KR20230154698A - Method of preparing positive electrode active material comprising coating layer, method of preparing positive electrode comprising the same - Google Patents

Method of preparing positive electrode active material comprising coating layer, method of preparing positive electrode comprising the same Download PDF

Info

Publication number
KR20230154698A
KR20230154698A KR1020220054423A KR20220054423A KR20230154698A KR 20230154698 A KR20230154698 A KR 20230154698A KR 1020220054423 A KR1020220054423 A KR 1020220054423A KR 20220054423 A KR20220054423 A KR 20220054423A KR 20230154698 A KR20230154698 A KR 20230154698A
Authority
KR
South Korea
Prior art keywords
positive electrode
active material
electrode active
coating layer
material including
Prior art date
Application number
KR1020220054423A
Other languages
Korean (ko)
Inventor
이미숙
이길선
윤정애
오미연
이원균
김재윤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020220054423A priority Critical patent/KR20230154698A/en
Publication of KR20230154698A publication Critical patent/KR20230154698A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy

Abstract

본 발명은 리튬 전이금속 산화물을 포함하는 양극 활물질, 실리콘 화합물 및 붕산을 고상 혼합하여 혼합물을 제조하는 단계; 및 상기 혼합물을 열처리하여 코팅층을 제조하는 단계를 포함하는 코팅층을 포함하는 양극 활물질의 제조방법에 관한 것이다.The present invention includes the steps of preparing a mixture by solid-phase mixing a positive electrode active material containing lithium transition metal oxide, a silicon compound, and boric acid; and heat-treating the mixture to produce a coating layer. It relates to a method of producing a positive electrode active material including a coating layer.

Description

코팅층을 포함하는 양극 활물질의 제조방법, 이를 포함하는 양극의 제조방법{METHOD OF PREPARING POSITIVE ELECTRODE ACTIVE MATERIAL COMPRISING COATING LAYER, METHOD OF PREPARING POSITIVE ELECTRODE COMPRISING THE SAME}Method for manufacturing a positive electrode active material including a coating layer, and a method for manufacturing a positive electrode including the same {METHOD OF PREPARING POSITIVE ELECTRODE ACTIVE MATERIAL COMPRISING COATING LAYER, METHOD OF PREPARING POSITIVE ELECTRODE COMPRISING THE SAME}

본 발명은 코팅층을 포함하는 양극 활물질의 제조방법, 이를 포함하는 양극의 제조방법에 관한 것으로서, 보다 상세하게는 양극 활물질의 표면 부식 및 비수 전해액의 분해 등의 부반응에 의한 가스 발생량을 최소화시킬 수 있는 코팅층을 포함하는 양극 활물질의 제조방법 및 이를 포함하는 양극의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a positive electrode active material including a coating layer, and a method of manufacturing a positive electrode including the same. More specifically, the present invention relates to a method of manufacturing a positive electrode active material including the same, and more specifically, to a method of manufacturing a positive electrode active material that can minimize the amount of gas generated by side reactions such as surface corrosion of the positive electrode active material and decomposition of the non-aqueous electrolyte. It relates to a method of manufacturing a positive electrode active material including a coating layer and a method of manufacturing a positive electrode including the same.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다. As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing. Among these secondary batteries, lithium secondary batteries, which have high energy density and voltage, long cycle life, and low self-discharge rate, have been commercialized and are widely used.

리튬 이차전지의 양극 활물질로는 리튬 전이금속 산화물이 이용되고 있으며, 이중에서도 작동 전압이 높고 용량 특성이 우수한 LiCoO2 등의 리튬 코발트 산화물이 주로 사용되고 있다. 그러나 리튬 코발트 산화물은 탈리튬에 따른 결정 구조의 불안정화로 인해 열적 특성이 열악하다. 또한 리튬 코발트 산화물은 고가이므로, 전기 자동차 등과 같은 분야의 동력원으로서 대량 사용하기에는 한계가 있다.Lithium transition metal oxide is used as a positive electrode active material for lithium secondary batteries, and among these, lithium cobalt oxide such as LiCoO 2 , which has a high operating voltage and excellent capacity characteristics, is mainly used. However, lithium cobalt oxide has poor thermal properties due to destabilization of the crystal structure due to delithiation. Additionally, lithium cobalt oxide is expensive, so there are limits to its mass use as a power source in fields such as electric vehicles.

리튬 코발트 산화물을 대체하기 위한 재료로서, LiMnO2, LiMn2O4 등의 리튬 망간 산화물, LiFePO4 등의 리튬 인산철 화합물, LiNiO2 등의 리튬 니켈 산화물 등이 개발되었다. 이 중에서도 약 200 ㎃·h/g의 높은 가역용량을 가져 대용량의 전지 구현이 용이한 리튬 니켈 산화물에 대한 연구 개발이 활발히 진행되고 있다. 그러나, 리튬 니칼 산화물은 리튬 코발트 산화물 대비 열안정성이 우수하지 않고, 충전 상태에서 외부로부터의 압력 등에 내부 단락이 생기면 양극 활물질 자체가 분해되어 전지의 파열 및 발화를 초래하는 문제가 있었다. As materials to replace lithium cobalt oxide, lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 , lithium iron phosphate compounds such as LiFePO 4 , and lithium nickel oxides such as LiNiO 2 have been developed. Among these, research and development on lithium nickel oxide, which has a high reversible capacity of about 200 ㎃·h/g and is easy to implement as a large-capacity battery, is being actively conducted. However, lithium nickal oxide does not have excellent thermal stability compared to lithium cobalt oxide, and when an internal short circuit occurs due to external pressure during charging, the positive electrode active material itself decomposes, resulting in rupture and ignition of the battery.

이에 따라 리튬 니켈 산화물의 우수한 가역용량은 유지하면서도 낮은 열안정성을 개선하기 위한 방법으로, 니켈의 일부를 코발트, 망간, 알루미늄 등의 전이금속으로 치환한 리튬 전이금속 산화물이 개발되었다. 이러한 리튬 전이금속 산화물, 특히 니켈을 고함량으로 포함하는 리튬 전이금속 산화물을 양극 활물질로 사용하는 리튬 이차전지의 경우, 전해액과 양극 활물질의 직접 접촉으로 인하여 발생되는 양극 활물질의 표면 부식 및 비수 전해액의 분해 등 부반응에 의해 가스가 발생하는 등 리튬 이차전지의 안정성이 저하되는 문제가 있다.Accordingly, as a method to improve the low thermal stability of lithium nickel oxide while maintaining its excellent reversible capacity, lithium transition metal oxide was developed in which some of the nickel was replaced with transition metals such as cobalt, manganese, and aluminum. In the case of a lithium secondary battery that uses lithium transition metal oxide, especially lithium transition metal oxide containing a high content of nickel, as a positive electrode active material, surface corrosion of the positive electrode active material and damage to the non-aqueous electrolyte occur due to direct contact between the electrolyte and the positive electrode active material. There is a problem that the stability of lithium secondary batteries is reduced, such as gas generation due to side reactions such as decomposition.

KR2012-0129926AKR2012-0129926A

본 발명의 과제는 양극 활물질의 표면 부식 및 비수 전해액의 분해 등의 부반응에 의한 가스 발생량을 최소화시킬 수 있는 코팅층을 포함하는 양극 활물질의 제조방법 및 이를 포함하는 양극의 제조방법을 제공하는 것이다.The object of the present invention is to provide a method for manufacturing a positive electrode active material including a coating layer that can minimize the amount of gas generated by side reactions such as surface corrosion of the positive electrode active material and decomposition of non-aqueous electrolyte, and a method for manufacturing a positive electrode including the same.

상술한 과제를 해결하기 위하여, (1) 본 발명은 리튬 전이금속 산화물을 포함하는 양극 활물질, 하기 화학식 1로 표시되는 실리콘 화합물 및 붕산을 고상 혼합하여 혼합물을 제조하는 단계; 및 상기 혼합물을 열처리하여 코팅층을 제조하는 단계를 포함하는 코팅층을 포함하는 양극 활물질의 제조방법을 제공한다:In order to solve the above-described problem, (1) the present invention includes the steps of preparing a mixture by solid-phase mixing a positive electrode active material containing lithium transition metal oxide, a silicon compound represented by the following Chemical Formula 1, and boric acid; and heat-treating the mixture to produce a coating layer. A method for producing a positive electrode active material including a coating layer is provided:

<화학식 1><Formula 1>

상기 화학식 1에서 In Formula 1 above,

R1 내지 R4는 각각 독립적으로, 할로겐기, 히드록시기, 아민기, 비닐기, C1 내지 C10의 알킬기, C6 내지 C20의 아릴기, C1 내지 C10의 알콕시기 또는 C1 내지 C10의 아실옥시기이되, R1 내지 R4 중 적어도 하나는 C1 내지 C10의 알콕시기이다.R 1 to R 4 are each independently a halogen group, a hydroxy group, an amine group, a vinyl group, a C 1 to C 10 alkyl group, a C 6 to C 20 aryl group, a C 1 to C 10 alkoxy group, or a C 1 to C 10 alkyl group. It is a C 10 acyloxy group, and at least one of R 1 to R 4 is a C 1 to C 10 alkoxy group.

