KR20230166854A - Method and apparatus for recognizing based on camera arranged on both sides of the front for each floor of showcase - Google Patents

Method and apparatus for recognizing based on camera arranged on both sides of the front for each floor of showcase Download PDF

Info

Publication number
KR20230166854A
KR20230166854A KR1020220173879A KR20220173879A KR20230166854A KR 20230166854 A KR20230166854 A KR 20230166854A KR 1020220173879 A KR1020220173879 A KR 1020220173879A KR 20220173879 A KR20220173879 A KR 20220173879A KR 20230166854 A KR20230166854 A KR 20230166854A
Authority
KR
South Korea
Prior art keywords
product
camera
data
floor
columns
Prior art date
Application number
KR1020220173879A
Other languages
Korean (ko)
Inventor
송중석
한상진
Original Assignee
(주) 인터마인즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 인터마인즈 filed Critical (주) 인터마인즈
Priority to KR1020220173879A priority Critical patent/KR20230166854A/en
Publication of KR20230166854A publication Critical patent/KR20230166854A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F9/00Details other than those peculiar to special kinds or types of apparatus
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F9/00Details other than those peculiar to special kinds or types of apparatus
    • G07F9/002Vending machines being part of a centrally controlled network of vending machines
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F9/00Details other than those peculiar to special kinds or types of apparatus
    • G07F9/006Details of the software used for the vending machines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/06Recognition of objects for industrial automation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법 및 장치가 제공된다. 상기 방법은, 쇼케이스 층별로 전면 양측에 각각 배치된 복수의 카메라에 의해 촬영된 복수의 촬영 데이터를 획득하는 단계 및 상기 복수의 촬영 데이터를 이용하여 해당 층의 중앙영역에 배치된 상품의 종류를 인식하는 단계를 포함하고, 상기 인식 단계는, 상기 복수의 촬영 데이터 간 중복된 컬럼(column)을 추출하고, 상품 관련 데이터베이스를 이용하여 상기 추출된 컬럼에 배치된 상품의 종류를 인식할 수 있다.A camera-based recognition method and device placed on both sides of the front of each showcase floor is provided. The method includes acquiring a plurality of photographic data captured by a plurality of cameras respectively disposed on both sides of the front of each showcase floor, and using the plurality of photographic data to recognize the type of product placed in the central area of the corresponding floor. The recognition step may include extracting duplicate columns between the plurality of photographed data and recognizing the type of product placed in the extracted column using a product-related database.

Description

쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법 및 장치 {METHOD AND APPARATUS FOR RECOGNIZING BASED ON CAMERA ARRANGED ON BOTH SIDES OF THE FRONT FOR EACH FLOOR OF SHOWCASE}Camera-based recognition method and device placed on both sides of the front of each showcase floor {METHOD AND APPARATUS FOR RECOGNIZING BASED ON CAMERA ARRANGED ON BOTH SIDES OF THE FRONT FOR EACH FLOOR OF SHOWCASE}

본 개시는 쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법 및 장치에 관한 것이다. This disclosure relates to a camera-based recognition method and device placed on both sides of the front of each showcase floor.

일반적으로 매장에서 제품을 구매하기 위해서는 구매자가 구매하고자 하는 제품을 선택하고, 선택한 제품의 계산을 위해 계산대 등 계산장소로 제품을 가지고 간 상태에서 이를 판매하고 있는 판매자에게 비용을 지불하여 구매하는 방식을 채택하고 있다.Generally, in order to purchase a product at a store, the buyer selects the product he or she wants to purchase, takes the product to a checkout location such as a checkout counter to pay for the selected product, and then pays the seller for the product to purchase it. It is being adopted.

예를 들어, 편의점에서 커피를 구매하고자 하는 경우, 구매자는 편의점에서 구매하고자 하는 커피를 냉장고 등 제품수납부에서 취득한 후, 이를 계산대로 들고 간 뒤 판매자에게 건네주고, 판매자가 해당 제품에 대한 가격정보를 바코드 등을 활용하여 판단한 후, 판단된 가격에 대한 금액을 결제하여 구매자에게 건네줌으로써 제품의 구입단계가 종료된다.For example, when purchasing coffee at a convenience store, the buyer obtains the coffee he/she wishes to purchase from the refrigerator or other product storage department at the convenience store, carries it to the cash register, hands it to the seller, and the seller provides price information for the product. After determining the price using a barcode, etc., the purchase stage of the product is completed by paying the determined price and handing it over to the buyer.

그런데, 상기와 같은 제품 구매 방식의 경우, 판매자가 필수적으로 매대에 대기해야 하기 때문에, 판매자가 사정 상 자리를 비우는 경우에는 제품을 구매할 수 없는 문제가 있다. 또한, 구매자가 단시간에 많이 몰리거나 계산을 위한 매대가 한 군데만 존재하는 경우에는, 구매자가 제품을 구매하기 위해 장시간 대기해야 하는 문제가 있다. 또한, 판매 매장측에서는 판매자를 고용해야 하기 때문에 인건비 부담이 가중되는 문제가 있다. However, in the case of the product purchase method described above, since the seller must stand by at the stand, there is a problem in that the product cannot be purchased if the seller is absent for some reason. Additionally, when a large number of buyers flock in a short period of time or when there is only one counter for checkout, there is a problem in which buyers have to wait for a long time to purchase a product. In addition, there is a problem of increased labor cost burden because sales stores must hire sellers.

최근 이러한 문제를 극복하기 위하여 제품판매처에서는 키오스크 등 다양한 무인 판매 장치를 설치하여, 구매자가 판매자에게 제품을 직접 가져가지 않고, 무인 판매 장치를 활용하여 바로 제품을 구매할 수 있는 상황이 늘어나고 있는 실정이다.Recently, in order to overcome this problem, product sales outlets have installed various unmanned sales devices such as kiosks, and the number of situations where buyers can purchase products directly using unmanned sales devices without taking the product directly to the seller is increasing.

공개특허공보 제10-2021-0141234호, 2021.11.23.Public Patent Publication No. 10-2021-0141234, 2021.11.23.

본 개시에 개시된 실시예는 쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법 및 장치를 제공하는데 그 목적이 있다.The purpose of the embodiment disclosed in this disclosure is to provide a camera-based recognition method and device placed on both sides of the front of each showcase floor.

본 개시가 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present disclosure are not limited to the problems mentioned above, and other problems not mentioned can be clearly understood by those skilled in the art from the description below.

상술한 기술적 과제를 달성하기 위한 본 개시에 일 측면에 따른 쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법은, 쇼케이스 층별로 전면 양측에 각각 배치된 복수의 카메라에 의해 촬영된 복수의 촬영 데이터를 획득하는 단계 및 상기 복수의 촬영 데이터를 이용하여 해당 층의 중앙영역에 배치된 상품의 종류를 인식하는 단계를 포함하고, 상기 인식 단계는, 상기 복수의 촬영 데이터 간 중복된 컬럼(column)을 추출하고, 상품 관련 데이터베이스를 이용하여 상기 추출된 컬럼에 배치된 상품의 종류를 인식할 수 있다.A recognition method based on cameras disposed on both sides of the front of each showcase floor according to one aspect of the present disclosure for achieving the above-described technical problem includes acquiring a plurality of captured data captured by a plurality of cameras disposed on both sides of the front of each showcase floor. A step of recognizing the type of product placed in the central area of the corresponding floor using the plurality of photographed data, wherein the recognition step includes extracting an overlapping column between the plurality of photographed data, , the type of product placed in the extracted column can be recognized using a product-related database.

또한, 상기 쇼케이스의 각각의 층은 n개의 컬럼을 포함하고(여기서, n은 자연수), 상기 복수의 카메라 중 제1 카메라에 의해 촬영된 제1 촬영 데이터는 상기 n개의 컬럼 중 순차적인 순서로 n-p개의 컬럼을 포함하고(여기서, p는 n보다 작은 자연수), 상기 복수의 카메라 중 제2 카메라에 의해 촬영된 제2 촬영 데이터는 상기 n개의 컬럼 중 역순으로 n-q개의 컬럼을 포함할 수 있다(여기서, q는 n보다 작은 자연수).In addition, each layer of the showcase includes n columns (where n is a natural number), and the first captured data captured by the first camera among the plurality of cameras is n-p in sequential order among the n columns. It includes columns (where p is a natural number smaller than n), and the second captured data captured by the second camera among the plurality of cameras may include n-q columns in reverse order among the n columns (where p is a natural number smaller than n). , q is a natural number less than n).

또한, 상기 제1 카메라 및 상기 제2 카메라 각각은, 상기 n-p개의 컬럼 및 상기 n-q개의 컬럼 간 m개의 컬럼이 중복되도록 양측에 대칭으로 배치될 수 있다.Additionally, each of the first camera and the second camera may be arranged symmetrically on both sides such that m columns overlap between the n-p columns and the n-q columns.

또한, 상기 인식 단계는, 상기 제1 촬영 데이터 및 제2 촬영 데이터 간 상기 중복된 컬럼에 배치된 상품에 대하여, 상기 제1 촬영 데이터 및 제2 촬영 데이터를 조합하여 조합 데이터를 생성하고, 상기 데이터베이스에서 상기 조합 데이터와 매칭되는 상품을 탐색하고, 상기 탐색된 상품의 종류를 상기 중복된 컬럼에 배치된 상품의 종류로 결정할 수 있다. In addition, in the recognition step, for products placed in the overlapping column between the first and second photographed data, the first photographed data and the second photographed data are combined to generate combined data, and the database A product matching the combination data can be searched, and the type of the searched product can be determined as the type of product placed in the overlapping column.

또한, 상기 인식 단계는, 상기 제1 촬영 데이터 및 제2 촬영 데이터 간 상기 중복된 컬럼에 배치된 상품에 대하여, 상기 데이터베이스에서 상기 제1 촬영 데이터와의 매칭률이 기 설정된 제1 값 이상인 상품들을 추출하고, 상기 추출된 상품들 중에서 상기 제2 촬영 데이터와의 매칭률이 기 설정된 제2 값 이상인 상품을 탐색하고, 상기 탐색된 상품의 종류를 중복된 컬럼에 배치된 상품의 종류로 결정할 수 있다. In addition, in the recognition step, for products placed in the overlapping column between the first photographed data and the second photographed data, products whose matching rate with the first photographed data is greater than or equal to a preset first value in the database Extract, search for products whose matching rate with the second shooting data is more than a preset second value among the extracted products, and determine the type of the searched product as the type of product placed in the overlapping column. .

또한, 상기 방법은, 기 구축된 학습 모델을 기반으로 상기 복수의 촬영 데이터를 분석하여 해당 층에 배치된 복수의 상품 중에서 오배치된 상품을 인식하는 단계를 더 포함할 수 있다.In addition, the method may further include the step of analyzing the plurality of photographed data based on a pre-built learning model to recognize misplaced products among the plurality of products placed on the corresponding floor.

또한, 상기 학습 모델은, 상품의 진열 상태에 대한 오배치 유형 별 학습 데이터를 학습하여 구축되며, 상기 진열 상태에 대한 오배치 유형은, 상기 상품이 x축, y축 및 z축 중 두 개의 축을 기준으로 회전된 경우를 포함할 수 있다.In addition, the learning model is constructed by learning learning data for each misplacement type for the display state of the product, and the misplacement type for the display state is that the product moves on two axes among the x-axis, y-axis, and z-axis. This may include cases where the object is rotated based on the reference.

