에 관한 것이다. The present invention relates to an ultra-fast hardening, high-performance grout composition and a grout construction method using the same. More specifically, it is a cement mortar composition that contains a high content of cement, has ultra-fast hardening properties, and contains fiber reinforcement, thereby providing high strength properties such as compressive strength and bending strength. In addition to exhibiting high toughness characteristics, it also has excellent chemical resistance and corrosion resistance characteristics, making it suitable for use in structures requiring high strength and high toughness characteristics, such as high-rise buildings, dams, long-span bridges, etc., and at the same time dramatically extending the lifespan of concrete structures. It relates to a high-performance grout composition that can be extended and a grout construction method using the same.

Description

초속경 고성능 그라우트 조성물 및 이를 이용한 그라우트 시공 공법 {ULTRA FASTENING HIGH PERFORMANCE GROUT COMPOSITION AND GROUT CONSTRUCTION METHOD USING THE SAME}Ultrafast high-performance grout composition and grout construction method using the same {ULTRA FASTENING HIGH PERFORMANCE GROUT COMPOSITION AND GROUT CONSTRUCTION METHOD USING THE SAME}

본 발명은 초속경 고성능 그라우트 조성물 및 이를 이용한 그라우트 시공 공법에 관한 것으로서, 더욱 상세하게는 시멘트 모르타르 조성물로서 고함량의 시멘트 함유로 초속경성 특성을 갖고 섬유 보강재를 포함함으로써 압축강도 및 휨강도 등 고강도 특성과 고인성 특성을 발휘함과 동시에 내화학성, 내부식성 특성도 우수하여 고강도 및 고인성 특성이 요구되는 구조물, 예를 들어 초고층 건물, 댐, 장대교량 등에 적용되기 적합하고 동시에 콘크리트 구조물의 수명을 획기적으로 연장시킬 수 있는 고성능 그라우트 조성물 및 이를 이용한 그라우트 시공 공법에 관한 것이다. The present invention relates to an ultra-fast hardening, high-performance grout composition and a grout construction method using the same. More specifically, it is a cement mortar composition that contains a high content of cement, has ultra-fast hardening properties, and contains fiber reinforcement, thereby providing high strength properties such as compressive strength and bending strength. In addition to exhibiting high toughness characteristics, it also has excellent chemical resistance and corrosion resistance characteristics, making it suitable for use in structures requiring high strength and high toughness characteristics, such as high-rise buildings, dams, long-span bridges, etc., and at the same time dramatically extending the lifespan of concrete structures. It relates to a high-performance grout composition that can be extended and a grout construction method using the same.

시멘트 모르타르 및 콘크리트 등 시멘트계 재료는 우수한 역학적 성능, 내구성 및 경제성으로 가장 널리 사용되는 건설재료로서 지난 세기 동안 현대의 사회기반시설물을 구축하여 인류와 사회가 발전하는데 매우 중요한 역할을 하였다. Cement-based materials such as cement mortar and concrete are the most widely used construction materials due to their excellent mechanical performance, durability, and economic efficiency, and have played a very important role in the development of humanity and society by building modern social infrastructure over the past century.

현대 사회의 급속한 발전과 함께 초고층 건물, 댐, 장대교량 등의 거대 구조물들이 등장함에 따라 구조물의 하중을 견디기 위해 시멘트계 재료에도 다양한 측면에서의 고성능을 요구받고 이러한 고성능 시멘트계 재료의 적용은 점차 확대되고 있다. 고성능 시멘트계 재료는 높은 압축강도와 인장강도, 우수한 연성의 특성이 강조되고 있다. 1970년대 고성능 감수제가 개발되기 전까지 압축강도가 40MPa 이상인 콘크리트를 고강도 콘크리트라 하였으나 고성능 감수제 개발 이후 60-120MPa의 압축강도를 쉽게 얻을 수 있게 되었으며 최근 개발된 초고성능 콘크리트의 경우 압축강도가 180MPa에 이른다.With the rapid development of modern society and the emergence of large structures such as high-rise buildings, dams, and long-span bridges, cement-based materials are required to have high performance in various aspects to withstand the load of the structure, and the application of these high-performance cement-based materials is gradually expanding. . High-performance cement-based materials are emphasized for their characteristics of high compressive strength, tensile strength, and excellent ductility. Before the development of high-performance water reducing agents in the 1970s, concrete with a compressive strength of 40 MPa or more was called high-strength concrete, but after the development of high-performance water reducing agents, it became easy to obtain compressive strengths of 60-120 MPa. In the case of recently developed ultra-high performance concrete, the compressive strength reaches 180 MPa.

고강도 시멘트계 재료는 주요 구조물에 추가적인 안전 여유를 제공할 뿐만 아니라 하중 전달 능력을 손상시키지 않으면서 면적 효율적인 구조부재의 설계를 가능하게 한다. 고층 구조물의 기둥과 보에 적용하는 경우 단면을 줄여 더 넓은 공간을 확보할 수 있고 고속도로 교량의 건설에 적용하는 경우 경간을 연장하고 필요한 거더 수를 줄여 전체 비용을 절감할 수 있다. 구조 부재의 단면 축소는 부재의 경량화로 고정하중을 줄여 기초 크기와 이에 소요되는 비용을 더 줄일 수 있다.High-strength cementitious materials not only provide an additional safety margin to the main structure, but also enable the design of area-efficient structural members without compromising their load-carrying capacity. When applied to columns and beams of high-rise structures, the cross-section can be reduced to secure more space, and when applied to the construction of highway bridges, the overall cost can be reduced by extending the span and reducing the number of girders required. Reducing the cross-section of a structural member can reduce the dead load by making the member lighter, which can further reduce the foundation size and costs.

일반적으로 고강도 시멘트계 재료는 탄성계수가 높아 일반 시멘트계 재료와 비교하여 안정성을 높이고 구조 부재의 처짐을 줄일 수 있다. 그러나 고강도 시멘트계 재료 개발에 따른 압축강도의 증가와 함께 취성 또한 증가하였고 시멘트계 재료가 보이는 취성 거동은 구조물의 균열 발생과 함께 내구성 감소의 원인이 되었다. In general, high-strength cement-based materials have a high elastic modulus, which increases stability and reduces deflection of structural members compared to general cement-based materials. However, with the increase in compressive strength due to the development of high-strength cement-based materials, brittleness also increased, and the brittle behavior exhibited by cement-based materials caused cracks in the structure and decreased durability.

이와 같은 시멘트계 재료의 단점을 보완하기 위한 방안으로 보강재료로서 불연속적이고 단상인 섬유를 불규칙한 배열로 시멘트계 재료에 분산시킨 섬유보강 시멘트계 재료를 적용하고 있다. 섬유보강을 통해 인장강도, 균열에 대한 저항성 및 인성을 증진시켜 시멘트계 재료의 취성적 특성을 부분적으로 완화시킬 수 있다. 그러나 이러한 섬유보강 시멘트계 재료는 매우 적은 수의 균열이 형성된 후 내하력이 감소하여 섬유를 둘러싼 매트릭스의 박리와 함께 인장-연화 거동을 보일 수 있다. As a way to compensate for these shortcomings of cement-based materials, fiber-reinforced cement-based materials in which discontinuous, single-phase fibers are dispersed in an irregular arrangement are applied as reinforcing materials. Fiber reinforcement can partially alleviate the brittle characteristics of cement-based materials by improving tensile strength, resistance to cracking, and toughness. However, these fiber-reinforced cement-based materials may exhibit tensile-softening behavior along with delamination of the matrix surrounding the fibers as the load-bearing capacity decreases after a very small number of cracks are formed.

시멘트계 재료 고유의 취성을 극복하고 지진과 같은 극도로 큰 하중이 작용하는 상황에서 대량의 에너지를 흡수하여 시멘트계 재료 구조물의 돌발적 파괴를 방지함으로써 사회기반시설물의 안전성을 보장하기 위해서는 시멘트계 재료의 연성을 향상시켜야 한다. 시멘트계 재료의 연성 향상을 위하여 높은 인장변형능력과 변형-경화 거동을 나타내는 고연성 시멘트계 재료가 개발되었다.In order to ensure the safety of social infrastructure by overcoming the inherent brittleness of cement-based materials and preventing sudden destruction of cement-based material structures by absorbing large amounts of energy in situations of extremely large loads such as earthquakes, the ductility of cement-based materials is improved. You have to do it. To improve the ductility of cement-based materials, highly ductile cement-based materials that exhibit high tensile strain capacity and strain-hardening behavior have been developed.

이러한 고연성 시멘트계 재료의 압축강도는 고강도 시멘트계 재료와 비교하여 2-4배 낮아 적용 범위를 확장하고 주요 구조물의 복원력과 안정성을 확보하기 위해 고강도와 고연성을 하나의 시멘트계 재료로 결합하는 것은 매우 중요하다.The compressive strength of these high-ductility cement-based materials is 2-4 times lower than that of high-strength cement-based materials, so it is very important to combine high strength and high ductility into one cement-based material to expand the scope of application and ensure the resilience and stability of major structures. do.

섬유보강 시멘트계 재료의 보강재로서 강섬유, 유리섬유, 합성섬유 및 천연섬유 등이 사용되고 있으며 이 중 구조 보강용으로 사용되는 섬유는 강섬유와 구조용 합성섬유가 대부분을 차지하고 있다. 강섬유는 높은 강성과 탄성계수로 시멘트계 재료의 압축강도와 인성을 향상시킬 수 있다.Steel fibers, glass fibers, synthetic fibers, and natural fibers are used as reinforcing materials for fiber-reinforced cement-based materials. Among these, steel fibers and structural synthetic fibers account for most of the fibers used for structural reinforcement. Steel fibers can improve the compressive strength and toughness of cement-based materials with high stiffness and elastic modulus.

그러나 섬유의 가격이 비싸고 구조 부재의 단위중량을 증가시키며 시멘트계 재료에 혼합시 섬유 뭉침 현상이 발생하여 작업성을 저하시키기도 하는 문제가 있다.However, there are problems in that fibers are expensive, increase the unit weight of structural members, and when mixed with cement-based materials, fiber agglomeration occurs, which reduces workability.