또한, (2) 본 발명은 상기 (1)에 있어서, 상기 코팅층을 제조하는 단계에서 열처리 온도는 171 내지 400 ℃인 것인 코팅층을 포함하는 양극 활물질의 제조방법을 제공한다.In addition, (2) the present invention provides a method for producing a positive electrode active material including a coating layer in (1) above, wherein in the step of manufacturing the coating layer, the heat treatment temperature is 171 to 400 ° C.

또한, (3) 본 발명은 상기 (1) 또는 (2)에 있어서, 상기 실리콘 화합물과 붕산의 중량비는 1.0:1.0 내지 5.0인 것인 코팅층을 포함하는 양극 활물질의 제조방법을 제공한다.Additionally, (3) the present invention provides a method for producing a positive electrode active material including a coating layer according to (1) or (2) above, wherein the weight ratio of the silicon compound and boric acid is 1.0:1.0 to 5.0.

또한, (4) 본 발명은 상기 (1) 내지 (3) 중 어느 하나에 있어서, 상기 양극 활물질 100 중량부에 대하여, 상기 실리콘 화합물과 붕산의 총 함량은 0.1 내지 1.50 중량부인 것인 코팅층을 포함하는 양극 활물질의 제조방법을 제공한다.In addition, (4) the present invention includes the coating layer according to any one of (1) to (3) above, wherein the total content of the silicon compound and boric acid is 0.1 to 1.50 parts by weight based on 100 parts by weight of the positive electrode active material. Provides a method for manufacturing a positive electrode active material.

또한, (5) 본 발명은 상기 (1) 내지 (4) 중 어느 하나에 있어서, 상기 실리콘 화합물은 테트라메톡시실란, 테트라에톡시실란, 디메톡시디메틸실란, 메톡시트리메틸실란, 트리메톡시(비닐)실란 및 메톡시디메틸(페닐)실란으로 이루어진 군에서 선택되는 1 종 이상인 것인 코팅층을 포함하는 양극 활물질의 제조방법을 제공한다.In addition, (5) the present invention according to any one of (1) to (4) above, wherein the silicone compound is tetramethoxysilane, tetraethoxysilane, dimethoxydimethylsilane, methoxytrimethylsilane, trimethoxy ( Provided is a method for producing a positive electrode active material including a coating layer of at least one selected from the group consisting of vinyl) silane and methoxydimethyl (phenyl) silane.

또한, (6) 본 발명은 상기 (1) 내지 (5) 중 어느 하나에 있어서, 상기 혼합물을 제조하는 단계는 15 내지 30 ℃에서 수행되는 것인 코팅층을 포함하는 양극 활물질의 제조방법을 제공한다.In addition, (6) the present invention provides a method for producing a positive electrode active material including a coating layer according to any one of (1) to (5) above, wherein the step of preparing the mixture is performed at 15 to 30 ° C. .

또한, (7) 본 발명은 상기 (1) 내지 (6) 중 어느 하나에 있어서, 상기 혼합물을 제조하는 단계는 용매를 사용하지 않는 것인 코팅층을 포함하는 양극 활물질의 제조방법을 제공한다.Additionally, (7) the present invention provides a method for producing a positive electrode active material including a coating layer according to any one of (1) to (6) above, wherein the step of preparing the mixture does not use a solvent.

또한, (8) 본 발명은 상기 (1) 내지 (7) 중 어느 하나에 있어서, 상기 리튬 전이금속 산화물은 하기 화학식 2로 표시되는 것인 코팅층을 포함하는 양극 활물질의 제조방법을 제공한다:Additionally, (8) the present invention provides a method for producing a positive electrode active material including a coating layer according to any one of (1) to (7) above, wherein the lithium transition metal oxide is represented by the following formula (2):

<화학식 2><Formula 2>

Li1+aNibCocM1 dM2 eO2 Li 1+a Ni b Co c M 1 d M 2 e O 2

상기 화학식 2에서,In Formula 2,

M1은 Mn 및 Al 중에서 선택되는 1종 이상이고,M 1 is one or more selected from Mn and Al,

M2는 W, Mo, Cr, Zr, Ti, Mg, Ta 및 Nb 중에서 선택되는 1종 이상이며,M 2 is one or more selected from W, Mo, Cr, Zr, Ti, Mg, Ta and Nb,

0.00≤a≤0.30, 0.60≤b<1.00, 0.00<c<0.40, 0.00<d<0.40, 0.00≤e≤0.10이다.0.00≤a≤0.30, 0.60≤b<1.00, 0.00<c<0.40, 0.00<d<0.40, 0.00≤e≤0.10.

또한, (9) 본 발명은 상기 코팅층은 하기 화학식 3으로 표시되는 단위를 포함하는 것인 코팅층을 포함하는 양극 활물질의 제조방법을 제공한다:Additionally, (9) the present invention provides a method for producing a positive electrode active material including a coating layer, wherein the coating layer includes a unit represented by the following formula (3):

<화학식 3><Formula 3>

*-SiOx-ByOz-**-SiO x -B y O z -*

상기 화학식 3에서,In Formula 3 above,

x, y, z는 Si 1 몰에 대한 몰수이고, 각각 독립적으로 1 내지 20일 수 있다.x, y, and z are the number of moles per mole of Si, and may each independently be 1 to 20.

또한, (10) 본 발명은 상기 (1) 내지 (9) 중 어느 하나를 따른 상기 코팅층을 포함하는 양극 활물질의 제조방법을 포함하는 양극의 제조방법을 제공한다.Additionally, (10) the present invention provides a method for producing a positive electrode, including a method for producing a positive electrode active material including the coating layer according to any one of (1) to (9) above.

본 발명에 따른 제조방법으로 제조된 코팅층을 포함하는 양극 활물질은 양극 활물질의 표면 부식 및 비수 전해액의 분해 등의 부반응에 의한 가스 발생량을 최소화시킬 수 있다. The positive electrode active material including the coating layer manufactured by the manufacturing method according to the present invention can minimize the amount of gas generated by side reactions such as surface corrosion of the positive electrode active material and decomposition of the non-aqueous electrolyte solution.

본 발명에 따른 제조방법으로 제조된 코팅층을 포함하는 양극 활물질은 열안정성이 현저하게 개선될 수 있다.The thermal stability of a positive electrode active material including a coating layer manufactured by the manufacturing method according to the present invention can be significantly improved.

본 발명에 따른 제조방법으로 제조된 코팅층을 포함하는 양극 활물질은 코팅층의 붕괴가 최소화되어 리튬 이차전지의 장기 수명이 개선될 수 있다.The cathode active material including the coating layer manufactured by the manufacturing method according to the present invention can minimize the collapse of the coating layer, thereby improving the long-term lifespan of the lithium secondary battery.

본 발명에 따른 제조방법으로 제조된 코팅층을 포함하는 양극 활물질로 인해 리튬 이온의 전도성이 향상되어 리튬 이차전지의 용량이 개선될 수 있다.The conductivity of lithium ions can be improved due to the positive electrode active material including the coating layer manufactured by the manufacturing method according to the present invention, thereby improving the capacity of the lithium secondary battery.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Terms or words used in this specification and claims should not be construed as limited to their common or dictionary meanings, and the inventor may appropriately define the concept of terms in order to explain his or her invention in the best way. It must be interpreted with meaning and concept consistent with the technical idea of the present invention based on the principle that it is.

본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, ‘포함하다’ 또는 ‘가지다’ 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하여는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present invention are only used to describe specific embodiments and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In the present invention, terms such as 'include' or 'have' do not designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but rather mean that one or more other It should be understood that this does not exclude in advance the presence or addition of features, numbers, steps, operations, components, parts, or combinations thereof.

본 명세서에서, ‘상에’라는 용어는 어떤 구성이 다른 구성의 바로 상면에 형성되는 경우뿐만 아니라 이들 구성들 사이에 제3의 구성이 개재되는 경우까지 포함하는 것을 의미한다.In this specification, the term ‘on’ means not only the case where a certain component is formed directly on top of another component, but also the case where a third component is interposed between these components.