또한, 상기 학습 모델은, 상품의 진열 위치에 대한 오배치의 학습 데이터를 학습하여 구축되며, 상기 진열 위치에 대한 오배치는, 상기 상품이 상기 상품에 부여된 컬럼에 배치되지 않은 경우를 나타낼 수 있다.In addition, the learning model is constructed by learning learning data of misplacement for the display position of the product, and the misplacement for the display position may indicate a case where the product is not placed in a column assigned to the product. there is.

또한, 본 개시의 다른 측면에 따른 쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 장치는, 쇼케이스 층별로 배치된 복수의 카메라와 통신을 수행하는 통신부, 상기 복수의 카메라를 기반으로 상기 쇼케이스 내에 진열된 상품의 인식을 위한 적어도 하나의 프로세스를 저장하고 있는 메모리 및 상기 프로세스에 따라 동작하는 프로세서를 포함하고, 상기 프로세서는, 상기 프로세스를 기반으로, 상기 통신부를 통해 상기 쇼케이스 층별로 전면 양측에 각각 배치된 상기 복수의 카메라에 의해 촬영된 복수의 촬영 데이터를 획득하고, 상기 복수의 촬영 데이터를 이용하여 해당 층의 중앙영역에 배치된 상품의 종류를 인식하고, 상기 프로세서는 상기 인식 시에, 상기 복수의 촬영 데이터 간 중복된 컬럼(column)을 추출하고, 상품 관련 데이터베이스를 이용하여 상기 추출된 컬럼에 배치된 상품의 종류를 인식할 수 있다.In addition, a camera-based recognition device disposed on both sides of the front of each showcase floor according to another aspect of the present disclosure includes a communication unit that communicates with a plurality of cameras arranged on each showcase floor, and products displayed in the showcase based on the plurality of cameras. a memory storing at least one process for recognition and a processor operating according to the process, wherein the processor is disposed on both sides of the front for each showcase floor through the communication unit based on the process. Obtain a plurality of shooting data captured by a plurality of cameras, recognize the type of product placed in the central area of the floor using the plurality of shooting data, and the processor performs the recognition, Overlapping columns between data can be extracted and the type of product placed in the extracted column can be recognized using a product-related database.

이 외에도, 본 개시를 구현하기 위한 실행하기 위한 컴퓨터 판독 가능한 기록 매체에 저장된 컴퓨터 프로그램이 더 제공될 수 있다.In addition to this, a computer program stored in a computer-readable recording medium for execution to implement the present disclosure may be further provided.

이 외에도, 본 개시를 구현하기 위한 방법을 실행하기 위한 컴퓨터 프로그램을 기록하는 컴퓨터 판독 가능한 기록 매체가 더 제공될 수 있다.In addition, a computer-readable recording medium recording a computer program for executing a method for implementing the present disclosure may be further provided.

본 개시의 전술한 과제 해결 수단에 의하면, 복수의 칼럼 각각에 진열된 상품 중에서 중간에 진열된 상품에 대한 인식률을 높임으로써, 모든 컬럼에 진열된 상품 전체에 대한 인식이 가능해지고, 이에 따라 진열된 모든 상품에 대한 관리가 효율적으로 이루어질 수 있다.According to the means for solving the above-described problem of the present disclosure, by increasing the recognition rate for products displayed in the middle among products displayed in each of a plurality of columns, it becomes possible to recognize all products displayed in all columns, and thus the displayed products Management of all products can be done efficiently.

또한, 본 개시의 전술한 과제 해결 수단에 의하면, 층별 촬영 데이터를 이용하여 각 상품에 대한 오배치 여부를 판단할 수 있어, 상품 진열에 대한 실시간 모니터링이 가능해질 수 있다.In addition, according to the means for solving the above-described problem of the present disclosure, it is possible to determine whether or not each product is misplaced using shooting data for each floor, thereby enabling real-time monitoring of product display.

또한, 본 개시의 전술한 과제 해결 수단에 의하면, 쇼케이스 내 설치되는 카메라의 위치에 있어서 기존 방식과 대비하여 효과적이다. 즉, 카메라가 선반에 놓여진 상품들을 대각선으로 내려다볼 수 있는 위치에 설치됨으로써, 선반과 선반 사이(즉, 진열대의 각 층 사이)의 마진(margin)이 작아도 카메라 렌즈와 물체 사이의 거리가 충분히 확보될 수 있고, 이에 따라 진열대 내 선반을 더 설치할 수 있게 되므로 용적률 측면에서 효율성을 높일 수 있다.In addition, according to the means for solving the above-described problem of the present disclosure, it is effective compared to the existing method in terms of the position of the camera installed in the showcase. In other words, by installing the camera in a position where it can look down diagonally at the products placed on the shelf, a sufficient distance between the camera lens and the object can be secured even if the margin between shelves (i.e. between each layer of the shelf) is small. As a result, more shelves can be installed within the display stand, thereby increasing efficiency in terms of floor area ratio.

본 개시의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the present disclosure are not limited to the effects mentioned above, and other effects not mentioned may be clearly understood by those skilled in the art from the description below.

도 1은 본 개시에 따른 따른 무인 판매 시스템을 개략적으로 나타낸 도면이다.
도 2는 본 개시에 따른 무인 판매 장치와 서버에 포함된 구성을 개략적으로 나타낸 도면이다.
도 3은 본 개시에 따른 복수의 컬럼으로 구분된 선반에 진열된 상품들과 상기 상품들을 촬영하기 위해 구비된 카메라를 위에서 내려다본 도면이다.
도 4는 본 개시에 따른 쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법의 순서도이다.
도 6은 본 개시에 따른 복수의 촬영 데이터 간 중복된 컬럼을 설명하기 위한 예시도이다.
도 7a 내지 도 7d는 본 개시에 따른 상품의 진열 상태에 대한 오배치 유형을 설명하기 위한 예시도이다.
1 is a diagram schematically showing an unmanned vending system according to the present disclosure.
Figure 2 is a diagram schematically showing the configuration included in the unmanned vending device and server according to the present disclosure.
Figure 3 is a view looking down from above of products displayed on shelves divided into a plurality of columns according to the present disclosure and a camera provided to photograph the products.
Figure 4 is a flowchart of a camera-based recognition method placed on both sides of the front of each showcase floor according to the present disclosure.
Figure 6 is an example diagram for explaining overlapping columns between a plurality of captured data according to the present disclosure.
FIGS. 7A to 7D are exemplary diagrams for explaining types of misplacement of products in a display state according to the present disclosure.

본 개시 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다. 본 개시가 실시예들의 모든 요소들을 설명하는 것은 아니며, 본 개시가 속하는 기술분야에서 일반적인 내용 또는 실시예들 간에 중복되는 내용은 생략한다. 명세서에서 사용되는 ‘부, 모듈, 부재, 블록’이라는 용어는 소프트웨어 또는 하드웨어로 구현될 수 있으며, 실시예들에 따라 복수의 '부, 모듈, 부재, 블록'이 하나의 구성요소로 구현되거나, 하나의 '부, 모듈, 부재, 블록'이 복수의 구성요소들을 포함하는 것도 가능하다. Like reference numerals refer to like elements throughout this disclosure. The present disclosure does not describe all elements of the embodiments, and general content or overlapping content between the embodiments in the technical field to which the present disclosure pertains is omitted. The term 'unit, module, member, block' used in the specification may be implemented as software or hardware, and depending on the embodiment, a plurality of 'unit, module, member, block' may be implemented as a single component, or It is also possible for one 'part, module, member, or block' to include multiple components.

명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐 아니라, 간접적으로 연결되어 있는 경우를 포함하고, 간접적인 연결은 무선 통신망을 통해 연결되는 것을 포함한다.Throughout the specification, when a part is said to be “connected” to another part, this includes not only direct connection but also indirect connection, and indirect connection includes connection through a wireless communication network. do.

또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Additionally, when a part "includes" a certain component, this means that it may further include other components rather than excluding other components, unless specifically stated to the contrary.

명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the specification, when a member is said to be located “on” another member, this includes not only cases where a member is in contact with another member, but also cases where another member exists between the two members.

제 1, 제 2 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위해 사용되는 것으로, 구성요소가 전술된 용어들에 의해 제한되는 것은 아니다. Terms such as first and second are used to distinguish one component from another component, and the components are not limited by the above-mentioned terms.

단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Singular expressions include plural expressions unless the context clearly makes an exception.

각 단계들에 있어 식별부호는 설명의 편의를 위하여 사용되는 것으로 식별부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 실시될 수 있다. The identification code for each step is used for convenience of explanation. The identification code does not explain the order of each step, and each step may be performed differently from the specified order unless a specific order is clearly stated in the context. there is.

이하 첨부된 도면들을 참고하여 본 개시의 작용 원리 및 실시예들에 대해 설명한다.Hereinafter, the operating principle and embodiments of the present disclosure will be described with reference to the attached drawings.

본 명세서에서 '본 개시에 따른 쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 장치'는 연산처리를 수행하여 사용자에게 결과를 제공할 수 있는 다양한 장치들이 모두 포함된다. 예를 들어, 본 개시에 따른 쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 장치는, 컴퓨터, 서버 장치 및 휴대용 단말기를 모두 포함하거나, 또는 어느 하나의 형태가 될 수 있다.In this specification, 'camera-based recognition devices placed on both sides of the front of each showcase floor according to the present disclosure' includes various devices that can perform computational processing and provide results to the user. For example, the camera-based recognition device disposed on both sides of the front of each showcase floor according to the present disclosure may include all of a computer, a server device, and a portable terminal, or may take the form of any one.

여기에서, 상기 컴퓨터는 예를 들어, 웹 브라우저(WEB Browser)가 탑재된 노트북, 데스크톱(desktop), 랩톱(laptop), 태블릿 PC, 슬레이트 PC 등을 포함할 수 있다.Here, the computer may include, for example, a laptop, desktop, laptop, tablet PC, slate PC, etc. equipped with a web browser.

상기 서버 장치는 외부 장치와 통신을 수행하여 정보를 처리하는 서버로써, 애플리케이션 서버, 컴퓨팅 서버, 데이터베이스 서버, 파일 서버, 게임 서버, 메일 서버, 프록시 서버 및 웹 서버 등을 포함할 수 있다.The server device is a server that processes information by communicating with external devices, and may include an application server, computing server, database server, file server, game server, mail server, proxy server, and web server.

상기 휴대용 단말기는 예를 들어, 휴대성과 이동성이 보장되는 무선 통신 장치로서, PCS(Personal Communication System), GSM(Global System for Mobile communications), PDC(Personal Digital Cellular), PHS(Personal Handyphone System), PDA(Personal Digital Assistant), IMT(International Mobile Telecommunication)-2000, CDMA(Code Division Multiple Access)-2000, W-CDMA(W-Code Division Multiple Access), WiBro(Wireless Broadband Internet) 단말, 스마트 폰(Smart Phone) 등과 같은 모든 종류의 핸드헬드(Handheld) 기반의 무선 통신 장치와 시계, 반지, 팔찌, 발찌, 목걸이, 안경, 콘택트 렌즈, 또는 머리 착용형 장치(head-mounted-device(HMD) 등과 같은 웨어러블 장치를 포함할 수 있다.The portable terminal is, for example, a wireless communication device that guarantees portability and mobility, such as PCS (Personal Communication System), GSM (Global System for Mobile communications), PDC (Personal Digital Cellular), PHS (Personal Handyphone System), and PDA. (Personal Digital Assistant), IMT (International Mobile Telecommunication)-2000, CDMA (Code Division Multiple Access)-2000, W-CDMA (W-Code Division Multiple Access), WiBro (Wireless Broadband Internet) terminal, smart phone ), all types of handheld wireless communication devices, and wearable devices such as watches, rings, bracelets, anklets, necklaces, glasses, contact lenses, or head-mounted-device (HMD). may include.