또한, 강섬유의 경우는 부식성이 높아 구조물의 전반적인 성능을 저하시킬 우려가 있다. 이러한 강섬유의 대체 보강재로서 구조용 합성섬유가 연구되고 있다. 구조용 합성섬유는 인장강도, 휨강도, 휨인성, 충격저항성 등 강섬유와 유사한 특성을 보이는 것으로 알려져 있다. 내화학성이 우수하고 부식이 발생하지 않으며 비중이 작아 운반이 용이하고 동일한 섬유 혼입율에서 중량이 작아 강섬유보다 경제적으로도 유리하기 때문에 구조용 섬유의 사용이 증가하고 있다.In addition, steel fibers are highly corrosive, so there is a risk of deteriorating the overall performance of the structure. Structural synthetic fibers are being studied as alternative reinforcing materials to these steel fibers. Structural synthetic fibers are known to have properties similar to steel fibers, such as tensile strength, bending strength, bending toughness, and impact resistance. The use of structural fiber is increasing because it has excellent chemical resistance, does not cause corrosion, is easy to transport due to its small specific gravity, and is economically advantageous over steel fiber due to its small weight at the same fiber mixing ratio.

그러나, 물리 역학적 특성이 서로 다른 두 섬유를 혼합하여 사용하였을 때 각 섬유의 특성에 맞게 시멘트계 재료에 발생하는 균열을 효과적으로 제어할 수 있는 기술에 관한 연구 개발이 부족하였으며, 특히 구조물의 균열 후 거동 및 역학 성능에 관한 연구 개발이 부족한 상황이었다. However, when two fibers with different physical and mechanical properties are mixed and used, there is a lack of research and development on technology that can effectively control cracks that occur in cement-based materials according to the characteristics of each fiber. In particular, there is a lack of research and development on the post-crack behavior of the structure and There was a lack of research and development on mechanical performance.

<관련 선행기술 문헌> <Related prior art literature>

1. 대한민국 등록특허 제10-1860503호1. Republic of Korea Patent No. 10-1860503

2. 대한민국 등록특허 제10-1856380호2. Republic of Korea Patent No. 10-1856380

3. 대한민국 등록특허 제10-1638084호3. Republic of Korea Patent No. 10-1638084

4. 대한민국 등록특허 제10-1881077호4. Republic of Korea Patent No. 10-1881077

본 발명은 상기와 같은 종래 기술의 상황을 고려하여 개발된 것으로서, 본 발명에서는 고함량의 시멘트 성분을 포함함으로써 초속경 특성을 가지며, 섬유 보강 시멘트계 재료의 부식, 시공, 경제성 등의 문제점을 극복하기 위하여 구조용 합성 섬유와 강섬유를 혼합한 혼성 섬유를 적용한 고강도 및 고연성의 고성능을 갖는 고성능 그라우트 조성물을 제공하고자 한다. The present invention was developed in consideration of the situation of the prior art as described above. In the present invention, by including a high content of cement components, it has ultra-fast hardening properties and overcomes problems such as corrosion, construction, and economic efficiency of fiber-reinforced cement-based materials. To this end, we aim to provide a high-performance grout composition with high strength and high ductility using hybrid fibers that are a mixture of structural synthetic fibers and steel fibers.

또한, 혼성 섬유보강재를 사용한 고강도 고인성의 고성능 시멘트계 재료의 최적의 배합비를 제안하고, 이에 따른 재료의 유동성, 충전성 및 압축 실험을 통해 최적의 섬유 혼입율을 제안하며, 이에 따른 성능 평가 결과를 제시하고자 한다. In addition, we propose the optimal mixing ratio of high-strength, high-toughness, high-performance cement-based materials using hybrid fiber reinforcement, propose the optimal fiber mixing ratio through fluidity, filling, and compression experiments of the materials, and present performance evaluation results accordingly. do.

또한, 고강도 및 고인성의 성능을 발휘함과 동시에 내화학성, 내부식성 특성도 우수하여 고강도 및 고인성 특성이 요구되는 구조물, 예를 들어 초고층 건물, 댐, 장대교량 등에 사용되기 적합하고 동시에 콘크리트 구조물의 수명을 획기적으로 연장시킬 수 있는 고성능 그라우트 조성물에 관한 기술을 제공하고자 한다. In addition, it exhibits high strength and high toughness performance and at the same time has excellent chemical resistance and corrosion resistance characteristics, making it suitable for use in structures requiring high strength and high toughness characteristics, such as high-rise buildings, dams, long-span bridges, etc., and at the same time, it is suitable for use in concrete structures. We aim to provide technology for high-performance grout compositions that can dramatically extend the lifespan.

상기 과제를 달성하기 위하여 본 발명의 일 구현예는 In order to achieve the above problem, one embodiment of the present invention is

시멘트 40 중량부에 대하여 탄산칼슘 1~20 중량부, 섬유 보강재 1~15 중량부, 고성능 감수제 1~10 중량부, 석영 미분말 0.1~10 중량부, 칼슘알루미나설파이트(CSA) 1~10 중량부, 수축저감제 0.5~2.0 중량부, 소포제 0.1~1.0 중량부 및 석고 1~5 중량부를 혼합하고 골재 및 물을 혼합하여 구성되는 것을 특징으로 하는 초속경 고성능 그라우트 조성물을 제공한다.For 40 parts by weight of cement, 1 to 20 parts by weight of calcium carbonate, 1 to 15 parts by weight of fiber reinforcement, 1 to 10 parts by weight of high-performance water reducing agent, 0.1 to 10 parts by weight of fine quartz powder, and 1 to 10 parts by weight of calcium alumina sulfite (CSA). Provides an ultra-fast hardening, high-performance grout composition, which is composed of mixing 0.5 to 2.0 parts by weight of a shrinkage reducer, 0.1 to 1.0 parts by weight of an antifoaming agent, and 1 to 5 parts by weight of gypsum, and mixing aggregate and water.

본 발명의 일 실시예에 있어서, 상기 섬유 보강재는 강섬유 및 합성 섬유가 100:10~100의 비율로 혼합된 것을 사용하는 것을 특징으로 한다. In one embodiment of the present invention, the fiber reinforcement material is characterized by using a mixture of steel fibers and synthetic fibers in a ratio of 100:10 to 100.

이때, 상기 합성 섬유는 폴리에스테르 섬유, 나일론 섬유, 폴리프로필렌(PP) 섬유, 셀룰로오스 섬유 및 폴리에틸렌 섬유 중에서 선택되는 1종 이상인 것이 바람직하다. At this time, the synthetic fiber is preferably at least one selected from polyester fiber, nylon fiber, polypropylene (PP) fiber, cellulose fiber, and polyethylene fiber.

또한, 본 발명의 일 실시예에 있어서, 상기 석영 미분말은 수용성 수지를 스프레이 방식으로 유리분말 분쇄물에 도포하고 반죽한 후 킬른에서 소성하여 얻어진 것을 사용하는 것을 특징으로 한다. In addition, in one embodiment of the present invention, the quartz fine powder is characterized in that it is obtained by applying a water-soluble resin to pulverized glass powder using a spray method, kneading it, and then firing it in a kiln.

이때, 상기 수용성 수지는 EVA(Ethylene vinyl acetate 공중합체) 수지 또는 아크릴 수지인 것이 바람직하다. At this time, the water-soluble resin is preferably EVA (Ethylene vinyl acetate copolymer) resin or acrylic resin.

또한, 본 발명의 일 실시예에 있어서, 상기 시멘트 40 중량부에 대하여 방동보조제 0.1~5 중량부 및 유무기 강도조절제 0.1~3 중량부를 더 포함하는 것을 특징으로 한다. In addition, in one embodiment of the present invention, 0.1 to 5 parts by weight of an anti-freeze adjuvant and 0.1 to 3 parts by weight of an organic-inorganic strength regulator are further included based on 40 parts by weight of the cement.

이때, 상기 방동보조제는 칼슘 포메이트 5~20 중량부, 프로필 셀로솔브 1~10 중량부, 카프로산 0.1~5 중량부 및 요소 0.1~5 중량부로 이루어진 것을 사용하는 것이 바람직하다. At this time, it is preferable to use the anti-locking aid consisting of 5 to 20 parts by weight of calcium formate, 1 to 10 parts by weight of propyl cellosolve, 0.1 to 5 parts by weight of caproic acid, and 0.1 to 5 parts by weight of urea.

또한, 상기 유무기 강도조절제는 SBR(Styrene-Butadiene rubber) 고무 10~20 중량부, 하이드록실 아크릴레이트 모노머 1~15 중량부, 불포화 폴리에스테르 수지 15~30 중량비로 이루어진 수지 성분과 이산화티타늄 2~5 중량부, 운모 1~7 중량부 및 규조토 1~10 중량부로 이루어진 무기성분을 포함하며, 상기 수지 성분은 중공의 구 형상을 이루고, 상기 수지 성분을 상기 무기성분이 외부에서 둘러싸서 비즈 형상을 이루는 것을 사용하는 것이 바람직하다. In addition, the organic-inorganic strength modifier includes a resin component consisting of 10 to 20 parts by weight of SBR (Styrene-Butadiene rubber), 1 to 15 parts by weight of hydroxyl acrylate monomer, and 15 to 30 parts by weight of unsaturated polyester resin, and 2 to 2 parts by weight of titanium dioxide. It contains an inorganic component consisting of 5 parts by weight, 1 to 7 parts by weight of mica, and 1 to 10 parts by weight of diatomaceous earth, and the resin component forms a hollow sphere shape, and the inorganic component surrounds the resin component on the outside to form a bead shape. It is desirable to use what is achieved.

또한, 상기 과제를 달성하기 위하여 본 발명의 다른 구현예는 In addition, in order to achieve the above problem, another embodiment of the present invention is

상기 본 발명에 따른 초속경 고성능 그라우트 조성물을 이용한 그라우트 시공 공법을 제공한다. A grout construction method using the ultra-fast hardening, high-performance grout composition according to the present invention is provided.

