KR20230163627A - Method for manufacturing a non-metallic root canal post for dental use - Google Patents

Method for manufacturing a non-metallic root canal post for dental use Download PDF

Info

Publication number
KR20230163627A
KR20230163627A KR1020220062987A KR20220062987A KR20230163627A KR 20230163627 A KR20230163627 A KR 20230163627A KR 1020220062987 A KR1020220062987 A KR 1020220062987A KR 20220062987 A KR20220062987 A KR 20220062987A KR 20230163627 A KR20230163627 A KR 20230163627A
Authority
KR
South Korea
Prior art keywords
root canal
glass fiber
post
manufacturing
bisphenol
Prior art date
Application number
KR1020220062987A
Other languages
Korean (ko)
Inventor
최병환
Original Assignee
최병환
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최병환 filed Critical 최병환
Priority to KR1020220062987A priority Critical patent/KR20230163627A/en
Publication of KR20230163627A publication Critical patent/KR20230163627A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/225Fastening prostheses in the mouth
    • A61C13/30Fastening of peg-teeth in the mouth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/12Tools for fastening artificial teeth; Holders, clamps, or stands for artificial teeth
    • A61C13/14Vulcanising devices for artificial teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/30Securing inlays, onlays or crowns
    • A61C5/35Pins; Mounting tools or dispensers therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6237Polymers of esters containing glycidyl groups of alpha-beta ethylenically unsaturated carboxylic acids; reaction products thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C2201/00Material properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1063Esters of polycondensation macromers of alcohol terminated polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Dental Preparations (AREA)

Abstract

본 발명은 치과용 비금속제 근관 포스트 제조방법에 관한 것으로서, 보다 상세하게는 유리섬유 가닥을 구비하는 단계; 상기 유리섬유 가닥을 세척한 후 건조시키는 단계; 상기 건조가 완료된 유리섬유 가닥 표면에 플라즈마 처리를 하는 단계; 상기 플라즈마 처리가 완료된 유리섬유 가닥 표면에 계면 결합제인 실란 커플링제 처리를 하는 단계; 상기 실란 커플링제 처리를 완료한 유리섬유 가닥 다수개를 뭉쳐 진공상태에서 광중합 레진으로 결집하는 단계; 상기 결집이 완료된 유리섬유 가닥을 포스트 형상을 갖도록 경화형 몰드에 UV경화기를 이용하여 빛을 조사하여 경화하는 단계; 상기 경화가 완료된 포스트의 외면에 절단 포인트로 사용하기 위한 포인트를 표시하는 단계;를 포함한다.The present invention relates to a method of manufacturing a dental non-metallic root canal post, and more specifically, the method comprising: providing a glass fiber strand; washing and drying the glass fiber strands; Plasma treatment on the surface of the dried glass fiber strands; Treating the surface of the plasma-treated glass fiber strand with a silane coupling agent, which is an interfacial binder; Gathering a plurality of glass fiber strands that have been treated with the silane coupling agent and assembling them with light-polymerization resin in a vacuum; curing the assembled glass fiber strands into a post-shaped mold by irradiating light using a UV curing machine; It includes: marking a point to be used as a cutting point on the outer surface of the post on which the hardening has been completed.

Description

치과용 비금속제 근관 포스트 제조방법 {Method for manufacturing a non-metallic root canal post for dental use}Method for manufacturing a non-metallic root canal post for dental use}

본 발명은 치과용 비금속제 근관 포스트 제조방법에 관한 것으로, 보다 상세하게는 자연치의 상아질과 유사한 탄성을 가지고, 방사선 불투과성, 우수한 빛 투과성, 강력한 굴곡강도 및 뛰어난 생체 적합성을 갖추고 있는 치과용 비금속제 근관 포스트 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a dental non-metallic root canal post, and more specifically, to a dental non-metallic post that has elasticity similar to the dentin of natural teeth, radiopacity, excellent light transparency, strong bending strength, and excellent biocompatibility. It relates to a root canal post manufacturing method.

세계는 빠르게 늙어가고 있다. 100세 사회가 도래하였고 노인 인구의 급증 과 생활수준 향상으로 U-헬스, 건강기능식품, 의료관광, 의료기기 등 건강에 대한 관심도 증가하고 있다. 이에 따라 치과적 치료의 중요성 또한 지속적으로 높아지고 있다. 치아의 파절, 치질의 손상, 치아 우식 등 치아 손상으로 인한 치료법에는 크게 대체적 방법인 임플란트와 보존적 방법인 근관 치료로 구분하고 있다. The world is aging rapidly. The 100-year-old society has arrived, and with the rapid increase in the elderly population and improved living standards, interest in health such as U-health, health functional foods, medical tourism, and medical devices is increasing. Accordingly, the importance of dental treatment continues to increase. Treatment for tooth damage such as fractured teeth, damaged hemorrhoids, and dental caries is largely divided into implant treatment, which is an alternative method, and root canal treatment, which is a conservative method.

임플란트의 경우에는 시술기간이 길고 시술 후 발생가능한 부작용과 고비용 등으로 환자에게는 부담이 큰 치료 방법이다. 근관 포스트는 근관 치료 후 사용되는 치과용 의료기기이다. 근관 포스트를 통한 근관 치료는 치아의 보존적 방법으로 임플란트에 비해 시술이 간편하고 시술비용이 저렴한 장점이 있으며, 아말감 및 코어용 레진에 비해 잔존하는 치아가 부족해도 적용이 가능하고 다양한 소재가 있어 심미적인 부담을 덜 수가 있다. In the case of implants, it is a treatment method that places a great burden on patients due to the long procedure period, possible side effects after the procedure, and high costs. A root canal post is a dental medical device used after root canal treatment. Root canal treatment using a root canal post is a tooth-preserving method and has the advantage of being simpler and cheaper than implants. Compared to amalgam and core resin, it can be applied even when there are insufficient remaining teeth, and is available in a variety of materials, making it aesthetically pleasing. You can ease the burden.

근관 포스트가 갖추어야 하는 중요한 물리적 특성에는 치관부에 가해지는 응력에 견뎌야 하고 치아의 파절을 방지할 수 있는 적정 수준의 강도와 탄성계수가 필요하다. 비금속제 근관 포스트의 경우 시술 확인을 위해 방사선 불투과성 시험이 요구되며, 시술 후 치아에 파절이 발생할 경우 체액에 의한 부식이 금속제 근관 포스트에서 문제가 되므로 부식성 시험이나 세포독성 시험이 추천된다. Important physical properties that a root canal post must possess include an appropriate level of strength and elastic modulus to withstand stress applied to the crown of the tooth and prevent fracture of the tooth. In the case of non-metallic root canal posts, a radiopacity test is required to confirm the procedure. If a tooth fracture occurs after the procedure, corrosion caused by body fluids is a problem for metal root canal posts, so a corrosion test or cytotoxicity test is recommended.

또한, 부적합한 근관 포스트와 부적절한 시술로 인해 안전성 문제가 있을 경우 해당 의료기기 또는 의료기기 소재에 대하여 의료기기의 생물학적 안전에 관한 공통기준규격이나 치과재료의 특성 평가방법인 ISO 7405에서 추천하는 생물학적 평가가 필요하다. 이에 근관 포스트 소재에 대한 물리적 특성 및 생물학적 안전성을 보다 과학적이고 객관적으로 평가할 수 있는 평가방법의 확립과 평가기술이 요구된다. In addition, if there is a safety problem due to an unsuitable root canal post or inappropriate procedure, a biological evaluation recommended by ISO 7405, a common standard for biological safety of medical devices or a characteristic evaluation method for dental materials, is required for the medical device or medical device material. need. Accordingly, the establishment of an evaluation method and evaluation technology that can more scientifically and objectively evaluate the physical properties and biological safety of root canal post materials is required.

본 발명의 목적은 근관 포스트가 갖추어야 할 물리적인 특성인 치근의 파절, 방사선 불투과성 및 생체 적합성에 있어서, 강력한 굴곡강도를 가지고, 부식이 없으며, 뛰어난 생체 친화성 및 안정성이 보장되고, 우수한 방사선 불투과성 및 빛 투과성을 가지는 치과용 비금속제 근관 포스트를 제공하기 위한 것이다.The purpose of the present invention is to have strong bending strength, no corrosion, excellent biocompatibility and stability, and excellent radiation immunity in terms of the physical properties that a root canal post must have, such as root fracture, radiopacity, and biocompatibility. The purpose is to provide a dental non-metallic root canal post having transparency and light transparency.

보다 구체적으로, 본 발명의 비금속제 근관 포스트의 주재료로 유리섬유를 사용하고, 이 유리섬유를 결집하는 광중합 레진의 구성 성분의 조성물과 수치를 한정하고, 유리섬유의 표면 개질을 통하여 강도와 젖음성을 향상시켜 계면 결합력을 높여, 기존의 근관 포스트가 가지는 방사선 불투과성, 굴곡강도 및 생체 안정성을 향상시킨 치과용 비금속제 근관 포스트를 제공하기 위한 것이다.More specifically, glass fiber is used as the main material of the non-metallic root canal post of the present invention, the composition and value of the components of the light-polymerized resin that gathers the glass fiber are limited, and the strength and wettability are improved through surface modification of the glass fiber. The purpose is to provide a dental non-metallic root canal post that improves the radiopacity, bending strength, and biostability of existing root canal posts by improving the interfacial bonding force.

본 발명의 치과용 비금속제 근관 포스트 제조방법은 유리섬유 가닥을 구비하는 단계; 상기 유리섬유 가닥을 세척한 후 건조시키는 단계; 상기 건조가 완료된 유리섬유 가닥 표면에 플라즈마 처리를 하는 단계; 상기 플라즈마 처리가 완료된 유리섬유 가닥 표면에 계면 결합제인 실란 커플링제 처리를 하는 단계; 상기 실란 커플링제 처리를 완료한 유리섬유 가닥 다수개를 뭉쳐 진공상태에서 광중합 레진으로 결집하는 단계; 상기 결집이 완료된 유리섬유 가닥을 포스트 형상을 갖도록 경화형 몰드에 UV경화기를 이용하여 빛을 조사하여 경화하는 단계; 상기 경화가 완료된 포스트의 외면에 절단 포인트로 사용하기 위한 포인트를 표시하는 단계;를 포함한다.The method of manufacturing a dental non-metallic root canal post of the present invention includes the steps of providing glass fiber strands; washing and drying the glass fiber strands; Plasma treatment on the surface of the dried glass fiber strands; Treating the surface of the plasma-treated glass fiber strand with a silane coupling agent, which is an interfacial binder; Gathering a plurality of glass fiber strands that have been treated with the silane coupling agent and assembling them with light-polymerization resin in a vacuum; curing the assembled glass fiber strands into a post-shaped mold by irradiating light using a UV curing machine; It includes: marking a point to be used as a cutting point on the outer surface of the post on which the hardening has been completed.