도 1은 본 개시에 따른 따른 무인 판매 시스템을 개략적으로 나타낸 도면이다.1 is a diagram schematically showing an unmanned vending system according to the present disclosure.

도 1을 참조하면, 본 발명의 일 실시예에 따른 무인 판매 시스템(10)은, 쇼케이스 층별 전면 양측에 배치된 카메라를 기반으로 쇼케이스 내에 진열된 상품을 인식 하기 위한 무인 판매 장치(100) 및 서버(200)를 포함할 수 있다. 여기서, 도 1에 도시된 무인 판매 시스템(10)은 하나의 예시일 뿐이며, 도 1에 도시된 구성요소보다 더 적은 수의 구성요소나 더 많은 구성요소를 포함할 수 있다.Referring to FIG. 1, the unmanned vending system 10 according to an embodiment of the present invention includes an unmanned vending device 100 and a server for recognizing products displayed in the showcase based on cameras placed on both sides of the front of each showcase floor. It may include (200). Here, the unmanned vending system 10 shown in FIG. 1 is only an example and may include fewer or more components than the components shown in FIG. 1 .

무인 판매 장치(100)는 특정한 종류의 상품들을 판매자 없이 판매하기 위한 장치로서, 판매하고자 하는 상품들을 진열하는 진열대(즉, 쇼케이스) 형태로 구성되어 상기 진열된 상품들의 출입을 감지하고 재고를 판단하여, 최종적으로 구매자의 구매 상품에 대한 결제를 수행하도록 한다. The unmanned sales device 100 is a device for selling specific types of products without a seller. It is configured in the form of a display stand (i.e., a showcase) to display products to be sold, and detects the entry and exit of the displayed products and determines inventory. , which ultimately allows the buyer to make payment for the purchased product.

일 실시예에 있어서, 무인 판매 장치(100)는 상품을 구매하고자 하는 사용자(즉, 구매자)가 도어를 개폐함에 따라 내부에 진열된 상품들의 출입 여부를 감지하고, 그 결과를 서버(200)로 전송할 수 있다. In one embodiment, the unmanned vending device 100 detects whether the products displayed inside enter or exit as the user (i.e., the buyer) who wants to purchase the product opens or closes the door, and sends the results to the server 200. Can be transmitted.

즉, 무인 판매 장치(100)는 무인 판매를 위한 다양한 기능을 수행하는데 필요한 연산처리를 수행하여 사용자에게 결과를 제공할 수 있는 다양한 장치들이 모두 포함될 수 있다. 예를 들어, 무인 판매 장치(100)는 각종 기기 또는 유무선 네트워크와 통신을 수행하기 위한 통신 모뎀 등의 통신 장치, 각종 프로그램과 데이터를 저장하기 위한 메모리, 프로그램을 실행하여 연산 및 제어하기 위한 마이크로프로세서 등을 구비하는 다양한 컴퓨팅 장치를 포함할 수 있다. In other words, the unmanned vending device 100 may include various devices that can perform computational processing necessary to perform various functions for unmanned vending and provide results to the user. For example, the unmanned vending device 100 includes a communication device such as a communication modem for communicating with various devices or a wired or wireless network, a memory for storing various programs and data, and a microprocessor for calculating and controlling the program by executing it. It may include various computing devices including the like.

무인 판매 장치(100)는 내부에 상품들을 진열하는 진열대 형태로 구성될 수 있으며, 진열대 내부는 복수의 선반이 적층되는 구조로 구성될 수 있다. 또한, 복수의 선반 각각은 복수의 컬럼(column)으로 구분되고, 복수의 컬럼 각각에는 상품들을 배치할 수 있다. 무인 판매 장치(100) 내에 배치되는 상품은 다양한 종류의 상품들을 포함할 수 있다. 본 발명의 일 실시예에 있어서, 무인 판매 장치(100) 내에 배치되는 상품은 부피에 비해서 무게가 가벼운 상품(예: 일반 담배, 전자 담배, 과자 등)일 수 있다. 다만, 이는 하나의 예시일 뿐이고 반드시 이에 한정되는 것은 아니다. The unmanned vending device 100 may be configured in the form of a display stand that displays products therein, and the interior of the display stand may be configured in a structure in which a plurality of shelves are stacked. Additionally, each of the plurality of shelves is divided into a plurality of columns, and products can be placed in each of the plurality of columns. Products placed in the unmanned vending device 100 may include various types of products. In one embodiment of the present invention, the product placed in the unmanned vending device 100 may be a product that is light in weight compared to its volume (e.g., regular cigarettes, electronic cigarettes, snacks, etc.). However, this is only an example and is not necessarily limited to this.

일 실시예에 있어서, 무인 판매 장치(100) 내 각 선반은 소정의 기울기를 가지도록 구성될 수 있으며, 이 경우 각 선반의 각 컬럼 상에 배치된 상품들은 상기 소정의 기울기에 의해서 선반 상의 앞쪽으로 밀려서 이동될 수 있도록 한다. In one embodiment, each shelf in the unmanned vending device 100 may be configured to have a predetermined inclination, and in this case, products placed on each column of each shelf are moved to the front of the shelf by the predetermined inclination. Allow it to be pushed and moved.

또한, 일 실시예로, 무인 판매 장치(100) 내 각 선반은 복수개의 탄성부재를 더 구비할 수 있다. 즉, 각 선반 상에 구분된 복수개의 컬럼에 대응하여 복수개의 탄성부재가 설치될 수 있다. 예를 들어, 선반 상의 각 컬럼마다 하나씩 탄성부재가 설치될 수 있고, 이때 탄성부재는 선반의 뒤쪽에 설치되어 선반의 앞쪽 방향으로 나아가는 힘(즉, 탄성력)을 가지는 스프링 등을 이용하여 구성될 수 있다. 다시 말해, 탄성부재는 각 컬럼 상에 배치된 가장 앞쪽의 상품이 빠질 때 마다 탄성력에 의해 각 컬럼 상에 배치된 나머지 상품들을 선반의 앞쪽으로 위치되도록 미는 힘을 가할 수 있다. Additionally, in one embodiment, each shelf in the unmanned vending device 100 may further include a plurality of elastic members. That is, a plurality of elastic members may be installed corresponding to a plurality of columns separated on each shelf. For example, one elastic member may be installed in each column on the shelf, and in this case, the elastic member may be constructed using a spring or the like that is installed at the back of the shelf and has a force (i.e., elastic force) that moves toward the front of the shelf. there is. In other words, the elastic member can apply a force to push the remaining products placed on each column to the front of the shelf by elastic force whenever the frontmost product placed on each column falls off.

무인 판매 장치(100)는 각 선반의 각 컬럼 상에 배치된 상품들을 촬영할 수 있는 카메라를 구비할 수 있다. 카메라는 무인 판매 장치(100) 내의 각 선반별로 설치될 수 있으며, 각 선반에 진열된 상품들을 상부에서 대각선 방향으로 내려다보는 위치에 설치될 수 있다. 이때, 무인 판매 장치(100) 내 선반과 선반 사이의 높이(즉, 진열대 내 각 층의 높이), 선반 상의 컬럼의 수, 상품의 너비(상품의 종류에 따라 다름, 예컨대 전자담배가 일반 담배보다 상품 너비가 클 수 있음) 등을 기반으로 카메라의 화각을 고려하여 최적의 카메라의 위치 및/또는 카메라의 개수가 정해질 수 있다. 즉, 각 층의 높이, 상품의 너비 등에 따라 하나의 카메라가 인식할 수 있는 영역(즉, 컬럼의 개수)이 제한되므로, 일 실시예로 카메라는 무인 판매 장치(100) 내의 각 선반별로 전면 양측에 설치될 수 있다. 보다 상세하게, 카메라는 무인 판매 장치(100) 내의 각 선반별로 전면 좌측 상부 및 우측 상부에서 대각선 방향으로 내려다보는 위치에 설치될 수 있다. 예를 들어, 각 선반별로 좌측 및 우측에 각각 카메라(즉, 좌측 카메라 및 우측 카메라)가 설치될 수 있다. 다만, 이는 하나의 예시일 뿐이고 반드시 이에 한정되는 것은 아니다. The unmanned vending device 100 may be equipped with a camera capable of photographing products placed on each column of each shelf. The camera may be installed on each shelf in the unmanned vending device 100, and may be installed in a position to view the products displayed on each shelf diagonally from the top. At this time, the height between shelves in the unmanned vending device 100 (i.e., the height of each layer within the shelf), the number of columns on the shelf, and the width of the product (depending on the type of product, for example, electronic cigarettes are higher than regular cigarettes). The optimal camera position and/or number of cameras can be determined by considering the camera's angle of view based on the product width (the width of the product may be large), etc. That is, the area that one camera can recognize (i.e., the number of columns) is limited depending on the height of each floor, the width of the product, etc., so in one embodiment, the camera is installed on both sides of the front for each shelf in the unmanned vending device 100. can be installed in More specifically, the camera may be installed in a position looking diagonally downward from the front upper left and upper right for each shelf within the unmanned vending device 100. For example, cameras (i.e., a left camera and a right camera) may be installed on the left and right sides of each shelf. However, this is only an example and is not necessarily limited to this.

무인 판매 장치(100)는 각 선반별로 각 컬럼에 진열(배치)될 상품에 대한 정보(예컨대, 상품명, 상품 가격, 상품 크기 등)를 설정하고 저장할 수 있다. 일 예로, 무인 판매 장치(100)는 서버(200)로부터 각 선반별로 각 컬럼에 배치될 상품에 대한 정보를 수신할 수도 있고, 서버(200)의 요청에 따라 각 컬럼별로 배치될 상품에 대한 정보를 변경할 수도 있다.The unmanned vending device 100 can set and store information (eg, product name, product price, product size, etc.) about products to be displayed (placed) in each column for each shelf. As an example, the unmanned vending device 100 may receive information about products to be placed in each column for each shelf from the server 200, and information about products to be placed in each column at the request of the server 200. You can also change .

서버(200)는 클라이언트 또는 다른 웹서버의 작업수행 요청에 대응하는 작업 결과를 도출하여 제공하는 컴퓨터 시스템, 컴퓨터 소프트웨어(웹서버 프로그램)를 포함할 수 있다. 서버(200)는 전술한 웹서버 프로그램 이외에, 웹서버상에서 동작하는 일련의 응용 프로그램(Application Program) 또는 장치 내부에 구축되어 있는 각종 데이터베이스를 포함할 수 있다. 예를 들어, 서버(200)는 본 개시에 따른 쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 장치의 형태가 될 수 있다. The server 200 may include a computer system and computer software (web server program) that derives and provides task results corresponding to task performance requests from clients or other web servers. In addition to the web server program described above, the server 200 may include a series of application programs running on a web server or various databases built inside the device. For example, the server 200 may be in the form of a camera-based recognition device placed on both sides of the front of each floor of the showcase according to the present disclosure.