본 발명에 따른 초속경성 고성능 그라우트 조성물은 시멘트 모르타르 조성물로서 고함량의 시멘트 함유로 초속경성 특성을 갖고, 구조용 합성 섬유와 강섬유를 혼합한 혼성 섬유를 적용함으로써 부식, 시공, 경제성 등의 문제점을 동시에 극복할 수 있으며, 최적의 배합비에 의해 고강도 및 고인성의 성능을 발휘함과 동시에 내화학성, 내부식성 특성도 우수하여 고강도 및 고인성 특성이 요구되는 구조물, 예를 들어 초고층 건물, 댐, 장대교량 등에 적용되기 적합하고, 동시에 콘크리트 구조물의 수명을 획기적으로 연장시킬 수 있는 효과가 있다. The ultra-fast hardening, high-performance grout composition according to the present invention is a cement mortar composition that has ultra-fast hardening properties due to its high content of cement, and simultaneously overcomes problems such as corrosion, construction, and economic efficiency by applying hybrid fibers that are a mixture of structural synthetic fibers and steel fibers. It can be applied to structures requiring high strength and high toughness, such as high-rise buildings, dams, long-span bridges, etc., as it exhibits high strength and high toughness performance by the optimal mixing ratio and has excellent chemical resistance and corrosion resistance characteristics. It is suitable for use, and at the same time, it has the effect of dramatically extending the lifespan of concrete structures.

이하에서는 본 발명에 대하여 더욱 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail.

상기한 바와 같이 본 발명에 따른 고성능 그라우트 조성물은 시멘트 40 중량부에 대하여 탄산칼슘 1~20 중량부, 섬유 보강재 1~15 중량부, 고성능 감수제 1~10 중량부, 석영 미분말 0.1~10 중량부, 칼슘알루미나설파이트(CSA) 1~10 중량부, 수축저감제 0.5~2.0 중량부, 소포제 0.1~1.0 중량부 및 석고 1~5 중량부를 혼합하고 골재 및 물을 혼합하여 구성되는 것을 특징으로 한다. As described above, the high-performance grout composition according to the present invention contains 1 to 20 parts by weight of calcium carbonate, 1 to 15 parts by weight of fiber reinforcement, 1 to 10 parts by weight of high-performance water reducing agent, and 0.1 to 10 parts by weight of quartz fine powder, based on 40 parts by weight of cement. It is characterized by mixing 1 to 10 parts by weight of calcium alumina sulfite (CSA), 0.5 to 2.0 parts by weight of shrinkage reducing agent, 0.1 to 1.0 parts by weight of antifoaming agent, and 1 to 5 parts by weight of gypsum, and mixing aggregate and water.

이하에서는, 상기 본 발명에 따른 고성능 그라우트 조성물을 구성하는 각 성분에 관하여 구체적으로 설명한다.Below, each component constituting the high-performance grout composition according to the present invention will be described in detail.

먼저, 본 발명에서 상기 시멘트는 일반 포틀랜트 시멘트(OPC), 슬래그 시멘트, 알루미나 시멘트 및 초속경 시멘트 중에서 선택된 1 종 또는 2종 이상의 혼합 시멘트를 사용할 수 있으며, 바람직하게는 일반 포틀랜드 시멘트이다. 구체적으로 포틀랜드 시멘트의 경우도 주요 성분이 C3S 51%, C2S 25%, C3A 9%, C4AF 9%, CaSO4 4% 정도이며, 비표면적은 3,300cm2/g 전후인 것을 사용하는 것이 바람직하다.First, in the present invention, the cement may be one type or a mixture of two or more types selected from ordinary Portland cement (OPC), slag cement, alumina cement, and ultra-fast hardening cement, and is preferably ordinary Portland cement. Specifically, in the case of Portland cement, the main ingredients are C 3 S 51%, C 2 S 25%, C 3 A 9%, C 4 AF 9%, and CaSO 4 4%, and the specific surface area is around 3,300 cm 2 /g. It is desirable to use .

혼합 시멘트를 사용할 경우에는 포틀랜트 시멘트 40~70 중량%, 알루미나 시멘트 5 ~ 25 중량% 및 잔량의 초속경 시멘트를 포함할 수 있다. When mixed cement is used, it may include 40 to 70% by weight of Portland cement, 5 to 25% by weight of alumina cement, and the remaining amount of ultra-fast hardening cement.

이 중에서, 알루미나 시멘트는 보통 포틀랜드 시멘트에 비해 알루미나 함량이 상대적으로 높은 시멘트로서, 화학적 저항성이 우수하며, 산성 분위기 하에서 사용할 수 있는 장점이 있으며, 경화시간이 짧은 조강 시멘트 일종으로서, 보통 포틀랜드 시멘트와 적정 비율로 사용한다. Among these, alumina cement is a cement with a relatively high alumina content compared to ordinary Portland cement, has excellent chemical resistance, has the advantage of being usable in an acidic atmosphere, and is a type of early strength cement with a short curing time, which is comparable to ordinary Portland cement. Use as a ratio.

또한, 초속경 시멘트는 무수석고와 50 중량% 이상의 알루미나 또는 칼슘설포알루미네이트(CSA)를 포함하는 것으로서 초기 부착성이 우수한 것을 사용하는 것이 바람직하다. In addition, it is desirable to use a rapid hardening cement that contains anhydrous gypsum and more than 50% by weight of alumina or calcium sulfoaluminate (CSA) and has excellent initial adhesion.

본 발명에서 상기 탄산칼슘은 무기계 성능강화제로서, 내마모성 및 내구성 등의 물리적 성능을 향상시키는 기능을 한다.In the present invention, the calcium carbonate is an inorganic performance enhancer and functions to improve physical performance such as wear resistance and durability.

본 발명에서 상기 섬유 보강재는 휨 강도, 인장 강도 증진은 물론 양생 시 표면 크랙(균열)을 줄일 수 있어 콘크리트의 초기 안정성에 효과적이며, 초기 분산성을 높이기 위한 목적으로 사용된다. In the present invention, the fiber reinforcement is effective in the initial stability of concrete by improving bending strength and tensile strength as well as reducing surface cracks during curing, and is used for the purpose of increasing initial dispersibility.

특히 상기 섬유 보강재는 섬유보강을 통한 개선 효과를 극대화하기 위해 두 가지 이상의 섬유를 혼합한 것으로서, 혼성 섬유의 적용을 통해 시멘트계 재료의 성능 향상에 기여할 수 있다. In particular, the fiber reinforcement material is a mixture of two or more fibers to maximize the improvement effect through fiber reinforcement, and can contribute to improving the performance of cement-based materials through the application of mixed fibers.

즉, 물리 역학적 특성이 서로 다른 두 섬유를 혼합하여 사용함으로써 각 섬유의 특성에 맞게 시멘트계 재료에 발생하는 균열을 효과적으로 제어하여 단일섬유 보강시 얻을 수 없는 효과를 발휘하며 역학적 성능 및 내구성능을 향상시킬 수 있다. In other words, by using a mixture of two fibers with different physical and mechanical properties, cracks that occur in cement-based materials can be effectively controlled according to the characteristics of each fiber, demonstrating effects that cannot be achieved with single fiber reinforcement, and improving mechanical performance and durability. You can.

본 발명에서 상기 혼성 섬유 보강재는 강섬유와 구조용 합성 섬유를 조합하여 적용함으로써 구조용 합성 섬유의 균열 후 안정적인 거동과 강섬유의 높은 강성 특성의 장점을 함께 활용할 수 있고, 작업성과 비용을 절감할 수 있는 장점이 있다. In the present invention, the hybrid fiber reinforcement material is applied by combining steel fibers and structural synthetic fibers, so that the advantages of the stable behavior after cracking of structural synthetic fibers and the high rigidity characteristics of steel fibers can be utilized together, and the advantages of reducing workability and cost are possible. there is.

본 발명에서 상기 섬유 보강재는 강섬유 및 합성 섬유가 100:10~100의 비율로 혼합된 것을 사용하는 것이 바람직하다. In the present invention, the fiber reinforcement material is preferably a mixture of steel fibers and synthetic fibers in a ratio of 100:10 to 100.

상기 비율보다 합성 섬유가 적을 경우 취성을 보완하고 인성을 향상시킬 수 있는 효과가 떨어지고, 상기 비율보다 많으면 상대적으로 강섬유의 비율이 적어 강성 강화 효과가 떨어질 수 있다. If the ratio of synthetic fibers is less than the above ratio, the effect of compensating for brittleness and improving toughness may be reduced, and if it is more than the above ratio, the ratio of steel fibers may be relatively small, which may reduce the effect of reinforcing rigidity.

본 발명에서 상기 강섬유는 고성능 그라우트 조성물 내부에 분산되어 인장응력을 받을 때 발생하는 다중 미세균열의 확장 및 균열 진전을 섬유의 가교작용을 통하여 억제하는 역할을 한다. 상기 강섬유는 일반적으로 섬유길이 13mm, 직경 0.2mm 정도의 강섬유가 사용되는 것이 바람직하다. In the present invention, the steel fibers are dispersed within the high-performance grout composition and serve to suppress the expansion and propagation of multiple microcracks that occur when subjected to tensile stress through the crosslinking action of the fibers. In general, it is preferable to use steel fibers with a fiber length of 13 mm and a diameter of about 0.2 mm.

본 발명에서 상기 합성 섬유, 즉 구조용 합성 섬유로는 폴리에스테르 섬유, 나일론 섬유, 폴리프로필렌(PP) 섬유, 셀룰로오스 섬유 및 폴리에틸렌 섬유 중에서 선택되는 1종 이상인 것을 사용할 수 있으며, 기타 유리섬유, 탄소섬유, 바잘트 섬유 등 무기 섬유도 일부 혼합하여 사용할 수 있다. In the present invention, the synthetic fiber, that is, the structural synthetic fiber, can be used at least one selected from polyester fiber, nylon fiber, polypropylene (PP) fiber, cellulose fiber, and polyethylene fiber, and other glass fiber, carbon fiber, Some inorganic fibers such as basalt fibers can also be mixed and used.

본 발명에서 상기 고성능 감수제는 물-시멘트 비율을 감소시켜 유동성을 확보하고 내구성 저하를 방지하는 역할을 하며, 폴리아크릴산염계, 나프탈렌계, 멜라민계, 술폰산계, 폴리카르본산계 감수제 등을 시용할 수 있다.In the present invention, the high-performance water reducing agent serves to secure fluidity and prevent durability deterioration by reducing the water-cement ratio, and polyacrylate-based, naphthalene-based, melamine-based, sulfonic acid-based, and polycarboxylic acid-based water reducing agents can be used. You can.