상기 광중합 레진은 올리고머 20 내지 50 중량부 기준으로, 모노머 15 내지 30 중량부, 첨가제 5 내지 15 중량부, 경화제 5 내지 10 중량부, 무기질 필러 5 내지 9 중량부를 포함하여 이루어지는 것을 특징으로 한다.The photopolymerization resin is characterized in that it contains 15 to 30 parts by weight of monomer, 5 to 15 parts by weight of additive, 5 to 10 parts by weight of curing agent, and 5 to 9 parts by weight of inorganic filler, based on 20 to 50 parts by weight of oligomer.

상기 실란 커플링제는 3-Methacryloxypropyltrimethoxysilane, 3-Methacryloxypropyltriethoxysilane, 3-Methacryloxypropylmethyldimethoxysilane, 3-(Acryloyloxy)propyltrimethoxysilane, 3-Aminopropyltriethoxysilane, N-2-(Aminoethyl)-3-aminopropyltrimethoxysilane, Triethoxy(octyl)silan 중 어느 하나 이상을 포함하여 사용하는 것을 특징으로 한다.The silane coupling agent is any one of 3-Methacryloxypropyltrimethoxysilane, 3-Methacryloxypropyltriethoxysilane, 3-Methacryloxypropylmethyldimethoxysilane, 3-(Acryloyloxy)propyltrimethoxysilane, 3-Aminopropyltriethoxysilane, N-2-(Aminoethyl)-3-aminopropyltrimethoxysilane, and Triethoxy(octyl)silane. More than that It is characterized by its use including.

상기 올리고머는 Bispenol A diglycidyl ether(BFDGE), Bisphenol A glycerolate dimethacrylate (Bis-GMA), Bisphenol A dimethacrylate (Bis-MA), Bisphenol A ethoxylated dimethacrylate (Bis-EMA), Diurethane dimethacrylate (UDMA), Diglycidyl ether of bisphenol A (DGEBA) 중 적어도 어느 하나 이상을 포함하는 것을 특징으로한다.The oligomers include Bisphenol A diglycidyl ether (BFDGE), Bisphenol A glycerolate dimethacrylate (Bis-GMA), Bisphenol A dimethacrylate (Bis-MA), Bisphenol A ethoxylated dimethacrylate (Bis-EMA), Diurethane dimethacrylate (UDMA), Diglycidyl ether of bisphenol It is characterized by containing at least one or more of A (DGEBA).

상기 모노머는 Ethylene glycol dimethacrylate (EGDMA), Trimethylpropane triacrylate (TMPTA), Tetrahydrofurfuryl methacrylate (THFMA), Glycidyl acrylate 중 적어도 하나 이상으로 포함하는 것을 특징으로 한다.The monomer is characterized in that it contains at least one of Ethylene glycol dimethacrylate ( EGDMA ), Trimethylpropane triacrylate (TMPTA), Tetrahydrofurfuryl methacrylate (THFMA), and Glycidyl acrylate.

상기 경화제는 Diethylenetriamine (DETA), Triethylenetetramine (TETA), N-aminoethylpiperazine (N-AEP), m-phenylenediamine (m-PDA), 4-4'-diaminodiphenylmethane (DDM), 4-4'-diaminodiphenylsulfone (DDS) 중 적어도 어느 하나 이상을 포함하는 것을 특징으로 한다.The curing agent is Diethylenetriamine (DETA), Triethylenetetramine (TETA), N-aminoethylpiperazine (N-AEP), m-phenylenediamine (m-PDA), 4-4'-diaminodiphenylmethane (DDM), 4-4'-diaminodiphenylsulfone (DDS) It is characterized by comprising at least one or more of the following.

상기 무기질 필러는 Ytterbium trifluoride를 포함하고, 방사선 불투과성을 향상시키기 위하여 사용하는 것을 특징으로 한다.The inorganic filler contains Ytterbium trifluoride and is used to improve radiopacity.

상기 유리 섬유와 계면결합을 향상시키기 위한 광중합 레진은, 상기 올리고머는 Bispenol A diglycidyl ether(BFDGE), Bisphenol A glycerolate dimethacrylate (Bis-GMA), Bisphenol A dimethacrylate (Bis-MA), Bisphenol A ethoxylated dimethacrylate (Bis-EMA), Diglycidyl ether of bisphenol A (DGEBA) 중 적어도 어느 하나 이상을 포함하고, 상기 첨가제는 도파민을 포함하며, 상기 경화제는 Diethylenetriamine (DETA), Triethylenetetramine (TETA), N-aminoethylpiperazine (N-AEP), m-phenylenediamine (m-PDA), 4-4'-diaminodiphenylmethane (DDM), 4-4'-diaminodiphenylsulfone (DDS) 중 적어도 어느 하나 이상을 포함하는 것을 특징으로 한다.The photopolymerization resin for improving the interfacial bond with the glass fiber includes the oligomers Bisphenol A diglycidyl ether (BFDGE), Bisphenol A glycerolate dimethacrylate (Bis-GMA), Bisphenol A dimethacrylate (Bis-MA), and Bisphenol A ethoxylated dimethacrylate (Bis). -EMA), diglycidyl ether of bisphenol A (DGEBA), the additive includes dopamine, and the curing agent includes Diethylenetriamine (DETA), Triethylenetetramine (TETA), N-aminoethylpiperazine (N-AEP) , m-phenylenediamine (m-PDA), 4-4'-diaminodiphenylmethane (DDM), and 4-4'-diaminodiphenylsulfone (DDS).

상기 유리 섬유와 계면결합을 향상시키기 위한 광중합 레진은, 상기 올리고머는 Propylene glycol, Ethylene glycol, Diethylene glycol, 1,4-Butadiol, Poly tetra hydrofuran, Polypropylene glycol 중 적어도 어느 하나 이상을 포함하고, 상기 모노머는 Styrene, Methyl methacrlate, Vinyl toluene, Vinyl acetate, Ethylene glycol diacrylate 중 적어도 어느 하나 이상을 포함하고, 상기 첨가제는 Dibutyltin dilaurate (DBTDL), Maleic anhydride, Methacylic acid, Acrylic acind, Fumaric anhydride, 1,1,1-tris(hydroxymethyl) propane, hexamethylene diisosyanate, Acetone, dibutyltindilaurate 중 적어도 하나 이상을 포함하고, 상기 경화제는 polyisocyanate prepolymer를 포함하고, 상기 무기질 물질은 CaCO₃, Zinc stearate, Magnesium oxide 중 적어도 어느 하나 이상을 포함하는 것을 특징으로 한다.In the photopolymerization resin for improving the interfacial bond with the glass fiber, the oligomer includes at least one of Propylene glycol, Ethylene glycol, Diethylene glycol, 1,4-Butadiol, Poly tetra hydrofuran, and Polypropylene glycol, and the monomer is Contains at least one of Styrene, Methyl methacrlate, Vinyl toluene, Vinyl acetate, and Ethylene glycol diacrylate, and the additives include Dibutyltin dilaurate (DBTDL), Maleic anhydride, Methacylic acid, Acrylic acid, Fumaric anhydride, 1,1,1- It contains at least one of tris(hydroxymethyl) propane, hexamethylene diisosyanate, Acetone, and dibutyltindilaurate, the curing agent contains a polyisocyanate prepolymer, and the inorganic material contains at least one of CaCO₃, zinc stearate, and magnesium oxide. Do it as

상기 실란 커플링제 처리는 N-butanol 85 내지 95 중량부에 증류수 5 내지 15 중량부로 희석하여 공용매를 제조한 후, 여기에 실란 0.1 내지 0.5 중량부를 첨가하여 실라놀 수용액을 제조하여 상기 유리섬유 가닥을 침적시키는 것을 특징으로 한다.The silane coupling agent treatment involves preparing a co-solvent by diluting 85 to 95 parts by weight of N-butanol with 5 to 15 parts by weight of distilled water, and then adding 0.1 to 0.5 parts by weight of silane to prepare an aqueous silanol solution to form the glass fiber strands. It is characterized by immersion.

이상 살펴본 바와 같은 본 발명에 따르면 치과용 비금속제 근관 포스트는 강력한 굴곡강도를 가지고, 부식이 없으며 생체 친화성 및 안정성이 보장되고, 우수한 방사선 불투과성 및 빛 투과성을 가지는 치과용 비금속제 근관 포스트를 제공할 수 있다.According to the present invention as described above, a dental non-metallic root canal post has strong bending strength, is corrosion-free, biocompatibility and stability are guaranteed, and has excellent radiopacity and light transparency. can do.

또한, 일반 상아질과 유사한 탄성으로 메탈 포스트와 비교하여 근관 파절이 일어나지 않아 치아를 보호할 수 있고, 근관에 사용하기 편한 tapered 형태로 이루어져 있으며, 심미적으로 우수한 치과용 비금속제 근관 포스트를 제공할 수 있다.In addition, it can protect teeth by preventing root canal fracture compared to metal posts due to its elasticity similar to that of regular dentin, and has a tapered form that is easy to use in root canals, providing an aesthetically excellent dental non-metallic root canal post.

보다 구체적으로, 포스트 표면에 플라즈마 처리 및 실란 커플링 처리를 함으로써 기포의 발생을 감소시키고, 표면 개질을 통하여 유리섬유의 젖음성이 향상되어 유리섬유와 레진의 계면 결합력을 높여 근관 포스트의 강도가 향상된 치과용 비금속제 근관 포스트를 제공할 수 있다.More specifically, the generation of air bubbles is reduced by plasma treatment and silane coupling treatment on the surface of the post, and the wettability of the glass fiber is improved through surface modification, increasing the interfacial bonding force between the glass fiber and the resin, thereby improving the strength of the root canal post. A non-metallic root canal post can be provided.