서버(200)는 네트워크를 경유하여 매장 별로 적어도 하나 이상의 무인 판매 장치(100)와 연동할 수 있다. 일 예로, 서버(200)는 무인 판매 장치(100)에서 판매되는 상품들에 대한 정보(예컨대, 전체 상품별 개수, 각 상품의 가격, 각 상품의 크기, 각 상품의 진열 위치, 식별 정보, 상품의 상/하/좌/우 이미지 등)를 관리할 수 있다. 서버(200)는 무인 판매 장치(100)로 각 컬럼별로 배치될 상품에 대한 정보(예컨대, 상품명, 상품 가격, 상품 크기 등)를 전송하여 무인 판매 장치(100) 내에 설정되도록 할 수 있다. The server 200 may link with at least one unmanned vending device 100 for each store via a network. As an example, the server 200 may provide information about products sold in the unmanned vending device 100 (e.g., total number of products, price of each product, size of each product, display position of each product, identification information, product top/bottom/left/right images, etc.) can be managed. The server 200 may transmit information about products to be placed in each column (eg, product name, product price, product size, etc.) to the unmanned vending device 100 to be set in the unmanned vending device 100.

서버(200)는 무인 판매 장치(100)로부터 쇼케이스의 층별로 각각 백치된 복수의 카메라로터 복수의 촬영 데이터를 수신하여 쇼케이스의 각 층별로 진열된 상품의 진열 상태를 파악하고 이를 관리할 수 있다.The server 200 can receive a plurality of shooting data from a plurality of cameras installed on each floor of the showcase from the unmanned vending device 100 to identify and manage the display status of the products displayed on each floor of the showcase.

서버(200)는 구매자가 무인 판매 장치(100)의 도어 개폐를 통해 외부로 반출시킨 구매 상품에 대한 정보(예: 구매 상품의 상품명, 개수 등)를 무인 판매 장치(100)로부터 수신하고, 이를 기반으로 상기 구매자의 구매 상품에 대한 결제 금액을 산출하여 결제장치로 전송할 수 있다. 이후, 구매자는 결제장치를 통해 구매한 상품에 대한 결제를 수행할 수 있다. The server 200 receives information about the purchased product (e.g., product name, number of purchased products, etc.) that the buyer has taken out by opening and closing the door of the unmanned vending device 100, and receives this from the unmanned vending device 100. Based on this, the payment amount for the purchaser's purchased product can be calculated and transmitted to the payment device. Afterwards, the buyer can pay for the purchased product through the payment device.

한편, 네트워크는 서버(200) 및 적어도 하나 이상의 무인 판매 장치(100) 간의 다양한 정보를 송수신할 수 있다. 네트워크는 다양한 형태의 통신망이 이용될 수 있으며, 예컨대, WLAN(Wireless LAN), 와이파이(Wi-Fi), 와이브로(Wibro), 와이맥스(Wimax), HSDPA(High Speed Downlink Packet Access) 등의 무선 통신방식 또는 이더넷(Ethernet), xDSL(ADSL, VDSL), HFC(Hybrid Fiber Coax), FTTC(Fiber to The Curb), FTTH(Fiber To The Home) 등의 유선 통신방식이 이용될 수 있다. Meanwhile, the network can transmit and receive various information between the server 200 and at least one unmanned vending device 100. Various types of communication networks may be used, for example, wireless communication methods such as WLAN (Wireless LAN), Wi-Fi, Wibro, Wimax, and HSDPA (High Speed Downlink Packet Access). Alternatively, wired communication methods such as Ethernet, xDSL (ADSL, VDSL), HFC (Hybrid Fiber Coax), FTTC (Fiber to The Curb), and FTTH (Fiber To The Home) may be used.

네트워크는 상기에 제시된 통신방식에 한정되는 것은 아니며, 상술한 통신방식 이외에도 기타 널리 공지되었거나 향후 개발될 모든 형태의 통신 방식을 포함할 수 있다.The network is not limited to the communication methods presented above, and may include all other types of communication methods that are well known or will be developed in the future in addition to the communication methods described above.

도 2는 본 개시에 따른 무인 판매 장치와 서버에 포함된 구성을 개략적으로 나타낸 도면이다.Figure 2 is a diagram schematically showing the configuration included in the unmanned vending device and server according to the present disclosure.

무인 판매 장치(100)는 상품을 수납할 수 있는 로드셀(110), 도어부(120) 및 카메라(130)를 포함하는 상품수납부(140)와 서버(200)와의 통신을 수행할 수 있는 제1 통신부(150) 등을 포함하도록 마련될 수 있다.The unmanned vending device 100 is a first device capable of communicating between the server 200 and a product storage unit 140 including a load cell 110 capable of storing products, a door unit 120, and a camera 130. It may be provided to include a communication unit 150, etc.

서버(200)는 메모리(210), 무인 판매 장치(100)와 통신을 수행할 수 있는 제2 통신부(230) 및 메모리(210)와 통신을 수행할 수 있는 적어도 하나의 프로세서(220) 등을 포함하도록 마련될 수 있다.The server 200 includes a memory 210, a second communication unit 230 capable of communicating with the unmanned vending device 100, and at least one processor 220 capable of communicating with the memory 210. It can be arranged to include

한편 로드셀(110)은 무인 판매 장치(100) 내에 상품을 수납할 수 있는 수납공간을 의미할 수 있다. 로드셀(110)은 경사각(θ1)만큼 기울어져 있기 때문에 이용자가 상품을 수취해 가면 경사면을 타고 상품이 도어부(120) 쪽으로 이동할 수 있다.Meanwhile, the load cell 110 may refer to a storage space in which products can be stored within the unmanned vending device 100. Since the load cell 110 is inclined by the inclination angle θ1, when the user receives the product, the product can move toward the door unit 120 along the inclined plane.

한편 도어부(120)는 무인 판매 장치(100)에 장착된 상품수납부(140)의 문일 수 있다. 후술하는 바에 따라 상품 판매개수 산출 시 ABS모드의 절대연산을 수행하는 경우, 도어부(120)의 문이 열릴 때와 문이 닫힐 때를 기준으로 상기 연산이 수행될 수 있다.Meanwhile, the door unit 120 may be a door of the product storage unit 140 mounted on the unmanned vending device 100. As described later, when performing absolute calculation in ABS mode when calculating the number of products sold, the calculation may be performed based on when the door of the door unit 120 is opened and when the door is closed.

한편 카메라(130)는 무인 판매 장치(100)의 쇼케이스 층별로 설치되어 진열된 상품의 영상을 촬영할 수 있다. 카메라(150)에서 촬영된 상품의 촬영 데이터는 서버(200)에 전달되어 프로세서(220)에서 상기 수신한 촬영 데이터를 기초로 진열 상품의 모니터링을 수행할 수 있다.Meanwhile, the camera 130 is installed on each showcase floor of the unmanned sales device 100 and can capture images of displayed products. The photographing data of the product captured by the camera 150 is transmitted to the server 200, and the processor 220 can monitor the displayed product based on the received photographing data.

일 실시예로, 본 개시에 따른 카메라는 인공지능 기반의 머신비전 카메라를 의미할 수 있다. 머신비전 카메라는 렌즈와 이미지 센서, 메인보드 및 인터페이스 보드로 구성될 수 있으나, 이에 제한되는 것은 아니다. 또한, 렌즈와 이미지 센서를 통해 만들어진 영상은 메인보드에서 필요에 따라 적합한 형태로 보정될수 있다. 이렇게 메인보드에서 처리된 영상은 서버(200)에 전송될 수 있다. 머신비전 카메라는 GigE Vision 카메라(Gigabit Ethernet Vision Camera), USB3.0 카메라, CameraLink 카메라, CoaXPress 카메라 등이 포함될 수 있다.In one embodiment, the camera according to the present disclosure may refer to an artificial intelligence-based machine vision camera. A machine vision camera may consist of a lens, an image sensor, a main board, and an interface board, but is not limited to this. Additionally, images created through lenses and image sensors can be corrected into an appropriate form on the motherboard as needed. The image processed on the main board in this way can be transmitted to the server 200. Machine vision cameras may include GigE Vision cameras (Gigabit Ethernet Vision Cameras), USB3.0 cameras, CameraLink cameras, and CoaXPress cameras.

메모리(210)는 본 장치의 다양한 기능을 지원하는 데이터와, 프로세서(220)의 동작을 위한 프로그램을 저장할 수 있고, 입/출력되는 데이터들(예를 들어, 음악 파일, 정지영상, 동영상 등)을 저장할 있고, 본 장치에서 구동되는 다수의 응용 프로그램(application program 또는 애플리케이션(application)), 본 장치의 동작을 위한 데이터들, 명령어들을 저장할 수 있다. 이러한 응용 프로그램 중 적어도 일부는, 무선 통신을 통해 외부 서버로부터 다운로드 될 수 있다. The memory 210 can store data supporting various functions of the device and a program for the operation of the processor 220, and input/output data (e.g., music files, still images, videos, etc.) can be stored, and a number of application programs (application programs or applications) running on the device, data for operation of the device, and commands can be stored. At least some of these applications may be downloaded from an external server via wireless communication.

메모리(210)는 복수의 카메라를 기반으로 상기 쇼케이스 내에 진열된 상품의 인식을 위한 적어도 하나의 프로세스를 저장할 수 있다.The memory 210 may store at least one process for recognizing products displayed in the showcase based on a plurality of cameras.

이러한, 메모리(210)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), SSD 타입(Solid State Disk type), SDD 타입(Silicon Disk Drive type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(random access memory; RAM), SRAM(static random access memory), 롬(read-only memory; ROM), EEPROM(electrically erasable programmable read-only memory), PROM(programmable read-only memory), 자기 메모리, 자기 디스크 및 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다. 또한, 메모리(210)는 본 장치와는 분리되어 있으나, 유선 또는 무선으로 연결된 데이터베이스가 될 수도 있다.The memory 210 includes a flash memory type, a hard disk type, a solid state disk type, an SDD type (Silicon Disk Drive type), and a multimedia card micro type. micro type), card type memory (e.g. SD or XD memory, etc.), random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), EEPROM (electrically erasable) It may include at least one type of storage medium among programmable read-only memory (PROM), programmable read-only memory (PROM), magnetic memory, magnetic disk, and optical disk. Additionally, the memory 210 is separate from the device, but may be a database connected by wire or wirelessly.

적어도 하나의 프로세서(220)는 본 장치 내의 구성요소들의 동작을 제어하기 위한 알고리즘 또는 알고리즘을 재현한 프로그램에 대한 데이터를 저장하는 메모리, 및 메모리(210)에 저장된 데이터를 이용하여 전술한 동작을 수행할 수 있다. 이때, 메모리(210)와 프로세서(220)는 각각 별개의 칩으로 구현될 수 있다. 또는, 메모리(210)와 프로세서(220)는 단일 칩으로 구현될 수도 있다.At least one processor 220 has a memory that stores data for an algorithm for controlling the operation of components in the device or a program that reproduces the algorithm, and performs the above-described operations using the data stored in the memory 210. can do. At this time, the memory 210 and the processor 220 may each be implemented as separate chips. Alternatively, the memory 210 and processor 220 may be implemented as a single chip.

또한, 프로세서(220)는 이하의 도 4 내지 도 7에서 설명되는 본 개시에 따른 다양한 실시 예들을 본 장치 상에서 구현하기 위하여, 위에서 살펴본 구성요소들을 중 어느 하나 또는 복수를 조합하여 제어할 수 있다. In addition, the processor 220 may control any one or a combination of the above-described components in order to implement various embodiments according to the present disclosure described in FIGS. 4 to 7 below on the present device.

상기 구성요소들 중 무인 판매 장치(100)의 제1 통신부(150) 및 서버(200)의 제2 통신부(230)은 외부 장치와 통신을 가능하게 하는 하나 이상의 구성 요소를 포함할 수 있으며, 예를 들어, 방송 수신 모듈, 유선통신 모듈, 무선통신 모듈, 근거리 통신 모듈, 위치정보 모듈 중 적어도 하나일 수 있다.Among the components, the first communication unit 150 of the unmanned vending device 100 and the second communication unit 230 of the server 200 may include one or more components that enable communication with an external device, e.g. For example, it may be at least one of a broadcast reception module, a wired communication module, a wireless communication module, a short-range communication module, and a location information module.