본 발명에서 상기 석영 미분말은 EVA(Ethylene vinyl acetate 공중합체) 수지 또는 아크릴 수지 등의 수용성 수지를 이용하여 유리분말 분쇄물의 표면에 코팅한 것을 사용할 수 있다. 유리분말은 예를 들어 폐유미분말을 미세하게 분쇄한 것을 사용할 수 있으며, 이러한 분쇄물에 수용성 수지를 스프레이하고 이를 페이스트 상태로 반죽한 후 킬른을 이용해 소성 처리한 것을 사용할 수 있다. 이때 소성 온도는 유리상에는 다공 구조를 형성하되 표면의 수용성 수지는 분해시키지 않는 온도 범위에서 진행하는 것이 바람직하다. 이러한 소성 이후에는 사이즈별로 분리하기 위해 시빙(sieving) 과정을 더 진행할 수도 있다.In the present invention, the quartz fine powder may be coated on the surface of pulverized glass powder using a water-soluble resin such as EVA (ethylene vinyl acetate copolymer) resin or acrylic resin. Glass powder can be used, for example, by finely pulverizing waste oil powder. Water-soluble resin can be sprayed on this pulverized material, kneaded into a paste, and then calcined using a kiln. At this time, the firing temperature is preferably carried out in a temperature range that forms a porous structure on the glass but does not decompose the water-soluble resin on the surface. After this firing, a sieving process may be further performed to separate by size.

상기 석영 미분말은 소성 처리에 의해 내부는 다공 구조를 갖지만, 표면은 수용성 수지로 코팅된 코어-쉘 구조의 2중 구조를 갖는 것을 특징으로 한다.The quartz fine powder has a porous interior due to firing treatment, but is characterized by having a core-shell double structure on the surface coated with a water-soluble resin.

상기 석영 미분말은 소성 처리에 의해 구형에 가까운 형태를 하고 있으므로 경량체이지만 강도, 내구성 등의 물성 저하는 최소화될 수 있는 동시에, 다공 구조를 하고 있지만 표면 수지 코팅에 의해 흡수율이 줄어들기 때문에 모르타르시 물비(W/C)를 줄일 수 있는 장점이 있어 작업성이 개선되고 잉여수에 따른 문제가 개선될 수 있으며, 소성 처리로 인해 내화성, 내화학성 및 내구성이 향상되도록 하는 역할을 한다.The quartz fine powder has a shape close to a sphere through firing treatment, so although it is lightweight, the decline in physical properties such as strength and durability can be minimized. At the same time, although it has a porous structure, the water absorption rate is reduced by the surface resin coating, so the water ratio when mortar is used. It has the advantage of reducing (W/C), which improves workability and problems caused by excess water, and plays a role in improving fire resistance, chemical resistance, and durability through firing treatment.

본 발명에서 상기 칼슘알루미나설파이트(CSA)는 물과 혼합되어 수화하면 콘크리트 수축을 보상하는 현상이 발생하여 모르타르의 균열을 방지하고 조직을 치밀하게 하는 역할을 한다.In the present invention, when the calcium alumina sulfite (CSA) is mixed with water and hydrated, a phenomenon occurs that compensates for concrete shrinkage, thereby preventing cracking of the mortar and densifying the structure.

본 발명에서 상기 수축저감제는 분자량 100 이상으로 2개 이상의 수산기를 갖는 것을 사용하는 것이 바람직하며, 예를 들어 네오펜틸글리콜(Neopentyl glycol)을 사용할 수 있다. 상기 네오펜틸글리콜은 대칭형의 2개의 알코올 기와 알파 카본 위치에 2개의 메틸기를 가지고 있어 에스테르화 반응에 탁월한 반응성을 보여준다. 본 발명에서 상기 네오펜틸글리콜은 백색 결정체 100%로 이루어진 플레이크(flake) 형태 또는 네오펜틸글리콜 90% 및 물 10%로 이루어진 슬러리(slurry) 형태로 사용될 수 있다.In the present invention, the shrinkage reducing agent preferably has a molecular weight of 100 or more and has two or more hydroxyl groups, for example, neopentyl glycol. The neopentyl glycol has two symmetrical alcohol groups and two methyl groups at the alpha carbon position, showing excellent reactivity in esterification reactions. In the present invention, the neopentyl glycol can be used in the form of flakes consisting of 100% white crystals or in the form of a slurry consisting of 90% neopentyl glycol and 10% water.

본 발명에서 상기 소포제는 모르타르 내의 거대 기공을 제거하여 모르타르의 강도와 외관을 좋게 하기 위하여 사용되는 성분으로, 일반적으로 휘발성이 적고 확산력이 큰 기름상의 물질 또는 수용성이 계면활성제가 이용되며, 예로는 등유, 유동 파라핀 등과 같은 광유계 소포제; 동식물유, 참기름, 피마자유와 이들의 알킬렌옥사이드 부가물 등과 같은 유지계 소포제; 올레인산, 스테아린산과 이들의 알킬렌옥사이드 부가물 등과 같은 지방산계 소포제; 글리세린모노리시놀레이트, 알케닐호박산 유동체, 솔비톨모노라울레이트, 솔비톨트리올레이트, 천연 왁스 등과 같은 지방산 에스테르계 소포제; 폴리옥시알킬렌류, (폴리)옥시알킬에테르류, 아세틸렌에테르류, (폴리)옥시알킬렌지방산에스테르류, (폴리)옥시알킬렌솔비탄지방산에스테르류, (폴리)옥시알킬렌알킬(아릴)에테르황산에스테르염류, (폴리)옥시알킬렌알킬인산에스테르류, (폴리)옥시알킬렌알킬아민류, (폴리)옥시알킬렌아미드 등과 같은 옥시알킬렌계 소포제; 옥틸알콜, 헥사데실알콜, 아세틸렌알콜, 글리콜류 등과 같은 알콜계 소포제; 아크릴레이트폴리아민 등과 같은 아미드계 소포제; 인산트리부틸, 나트륨옥틸포스페이트 등과 같은 인산에스테르계 소포제; 알루미늄스테아레이트, 칼슘올레이트 등과 같은 금속비누계 소포제; 디메틸실리콘유, 실리콘 페이스트, 실리콘 에멀젼, 유기변성폴리실록산(디메틸폴리실록산 등의 폴리오르가노실록산), 플루오로실리콘유 등과 같은 실리콘계 소포제를 사용할 수 있다.In the present invention, the antifoaming agent is an ingredient used to improve the strength and appearance of the mortar by removing macropores in the mortar. Generally, an oily substance or a water-soluble surfactant with low volatility and high diffusivity is used, for example, kerosene. , mineral oil-based defoamer such as liquid paraffin; Oil-based antifoaming agents such as animal and vegetable oils, sesame oil, castor oil and their alkylene oxide adducts; Fatty acid-based antifoaming agents such as oleic acid, stearic acid and their alkylene oxide adducts; Fatty acid ester-based antifoaming agents such as glycerin monoricinoleate, alkenyl succinic acid fluid, sorbitol monolaulate, sorbitol trioleate, natural wax, etc.; Polyoxyalkylenes, (poly)oxyalkyl ethers, acetylene ethers, (poly)oxyalkylene fatty acid esters, (poly)oxyalkylene sorbitan fatty acid esters, (poly)oxyalkylene alkyl (aryl) ethers Oxyalkylene-based antifoaming agents such as sulfuric acid ester salts, (poly)oxyalkylene alkyl phosphoric acid esters, (poly)oxyalkylene alkylamines, and (poly)oxyalkyleneamides; Alcohol-based antifoaming agents such as octyl alcohol, hexadecyl alcohol, acetylene alcohol, and glycols; Amide-based antifoaming agents such as acrylate polyamine; Phosphate ester-based antifoaming agents such as tributyl phosphate and sodium octyl phosphate; Metal soap-based antifoaming agents such as aluminum stearate and calcium oleate; Silicone-based antifoaming agents such as dimethyl silicone oil, silicone paste, silicone emulsion, organic modified polysiloxane (polyorganosiloxane such as dimethylpolysiloxane), and fluorosilicone oil can be used.

본 발명에서 상기 석고는 시멘트의 산성 피막을 파괴하여 시멘트 내부에서 이온 방출을 가속화시키고 이들과 반응하여 수화 초기에 에트린자이트를 다량 생성해주는 역할을 하며, 재령 경과에 따라 칼슘실리케이트 수화물을 생성해 강도를 발현해주는 역할을 한다. In the present invention, the gypsum destroys the acidic film of cement, accelerates the release of ions from inside the cement, reacts with them to produce a large amount of ettringite at the beginning of hydration, and generates calcium silicate hydrate with age. It plays a role in expressing strength.

본 발명에서 상기 석고는 무수석고, 배연탈황석고, 페트로 코크스 탈황석고 및 석탄 코크스 탈황석고 중에서 선택되는 1종 또는 2종 이상의 혼합물을 사용할 수 있다. In the present invention, the gypsum may be one type or a mixture of two or more types selected from anhydrous gypsum, flue gas desulfurization gypsum, petroleum coke desulfurization gypsum, and coal coke desulfurization gypsum.

본 발명에서 상기 고성능 그라우트 조성물에는 선택적으로 폴리머 성분과 실리카퓸 및 플라이애쉬를 더 포함할 수 있으며, 필요에 따라 분산제, 지연제, 알칼리활성화제 등의 첨가제를 더 포함할 수 있다.In the present invention, the high-performance grout composition may optionally further include a polymer component, silica fume, and fly ash, and, if necessary, may further include additives such as a dispersant, a retarder, and an alkali activator.

본 발명에서 상기 폴리머는 내부 성분 간 상용성, 부착성을 증대시켜서 콘크리트의 물성을 향상시키는 역할을 하며, 폴리비닐아세테이트, 폴리비닐아세테이트 실란 말단화 중합체, 폴리비닐알코올, 폴리비닐에스테르 실란 말단화 중합체, 메타크릴산 메틸-아크릴산 부틸 및 스티렌-부타디엔 고무 라텍스 중에서 선택된 1종 이상을 사용할 수 있으며, 바람직하게는 폴리비닐아세테이트, 폴리비닐알코올, 메타크릴산 메틸-아크릴산 부틸 및 스티렌-부타디엔 고무 라텍스 중에서 선택된 1종 이상을 사용할 수 있다. 본 발명에서 상기 폴리머의 사용량은 상기 시멘트 100 중량부에 대하여 1 내지 10 중량부의 범위에서 사용하는 것이 바람직하다.In the present invention, the polymer serves to improve the physical properties of concrete by increasing compatibility and adhesion between internal components, and includes polyvinyl acetate, polyvinyl acetate silane-terminated polymer, polyvinyl alcohol, and polyvinyl ester silane-terminated polymer. , one or more types selected from methyl methacrylate-butyl acrylate and styrene-butadiene rubber latex can be used, preferably selected from polyvinylacetate, polyvinyl alcohol, methyl methacrylate-butyl acrylate, and styrene-butadiene rubber latex. More than one type can be used. In the present invention, the amount of the polymer used is preferably in the range of 1 to 10 parts by weight based on 100 parts by weight of the cement.