도 1은 본 발명의 제조방법으로 제조된 치과용 비금속제 근관 포스트의 사진.
도 2는 본 발명의 치과용 비금속제 근관 포스트의 방사선 불투과성을 나타낸 x-ray 사진.
도 3은 본 발명의 치과용 비금속제 근관 포스트의 빛 투과성을 나타낸 사진.
1 is a photograph of a dental non-metallic root canal post manufactured by the manufacturing method of the present invention.
Figure 2 is an x-ray photograph showing the radiopacity of the non-metallic dental root canal post of the present invention.
Figure 3 is a photograph showing the light transmittance of the dental non-metallic root canal post of the present invention.

본 발명은 치과용 비금속제 근관 포스트 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a non-metallic dental root canal post.

근관치료 또는 신경치료란 치아의 신경조직과 그 뿌리를 제거하는 시술을 말한다. 치아의 교합부위를 열어 치수의 잔유물을 제거하는 과정이 포함된다. 이 때 치아가 감염되는 것을 예방하기 위해 내부를 멸균하는 약품을 사용한다. 외부에 노출된 근관은 그 내부를 채워야하며 치아를 복원하기 위해 근관에 치주(post)를 삽입하기도 한다. 이는, 치아가 제자리에서 기능을 할 수 있도록 보존하는 방법이다.Root canal treatment or root canal treatment refers to a procedure that removes the nerve tissue of a tooth and its roots. It involves opening the occlusal area of the teeth and removing any remaining pulp. At this time, a chemical to sterilize the inside of the tooth is used to prevent infection. The inside of a root canal exposed to the outside must be filled, and a periodontal (post) may be inserted into the root canal to restore the tooth. This is a method of preserving teeth so that they can function in place.

상기 근관 포스트는 근관 치료 후 치근과 치관부의 수복물을 연결하는 역할로써 코어를 유지하고 안정시키며, 치관부에 가해지는 응력을 완충하고 치근과 치관부의 연결을 지탱하는 치과용 재료이다. 치아에 우식이 발생하거나 외부의 충격으로 인해 파절이 일어난 경우, 생활치의 보존적 치료방법으로 근관 치료 과정이 뒤따른다. 파절된 치아의 치수를 제거하고 확장된 근관을 채우는데 사용하는 재료로는 코어용 레진, 근관 포스트 등이 있으며, 근관 포스트는 코어용 레진에 비해 잔존 치아량이 많지 않은 경우에도 적용이 가능하다는 장점이 있다.The root canal post is a dental material that maintains and stabilizes the core by connecting the tooth root and the crown restoration after root canal treatment, buffers stress applied to the crown part, and supports the connection between the tooth root and the crown part. If caries occurs in a tooth or fracture occurs due to external shock, root canal treatment is followed as a conservative treatment method for the vital tooth. Materials used to remove the pulp of a fractured tooth and fill the expanded root canal include core resin and root canal post. Root canal post has the advantage of being applicable even when the amount of remaining tooth is not large compared to core resin. there is.

근관 포스트의 종류는 크게 주조용 포스트(cast post)와 기성형된 포스트 (prefabricated post)로 나뉜다. 기성형된 포스트는 그 구성성분에 따라 크게 금 속제 근관 포스트와 비금속제 근관 포스트로 분류할 수 있다. 금속제 근관 포스트 제품으로는 금, 팔라듐, 스테인리스 스틸, 티타늄 등이 있다. 비금속제 근관 포스 트로는 지르코니아, 알루미나와 같은 세라믹 소재 또는 탄소섬유(carbon fiber), 유리섬유(glass fiber), 석영섬유(quartz fiber) 등으로 강화된 섬유강화형 컴포짓 근관 포스트 제품이 있다.Types of root canal posts are largely divided into cast posts and prefabricated posts. Pre-formed posts can be broadly classified into metal root canal posts and non-metal root canal posts according to their components. Metal root canal post products include gold, palladium, stainless steel, and titanium. Non-metallic root canal posts include fiber-reinforced composite root canal post products reinforced with ceramic materials such as zirconia and alumina, or carbon fiber, glass fiber, and quartz fiber.

상기 유리섬유는 단단하고 강하면서도 변형성이 좋고 깨지지 않으며, 낮은 밀도를 갖는다. 섬유는 섬유 강화 복합재료의 주성분이며 복합재료 내의 많은 부피를 차지하고 있다. 또한 섬유의 배향이나 종류, 양, 크기 등은 복합재료의 비중, 인장강도, 탄성률, 압축강도, 탄성계수, 피로강도, 피로파괴 메커니즘, 전기 및 열전도성, 비용 등 특성에 영향을 주기 때문에 매우 중요하다.The glass fiber is hard and strong, has good deformability, does not break, and has a low density. Fiber is the main component of fiber-reinforced composite materials and occupies a large volume of the composite material. In addition, the orientation, type, amount, and size of the fiber are very important because they affect the properties of the composite material, such as specific gravity, tensile strength, elastic modulus, compressive strength, elastic modulus, fatigue strength, fatigue failure mechanism, electrical and thermal conductivity, and cost. do.

유리는 빛을 통과시키는 성질을 가지므로 근관 포스트 제조 시 광조사에 의한 중합 효율을 높일 수 있으며, 포스트를 치아에 수복할 경우 안쪽까지도 광조사가 이루어질 수 있다. 유리는 무기질의 용융체를 냉각 시 결정화 시키는 과정 없이 고체로 사용할 수 있는 상태로 응고한 것으로 딱딱하고 부서지기 쉬우며, 이러한 유리를 가열상태에서 용융 방사하여 제조하는 것이 유리섬유(glass fiber)이다.Since glass has the property of allowing light to pass through, the polymerization efficiency by light irradiation can be increased when manufacturing a root canal post, and when the post is restored to a tooth, light irradiation can be carried even to the inside. Glass is hard and brittle, made by solidifying an inorganic molten body into a solid state without crystallization upon cooling. Glass fiber is manufactured by melting and spinning such glass in a heated state.

본 발명의 치과용 비금속제 근관 포스트 제조방법은 유리섬유 가닥을 구비하는 단계; 상기 유리섬유 가닥을 세척한 후 건조시키는 단계; 상기 건조가 완료된 유리섬유 가닥 표면에 플라즈마 처리를 하는 단계; 상기 플라즈마 처리가 완료된 유리섬유 가닥 표면에 계면 결합제인 실란 커플링제 처리를 하는 단계; 상기 실란 커플링제 처리를 완료한 유리섬유 가닥 다수개를 뭉쳐 진공상태에서 광중합 레진으로 결집하는 단계; 상기 결집이 완료된 유리섬유 가닥을 포스트 형상을 갖도록 경화형 몰드에 UV경화기를 이용하여 빛을 조사하여 경화하는 단계; 상기 경화가 완료된 포스트의 외면에 절단 포인트로 사용하기 위한 포인트를 표시하는 단계;를 포함한다.The method of manufacturing a dental non-metallic root canal post of the present invention includes the steps of providing glass fiber strands; washing and drying the glass fiber strands; Plasma treatment on the surface of the dried glass fiber strands; Treating the surface of the plasma-treated glass fiber strand with a silane coupling agent, which is an interfacial binder; Gathering a plurality of glass fiber strands that have been treated with the silane coupling agent and assembling them with light-polymerization resin in a vacuum; curing the assembled glass fiber strands into a post-shaped mold by irradiating light using a UV curing machine; It includes: marking a point to be used as a cutting point on the outer surface of the post on which the hardening has been completed.

유리섬유 구비 단계Steps to provide glass fiber

단섬유의 지름이 5㎛ 내지 15㎛으로 구성되고, 한 가닥에 약 3,000개 내지 4,000개의 단섬유로 구성되는 유리섬유 가닥을 다수개 구비한다. The diameter of the single fiber is 5㎛ to 15㎛, and each strand is provided with a plurality of glass fiber strands consisting of about 3,000 to 4,000 single fibers.

상기 단섬유는 일정한 형태나 모양이 없고 희색에서 회색까지의 색상을 띄며 무취의 고체상의 섬유로써, 2.5 내지 2.55 사이의 비중을 가지는 단섬유를 사용하는 것이 바람직하다.The short fibers are odorless solid fibers that do not have a specific shape or shape and have a color ranging from white to gray. It is preferable to use single fibers having a specific gravity between 2.5 and 2.55.

세척 및 건조단계Washing and drying steps

상기 유리섬유 가닥의 표면에 존재하는 불순물을 제거하기 위해 아세톤 또는 인산에 20분 내지 40분동안 담그어 세척하고, 60℃ 내지 80℃의 온도에서 6시간 내지 12시간 동안 건조시킨 후, 다시 상온에서 하루동안 건조시킨다. To remove impurities present on the surface of the glass fiber strands, they are washed by soaking them in acetone or phosphoric acid for 20 to 40 minutes, dried at a temperature of 60°C to 80°C for 6 to 12 hours, and then left at room temperature for a day. Dry for a while.

플라즈마 표면 처리단계Plasma surface treatment step

건조가 완료된 상기 유리섬유 가닥 표면에 플라즈마 처리를 수행한다. 플라즈마를 이용하여 유리섬유 가닥 표면을 처리하면 플라즈마 내의 라디칼, 자외선, 충돌전자와 같은 활성종이 유리섬유 가닥 표면에 극성과 미세 요철을 형성한다. 이에 정전기적 대전효과가 발생하여 유리섬유 가닥의 젖음성이 향상된다. 유리섬유 가닥의 젖음성이 향상되면 레진과 결집 단계에서 젖음성이 향상된 유리섬유 가닥과 레진과의 계면 결합에 있어서 서로 간의 접촉각이 작아져 계면 접착력이 향상되어 우수한 강도의 근관 포스트를 제공할 수 있다.Plasma treatment is performed on the surface of the dried glass fiber strand. When the surface of a glass fiber strand is treated using plasma, active species such as radicals, ultraviolet rays, and colliding electrons in the plasma form polarity and fine irregularities on the surface of the glass fiber strand. As a result, an electrostatic charging effect occurs, improving the wettability of the glass fiber strands. If the wettability of the glass fiber strands is improved, the contact angle between the glass fiber strands with improved wettability and the resin in the bonding step is reduced, thereby improving the interfacial adhesion, thereby providing a root canal post with excellent strength.