유선 통신 모듈은, 지역 통신(Local Area Network; LAN) 모듈, 광역 통신(Wide Area Network; WAN) 모듈 또는 부가가치 통신(Value Added Network; VAN) 모듈 등 다양한 유선 통신 모듈뿐만 아니라, USB(Universal Serial Bus), HDMI(High Definition Multimedia Interface), DVI(Digital Visual Interface), RS-232(recommended standard232), 전력선 통신, 또는 POTS(plain old telephone service) 등 다양한 케이블 통신 모듈을 포함할 수 있다.Wired communication modules include various wired communication modules such as Local Area Network (LAN) modules, Wide Area Network (WAN) modules, or Value Added Network (VAN) modules, as well as USB (Universal Serial Bus) modules. ), HDMI (High Definition Multimedia Interface), DVI (Digital Visual Interface), RS-232 (recommended standard 232), power line communication, or POTS (plain old telephone service).

무선 통신 모듈은 와이파이(Wifi) 모듈, 와이브로(Wireless broadband) 모듈 외에도, GSM(global System for Mobile Communication), CDMA(Code Division Multiple Access), WCDMA(Wideband Code Division Multiple Access), UMTS(universal mobile telecommunications system), TDMA(Time Division Multiple Access), LTE(Long Term Evolution), 4G, 5G, 6G 등 다양한 무선 통신 방식을 지원하는 무선 통신 모듈을 포함할 수 있다.In addition to Wi-Fi modules and WiBro (Wireless broadband) modules, wireless communication modules include GSM (global System for Mobile Communication), CDMA (Code Division Multiple Access), WCDMA (Wideband Code Division Multiple Access), and UMTS (universal mobile telecommunications system). ), TDMA (Time Division Multiple Access), LTE (Long Term Evolution), 4G, 5G, 6G, etc. may include a wireless communication module that supports various wireless communication methods.

무선 통신 모듈은 이동통신 신호를 송신하는 안테나 및 송신기(Transmitter)를 포함하는 무선 통신 인터페이스를 포함할 수 있다. 또한, 무선 통신 모듈은 제어부의 제어에 따라 무선 통신 인터페이스를 통해 제어부로부터 출력된 디지털 제어 신호를 아날로그 형태의 무선 신호로 변조하는 이동통신 신호 변환 모듈을 더 포함할 수 있다.The wireless communication module may include a wireless communication interface including an antenna and a transmitter that transmits a mobile communication signal. Additionally, the wireless communication module may further include a mobile communication signal conversion module that modulates a digital control signal output from the control unit through a wireless communication interface into an analog wireless signal under the control of the control unit.

무선 통신 모듈은 이동통신 신호를 수신하는 안테나 및 수신기(Receiver)를 포함하는 무선 통신 인터페이스를 포함할 수 있다. 또한, 무선 통신 모듈은 무선 통신 인터페이스를 통하여 수신한 아날로그 형태의 무선 신호를 디지털 제어 신호로 복조하기 위한 이동통신 신호 변환 모듈을 더 포함할 수 있다.The wireless communication module may include a wireless communication interface including an antenna and a receiver for receiving mobile communication signals. Additionally, the wireless communication module may further include a mobile communication signal conversion module for demodulating an analog wireless signal received through a wireless communication interface into a digital control signal.

근거리 통신 모듈은 근거리 통신(Short range communication)을 위한 것으로서, 블루투스(Bluetooth™), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), UWB(Ultra Wideband), ZigBee, NFC(Near Field Communication), Wi-Fi(Wireless-Fidelity), Wi-Fi Direct, Wireless USB(Wireless Universal Serial Bus) 기술 중 적어도 하나를 이용하여, 근거리 통신을 지원할 수 있다.The short-range communication module is for short-range communication and includes Bluetooth™, RFID (Radio Frequency Identification), Infrared Data Association (IrDA), UWB (Ultra Wideband), ZigBee, and NFC (Near Field). Communication), Wi-Fi (Wireless-Fidelity), Wi-Fi Direct, and Wireless USB (Wireless Universal Serial Bus) technology can be used to support short-distance communication.

도 3은 본 개시에 따른 복수의 컬럼으로 구분된 선반에 진열된 상품들과 상기 상품들을 촬영하기 위해 구비된 카메라를 위에서 내려다본 도면이다.Figure 3 is a view looking down from above of products displayed on shelves divided into a plurality of columns according to the present disclosure and a camera provided to photograph the products.

도 3을 참조하면, 진열대의 각 선반(즉, 쇼케이스의 각 층)은 복수의 컬럼(예: 컬럼1, 컬럼2, 컬럼3, …. , 컬럼n)으로 구분될 수 있고, 각 컬럼(예: 컬럼1, 컬럼2, 컬럼3, …. , 컬럼n) 상에는 상품들이 배치될 수 있다. 이때, 각 컬럼별로는 다른 종류의 상품들이 배치될 수 있고, 동일 컬럼(즉, 하나의 컬럼)에는 동일한 상품들이 배치될 수 있다. 예를 들어, 컬럼1에는 A 상품들이 배치되고, 컬럼2에는 B 상품들이 배치되고, 컬럼3에는 C 상품들이 배치되고, 컬럼4에는 D 상품들이 배치될 수 있다. 또한, 각 컬럼 상에 배치된 상품들은 선반의 앞쪽부터 배치되어 정렬될 수 있고, 예를 들어 구매자는 도어를 열어서 진열대 내의 선반 상에서 각 컬럼별로 가장 앞쪽에 배치된 상품을 선택하여 진열대 외부로 반출할 수 있다. Referring to Figure 3, each shelf of the display stand (i.e., each floor of the showcase) may be divided into a plurality of columns (e.g., column 1, column 2, column 3, ...., column n), and each column (e.g. : Products can be placed on column 1, column 2, column 3, …., column n). At this time, different types of products may be placed in each column, and the same products may be placed in the same column (i.e., one column). For example, A products may be placed in column 1, B products may be placed in column 2, C products may be placed in column 3, and D products may be placed in column 4. In addition, the products placed on each column can be arranged and arranged from the front of the shelf. For example, a buyer can open the door, select the product placed at the front of each column on the shelf within the display shelf, and take it out of the display shelf. You can.

일 실시예로, 도 3에 도시된 것처럼, 카메라(130)는 진열대의 선반에 진열된 상품을 상부에서 대각선 방향으로 내려다보도록 진열대 내부에 설치될 수 있고, 진열대 내의 각 선반별로 각각 설치될 수 있다. 이때, 진열대 내의 선반과 선반 사이의 높이(즉, 진열대 내 각 층의 높이), 선반 상의 컬럼의 수, 상품의 너비(상품의 종류에 따라 다름, 예컨대 전자담배가 일반 담배보다 상품 너비가 클 수 있음) 중 적어도 하나를 기반으로 카메라(130)의 화각을 고려하여 최적의 카메라의 위치 및/또는 카메라의 개수가 정해질 수 있다. 일 예로서, 도 3에 도시된 바와 같이, 각 층의 높이, 상품의 너비 등에 따라 하나의 카메라가 인식할 수 있는 영역(즉, 컬럼의 개수)을 고려하여, 선반의 좌측 상부 및 우측 상부에서 대각선 방향으로 내려다보는 위치에 2개의 카메라(즉, 좌측 카메라 및 우측 카메라)(130)가 설치될 수 있다. 또한, 카메라(즉, 좌측 카메라 및 우측 카메라)(130)는 선반의 앞쪽 영역에 배치된 상품들을 인식할 수 있도록 하는 위치인 선반 앞단의 좌측 상부 및 우측 상부에 설치될 수 있다.In one embodiment, as shown in FIG. 3, the camera 130 may be installed inside the display stand to view the products displayed on the shelves of the display stand diagonally from the top, and may be installed on each shelf within the display stand. . At this time, the height between shelves within the display stand (i.e., the height of each layer within the display stand), the number of columns on the shelf, and the width of the product (depending on the type of product. For example, electronic cigarettes may have a larger product width than regular cigarettes. Based on at least one of the following, the optimal camera position and/or number of cameras may be determined by considering the angle of view of the camera 130. As an example, as shown in Figure 3, considering the area that one camera can recognize (i.e., the number of columns) depending on the height of each layer, the width of the product, etc., in the upper left and upper right of the shelf Two cameras (i.e., a left camera and a right camera) 130 may be installed in a position looking down diagonally. In addition, cameras (i.e., left camera and right camera) 130 may be installed at the upper left and upper right sides of the front end of the shelf, which are positions that enable recognition of products placed in the front area of the shelf.

도 4는 본 개시에 따른 쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법의 순서도이다. 도 4의 방법은 도 2에 개시된 서버(200)에 의해 수행될 수 있다. 또한, 상술한 바와 같이 도 2에 개시된 서버(200)는 본 개시에 따른 쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 장치의 형태가 될 수 있다. 또한, 이하에서는 도 4의 방법을 서버(200)가 수행하는 것으로 설명하지만, 경우에 따라 도 4의 방법은 도 2에 개시된 무인 판매 장치(100)에 의해 수행될 수도 있다.Figure 4 is a flowchart of a camera-based recognition method placed on both sides of the front of each showcase floor according to the present disclosure. The method of FIG. 4 may be performed by the server 200 disclosed in FIG. 2. Additionally, as described above, the server 200 disclosed in FIG. 2 may be in the form of a camera-based recognition device disposed on both sides of the front of each floor of the showcase according to the present disclosure. In addition, hereinafter, the method of FIG. 4 will be described as being performed by the server 200, but in some cases, the method of FIG. 4 may be performed by the unmanned vending device 100 disclosed in FIG. 2.

도 4를 참조하면, 서버(200)의 프로세서(220)는 쇼케이스 층별로 전면 양측에 각각 배치된 복수의 카메라에 의해 촬영된 복수의 촬영 데이터를 획득할 수 있다(S110).Referring to FIG. 4, the processor 220 of the server 200 may acquire a plurality of captured data captured by a plurality of cameras disposed on both sides of the front of each showcase floor (S110).

상술한 바와 같이, 무인 판매 장치(100)는 쇼케이스의 각 층마다(즉, 진열대의 각 선반마다) 전면 좌측에 하나의 카메라를 배치하고, 전면 우측에 다른 하나의 카메라를 배치할 수 있다. 또한, 무인 판매 장치는, 상술한 바와 같이, 쇼케이스의 각 층마다 n개의 컬럼을 포함하고(여기서, n은 자연수), 각 컬럼에는 각각의 상품이 진열될 수 있다.As described above, the unmanned vending device 100 may place one camera on the front left side of each floor of the showcase (i.e., each shelf of the display case) and another camera on the front right side. Additionally, as described above, the unmanned vending machine includes n columns on each floor of the showcase (where n is a natural number), and each product can be displayed in each column.

도 5에 도시된 바와 같이, 각 층별로 양쪽 끝에 안쪽을 바라보는 방향으로 배치된 복수의 카메라는 각각 진열 상품의 영상을 촬영할 수 있다. 이렇게 생성된 복수의 촬영 데이터는 제2 통신부(230)를 통해 서버(200)로 수신될 수 있다.As shown in Figure 5, a plurality of cameras arranged facing inward at both ends of each floor can each capture images of displayed products. The plurality of captured data generated in this way can be received by the server 200 through the second communication unit 230.