상기 실리카퓸은 평균 입경 0.1~0.5 mm 정도로 이루어진 완전 구형에 가까운 입자로서 비정질의 활성 실리카이며, 아래의 화학식에서와 같이 수산화칼슘과 반응하여 상온에서 함수 규산 칼슘으로 변화함으로써 수퍼 포졸란 성질을 띤다. The silica fume is an amorphous active silica that is a completely spherical particle with an average particle size of about 0.1 to 0.5 mm. It reacts with calcium hydroxide and changes into hydrous calcium silicate at room temperature as shown in the chemical formula below, giving it super-pozzolanic properties.

3CaOSiO2 + H2O → C-S-H(시멘트겔) + Ca(OH)2 3CaOSiO 2 + H 2 O → CSH (cement gel) + Ca(OH) 2

본 발명에서 상기 실리카 흄을 첨가하는 이유는, 구상 입자에 의한 볼 베어링 효과로 분산성 및 감수 효과를 향상시키고 시멘트 입자 사이에 실리카퓸의 충전 효과로 수밀성 향상 및 고강도화, 그리고 부착성 향상으로 그라운드량 감소, 알칼리 실리카 반응 억제 및 화학적 저항성 향상 등의 효과가 있기 때문이다. The reason for adding the silica fume in the present invention is to improve dispersibility and water-reducing effect due to the ball bearing effect of spherical particles, improve water tightness and increase strength due to the filling effect of silica fume between cement particles, and increase ground volume by improving adhesion. This is because it has effects such as reducing alkali silica reaction, suppressing alkali silica reaction, and improving chemical resistance.

구체적으로, 상기 실리카퓸은 1차 수화생성물인 수산화칼슘과 포졸란 반응을 통해 2차 수화생성물 C-S-H를 형성하여 재료의 밀도를 향상시켜 강도와 내구성을 크게 증대시킨다. 구형의 입자 형상 을 갖는 실리카퓸은 다른 입자들 사이에서 입자간 마찰을 줄여주는 볼베어링 효과, 점성이나 소성을 줄이는 가소제 효과와 같은 윤활 작용을 통해 배합의 유동성을 향상시키는 역할을 한다.Specifically, the silica fume forms the secondary hydration product C-S-H through a pozzolanic reaction with calcium hydroxide, the primary hydration product, thereby improving the density of the material and greatly increasing strength and durability. Silica fume, which has a spherical particle shape, plays a role in improving the fluidity of the mix through lubricating effects such as a ball bearing effect that reduces inter-particle friction between other particles and a plasticizer effect that reduces viscosity or plasticity.

본 발명에서 플라이애쉬는 석탄 화력 발전소의 미분탄 연소 보일러에서 연소 후 전기집진장치에서 포집된 미립자로 현재 산업부산물로 분류되는 미분말이다. 이러한 플라이애쉬는 보통 포틀랜트 시멘트에 비해 비중이 낮고 유리질 구조를 갖기 때문에 유동성 확보가 가능하며 포졸란 반응으로 인해 수화열량 감소, 온도 균열 제어 등의 기능을 한다. 본 발명에서 상기 플라이애쉬의 사용량은 상기 시멘트 100 중량부에 대하여 0.1~10 중량부의 범위에서 사용하는 것이 바람직하다. In the present invention, fly ash is a fine powder that is currently classified as an industrial by-product and is a fine particle collected in an electric dust collector after combustion in a pulverized coal combustion boiler of a coal-fired power plant. This type of fly ash has a lower specific gravity than ordinary Portland cement and has a glassy structure, so it can secure fluidity and has functions such as reducing heat of hydration and controlling temperature cracking due to pozzolanic reaction. In the present invention, the amount of fly ash used is preferably in the range of 0.1 to 10 parts by weight based on 100 parts by weight of the cement.

상기 분산제는 모르타르의 입자 표면에 흡착하여 입자 표면에 전하를 주어 입자들끼리 상호 반력을 일으키므로, 응집된 입자를 분산시켜 유동을 증가시켜 감수 효과로 인한 강도 증진이 가능하게 한다. 상기 분산제로서는 통상의 감수제를 사용할 수 있으며, 예를 들어 리그닌술포네이트, 폴리나프탈렌술포네이트, 폴리멜라민술포네이트 또는 폴리카복실레이트계 감수제로 이루어진 군으로부터 단독또는 둘 이상 혼합 사용이 가능하다. The dispersant adsorbs to the particle surface of the mortar and gives an electric charge to the particle surface, causing mutual repulsion between the particles, thereby dispersing the aggregated particles to increase flow, thereby improving strength due to the water-reducing effect. As the dispersant, a conventional water reducing agent can be used, for example, it can be used alone or in combination of two or more from the group consisting of lignin sulfonate, polynaphthalene sulfonate, polymelamine sulfonate, or polycarboxylate water reducing agents.

상기 지연제는 모르타르의 수화속도를 조정하여 일정기간 작업성을 확보할 목적으로 첨가될 수 있다. 지연제로는 붕산과 붕사, 붕산나트륨, 붕산칼륨과 같은 붕산염류, 글루콘산, 시트릭산, 타르타르산, 글루코헵톤산, 아라본산, 사과산 또는 구연산 및 이들의 나트륨, 칼륨, 칼슘, 마그네슘, 암모늄, 트리에탄올아민 등의 무기염 또는 유기염 등의 옥시카복실산; 글루코오스, 프럭토오스, 갈락토오스, 사카로오스, 크실로오스, 아비토오스, 리포오즈, 이성화당 등의 단당류나, 2당, 3당 등의 올리고당, 또는 덱스트린 등의 올리고당, 또는 덱스트란 등의 다당류, 이들을 포함하는 당밀류 등의 당류; 솔비톨 등의 당알콜; 규불화 마그네슘; 인산 및 그의 염 또는 붕산 에스테르류; 아미노카복실산과 그의 염; 알칼리 가용 단백질; 푸민산; 탄닌산; 페놀; 글리세린 등의 다가알콜; 아미노트리(메틸렌포폰산), 1-히드록시에틸리덴-1,1-디포스폰산, 에틸렌디아민테트라(메틸렌포스폰산), 디에틸렌트리아민펜타(메틸렌포스폰산) 및 이들의 알칼리 금속염, 알칼리토류 금속염 등의 포스폰산 및 그 유도체 등을 사용할 수 있다. The retardant may be added to adjust the hydration rate of the mortar to ensure workability for a certain period of time. Retardants include boric acid, borax, sodium borate, potassium borate, gluconic acid, citric acid, tartaric acid, glucoheptonic acid, arabonic acid, malic acid, or citric acid, and their sodium, potassium, calcium, magnesium, ammonium, and triethanolamine. oxycarboxylic acids such as inorganic salts or organic salts; Monosaccharides such as glucose, fructose, galactose, saccharose, xylose, abitose, lipose, and isomerized sugars, oligosaccharides such as di- and trisaccharides, oligosaccharides such as dextrin, or polysaccharides such as dextran, Sugars such as molasses containing these; Sugar alcohols such as sorbitol; magnesium silicofluoride; Phosphoric acid and its salts or boric acid esters; Aminocarboxylic acids and their salts; alkaline soluble protein; fumic acid; tannic acid; phenol; polyhydric alcohols such as glycerin; Aminotri(methylenephosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra(methylenephosphonic acid), diethylenetriaminepenta(methylenephosphonic acid) and their alkali metal salts, alkalis. Phosphonic acid and its derivatives such as earth metal salts can be used.

상기 알칼리활성화제는 강도 발현에 영향을 미치는 성분으로, 알칼리 금속수산화물, 염화물, 황산화물 및 탄산화물에서 선택되는 하나 또는 둘 이상의 혼합물을 사용할 수 있고, 바람직하게는 탄산나트륨 및 탄산수소나타륨을 사용하는 것이 강도 발현 측면에서 유리하다. The alkaline activator is a component that affects strength development, and may be one or a mixture of two or more selected from alkali metal hydroxides, chlorides, sulfur oxides, and carbonates, and preferably sodium carbonate and sodium hydrogen carbonate. It is advantageous in terms of strength development.

본 발명에서 상기 골재는 규사를 사용할 수 있으며, 경량 골재를 사용할 수도 있다. 상기 경량골재로는 평균직경이 50~200㎛이며, 절건 비중이 0.7~1.4인 다공성 경량 골재를 사용하는 것이 바람직하다. 구체적으로는 상기 경량골재는 다공성 필라이트(phyllite)를 사용하는 것이 바람직하며, 상기 다공성 필라이트계 경량 골재는 다공성으로 인해 물비가 증대될 수 있다. 본 발명에서 상기 골재는 필요에 따라 그 함량을 조절할 수 있으며, 이에 대해서는 별도로 한정하지 않는다. In the present invention, silica sand may be used as the aggregate, and lightweight aggregate may also be used. As the lightweight aggregate, it is preferable to use porous lightweight aggregate with an average diameter of 50 to 200㎛ and an absolute dry specific gravity of 0.7 to 1.4. Specifically, it is preferable to use porous phyllite as the lightweight aggregate, and the water ratio of the porous phyllite-based lightweight aggregate may increase due to its porosity. In the present invention, the content of the aggregate can be adjusted as needed, and this is not specifically limited.

또한, 본 발명에서 상기 고성능 그라우트 조성물에는 이를 이용하여 제조되는 콘크리트 구조물의 기능성 향상을 위하여 방동보조제 및 유무기 강도조절제를 추가로 포함할 수 있다. In addition, in the present invention, the high-performance grout composition may additionally include an anti-static auxiliary agent and an organic-inorganic strength regulator to improve the functionality of the concrete structure manufactured using the same.