1. 코팅층을 포함하는 양극 활물질의 제조방법1. Method of manufacturing a positive electrode active material including a coating layer

본 발명의 일 실시예에 따른 코팅층을 포함하는 양극 활물질의 제조방법은 리튬 전이금속 산화물을 포함하는 양극 활물질, 하기 화학식 1로 표시되는 실리콘 화합물 및 붕산을 고상 혼합하여 혼합물을 제조하는 단계; 및 상기 혼합물을 열처리하여 코팅층을 제조하는 단계를 포함하는 코팅층을 포함하는 양극 활물질의 제조방법을 포함한다:A method of manufacturing a positive electrode active material including a coating layer according to an embodiment of the present invention includes the steps of solid-phase mixing a positive electrode active material containing lithium transition metal oxide, a silicon compound represented by the following Chemical Formula 1, and boric acid to prepare a mixture; and a method for producing a positive electrode active material including a coating layer, including the step of heat-treating the mixture to produce a coating layer:

<화학식 1><Formula 1>

상기 화학식 1에서 In Formula 1 above,

R1 내지 R4는 각각 독립적으로, 할로겐기, 히드록시기, 아민기, 비닐기, C1 내지 C10의 알킬기, C6 내지 C20의 아릴기, C1 내지 C10의 알콕시기 또는 C1 내지 C10의 아실옥시기이되, R1 내지 R4 중 적어도 하나는 C1 내지 C10의 알콕시기이다.R 1 to R 4 are each independently a halogen group, a hydroxy group, an amine group, a vinyl group, a C 1 to C 10 alkyl group, a C 6 to C 20 aryl group, a C 1 to C 10 alkoxy group, or a C 1 to C 10 alkyl group. It is a C 10 acyloxy group, and at least one of R 1 to R 4 is a C 1 to C 10 alkoxy group.

이하, 본 발명의 일 실시예에 따른 코팅층을 포함하는 양극 활물질의 제조방법을 상세하게 설명한다.Hereinafter, a method for manufacturing a positive electrode active material including a coating layer according to an embodiment of the present invention will be described in detail.

1) 혼합물의 제조1) Preparation of mixture

먼저, 리튬 전이금속 산화물을 포함하는 양극 활물질, 상기 화학식 1로 표시되는 실리콘 화합물 및 붕산을 고상 혼합하여 혼합물을 제조한다.First, a positive electrode active material containing lithium transition metal oxide, a silicon compound represented by Chemical Formula 1, and boric acid are mixed in solid phase to prepare a mixture.

상기 리튬 전이금속 산화물은 하기 화학식 2로 표시될 수 있다:The lithium transition metal oxide may be represented by the following formula 2:

<화학식 2><Formula 2>

Li1+aNibCocM1 dM2 eO2 Li 1+a Ni b Co c M 1 d M 2 e O 2

상기 화학식 1에서,In Formula 1,

M1은 Mn 및 Al 중에서 선택되는 1종 이상이고,M 1 is one or more selected from Mn and Al,

M2는 W, Mo, Cr, Zr, Ti, Mg, Ta 및 Nb 중에서 선택되는 1종 이상이며,M 2 is one or more selected from W, Mo, Cr, Zr, Ti, Mg, Ta and Nb,

0.00≤a≤0.30, 0.60≤b<1.00, 0.00<c<0.40, 0.00<d<0.40, 0.00≤e≤0.10이다.0.00≤a≤0.30, 0.60≤b<1.00, 0.00<c<0.40, 0.00<d<0.40, 0.00≤e≤0.10.

상기 1+a는 리튬 전이금속 산화물 내 리튬의 몰비를 나타내는 것으로, 0.00≤a≤0.30, 바람직하게는 0.00≤a≤0.20일 수 있다.The 1+a represents the molar ratio of lithium in the lithium transition metal oxide, and may be 0.00≤a≤0.30, preferably 0.00≤a≤0.20.

상기 b는 전체 전이금속 중 니켈의 몰비를 나타내는 것으로, 0.60≤b<1.00, 0.60≤b≤0.99, 또는 0.60≤b≤90일 수 있다. 니켈 함량이 상술한 범위를 만족할 경우, 우수한 용량 특성을 구현할 수 있다.The b represents the molar ratio of nickel among all transition metals, and may be 0.60≤b<1.00, 0.60≤b≤0.99, or 0.60≤b≤90. When the nickel content satisfies the above-mentioned range, excellent capacity characteristics can be achieved.

상기 c는 전체 전이금속 중 코발트의 몰비를 나타내는 것으로, 0.00<c<0.40, 0.01≤c≤0.35, 또는 0.05≤c≤0.35일 수 있다. The c represents the molar ratio of cobalt among all transition metals, and may be 0.00<c<0.40, 0.01≤c≤0.35, or 0.05≤c≤0.35.

상기 d는 전체 전이금속 중 M1의 몰비를 나타내는 것으로, 0.00<d<0.40, 0.01≤d≤0.35, 또는 0.05≤d≤0.35일 수 있다.The d represents the molar ratio of M 1 among all transition metals, and may be 0.00<d<0.40, 0.01≤d≤0.35, or 0.05≤d≤0.35.

상기 e는 전체 전이금속 중 M2의 몰비를 나타내는 것으로, 0.00≤w≤0.10, 또는 0.00≤w≤0.05일 수 있다.The e represents the molar ratio of M 2 among all transition metals, and may be 0.00≤w≤0.10, or 0.00≤w≤0.05.

상기 실리콘 화합물은 가수 분해 반응을 통해 리튬 전이금속 산화물의 표면의 수산화기와 축합 반응이 가능해져, 양극 활물질의 표면과 화학 결합할 수 있다. 이러한 화학 결합을 통해 양극 활물질의 표면에 코팅층을 용이하게 제조할 수 있다.The silicon compound can undergo a condensation reaction with the hydroxyl group on the surface of the lithium transition metal oxide through a hydrolysis reaction, allowing it to chemically bond with the surface of the positive electrode active material. Through this chemical bond, a coating layer can be easily manufactured on the surface of the positive electrode active material.

상기 화학식 1에서, R1 내지 R4는 각각 독립적으로 비닐기, C1 내지 C10의 알킬기, C6 내지 C20의 아릴기 또는 C1 내지 C10의 알콕시기이되, R1 내지 R4 중 적어도 하나는 C1 내지 C10의 알콕시기인 것이 바람직하다.In Formula 1, R 1 to R 4 are each independently a vinyl group, a C 1 to C 10 alkyl group, a C 6 to C 20 aryl group, or a C 1 to C 10 alkoxy group. At least one is preferably a C 1 to C 10 alkoxy group.

또한, 상기 화학식 1에서, R1 내지 R4는 각각 독립적으로 C1 내지 C10의 알콕시기일 수 있고; C1 내지 C10의 알킬기 또는 C1 내지 C10의 알콕시기이되, R1 내지 R4 중 적어도 하나는 C1 내지 C10의 알콕시기일 수 있고; 비닐기 또는 C1 내지 C10의 알콕시기이되, R1 내지 R4 중 적어도 하나는 C1 내지 C10의 알콕시기일 수 있고; C1 내지 C10의 알킬기, C6 내지 C20의 아릴기 또는 C1 내지 C10의 알콕시기이되, R1 내지 R4 중 적어도 하나는 C1 내지 C10의 알콕시기일 수 있다.Additionally, in Formula 1, R 1 to R 4 may each independently be a C 1 to C 10 alkoxy group; C 1 to C 10 alkyl group or C 1 to C 10 alkoxy group, where at least one of R 1 to R 4 may be a C 1 to C 10 alkoxy group; A vinyl group or a C 1 to C 10 alkoxy group, where at least one of R 1 to R 4 may be a C 1 to C 10 alkoxy group; It may be a C 1 to C 10 alkyl group, a C 6 to C 20 aryl group, or a C 1 to C 10 alkoxy group, and at least one of R 1 to R 4 may be a C 1 to C 10 alkoxy group.

상기 실리콘 화합물은 테트라메톡시실란, 테트라에톡시실란, 디메톡시디메틸실란, 메톡시트리메틸실란, 트리메톡시(비닐)실란 및 메톡시디메틸(페닐)실란으로 이루어진 군에서 선택되는 1 종 이상일 수 있고, 이 중 상업적으로 입수가 용이하고, 양극 활물질과 반응이 용이한 테트라에톡시실란, 디메톡시디메틸실란이 바람직하다.The silicone compound may be one or more selected from the group consisting of tetramethoxysilane, tetraethoxysilane, dimethoxydimethylsilane, methoxytrimethylsilane, trimethoxy(vinyl)silane, and methoxydimethyl(phenyl)silane, , Among these, tetraethoxysilane and dimethoxydimethylsilane are preferable as they are commercially available and easily react with the positive electrode active material.