보다 상세하게, 복수의 카메라 중 좌측에 설치된 제1 카메라(130)에 의해 촬영된 제1 촬영 데이터는 n개의 컬럼 중 순차적인 순서로 n-p개의 컬럼을 포함할 수 있다. 여기서, p는 n보다 작은 자연수일 수 있다.In more detail, the first captured data captured by the first camera 130 installed on the left among the plurality of cameras may include n-p columns in sequential order among the n columns. Here, p may be a natural number smaller than n.

또한, 복수의 카메라 중 우측에 설치된 제2 카메라(130)에 의해 촬영된 제2 촬영 데이터는 n개의 컬럼 중 역순으로 n-q개의 컬럼을 포함할 수 있다. 여기서, q는 n보다 작은 자연수일 수 있다.Additionally, the second captured data captured by the second camera 130 installed on the right side among the plurality of cameras may include n-q columns in reverse order among the n columns. Here, q may be a natural number smaller than n.

도 5를 참조하면, n이 10이고, p가 4고, q가 4인 경우, 컬럼 1의 좌측에 배치된 제1 카메라(130)에 의해 촬영된 제1 촬영 데이터는 컬럼 1부터 컬럼 6까지만 포함할 수 있고, 컬럼 10의 우측에 배치된 제2 카메라(130)에 의해 촬영된 제2 촬영 데이터는 컬럼 10부터 컬럼 5까지만 포함할 수 있다. 즉, 제1 카메라(130)는 상품 1부터 상품 6까지만 촬영할 수 있고, 제2 카메라(130)는 상품 10부터 상품 5까지만 촬영할 수 있다. 상기에서는, p와 q가 동일한 값인 것으로 설명하였지만, 이에 제한되지 않고 p와 q는 다른 값일 수 있다.Referring to FIG. 5, when n is 10, p is 4, and q is 4, the first captured data captured by the first camera 130 disposed to the left of column 1 is only from column 1 to column 6. The second captured data captured by the second camera 130 disposed to the right of column 10 may include only columns 10 to 5. That is, the first camera 130 can only photograph products 1 to 6, and the second camera 130 can only photograph products 10 to 5. In the above, p and q are described as being the same value, but the present invention is not limited thereto and p and q may be different values.

이때, 제1 카메라(130) 및 제2 카메라(130) 각각은, 상기 n-p개의 컬럼 및 상기 n-q개의 컬럼 간 m개의 컬럼이 중복되도록 양측에 대칭으로 배치될 수 있다. 이는, 카메라가 층별로 전면 양측에 배치되기 때문에, 중앙영역(즉, 총 10개의 컬럼이라면 중앙영역인 5번째, 6번째 컬럼)은 이미지가 작아서 인식률이 떨어질 수 있기 때문에, 중간 순번의 컬럼이 중복되도록 카메라를 배치시키고, 중복된 영역의 촬영 데이터를 활용하여 중앙영역의 인식률을 높이기 위함이다.At this time, each of the first camera 130 and the second camera 130 may be arranged symmetrically on both sides such that m columns overlap between the n-p columns and the n-q columns. This is because the cameras are placed on both sides of the front for each floor, and the central area (i.e., if there are a total of 10 columns, the 5th and 6th columns, which are the central area) may have a small image and lower the recognition rate, so the middle numbered columns are duplicated. The purpose is to place cameras as much as possible and utilize shooting data from overlapping areas to increase the recognition rate of the central area.

중복으로 촬영될 컬럼의 개수(m)는 서버(200)에 의해 미리 설정될 수 있다. 무인 판매 장치(100)는 이러한 설정 정보에 따라 카메라의 배치를 변경하여 촬영 데이터를 생성할 수 있다.The number (m) of columns to be photographed repeatedly may be set in advance by the server 200. The unmanned vending device 100 can generate shooting data by changing the arrangement of the camera according to this setting information.

도 6을 참조하면, n이 10이고, p가 4고, q가 4고, m이 2로 설정된 경우, 제1 촬영 데이터의 컬럼 5 및 컬럼 6의 해당하는 부분과, 제2 촬영 데이터의 컬럼 5 및 컬럼 6의 해당하는 부분이 중복될 수 있다.Referring to FIG. 6, when n is 10, p is 4, q is 4, and m is set to 2, the corresponding portions of columns 5 and 6 of the first captured data and the column of the second captured data The corresponding parts of columns 5 and 6 may overlap.

도 4를 참조하면, 서버(200)의 프로세서(220)는 각 층별로 복수의 촬영 데이터를 이용하여 해당 층의 중앙영역에 배치된 상품의 종류를 인식할 수 있다(S120).Referring to FIG. 4, the processor 220 of the server 200 can recognize the type of product placed in the central area of the corresponding floor using a plurality of captured data for each floor (S120).

보다 상세하게, 서버(200)의 프로세서(220)는 복수의 촬영 데이터 간 중복된 컬럼(column)을 추출하고, 상품 관련 데이터베이스를 이용하여 상기 추출된 컬럼에 배치된 상품의 종류를 인식할 수 있다. More specifically, the processor 220 of the server 200 can extract duplicate columns between a plurality of shooting data and recognize the type of product placed in the extracted column using a product-related database. .

상술한 바와 같이, 중복된 컬럼의 개수는 서버(100)에 의해 미리 설정되기 때문에, 서버(100)는 이러한 설정 정보를 저장해놓고 있는다. 그리고, 복수의 촬영 데이터가 획득되면 저장된 설정 정보에 기초하여 중복된 컬럼을 추출할 수 있다.As described above, since the number of duplicated columns is preset by the server 100, the server 100 stores this setting information. And, when a plurality of captured data is acquired, duplicate columns can be extracted based on the stored setting information.

서버(200)의 프로세서(220)는 중복된 컬럼에 포함된 상품 이미지를 상품 관련 데이터베이스에서 찾아서 해당 상품의 종류를 파악할 수 있다. 여기서, 상품 관련 데이터베이스는 서버(200) 내에 포함될 수도 있고, 서버(200)와 분리되어 있으나, 유선 또는 무선으로 연결될 수도 있다. 또한, 상품 관련 데이터베이스 무인 판매 장치(100)에 진열된 모든 상품에 대한 정보를 포함할 수 있다. The processor 220 of the server 200 can identify the type of the product by finding the product image included in the duplicate column in the product-related database. Here, the product-related database may be included in the server 200, or may be separate from the server 200, but may be connected by wire or wirelessly. Additionally, the product-related database may include information on all products displayed on the unmanned vending device 100.

실시예에 따라, 서버(200)의 프로세서(220)는, 제1 촬영 데이터 및 제2 촬영 데이터 간 상기 중복된 컬럼에 배치된 상품에 대하여, 제1 촬영 데이터 및 제2 촬영 데이터를 조합하여 조합 데이터를 생성하고, 상품 관련 데이터베이스에서 상기 조합 데이터와 매칭되는 상품을 탐색하고, 상기 탐색된 상품의 종류를 상기 중복된 컬럼에 배치된 상품의 종류로 결정할 수 있다. 이때, 중복된 컬럼이 복수개인 경우, 각 촬영 데이터에서 동일한 컬럼의 상품 이미지끼리 조합 데이터를 생성할 수 있다. According to the embodiment, the processor 220 of the server 200 combines the first photographed data and the second photographed data for products placed in the overlapping column between the first photographed data and the second photographed data. Data can be generated, products matching the combination data can be searched in a product-related database, and the type of the searched product can be determined as the type of product placed in the overlapping column. At this time, when there are multiple overlapping columns, combination data can be generated between product images in the same column in each shooting data.

도 6을 참조하면, 중복된 컬럼이 컬럼 5, 컬럼 6인 경우, 제1 촬영 데이터에서 컬럼 5에 해당하는 부분과 제2 촬영 데이터에서 컬럼 5에 해당하는 부분을 조합하여 상품 5에 대한 조합 데이터를 생성하고, 제2 촬영 데이터에서 컬럼 6에 해당하는 부분과 제2 촬영 데이터에서 컬럼 6에 해당하는 부분을 조합하여 상품 6에 대한 조합 데이터를 생성할 수 있다. 그리고, 상품 5에 대한 조합 데이터를 이용하여 상기 데이터베이스 내에서 매칭되는 상품을 탐색하고, 탐색된 상품의 종류를 상품 5의 종류로 결정할 수 있다. 또한, 상품 6에 대한 조합 데이터를 이용하여 상기 데이터베이스 내에서 매칭되는 상품을 탐색하고, 탐색된 상품의 종류를 상품 6의 종류로 결정할 수 있다.Referring to FIG. 6, when the duplicated columns are column 5 and column 6, the part corresponding to column 5 in the first shooting data and the part corresponding to column 5 in the second shooting data are combined to create combined data for product 5. , and combined data for product 6 can be generated by combining the part corresponding to column 6 in the second shooting data and the part corresponding to column 6 in the second shooting data. Then, using the combination data for Product 5, a matching product can be searched within the database, and the type of the searched product can be determined to be the type of Product 5. Additionally, the combination data for product 6 can be used to search for matching products in the database, and the type of the searched product can be determined to be the type of product 6.

조합 데이터는 인식률이 낮은 두 개의 데이터를 중첩하여 생성될 수 있다. 이로 인해, 조합 데이터 내의 객체의 인식률을 더 높일 수 있다.Combination data can be created by overlapping two pieces of data with low recognition rates. Because of this, the recognition rate of objects in the combined data can be further increased.

그리고, 서버(200)의 프로세서(220)는 상품 관련 데이터베이스에서 조합 데이터 내의 객체의 이미지와 매칭되는 상품을 탐색하고, 탐색된 상품의 종류를 상기 추출된 컬럼 내의 상품의 종류인 것으로 판단할 수 있다.In addition, the processor 220 of the server 200 searches for a product that matches the image of the object in the combination data in the product-related database, and determines that the type of the searched product is the type of the product in the extracted column. .

실시예에 따라, 서버(200)의 프로세서(220)는, 제1 촬영 데이터 및 제2 촬영 데이터 간 중복된 컬럼에 배치된 상품에 대하여, 상품 관련 데이터베이스에서 상기 제1 촬영 데이터와의 매칭률이 기 설정된 제1 값 이상인 상품들을 추출하고, 상기 추출된 상품들 중에서 상기 제2 촬영 데이터와의 매칭률이 기 설정된 제2 값 이상인 상품을 탐색하고, 상기 탐색된 상품의 종류를 중복된 컬럼에 배치된 상품의 종류로 결정할 수 있다. According to the embodiment, the processor 220 of the server 200 determines that, for products placed in overlapping columns between first and second photographed data, a matching rate with the first photographed data is set in the product-related database. Extract products with a preset first value or more, search for products whose matching rate with the second shooting data is more than a preset second value among the extracted products, and place the types of the searched products in overlapping columns. It can be determined by the type of product.