구체적으로는 상기 시멘트 100 중량부에 대하여 방동보조제 0.1~5 중량부 및 유무기 강도조절제 0.1~3 중량부를 더 포함할 수 있다. Specifically, it may further include 0.1 to 5 parts by weight of an anti-freeze adjuvant and 0.1 to 3 parts by weight of an organic-inorganic strength regulator based on 100 parts by weight of the cement.

본 발명에서 상기 방동보조제는 내한성을 향상시키기 위해 사용되며, 구체적으로는 칼슘 포메이트 5~20 중량부, 프로필 셀로솔브 1~10 중량부, 카프로산 0.1~5 중량부 및 요소 0.1~5 중량부로 이루어진 것을 사용할 수 있다. In the present invention, the anti-freeze adjuvant is used to improve cold resistance, and specifically, 5 to 20 parts by weight of calcium formate, 1 to 10 parts by weight of propyl cellosolve, 0.1 to 5 parts by weight of caproic acid, and 0.1 to 5 parts by weight of urea. You can use what has been done.

상기 칼륨 포메이트는 방동 효과를 주는 원료 물질로서, 강도 향상 효과도 제공하는 특징이 있다. The potassium formate is a raw material that provides an anti-static effect and also has the characteristic of providing a strength improvement effect.

또한, 상기 프로필 셀로솔브는 윤활특성과 부동성 향상, 동해 방지 및 워커빌리티 증진 효과를 제공한다. In addition, the propyl cellosolve improves lubricating properties and immobility, prevents frost damage, and improves workability.

또한, 상기 카프로산은 시멘트의 수화반응을 촉진하고 시멘트의 수산화칼슘과 반응하여 시멘트 페이스트의 조직을 치밀하게 하여 물리적 성질을 향상시키고 방청 효과를 나타내게 하며 내한성을 우수하게 하는 기능을 한다. In addition, the caproic acid promotes the hydration reaction of cement and reacts with calcium hydroxide of cement to make the structure of the cement paste dense, thereby improving physical properties, exhibiting a rust prevention effect, and improving cold resistance.

또한, 상기 요소는 무염화 및 무알칼리형으로서 물에 의해 용해되며 동결점 강화 효과를 발휘하게 하고 상기 카프로산과 함께 경화 촉진 기능을 나타내어 방동 성능이 발휘되도록 한다. In addition, the urea is non-salted and alkali-free, dissolves in water, exerts a freezing point strengthening effect, and exhibits a hardening acceleration function together with caproic acid to provide anti-freeze performance.

본 발명에서 상기 유무기 강도조절제는 SBR(Styrene-Butadiene rubber) 고무 10~20 중량부, 하이드록실 아크릴레이트 모노머 1~15 중량부, 불포화 폴리에스테르 수지 15~30 중량비로 이루어진 수지 성분과 이산화티타늄 2~5 중량부, 운모 1~7 중량부 및 규조토 1~10 중량부로 이루어진 무기성분을 포함하며, 상기 수지 성분은 중공의 구 형상을 이루고, 상기 수지 성분을 상기 무기성분이 외부에서 둘러싸서 비즈 형상을 이루는 것을 사용하는 것이 바람직하다. In the present invention, the organic-inorganic strength regulator is a resin component consisting of 10 to 20 parts by weight of SBR (Styrene-Butadiene rubber), 1 to 15 parts by weight of hydroxyl acrylate monomer, and 15 to 30 parts by weight of unsaturated polyester resin, and titanium dioxide 2. It contains an inorganic component consisting of ~5 parts by weight, 1-7 parts by weight of mica, and 1-10 parts by weight of diatomaceous earth, and the resin component forms a hollow sphere shape, and the inorganic component surrounds the resin component on the outside to form a bead shape. It is desirable to use something that achieves .

본 발명에서 상기 SBR 고무는 탄성을 유지하기 위해 고형분이 50% 이상인 수지를 사용하는 것이 바람직하다. 상기 용매로는 에틸렌 글리콜계의 2가 알코올을 사용할 수 있다.In the present invention, it is preferable to use a resin with a solid content of 50% or more for the SBR rubber to maintain elasticity. The solvent may be an ethylene glycol-based dihydric alcohol.

또한, 상기 하이드록실 아크릴레이트 모노머는 고무 성능을 보조하여 장기간 성능이 발휘도록 하는 기능을 한다. 이러한 하이드록실 아크릴레이트 모노머로는 하이드록실 에틸아크릴레이트, 하이드록실 프로필아크릴레이트, 하이드록실 에틸메틸아크릴레이트 등을 사용할 수 있다. In addition, the hydroxyl acrylate monomer functions to assist rubber performance and ensure long-term performance. Such hydroxyl acrylate monomers include hydroxyl ethyl acrylate, hydroxyl propyl acrylate, and hydroxyl ethylmethyl acrylate.

상기 불포화 폴리에스테르는 산과 글리콜류 화합물의 축합 중합에 의해 형성되는 것으로서, 예를 들어 푸마르산과 디에틸렌글리콜의 반응에 의해 형성되는 산가 18~20mg/KOH의 범위에 드는 것을 사용할 수 있다. 상기 불포화 폴리에스테르는 내구성을 강화하는 역할을 한다.The unsaturated polyester is formed by condensation polymerization of an acid and a glycol-type compound, and for example, it can be used as an acid value in the range of 18 to 20 mg/KOH, which is formed by the reaction of fumaric acid and diethylene glycol. The unsaturated polyester serves to enhance durability.

본 발명에서 상기 이산화티타늄은 내구성 향상을 위해 사용된다. In the present invention, titanium dioxide is used to improve durability.

본 발명에서 상기 운모는 내수성 및 내구성을 향상시키는 기능을 한다. In the present invention, the mica functions to improve water resistance and durability.

본 발명에서 상기 규조토는 결로방지특성 및 부착성을 향상시키는 기능을 한다. In the present invention, the diatomaceous earth functions to improve condensation prevention properties and adhesion.

본 발명에서 상기 수지 성분은 내열성 성능을 발휘하도록 하며, 상기 무기성분은 상기 수지성분을 외부에서 둘러싸서 조직을 치밀하게 하고 내구성을 증대시키는 역할을 한다. In the present invention, the resin component exerts heat resistance performance, and the inorganic component surrounds the resin component from the outside to make the structure dense and increase durability.

상기와 같이 얻어지는 본 발명에 따른 콘크리트 조성물을 이용하여 콘크리트 구조물의 그라우트 시공에 적용할 수 있다. The concrete composition according to the present invention obtained as described above can be used for grout construction of concrete structures.

본 발명에서 상기 그라우트 시공에 적용될 수 있는 콘크리트 구조물은 예를 들어 초고층 건물, 댐, 장대교량 등이나 교각 등의 고강도를 필요로 하는 구조물, 수중 구조물 또는 해안 지대의 구조물, 전력구, PHC 파일 등 범위를 제한하지 않고 활용될 수 있으며, 특히 염수나 오염수에 의해 손상받을 수 있는 구조물에 사용시 내수성, 내화학성 등의 물성을 향상시킬 수 있으므로, 내구성을 획기적으로 향상시킬 수 있는 효과가 있다. In the present invention, concrete structures that can be applied to the grout construction include, for example, structures requiring high strength such as high-rise buildings, dams, long-span bridges, etc. or piers, underwater structures or coastal structures, power conduits, PHC piles, etc. It can be used without limitation, and in particular, when used in structures that can be damaged by salt water or contaminated water, physical properties such as water resistance and chemical resistance can be improved, which has the effect of dramatically improving durability.

이하에서는 본 발명을 실시예예 의거하여 더욱 상세하게 설명한다. 그러나, 본 발명의 범위가 하기 실시예에 의해 제한되는 것은 아니다. Hereinafter, the present invention will be described in more detail based on examples. However, the scope of the present invention is not limited by the following examples.

[실시예][Example]

(제조예 1) 고성능 그라우트 조성물 제조(Preparation Example 1) Preparation of high-performance grout composition

포틀랜트 시멘트(OPC) 40 중량부, 탄산칼슘 5.0 중량부, 혼성 섬유 보강재(강섬유와 폴리프로필렌이 100:50 중량비의 비율로 혼합된 것) 7 중량부, 고성능 감수제(폴리아크릴산염계) 1.2 중량부, 유리분말을 가공처리하여 얻어진 석영 미분말 2.0 중량부, 칼슘알루미나설파이트 1.5 중량부, 네오펜틸글리콜 수축저감제 1.0 중량부, 소포제 0.3 중량부 및 석고(무수석고) 4 중량부를 적당량의 물과 균일하게 혼합하고, 골재(평균입경이 0.5mm 이하인 쇄사) 250 중량부를 균일하게 혼합하여 모르타르 조성물(고성능 그라우트 조성물)을 제조하였다. Portland cement (OPC) 40 parts by weight, calcium carbonate 5.0 parts by weight, mixed fiber reinforcement (steel fiber and polypropylene mixed at a weight ratio of 100:50) 7 parts by weight, high performance water reducing agent (polyacrylate type) 1.2 weight 2.0 parts by weight of fine quartz powder obtained by processing glass powder, 1.5 parts by weight of calcium alumina sulfite, 1.0 parts by weight of neopentyl glycol shrinkage reducing agent, 0.3 parts by weight of antifoaming agent, and 4 parts by weight of gypsum (anhydrous gypsum) with an appropriate amount of water. A mortar composition (high-performance grout composition) was prepared by uniformly mixing 250 parts by weight of aggregate (ground sand with an average particle diameter of 0.5 mm or less).