상기 붕산을 양극 활물질의 코팅층의 원료로 사용하는 경우, 양극 활물질의 리튬 이온의 전도성이 향상되어, 리튬 이차전지의 용량이 현저하게 개선될 수 있다.When the boric acid is used as a raw material for the coating layer of the positive electrode active material, the conductivity of lithium ions of the positive electrode active material is improved, and the capacity of the lithium secondary battery can be significantly improved.

상기 양극 활물질, 실리콘 화합물 및 붕산을 고상 혼합하면, 액상 혼합하는 경우와 비교하여, 공정이 단순하고, 유기 용매를 사용할 때 필요한 고가의 방폭 장비 등의 시설이 필요하지 않아 공정 비용을 절감할 수 있다. 또한, 양극 활물질의 리튬은 유기 용매에 용해될 수 있어, 구체적으로는 에탄올 등의 알코올 용매에 용해될 수 있으므로, 용량이 저하될 수 있으나, 고상 혼합하면, 용량이 저하되는 것을 방지할 수 있다.When the positive electrode active material, silicon compound, and boric acid are mixed in solid phase, the process is simple compared to liquid phase mixing, and facilities such as expensive explosion-proof equipment required when using organic solvents are not required, thereby reducing process costs. . In addition, lithium in the positive electrode active material can be dissolved in organic solvents, specifically in alcohol solvents such as ethanol, so the capacity may decrease, but solid-phase mixing can prevent the capacity from decreasing.

상기 실리콘 화합물과 붕산의 중량비는 1.0:1.0 내지 5.0일 수 있고, 바람직하게는 1.0:1.0 내지 4.5, 1.0:1.0 내지 3.5, 1.0:1.0 내지 3.0, 1.0:1.0 내지 2.5, 1.0:1.0 내지 2.0, 1.0:1.0 내지 3.5일 수 있다. 상술한 조건을 만족하면, 저항 증가로 인한 용량 저하 문제가 발생되지 않을 수 있다.The weight ratio of the silicone compound and boric acid may be 1.0:1.0 to 5.0, preferably 1.0:1.0 to 4.5, 1.0:1.0 to 3.5, 1.0:1.0 to 3.0, 1.0:1.0 to 2.5, 1.0:1.0 to 2.0, It may be 1.0:1.0 to 3.5. If the above-mentioned conditions are satisfied, the problem of capacity degradation due to increased resistance may not occur.

상기 양극 활물질 100 중량부에 대하여, 상기 실리콘 화합물과 붕산의 총 함량은 0.10 내지 1.50 중량부일 수 있고, 바람직하게는 0.20 중량부 이상, 0.30 중량부 이상, 0.40 중량부, 0.50 중량부 이상; 0.75 중량부 이하, 0.80 중량부 이하, 0.90 중량부 이하, 1.00 중량부 이하, 1.10 중량부 이하, 1.20 중량부 이하, 1.30 중량부 이하, 1.40 중량부 이하;일 수 있다. 상술한 조건을 만족하면, 저항 증가로 인한 용량 저하 문제가 발생되지 않을 수 있다.With respect to 100 parts by weight of the positive electrode active material, the total content of the silicon compound and boric acid may be 0.10 to 1.50 parts by weight, preferably 0.20 parts by weight or more, 0.30 parts by weight or more, 0.40 parts by weight, or 0.50 parts by weight or more; It may be 0.75 parts by weight or less, 0.80 parts by weight or less, 0.90 parts by weight or less, 1.00 parts by weight or less, 1.10 parts by weight or less, 1.20 parts by weight or less, 1.30 parts by weight or less, and 1.40 parts by weight or less. If the above-mentioned conditions are satisfied, the problem of capacity degradation due to increased resistance may not occur.

상기 혼합물을 제조하는 단계는 15 내지 30 ℃, 바람직하게는 20 내지 25 에서 수행될 수 있다. 상술한 조건을 만족하면, 별도의 열처리 없이 혼합을 할 수 있으므로, 공정이 단순해져 제조 효율이 개선될 수 있다.The step of preparing the mixture may be performed at 15 to 30° C., preferably 20 to 25° C. If the above-mentioned conditions are met, mixing can be performed without separate heat treatment, thereby simplifying the process and improving manufacturing efficiency.

2) 코팅층의 제조2) Preparation of coating layer

이어서, 상기 혼합물을 열처리하여 코팅층을 제조한다.Next, the mixture is heat treated to prepare a coating layer.

상기 열처리 온도는 171 내지 400 ℃, 바람직하게는 171 ℃ 이상, 180 ℃ 이상, 190 ℃ 이상, 200 ℃ 이상, 210 ℃ 이상, 220 ℃ 이상, 230 ℃ 이상, 240 ℃ 이상, 250 ℃ 이상, 260 ℃ 이상, 270 ℃ 이상, 280 ℃ 이상, 390 ℃ 이하, 380 ℃ 이하, 370 ℃ 이하, 360 ℃ 이하, 350 ℃ 이하, 340 ℃ 이하, 330 ℃ 이하, 320 ℃ 이하에서 열처리하여 코팅층을 제조한다.The heat treatment temperature is 171 to 400 ℃, preferably 171 ℃ or higher, 180 ℃ or higher, 190 ℃ or higher, 200 ℃ or higher, 210 ℃ or higher, 220 ℃ or higher, 230 ℃ or higher, 240 ℃ or higher, 250 ℃ or higher, 260 ℃ or higher. The coating layer is prepared by heat treatment at 270 ℃ or higher, 280 ℃ or higher, 390 ℃ or lower, 380 ℃ or lower, 370 ℃ or lower, 360 ℃ or lower, 350 ℃ or lower, 340 ℃ or lower, 330 ℃ or lower, 320 ℃ or lower.

상술한 열처리 온도 조건에서 붕산은 액상이 되므로, 별도의 용매 없이 상기 양극 활물질, 상기 실리콘 화합물과 용이하게 화학 반응하여, 양극 활물질 상에 산화붕소를 포함하는 코팅층이 제조될 수 있다. 구체적으로는 액상인 실리콘 화합물은 양극 활물질 표면의 수분에 의해 가수 분해 반응을 거쳐 액상의 붕산 및 양극 활물질 표면의 히드록시기와 축중합 반응을 하여 코팅층을 형성할 수 있다. 또한, 양극 결정 내부에서 리튬이 움직여 양극 표면에서 산화되어 리튬 이차전지의 초기 방전 용량이 감소하는 현상을 방지할 수 있다.Since boric acid becomes liquid under the above-described heat treatment temperature conditions, it easily chemically reacts with the positive electrode active material and the silicon compound without a separate solvent, and a coating layer containing boron oxide can be produced on the positive electrode active material. Specifically, the liquid silicon compound undergoes a hydrolysis reaction due to moisture on the surface of the positive electrode active material and undergoes a condensation polymerization reaction with liquid boric acid and hydroxyl groups on the surface of the positive electrode active material to form a coating layer. In addition, it is possible to prevent the initial discharge capacity of the lithium secondary battery from decreasing due to lithium moving inside the positive electrode crystal and being oxidized on the positive electrode surface.

상기 코팅층을 제조하는 단계에서 별도의 용매를 사용하지 않으므로, 용매를 제거하기 위한 건조 공정이 필요하지 않아 에너지 효율이 현저하게 개선될 수 있다.Since no separate solvent is used in the step of manufacturing the coating layer, a drying process to remove the solvent is not required, and energy efficiency can be significantly improved.

상기 코팅층은 하기 화학식 3으로 표시되는 단위를 포함하는 것일 수 있다:The coating layer may include a unit represented by the following formula (3):

<화학식 3><Formula 3>

*-SiOx-ByOz-**-SiO x -B y O z -*

상기 화학식 3에서,In Formula 3 above,

x, y, z는 Si 1 몰에 대한 몰수이고, 각각 독립적으로 1 내지 20일 수 있다.x, y, and z are the number of moles per mole of Si, and may each independently be 1 to 20.

또한, *는 상기 코팅층의 나머지 구성과 결합하는 및/또는 양극 활물질과 결합하는 부위일 수 있다.Additionally, * may be a site that combines with the remaining components of the coating layer and/or with the positive electrode active material.

상기 화학식 3으로 표시되는 단위로 인해 코팅층을 포함하는 양극 활물질이 열안정성이 현저하게 개선될 수 있다.Due to the unit represented by Formula 3, the thermal stability of the positive electrode active material including the coating layer can be significantly improved.