플라즈마 표면 처리단계를 거치면 표면으로부터 오염된 유기물을 제거할 수 있고, 플라즈마 내의 다량의 라디칼이 유리섬유 표면에 충돌하여 친수화를 발생시킨다. 표면에 형성된 라디칼은 산소를 포함하고 있는 친수성을 나타남에 따라 젖음성이 향상되어 표면 활성화에너지가 증가되어 유리섬유 가닥과 레진 사이의 계면 결합성이 높아진다.Through the plasma surface treatment step, contaminated organic substances can be removed from the surface, and a large amount of radicals in the plasma collide with the surface of the glass fiber, causing hydrophilization. As the radicals formed on the surface are hydrophilic and contain oxygen, the wettability is improved, the surface activation energy increases, and the interfacial bond between the glass fiber strands and the resin increases.

건조가 완료된 상기 유리섬유 가닥을 플라즈마 반응조에 넣고 플라즈마 방전을 발생시킨다. 이때, 진공도는 0.1 내지 0.5 Torr로 설정하고, 7 내지 14Mhz의 플라즈마 발생장치로 1분 내지 10분동안 플라즈마 처리하는 것이 바람직하다. The dried glass fiber strands are placed in a plasma reaction tank and a plasma discharge is generated. At this time, it is desirable to set the vacuum level to 0.1 to 0.5 Torr and perform plasma treatment for 1 to 10 minutes using a 7 to 14 Mhz plasma generator.

실란 커플링제 처리단계Silane coupling agent processing step

근관 포스트의 기계적 물성을 향상시키기 위해 유리섬유의 표면처리를 하는데 있어서 다양한 방법이 있는데, 실란 커플링제 처리는 표면의 기포를 감소시키고, 유리섬유 가닥과 레진의 화학적 결합을 통하여 근관 포스트의 강도를 향상시키는 효과가 있다. 유기계 실란을 이용하여 유기계 고분자와 무기재료 간의 커플링 효과를 나타나게 하여 서로 다른 이종재료의 계면 접착력을 향상시킨다. There are various methods for treating the surface of glass fiber to improve the mechanical properties of the root canal post. Silane coupling agent treatment reduces surface bubbles and improves the strength of the root canal post through chemical bonding between glass fiber strands and resin. It has an effect. The use of organic silane creates a coupling effect between organic polymers and inorganic materials, improving the interfacial adhesion of different materials.

상기 실란 커플링제는 용매 내에서 가수분해와 축합반응을 일으킨다. 일반적으로 R-Si-(OR μ)n의 구조를 가지며, Organofunctional group(R)은 화학결합을 생성하는 유기재료와 반응하고, Hydrolyzable group (OR μ)은 물에 의해 가수분해 되어 실라놀(Si-OH)을 형성하여 R-Si-(OH)n 구조가 되며, 무기재료의 -OH와 탈수화 반응을 통해 결합을 형성한다.The silane coupling agent causes hydrolysis and condensation reactions in the solvent. Generally, it has the structure of R-Si-(OR μ)n. The organofunctional group (R) reacts with organic materials to create a chemical bond, and the hydrolyzable group (OR μ) is hydrolyzed by water to produce silanol (Si). -OH) is formed to form an R-Si-(OH)n structure, and a bond is formed through a dehydration reaction with -OH of the inorganic material.

상기 실란 커플링제 처리를 위하여 공용매를 제조하여 사용할 수 있다. A co-solvent can be prepared and used for the silane coupling agent treatment.

N-butanol 85 내지 95 중량부에 증류수를 5 내지 15 중량부로 희석하여 공용매를 제조한 후, 여기에 실란 0.1 내지 0.5 중량부를 첨가하면 PH 3.0 내지 4.0의 산성 환경에서 가수분해 되어 실라놀 수용액이 제조된다. 이렇게 제조된 실라놀 수용액에 유리섬유 가닥을 1분 내지 5분동안 침적시키는 방법이 가장 바람직하다.A co-solvent is prepared by diluting 85 to 95 parts by weight of N-butanol with 5 to 15 parts by weight of distilled water, and then 0.1 to 0.5 parts by weight of silane is added to it, which is hydrolyzed in an acidic environment of pH 3.0 to 4.0 to form an aqueous silanol solution. It is manufactured. The most preferred method is to immerse the glass fiber strands in the silanol aqueous solution prepared in this way for 1 to 5 minutes.

상기 실란 커플링제는 3-Methacryloxypropyltrimethoxysilane, 3-Methacryloxypropyltriethoxysilane, 3-Methacryloxypropylmethyldimethoxysilane, 3-(Acryloyloxy)propyltrimethoxysilane, 3-Aminopropyltriethoxysilane, N-2-(Aminoethyl)-3-aminopropyltrimethoxysilane, Triethoxy(octyl)silan 중 어느 하나 이상 포함하는 것이 바람직하다.The silane coupling agent is any one of 3-Methacryloxypropyltrimethoxysilane, 3-Methacryloxypropyltriethoxysilane, 3-Methacryloxypropylmethyldimethoxysilane, 3-(Acryloyloxy)propyltrimethoxysilane, 3-Aminopropyltriethoxysilane, N-2-(Aminoethyl)-3-aminopropyltrimethoxysilane, and Triethoxy(octyl)silane. Includes more than It is desirable to do so.

광중합 레진 결집단계Light-polymerized resin assembly stage

상기 실란 커플링제 처리를 완료한 유리섬유 가닥 다수개를 구비하여 진공상태에서 광중합 레진으로 결집한다.A plurality of glass fiber strands that have been treated with the silane coupling agent are prepared and assembled with light-polymerized resin in a vacuum.

상기 광중합 레진은 유리섬유 가닥을 서로 결집시키는 역할을 하며, 외부에서 전해지는 응력을 섬유에 전달하고, 유리섬유가 마찰 및 마모에 의해 표면이 손상되는 것을 방지하는 역할을 한다. 또한, 화학반응이 발생하지 않도록 보호하며, 섬유와 섬유를 분리시켜 균열이 섬유를 따라 전파하지 않도록 한다. The photopolymerization resin serves to bind the glass fiber strands together, transmits external stress to the fiber, and prevents the surface of the glass fiber from being damaged by friction and abrasion. In addition, it protects against chemical reactions and separates fibers from each other to prevent cracks from propagating along the fibers.

상기 광중합 레진은 올리고머 20 내지 50 중량부 기준으로, 모노머 15 내지 30 중량부, 첨가제 5 내지 15 중량부, 경화제 5 내지 10 중량부, 무기질 필러 5 내지 9 중량부를 포함한다.The photopolymerization resin includes 15 to 30 parts by weight of monomer, 5 to 15 parts by weight of additive, 5 to 10 parts by weight of curing agent, and 5 to 9 parts by weight of inorganic filler, based on 20 to 50 parts by weight of oligomer.

상기 올리고머는 Bispenol A diglycidyl ether(BFDGE), Bisphenol A glycerolate dimethacrylate (Bis-GMA), Bisphenol A dimethacrylate (Bis-MA), Bisphenol A ethoxylated dimethacrylate (Bis-EMA), Diurethane dimethacrylate (UDMA), Diglycidyl ether of bisphenol A (DGEBA) 중 적어도 하나 이상을 포함하는 것이 바람직하다.The oligomers include Bisphenol A diglycidyl ether (BFDGE), Bisphenol A glycerolate dimethacrylate (Bis-GMA), Bisphenol A dimethacrylate (Bis-MA), Bisphenol A ethoxylated dimethacrylate (Bis-EMA), Diurethane dimethacrylate (UDMA), Diglycidyl ether of bisphenol It is preferred that it contains at least one of A (DGEBA).

상기 Bispenol A diglycidyl ether(BFDGE)은 20℃에서 비중이 1.16인 액체 성상으로 존재하며 분자량은 340.42이며 냄새가 없다. 인화점은 79℃, 녹는점은 8℃ 내지 12℃로, 증기압은 25℃ 상온에서 0.000000108mmHg로 매우 낮으며, 증기밀도는 11.7인 것을 사용하는 것이 바람직하다.The Bispenol A diglycidyl ether (BFDGE) exists as a liquid with a specific gravity of 1.16 at 20°C, has a molecular weight of 340.42, and has no odor. The flash point is 79℃, the melting point is 8℃ to 12℃, the vapor pressure is very low at 0.000000108mmHg at room temperature of 25℃, and the vapor density is preferably 11.7.

상기 모노머는 Ethylene glycol dimethacrylate (EGDMA), Trimethylpropane triacrylate (TMPTA), Tetrahydrofurfuryl methacrylate (THFMA), Glycidyl acrylate 중 적어도 하나 이상을 포함하는 것이 바람직하다.The monomer preferably includes at least one of Ethylene glycol dimethacrylate ( EGDMA ), Trimethylpropane triacrylate (TMPTA), Tetrahydrofurfuryl methacrylate (THFMA), and Glycidyl acrylate.

상기 첨가제는 Triethylene glycol dimethacrylate (TEGDMA), Phenol-formaldehyde polymer glycidyl ether, 도파민 중 적어도 하나 이상을 포함하는 것이 바람직하다.The additive preferably includes at least one of Triethylene glycol dimethacrylate (TEGDMA), Phenol-formaldehyde polymer glycidyl ether, and dopamine.

상기 Triethylene glycol dimethacrylate (TEGDMA)는 점도조절제로 사용하는 것이 바람직하다. Triethylene glycol dimethacrylate (TEGDMA) is preferably used as a viscosity regulator.

상기 Phenol-formaldehyde polymer glycidyl ether는 노란색을 띄는 액체성분으로 달콤한 냄새가 나며, 비중은 1.22로 물보다 높고, 인화점은 218℃이며 비등점은 245℃이상이고, 증기압은 20℃에서 200mmHg이하인 것을 사용하는 것이 바람직하다. The phenol-formaldehyde polymer glycidyl ether is a yellow liquid component with a sweet odor, has a specific gravity of 1.22, which is higher than water, has a flash point of 218°C, a boiling point of 245°C or more, and a vapor pressure of 200 mmHg or less at 20°C. desirable.