도 6을 참조하면, 중복된 컬럼이 컬럼 5, 컬럼 6인 경우, 서버(200)의 프로세서(220)는, 상품 관련 데이터베이스에 저장된 상품 정보에 기초하여, 제1 촬영 데이터에서 컬럼 5에 해당하는 이미지와의 매칭률이 제1 값 이상(예를 들어, 80퍼센트 이상)인 상품들을 추출하고, 다시 추출들 상품들의 상품 정보에 기초하여, 제2 촬영 데이터에서 컬럼 5에 해당하는 이미지와의 매칭률이 제2 값 이상(예를 들어, 80퍼센트 이상)인 상품을 탐색하고, 상기 탐색된 상품의 종류를 상기 컬럼 5에 진열된 상품 5의 종류로 결정할 수 있다. 또한, 상품 관련 데이터베이스에 저장된 상품 정보에 기초하여, 제1 촬영 데이터에서 컬럼 6에 해당하는 이미지와의 매칭률이 제1 값 이상(예를 들어, 80퍼센트 이상)인 상품들을 추출하고, 다시 추출들 상품들의 상품 정보에 기초하여, 제2 촬영 데이터에서 컬럼 6에 해당하는 이미지와의 매칭률이 제2 값 이상(예를 들어, 80퍼센트 이상)인 상품을 탐색하고, 상기 탐색된 상품의 종류를 상기 컬럼 6에 진열된 상품 6의 종류로 결정할 수 있다.Referring to FIG. 6, when the duplicated columns are column 5 and column 6, the processor 220 of the server 200 selects column 5 in the first shooting data based on product information stored in the product-related database. Extract products whose matching rate with the image is more than a first value (e.g., more than 80 percent), and match the image corresponding to column 5 in the second shooting data based on the product information of the extracted products. Products whose ratio is greater than or equal to a second value (for example, 80 percent or more) may be searched, and the type of the searched product may be determined to be the type of product 5 displayed in column 5. In addition, based on product information stored in the product-related database, products whose matching rate with the image corresponding to column 6 is more than the first value (e.g., 80 percent or more) are extracted from the first shooting data, and extracted again. Based on the product information of these products, search for products whose matching rate with the image corresponding to column 6 in the second shooting data is more than a second value (for example, 80 percent or more), and the type of the searched product can be determined as the type of product 6 displayed in column 6.

실시예에 따라, 제2 촬영 데이터를 이용한 상품 탐색은, 제1 촬영 데이터를 이용하여 탐색된 복수의 상품들 중에서 매칭률이 가장 높은 하나의 상품만을 추출하여 해당 컬럼에 진열된 상품의 종류를 결정할 수 있다.According to the embodiment, product search using the second shooting data extracts only one product with the highest matching rate among the plurality of products searched using the first shooting data to determine the type of product displayed in the corresponding column. You can.

한편, 본 개시에 따른 쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법은, 기 구축된 학습 모델을 기반으로 상기 복수의 촬영 데이터를 분석하여 해당 층에 배치된 복수의 상품 중에서 오배치된 상품을 인식하는 단계를 더 포함할 수 있다.Meanwhile, the camera-based recognition method placed on both sides of the front of each showcase floor according to the present disclosure analyzes the plurality of shooting data based on a pre-built learning model to recognize misplaced products among the plurality of products placed on the corresponding floor. Additional steps may be included.

실시예에 따라, 상기 학습 모델은, 상품의 진열 상태에 대한 오배치 유형 별 학습 데이터를 학습하여 구축될 수 있다. 즉, 상품이 비뚤어지게 진열된 경우를 유형별로 학습한 학습 모델을 통해 상기 층별로 수신된 복수의 촬영 데이터로부터 각 층에 진열된 상품 중에서 비뚤어지게 진열된 상품이 있는지를 파악할 수가 있다.Depending on the embodiment, the learning model may be constructed by learning learning data for each misplacement type regarding the display state of the product. In other words, it is possible to determine whether any product is displayed crookedly among the products displayed on each floor from a plurality of photographic data received for each floor through a learning model that learns cases where products are displayed crookedly by type.

여기서, 진열 상태에 대한 오배치 유형은, 상기 상품이 x축, y축 및 z축 중 두 개의 축을 기준으로 회전된 경우를 포함할 수 있다.Here, the misplacement type for the display state may include a case where the product is rotated based on two axes of the x-axis, y-axis, and z-axis.

제1 학습 데이터는, 도 7a에 도시된 바와 같이, 상품이 올바르게 배치된 경우의 데이터일 수 있다. The first learning data may be data when the product is placed correctly, as shown in FIG. 7A.

제2 학습 데이터는, 도 7b에 도시된 바와 같이, 상품이 xz 평면 기준으로 180도 회전한 경우 및 yz 평면 기준으로 180도 회전한 경우의 데이터를 포함할 수 있다.As shown in FIG. 7B, the second learning data may include data when the product is rotated 180 degrees based on the xz plane and when the product is rotated 180 degrees based on the yz plane.

제3 학습 데이터는, 도 7c에 도시된 바와 같이, 상품이 xz 평면 기준으로 0도~90도 회전한 경우 및 xz 평면 기준으로 90도~180도 회전한 경우의 데이터를 포함할 수 있다.The third learning data may include data when the product is rotated 0 to 90 degrees based on the xz plane and when the product is rotated 90 to 180 degrees based on the xz plane, as shown in FIG. 7C.

제4 학습 데이터는, 도 7d에 도시된 바와 같이, 상품이 yz 평면 기준 내측으로 0도~90도 회전한 경우 및 yz 평면 기준 외측으로 0도~90도 회전한 경우의 데이터를 포함할 수 있다.The fourth learning data, as shown in FIG. 7D, may include data when the product is rotated 0 degrees to 90 degrees inward based on the yz plane and when the product is rotated 0 degrees to 90 degrees outward based on the yz plane. .

실시예에 따라, 상기 학습 모델은, 상품의 진열 위치에 대한 오배치의 학습 데이터를 학습하여 구축될 수 있다. 여기서, 진열 위치에 대한 오배치는, 상기 상품이 상기 상품에 부여된 컬럼에 배치되지 않은 경우를 나타낼 수 있다.Depending on the embodiment, the learning model may be constructed by learning learning data about misplacement of products. Here, misplacement of the display position may indicate a case where the product is not placed in the column assigned to the product.

즉, 각 상품과 해당 상품이 배치되어야 할 위치를 매칭하여 학습된 학습 모델을 통해 상기 층별로 수신된 복수의 촬영 데이터로부터 각 층에 진열된 상품 중에서 진열 위치가 잘못된 상품이 있는지를 파악할 수가 있다.In other words, it is possible to determine whether any of the products displayed on each floor are in the wrong display position from the plurality of shooting data received for each floor through a learning model learned by matching each product with the location where the product should be placed.

도 4는 단계 S110 및 단계 S120을 순차적으로 실행하는 것으로 기재하고 있으나, 이는 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 도 4에 기재된 순서를 변경하여 실행하거나 단계 단계 S110 내지 및 S120을 병렬적으로 실행하는 것으로 다양하게 수정 및 변형하여 적용 가능할 것이므로, 도 4는 시계열적인 순서로 한정되는 것은 아니다.FIG. 4 depicts steps S110 and S120 as being sequentially executed, but this is merely an illustrative explanation of the technical idea of this embodiment, and those skilled in the art will understand the steps of this embodiment. Since it is possible to apply various modifications and modifications by changing the order shown in FIG. 4 or executing steps S110 to S120 in parallel as long as it does not deviate from the essential characteristics, FIG. 4 is not limited to a time-series order. no.

한편, 상술한 설명에서, 단계 S110 및 단계 S120은 본 개시의 구현예에 따라서, 추가적인 단계들로 더 분할되거나, 더 적은 단계들로 조합될 수 있다. 또한, 일부 단계는 필요에 따라 생략될 수도 있고, 단계 간의 순서가 변경될 수도 있다.Meanwhile, in the above description, steps S110 and S120 may be further divided into additional steps or combined into fewer steps, depending on the implementation of the present disclosure. Additionally, some steps may be omitted or the order between steps may be changed as needed.

한편, 개시된 실시예들은 컴퓨터에 의해 실행 가능한 명령어를 저장하는 기록매체의 형태로 구현될 수 있다. 명령어는 프로그램 코드의 형태로 저장될 수 있으며, 프로세서에 의해 실행되었을 때, 프로그램 모듈을 생성하여 개시된 실시예들의 동작을 수행할 수 있다. 기록매체는 컴퓨터로 읽을 수 있는 기록매체로 구현될 수 있다.Meanwhile, the disclosed embodiments may be implemented in the form of a recording medium that stores instructions executable by a computer. Instructions may be stored in the form of program code, and when executed by a processor, may create program modules to perform operations of the disclosed embodiments. The recording medium may be implemented as a computer-readable recording medium.

컴퓨터가 읽을 수 있는 기록매체로는 컴퓨터에 의하여 해독될 수 있는 명령어가 저장된 모든 종류의 기록 매체를 포함한다. 예를 들어, ROM(Read Only Memory), RAM(Random Access Memory), 자기 테이프, 자기 디스크, 플래쉬 메모리, 광 데이터 저장장치 등이 있을 수 있다. Computer-readable recording media include all types of recording media storing instructions that can be decoded by a computer. For example, there may be Read Only Memory (ROM), Random Access Memory (RAM), magnetic tape, magnetic disk, flash memory, optical data storage device, etc.

이상에서와 같이 첨부된 도면을 참조하여 개시된 실시예들을 설명하였다. 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자는 본 개시의 기술적 사상이나 필수적인 특징을 변경하지 않고도, 개시된 실시예들과 다른 형태로 본 개시가 실시될 수 있음을 이해할 것이다. 개시된 실시예들은 예시적인 것이며, 한정적으로 해석되어서는 안 된다.As described above, the disclosed embodiments have been described with reference to the attached drawings. A person skilled in the art to which this disclosure pertains will understand that the present disclosure may be practiced in forms different from the disclosed embodiments without changing the technical idea or essential features of the present disclosure. The disclosed embodiments are illustrative and should not be construed as limiting.

10: 무인 판매 시스템
100: 무인 판매 장치
110: 로드셀
120: 도어부
130: 카메라
140: 상품수납부
150: 제1 통신부
200: 서버
210: 메모리
220: 프로세서
230: 제2 통신부
10: Unmanned vending system
100: Unmanned vending device
110: load cell
120: Door part
130: camera
140: Product storage department
150: 1st Communications Department
200: server
210: memory
220: processor
230: Second Communications Department

Claims (10)