2. 양극의 제조방법2. Manufacturing method of anode

본 발명의 다른 일 실시예에 따른 양극의 제조방법은 상술한 코팅층을 포함하는 양극 활물질의 제조방법을 포함한다. 구체적으로는 본 발명의 일 실시예에 따라 코팅층을 포함하는 양극 활물질을 제조하는 단계; 및 상기 코팅층을 포함하는 양극 활물질을 용매에 용해 또는 분산시켜 제조한 양극 활물질 슬러리를 양극 집전체 상에 도포한 후, 건조 및 압연하는 단계를 포함한다.A method of manufacturing a positive electrode according to another embodiment of the present invention includes a method of manufacturing a positive electrode active material including the coating layer described above. Specifically, manufacturing a positive electrode active material including a coating layer according to an embodiment of the present invention; and applying a positive electrode active material slurry prepared by dissolving or dispersing the positive electrode active material including the coating layer in a solvent onto the positive electrode current collector, followed by drying and rolling.

상기 코팅층을 포함하는 양극 활물질에 더하여 바인더 및 도전재를 용매에 용해 또는 분산시킬 수 있다.In addition to the positive electrode active material including the coating layer, a binder and a conductive material may be dissolved or dispersed in a solvent.

상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 상기 바인더는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR) 및 불소 고무로 이루어진 군에서 선택되는 1 종 이상일 수 있다. 상기 바인더의 함량은 상기 코팅층을 포함하는 양극 활물질 100 중량부에 대하여 1 내지 30 중량부일 수 있다.The binder serves to improve adhesion between positive electrode active material particles and adhesion between the positive active material and the current collector. The binder is polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, and carboxymethyl cellulose (CMC). ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber. It may be one or more selected from the group consisting of (SBR) and fluororubber. The content of the binder may be 1 to 30 parts by weight based on 100 parts by weight of the positive electrode active material including the coating layer.

상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 상기 도전재는 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은, 산화아연, 티탄산 칼륨, 산화 티탄 및 폴리페닐렌 유도체로 이루어진 군에서 선택되는 1 종 이상일 수 있다. 상기 도전재의 함량은 상기 코팅층을 포함하는 양극 활물질 100 중량부에 대하여 1 내지 30 중량부일 수 있다.The conductive material is used to provide conductivity to the electrode, and can be used without particular limitation as long as it does not cause chemical change and has electronic conductivity in the battery being constructed. The conductive materials include natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, copper, nickel, aluminum, silver, zinc oxide, potassium titanate, and titanium oxide. and polyphenylene derivatives. The content of the conductive material may be 1 to 30 parts by weight based on 100 parts by weight of the positive electrode active material including the coating layer.

상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니다. 상기 양극 집전체는 스테인리스 스틸; 알루미늄; 니켈; 티탄; 소성 탄소; 알루미늄; 탄소; 니켈; 티탄; 은 등으로 표면 처리 스테인레스 스틸;로 이루어진 군에서 선택되는 1 종 이상일 수 있다. 또한, 상기 양극 집전체는 통상적으로 3 ㎛ 내지 500 ㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 코팅층을 포함하는 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery. The positive electrode current collector is stainless steel; aluminum; nickel; titanium; calcined carbon; aluminum; carbon; nickel; titanium; It may be one or more types selected from the group consisting of stainless steel surface treated with silver, etc. In addition, the positive electrode current collector may typically have a thickness of 3 ㎛ to 500 ㎛, and fine irregularities may be formed on the surface of the current collector to increase the adhesion of the positive electrode active material including the coating layer. For example, it can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention may be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described in detail below. Examples of the present invention are provided to more completely explain the present invention to those with average knowledge in the art.

제조예 1Manufacturing Example 1

음극 활물질(그래파이트)와 도전재(카본블랙)와 바인더(폴리비닐리덴플루오라이드)를 96.0:0.5:3.5의 중량비로 증류수에 첨가하여 음극 활물질 슬러리(고형분 농도: 50 중량%)를 제조하였다. 상기 음극 활물질 슬러리를 두께가 8 ㎛인 음극 집전체(Cu 박막) 일면에 도포하고, 건조 및 압연하여 음극을 제조하였다.A negative electrode active material slurry (solid concentration: 50% by weight) was prepared by adding the negative electrode active material (graphite), the conductive material (carbon black), and the binder (polyvinylidene fluoride) to distilled water at a weight ratio of 96.0:0.5:3.5. The negative electrode active material slurry was applied to one side of a negative electrode current collector (Cu thin film) with a thickness of 8 ㎛, dried, and rolled to prepare a negative electrode.

제조예 2Production example 2

1.0 M LiPF6가 용해된 유기 용매(에틸렌 카보네이트(EC):에틸메틸 카보네이트(EMC) = 3:7 부피비) 98.5 중량부에 비닐렌 카보네이트(VC) 1.5 중량부를 첨가하여 비수 전해액을 제조하였다.A non-aqueous electrolyte solution was prepared by adding 1.5 parts by weight of vinylene carbonate (VC) to 98.5 parts by weight of an organic solvent in which 1.0 M LiPF 6 was dissolved (ethylene carbonate (EC):ethylmethyl carbonate (EMC) = 3:7 volume ratio).

실시예 1Example 1

<코팅층을 포함하는 양극 활물질의 제조><Manufacture of positive electrode active material including coating layer>

LiNi0.8Co0.1Mn0.1O2로 표시되는 조성을 가지는 리튬 전이금속 산화물을 포함하고 평균 입경(D50)이 10 ㎛인 양극 활물질 100 중량부, 테트라에톡시실란 0.25 중량부 및 붕산 0.25 중량부를 25 ℃에서 1 분 동안 플레니터리믹서(엠제이리서치, AR-100)로 교반하였다. 그 후, 300 ℃에서 3 시간 동안 공기 분위기에서 열처리하여, 코팅층을 포함하는 양극 활물질을 제조하였다.100 parts by weight of a positive electrode active material containing a lithium transition metal oxide having a composition expressed as LiNi 0.8 Co 0.1 Mn 0.1 O 2 and having an average particle diameter (D50) of 10 ㎛, 0.25 parts by weight of tetraethoxysilane, and 0.25 parts by weight of boric acid at 25 ° C. It was stirred with a planetary mixer (MJ Research, AR-100) for 1 minute. Afterwards, heat treatment was performed at 300°C for 3 hours in an air atmosphere to prepare a positive electrode active material including a coating layer.

상기 코팅층을 포함하는 양극 활물질을 열중량분석기(Mettler-Toledo 社, TGA2)를 이용하여 30 ℃부터 800 ℃까지 10 ℃/분의 속도로 온도를 올려주며 중량 변화를 측정(N2 flow: 50 ㎖/분)하였다. 측정 결과, 상기 코팅층의 함량이 상기 양극 활물질의 함량 100 중량부 대비 0.5 중량부이었다.The positive electrode active material containing the coating layer was heated at a rate of 10 ℃/min from 30 ℃ to 800 ℃ using a thermogravimetric analyzer (Mettler-Toledo, TGA2) and the weight change was measured (N 2 flow: 50 ml /minute). As a result of the measurement, the content of the coating layer was 0.5 parts by weight compared to 100 parts by weight of the positive electrode active material.

<양극의 제조><Manufacture of anode>

상기 코팅층을 포함하는 양극 활물질과 도전재(카본 블랙)와 바인더(폴리비닐리덴플루오라이드)를 97.5:1.0:1.5 중량비로 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 활물질 슬러리(고형분 농도: 60 중량%)를 제조하였다. 상기 양극 활물질 슬러리를 두께가 15 ㎛인 양극 집전체(Al 박막) 일면에 도포하고, 건조 및 압연하여 양극을 제조하였다.The positive electrode active material including the coating layer, the conductive material (carbon black), and the binder (polyvinylidene fluoride) were added to N-methyl-2-pyrrolidone (NMP) at a weight ratio of 97.5:1.0:1.5 to create a positive electrode active material slurry ( Solid concentration: 60% by weight) was prepared. The positive electrode active material slurry was applied to one side of a positive electrode current collector (Al thin film) with a thickness of 15 ㎛, dried, and rolled to prepare a positive electrode.

<리튬 이차전지의 제조><Manufacture of lithium secondary batteries>

상기 양극과 제조예 1의 음극 사이에 다공성 폴리에틸렌 분리막을 게재하여 전극 조립체를 제조한 후, 이를 전지 케이스에 넣고 제조예 2의 비수 전해액을 주입하고, 밀봉하여 파우치형 리튬 이차전지(전지용량: 6.24 ㎃·h)를 제조하였다.After manufacturing the electrode assembly by placing a porous polyethylene separator between the positive electrode and the negative electrode of Preparation Example 1, it was placed in a battery case, the non-aqueous electrolyte of Preparation Example 2 was injected, and the pouch-type lithium secondary battery (battery capacity: 6.24) was sealed. ㎃·h) was prepared.

실시예 2Example 2

코팅층을 포함하는 양극 활물질의 제조에서, 테트라에톡시실란 0.25 중량부 대신 디메톡시디메틸실란 0.25 중량부를 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 코팅층을 포함하는 양극 활물질, 양극 및 리튬 이차전지를 제조하였다.In the production of a positive electrode active material including a coating layer, a positive electrode active material, positive electrode, and lithium secondary battery including a coating layer were prepared in the same manner as in Example 1, except that 0.25 parts by weight of dimethoxydimethylsilane was added instead of 0.25 parts by weight of tetraethoxysilane. was manufactured.

한편, 상기 코팅층의 함량은 상기 양극 활물질의 함량 100 중량부 대비 0.5 중량부이었다. Meanwhile, the content of the coating layer was 0.5 parts by weight compared to 100 parts by weight of the positive electrode active material.

실시예 3Example 3

코팅층을 포함하는 양극 활물질의 제조에서, 테트라에톡시실란 0.25 중량부 대신 디메톡시디메틸실란 0.50 중량부를 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 코팅층을 포함하는 양극 활물질, 양극 및 리튬 이차전지를 제조하였다.In the production of a positive electrode active material including a coating layer, a positive electrode active material, positive electrode, and lithium secondary battery including a coating layer were prepared in the same manner as in Example 1, except that 0.50 parts by weight of dimethoxydimethylsilane was added instead of 0.25 parts by weight of tetraethoxysilane. was manufactured.

한편, 상기 코팅층의 함량은 상기 양극 활물질의 함량 100 중량부 대비 0.75 중량부이었다. Meanwhile, the content of the coating layer was 0.75 parts by weight compared to 100 parts by weight of the positive electrode active material.

비교예 1Comparative Example 1

<양극의 제조><Manufacture of anode>

LiNi0.8Co0.1Mn0.1O2로 표시되는 조성을 가지는 리튬 전이금속 산화물을 포함하고 평균 입경(D50)이 10 ㎛인 양극 활물질과 도전재(카본 블랙)와 바인더(폴리비닐리덴플루오라이드)를 97.5:1.0:1.5 중량비로 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 활물질 슬러리(고형분 농도: 60 중량%)를 제조하였다. 상기 양극 활물질 슬러리를 두께가 15 ㎛인 양극 집전체(Al 박막) 일면에 도포하고, 건조 및 압연하여 양극을 제조하였다.A positive electrode active material containing a lithium transition metal oxide having a composition expressed as LiNi 0.8 Co 0.1 Mn 0.1 O 2 and having an average particle diameter (D50) of 10 ㎛, a conductive material (carbon black), and a binder (polyvinylidene fluoride) were prepared at 97.5: A positive electrode active material slurry (solid concentration: 60% by weight) was prepared by adding N-methyl-2-pyrrolidone (NMP) at a weight ratio of 1.0:1.5. The positive electrode active material slurry was applied to one side of a positive electrode current collector (Al thin film) with a thickness of 15 ㎛, dried, and rolled to prepare a positive electrode.

<리튬 이차전지의 제조><Manufacture of lithium secondary batteries>

상기 양극과 제조예 1의 음극 사이에 다공성 폴리에틸렌 분리막을 게재하여 전극 조립체를 제조한 후, 이를 전지 케이스에 넣고 제조예 2의 비수 전해액을 주입하고, 밀봉하여 파우치형 리튬 이차전지(전지용량: 6.24 ㎃·h)를 제조하였다.After manufacturing the electrode assembly by placing a porous polyethylene separator between the positive electrode and the negative electrode of Preparation Example 1, it was placed in a battery case, the non-aqueous electrolyte of Preparation Example 2 was injected, and the pouch-type lithium secondary battery (battery capacity: 6.24) was sealed. ㎃·h) was prepared.

비교예 2Comparative Example 2

코팅층을 포함하는 양극 활물질의 제조에서, 테트라에톡시실란 0.25 중량부 대신 테트라에톡시실란 0.50 중량부를 투입하고 붕산을 투입하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 코팅층을 포함하는 양극 활물질, 양극 및 리튬 이차전지를 제조하였다.In the production of a positive electrode active material including a coating layer, a positive electrode active material including a coating layer was prepared in the same manner as in Example 1, except that 0.50 parts by weight of tetraethoxysilane was added instead of 0.25 parts by weight of tetraethoxysilane and boric acid was not added. A positive electrode and lithium secondary battery were manufactured.

한편, 상기 코팅층의 함량은 상기 양극 활물질의 함량 100 중량부 대비 0.5 중량부이었다. Meanwhile, the content of the coating layer was 0.5 parts by weight compared to 100 parts by weight of the positive electrode active material.

비교예 3Comparative Example 3

코팅층을 포함하는 양극 활물질의 제조에서, 테트라에톡시실란을 투입하지 않고 붕산을 0.50 중량부로 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 코팅층을 포함하는 양극 활물질, 양극 및 리튬 이차전지를 제조하였다.In the production of a positive electrode active material including a coating layer, a positive electrode active material including a coating layer, a positive electrode, and a lithium secondary battery were manufactured in the same manner as Example 1, except that 0.50 parts by weight of boric acid was added instead of tetraethoxysilane. did.

한편, 상기 코팅층의 함량은 상기 양극 활물질의 함량 100 중량부 대비 0.5 중량부이었다. Meanwhile, the content of the coating layer was 0.5 parts by weight compared to 100 parts by weight of the positive electrode active material.

비교예 4Comparative Example 4

<코팅층을 포함하는 양극 활물질의 제조><Manufacture of positive electrode active material including coating layer>

LiNi0.8Co0.1Mn0.1O2로 표시되는 조성을 가지는 리튬 전이금속 산화물을 포함하고 평균 입경(D50)이 10 ㎛인 양극 활물질 100 중량부, 테트라에톡시실란 0.25 중량부 및 붕산 0.25 중량부를 에탄올 100 중량부에 투입하고, 4 시간 동안 교반한 후, 70 ℃의 진공 오븐에서 에탄올을 제거하면서, 흡착을 유도하여 코팅층을 포함하는 양극 활물질을 제조하였다.100 parts by weight of a positive electrode active material containing a lithium transition metal oxide having a composition expressed as LiNi 0.8 Co 0.1 Mn 0.1 O 2 and having an average particle diameter (D50) of 10 ㎛, 0.25 parts by weight of tetraethoxysilane, and 0.25 parts by weight of boric acid are mixed with 100 parts by weight of ethanol. After the mixture was added to the reactor and stirred for 4 hours, ethanol was removed in a vacuum oven at 70° C., and adsorption was induced to prepare a positive electrode active material including a coating layer.

상기 코팅층을 포함하는 양극 활물질을 열중량분석기(Mettler-Toledo 社, TGA2)를 이용하여 30 ℃부터 800 ℃까지 10 ℃/분의 속도로 온도를 올려주며 중량 변화를 측정(N2 flow: 50 ㎖/분)하였다. 측정 결과, 상기 코팅층의 함량이 상기 양극 활물질의 함량 100 중량부 대비 0.5 중량부이었다.The positive electrode active material containing the coating layer was heated at a rate of 10 ℃/min from 30 ℃ to 800 ℃ using a thermogravimetric analyzer (Mettler-Toledo, TGA2) and the weight change was measured (N 2 flow: 50 ml /minute). As a result of the measurement, the content of the coating layer was 0.5 parts by weight compared to 100 parts by weight of the positive electrode active material.

<양극의 제조><Manufacture of anode>

상기 코팅층을 포함하는 양극 활물질과 도전재(카본 블랙)와 바인더(폴리비닐리덴플루오라이드)를 97.5:1.0:1.5 중량비로 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 활물질 슬러리(고형분 농도: 60 중량%)를 제조하였다. 상기 양극 활물질 슬러리를 두께가 15 ㎛인 양극 집전체(Al 박막) 일면에 도포하고, 건조 및 압연하여 양극을 제조하였다.The positive electrode active material including the coating layer, the conductive material (carbon black), and the binder (polyvinylidene fluoride) were added to N-methyl-2-pyrrolidone (NMP) at a weight ratio of 97.5:1.0:1.5 to create a positive electrode active material slurry ( Solid concentration: 60% by weight) was prepared. The positive electrode active material slurry was applied to one side of a positive electrode current collector (Al thin film) with a thickness of 15 ㎛, dried, and rolled to prepare a positive electrode.

<리튬 이차전지의 제조><Manufacture of lithium secondary batteries>

상기 양극과 제조예 1의 음극 사이에 다공성 폴리에틸렌 분리막을 게재하여 전극 조립체를 제조한 후, 이를 전지 케이스에 넣고 제조예 2의 비수 전해액을 주입하고, 밀봉하여 파우치형 리튬 이차전지(전지용량: 6.24 ㎃·h)를 제조하였다.After manufacturing the electrode assembly by placing a porous polyethylene separator between the positive electrode and the negative electrode of Preparation Example 1, it was placed in a battery case, the non-aqueous electrolyte of Preparation Example 2 was injected, and the pouch-type lithium secondary battery (battery capacity: 6.24) was sealed. ㎃·h) was prepared.

실험예Experiment example

실시예 및 비교예에서 제조한 각각의 리튬 이차전지를 하기에 기재된 방법으로 물성을 평가하였다.The physical properties of each lithium secondary battery manufactured in Examples and Comparative Examples were evaluated by the method described below.

(1) 초기 방전 용량 평가(1) Initial discharge capacity evaluation

리튬 이차전지를 25 ℃에서 0.1 C 정전류(CC)로 활성화한 후, 정전류-정전압(CC-CV) 충전 조건으로 4.2 V까지 0.33 C 정전류로 충전한 다음 0.05 C current cut을 진행하였고, CC 조건으로 2.5 V까지 0.33 C로 방전하였다. 상기 충방전을 1 사이클로 하여, 3 사이클을 진행하였다. 이어서, PNE-0506 충방전기(㈜PNE 솔루션社, 5V, 6A)를 사용하여 초기 방전 용량을 측정하고, 그 결과를 하기 표 1 및 표 2에 나타내었다.After activating the lithium secondary battery with 0.1 C constant current (CC) at 25 ° C, it was charged with 0.33 C constant current up to 4.2 V under constant current-constant voltage (CC-CV) charging conditions, then 0.05 C current cut was performed, and under CC conditions. Discharged at 0.33 C until 2.5 V. The charging and discharging was regarded as 1 cycle, and 3 cycles were performed. Subsequently, the initial discharge capacity was measured using a PNE-0506 charger/discharger (PNE Solutions Co., Ltd., 5V, 6A), and the results are shown in Tables 1 and 2 below.

(2) CO(2) C.O. 22 가스 발생량 특정 Specific gas generation amount

리튬 이차전지를 각각 25 ℃에서 0.1 C 정전류로 4.2 V까지 충전을 실시하였다. 이후, 0.1 C 정전류로 3 V까지 방전을 실시(1 사이클)하고, 이후, 45 ℃에서 0.33 C으로 2.5 V ~ 4.2 V 구간에서 200 사이클 충방전을 수행하였다. Each lithium secondary battery was charged to 4.2 V at 25°C with a constant current of 0.1 C. Afterwards, discharge was performed to 3 V at a constant current of 0.1 C (1 cycle), and then 200 cycles of charge and discharge were performed in the range of 2.5 V to 4.2 V at 0.33 C at 45°C.

상기 1 사이클 충방전된 리튬 이차전지와 200 사이클 충방전된 리튬 이차전지를 각각 진공 분위기의 챔버에서 천공하여 전지 내부의 가스를 배출시켜 진공 챔버 내부에 포집하고, 챔버의 가스를 가스크로마토그래피-불꽃 이온화 검출기(Gas Chromatograph-Flame Ionizaiton detector, GC-FID)를 이용하여 CO2 가스 발생량(㎕)을 정량 분석하였고, 그 결과를 하기 표 1 및 표 2에 나타내었다.The lithium secondary battery that has been charged and discharged for 1 cycle and the lithium secondary battery that has been charged and discharged for 200 cycles are each drilled in a chamber in a vacuum atmosphere, the gas inside the battery is discharged and collected inside the vacuum chamber, and the gas in the chamber is subjected to gas chromatography-flame. The amount of CO 2 gas generated (μl) was quantitatively analyzed using an ionization detector (Gas Chromatograph-Flame Ionizaiton detector, GC-FID), and the results are shown in Tables 1 and 2 below.

구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 양극 활물질(중량부)Cathode active material (parts by weight) 100100 100100 100100 테트라에톡시실란(중량부)Tetraethoxysilane (parts by weight) 0.250.25 0.000.00 0.000.00 디메톡시디메틸실란(중량부)Dimethoxydimethylsilane (parts by weight) 0.000.00 0.250.25 0.500.50 붕산(중량부)Boric acid (parts by weight) 0.250.25 0.250.25 0.250.25 에탄올(중량부)Ethanol (parts by weight) 0.000.00 0.000.00 0.000.00 열처리 온도(℃)Heat treatment temperature (℃) 300300 300300 300300 초기 방전 용량(㎃·h/g)Initial discharge capacity (㎃·h/g) 214214 215215 195195 CO2 가스 발생량(㎕)CO 2 gas generation amount (㎕) 9090 8888 8585

구분division 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 양극 활물질(중량부)Cathode active material (parts by weight) 100100 100100 100100 100100 테트라에톡시실란(중량부)Tetraethoxysilane (parts by weight) 0.000.00 0.500.50 0.000.00 0.250.25 디메톡시디메틸실란(중량부)Dimethoxydimethylsilane (parts by weight) 0.000.00 0.000.00 0.000.00 0.000.00 붕산(중량부)Boric acid (parts by weight) 0.000.00 0.000.00 0.500.50 0.250.25 에탄올(중량부)Ethanol (parts by weight) 0.000.00 0.000.00 0.000.00 100100 열처리 온도(℃)Heat treatment temperature (℃) 300300 300300 300300 7070 초기 방전 용량(㎃·h/g)Initial discharge capacity (㎃·h/g) 198198 200200 214214 201201 CO2 가스 발생량(㎕)CO 2 gas generation amount (㎕) 177177 9797 116116 110110

상기 표 1을 참조하면, 양극 활물질, 실리콘 화합물 및 붕산을 고상 혼합하여 제조한 코팅층을 포함하는 양극 활물질을 이용한 실시예 1 내지 실시예 3은, 코팅층이 없는 양극 활물질을 이용한 비교예 1 대비, CO2 가스 발생량이 현저하게 저감되었다. Referring to Table 1, Examples 1 to 3 using a positive electrode active material including a coating layer prepared by solid-phase mixing a positive electrode active material, a silicon compound, and boric acid, compared to Comparative Example 1 using a positive electrode active material without a coating layer, CO 2 The amount of gas generated was significantly reduced.

또한, 실시예 1 내지 실시예 3은, 테트라에톡시실란으로만 제조한 코팅층을 포함하는 양극 활물질을 이용한 비교예 2 대비, CO2 가스 발생량이 현저하게 저감되었다. In addition, in Examples 1 to 3, the amount of CO 2 gas generated was significantly reduced compared to Comparative Example 2 using a positive electrode active material including a coating layer made only of tetraethoxysilane.

또한, 실시예 1 내지 실시예 3은, 붕산으로만 제조한 코팅층을 포함하는 양극 활물질을 이용한 비교예 2 대비, CO2 가스 발생량이 현저하게 저감되었다. In addition, in Examples 1 to 3, the amount of CO 2 gas generated was significantly reduced compared to Comparative Example 2 using a positive electrode active material including a coating layer made only of boric acid.

또한, 실시예 1 내지 실시예 3은, 에탄올을 이용한 비교예 4 대비, 초기 방전 용량이 현저하게 개선되고 CO2 가스 발생량이 현저하게 저감되었다. 비교예 4의 경우 양극 활물질에 포함된 리튬이 에탄올에서 녹아나오기 때문에 초기 방전 용량이 저하되고 CO2 가스 발생량이 증가하는 것으로 확인되었다.In addition, in Examples 1 to 3, the initial discharge capacity was significantly improved and the amount of CO 2 gas generated was significantly reduced compared to Comparative Example 4 using ethanol. In Comparative Example 4, it was confirmed that the initial discharge capacity decreased and the amount of CO 2 gas generated increased because the lithium contained in the positive electrode active material dissolved in ethanol.

Claims (10)

리튬 전이금속 산화물을 포함하는 양극 활물질, 하기 화학식 1로 표시되는 실리콘 화합물 및 붕산을 고상 혼합하여 혼합물을 제조하는 단계; 및
상기 혼합물을 열처리하여 코팅층을 제조하는 단계를 포함하는 코팅층을 포함하는 양극 활물질의 제조방법:
<화학식 1>

상기 화학식 1에서
R1 내지 R4는 각각 독립적으로, 할로겐기, 히드록시기, 아민기, 비닐기, C1 내지 C10의 알킬기, C6 내지 C20의 아릴기, C1 내지 C10의 알콕시기 또는 C1 내지 C10의 아실옥시기이되, R1 내지 R4 중 적어도 하나는 C1 내지 C10의 알콕시기이다.
Preparing a mixture by solid-phase mixing a positive electrode active material containing lithium transition metal oxide, a silicon compound represented by the following formula (1), and boric acid; and
Method for producing a positive electrode active material including a coating layer comprising the step of heat treating the mixture to produce a coating layer:
<Formula 1>

In Formula 1 above,
R 1 to R 4 are each independently a halogen group, a hydroxy group, an amine group, a vinyl group, a C 1 to C 10 alkyl group, a C 6 to C 20 aryl group, a C 1 to C 10 alkoxy group, or a C 1 to C 10 alkyl group. It is a C 10 acyloxy group, and at least one of R 1 to R 4 is a C 1 to C 10 alkoxy group.
청구항 1에 있어서,
상기 코팅층을 제조하는 단계에서 열처리 온도는 171 내지 400 ℃인 것인 코팅층을 포함하는 양극 활물질의 제조방법.
In claim 1,
A method of producing a positive electrode active material including a coating layer, wherein in the step of manufacturing the coating layer, the heat treatment temperature is 171 to 400 ° C.
청구항 1에 있어서,
상기 실리콘 화합물과 붕산의 중량비는 1.0:1.0 내지 5.0인 것인 코팅층을 포함하는 양극 활물질의 제조방법.
In claim 1,
A method for producing a positive electrode active material including a coating layer wherein the weight ratio of the silicon compound and boric acid is 1.0:1.0 to 5.0.
청구항 1에 있어서,
상기 양극 활물질 100 중량부에 대하여, 상기 실리콘 화합물과 붕산의 총 함량은 0.1 내지 1.50 중량부인 것인 코팅층을 포함하는 양극 활물질의 제조방법.
In claim 1,
A method for producing a positive electrode active material including a coating layer, wherein the total content of the silicon compound and boric acid is 0.1 to 1.50 parts by weight based on 100 parts by weight of the positive electrode active material.
청구항 1에 있어서,
상기 실리콘 화합물은 테트라메톡시실란, 테트라에톡시실란, 디메톡시디메틸실란, 메톡시트리메틸실란, 트리메톡시(비닐)실란 및 메톡시디메틸(페닐)실란으로 이루어진 군에서 선택되는 1 종 이상인 것인 코팅층을 포함하는 양극 활물질의 제조방법.
In claim 1,
The silicone compound is one or more selected from the group consisting of tetramethoxysilane, tetraethoxysilane, dimethoxydimethylsilane, methoxytrimethylsilane, trimethoxy(vinyl)silane, and methoxydimethyl(phenyl)silane. Method for manufacturing a positive electrode active material including a coating layer.
청구항 1에 있어서,
상기 혼합물을 제조하는 단계는 15 내지 30 ℃에서 수행되는 것인 코팅층을 포함하는 양극 활물질의 제조방법.
In claim 1,
A method of producing a positive electrode active material including a coating layer, wherein the step of preparing the mixture is performed at 15 to 30 ° C.
청구항 1에 있어서,
상기 혼합물을 제조하는 단계는 용매를 사용하지 않는 것인 코팅층을 포함하는 양극 활물질의 제조방법.
In claim 1,
A method of producing a positive electrode active material including a coating layer in which the step of preparing the mixture does not use a solvent.
청구항 1에 있어서,
상기 리튬 전이금속 산화물은 하기 화학식 2로 표시되는 것인 코팅층을 포함하는 양극 활물질의 제조방법:
<화학식 2>
Li1+aNibCocM1 dM2 eO2
상기 화학식 2에서,
M1은 Mn 및 Al 중에서 선택되는 1종 이상이고,
M2는 W, Mo, Cr, Zr, Ti, Mg, Ta 및 Nb 중에서 선택되는 1종 이상이며,
0.00≤a≤0.30, 0.60≤b<1.00, 0.00<c<0.40, 0.00<d<0.40, 0.00≤e≤0.10이다.
In claim 1,
The lithium transition metal oxide is a method of producing a positive electrode active material including a coating layer represented by the following formula (2):
<Formula 2>
Li 1+a Ni b Co c M 1 d M 2 e O 2
In Formula 2,
M 1 is one or more selected from Mn and Al,
M 2 is one or more selected from W, Mo, Cr, Zr, Ti, Mg, Ta and Nb,
0.00≤a≤0.30, 0.60≤b<1.00, 0.00<c<0.40, 0.00<d<0.40, 0.00≤e≤0.10.
청구항 1에 있어서,
상기 코팅층은 하기 화학식 3으로 표시되는 단위를 포함하는 것인 코팅층을 포함하는 양극 활물질의 제조방법:
<화학식 3>
*-SiOx-ByOz-*
상기 화학식 3에서,
x, y, z는 Si 1 몰에 대한 몰수이고, 각각 독립적으로 1 내지 20일 수 있다.
In claim 1,
A method of producing a positive electrode active material including a coating layer, wherein the coating layer includes a unit represented by the following formula (3):
<Formula 3>
*-SiO x -B y O z -*
In Formula 3 above,
x, y, and z are the number of moles per mole of Si, and may each independently be 1 to 20.
청구항 1에 따른 코팅층을 포함하는 양극 활물질의 제조방법을 포함하는 양극의 제조방법.A method of manufacturing a positive electrode including a method of manufacturing a positive electrode active material including the coating layer according to claim 1.
KR1020220054423A 2022-05-02 2022-05-02 Method of preparing positive electrode active material comprising coating layer, method of preparing positive electrode comprising the same KR20230154698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220054423A KR20230154698A (en) 2022-05-02 2022-05-02 Method of preparing positive electrode active material comprising coating layer, method of preparing positive electrode comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220054423A KR20230154698A (en) 2022-05-02 2022-05-02 Method of preparing positive electrode active material comprising coating layer, method of preparing positive electrode comprising the same

Publications (1)

Publication Number Publication Date
KR20230154698A true KR20230154698A (en) 2023-11-09

Family

ID=88748122

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220054423A KR20230154698A (en) 2022-05-02 2022-05-02 Method of preparing positive electrode active material comprising coating layer, method of preparing positive electrode comprising the same

Country Status (1)

Country Link
KR (1) KR20230154698A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120129926A (en) 2010-02-24 2012-11-28 히다치 막셀 에너지 가부시키가이샤 Positive electrode material, method of production therefor, positive electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120129926A (en) 2010-02-24 2012-11-28 히다치 막셀 에너지 가부시키가이샤 Positive electrode material, method of production therefor, positive electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery

Similar Documents

Publication Publication Date Title
KR102290961B1 (en) Negative electrode active material, method for preparing the negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode
KR102223723B1 (en) Negative eletrode active material, negative electrode comprising the negative electrode material and lithium secondarty battery comprising the negative electrode
KR102308723B1 (en) Negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode
KR102157183B1 (en) Anode active material, anode comprising the anode active material and lithium secondarty battery comprising the anode
KR20180029919A (en) Negative electrode, secondary battery, battery module and battery pack comprising the same
KR20180004678A (en) Negative electrode and lithium secondarty battery comprising the negative electrode
KR20190060697A (en) Negative electrode active material for lithium secondarty battery and perparing method thereof
KR102485284B1 (en) Negative electrode and secondary battery comprising the negative electrode
KR20190052951A (en) Negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode
KR20180132278A (en) Negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode
KR20220034587A (en) Negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode
KR20190052953A (en) Negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode
KR20190029044A (en) Negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode
KR20190090497A (en) Negative electrode, and lithium secondarty battery comprising the negative electrode
KR20180103594A (en) Method for manufacturing anode active material
US11495797B2 (en) Negative electrode active material, negative electrode including the same, secondary battery including the negative electrode, and preparation method of the negative electrode active material
KR20230154698A (en) Method of preparing positive electrode active material comprising coating layer, method of preparing positive electrode comprising the same
KR20130049517A (en) Method for manufacturing positive active material for lithium secondary battery
KR102659769B1 (en) Negative electrode active material, negative electrode comprising the negative electrode active material, secondary battery comprising the negative electrode, and method for preparing the negative electrode active material
KR102290960B1 (en) Method for preparing negative electrode active material
KR102635060B1 (en) Negative electrode active material, negative electrode and secondary battery
KR20180104450A (en) Method for manufacturing anode active material
KR20230025346A (en) Negative electrode active material, negative electrode comprising the negative electrode active material, secondary battery comprising the negative electrode, and method for preparing the negative electrode active material
KR20230025313A (en) Negative electrode active material, negative electrode comprising the negative electrode active material, secondary battery comprising the negative electrode, and method for preparing the negative electrode active material
KR20240052159A (en) Anode and secondary battary