상기 경화제는 Diethylenetriamine (DETA), Triethylenetetramine (TETA), N-aminoethylpiperazine (N-AEP), m-phenylenediamine (m-PDA), 4-4'-diaminodiphenylmethane (DDM), 4-4'-diaminodiphenylsulfone (DDS) 중 적어도 하나 이상을 포함하는 것이 바람직하다.The curing agent is Diethylenetriamine (DETA), Triethylenetetramine (TETA), N-aminoethylpiperazine (N-AEP), m-phenylenediamine (m-PDA), 4-4'-diaminodiphenylmethane (DDM), 4-4'-diaminodiphenylsulfone (DDS) It is preferable to include at least one of the following.

근관 포스트는 치아 내에 직접 수복하므로 방사선 사진상 주위 해부학적 구조와 구별될 만한 높은 방사선 불투과성을 나타내야 한다. 이에 상기 무기질 필러는 방사선 불투과성을 만족시키기 위하여 사용하며, Ytterbium trifluoride를 포함하는 것이 바람직하다. Since root canal posts are restored directly within the tooth, they must exhibit high radiopacity to be distinguishable from the surrounding anatomical structures on radiographs. Accordingly, the inorganic filler is used to satisfy radiopacity, and preferably contains Ytterbium trifluoride.

상기 Ytterbium trifluoride는 흰색의 고체 파우더 결정체로 분자량은 230.04이고, 비중은 20℃에서 8.2다. 또한, 비등점은 2227℃, 녹는점은 1163.85 내지 1179.85℃ 이며 증기압은 25℃에서 0.00000000459mmHg인 것을 사용하는 것이 바람직하다.The Ytterbium trifluoride is a white solid powder crystal with a molecular weight of 230.04 and a specific gravity of 8.2 at 20°C. In addition, the boiling point is 2227°C, the melting point is 1163.85 to 1179.85°C, and the vapor pressure is preferably 0.00000000459mmHg at 25°C.

여기에서, 유리 섬유와 계면결합을 향상시키기 위한 상기 광중합 레진은 하기와 같이 구성될 수 있다.Here, the photopolymerization resin for improving interfacial bonding with glass fiber may be configured as follows.

올리고머는 Bispenol A diglycidyl ether(BFDGE), Bisphenol A glycerolate dimethacrylate (Bis-GMA), Bisphenol A dimethacrylate (Bis-MA), Bisphenol A ethoxylated dimethacrylate (Bis-EMA), Diglycidyl ether of bisphenol A (DGEBA) 중 적어도 하나 이상을 포함하고, 첨가제는 도파민을 포함하고, 경화제는 Diethylenetriamine (DETA), Triethylenetetramine (TETA), N-aminoethylpiperazine (N-AEP), m-phenylenediamine (m-PDA), 4-4'-diaminodiphenylmethane (DDM), 4-4'-diaminodiphenylsulfone (DDS) 중 적어도 어느 하나 이상을 포함하여 광중합 레진을 구성할 수 있다.The oligomer is at least one of Bisphenol A diglycidyl ether (BFDGE), Bisphenol A glycerolate dimethacrylate (Bis-GMA), Bisphenol A dimethacrylate (Bis-MA), Bisphenol A ethoxylated dimethacrylate (Bis-EMA), and diglycidyl ether of bisphenol A (DGEBA). The additives include dopamine, and the hardeners include Diethylenetriamine (DETA), Triethylenetetramine (TETA), N-aminoethylpiperazine (N-AEP), m-phenylenediamine (m-PDA), and 4-4'-diaminodiphenylmethane (DDM). ), 4-4'-diaminodiphenylsulfone (DDS) may be included to form a light-polymerized resin.

상기 도파민은 4-(2-Aminoethyl)benzene-1,2-diol을 사용하는 것이 바람직하다.It is preferable to use 4-(2-Aminoethyl)benzene-1,2-diol as the dopamine.

상기 도파민은 계면 접착력을 향상시켜주는 친환경 첨가제로, 상기 올리고머와 유리 섬유 간의 상호간의 계면 접착력을 향상시키는 역할을 한다. 도파민의 하이드록실기와 유리섬유의 하이드록실기 사이에 수소결합을 유발하여 우수한 계면 접착력으로 제조되는 근관 포스트의 기계적 강도를 향상시킬 수 있다.The dopamine is an eco-friendly additive that improves interfacial adhesion, and serves to improve the interfacial adhesion between the oligomer and glass fiber. By inducing hydrogen bonding between the hydroxyl group of dopamine and the hydroxyl group of glass fiber, the mechanical strength of the root canal post manufactured with excellent interfacial adhesion can be improved.

또한, 유리 섬유와 계면결합을 향상시키기 위한 상기 광중합 레진은 하기와 같이 구성될 수 있다.Additionally, the photopolymerization resin for improving interfacial bonding with glass fiber may be configured as follows.

올리고머는 Propylene glycol, Ethylene glycol, Diethylene glycol, 1,4-Butadiol, Poly tetra hydrofuran, Polypropylene glycol 중 적어도 어느 하나 이상을 포함하고, 모노머는 Styrene, Methyl methacrlate, Vinyl toluene, Vinyl acetate, Ethylene glycol diacrylate 중 적어도 어느 하나 이상을 포함하며, 첨가제 Dibutyltin dilaurate (DBTDL), Maleic anhydride, Methacylic acid, Acrylic acind, Fumaric anhydride, 1,1,1-tris(hydroxymethyl) propane, hexamethylene diisosyanate, Acetone, dibutyltindilaurate 중 적어도 어느 하나 이상을 포함하고, 경화제는 polyisocyanate prepolymer를 포함하고, 무기질 물질은 CaCO₃, Zinc stearate, Magnesium oxide 중 적어도 어느 하나 이상을 포함하여 광중합 레진을 구성할 수 있다.The oligomer includes at least one of Propylene glycol, Ethylene glycol, Diethylene glycol, 1,4-Butadiol, Poly tetra hydrofuran, and Polypropylene glycol, and the monomer includes at least one of Styrene, Methyl methacrlate, Vinyl toluene, Vinyl acetate, and Ethylene glycol diacrylate. Contains one or more of the additives Dibutyltin dilaurate (DBTDL), Maleic anhydride, Methacylic acid, Acrylic acid, Fumaric anhydride, 1,1,1-tris(hydroxymethyl) propane, hexamethylene diisosyanate, Acetone, and dibutyltindilaurate. The curing agent may include a polyisocyanate prepolymer, and the inorganic material may include at least one of CaCO₃, zinc stearate, and magnesium oxide to form a photopolymerization resin.

상기 첨가제는 Maleic anhydride, Methacylic acid, Acrylic acind, Fumaric anhydride 중 어느 하나 이상의 물질과 상기 올리고머 Propylene glycol, Ethylene glycol, Diethylene glycol, 1,4-Butadiol 중 어느 하나 이상의 물질과 글리콜의 중축합 반응에 의해 불포화 폴리에스테르를 생성할 수 있다.The additive is unsaturated by polycondensation reaction of glycol with any one or more of Maleic anhydride, Methacylic acid, Acrylic acid, Fumaric anhydride, and one or more of the oligomers Propylene glycol, Ethylene glycol, Diethylene glycol, and 1,4-Butadiol. Polyester can be produced.

상기 생성된 불포화 폴리에스테르와 상기 모노머 Styrene, Methyl methacrlate, Vinyl toluene, Vinyl acetate, Ethylene glycol diacrylate 중 어느 하나 이상의 물질과 반응하여 상기 Dibutyltin dilaurate (DBTDL)를 촉매로 하여 중합반응을 일으켜 불포화 폴리에스테르 수지를 생성할 수 있다.The produced unsaturated polyester reacts with one or more of the monomers Styrene, Methyl methacrlate, Vinyl toluene, Vinyl acetate, and Ethylene glycol diacrylate to produce a polymerization reaction using Dibutyltin dilaurate (DBTDL) as a catalyst to produce an unsaturated polyester resin. can be created.

상기 올리고머 Poly tetra hydrofuran, Polypropylene glycol 중 어느 하나 이상의 물질과 상기 1,1,1-tris(hydroxymethyl)propane을 반응기에 넣고 진공하에 혼합한 후, 여기에 상기 hexamethylene diisosyanate와 촉매 역할을 하는 Acetone : dibutyltindilaurate을 200 내지 300 : 1의 중량비로 혼합하여 30분 내지 1시간 동안 반응시켜 폴리 우레탄을 얻을 수 있다.At least one of the oligomers Poly tetra hydrofuran and polypropylene glycol and the 1,1,1-tris(hydroxymethyl)propane are placed in a reactor and mixed under vacuum, and then the hexamethylene diisosyanate and Acetone: dibutyltindilaurate, which acts as a catalyst, are added to the reactor. Polyurethane can be obtained by mixing at a weight ratio of 200 to 300:1 and reacting for 30 minutes to 1 hour.

상기 불포화 폴리에스테르에 상기 폴리 우레탄을 첨가하고, 여기에 상기 무기질 물질인 물질 CaCO₃, Zinc stearate, Magnesium oxide 중 적어도 어느 하나 이상을 포함하여 광중합 레진을 구성할 수 있다. The polyurethane may be added to the unsaturated polyester, and at least one of the inorganic substances CaCO₃, zinc stearate, and magnesium oxide may be added to form a photopolymerization resin.

이렇게 생성된 광중합 레진과 유리섬유를 결집하면 상기 불포화 폴리에스테르는 가볍고 물성이 우수하지만 충격에 약하기 때문에 여기에 폴리 우레탄을 첨가하여 유연성을 부여함으로써 단점을 극복할 수 있고, 유리섬유와 광중합 레진과의 계면 결합력을 향상시켜 제조되는 근관 포스트의 기계적 물성을 향상시킬 수 있다.When the light-polymerized resin and glass fiber produced in this way are combined, the unsaturated polyester is light and has excellent physical properties, but is weak to impact, so the disadvantage can be overcome by adding polyurethane to it to give flexibility, and the combination of the glass fiber and the light-polymerized resin can be achieved. By improving the interfacial bonding force, the mechanical properties of the root canal post manufactured can be improved.

본 단계를 진공상태에서 진행하는 이유는 유리섬유 및 광중합 레진 내의 기포를 제거하여 가공성을 향상시키기 위함이다.The reason for performing this step in a vacuum is to improve processability by removing air bubbles in the glass fiber and light-polymerized resin.