(제조예 2) 콘크리트 조성물 제조(Preparation Example 2) Preparation of concrete composition

포틀랜트 시멘트(OPC) 40 중량부, 탄산칼슘 8.0 중량부, 혼성 섬유 보강재(강섬유와 폴리프로필렌이 100:100 중량비의 비율로 혼합된 것) 5 중량부, 고성능 감수제(폴리아크릴산염계) 1.8 중량부, 유리분말을 가공처리하여 얻어진 석영 미분말 3.0 중량부, 칼슘알루미나설파이트 1.8 중량부, 네오펜틸글리콜 수축저감제 1.5 중량부, 소포제 0.3 중량부 및 석고(배연탈황석고) 4 중량부를 적당량의 물과 균일하게 혼합하고, 골재(평균직경이 약 100㎛이고 절건 비중이 0.9인 다공성 필라이트) 200 중량부를 균일하게 혼합하여 모르타르 조성물(고성능 그라우트 조성물)을 제조하였다. Portland cement (OPC) 40 parts by weight, calcium carbonate 8.0 parts by weight, mixed fiber reinforcement (steel fiber and polypropylene mixed at a weight ratio of 100:100) 5 parts by weight, high performance water reducing agent (polyacrylate type) 1.8 weight 3.0 parts by weight of fine quartz powder obtained by processing glass powder, 1.8 parts by weight of calcium alumina sulfite, 1.5 parts by weight of neopentyl glycol shrinkage reducer, 0.3 parts by weight of antifoaming agent, and 4 parts by weight of gypsum (flue gas desulfurized gypsum) with an appropriate amount of water. A mortar composition (high-performance grout composition) was prepared by uniformly mixing 200 parts by weight of aggregate (porous fillite with an average diameter of about 100㎛ and absolute dry gravity of 0.9).

(비교 제조예 1)(Comparative Manufacturing Example 1)

포틀랜트 시멘트(OPC) 40 중량부, 플라이애시 3.0 중량부, 강섬유 5 중량부, 고성능 감수제(폴리아크릴산염계) 1.2 중량부, 칼슘알루미나설파이트 1.5 중량부, 수축저감제 1.0 중량부, 소포제 0.3 중량부 및 석고 4 중량부를 적당량의 물과 균일하게 혼합하고, 골재(평균입경이 0.5mm 이하인 쇄사) 250 중량부를 균일하게 혼합하여 모르타르 조성물을 제조하였다.Portland cement (OPC) 40 parts by weight, fly ash 3.0 parts by weight, steel fiber 5 parts by weight, high performance water reducing agent (polyacrylate type) 1.2 parts by weight, calcium alumina sulfite 1.5 parts by weight, shrinkage reducer 1.0 parts by weight, antifoamer 0.3 parts by weight A mortar composition was prepared by uniformly mixing 4 parts by weight of gypsum with an appropriate amount of water and 250 parts by weight of aggregate (ground sand with an average particle diameter of 0.5 mm or less).

(비교 제조예 2)(Comparative Manufacturing Example 2)

포틀랜트 시멘트(OPC) 40 중량부, 실리카퓸 3.0 중량부, 폴리프로필렌 섬유 5 중량부, 고성능 감수제(폴리아크릴산염계) 1.8 중량부, 칼슘알루미나설파이트 1.8 중량부, 수축저감제 1.5 중량부, 소포제 0.3 중량부 및 석고 4 중량부를 적당량의 물과 균일하게 혼합하고, 골재(평균입경이 0.5mm 이하인 쇄사) 200 중량부를 균일하게 혼합하여 모르타르 조성물을 제조하였다. Portland cement (OPC) 40 parts by weight, silica fume 3.0 parts by weight, polypropylene fiber 5 parts by weight, high performance water reducing agent (polyacrylate type) 1.8 parts by weight, calcium alumina sulfite 1.8 parts by weight, shrinkage reducing agent 1.5 parts by weight, A mortar composition was prepared by uniformly mixing 0.3 parts by weight of antifoaming agent and 4 parts by weight of gypsum with an appropriate amount of water, and 200 parts by weight of aggregate (ground sand with an average particle diameter of 0.5 mm or less) was uniformly mixed.

(비교 제조예 3)(Comparative Manufacturing Example 3)

대한민국 등록특허 제10-1860503호에서 제안된 방법과 유사하게, 시멘트 13 중량부, 고로 슬래그 미분말 4.5 중량부, 바텀애쉬 미분말 1.5 중량부, 가성소다 0.2 중량부, 규사 15 중량부, 석분 35 중량부, 인산염 1.0 중량부, 잔골재 35 중량부에 물을 혼합하여 콘크리트 조성물을 제조하였다. Similar to the method proposed in Korean Patent No. 10-1860503, 13 parts by weight of cement, 4.5 parts by weight of blast furnace slag fine powder, 1.5 parts by weight of bottom ash fine powder, 0.2 parts by weight of caustic soda, 15 parts by weight of silica sand, 35 parts by weight of stone dust. A concrete composition was prepared by mixing 1.0 parts by weight of phosphate, 35 parts by weight of fine aggregate, and water.

성능 평가performance evaluation

(1) 콘크리트 조성물의 물성(1) Physical properties of concrete composition

상기 실시예 및 비교예에서 조성물을 이용하여 시험체를 제조하여 하기 시험 방법에 의해 물성을 측정하였다.Test specimens were prepared using the compositions in the above Examples and Comparative Examples, and the physical properties were measured using the following test method.

1) 응결시간 : KSF 24361) Setting time: KSF 2436

2) 휨강도 : KS F 24762) Bending strength: KS F 2476

3) 압축강도 : KSF 24053) Compressive strength: KSF 2405

4) 휨인성 : KS F 24764) Flexural toughness: KS F 2476

5) 길이변화율 : KS F 2424 콘크리트의 길이 변화 시험 방법에 따라 측정하였다. 그 값은 초기 시공체의 값을 0으로 하여,"-"는 수축율을 나타내는 것이며, "+"는 팽창율을 나타내는 것이다.5) Length change rate: Measured according to KS F 2424 concrete length change test method. The value is set as 0 for the initial construction material, with "-" indicating the shrinkage rate and "+" indicating the expansion rate.

6) 플로우 : KS L 5220에 준하여 실시6) Flow: Conducted in accordance with KS L 5220

그 결과를 하기 표 1에 나타내었다. The results are shown in Table 1 below.

항목item 실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 응결시간 (분)Setting time (minutes) 초결first decision 1818 1919 2929 3333 4545 종결closing 2525 2929 4040 3939 6969 휨강도 (MPa)Bending strength (MPa) 기중gin 5.275.27 4.704.70 3.253.25 3.313.31 2.902.90 압축강도 (MPa)Compressive strength (MPa) 기중gin 19.2819.28 14.8214.82 11.2311.23 10.2910.29 9.959.95 휨인성 (MPa)Flexural toughness (MPa) 기중gin 15.1115.11 15.8215.82 12.3212.32 10.2110.21 11.2011.20 길이변화율 (%)Length change rate (%) +0.01+0.01 +0.02+0.02 +0.01+0.01 +0.02+0.02 +0.15+0.15 플로우 (mm)Flow (mm) 246246 255255 220220 230230 175175

상기 표에서 보는 바와 같이 본 발명에 따른 모르타르 조성물의 경우, 비교예의 경우와 비교하여 물성이 현저하게 우수하며, 특히 초속경 특성과 함께, 압축강도, 휨강도 및 휨인성이 현저히 개선된 것을 확인할 수 있다. As seen in the table above, the mortar composition according to the present invention has significantly superior physical properties compared to the comparative example, and in particular, it can be seen that the compressive strength, bending strength, and bending toughness along with the initial hardening properties are significantly improved. .

(2) 기타 성능 평가(2) Other performance evaluations

1) 내후성 평가1) Weather resistance evaluation

ASTM G 155에 따라 400시간 측정하였다. Measurement was conducted for 400 hours according to ASTM G 155.

2) 표면 경도 평가2) Surface hardness evaluation

KS D 6711에 따라 연필경도를 측정하였다. Pencil hardness was measured according to KS D 6711.

3) 내수성 평가3) Water resistance evaluation

90℃ 열수에서 연속으로 표면 변형(균열, 블리스터 등)이 일어나는 시간을 측정하였다. The time for surface deformation (cracks, blisters, etc.) to occur continuously in hot water at 90°C was measured.

상기 평가 결과를 표 2에 나타내었다. The evaluation results are shown in Table 2.

내후성(백색)Weather resistance (white) 표면경도surface hardness 내수성water resistance 실시예 1Example 1 △E2.0△E2.0 5H5H 480hr480hrs 실시예 2Example 2 △E2.0△E2.0 4H4H 450hr450hrs 비교예 1Comparative Example 1 △E2.7△E2.7 3H3H 400hr400hrs 비교예 2Comparative Example 2 △E2.7△E2.7 3H3H 350hr350hrs 비교예 3Comparative Example 3 △E3.5△E3.5 2H2H 330hr330hrs

상기 표 2의 결과로부터 본 발명에 따른 모르타르 조성물은 내후성, 내수성, 표면경도 등의 물성도 우수하므로 콘크리트 구조물 제조시 종래 방법에 비하여 품질을 더욱 높일 수 있으며, 이에 따라 용배수관 등의 용도나 기타 용도로 프리캐스트 제품을 제조할 경우 수명을 높일 수 있을 것으로 기대된다. From the results in Table 2 above, the mortar composition according to the present invention has excellent physical properties such as weather resistance, water resistance, and surface hardness, so the quality can be further improved compared to the conventional method when manufacturing concrete structures. Accordingly, it can be used for water pipes and other uses. It is expected that manufacturing precast products will increase their lifespan.

본 발명은 상술한 특정의 실시예에 의해 한정되지 않으며, 청구범위에 기재된 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론, 그와 같은 변경은 첨부된 청구범위에 속하는 것으로 해석되어야 한다. The present invention is not limited to the specific embodiments described above, and various modifications and modifications can be made by anyone skilled in the art without departing from the gist of the invention as set forth in the claims. , such changes shall be construed as falling within the scope of the appended claims.