장치에 의해 수행되는 방법에 있어서,
쇼케이스 층별로 전면 양측에 각각 배치된 복수의 카메라에 의해 촬영된 복수의 촬영 데이터를 획득하는 단계; 및
상기 복수의 촬영 데이터를 이용하여 해당 층의 중앙영역에 배치된 상품의 종류를 인식하는 단계;를 포함하고,
상기 인식 단계는,
상기 복수의 촬영 데이터 간 중복된 컬럼(column)을 추출하고, 상품 관련 데이터베이스를 이용하여 상기 추출된 컬럼에 배치된 상품의 종류를 인식하는,
쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법.
In a method performed by a device,
Obtaining a plurality of captured data captured by a plurality of cameras disposed on both sides of the front of each showcase floor; and
Recognizing the type of product placed in the central area of the corresponding floor using the plurality of photographed data,
The recognition step is,
Extracting duplicate columns between the plurality of shooting data and recognizing the type of product placed in the extracted column using a product-related database,
Camera-based recognition method placed on both sides of the front of each showcase floor.
제1 항에 있어서,
상기 쇼케이스의 각각의 층은 n개의 컬럼을 포함하고(여기서, n은 자연수),
상기 복수의 카메라 중 제1 카메라에 의해 촬영된 제1 촬영 데이터는 상기 n개의 컬럼 중 순차적인 순서로 n-p개의 컬럼을 포함하고(여기서, p는 n보다 작은 자연수), 상기 복수의 카메라 중 제2 카메라에 의해 촬영된 제2 촬영 데이터는 상기 n개의 컬럼 중 역순으로 n-q개의 컬럼을 포함하는(여기서, q는 n보다 작은 자연수),
쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법.
According to claim 1,
Each layer of the showcase includes n columns (where n is a natural number),
The first captured data captured by the first camera among the plurality of cameras includes np columns in sequential order among the n columns (where p is a natural number smaller than n), and the first captured data captured by the first camera among the plurality of cameras includes np columns in sequential order among the n columns (where p is a natural number smaller than n). The second captured data captured by the camera includes nq columns in reverse order among the n columns (where q is a natural number smaller than n),
Camera-based recognition method placed on both sides of the front of each showcase floor.
제2 항에 있어서,
상기 제1 카메라 및 상기 제2 카메라 각각은,
상기 n-p개의 컬럼 및 상기 n-q개의 컬럼 간 m개의 컬럼이 중복되도록 양측에 대칭으로 배치되는,
쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법.
According to clause 2,
Each of the first camera and the second camera,
arranged symmetrically on both sides so that m columns overlap between the np number of columns and the nq number of columns,
Camera-based recognition method placed on both sides of the front of each showcase floor.
제2 항에 있어서,
상기 인식 단계는,
상기 제1 촬영 데이터 및 제2 촬영 데이터 간 상기 중복된 컬럼에 배치된 상품에 대하여, 상기 제1 촬영 데이터 및 제2 촬영 데이터를 조합하여 조합 데이터를 생성하고, 상기 데이터베이스에서 상기 조합 데이터와 매칭되는 상품을 탐색하고, 상기 탐색된 상품의 종류를 상기 중복된 컬럼에 배치된 상품의 종류로 결정하는,
쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법.
According to clause 2,
The recognition step is,
For products placed in the overlapping column between the first and second photographed data, combination data is generated by combining the first and second photographed data, and matched with the combination data in the database. Searching for a product and determining the type of the searched product as the type of product placed in the duplicate column,
Camera-based recognition method placed on both sides of the front of each showcase floor.
제2 항에 있어서,
상기 인식 단계는,
상기 제1 촬영 데이터 및 제2 촬영 데이터 간 상기 중복된 컬럼에 배치된 상품에 대하여, 상기 데이터베이스에서 상기 제1 촬영 데이터와의 매칭률이 기 설정된 제1 값 이상인 상품들을 추출하고, 상기 추출된 상품들 중에서 상기 제2 촬영 데이터와의 매칭률이 기 설정된 제2 값 이상인 상품을 탐색하고, 상기 탐색된 상품의 종류를 중복된 컬럼에 배치된 상품의 종류로 결정하는,
쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법.
According to clause 2,
The recognition step is,
For products placed in the overlapping column between the first photographed data and the second photographed data, products whose matching rate with the first photographed data is equal to or higher than a preset first value are extracted from the database, and the extracted products Searching for products whose matching rate with the second shooting data is more than a preset second value, and determining the type of the searched product as the type of product placed in the overlapping column,
Camera-based recognition method placed on both sides of the front of each showcase floor.
제1 항에 있어서,
기 구축된 학습 모델을 기반으로 상기 복수의 촬영 데이터를 분석하여 해당 층에 배치된 복수의 상품 중에서 오배치된 상품을 인식하는 단계;를 더 포함하는,
쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법.
According to claim 1,
Analyzing the plurality of photographed data based on a pre-built learning model to recognize misplaced products among the plurality of products placed on the corresponding floor; further comprising:
Camera-based recognition method placed on both sides of the front of each showcase floor.
제6 항에 있어서,
상기 학습 모델은,
상품의 진열 상태에 대한 오배치 유형 별 학습 데이터를 학습하여 구축되며,
상기 진열 상태에 대한 오배치 유형은, 상기 상품이 x축, y축 및 z축 중 두 개의 축을 기준으로 회전된 경우를 포함하는,
쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법.
According to clause 6,
The learning model is,
It is constructed by learning learning data for each type of misplacement about the display status of the product,
The misplacement type for the display state includes a case where the product is rotated about two axes of the x-axis, y-axis, and z-axis.
Camera-based recognition method placed on both sides of the front of each showcase floor.
제6 항에 있어서,
상기 학습 모델은,
상품의 진열 위치에 대한 오배치의 학습 데이터를 학습하여 구축되며,
상기 진열 위치에 대한 오배치는, 상기 상품이 상기 상품에 부여된 컬럼에 배치되지 않은 경우를 나타내는,
쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 방법.
According to clause 6,
The learning model is,
It is constructed by learning misplacement learning data about product display positions,
Misplacement of the display position refers to a case where the product is not placed in the column assigned to the product.
Camera-based recognition method placed on both sides of the front of each showcase floor.
컴퓨터와 결합되어, 제1 항 내지 제8 항 중 어느 한 항의 방법을 실행하기 위해 컴퓨터 판독 가능한 기록 매체에 저장된 프로그램.A program coupled to a computer and stored in a computer-readable recording medium to execute the method of any one of claims 1 to 8. 쇼케이스 층별로 배치된 복수의 카메라와 통신을 수행하는 통신부;
상기 복수의 카메라를 기반으로 상기 쇼케이스 내에 진열된 상품의 인식을 위한 적어도 하나의 프로세스를 저장하고 있는 메모리; 및
상기 프로세스에 따라 동작하는 프로세서;를 포함하고,
상기 프로세서는, 상기 프로세스를 기반으로,
상기 통신부를 통해 상기 쇼케이스 층별로 전면 양측에 각각 배치된 상기 복수의 카메라에 의해 촬영된 복수의 촬영 데이터를 획득하고,
상기 복수의 촬영 데이터를 이용하여 해당 층의 중앙영역에 배치된 상품의 종류를 인식하고,
상기 프로세서는 상기 인식 시에,
상기 복수의 촬영 데이터 간 중복된 컬럼(column)을 추출하고, 상품 관련 데이터베이스를 이용하여 상기 추출된 컬럼에 배치된 상품의 종류를 인식하는,
쇼케이스 층별 전면 양측에 배치된 카메라 기반 인식 장치.
A communication unit that communicates with a plurality of cameras arranged on each showcase floor;
a memory storing at least one process for recognizing products displayed in the showcase based on the plurality of cameras; and
Including a processor operating according to the process,
The processor, based on the process,
Obtaining a plurality of captured data captured by the plurality of cameras disposed on both sides of the front of each showcase floor through the communication unit,
Recognize the type of product placed in the central area of the floor using the plurality of shooting data,
Upon recognition, the processor
Extracting duplicate columns between the plurality of shooting data and recognizing the type of product placed in the extracted column using a product-related database,
Camera-based recognition devices placed on both sides of the front of each showcase floor.
KR1020220173879A 2022-05-31 2022-12-13 Method and apparatus for recognizing based on camera arranged on both sides of the front for each floor of showcase KR20230166854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220173879A KR20230166854A (en) 2022-05-31 2022-12-13 Method and apparatus for recognizing based on camera arranged on both sides of the front for each floor of showcase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220066823A KR102478569B1 (en) 2022-05-31 2022-05-31 Method and apparatus for recognizing based on camera arranged on both sides of the front for each floor of showcase
KR1020220173879A KR20230166854A (en) 2022-05-31 2022-12-13 Method and apparatus for recognizing based on camera arranged on both sides of the front for each floor of showcase

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020220066823A Division KR102478569B1 (en) 2022-05-31 2022-05-31 Method and apparatus for recognizing based on camera arranged on both sides of the front for each floor of showcase

Publications (1)

Publication Number Publication Date
KR20230166854A true KR20230166854A (en) 2023-12-07

Family

ID=84535159

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020220066823A KR102478569B1 (en) 2022-05-31 2022-05-31 Method and apparatus for recognizing based on camera arranged on both sides of the front for each floor of showcase
KR1020220173879A KR20230166854A (en) 2022-05-31 2022-12-13 Method and apparatus for recognizing based on camera arranged on both sides of the front for each floor of showcase

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020220066823A KR102478569B1 (en) 2022-05-31 2022-05-31 Method and apparatus for recognizing based on camera arranged on both sides of the front for each floor of showcase

Country Status (2)

Country Link
KR (2) KR102478569B1 (en)
WO (1) WO2023234604A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102478569B1 (en) * 2022-05-31 2022-12-16 (주) 인터마인즈 Method and apparatus for recognizing based on camera arranged on both sides of the front for each floor of showcase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210141234A (en) 2020-05-15 2021-11-23 하나시스 주식회사 Un-manned sell system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090071944A (en) * 2007-12-28 2009-07-02 주식회사 롯데기공 Show case management system using usn
WO2019059213A1 (en) * 2017-09-20 2019-03-28 パナソニックIpマネジメント株式会社 Product suggestion system, product suggestion method, and program
KR102260355B1 (en) * 2019-10-10 2021-06-02 주식회사 신세계아이앤씨 System and method for recognizing purchase behavior based on image
US20210248889A1 (en) * 2020-02-06 2021-08-12 Toshiba Tec Kabushiki Kaisha Article display system
KR102179614B1 (en) * 2020-08-24 2020-11-18 (주) 인터마인즈 Method And System for Providing Unmanned Sale
KR102478569B1 (en) * 2022-05-31 2022-12-16 (주) 인터마인즈 Method and apparatus for recognizing based on camera arranged on both sides of the front for each floor of showcase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210141234A (en) 2020-05-15 2021-11-23 하나시스 주식회사 Un-manned sell system

Also Published As

Publication number Publication date
KR102478569B1 (en) 2022-12-16
WO2023234604A1 (en) 2023-12-07

Similar Documents

Publication Publication Date Title
US11019180B2 (en) Goods order processing method and apparatus, server, shopping terminal, and system
US10540551B2 (en) Generation of two-dimensional and three-dimensional images of items for visual recognition in checkout apparatus
CN105184975B (en) Automatic vending machine management system and management method
US20180024631A1 (en) Interactive Display System with Eye Tracking to Display Content According to Subject's Interest
KR20180100159A (en) Techniques for detecting spam posts
US20170068945A1 (en) Pos terminal apparatus, pos system, commodity recognition method, and non-transitory computer readable medium storing program
KR102374861B1 (en) O2O(On-line to Off-line) BASED SYSTEM AND METHOD FOR SUGGESTING CUSTOMIZED INFORMATION
JP2020513602A (en) Order information determination method and device
US10572929B2 (en) Decision factors analyzing device and decision factors analyzing method
CN108292425A (en) Automatically the image capture guided and displaying
US11803892B2 (en) Systems and methods of product identification within an image
KR101620938B1 (en) A cloth product information management apparatus and A cloth product information management sever communicating to the appartus, a server recommending a product related the cloth, a A cloth product information providing method
KR20230166854A (en) Method and apparatus for recognizing based on camera arranged on both sides of the front for each floor of showcase
CN111222870A (en) Settlement method, device and system
Maizi et al. Building a digital twin for IoT smart stores: A case in retail and apparel industry
US20150006325A1 (en) Product search using user selections in images systems and methods
US11935022B2 (en) Unmanned store operation method and unmanned store system using same
KR20240078426A (en) Apparatus, method and program to determine whether goods are normally placed or not based on artificial intelligence
JP7233470B2 (en) Processing device, processing method and processing program
US11380090B2 (en) Fast multi-modal object recognition system
KR102154720B1 (en) METHOD FOR IDENTIFYING PURCHASER OF ITEMs ON SHELVES IN A STORE, AND ELECTRONIC APPARATUS THEREOF
CN114445980B (en) Commodity checkout method and device, electronic equipment and storage medium
US20160117632A1 (en) Information processing apparatus, commodity sales system, and commodity sales method
JP6152188B1 (en) Information processing apparatus, information processing method, and program
KR102436273B1 (en) Method and vending machine for determining inventory using vision recognition based on ai