또한, 광중합 레진으로 이중 중합형 레진(듀얼 레진 시멘트)을 사용할 수 있다.In addition, double-cured resin (dual resin cement) can be used as the light-cured resin.

상기 이중 중합형 레진은 광중합 이후 자가중합에 의해 중합률이 결정되는데, 중합을 두번 일으켜 투명성이 보장되고 근관 포스트의 빛 투과성을 높일 수 있다. The polymerization rate of the double-polymerized resin is determined by self-polymerization after light-polymerization, and polymerization occurs twice to ensure transparency and increase light transparency of the root canal post.

도 3은 상기의 광중합 레진을 사용하여 본 발명의 제조방법에 의해 제조된 치과용 비금속제 근관 포스트의 빛 투과성을 나타낸 도면이다.Figure 3 is a diagram showing the light transmittance of a dental non-metallic root canal post manufactured by the manufacturing method of the present invention using the above photopolymerized resin.

경화단계Hardening stage

상기 결집이 완료된 유리섬유를 포스트 형상을 갖도록 경화형 몰드에 UV경화기를 이용하여 빛을 조사하여 경화한다. 이 때, UV경화기 빛의 파장은 320nm 내지 600nm의 출력으로 주변의 빛을 모두 차단시킨 암실에서 경화를 진행하는 것이 바람직하다.The assembled glass fibers are cured by irradiating light using a UV curing machine into a curing mold to have a post shape. At this time, the UV curing machine light wavelength has an output of 320 nm to 600 nm, and it is desirable to carry out curing in a dark room where all surrounding light is blocked.

상기 경화형 몰드는 한쪽 끝이 다른 한쪽 끝보다 상대적으로 뾰족한 tapered 형태를 갖추고 있는 것을 특징으로 한다. Tapered 형태는 근관의 형태와 유사하여 근관에 사용하기 수월한 이점이 있다.The hardening mold is characterized in that one end has a tapered shape that is relatively sharper than the other end. The tapered shape has the advantage of being easy to use in root canals as it is similar to the shape of a root canal.

포인트 표시단계Point display stage

경화가 완료된 포스트의 외면에 절단 포인트로 사용하기 위하여 홈을 내어 포인트를 표시한다. 이는, 적정한 길이로 포스트를 삽입하여 신경이 손상되는 것을 방지하기 위함이다. 근관 포스트를 삽입하기 전 다이아몬드 디스크 또는 다이아몬드 버를 이용하여 적정길이로 절단하여 사용한다.A groove is made on the outer surface of the hardened post to be used as a cutting point and a point is marked. This is to prevent nerve damage by inserting the post at an appropriate length. Before inserting the root canal post, cut it to the appropriate length using a diamond disk or diamond bur.

도 1은 본 발명의 제조방법으로 제조된 치과용 비금속제 근관 포스트의 사진이다.1 is a photograph of a dental non-metallic root canal post manufactured by the manufacturing method of the present invention.

이하 제조 예를 통하여 본 발명의 치과용 비금속제 근관 포스트 제조방법에 따라 비금속제 근관 포스트를 제조하고, 실험을 통하여 우수성을 확인하였다. Through the following manufacturing examples, a non-metallic root canal post was manufactured according to the manufacturing method of a dental non-metallic root canal post of the present invention, and its excellence was confirmed through experiments.

본 발명은 이러한 제조 예 및 실험 예에 한정되지 않는다 할 것이다.It will be said that the present invention is not limited to these manufacturing examples and experimental examples.

<제조예 1> 비금속제 근관 포스트의 제조 <Manufacturing Example 1> Manufacturing of non-metallic root canal post

한 가닥에 4,000개의 단섬유로 구성되고, 지름이 13㎛인 유리섬유를 6가닥을 준비하여 아세톤에 30분동안 담그어 세척한 다음 80℃의 온도에서 12시간 동안 건조시킨다. 건조된 유리섬유를 플라즈마 반응조에 넣고 0.1 Torr의 진공도, 13Mhz의 플라즈마를 3분동안 발생시킨다. Each strand consists of 4,000 single fibers, and six strands of glass fiber with a diameter of 13㎛ are prepared, washed by soaking in acetone for 30 minutes, and then dried at a temperature of 80°C for 12 hours. The dried glass fiber is placed in a plasma reaction tank and a vacuum of 0.1 Torr and plasma of 13Mhz are generated for 3 minutes.

그 다음 3-methacryloxypropyltrimethoxysilane의 실란용액에 유리섬유를 3분동안 침적시켜 실란 커플링제 처리를 한다. 상기 실란 커플링제 처리가 끝난 유리섬유 6가닥을 뭉쳐 진공상태에서 광중합 레진으로 결집한다.Next, the glass fiber is immersed in a silane solution of 3-methacryloxypropyltrimethoxysilane for 3 minutes and treated with a silane coupling agent. The six strands of glass fiber that have been treated with the silane coupling agent are bundled together and assembled with light-polymerized resin in a vacuum.

이 때, 상기 광중합 레진은 상기 유리섬유 100중량부를 기준으로 올리고머 Bispenol A diglycidyl ether(BFDGE) 40중량부, 첨가제 Triethylene glycol dimethacrylate (TEGDMA) 5중량부, 첨가제 Phenol-formaldehyde polymer glycidyl ether 10중량부, 무기질 필러 ytterbium trifluoride 9중량부, 도파민 (4-(2-Aminoethyl)benzene-1,2-diol) 5중량부, 경화제 Diethylenetriamine (DETA) 7중량부 모두 혼합하여 사용하였다.At this time, the photopolymerization resin contains 40 parts by weight of oligomer Bispenol A diglycidyl ether (BFDGE), 5 parts by weight of additive Triethylene glycol dimethacrylate (TEGDMA), 10 parts by weight of additive Phenol-formaldehyde polymer glycidyl ether, and mineral based on 100 parts by weight of the glass fiber. 9 parts by weight of filler ytterbium trifluoride, 5 parts by weight of dopamine (4-(2-Aminoethyl)benzene-1,2-diol), and 7 parts by weight of hardener Diethylenetriamine (DETA) were all mixed and used.

이 후, 어떠한 빛도 노출되지 않는 암실에서 tapered 형태의 경화형 몰드에 넣어 360nm의 파장에서 UV경화기를 이용하여 10분동안 빛을 조사하여 경화시킨 다음, 홈을 내어 절단 포인트를 표시하여 제조 예 1의 근관 포스트를 제조하였다.Afterwards, it was placed in a tapered curing mold in a dark room not exposed to any light, cured by irradiating light for 10 minutes using a UV curing machine at a wavelength of 360 nm, and then a groove was made to mark the cutting point as in Manufacturing Example 1. Root canal posts were prepared.

<실험예 1> 방사선 불투과성 측정<Experimental Example 1> Measurement of radiopacity

근관 포스트의 경우 시술 후 환자의 사후관리를 위하여 정기적인 검사나 재수술 여부를 판독하기 위해 X-선 촬영 시 상아질 대비 근관 포스트의 방사선 불투과성을 구별할 수 있어야한다, In the case of a root canal post, it is necessary to be able to distinguish the radiopacity of the root canal post compared to the dentin when taking an

제조 예 1에 의해 제조된 근관 포스트를 준비하고, 치과용 X-선을 이용하여 불투과성을 측정하였다.The root canal post manufactured according to Manufacturing Example 1 was prepared, and its opacity was measured using dental X-rays.

알루미늄 스텝 웨지는 ISO 4049의 기준을 만족하시키는 길이 50mm, 폭 50mm 크기를 가지며, 순도 98% 이상의 알루미늄으로 최대 0.1% 구리와 최대 1%이하의 철을 함유하는 것을 사용하였다. 이때, 두께는 0.1mm의 동일한 간격의 폭으로 0.5mm부터 5.0mm까지의 범위를 사용한다.The aluminum step wedge has a length of 50 mm and a width of 50 mm that satisfies the standards of ISO 4049, and is made of aluminum with a purity of 98% or more and containing up to 0.1% copper and up to 1% iron. At this time, the thickness ranges from 0.5mm to 5.0mm with the width at equal intervals of 0.1mm.

실험 방법은 X-선 센서를 두께 2mm 이상의 납판 위에 위치시키고, 제조된 근관 포스트와 알루미늄 스텝 웨지를 센서 중앙에 가깝게 위치시킨다. 음극과 근관 포스트의 거리가 300mm 내지 400mm가 되도록 하여 근관 포스트 및 알루미늄 스텝 웨지를 65 KV, 10 mA의 0.8초동안 X-선에 노출시킨다. 이 후, 알루미늄 스텝 웨지의 그레이 밸류를 측정한다.The experimental method is to place the X-ray sensor on a lead plate with a thickness of 2 mm or more, and place the manufactured root canal post and aluminum step wedge close to the center of the sensor. The root canal post and aluminum step wedge are exposed to X-rays at 65 KV and 10 mA for 0.8 seconds, with the distance between the cathode and the root canal post being 300 mm to 400 mm. After this, the gray value of the aluminum step wedge is measured.

그 결과 근관 포스트의 불투과성은 알루미늄 스텝 웨지 약 3.3mm의 불투과성과 상응하는 값을 갖는다. 이는, 알루미늄 스텝 웨지의 불투과성과 동가로 나타나 ISO 6876에서 제시하는 규격인 최소 3.0mmAl의 방사선 불투과성의 수치에 적합함을 알 수 있었고, 도 2에 상기 제조 예 1에 의하여 제조된 본 발명의 치과용 비금속제 근관 포스트의 방사선 불투과성을 나타내었다.As a result, the opacity of the root canal post has a value corresponding to that of an aluminum step wedge of approximately 3.3 mm. This was found to be equivalent to the opacity of the aluminum step wedge, and was found to be suitable for the radiation opacity value of at least 3.0 mmAl, which is the standard presented in ISO 6876. In FIG. 2, the opacity of the present invention manufactured according to Production Example 1 is shown in FIG. Radiopacity of dental non-metallic root canal posts was shown.

<실험예 2> 굴곡강도 측정<Experimental Example 2> Flexural strength measurement

굴곡강도는 재료의 굽힘 하중에 변형저항을 의미하며, 근관 포스트는 여러 형태로 제작되므로 규격화된 형태의 시편을 사용하여 측정이 어려움이 있다. 이에 5개의 시편을 제조하여 평균적인 값을 적용하여 굽힘에 대한 저항성을 측정하였다. Flexural strength refers to the deformation resistance of a material to a bending load, and since root canal posts are manufactured in various shapes, it is difficult to measure it using standardized specimens. Accordingly, five specimens were manufactured and the resistance to bending was measured by applying the average value.

실험 방법은 가로 50mm, 세로 50mm, 높이 50mm인 정사각형 모양의 스테인리스 고정 지그 한 쪽 홈에 제조 예 1에 의해 제조된 근관 포스트를 고정하고, 홈의 중심부와 고정 지그의 바닥면은 45°의 기울기를 갖도록 설정한다. 이때, 근관 포스트를 지그에 고정하기 위한 베이스는 PMMA를 이용하여 제작하여 접착제로 지그에 부착한다. 이 후, 1mm/1min의 속도로 근관 포스트 시편이 파단될 때 까지의 최대하중을 측정하였다. The experimental method is to fix the root canal post manufactured according to Manufacturing Example 1 in a groove on one side of a square-shaped stainless steel fixing jig measuring 50 mm in width, 50 mm in length, and 50 mm in height, and the center of the groove and the bottom of the fixing jig are tilted at 45°. Set it to have. At this time, the base for fixing the root canal post to the jig is manufactured using PMMA and attached to the jig with adhesive. Afterwards, the maximum load until fracture of the root canal post specimen was measured at a speed of 1 mm/1 min.

근관 포스트의 지름과 베이스 끝단의 고정점과 하중점 사이의 거리를 이용하여 굴곡강도를 구한다. 굴곡강도(S)는 하기의 식에 의해 구할 수 있다. The bending strength is calculated using the diameter of the root canal post and the distance between the fixation point at the end of the base and the load point. Flexural strength (S) can be obtained by the following equation.

<계산식 1><Calculation 1>

S: 굴곡강도(MPa), F: 최대하중(N), : 고정점과 하중점 사이의 거리(mm), b: 시편의 폭(mm), h: 시편의 두께(mm)S: Flexural strength (MPa), F: Maximum load (N), : Distance between fixed point and load point (mm), b: Width of specimen (mm), h: Thickness of specimen (mm)

상기 계산식 1에 의하여 굴곡강도를 계산한 결과 1600MPa의 값을 얻었다. 이는 종래의 타 제조사의 평균치인 1200 내지 1300MPa에 비하면 강력한 굴곡강도를 가지고 있음을 알 수 있었다.As a result of calculating the bending strength according to Equation 1 above, a value of 1600 MPa was obtained. It was found to have a strong flexural strength compared to the average value of 1200 to 1300 MPa from other conventional manufacturers.

<실험예 3> 세포독성 측정<Experimental Example 3> Cytotoxicity measurement

근관 포스트는 치근관에 삽입되어 상아질에 직접적으로 접촉하여 사용한다. 그러므로 세포 독성에 의한 생체 감염이 일어날 수 있으며, 이에 직접접촉법을 이용한 세포독성 실험을 진행하였다.Root canal posts are inserted into the root canal and used in direct contact with dentin. Therefore, infection of living organisms may occur due to cytotoxicity, and therefore a cytotoxicity experiment using the direct contact method was conducted.

체외(in vitro) 세포 독성 실험방법으로 제조 예 1에 의해 제조된 근관 포스트 시편 자체에 용출물을 접촉시켜 확산을 통해 세포를 배양하여 진행하였다. 세포의 배양은 Fibroblast(NCTC clone 929 세포)를 5% CO2, 97%의 습도 조건을 갖춘 37

Figure pat00003
배양기에서 성장상 로그 곡선의 마지막에 도달할 때까지 배양하였다. 두개의 배양용기의 면적의 80%이상이 될 때까지 배양한 후 배양 용기로부터 배양액을 각각 제거하고 신선한 배양액을 배양용기에 재 분주한다. 이 후, 두 개의 배양용기 중 하나의 세포층 중앙에는 제조 예 1에 의해 제조된 근관 포스트를 올려놓고, 나머지 하나의 세포층 중앙에는 시중에 판매하는 메탈 근관 포스트를 올려놓고 5% CO2, 97%의 습도 조건을 갖추어 37
Figure pat00004
배양기에서 다시 24시간동안 배양한 후 결과를 관찰하였다.As an in vitro cytotoxicity test method, the eluate was brought into contact with the root canal post specimen prepared according to Preparation Example 1 and the cells were cultured through diffusion. Cell culture was performed using Fibroblasts (NCTC clone 929 cells) at 37 °C with 5% CO2 and 97% humidity conditions.
Figure pat00003
The cells were cultured in the incubator until the end of the logarithmic growth curve was reached. After culturing until more than 80% of the area of the two culture vessels is reached, the culture medium is removed from each culture vessel and fresh culture medium is redistributed into the culture vessels. Afterwards, the root canal post prepared according to Manufacturing Example 1 was placed in the center of the cell layer of one of the two culture vessels, and a commercially available metal root canal post was placed in the center of the cell layer of the other one, and placed in 5% CO2 and 97% humidity. meet the conditions 37
Figure pat00004
After culturing in the incubator for another 24 hours, the results were observed.

배양세포의 반응은 배양용기를 백색 배경에서 관찰하고, 검체 주변에 적색으로 염색된 세포를 확인한다. 그 결과 메탈 근관 포스트에 비해 본 발명의 제조 예 1에 의해 제조된 근관 포스트의 염색성 저하의 세포 범위가 현저히 적었으며, 이는 본 발명의 비금속제 근관 포스트가 세포 독성이 적어 생체 적합성이 뛰어남을 알 수 있었다.For the reaction of cultured cells, observe the culture vessel against a white background and check for red-stained cells around the sample. As a result, compared to the metal root canal post, the extent of cells with reduced staining in the root canal post prepared according to Preparation Example 1 of the present invention was significantly smaller, which shows that the non-metallic root canal post of the present invention has low cytotoxicity and is excellent in biocompatibility. there was.

따라서, 본 발명에 의하여 제조되는 치과용 비금속제 근관 포스트는 강력한 굴곡강도를 가지고, 부식이 없으며 생체 친화성 및 안정성이 보장되고, 우수한 방사선 불투과성을 가지는 것으로 나타났다.Therefore, the dental non-metallic root canal post manufactured according to the present invention was found to have strong bending strength, no corrosion, guaranteed biocompatibility and stability, and excellent radiopacity.

본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Those skilled in the art to which the present invention pertains will understand that the present invention can be implemented in other specific forms without changing its technical idea or essential features. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. The scope of the present invention is indicated by the scope of the claims described below rather than the detailed description above, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts are included in the scope of the present invention. must be interpreted.

Claims (10)

치과용 비금속제 근관 포스트 제조방법에 있어서,
유리섬유 가닥을 구비하는 단계;
상기 유리섬유 가닥을 세척한 후 건조시키는 단계;
상기 건조가 완료된 유리섬유 가닥 표면에 플라즈마 처리를 하는 단계;
상기 플라즈마 처리가 완료된 유리섬유 가닥 표면에 계면 결합제인 실란 커플링제 처리를 하는 단계;
상기 실란 커플링제 처리를 완료한 유리섬유 가닥 다수개를 뭉쳐 진공상태에서 광중합 레진으로 결집하는 단계;
상기 결집이 완료된 유리섬유 가닥을 포스트 형상을 갖도록 경화형 몰드에 UV경화기를 이용하여 빛을 조사하여 경화하는 단계;
상기 경화가 완료된 포스트의 외면에 절단 포인트로 사용하기 위한 포인트를 표시하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 치과용 비금속제 근관 포스트 제조방법.
In the method of manufacturing a dental non-metallic root canal post,
providing glass fiber strands;
washing and drying the glass fiber strands;
Plasma treatment on the surface of the dried glass fiber strands;
Treating the surface of the plasma-treated glass fiber strand with a silane coupling agent, which is an interfacial binder;
Gathering a plurality of glass fiber strands that have been treated with the silane coupling agent and assembling them with light-polymerization resin in a vacuum;
curing the assembled glass fiber strands into a post-shaped mold by irradiating light using a UV curing machine;
A method of manufacturing a dental non-metallic root canal post, comprising: marking a point to be used as a cutting point on the outer surface of the hardened post.
제 1항에 있어서,
상기 실란 커플링제는 3-Methacryloxypropyltrimethoxysilane, 3-Methacryloxypropyltriethoxysilane, 3-Methacryloxypropylmethyldimethoxysilane, 3-(Acryloyloxy)propyltrimethoxysilane, 3-Aminopropyltriethoxysilane, N-2-(Aminoethyl)-3-aminopropyltrimethoxysilane, Triethoxy(octyl)silan 중 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 치과용 비금속제 근관 포스트 제조방법.
According to clause 1,
The silane coupling agent is at least any of 3-Methacryloxypropyltrimethoxysilane, 3-Methacryloxypropyltriethoxysilane, 3-Methacryloxypropylmethyldimethoxysilane, 3-(Acryloyloxy)propyltrimethoxysilane, 3-Aminopropyltriethoxysilane, N-2-(Aminoethyl)-3-aminopropyltrimethoxysilane, and Triethoxy(octyl)silane. more than one A method of manufacturing a dental non-metallic root canal post comprising:
제 1항에 있어서,
상기 광중합 레진은 올리고머 20 내지 50 중량부 기준으로, 모노머 15 내지 30 중량부, 첨가제 5 내지 15 중량부, 경화제 5 내지 10 중량부, 무기질 필러 5 내지 9 중량부를 포함하여 이루어지는 것을 특징으로 하는 치과용 비금속제 근관 포스트 제조방법.
According to clause 1,
The photopolymerized resin is a dental treatment comprising 15 to 30 parts by weight of monomer, 5 to 15 parts by weight of additive, 5 to 10 parts by weight of hardener, and 5 to 9 parts by weight of inorganic filler, based on 20 to 50 parts by weight of oligomer. Method for manufacturing non-metallic root canal posts.
제 3항에 있어서,
상기 올리고머는 Bispenol A diglycidyl ether(BFDGE), Bisphenol A glycerolate dimethacrylate (Bis-GMA), Bisphenol A dimethacrylate (Bis-MA), Bisphenol A ethoxylated dimethacrylate (Bis-EMA), Diurethane dimethacrylate (UDMA), Diglycidyl ether of bisphenol A (DGEBA) 중 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 치과용 비금속제 근관 포스트 제조방법.
According to clause 3,
The oligomers include Bisphenol A diglycidyl ether (BFDGE), Bisphenol A glycerolate dimethacrylate (Bis-GMA), Bisphenol A dimethacrylate (Bis-MA), Bisphenol A ethoxylated dimethacrylate (Bis-EMA), Diurethane dimethacrylate (UDMA), Diglycidyl ether of bisphenol A method of manufacturing a dental non-metallic root canal post comprising at least one of A (DGEBA).
제 3항에 있어서,
상기 모노머는 Ethylene glycol dimethacrylate (EGDMA), Trimethylpropane triacrylate (TMPTA), Tetrahydrofurfuryl methacrylate (THFMA), Glycidyl acrylate 중 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 치과용 비금속제 근관 포스트 제조방법.
According to clause 3,
A method of manufacturing a dental non-metallic root canal post, wherein the monomer includes at least one of Ethylene glycol dimethacrylate ( EGDMA ), Trimethylpropane triacrylate (TMPTA), Tetrahydrofurfuryl methacrylate (THFMA), and Glycidyl acrylate.
제 3항에 있어서,
상기 경화제는 Diethylenetriamine (DETA), Triethylenetetramine (TETA), N-aminoethylpiperazine (N-AEP), m-phenylenediamine (m-PDA), 4-4'-diaminodiphenylmethane (DDM), 4-4'-diaminodiphenylsulfone (DDS) 중 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 치과용 비금속제 근관 포스트 제조방법.
According to clause 3,
The curing agent is Diethylenetriamine (DETA), Triethylenetetramine (TETA), N-aminoethylpiperazine (N-AEP), m-phenylenediamine (m-PDA), 4-4'-diaminodiphenylmethane (DDM), 4-4'-diaminodiphenylsulfone (DDS) A method of manufacturing a dental non-metallic root canal post comprising at least one of the following.
제 3항에 있어서,
상기 무기질 필러는 Ytterbium trifluoride를 포함하고, 방사선 불투과성을 향상시키기 위하여 사용하는 것을 특징으로 하는 치과용 비금속제 근관 포스트 제조방법.
According to clause 3,
A method of manufacturing a dental non-metallic root canal post, wherein the inorganic filler contains Ytterbium trifluoride and is used to improve radiopacity.
제 3항에있어서,
상기 광중합 레진은,
상기 올리고머는 Bispenol A diglycidyl ether(BFDGE), Bisphenol A glycerolate dimethacrylate (Bis-GMA), Bisphenol A dimethacrylate (Bis-MA), Bisphenol A ethoxylated dimethacrylate (Bis-EMA), Diglycidyl ether of bisphenol A (DGEBA) 중 적어도 어느 하나 이상을 포함하고,
상기 첨가제는 도파민을 포함하며,
상기 경화제는 Diethylenetriamine (DETA), Triethylenetetramine (TETA), N-aminoethylpiperazine (N-AEP), m-phenylenediamine (m-PDA), 4-4'-diaminodiphenylmethane (DDM), 4-4'-diaminodiphenylsulfone (DDS) 중 적어도 어느 하나 이상을 포함하고,
유리 섬유와 계면결합을 향상시키기 위한 것을 특징으로 하는 치과용 비금속제 근관 포스트 제조방법.
According to clause 3,
The light-polymerized resin is,
The oligomer is at least Bisphenol A diglycidyl ether (BFDGE), Bisphenol A glycerolate dimethacrylate (Bis-GMA), Bisphenol A dimethacrylate (Bis-MA), Bisphenol A ethoxylated dimethacrylate (Bis-EMA), and Diglycidyl ether of bisphenol A (DGEBA). Contains one or more,
The additive includes dopamine,
The curing agent is Diethylenetriamine (DETA), Triethylenetetramine (TETA), N-aminoethylpiperazine (N-AEP), m-phenylenediamine (m-PDA), 4-4'-diaminodiphenylmethane (DDM), 4-4'-diaminodiphenylsulfone (DDS) Contains at least one or more of
A method of manufacturing a dental non-metallic root canal post characterized by improving the interfacial bond with glass fiber.
제 3항에있어서,
상기 광중합 레진은,
상기 올리고머는 Propylene glycol, Ethylene glycol, Diethylene glycol, 1,4-Butadiol, Poly tetra hydrofuran, Polypropylene glycol 중 적어도 어느 하나 이상을 포함하고,
상기 모노머는 Styrene, Methyl methacrlate, Vinyl toluene, Vinyl acetate, Ethylene glycol diacrylate 중 적어도 어느 하나 이상을 포함하고,
상기 첨가제는 Dibutyltin dilaurate (DBTDL), Maleic anhydride, Methacylic acid, Acrylic acind, Fumaric anhydride, 1,1,1-tris(hydroxymethyl) propane, hexamethylene diisosyanate, Acetone, dibutyltindilaurate 중 적어도 하나 이상을 포함하고,
상기 경화제는 polyisocyanate prepolymer를 포함하고,
상기 무기질 물질은 CaCO₃, Zinc stearate, Magnesium oxide 중 적어도 어느 하나 이상을 포함하고,
유리 섬유와 계면결합을 향상시키기 위한 것을 특징으로 하는 치과용 비금속제 근관 포스트 제조방법.
According to clause 3,
The light-polymerized resin is,
The oligomer includes at least one of propylene glycol, ethylene glycol, diethylene glycol, 1,4-butadiol, poly tetra hydrofuran, and polypropylene glycol,
The monomer includes at least one of Styrene, Methyl methacrlate, Vinyl toluene, Vinyl acetate, and Ethylene glycol diacrylate,
The additive includes at least one of Dibutyltin dilaurate (DBTDL), Maleic anhydride, Methacylic acid, Acrylic acid, Fumaric anhydride, 1,1,1-tris(hydroxymethyl) propane, hexamethylene diisosyanate, Acetone, and dibutyltindilaurate,
The curing agent includes a polyisocyanate prepolymer,
The inorganic material includes at least one of CaCO₃, zinc stearate, and magnesium oxide,
A method of manufacturing a dental non-metallic root canal post characterized by improving the interfacial bond with glass fiber.
제 1항에있어서,
상기 실란 커플링제 처리는 N-butanol 85 내지 95 중량부에 증류수 5 내지 15 중량부로 희석하여 공용매를 제조한 후, 여기에 실란 0.1 내지 0.5 중량부를 첨가하여 실라놀 수용액을 제조하여 상기 유리섬유 가닥을 침적시키는 것을 특징으로 하는 치과용 비금속제 근관 포스트 제조방법.
According to clause 1,
The silane coupling agent treatment involves preparing a co-solvent by diluting 85 to 95 parts by weight of N-butanol with 5 to 15 parts by weight of distilled water, and then adding 0.1 to 0.5 parts by weight of silane to prepare an aqueous silanol solution to form the glass fiber strands. A method of manufacturing a dental non-metallic root canal post, characterized in that immersion.
KR1020220062987A 2022-05-23 2022-05-23 Method for manufacturing a non-metallic root canal post for dental use KR20230163627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220062987A KR20230163627A (en) 2022-05-23 2022-05-23 Method for manufacturing a non-metallic root canal post for dental use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220062987A KR20230163627A (en) 2022-05-23 2022-05-23 Method for manufacturing a non-metallic root canal post for dental use

Publications (1)

Publication Number Publication Date
KR20230163627A true KR20230163627A (en) 2023-12-01

Family

ID=89124632

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220062987A KR20230163627A (en) 2022-05-23 2022-05-23 Method for manufacturing a non-metallic root canal post for dental use

Country Status (1)

Country Link
KR (1) KR20230163627A (en)

Similar Documents

Publication Publication Date Title
Cho et al. Dental resin composites: A review on materials to product realizations
Machado et al. Changes in roughness of denture base and reline materials by chemical disinfection or microwave irradiation: surface roughness of denture base and reline materials
Bagheri et al. Subsurface degradation of resin-based composites
Leitune et al. Niobium pentoxide as a new filler for methacrylate‐based root canal sealers
Farina et al. Bond strength of fibre glass and carbon fibre posts to the root canal walls using different resin cements
Wu et al. Development of a new class of self-healing and therapeutic dental resins
Vallittu et al. Types of FRCs used in dentistry
JPH0776165B2 (en) Dental restorative composition
Kurtulmus-Yilmaz et al. The effect of Er, Cr: YSGG laser application on the micropush-out bond strength of fiber posts to resin core material
US4778834A (en) Hydroxylapatite-synthetic resin composites
CN111163742A (en) Dental composite having an adjusted ratio of flexural strength to elastic modulus and mill blank of said composite
CN106420366B (en) Ultralow contraction compound resin of one kind and preparation method thereof
KR101873570B1 (en) Dental prosthetic restorative material manufacturing method
CN108024913B (en) Curable composition, curable composition for dentistry, and organic-inorganic composite particle for dentistry
KR20230163627A (en) Method for manufacturing a non-metallic root canal post for dental use
Thadathil Varghese et al. Comparative analysis of self‐cure and dual cure‐dental composites on their physico‐mechanical behaviour
Turunç‐Oğuzman et al. Influence of surface treatments and adhesive protocols on repair bond strength of glass‐matrix and resin‐matrix CAD/CAM ceramics
Zhang et al. Hydrolysis-resistant and stress-buffering bifunctional polyurethane adhesive for durable dental composite restoration
CA3108152A1 (en) A dental composition
Soares et al. Surface treatments for polyetheretherketone (Peek): Effects on the bond strength to a resin cement and on the fatigue performance of a bonded glass-ceramic
Abdul-Monem et al. Effect of aging on the flexural strength and fracture toughness of a fiber reinforced composite resin versus two nanohybrid composite resins
Bojar et al. Shear bond strength of epoxy resin-based endodontic sealers to bovine dentin after ozone application
Vallittu Glass fibers in fiber-reinforced composites
Silva et al. Effect of thermally deposited siloxane‐methacrylate coating on bonding to glass fibre posts
Skrtic et al. Polymeric dental composites based on remineralizing amorphous calcium phosphate fillers

Legal Events

Date Code Title Description
E902 Notification of reason for refusal