Claims (9)

시멘트 40 중량부에 대하여 탄산칼슘 1~20 중량부, 섬유 보강재 1~15 중량부, 고성능 감수제 1~10 중량부, 석영 미분말 0.1~10 중량부, 칼슘알루미나설파이트(CSA) 1~10 중량부, 수축저감제 0.5~2.0 중량부, 소포제 0.1~1.0 중량부 및 석고 1~5 중량부를 혼합하고 골재 및 물을 혼합하여 구성되는 것을 특징으로 하는 초속경 고성능 그라우트 조성물.
For 40 parts by weight of cement, 1 to 20 parts by weight of calcium carbonate, 1 to 15 parts by weight of fiber reinforcement, 1 to 10 parts by weight of high-performance water reducing agent, 0.1 to 10 parts by weight of fine quartz powder, and 1 to 10 parts by weight of calcium alumina sulfite (CSA). An ultra-fast, high-performance grout composition characterized by mixing 0.5 to 2.0 parts by weight of a shrinkage reducer, 0.1 to 1.0 parts by weight of an antifoaming agent, and 1 to 5 parts by weight of gypsum, and mixing aggregate and water.
청구항 1에 있어서, 상기 섬유 보강재는 강섬유 및 합성 섬유가 100:10~100의 비율로 혼합된 것을 사용하는 것을 특징으로 하는 초속경 고성능 그라우트 조성물.
The ultra-fast hardening, high-performance grout composition according to claim 1, wherein the fiber reinforcement is a mixture of steel fibers and synthetic fibers in a ratio of 100:10 to 100.
청구항 2에 있어서, 상기 합성 섬유는 폴리에스테르 섬유, 나일론 섬유, 폴리프로필렌(PP) 섬유, 셀룰로오스 섬유 및 폴리에틸렌 섬유 중에서 선택되는 1종 이상인 것을 특징으로 하는 초속경 고성능 그라우트 조성물.
The ultra-fast hardening, high-performance grout composition according to claim 2, wherein the synthetic fiber is at least one selected from polyester fiber, nylon fiber, polypropylene (PP) fiber, cellulose fiber, and polyethylene fiber.
청구항 1에 있어서, 상기 석영 미분말은 수용성 수지를 스프레이 방식으로 유리분말 분쇄물에 도포하고 반죽한 후 킬른에서 소성하여 얻어진 것을 사용하는 것을 특징으로 하는 초속경 고성능 그라우트 조성물.
The ultra-fast hardening, high-performance grout composition according to claim 1, wherein the quartz fine powder is obtained by applying a water-soluble resin to pulverized glass powder using a spray method, kneading the mixture, and then firing it in a kiln.
청구항 4에 있어서, 상기 수용성 수지는 EVA(Ethylene vinyl acetate 공중합체) 수지 또는 아크릴 수지인 것을 특징으로 하는 초속경 고성능 그라우트 조성물.
The ultra-fast hardening, high-performance grout composition according to claim 4, wherein the water-soluble resin is an EVA (Ethylene vinyl acetate copolymer) resin or an acrylic resin.
청구항 1에 있어서, 상기 시멘트 40 중량부에 대하여 방동보조제 0.1~5 중량부 및 유무기 강도조절제 0.1~3 중량부를 더 포함하는 것을 특징으로 하는 초속경 고성능 그라우트 조성물.
The ultra-fast hardening, high-performance grout composition according to claim 1, further comprising 0.1 to 5 parts by weight of an anti-static adjuvant and 0.1 to 3 parts by weight of an organic-inorganic strength regulator based on 40 parts by weight of the cement.
청구항 6에 있어서,
상기 방동보조제는 칼슘 포메이트 5~20 중량부, 프로필 셀로솔브 1~10 중량부, 카프로산 0.1~5 중량부 및 요소 0.1~5 중량부로 이루어진 것을 사용하는 것을 특징으로 하는 초속경 고성능 그라우트 조성물.
In claim 6,
An ultra-fast hardening, high-performance grout composition, characterized in that the anti-static aid is composed of 5 to 20 parts by weight of calcium formate, 1 to 10 parts by weight of propyl cellosolve, 0.1 to 5 parts by weight of caproic acid, and 0.1 to 5 parts by weight of urea.
청구항 6에 있어서,
상기 유무기 강도조절제는 SBR(Styrene-Butadiene rubber) 고무 10~20 중량부, 하이드록실 아크릴레이트 모노머 1~15 중량부, 불포화 폴리에스테르 수지 15~30 중량비로 이루어진 수지 성분과 이산화티타늄 2~5 중량부, 운모 1~7 중량부 및 규조토 1~10 중량부로 이루어진 무기성분을 포함하며, 상기 수지 성분은 중공의 구 형상을 이루고, 상기 수지 성분을 상기 무기성분이 외부에서 둘러싸서 비즈 형상을 이루는 것을 사용하는 것을 특징으로 하는 초속경 고성능 그라우트 조성물.
In claim 6,
The organic-inorganic strength regulator is a resin component consisting of 10 to 20 parts by weight of SBR (Styrene-Butadiene rubber), 1 to 15 parts by weight of hydroxyl acrylate monomer, and 15 to 30 parts by weight of unsaturated polyester resin, and 2 to 5 parts by weight of titanium dioxide. parts, 1 to 7 parts by weight of mica, and 1 to 10 parts by weight of diatomaceous earth, wherein the resin component forms a hollow sphere shape, and the inorganic component surrounds the resin component on the outside to form a bead shape. An ultra-fast, high-performance grout composition characterized in that it is used.
청구항 1 내지 8 중 어느 한 항의 초속경 고성능 그라우트 조성물을 이용한 그라우트 시공 공법. A grout construction method using the ultra-fast hardening, high-performance grout composition of any one of claims 1 to 8.
KR1020220066905A 2022-05-31 2022-05-31 Ultra fastening high performance grout composition and grout construction method using the same KR102655981B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220066905A KR102655981B1 (en) 2022-05-31 2022-05-31 Ultra fastening high performance grout composition and grout construction method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220066905A KR102655981B1 (en) 2022-05-31 2022-05-31 Ultra fastening high performance grout composition and grout construction method using the same

Publications (2)

Publication Number Publication Date
KR20230167250A true KR20230167250A (en) 2023-12-08
KR102655981B1 KR102655981B1 (en) 2024-04-11

Family

ID=89166788

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220066905A KR102655981B1 (en) 2022-05-31 2022-05-31 Ultra fastening high performance grout composition and grout construction method using the same

Country Status (1)

Country Link
KR (1) KR102655981B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102662112B1 (en) 2024-01-19 2024-05-03 (주)씨엠티 Non-cement grout composition and grouting method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101645586B1 (en) * 2016-04-05 2016-08-09 에스에스씨산업(주) Super-high-early-strength Dry-grout Composition and Early-tensile Type Grouting Method Using the Same
KR20210070467A (en) * 2019-12-04 2021-06-15 한국철도기술연구원 Light-weight mortar composition for repairing with improved fire proof, durability and workability and construction method of repairing concrete structure using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101645586B1 (en) * 2016-04-05 2016-08-09 에스에스씨산업(주) Super-high-early-strength Dry-grout Composition and Early-tensile Type Grouting Method Using the Same
KR20210070467A (en) * 2019-12-04 2021-06-15 한국철도기술연구원 Light-weight mortar composition for repairing with improved fire proof, durability and workability and construction method of repairing concrete structure using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102662112B1 (en) 2024-01-19 2024-05-03 (주)씨엠티 Non-cement grout composition and grouting method using the same

Also Published As

Publication number Publication date
KR102655981B1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
KR102152603B1 (en) Concrete composition comprising 3 components using ferro-nickel slag powder and concrete structures manufactured using the same
KR101995844B1 (en) Mortar composition for repairing and reinforcing underwater concrete structures, and method of repairing and reinforcing underwater concrete structures using the same
KR101498196B1 (en) Lightweight hybrid water-repellent polymer mortar composition for repairing and protecting concrete structure, and construction method using the same
KR101921900B1 (en) Preparation method of eco-friendly polymer mortar comprising high performance and hydrophilic PVA fiber and natural sisal fiber, and method of crack control and repairing using the same
KR101832132B1 (en) Polymer mortar composition for earthquake-proof and reinforcement of concrete structure, and construction method of earthquake-proof and reinforement of concrete using the same
KR101912626B1 (en) Mortar composition for repairing and reinforcing underwater concrete structures, and method of repairing and reinforcing underwater concrete structures using the same
KR102037623B1 (en) Mortar composition of underwater inseparable type for repairing and reinforcing underwater concrete structures, and method of repairing and reinforcing underwater concrete structures using the same
KR102038266B1 (en) Eco-friendly mortar composition for repairing and reinforcing structures, and method of repairing and reinforcing structures using the same
KR101952152B1 (en) Quick-hardening polymer cement concrete composition having improved flexural toughness and durability and repairing method for road pavement therewith
KR101674923B1 (en) Repairing method of concrete structure using high-strength polymer mortar and fireproof mortar
KR20190075661A (en) Mortar composition for repairing, reinforcing and enhancing earthquake-proof property of concrete structure, and construction method of repair and reinforcement of concrete using the same
KR101720504B1 (en) A high early strength cement concrete composition having the improved durability for road pavement and a repairing method of road pavement using the same
KR101972265B1 (en) Method of repairing and reinforcing concrete structure using high strength mortar composition and stiffner
KR101608015B1 (en) Method of repairing and reinforcing cross section of concrete structure using fast hardening mortar
KR101941179B1 (en) Composition for repairing and reinforcing concrete structure comprising high strength mortar, and method of repairing and reinforcing concrete structures using the same
KR102272220B1 (en) Method of reinforcement of cross section of structure using polymer mortar with high heat and fast rigidity containing calcium sulfonate, calcium pomate and PBO fiber, and method seismic refractory reinforcement of structure using high-strength composite sheet made of glass fiber and aramid fiber
KR101860125B1 (en) Mortar composition for repairing, reinforcing and enhancing earthquake-proof property of concrete structure, and construction method of repair and reinforcement of concrete using the same
KR101809485B1 (en) Ultra rapid harding,high early strength waterproof and mothproof mortar composition
KR102347276B1 (en) Light-weight mortar composition for repairing with improved fire proof, durability and workability and construction method of repairing concrete structure using the same
KR101954575B1 (en) Construction method of earthquake-proof and reinforcement of concrete structure using polymer mortar with high strength and durability and elastic stiffner
KR102054434B1 (en) Eco-Friendly Mortar Composite for Repair Section Comprising Function of Preventing Neutralization and Saltdamage and Constructing Methods Using Thereof
KR102079509B1 (en) Polymer Mortar Composition for Repair Section and Constructing Methods Using Thereof
KR101441949B1 (en) Method of repairing and protecting concrete structure using eco-friendly lightweight hybrid water-repellent polymer mortar composition and surface protecting material
KR102383895B1 (en) Crack reducing recycled fiber mortar composition having excellent repairing and reinforcing method using the same
CN110655344A (en) Anti-cracking additive suitable for strong-constraint superimposed wall lining concrete

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant