KR20230148197A - 포인트 클라우드 데이터 송신 장치, 포인트 클라우드데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 - Google Patents

포인트 클라우드 데이터 송신 장치, 포인트 클라우드데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 Download PDF

Info

Publication number
KR20230148197A
KR20230148197A KR1020237031621A KR20237031621A KR20230148197A KR 20230148197 A KR20230148197 A KR 20230148197A KR 1020237031621 A KR1020237031621 A KR 1020237031621A KR 20237031621 A KR20237031621 A KR 20237031621A KR 20230148197 A KR20230148197 A KR 20230148197A
Authority
KR
South Korea
Prior art keywords
prediction
information
geometry
point cloud
data
Prior art date
Application number
KR1020237031621A
Other languages
English (en)
Inventor
오현묵
허혜정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20230148197A publication Critical patent/KR20230148197A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/107Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/001Model-based coding, e.g. wire frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/537Motion estimation other than block-based
    • H04N19/54Motion estimation other than block-based using feature points or meshes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/40Tree coding, e.g. quadtree, octree

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

실시예들에 따른 포인트 클라우드 데이터 전송 방법은, 포인트 클라우드 데이터를 지오메트리 데이터를 인코딩하는 단계, 상기 지오메트리 데이터를 기반으로 상기 포인트 클라우드 데이터의 어트리뷰트 데이터를 인코딩하는 단계, 및 상기 인코딩된 지오메트리 데이터, 상기 인코딩된 어트리뷰트 데이터, 및 시그널링 정보를 전송하는 단계를 포함할 수 있다.

Description

포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
실시예들은 포인트 클라우드 콘텐트(Point Cloud Content)를 처리하는 방법 및 장치에 대한 것이다.
포인트 클라우드 콘텐트는 3차원 공간(space or volume)을 표현하는 좌표계에 속한 점(포인트)들의 집합인 포인트 클라우드로 표현되는 콘텐트이다. 포인트 클라우드 콘텐트는3차원으로 이루어진 미디어를 표현할 수 있으며, VR (Virtual Reality, 가상현실), AR (Augmented Reality, 증강현실), MR (Mixed Reality, 혼합현실), XR (Extended Reality), 및 자율 주행 서비스 등의 다양한 서비스를 제공하기 위해 사용된다. 하지만 포인트 클라우드 콘텐트를 표현하기 위해서는 수만개에서 수십만개의 포인트 데이터가 필요하다. 따라서 방대한 양의 포인트 데이터를 효율적으로 처리하기 위한 방법이 요구된다.
실시예들에 따른 기술적 과제는, 전술한 문제점 등을 해결하기 위해서, 포인트 클라우드를 효율적으로 송수신하기 위한 포인트 클라우드 데이터 전송 장치, 전송 방법, 포인트 클라우드 데이터 수신 장치 및 수신 방법을 제공하는데 있다.
실시예들에 따른 기술적 과제는, 지연시간(latency) 및 인코딩/디코딩 복잡도를 해결하기 위한 포인트 클라우드 데이터 전송 장치, 전송 방법, 포인트 클라우드 데이터 수신 장치 및 수신 방법을 제공하는데 있다.
실시예들에 따른 기술적 과제는, 지오메트리-포인트 클라우드 압축(Geometry - point cloud compression, G-PCC) 비트스트림을 효율적으로 송수신하기 위한 포인트 클라우드 데이터 전송 장치, 전송 방법, 포인트 클라우드 데이터 수신 장치 및 수신 방법을 제공하는데 있다.
실시예들에 따른 기술적 과제는, 예측 기반 코딩 방법을 적용하여 포인트 클라우드 데이터를 압축하여 송/수신하도록 함으로써, 포인트 클라우드 데이터를 효율적으로 압축하는 포인트 클라우드 데이터 전송 장치, 전송 방법, 포인트 클라우드 데이터 수신 장치 및 수신 방법을 제공하는데 있다.
실시예들에 따른 기술적 과제는, 예측 기반 코딩 방법을 적용하여 포인트 클라우드 데이터를 압축할 때, 프레임 간 상관 관계에 기반하여 중복 정보를 제거함으로써 압축 효율을 높이도록 하는 포인트 클라우드 데이터 전송 장치, 전송 방법, 포인트 클라우드 데이터 수신 장치 및 수신 방법을 제공하는데 있다.
다만, 전술한 기술적 과제만으로 제한되는 것은 아니고, 본 문서 전체 내용에 기초하여 당업자가 유추할 수 있는 다른 기술적 과제로 실시예들의 권리범위가 확장될 수 있다.
상술한 목적 및 다른 이점을 달성하기 위해서 실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 지오메트리 데이터를 인코딩하는 단계, 상기 지오메트리 데이터를 기반으로 상기 포인트 클라우드 데이터의 어트리뷰트 데이터를 인코딩하는 단계, 및 상기 인코딩된 지오메트리 데이터, 상기 인코딩된 어트리뷰트 데이터, 및 시그널링 정보를 전송하는 단계를 포함할 수 있다.
상기 지오메트리 데이터를 인코딩하는 단계는, 상기 지오메트리 데이터를 기반으로 예측 트리를 생성하는 단계, 상기 예측 트리를 복수개의 예측 단위들로 분할하는 단계, 예측 단위별로, 참조 프레임 상에서 움직임 추정과 움직임 보상을 수행하여 현재 예측 단위의 포인트들과 유사한 특성을 갖는 포인트들의 집합인 예측기를 상기 참조 프레임 내에서 생성하는 단계, 상기 예측기에서 예측 트리를 생성하는 단계, 상기 예측기의 예측 트리와 인터 예측 모드 정보를 기반으로 프레임 간 예측을 수행하여 잔여 정보를 획득하는 단계를 포함하는 것을 일 실시예로 한다.
상기 프레임 간 예측을 수행하는 단계는 현재 예측 단위의 인코드될 포인트와 유사한 포인트를 상기 예측기에서 선택하여 프레임 간 예측을 수행하는 단계를 더 포함하는 것을 일 실시예로 한다.
상기 지오메트리 데이터를 인코딩하는 단계는 상기 예측 트리와 인트라 예측 모드 정보를 기반으로 프레임 내 예측을 수행하여 잔여 정보를 획득하는 단계를 더 포함하는 것을 일 실시예로 한다.
상기 지오메트리 데이터를 인코딩하는 단계는 상기 프레임 간 예측에 적용된 인터 예측 모드 정보와 상기 프레임 내 예측에 적용된 인트라 예측 모드 정보를 비교하여 최종 예측 모드 정보를 선택하는 단계, 및 상기 선택된 예측 모드 정보를 식별하기 위한 정보와 상기 선택된 예측 모드 정보를 기반으로 획득한 잔여 정보를 엔트로피 코딩하여 전송하는 단계를 더 포함하는 것을 일 실시예로 한다.
상기 시그널링 정보는 예측 기반의 지오메트리 압축 정보를 포함하고, 상기 예측 기반의 지오메트리 압축 정보는 상기 참조 프레임을 식별하기 위한 정보, 상기 움직임 추정을 통해 획득된 움직임 벡터 정보, 상기 예측기의 바운딩 박스 크기 정보, 상기 예측기에서 선택된 포인트를 식별하기 위한 정보 또는 상기 인터 예측 모드 정보 중 적어도 하나를 포함하는 것을 일 실시예로 한다.
실시예들에 따른 포인트 클라우드 데이터 송신 장치는 포인트 클라우드 데이터의 지오메트리 데이터를 인코딩하는 지오메트리 인코더, 상기 지오메트리 데이터를 기반으로 상기 포인트 클라우드 데이터의 어트리뷰트 데이터를 인코딩하는 어트리뷰트 인코더, 및 상기 인코딩된 지오메트리 데이터, 상기 인코딩된 어트리뷰트 데이터, 및 시그널링 정보를 전송하는 전송부를 포함할 수 있다.
상기 지오메트리 인코더는, 상기 지오메트리 데이터를 기반으로 예측 트리를 생성하는 제1 예측 트리 생성부, 상기 예측 트리를 복수개의 예측 단위들로 분할하는 예측 단위 생성부, 예측 단위별로, 참조 프레임 상에서 움직임 추정과 움직임 보상을 수행하여 현재 예측 단위의 포인트들과 유사한 특성을 갖는 포인트들의 집합인 예측기를 상기 참조 프레임 내에서 생성하는 예측기 생성부, 상기 예측기에서 예측 트리를 생성하는 제2 예측 트리 생성부, 및 상기 예측기의 예측 트리와 인터 예측 모드 정보를 기반으로 프레임 간 예측을 수행하여 잔여 정보를 획득하는 인터 프레임 예측부를 포함하는 것을 일 실시예로 한다.
상기 인터 프레임 예측부는 현재 예측 단위의 인코드될 포인트와 유사한 포인트를 상기 예측기에서 선택하여 프레임 간 예측을 수행하는 것을 일 실시예로 한다.
상기 지오메트리 인코더는 상기 예측 트리의 인코드될 포인트와 인트라 예측 모드 정보를 기반으로 프레임 내 예측을 수행하여 잔여 정보를 획득하는 인트라 프레임 예측부를 더 포함하는 것을 일 실시예로 한다.
상기 지오메트리 인코더는 상기 프레임 간 예측에 적용된 인터 예측 모드 정보와 상기 프레임 내 예측에 적용된 인트라 예측 모드 정보를 비교하여 최종 예측 모드 정보를 선택하는 모드 선택부, 및 상기 선택된 예측 모드 정보를 식별하기 위한 정보와 상기 선택된 예측 모드 정보를 기반으로 획득한 잔여 정보를 엔트로피 코딩하여 전송하는 엔트로피 코더를 더 포함하는 것을 일 실시예로 한다.
상기 시그널링 정보는 예측 기반의 지오메트리 압축 정보를 포함하고, 상기 예측 기반의 지오메트리 압축 정보는 상기 참조 프레임을 식별하기 위한 정보, 상기 움직임 추정을 통해 획득된 움직임 벡터 정보, 상기 예측기의 바운딩 박스 크기 정보, 상기 예측기에서 선택된 포인트를 식별하기 위한 정보 또는 상기 인터 예측 모드 정보 중 적어도 하나를 포함하는 것을 일 실시예로 한다.
실시예들에 따르면, 포인트 클라우드 데이터 수신 방법은 지오메트리 데이터, 어트리뷰트 데이터, 및 시그널링 정보를 수신하는 단계, 상기 시그널링 정보를 기반으로 상기 지오메트리 데이터를 디코딩하는 단계, 상기 시그널링 정보와 상기 디코딩된 지오메트리 데이터를 기반으로 상기 어트리뷰트 데이터를 디코딩하는 단계, 및 상기 시그널링 정보를 기반으로 상기 디코딩된 지오메트리 데이터와 상기 디코딩된 어트리뷰트 데이터로부터 복원된 포인트 클라우드 데이터를 렌더링하는 단계를 포함할 수 있다.
상기 지오메트리 데이터를 디코딩하는 단계는, 상기 시그널링 정보를 기반으로 참조 프레임 상에서 움직임 보상을 수행하여 예측기를 상기 참조 프레임 내에서 생성하는 단계, 상기 시그널링 정보를 기반으로 상기 예측기에서 예측 트리를 생성하는 단계, 상기 시그널링 정보에 포함된 예측 모드 정보와 상기 예측기의 예측 트리를 기반으로 프레임 간 예측을 수행하여 예측 정보를 생성하는 단계, 및 상기 예측 정보와 수신되어 디코딩된 잔여 정보를 기반으로 지오메트리 데이터를 복원하는 단계를 포함하는 것을 일 실시예로 한다.
상기 프레임 간 예측을 수행하는 단계는 상기 시그널링 정보를 기반으로 상기 프레임 간 예측에 사용할 포인트를 상기 예측기에서 선택하는 단계를 더 포함하는 것을 일 실시예로 한다.
상기 시그널링 정보에 포함된 예측 모드 정보가 인터 예측 모드 정보인지 인트라 예측 모드 정보인지를 결정하는 단계를 더 포함하는 것을 일 실시예로 한다.
상기 시그널링 정보는 예측 기반의 지오메트리 압축 정보를 포함하고, 상기 예측 기반의 지오메트리 압축 정보는 상기 참조 프레임을 식별하기 위한 정보, 상기 움직임 보상을 위한 움직임 벡터 정보, 상기 예측기의 바운딩 박스 크기 정보, 상기 예측기에서 포인트를 선택하기 위한 정보 또는 상기 인터 예측 모드 정보 중 적어도 하나를 포함하는 것을 일 실시예로 한다.
상기 지오메트리 데이터를 디코딩하는 단계는, 송신측에서 좌표 변환이 수행되면, 상기 시그널링 정보에 포함된 제1 잔여 정보를 기반으로 상기 지오메트리 데이터의 예측 에러를 보정하고, 상기 시그널링 정보에 포함된 제2 잔여 정보를 상기 보정된 지오메트리 데이터에 적용하여 상기 좌표 변환의 과정에서 발생한 에러를 보정하는 단계를 더 포함하는 것을 일 실시예로 한다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 퀄리티 있는 포인트 클라우드 서비스를 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 다양한 비디오 코덱 방식을 달성할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 자율주행 서비스 등 범용적인 포인트 클라우드 콘텐츠를 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 포인트 클라우드 데이터의 독립적 인코딩 및 디코딩을 위해 포인트 클라우드 데이터의 공간 적응적 분할을 수행함으로써, 병렬 처리의 향상 및 스케일러비티(scalability)를 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 포인트 클라우드 데이터를 타일 및/또는 슬라이스 단위로 분할하여 인코딩 및 디코딩을 수행하고 이를 위해 필요한 데이터를 시그널링함으로써 포인트 클라우드의 인코딩 및 디코딩 성능을 향상시킬 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 포인트 클라우드 데이터 수신 방법, 수신 장치는 예측 기반 포인트 클라우드 압축 방법을 사용함으로써, 저지연(low delay 또는 low latency)가 요구되는 환경에 대해 빠른 속도의 인코딩과 디코딩을 제공할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법, 송신 장치, 및 인코더는 프레임 내 예측 뿐만 아니라 프레임 간 예측을 추가적으로 고려함으로써 포인트 클라우드 데이터를 효율적으로 압축할 수 있는 효과가 있다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법, 수신 장치 및 디코더는 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하고, 비트스트림 내 시그널링 정보를 기반으로 프레임 간 예측을 수행함으로써, 포인트 클라우드 데이터를 효율적으로 복원할 수 있는 효과가 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법 및 송신 장치에서 포인트 클라우드 데이터가 연속된 프레임들로 구성되면 인접 프레임 간 포인트 분포의 유사성이 존재할 수 있으며, 이 경우 프레임 간 상관 관계에 기반하여 중복되는 정보를 제거함으로써, 포인트 클라우드 데이터의 압축 효율을 높일 수 있다.
도면은 실시예들을 더욱 이해하기 위해서 포함되며, 도면은 실시예들에 관련된 설명과 함께 실시예들을 나타낸다.
도 1은 실시예들에 따른 포인트 클라우드(Point Cloud) 콘텐츠 제공을 위한 시스템을 나타낸다.
도 2는 실시예들에 따른 Point Cloud 콘텐츠 제공을 위한 과정을 나타낸다.
도 3은 실시예들에 따른 Point Cloud 캡처 장비 배열 구성을 나타낸다.
도 4는 실시예들에 따른 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder)를 나타낸다.
도 5는 실시예들에 따른 3차원 공간상의 복셀을 나타낸다.
도 6은 실시예들에 따른 옥트리와 occupancy 코드의 예시를 나타낸다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
도 8은 실시예들에 따른 LOD별 Point Cloud 콘텐츠의 Point 구성의 예시를 나타낸다.
도 9는 실시예들에 따른 LOD별 Point Cloud 콘텐츠의 Point 구성의 예시를 나타낸다.
도 10은 실시예들에 따른 포인트 클라우드 비디오 디코더(Point Cloud Video Decoder)의 블록 다이어그램(block diagram) 예시를 나타낸다.
도 11은 실시예들에 따른 포인트 클라우드 비디오 디코더(Point Cloud Video Decoder)의 예시를 나타낸다.
도 12는 실시예들에 따른 송신기의 Point Cloud 비디오 인코딩을 위한 구성요소를 나타낸다.
도 13은 실시예들에 따른 수신기의 Point Cloud 비디오 디코딩을 위한 구성요소를 나타낸다.
도 14는 실시예들에 따른 포인트 클라우드 데이터 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도 15는 실시예들에 따른 특정 슬라이스의 예측 트리 구조의 예시를 보인 도면이다.
도 16은 실시예들에 따른 포인트 클라우드 송신 장치의 또 다른 예시를 보인 도면이다.
도 17은 실시예들에 따른 지오메트리 인코더의 상세 블록도의 예시를 보인 도면이다.
도 18은 실시예들에 따른 현재 프레임과 이전 프레임과의 관계의 예시를 보인 도면이다.
도 19는 실시예들에 따라 움직임이 적용된 예측기를 생성하는 예시를 보인 도면이다.
도 20(a)와 도 20(b)는 실시예들에 따른 예측기의 예측 트리 생성의 예시를 보인 도면이다.
도 21은 실시예들에 따라 움직임 벡터에 의한 차이가 보상된 예측기와 예측 단위를 동시에 표현한 도면이다.
도 22는 실시예들에 따른 PU에 속하는 포인트들과 예측기에 속하는 포인트들 사이의 인터 프레임 상관 관계의 예시를 보인 도면이다.
도 23은 실시예들에 따른 예측 기반의 압축을 수행하기 위한 지오메트리 인코딩 과정의 예시를 보인 흐름도이다.
도 24는 실시예들에 따른 송/수신을 위한 포인트 클라우드 데이터의 비트스트림 구조의 예시를 나타낸다.
도 25는 실시예들에 따른 지오메트리 데이터 유닛(geometry_data_unit())의 신택스 구조의 예시를 보인 도면이다.
도 26은 실시예들에 따른 지오메트리 데이터 유닛 헤더(geometry_data_unit_header())의 신택스 구조의 예시를 보인 도면이다.
도 27은 실시예들에 따른 지오메트리 예측 트리 데이터(geometry_predtree_data())의 신택스 구조의 예시를 보인 도면이다.
도 28은 실시예들에 따른 geometry_predtree_node(PtnNodeIdx) 의 신택스 구조의 예시를 보인 도면이다.
도 29는 실시예들에 따른 predtree_inter_prediction ()의 신택스 구조의 예시를 보인 도면이다.
도 30은 실시예들에 따른 포인트 클라우드 수신 장치의 또 다른 예시를 보인 도면이다.
도 31은 실시예들에 따른 지오메트리 디코더의 상세 블록도의 예시를 보인 도면이다.
도 32는 실시예들에 따른 예측 기반으로 압축된 지오메트리를 복원하기 위한 지오메트리 디코딩 방법의 예시를 보인 흐름도이다.
도 33은 실시예들에 따른 포인트 클라우드 데이터 송신 방법의 흐름도를 나타낸다.
도 34는 실시예들에 따른 포인트 클라우드 데이터 수신 방법의 흐름도를 나타낸다.
발명의 실시를 위한 최선의 형태
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 하기의 실시예들은 본 발명을 구체화하기 위한 것일 뿐 본 발명의 권리 범위를 제한하거나 한정하는 것이 아님은 물론이다. 본 발명의 상세한 설명 및 실시예들로부터 본 발명이 속하는 기술 분야의 전문가가 용이하게 유추할 수 있는 것은 본 발명의 권리 범위에 속하는 것으로 해석된다.
본 명세서의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 안되며, 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
바람직한 실시예들에 대해 구체적으로 설명하되, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 구현될 수 있는 실시예들만을 나타내기보다는 바람직한 실시예들을 설명하기 위한 것이다. 이하에서는 본 발명에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함하여 설명한다. 그러나 본 발명이 이러한 세부 사항 없이 실행될 수 있다는 것은 당업자에게 자명하다. 본 명세서에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 본 발명은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다. 또한 이하의 도면들 및 상세한 설명은 구체적으로 기술된 실시예들에만 국한되어 해석되지 않고, 도면 및 상세한 설명에 기재된 실시예들과 균등하거나, 대체 가능한 것들까지 포함하는 것으로 해석되어야만 한다.
도 1은 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템의 예시를 나타낸다.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템은 전송 장치(transmission device)(10000) 및 수신 장치(reception device)(10004)를 포함할 수 있다. 전송 장치(10000) 및 수신 장치(10004)는 포인트 클라우드 데이터를 송수신하기 위해 유무선 통신 가능하다.
실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오(또는 포인트 클라우드 콘텐트)를 확보하고 처리하여 전송할 수 있다. 실시예들에 따라, 전송 장치(10000)는 고정국(fixed station), BTS(base transceiver system), 네트워크, AI(Artificial Intelligence) 기기 및/또는 시스템, 로봇, AR/VR/XR 기기 및/또는 서버 등을 포함할 수 있다. 또한 실시예들에 따라 전송 장치(10000)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.
실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오 획득부(Point Cloud Video Acquisition unit, 10001), 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder, 10002) 및/또는 트랜스미터(Transmitter (or Communication module), 10003)를 포함한다
실시예들에 따른 포인트 클라우드 비디오 획득부(10001)는 캡쳐, 합성 또는 생성 등의 처리 과정을 통해 포인트 클라우드 비디오를 획득한다. 포인트 클라우드 비디오는 3차원 공간에 위치한 포인트들의 집합인 포인트 클라우드로 표현되는 포인트 클라우드 콘텐트로서, 포인트 클라우드 비디오 데이터 등으로 호칭될 수 있다. 실시예들에 따른 포인트 클라우드 비디오는 하나 또는 그 이상의 프레임들을 포함할 수 있다. 하나의 프레임은 정지 영상/픽쳐를 나타낸다. 따라서 포인트 클라우드 비디오는 포인트 클라우드 영상/프레임/픽처를 포함할 수 있으며, 포인트 클라우드 영상, 프레임 및 픽처 중 어느 하나로 호칭될 수 있다.
실시예들에 따른 포인트 클라우드 비디오 인코더(10002)는 확보된 포인트 클라우드 비디오 데이터를 인코딩한다. 포인트 클라우드 비디오 인코더(10002)는 포인트 클라우드 컴프레션(Point Cloud Compression) 코딩을 기반으로 포인트 클라우드 비디오 데이터를 인코딩할 수 있다. 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 G-PCC(Geometry-based Point Cloud Compression) 코딩 및/또는 V-PCC(Video based Point Cloud Compression) 코딩 또는 차세대 코딩을 포함할 수 있다. 또한 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 상술한 실시예에 국한되는 것은 아니다. 포인트 클라우드 비디오 인코더(10002)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 출력할 수 있다. 비트스트림은 인코딩된 포인트 클라우드 비디오 데이터뿐만 아니라, 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 포함할 수 있다.
실시예들에 따른 트랜스미터(10003)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 전송한다. 실시예들에 따른 비트스트림은 파일 또는 세그먼트(예를 들면 스트리밍 세그먼트) 등으로 인캡슐레이션되어 방송망 및/또는 브로드밴드 망등의 다양한 네트워크를 통해 전송된다. 도면에 도시되지 않았으나, 전송 장치(10000)는 인캡슐레이션 동작을 수행하는 인캡슐레이션부(또는 인캡슐레이션 모듈)을 포함할 수 있다. 또한 실시예들에 따라 인캡슐레이션부는 트랜스미터(10003)에 포함될 수 있다. 실시예들에 따라 파일 또는 세그먼트는 네트워크를 통해 수신 장치(10004)로 전송되거나, 디지털 저장매체(예를 들면 USB, SD, CD, DVD, 블루레이, HDD, SSD 등)에 저장될 수 있다. 실시예들에 따른 트랜스미터(10003)는 수신 장치(10004) (또는 리시버(Receiver, 10005))와 4G, 5G, 6G 등의 네트워크를 통해 유/무선 통신 가능하다. 또한 트랜스미터(10003)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 또한 전송 장치(10000)는 온 디맨드(On Demand) 방식에 따라 인캡슐레이션된 데이터를 전송할 수도 있다.
실시예들에 따른 수신 장치(10004)는 리시버(Receiver, 10005), 포인트 클라우드 비디오 디코더(Point Cloud Video Decoder, 10006) 및/또는 렌더러(Renderer, 10007)를 포함한다. 실시예들에 따라 수신 장치(10004)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.
실시예들에 따른 리시버(10005)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림 또는 비트스트림이 인캡슐레이션된 파일/세그먼트 등을 네트워크 또는 저장매체로부터 수신한다. 리시버(10005)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 실시예들에 따른 리시버(10005)는 수신한 파일/세그먼트를 디캡슐레이션하여 비트스트림을 출력할수 있다. 또한 실시예들에 따라 리시버(10005)는 디캡슐레이션 동작을 수행하기 위한 디캡슐레이션부(또는 디캡슐레이션 모듈)을 포함할 수 있다. 또한 디캡슐레이션부는 리시버(10005)와 별개의 엘레멘트(또는 컴포넌트 또는 모듈)로 구현될 수 있다.
포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 디코딩한다. 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터가 인코딩된 방식에 따라 디코딩할 수 있다(예를 들면 포인트 클라우드 비디오 인코더(10002)의 동작의 역과정). 따라서 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 컴프레션의 역과정인 포인트 클라우드 디컴프레션 코딩을 수행하여 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 디컴프레션 코딩은 G-PCC 코딩을 포함한다.
렌더러(10007)는 디코딩된 포인트 클라우드 비디오 데이터를 렌더링한다. 렌더러(10007)는 포인트 클라우드 비디오 데이터 뿐만 아니라 오디오 데이터도 렌더링하여 포인트 클라우드 콘텐트를 출력할 수 있다. 실시예들에 따라 렌더러(10007)는 포인트 클라우드 콘텐트를 디스플레이하기 위한 디스플레이를 포함할 수 있다. 실시예들에 따라 디스플레이는 렌더러(10007)에 포함되지 않고 별도의 디바이스 또는 컴포넌트로 구현될 수 있다.
도면에 점선으로 표시된 화살표는 수신 장치(10004)에서 획득한 피드백 정보(feedback information)의 전송 경로를 나타낸다. 피드백 정보는 포인트 클라우드 콘텐트를 소비하는 사용자와의 인터랙티비를 반영하기 위한 정보로서, 사용자의 정보(예를 들면 헤드 오리엔테이션 정보, 뷰포트(Viewport) 정보 등)을 포함한다. 특히 포인트 클라우드 콘텐트가 사용자와의 상호작용이 필요한 서비스(예를 들면 자율주행 서비스 등)를 위한 콘텐트인 경우, 피드백 정보는 콘텐트 송신측(예를 들면 전송 장치(10000)) 및/또는 서비스 프로바이더에게 전달될 수 있다. 실시예들에 따라 피드백 정보는 전송 장치(10000) 뿐만 아니라 수신 장치(10004)에서도 사용될 수 있으며, 제공되지 않을 수도 있다.
실시예들에 따른 헤드 오리엔테이션 정보는 사용자의 머리 위치, 방향, 각도, 움직임 등에 대한 정보이다. 실시예들에 따른 수신 장치(10004)는 헤드 오리엔테이션 정보를 기반으로 뷰포트 정보를 계산할 수 있다. 뷰포트 정보는 사용자가 바라보고 있는 포인트 클라우드 비디오의 영역에 대한 정보이다. 시점(viewpoint)은 사용자가 포인트 클라우드 비디오를 보고 있는 점으로 뷰포트 영역의 정중앙 지점을 의미할 수 있다. 즉, 뷰포트는 시점을 중심으로 한 영역으로서, 영역의 크기, 형태 등은 FOV(Field Of View) 에 의해 결정될 수 있다. 따라서 수신 장치(10004)는 헤드 오리엔테이션 정보 외에 장치가 지원하는 수직(vertical) 혹은 수평(horizontal) FOV 등을 기반으로 뷰포트 정보를 추출할 수 있다. 또한 수신 장치(10004)는 게이즈 분석 (Gaze Analysis) 등을 수행하여 사용자의 포인트 클라우드 소비 방식, 사용자가 응시하는 포인트 클라우드 비디오 영역, 응시 시간 등을 확인한다. 실시예들에 따라 수신 장치(10004)는 게이즈 분석 결과를 포함하는 피드백 정보를 송신 장치(10000)로 전송할 수 있다. 실시예들에 따른 피드백 정보는 렌더링 및/또는 디스플레이 과정에서 획득될 수 있다. 실시예들에 따른 피드백 정보는 수신 장치(10004)에 포함된 하나 또는 그 이상의 센서들에 의해 확보될 수 있다. 또한 실시예들에 따라 피드백 정보는 렌더러(10007) 또는 별도의 외부 엘레멘트(또는 디바이스, 컴포넌트 등)에 의해 확보될 수 있다.
도 1의 점선은 렌더러(10007)에서 확보한 피드백 정보의 전달 과정을 나타낸다. 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 처리(인코딩/디코딩)할 수 있다. 따라서 포인트 클라우드 비디오 디코더(10006)는 피드백 정보를 기반으로 디코딩 동작을 수행할 수 있다. 또한 수신 장치(10004)는 피드백 정보를 전송 장치(10000)로 전송할 수 있다. 전송 장치(10000)(또는 포인트 클라우드 비디오 인코더(10002))는 피드백 정보를 기반으로 인코딩 동작을 수행할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 모든 포인트 클라우드 데이터를 처리(인코딩/디코딩)하지 않고, 피드백 정보를 기반으로 필요한 데이터(예를 들면 사용자의 헤드 위치에 대응하는 포인트 클라우드 데이터)를 효율적으로 처리하고, 사용자에게 포인트 클라우드 콘텐트를 제공할 수 있다.
실시예들에 따라, 전송 장치(10000)는 인코더, 전송 디바이스, 전송기, 전송 시스템 등으로 호칭될 수 있으며, 수신 장치(10004)는 디코더, 수신 디바이스, 수신기, 수신 시스템 등으로 호칭될 수 있다.
실시예들에 따른 도 1 의 포인트 클라우드 콘텐트 제공 시스템에서 처리되는 (획득/인코딩/전송/디코딩/렌더링의 일련의 과정으로 처리되는) 포인트 클라우드 데이터는 포인트 클라우드 콘텐트 데이터 또는 포인트 클라우드 비디오 데이터라고 호칭할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 데이터는 포인트 클라우드 데이터와 관련된 메타데이터 내지 시그널링 정보를 포함하는 개념으로 사용될 수 있다.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합 등으로 구현될 수 있다.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.
도 2의 블록도는 도 1에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 동작을 나타낸다. 상술한 바와 같이 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩(예를 들면 G-PCC)을 기반으로 포인트 클라우드 데이터를 처리할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오를 획득할 수 있다(20000). 포인트 클라우드 비디오는 3차원 공간을 표현하는 좌표계에 속한 포인트 클라우드로 표현된다. 실시예들에 따른 포인트 클라우드 비디오는 Ply (Polygon File format or the Stanford Triangle format) 파일을 포함할 수 있다. 포인트 클라우드 비디오가 하나 또는 그 이상의 프레임들을 갖는 경우, 획득한 포인트 클라우드 비디오는 하나 또는 그 이상의 Ply 파일들을 포함할 수 있다. Ply 파일은 포인트의 지오메트리(Geometry) 및/또는 어트리뷰트(Attribute)와 같은 포인트 클라우드 데이터를 포함한다. 지오메트리는 포인트들의 포지션들을 포함한다. 각 포인트의 포지션은 3차원 좌표계(예를 들면 XYZ축들로 이루어진 좌표계 등)를 나타내는 파라미터들(예를 들면 X축, Y축, Z축 각각의 값)로 표현될 수 있다. 어트리뷰트는 포인트들의 어트리뷰트들(예를 들면, 각 포인트의 텍스쳐 정보, 색상(YCbCr 또는 RGB), 반사율(r), 투명도 등)을 포함한다. 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들(또는 속성들)을 가진다. 예를 들어 하나의 포인트는 하나의 색상인 어트리뷰트를 가질 수도 있고, 색상 및 반사율인 두 개의 어트리뷰트들을 가질 수도 있다. 실시예들에 따라, 지오메트리는 포지션들, 지오메트리 정보, 지오메트리 데이터 등으로 호칭 가능하며, 어트리뷰트는 어트리뷰트들, 어트리뷰트 정보, 어트리뷰트 데이터 등으로 호칭할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오의 획득 과정과 관련된 정보(예를 들면 깊이 정보, 색상 정보 등)로부터 포인트 클라우드 데이터를 확보할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 포인트 클라우드 비디오 인코더(10002))은 포인트 클라우드 데이터를 인코딩할 수 있다(20001). 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩을 기반으로 포인트 클라우드 데이터를 인코딩할 수 있다. 상술한 바와 같이 포인트 클라우드 데이터는 포인트의 지오메트리 및 어트리뷰트를 포함할 수 있다. 따라서 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 지오메트리를 인코딩하는 지오메트리 인코딩을 수행하여 지오메트리 비트스트림을 출력할 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 어트리뷰트를 인코딩하는 어트리뷰트 인코딩을 수행하여 어트리뷰트 비트스트림을 출력할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 제공 시스템은 지오메트리 인코딩에 기초하여 어트리뷰트 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 비트스트림 및 어트리뷰트 비트스트림은 멀티플렉싱되어 하나의 비트스트림으로 출력될 수 있다. 실시예들에 따른 비트스트림은 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보를 더 포함할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 트랜스미터(10003))는 인코딩된 포인트 클라우드 데이터를 전송할 수 있다(20002). 도1에서 설명한 바와 같이 인코딩된 포인트 클라우드 데이터는 지오메트리 비트스트림, 어트리뷰트 비트스트림으로 표현될 수 있다. 또한 인코딩된 포인트 클라우드 데이터는 포인트 클라우드 데이터의 인코딩과 관련된 시그널링 정보(예를 들면 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보)과 함께 비트스트림의 형태로 전송될 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 인코딩된 포인트 클라우드 데이터를 전송하는 비트스트림을 인캡슐레이션 하여 파일 또는 세그먼트의 형태로 전송할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 수신할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 비트스트림을 디멀티플렉싱할 수 있다.
포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림으로 전송되는 인코딩된 포인트 클라우드 데이터(예를 들면 지오메트리 비트스트림, 어트리뷰트 비트스트림)을 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림에 포함된 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 기반으로 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 지오메트리 비트스트림을 디코딩하여 포인트들의 포지션들(지오메트리)을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 복원한 지오메트리를 기반으로 어트리뷰트 비트스트림을 디코딩하여 포인트들의 어트리뷰트들을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 복원된 지오메트리에 따른 포지션들 및 디코딩된 어트리뷰트를 기반으로 포인트 클라우드 비디오를 복원할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩된 포인트 클라우드 데이터를 렌더링할 수 있다(20004). 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩 과정을 통해 디코딩된 지오메트리 및 어트리뷰트들을 다양한 렌더링 방식에 따라 렌더링 할 수 있다. 포인트 클라우드 콘텐트의 포인트들은 일정 두께를 갖는 정점, 해당 정점 위치를 중앙으로 하는 특정 최소 크기를 갖는 정육면체, 또는 정점 위치를 중앙으로 하는 원 등으로 렌더링 될 수도 있다. 렌더링된 포인트 클라우드 콘텐트의 전부 또는 일부 영역은 디스플레이 (예를 들면 VR/AR 디스플레이, 일반 디스플레이 등)을 통해 사용자에게 제공된다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004))는 피드백 정보를 확보할 수 있다(20005). 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 인코딩 및/또는 디코딩할 수 있다. 실시예들에 따른 피드백 정보 및 포인트 클라우드 콘텐트 제공 시스템의 동작은 도 1에서 설명한 피드백 정보 및 동작과 동일하므로 구체적인 설명은 생략한다.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
도 3은 도 1과 도 2에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
포인트 클라우드 콘텐트는 다양한 3차원 공간(예를 들면 현실 환경을 나타내는 3차원 공간, 가상 환경을 나타내는3차원 공간 등)에 위치한 오브젝트(object) 및/또는 환경을 나타내는 포인트 클라우드 비디오(이미지들 및/또는 영상들)을 포함한다. 따라서 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 콘텐트를 생성하기 위하여 하나 또는 그 이상의 카메라(camera)들(예를 들면, 깊이 정보를 확보할 수 있는 적외선 카메라, 깊이 정보에 대응되는 색상 정보를 추출 할 수 있는 RGB 카메라 등), 프로젝터(예를 들면 깊이 정보를 확보하기 위한 적외선 패턴 프로젝터 등), 라이다(LiDAR)등을 사용하여 포인트 클라우드 비디오를 캡쳐할 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 깊이 정보로부터 3차원 공간상의 포인트들로 구성된 지오메트리의 형태를 추출하고, 색상정보로부터 각 포인트의 어트리뷰트를 추출하여 포인트 클라우드 데이터를 확보할 수 있다. 실시예들에 따른 이미지 및/또는 영상은 인워드-페이싱(inward-facing) 방식 및 아웃워드-페이싱(outward-facing) 방식 중 적어도 어느 하나 이상을 기반으로 캡쳐될 수 있다.
도 3의 왼쪽은 인워드-페이싱 방식을 나타낸다. 인워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트를 캡쳐하는 방식을 의미한다. 인워드-페이싱 방식은 핵심 객체에 대한 360도 이미지를 사용자에게 제공하는 포인트 클라우드 콘텐트(예를 들면 사용자에게 객체(예-캐릭터, 선수, 물건, 배우 등 핵심이 되는 객체)의 360도 이미지를 제공하는 VR/AR 콘텐트)를 생성하기 위해 사용될 수 있다.
도 3의 오른쪽은 아웃워드-페이싱 방식을 나타낸다. 아웃워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트가 아닌 중심 오브젝트의 환경을 캡쳐하는 방식을 의미한다. 아웃워드-페이싱 방식은 사용자의 시점에서 나타나는 주변 환경을 제공하기 위한 포인트 클라우드 콘텐트(예를 들면, 자율 주행 차량의 사용자에게 제공될 수 있는 외부 환경을 나타내는 콘텐트)를 생성하기 위해 사용될 수 있다.
도 3에 도시된 바와 같이, 포인트 클라우드 콘텐트는 하나 또는 그 이상의 카메라들의 캡쳐 동작을 기반으로 생성될 수 있다. 이 경우 각 카메라의 좌표계가 다를 수 있으므로 포인트 클라우드 콘텐트 제공 시스템은 캡쳐 동작 이전에 글로벌 공간 좌표계(global coordinate system)을 설정하기 위하여 하나 또는 그 이상의 카메라들의 캘리브레이션을 수행할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 상술한 캡쳐 방식으로 캡쳐된 이미지 및/또는 영상과 임의의 이미지 및/또는 영상을 합성하여 포인트 클라우드 콘텐트를 생성할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 가상 공간을 나타내는 포인트 클라우드 콘텐트를 생성하는 경우, 도3에서 설명한 캡쳐 동작을 수행하지 않을 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 캡쳐한 이미지 및/또는 영상에 대해 후처리를 수행할 수 있다. 즉, 포인트 클라우드 콘텐트 제공 시스템은 원하지 않는 영역(예를 들면 배경)을 제거하거나, 캡쳐한 이미지들 및/또는 영상들이 연결된 공간을 인식하고, 구멍(spatial hole)이 있는 경우 이를 메우는 동작을 수행할 수 있다.
또한 포인트 클라우드 콘텐트 제공 시스템은 각 카메라로부터 확보한 포인트 클라우드 비디오의 포인트들에 대하여 좌표계 변환을 수행하여 하나의 포인트 클라우드 콘텐트를 생성할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 각 카메라의 위치 좌표를 기준으로 포인트들의 좌표계 변환을 수행할 수 있다. 이에 따라, 포인트 클라우드 콘텐트 제공 시스템은 하나의 넓은 범위를 나타내는 콘텐트를 생성할 수도 있고, 포인트들의 밀도가 높은 포인트 클라우드 콘텐트를 생성할 수도 있다.
도 4는 실시예들에 따른 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder)의 예시를 나타낸다.
도 4는 도 1의 포인트 클라우드 비디오 인코더(10002)의 상세 예시를 나타낸다. 포인트 클라우드 비디오 인코더는 네트워크의 상황 혹은 애플리케이션 등에 따라 포인트 클라우드 콘텐트의 질(예를 들어 무손실-lossless, 손실-lossy, near-lossless)을 조절하기 위하여 포인트 클라우드 데이터(예를 들면 포인트들의 포지션들 및/또는 어트리뷰트들)을 재구성하고 인코딩 동작을 수행한다. 포인트 클라우드 콘텐트의 전체 사이즈가 큰 경우(예를 들어 30 fps의 경우 60 Gbps인 포인트 클라우드 콘텐트) 포인트 클라우드 콘텐트 제공 시스템은 해당 콘텐트를 리얼 타임 스트리밍하지 못할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 네트워크 환경등에 맞춰 제공하기 위하여 최대 타깃 비트율(bitrate)을 기반으로 포인트 클라우드 콘텐트를 재구성할 수 있다.
도 1과 도2 에서 설명한 바와 같이 포인트 클라우드 비디오 인코더는 지오메트리 인코딩 및 어트리뷰트 인코딩을 수행할 수 있다. 지오메트리 인코딩은 어트리뷰트 인코딩보다 먼저 수행된다.
실시예들에 따른 포인트 클라우드 비디오 인코더는 좌표계 변환부(Transformation Coordinates unit, 40000), 양자화부(Quantization unit, 40001), 옥트리 분석부(Octree Analysis unit, 40002), 서페이스 어프록시메이션 분석부(Surface Approximation Analysis unit, 40003), 아리스메틱 인코더(Arithmetic Encode, 40004), 지오메트리 리컨스트럭션부(Geometry Reconstruction unit, 40005), 컬러 변환부(Color Transformation unit, 40006), 어트리뷰트 변환부(Attribute Transformation unit, 40007), RAHT(Region Adaptive Hierarchical Transform) 변환부(40008), LOD생성부( LOD Generation unit, 40009), 리프팅 변환부(Lifting Transformation unit)(40010), 계수 양자화부(Coefficient Quantization unit, 40011) 및/또는 아리스메틱 인코더(Arithmetic Encoder, 40012)를 포함한다.
좌표계 변환부(40000), 양자화부(40001), 옥트리 분석부(40002), 서페이스 어프록시메이션 분석부(40003), 아리스메틱 인코더(40004), 및 지오메트리 리컨스트럭션부(40005)는 지오메트리 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 인코딩은 옥트리 지오메트리 코딩, 다이렉트 코딩(direct coding), 트라이숩 지오메트리 인코딩(trisoup geometry encoding) 및 엔트로피 인코딩을 포함할 수 있다. 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 또는 조합으로 적용된다. 또한 지오메트리 인코딩은 위의 예시에 국한되지 않는다.
도면에 도시된 바와 같이, 실시예들에 따른 좌표계 변환부(40000)는 포지션들을 수신하여 좌표계(coordinate)로 변환한다. 예를 들어, 포지션들은 3차원 공간 (예를 들면XYZ 좌표계로 표현되는 3차원 공간 등)의 위치 정보로 변환될 수 있다. 실시예들에 따른 3차원 공간의 위치 정보는 지오메트리 정보로 지칭될 수 있다.
실시예들에 따른 양자화부(40001)는 지오메트리 정보를 양자화한다. 예를 들어, 양자화부(40001)는 전체 포인트들의 최소 위치 값(예를 들면 X축, Y축, Z축 에 대하여 각축상의 최소 값)을 기반으로 포인트들을 양자화 할 수 있다. 양자화부(40001)는 최소 위치 값과 각 포인트의 위치 값의 차이에 기 설정된 양자 스케일(quantization scale) 값을 곱한 뒤, 내림 또는 올림을 수행하여 가장 가까운 정수 값을 찾는 양자화 동작을 수행한다. 따라서 하나 또는 그 이상의 포인트들은 동일한 양자화된 포지션 (또는 포지션 값)을 가질 수 있다. 실시예들에 따른 양자화부(40001)는 양자화된 포인트들을 재구성하기 위해 양자화된 포지션들을 기반으로 복셀화(voxelization)를 수행한다. 복셀화는 3차원 공간 상의 위치정보를 표현하는 최소한의 유닛을 의미한다. 실시예들에 따른 포인트 클라우드 콘텐트(또는 3차원 포인트 클라우드 비디오)의 포인트들은 하나 또는 그 이상의 복셀(voxel)들에 포함될 수 있다. 복셀은 볼륨(Volume)과 픽셀(Pixel)의 조합어로서, 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 양자화부(40001)는 3차원 공간의 포인트들의 그룹들을 복셀들로 매칭할 수 있다. 실시예들에 따라 하나의 복셀은 하나의 포인트만 포함할 수 있다. 실시예들에 따라 하나의 복셀은 하나 또는 그 이상의 포인트들을 포함할 수 있다. 또한 하나의 복셀을 하나의 포인트로 표현하기 위하여, 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점(center point)의 포지션을 설정할 수 있다. 이 경우 하나의 복셀에 포함된 모든 포지션들의 어트리뷰트들은 통합되어(combined) 해당 복셀에 할당될(assigned)수 있다.
실시예들에 따른 옥트리 분석부(40002)는 복셀을 옥트리(octree) 구조로 나타내기 위한 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다. 옥트리 구조는 팔진 트리 구조에 기반하여 복셀에 매칭된 포인트들을 표현한다.
실시예들에 따른 서페이스 어프록시메이션 분석부(40003)는 옥트리를 분석하고, 근사화할 수 있다. 실시예들에 따른 옥트리 분석 및 근사화는 효율적으로 옥트리 및 복셀화를 제공하기 위해서 다수의 포인트들을 포함하는 영역에 대해 복셀화하기 위해 분석하는 과정이다.
실시예들에 따른 아리스메틱 인코더(40004)는 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. 인코딩의 결과로 지오메트리 비트스트림이 생성된다.
컬러 변환부(40006), 어트리뷰트 변환부(40007), RAHT 변환부(40008), LOD생성부(40009), 리프팅 변환부(40010), 계수 양자화부(40011) 및/또는 아리스메틱 인코더(40012)는 어트리뷰트 인코딩을 수행한다. 상술한 바와 같이 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들을 가질 수 있다. 실시예들에 따른 어트리뷰트 인코딩은 하나의 포인트가 갖는 어트리뷰트들에 대해 동일하게 적용된다. 다만, 하나의 어트리뷰트(예를 들면 색상)이 하나 또는 그 이상의 요소들을 포함하는 경우, 각 요소마다 독립적인 어트리뷰트 인코딩이 적용된다. 실시예들에 따른 어트리뷰트 인코딩은 컬러 변환 코딩, 어트리뷰트 변환 코딩, RAHT(Region Adaptive Hierarchical Transform) 코딩, 예측 변환(Interpolation-based hierarchical nearest-neighbour prediction-Prediction Transform) 코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 코딩을 포함할 수 있다. 포인트 클라우드 콘텐트에 따라 상술한 RAHT 코딩, 예측 변환 코딩 및 리프팅 변환 코딩은 선택적으로 사용되거나, 하나 또는 그 이상의 코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 인코딩은 상술한 예시에 국한되는 것은 아니다.
실시예들에 따른 컬러 변환부(40006)는 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 변환하는 컬러 변환 코딩을 수행한다. 예를 들어, 컬러 변환부(40006)는 색상 정보의 포맷을 변환(예를 들어 RGB에서 YCbCr로 변환)할 수 있다. 실시예들에 따른 컬러 변환부(40006)의 동작은 어트리뷰트들에 포함된 컬러값에 따라 옵셔널(optional)하게 적용될 수 있다.
실시예들에 따른 지오메트리 리컨스트럭션부(40005)는 옥트리 및/또는 근사화된 옥트리를 재구성(디컴프레션)한다. 지오메트리 리컨스트럭션부(40005)는 포인트들의 분포를 분석한 결과에 기반하여 옥트리/복셀을 재구성한다. 재구성된 옥트리/복셀은 재구성된 지오메트리(또는 복원된 지오메트리)로 호칭될 수 있다.
실시예들에 따른 어트리뷰트 변환부(40007)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 상술한 바와 같이 어트리뷰트들은 지오메트리에 종속되므로, 어트리뷰트 변환부(40007)는 재구성된 지오메트리 정보를 기반으로 어트리뷰트들을 변환할 수 있다. 예를 들어, 어트리뷰트 변환부(40007)는 복셀에 포함된 포인트의 포지션값을 기반으로 그 포지션의 포인트가 가지는 어트리뷰트를 변환할 수 있다. 상술한 바와 같이 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점의 포지션이 설정된 경우, 어트리뷰트 변환부(40007)는 하나 또는 그 이상의 포인트들의 어트리뷰트들을 변환한다. 트라이숩 지오메트리 인코딩이 수행된 경우, 어트리뷰트 변환부(40007)는 트라이숩 지오메트리 인코딩을 기반으로 어트리뷰트들을 변환할 수 있다.
어트리뷰트 변환부(40007)는 각 복셀의 중앙점의 포지션(또는 포지션 값)으로부터 특정 위치/반경 내에 이웃하고 있는 포인트들의 어트리뷰트들 또는 어트리뷰트 값들(예를 들면 각 포인트의 색상, 또는 반사율 등)의 평균값을 계산하여 어트리뷰트 변환을 수행할 수 있다. 어트리뷰트 변환부(40007)는 평균값 계산시 중앙점으로부터 각 포인트까지의 거리에 따른 가중치를 적용할 수 있다. 따라서 각 복셀은 포지션과 계산된 어트리뷰트(또는 어트리뷰트 값)을 갖게 된다.
어트리뷰트 변환부(40007)는 K-D 트리 또는 몰톤(morton) 코드를 기반으로 각 복셀의 중앙점의 포지션으로부터 특정 위치/반경 내에 존재하는 이웃 포인트들을 탐색할 수 있다. K-D 트리는 이진 탐색 트리(binary search tree)로 빠르게 최단 이웃점 탐색(Nearest Neighbor Search-NNS)이 가능하도록 point들을 위치 기반으로 관리할 수 있는 자료 구조를 지원한다. 몰톤 코드는 모든 포인트들의 3차원 포지션을 나타내는 좌표값(예를 들면 (x, y, z))을 비트값으로 나타내고, 비트들을 믹싱하여 생성된다. 예를 들어 포인트의 포지션을 나타내는 좌표값이 (5, 9, 1)일 경우 좌표값의 비트 값은 (0101, 1001, 0001)이다. 비트 값을 z, y, x 순서로 비트 인덱스에 맞춰 믹싱하면 010001000111이다. 이 값을 10진수로 나타내면 1095이 된다. 즉, 좌표값이 (5, 9, 1)인 포인트의 몰톤 코드 값은 1095이다. 어트리뷰트 변환부(40007)는 몰톤 코드 값을 기준으로 포인트들을 정렬하고depth-first traversal 과정을 통해 최단 이웃점 탐색(NNS)을 할 수 있다. 어트리뷰트 변환 동작 이후, 어트리뷰트 코딩을 위한 다른 변환 과정에서도 최단 이웃점 탐색(NNS)이 필요한 경우, K-D 트리 또는 몰톤 코드가 활용된다.
도면에 도시된 바와 같이 변환된 어트리뷰트들은 RAHT 변환부(40008) 및/또는 LOD 생성부(40009)로 입력된다.
실시예들에 따른 RAHT 변환부(40008)는 재구성된 지오메트리 정보에 기반하여 어트리뷰트 정보를 예측하는 RAHT코딩을 수행한다. 예를 들어, RAHT 변환부(40008)는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트 정보에 기반하여 옥트리의 상위 레벨에 있는 노드의 어트리뷰트 정보를 예측할 수 있다.
실시예들에 따른 LOD생성부(40009)는 LOD(Level of Detail)를 생성한다. 실시예들에 따른 LOD는 포인트 클라우드 콘텐트의 디테일을 나타내는 정도로서, LOD 값이 작을 수록 포인트 클라우드 콘텐트의 디테일이 떨어지고, LOD 값이 클 수록 포인트 클라우드 콘텐트의 디테일이 높음을 나타낸다. 포인트들을 LOD에 따라 분류될 수 있다.
실시예들에 따른 리프팅 변환부(40010)는 포인트 클라우드의 어트리뷰트들을 가중치에 기반하여 변환하는 리프팅 변환 코딩을 수행한다. 상술한 바와 같이 리프팅 변환 코딩은 선택적으로 적용될 수 있다.
실시예들에 따른 계수 양자화부(40011)은 어트리뷰트 코딩된 어트리뷰트들을 계수에 기반하여 양자화한다.
실시예들에 따른 아리스메틱 인코더(40012)는 양자화된 어트리뷰트들을 아리스메틱 코딩 에 기반하여 인코딩한다.
도 4의 포인트 클라우드 비디오 인코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 콘텐트 제공 장치에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 4의 포인트 클라우드 비디오 인코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도 4의 포인트 클라우드 비디오 인코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다. 실시예들에 따른 하나 또는 그 이상의 메모리들은 하이 스피드 랜덤 억세스 메모리를 포함할 수도 있고, 비휘발성 메모리(예를 들면 하나 또는 그 이상의 마그네틱 디스크 저장 디바이스들, 플래쉬 메모리 디바이스들, 또는 다른 비휘발성 솔리드 스테이트 메모리 디바이스들(Solid-state memory devices)등)를 포함할 수 있다.
도 5 는 실시예들에 따른 복셀의 예시를 나타낸다.
도 5는 X축, Y축, Z축의 3가지 축으로 구성된 좌표계로 표현되는 3차원 공간상에 위치한 복셀을 나타낸다. 도 4에서 설명한 바와 같이 포인트 클라우드 비디오 인코더(예를 들면 양자화부(40001) 등)은 복셀화를 수행할 수 있다. 복셀은 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 도 5는 두 개의 극점들(0,0,0) 및 (2d, 2d, 2d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(recursive subdividing)하는 옥트리 구조를 통해 생성된 복셀의 예시를 나타낸다. 하나의 복셀은 적어도 하나 이상의 포인트를 포함한다. 복셀은 복셀군(voxel group)과의 포지션 관계로부터 공간 좌표를 추정 할 수 있다. 상술한 바와 같이 복셀은 2차원 이미지/영상의 픽셀과 마찬가지로 어트리뷰트(색상 또는 반사율 등)을 가진다. 복셀에 대한 구체적인 설명은 도 4에서 설명한 바와 동일하므로 생략한다.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.
도 1 내지 도 4에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템(포인트 클라우드 비디오 인코더(10002)) 또는 포인트 클라우드 비디오 인코더의 옥트리 분석부(40002))는 복셀의 영역 및/또는 포지션을 효율적으로 관리하기 위하여 옥트리 구조 기반의 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다.
도 6의 상단은 옥트리 구조를 나타낸다. 실시예들에 따른 포인트 클라우드 콘텐트의 3차원 공간은 좌표계의 축들(예를 들면 X축, Y축, Z축)로 표현된다. 옥트리 구조는 두 개의 극점들(0,0,0) 및 (2d, 2d, 2d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(recursive subdividing)하여 생성된다. 2d는 포인트 클라우드 콘텐트(또는 포인트 클라우드 비디오)의 전체 포인트들을 감싸는 가장 작은 바운딩 박스를 구성하는 값으로 설정될 수 있다. d는 옥트리의 깊이(depth)를 나타낸다. d값은 다음의 수학식 1에 따라 결정된다. 하기 수학식 1에서 (xint n, yint n, zint n)는 양자화된 포인트들의 포지션들(또는 포지션 값들)을 나타낸다.
[수학식 1]
Figure pct00001
도 6의 상단의 중간에 도시된 바와 같이, 분할에 따라 전체 3차원 공간은 8개의 공간들로 분할될 수 있다. 분할된 각 공간은 6개의 면들을 갖는 큐브로 표현된다. 도 6의 상단의 오른쪽에 도시된 바와 같이 8개의 공간들 각각은 다시 좌표계의 축들(예를 들면 X축, Y축, Z축)을 기반으로 분할된다. 따라서 각 공간은 다시 8개의 작은 공간들로 분할된다. 분할된 작은 공간 역시 6개의 면들을 갖는 큐브로 표현된다. 이와 같은 분할 방식은 옥트리의 리프 노드(leaf node)가 복셀이 될 때까지 적용된다.
도 6의 하단은 옥트리의 오큐판시 코드를 나타낸다. 옥트리의 오큐판시 코드는 하나의 공간이 분할되어 발생되는 8개의 분할된 공간들 각각이 적어도 하나의 포인트를 포함하는지 여부를 나타내기 위해 생성된다. 따라서 하나의 오큐판시 코드는 8개의 자식 노드(child node)들로 표현된다. 각 자식 노드는 분할된 공간의 오큐판시를 나타내며, 자식 노드는 1비트의 값을 갖는다. 따라서 오큐판시 코드는 8 비트 코드로 표현된다. 즉, 자식 노드에 대응하는 공간에 적어도 하나의 포인트가 포함되어 있으면 해당 노드는 1값을 갖는다. 자식 노드에 대응하는 공간에 포인트가 포함되어 있지 않으면 (empty), 해당 노드는 0값을 갖는다. 도 6에 도시된 오큐판시 코드는 00100001이므로 8개의 자식 노드 중 3번째 자식 노드 및 8번째 자식 노드에 대응하는 공간들은 각각 적어도 하나의 포인트를 포함함을 나타낸다. 도면에 도시된 바와 같이 3번째 자식 노드 및 8번째 자식 노드는 각각 8개의 자식 노드를 가지며, 각 자식 노드는 8비트의 오큐판시 코드로 표현된다. 도면은 3번째 자식 노드의 오큐판시 코드가 10000111이고, 8번째 자식 노드의 오큐판시 코드가 01001111임을 나타낸다. 실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 아리스메틱 인코더(40004))는 오큐판시 코드를 엔트로피 인코딩할 수 있다. 또한 압축 효율을 높이기 위해 포인트 클라우드 비디오 인코더는 오큐판시 코드를 인트라/인터 코딩할 수 있다. 실시예들에 따른 수신 장치(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10006))는 오큐판시 코드를 기반으로 옥트리를 재구성한다.
실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 옥트리 분석부(40002))는 포인트들의 포지션들을 저장하기 위해 복셀화 및 옥트리 코딩을 수행할 수 있다. 하지만 3차원 공간 내 포인트들이 언제나 고르게 분포하는 것은 아니므로, 포인트들이 많이 존재하지 않는 특정 영역이 존재할 수 있다. 이 경우, 3차원 공간 전체에 대해 복셀화를 수행하는 것은 비효율 적이다. 예를 들어 특정 영역에 포인트가 거의 존재하지 않는다면, 해당 영역까지 복셀화를 수행할 필요가 없다.
따라서 실시예들에 따른 포인트 클라우드 비디오 인코더는 상술한 특정 영역(또는 옥트리의 리프 노드를 제외한 노드)에 대해서는 복셀화를 수행하지 않고, 특정 영역에 포함된 포인트들의 포지션을 직접 코딩하는 다이렉트 코딩(Direct coding)을 수행할 수 있다. 실시예들에 따른 다이렉트 코딩 포인트의 좌표들은 다이렉트 코딩 모드(Direct Coding Mode, DCM)으로 호칭된다. 또한 실시예들에 따른 포인트 클라우드 비디오 인코더는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩(Trisoup geometry encoding)을 수행할 수 있다. 트라이숩 지오메트리 인코딩은 오브젝트의 표현을 삼각형 메쉬(triangle mesh)의 시리즈로 표현하는 지오메트리 인코딩이다. 따라서 포인트 클라우드 비디오 디코더는 메쉬 표면으로부터 포인트 클라우드를 생성할 수 있다. 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 수행될 수 있다. 또한 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 옥트리 지오메트리 코딩(또는 옥트리 코딩)과 결합되어 수행될 수 있다.
다이렉트 코딩(Direct coding)을 수행하기 위해서는 다이렉트 코딩을 적용하기 위한 직접 모드(direct mode) 사용 옵션이 활성화 되어 있어야 하며, 다이렉트 코딩을 적용할 노드는 리프 노드가 아니고, 특정 노드 내에 한계치(threshold) 이하의 포인트들이 존재해야 한다. 또한 다이렉트 코딩의 대상이 되는 전체 포인트들의 개수는 기설정된 한계값을 넘어서는 안된다. 위의 조건이 만족되면, 실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들어, 아리스메틱 인코더(40004))는 포인트들의 포지션들(또는 포지션 값들)을 엔트로피 코딩할 수 있다.
실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))는 옥트리의 특정 레벨(레벨은 옥트리의 깊이 d보다는 작은 경우)을 정하고, 그 레벨부터는 표면 모델을 사용하여 노드 영역내의 포인트의 포지션을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다(트라이숩 모드). 실시예들에 따른 포인트 클라우드 비디오 인코더는 트라이숩 지오메트리 인코딩을 적용할 레벨을 지정할 수 있다. 예를 들어, 지정된 레벨이 옥트리의 깊이와 같으면 포인트 클라우드 비디오 인코더는 트라이숩 모드로 동작하지 않는다. 즉, 실시예들에 따른 포인트 클라우드 비디오 인코더는 지정된 레벨이 옥트리의 깊이값 보다 작은 경우에만 트라이숩 모드로 동작할 수 있다. 실시예들에 따른 지정된 레벨의 노드들의 3차원 정육면체 영역을 블록(block)이라 호칭한다. 하나의 블록은 하나 또는 그 이상의 복셀들을 포함할 수 있다. 블록 또는 복셀은 브릭(brick)에 대응될 수도 있다. 각 블록 내에서 지오메트리는 표면(surface)으로 표현된다. 실시예들에 따른 표면은 최대 한번 블록의 각 엣지(edge, 모서리)와 교차할 수 있다.
하나의 블록은 12개의 엣지들을 가지므로, 하나의 블록 내 적어도 12개의 교차점들이 존재한다. 각 교차점은 버텍스(vertex, 정점 또는 꼭지점)라 호칭된다. 엣지를 따라 존재하는 버텍스은 해당 엣지를 공유하는 모든 블록들 중 그 엣지에 인접한 적어도 하나의 오큐파이드 복셀(occupied voxel)이 있는 경우 감지된다. 실시예들에 따른 오큐파이드 복셀은 포인트를 포함하는 복셀을 의미한다. 엣지를 따라 검출된 버텍스의 포지션은 해당 엣지를 공유하는 모든 블록들 중 해당 엣지에 인접한 모든 복셀들의 엣지에 따른 평균 포지션(the average position along the edge of all voxels)이다.
버텍스가 검출되면 실시예들에 따른 포인트 클라우드 비디오 인코더는 엣지의 시작점(x, y, z), 엣지의 방향벡터(
Figure pct00002
x,
Figure pct00003
y,
Figure pct00004
z), 버텍스 위치 값 (엣지 내의 상대적 위치 값)들을 엔트로피 코딩할 수 있다. 트라이숩 지오메트리 인코딩이 적용된 경우, 실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 지오메트리 리컨스트럭션부(40005))는 삼각형 재구성(triangle reconstruction), 업-샘플링(up-sampling), 복셀화 과정을 수행하여 복원된 지오메트리(재구성된 지오메트리)를 생성할 수 있다.
블록의 엣지에 위치한 버텍스들은 블록을 통과하는 표면(surface)를 결정한다. 실시예들에 따른 표면은 비평면 다각형이다. 삼각형 재구성 과정은 엣지의 시작점, 엣지의 방향 벡터와 버텍스의 위치값을 기반으로 삼각형으로 나타내는 표면을 재구성한다. 삼각형 재구성 과정은 다음의 수학식 2와 같다. ①각 버텍스들의 중심(centroid)값을 계산하고, ②각 버텍스값에서 중심 값을 뺀 값들에 ③자승을 수행하고 그 값을 모두 더한 값을 구한다.
[수학식 2]
Figure pct00005
그리고나서, 더해진 값의 최소값을 구하고, 최소값이 있는 축에 따라서 프로젝션 (Projection, 투영) 과정을 수행한다. 예를 들어 x 요소(element)가 최소인 경우, 각 버텍스를 블록의 중심을 기준으로 x축으로 프로젝션 시키고, (y, z) 평면으로 프로젝션 시킨다. (y, z)평면으로 프로젝션 시키면 나오는 값이 (ai, bi)라면 atan2(bi, ai)를 통해 θ값을 구하고, θ값을 기준으로 버텍스들(vertices)을 정렬한다. 하기의 표 1은 버텍스들의 개수에 따라 삼각형을 생성하기 위한 버텍스들의 조합을 나타낸다. 버텍스들은 1부터 n까지의 순서로 정렬된다. 하기 표 1은 4개의 버텍스들에 대하여, 버텍스들의 조합에 따라 두 개의 삼각형들이 구성될 수 있음을 나타낸다. 첫번째 삼각형은 정렬된 버텍스들 중 1, 2, 3번째 버텍스들로 구성되고, 두번째 삼각형은 정렬된 버텍스들 중 3, 4, 1번째 버텍스들로 구성될 수 있다.
표 1. Triangles formed from vertices ordered 1,…, n
n Triangles
3 (1,2,3)
4 (1,2,3), (3,4,1)
5 (1,2,3), (3,4,5), (5,1,3)
6 (1,2,3), (3,4,5), (5,6,1), (1,3,5)
7 (1,2,3), (3,4,5), (5,6,7), (7,1,3), (3,5,7)
8 (1,2,3), (3,4,5), (5,6,7), (7,8,1), (1,3,5), (5,7,1)
9 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,1,3), (3,5,7), (7,9,3)
10 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,1), (1,3,5), (5,7,9), (9,1,5)
11 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,1,3), (3,5,7), (7,9,11), (11,3,7)
12 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,12,1), (1,3,5), (5,7,9), (9,11,1), (1,5,9)
업샘플링 과정은 삼각형의 엣지를 따라서 중간에 점들을 추가하여 복셀화 하기 위해서 수행된다. 업샘플링 요소 값(upsampling factor)과 블록의 너비를 기준으로 추가 점들을 생성한다. 추가점은 리파인드 버텍스(refined vertices)라고 호칭된다. 실시예들에 따른 포인트 클라우드 비디오 인코더는 리파인드 버텍스들을 복셀화할 수 있다. 또한 포인트 클라우드 비디오 인코더는 복셀화 된 포지션(또는 포지션 값)을 기반으로 어트리뷰트 인코딩을 수행할 수 있다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
포인트 클라우드 비디오의 압축 효율을 증가시키기 위하여 실시예들에 따른 포인트 클라우드 비디오 인코더는 콘텍스트 어댑티브 아리스메틱 (context adaptive arithmetic) 코딩을 기반으로 엔트로피 코딩을 수행할 수 있다.
도 1 내지 도 6에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템 또는 도 2의 포인트 클라우드 비디오 인코더(10002) 또는 도 4의 포인트 클라우드 비디오 인코더 또는 아리스메틱 인코더(40004)는 오큐판시 코드를 곧바로 엔트로피 코딩할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템 또는 포인트 클라우드 비디오 인코더는 현재 노드의 오큐판시 코드와 이웃 노드들의 오큐판시를 기반으로 엔트로피 인코딩(인트라 인코딩)을 수행하거나, 이전 프레임의 오큐판시 코드를 기반으로 엔트로피 인코딩(인터 인코딩)을 수행할 수 있다. 실시예들에 따른 프레임은 동일한 시간에 생성된 포인트 클라우드 비디오의 집합을 의미한다. 실시예들에 따른 인트라 인코딩/인터 인코딩의 압축 효율은 참조하는 이웃 노드들의 개수에 따라 달라질 수 있다. 비트가 커지면 복잡해지지만 한쪽으로 치우치게 만들어서 압축 효율이 높아질 수 있다. 예를 들어 3-bit context를 가지면, 2의 3승인 = 8가지 방법으로 코딩 해야 한다. 나누어 코딩을 하는 부분은 구현의 복잡도에 영향을 준다. 따라서 압축의 효율과 복잡도의 적정 수준을 맞출 필요가 있다.
도 7은 이웃 노드들의 오큐판시를 기반으로 오큐판시 패턴을 구하는 과정을 나타낸다. 실시예들에 따른 포인트 클라우드 비디오 인코더는 옥트리의 각 노드의 이웃 노드들의 오큐판시(occupancy)를 판단하고 이웃 노드 패턴(neighbor pattern) 값을 구한다. 이웃 노드 패턴은 해당 노드의 오큐판시 패턴을 추론하기 위해 사용된다. 도 7의 왼쪽은 노드에 대응하는 큐브(가운데 위치한 큐브) 및 해당 큐브와 적어도 하나의 면을 공유하는 6개의 큐브들(이웃 노드들)을 나타낸다. 도면에 도시된 노드들은 같은 뎁스(깊이)의 노드들이다. 도면에 도시된 숫자는 6개의 노드들 각각과 연관된 가중치들(1, 2, 4, 8, 16, 32, 등)을 나타낸다. 각 가중치는 이웃 노드들의 위치에 따라 순차적으로 부여된다.
도 7의 오른쪽은 이웃 노드 패턴 값을 나타낸다. 이웃 노드 패턴 값은 오큐파이드 이웃 노드(포인트를 갖는 이웃 노드)의 가중치가 곱해진 값들의 합이다. 따라서 이웃 노드 패턴 값은 0에서 63까지의 값을 갖는다. 이웃 노드 패턴 값이 0 인 경우, 해당 노드의 이웃 노드 중 포인트를 갖는 노드(오큐파이드 노드)가 없음을 나타낸다. 이웃 노드 패턴 값이 63인 경우, 이웃 노드들이 전부 오큐파이드 노드들임을 나타낸다. 도면에 도시된 바와 같이 가중치1, 2, 4, 8가 부여된 이웃 노드들은 오큐파이드 노드들이므로, 이웃 노드 패턴 값은 1, 2, 4, 8을 더한 값인 15이다. 포인트 클라우드 비디오 인코더는 이웃 노드 패턴 값에 따라 코딩을 수행할 수 있다(예를 들어 이웃 노드 패턴 값이 63인 경우, 64가지의 코딩을 수행). 실시예들에 따라 포인트 클라우드 비디오 인코더는 이웃 노드 패턴 값을 변경 (예를 들면 64를 10 또는 6으로 변경하는 테이블을 기반으로) 하여 코딩의 복잡도를 줄일 수 있다.
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 1 내지 도 7에서 설명한 바와 같이, 어트리뷰트 인코딩이 수행되기 전 인코딩된 지오메트리는 재구성(디컴프레션) 된다. 다이렉트 코딩이 적용된 경우, 지오메트리 재구성 동작은 다이렉트 코딩된 포인트들의 배치를 변경하는 것을 포함할 수 있다(예를 들면 다이렉트 코딩된 포인트들을 포인트 클라우드 데이터의 앞쪽에 배치). 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 재구성 과정은 삼각형 재구성, 업샘플링, 복셀화 과정을 어트리뷰트는 지오메트리에 종속되므로, 어트리뷰트 인코딩은 재구성된 지오메트리를 기반으로 수행된다.
포인트 클라우드 비디오 인코더(예를 들면 LOD 생성부(40009))는 포인트들을 LOD별로 분류(reorganization) 또는 그룹핑(grouping) 할 수 있다. 도 8은 LOD에 대응하는 포인트 클라우드 콘텐트를 나타낸다. 도 8의 가장 왼쪽은 오리지널 포인트 클라우드 콘텐트를 나타낸다. 도 8의 왼쪽에서 두번째 그림은 가장 낮은 LOD의 포인트들의 분포를 나타내며, 도 8의 가장 오른쪽 그림은 가장 높은 LOD의 포인트들의 분포를 나타낸다. 즉, 가장 낮은 LOD의 포인트들은 드문드문(sparse) 분포하며, 가장 높은 LOD의 포인트들은 촘촘히 분포한다. 즉, 도 8의 하단에 표시된 화살표 방향에 따라 LOD가 증가할수록 포인트들 간의 간격(또는 거리)는 더 짧아진다.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 1 내지 도 8에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템, 또는 포인트 클라우드 비디오 인코더(예를 들면 도 2의 포인트 클라우드 비디오 인코더(10002), 도 4의 포인트 클라우드 비디오 인코더, 또는 LOD 생성부(40009))는 LOD를 생성할 수 있다. LOD는 포인트들을 설정된 LOD 거리 값(또는 유클리디안 디스턴스(Euclidean Distance)의 세트)에 따라 리파인먼트 레벨들(refinement levels)의 세트로 재정열(reorganize)하여 생성된다. LOD 생성 과정은 포인트 클라우드 비디오 인코더뿐만 아니라 포인트 클라우드 비디오 디코더에서도 수행된다.
도 9의 상단은 3차원 공간에 분포된 포인트 클라우드 콘텐트의 포인트들의 예시(P0내지 P9)를 나타낸다. 도 9의 오리지널 오더(Original order)는 LOD 생성 전 포인트들 P0내지 P9의 순서를 나타낸다. 도 9의 LOD 기반 오더 (LOD based order)는 LOD 생성에 따른 포인트들의 순서를 나타낸다. 포인트들은 LOD별 재정열된다. 또한 높은 LOD는 낮은 LOD에 속한 포인트들을 포함한다. 도 9에 도시된 바와 같이 LOD0는 P0, P5, P4 및 P2를 포함한다. LOD1은 LOD0의 포인트들과 P1, P6 및 P3를 포함한다. LOD2는 LOD0의 포인트들, LOD1의 포인트들 및 P9, P8 및 P7을 포함한다.
도 4에서 설명한 바와 같이 실시예들에 따른 포인트 클라우드 비디오 인코더는 LOD 기반의 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩을 선택적으로 또는 조합하여 수행할 수 있다.
실시예들에 따른 포인트 클라우드 비디오 인코더는 포인트들에 대한 예측기(predictor)를 생성하여 각 포인트의 예측 어트리뷰트(또는 예측 어트리뷰트값)을 설정하기 위한 LOD 기반의 예측 변환 코딩을 수행할 수 있다. 즉, N개의 포인트들에 대하여 N개의 예측기들이 생성될 수 있다. 실시예들에 따른 예측기는 각 포인트의 LOD 값과 LOD별 설정된 거리 내에 존재하는 이웃 포인트들에 대한 인덱싱 정보 및 이웃 포인트들까지의 거리 값을 기반으로 가중치(=1/거리) 값을 계산할 수 있다.
실시예들에 따른 예측 어트리뷰트(또는 어트리뷰트값)은 각 포인트의 예측기에 설정된 이웃 포인트들의 어트리뷰트들(또는 어트리뷰트 값들, 예를 들면 색상, 반사율 등)에 각 이웃 포인트까지의 거리를 기반으로 계산된 가중치(또는 가중치값)을 곱한 값의 평균값으로 설정된다. 실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 계수 양자화부(40011)는 해당 포인트의 어트리뷰트(즉, 오리지날 어트리뷰트 값)에서 해당 예측 어트리뷰트(어트리뷰트값)을 뺀 해당 포인트의 잔여값(residual, 잔여 어트리뷰트, 잔여 어트리뷰트값, 어트리뷰트 예측 잔여값, 예측 에러 어트리뷰트 값 등으로 호칭할 수 있다)을 양자화(quantization) 및 역양자화(inverse quantization)할 수 있다. 잔여 어트리뷰트 값에 대해 수행되는 송신 디바이스의 양자화 과정은 표 2와 같다. 그리고 표 2와 같이 양자화가 이루어진 잔여 어트리뷰트 값에 대해 수행되는 수신 디바이스의 역 양자화 과정은 표 3과 같다.
int PCCQuantization(int value, int quantStep) {
if( value >=0) {
return floor(value / quantStep + 1.0 / 3.0);
} else {
return -floor(-value / quantStep + 1.0 / 3.0);
}
}
int PCCInverseQuantization(int value, int quantStep) {
if( quantStep ==0) {
return value;
} else {
return value * quantStep;
}
}
실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 아리스메틱 인코더(40012))는 각 포인트의 예측기에 이웃한 포인트들이 있는 경우, 상술한 바와 같이 양자화 및 역양자화된 잔여(residual) 어트리뷰트 값을 엔트로피 코딩 할 수 있다. 실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 아리스메틱 인코더(40012))는 각 포인트의 예측기에 이웃한 포인트들이 없으면 상술한 과정을 수행하지 않고 해당 포인트의 어트리뷰트들을 엔트로피 코딩할 수 있다.
실시예들에 따른 포인트 클라우드 비디오 인코더 (예를 들면 리프팅 변환부(40010))는 각 포인트의 예측기를 생성하고, 예측기에 계산된 LOD를 설정 및 이웃 포인트들을 등록하고, 이웃 포인트들까지의 거리에 따른 가중치를 설정하여 리프팅 변환 코딩을 수행할 수 있다. 실시예들에 따른 리프팅 변환 코딩은 상술한 LOD 기반의 예측 변환 코딩과 유사하나, 어트리뷰트값에 가중치를 누적 적용한다는 점에서 차이가 있다. 실시예들에 따른 어트리뷰트값에 가중치를 누적 적용하는 과정은 다음과 같다.
1) 각 포인트의 가중치 값을 저장하는 배열 QW(QuantizationWieght)를 생성한다. QW의 모든 요소들의 초기값은 1.0이다. 예측기에 등록된 이웃 노드의 예측기 인덱스의 QW 값에 현재 포인트의 예측기의 가중치를 곱한 값을 더한다.
2) 리프트 예측 과정: 예측된 어트리뷰트 값을 계산하기 위하여 포인트의 어트리뷰트 값에 가중치를 곱한 값을 기존 어트리뷰트값에서 뺀다.
3) 업데이트웨이트(updateweight) 및 업데이트(update)라는 임시 배열들을 생성하고 임시 배열들을 0으로 초기화한다.
4) 모든 예측기에 대해서 계산된 가중치에 예측기 인덱스에 해당하는 QW에 저장된 가중치를 추가로 곱해서 산출된 가중치를 업데이트웨이트 배열에 이웃 노드의 인덱스로 누적으로 합산한다. 업데이트 배열에는 이웃 노드의 인덱스의 어트리뷰트 값에 산출된 가중치를 곱한 값을 누적 합산한다.
5) 리프트 업데이트 과정: 모든 예측기에 대해서 업데이트 배열의 어트리뷰트 값을 예측기 인덱스의 업데이트웨이트 배열의 가중치 값으로 나누고, 나눈 값에 다시 기존 어트리뷰트 값을 더한다.
6) 모든 예측기에 대해서, 리프트 업데이트 과정을 통해 업데이트된 어트리뷰트 값에 리프트 예측 과정을 통해 업데이트 된(QW에 저장된) 가중치를 추가로 곱하여 예측 어트리뷰트 값을 산출한다. 실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 계수 양자화부(40011))는 예측 어트리뷰트 값을 양자화한다. 또한 포인트 클라우드 비디오 인코더(예를 들면 아리스메틱 인코더(40012))는 양자화된 어트리뷰트 값을 엔트로피 코딩한다.
실시예들에 따른 포인트 클라우드 비디오 인코더(예를 들면 RAHT 변환부(40008))는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트를 사용하여 상위 레벨의 노드들의 어트리뷰트를 에측하는 RAHT 변환 코딩을 수행할 수 있다. RAHT 변환 코딩은 옥트리 백워드 스캔을 통한 어트리뷰트 인트라 코딩의 예시이다. 실시예들에 따른 포인트 클라우드 비디오 인코더는 복셀에서 전체 영역으로 스캔하고, 각 스텝에서 복셀을 더 큰 블록으로 합치면서 루트 노드까지의 병합 과정을 반복수행한다. 실시예들에 따른 병합 과정은 오큐파이드 노드에 대해서만 수행된다. 엠티 노드(empty node)에 대해서는 병합 과정이 수행되지 않으며, 엠티 노드의 바로 상위 노드에 대해 병합 과정이 수행된다.
하기의 수학식 3은 RAHT 변환 행렬을 나타낸다. glx,y,z 는 레벨 l에서의 복셀들의 평균 어트리뷰트 값을 나타낸다. glx,y,z는 gl+1 2x,y,z와 gl+1 2x+1,y,z로부터 계산될 수 있다. gl 2x,y,z 와 gl 2x+1,y,z 의 가중치를 w1=wl 2x,y,z과 w2=wl 2x+1,y,z 이다.
[수학식 3]
Figure pct00006
gl-1 x,y,z는 로-패스(low-pass) 값으로, 다음 상위 레벨에서의 병합 과정에서 사용된다. hl-1 x,y,z은 하이패스 계수(high-pass coefficients)이며, 각 스텝에서의 하이패스 계수들은 양자화되어 엔트로피 코딩 된다(예를 들면 아리스메틱 인코더(40012)의 인코딩). 가중치는 wl-1 x,y,z = wl 2x,y,z + wl 2x+1,y,z로 계산된다. 루트 노드는 마지막 g1 0,0,0 과 g1 0,0,1을 통해서 다음의 수학식 4와 같이 생성된다.
[수학식 4]
Figure pct00007
gDC값 또한 하이패스 계수와 같이 양자화되어 엔트로피 코딩된다.
도 10은 실시예들에 따른 포인트 클라우드 비디오 디코더(Point Cloud Video Decoder)의 예시를 나타낸다.
도 10에 도시된 포인트 클라우드 비디오 디코더는 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006) 예시로서, 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006)의 동작 등과 동일 또는 유사한 동작을 수행할 수 있다. 도면이 도시된 바와 같이 포인트 클라우드 비디오 디코더는 하나 또는 그 이상의 비트스트림(bitstream)들에 포함된 지오메트리 비트스트림(geometry bitstream) 및 어트리뷰트 비트스트림(attribute bitstream)을 수신할 수 있다. 포인트 클라우드 비디오 디코더는 지오메트리 디코더(geometry decoder) 및 어트리뷰트 디코더(attribute decoder)를 포함한다. 지오메트리 디코더는 지오메트리 비트스트림에 대해 지오메트리 디코딩을 수행하여 디코딩된 지오메트리(decoded geometry)를 출력한다. 어트리뷰트 디코더는 디코딩된 지오메트리를 기반으로 어트리뷰트 비트스트림에 대해 어트리뷰트 디코딩을 수행하여 디코딩된 어트리뷰트들(decoded attributes)을 출력한다. 디코딩된 지오메트리 및 디코딩된 어트리뷰트들은 포인트 클라우드 콘텐트를 복원(decoded point cloud)하는데 사용된다.
도 11은 실시예들에 따른 포인트 클라우드 비디오 디코더(Point Cloud Video Decoder)의 예시를 나타낸다.
도 11에 도시된 포인트 클라우드 비디오 디코더는 도 10에서 설명한 포인트 클라우드 비디오 디코더의 상세 예시로서, 도 1 내지 도 9에서 설명한 포인트 클라우드 비디오 인코더의 인코딩 동작의 역과정인 디코딩 동작을 수행할 수 있다.
도 1 및 도 10에서 설명한 바와 같이 포인트 클라우드 비디오 디코더는 지오메트리 디코딩 및 어트리뷰트 디코딩을 수행할 수 있다. 지오메트리 디코딩은 어트리뷰트 디코딩보다 먼저 수행된다.
실시예들에 따른 포인트 클라우드 비디오 디코더는 아리스메틱 디코더(arithmetic decoder, 11000), 옥트리 합성부(octree synthesis unit, 11001), 서페이스 오프록시메이션 합성부(surface approximation synthesis unit, 11002), 지오메트리 리컨스트럭션부(geometry reconstruction unit, 11003), 좌표계 역변환부(coordinates inverse transformation unit, 11004), 아리스메틱 디코더(arithmetic decoder, 11005), 역양자화부(inverse quantization unit, 11006), RAHT변환부(11007), LOD생성부(LOD generation unit, 11008), 인버스 리프팅부(Inverse lifting unit, 11009), 및/또는 컬러 역변환부(color inverse transformation unit, 11010)를 포함한다.
아리스메틱 디코더(11000), 옥트리 합성부(11001), 서페이스 오프록시메이션 합성부(11002), 지오메트리 리컨스트럭션부(11003), 좌표계 역변환부(11004)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 다이렉트 디코딩(direct decoding) 및 트라이숩 지오메트리 디코딩(trisoup geometry decoding)을 포함할 수 있다. 다이렉트 디코딩 및 트라이숩 지오메트리 디코딩은 선택적으로 적용된다. 또한 지오메트리 디코딩은 위의 예시에 국한되지 않으며, 도 1 내지 도 9에서 설명한 지오메트리 인코딩의 역과정으로 수행된다.
실시예들에 따른 아리스메틱 디코더(11000)는 수신한 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩한다. 아리스메틱 디코더(11000)의 동작은 아리스메틱 인코더(40004)의 역과정에 대응한다.
실시예들에 따른 옥트리 합성부(11001)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 생성할 수 있다. 오큐판시 코드에 대한 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 같다.
실시예들에 따른 서페이스 오프록시메이션 합성부(11002)는 트라이숩 지오메트리 인코딩이 적용된 경우, 디코딩된 지오메트리 및/또는 생성된 옥트리에 기반하여 서페이스를 합성할 수 있다.
실시예들에 따른 지오메트리 리컨스트럭션부(11003)는 서페이스 및 또는 디코딩된 지오메트리에 기반하여 지오메트리를 재생성할 수 있다. 도 1 내지 도 9에서 설명한 바와 같이, 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 적용된다. 따라서 지오메트리 리컨스트럭션부(11003)는 다이렉트 코딩이 적용된 포인트들의 포지션 정보들을 직접 가져와서 추가한다. 또한, 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 리컨스트럭션부(11003)는 지오메트리 리컨스트럭션부(40005)의 재구성 동작, 예를 들면 삼각형 재구성, 업-샘플링, 복셀화 동작을 수행하여 지오메트리를 복원할 수 있다. 구체적인 내용은 도 6에서 설명한 바와 동일하므로 생략한다. 복원된 지오메트리는 어트리뷰트들을 포함하지 않는 포인트 클라우드 픽쳐 또는 프레임을 포함할 수 있다.
실시예들에 따른 좌표계 역변환부(11004)는 복원된 지오메트리를 기반으로 좌표계를 변환하여 포인트들의 포지션들을 획득할 수 있다.
아리스메틱 디코더(11005), 역양자화부(11006), RAHT 변환부(11007), LOD생성부(11008), 인버스 리프팅부(11009), 및/또는 컬러 역변환부(11010)는 도 10에서 설명한 어트리뷰트 디코딩을 수행할 수 있다. 실시예들에 따른 어트리뷰트 디코딩은 RAHT(Region Adaptive Hierarchical Transform) 디코딩, 예측 변환(Interpolation-based hierarchical nearest-neighbour prediction-Prediction Transform) 디코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 디코딩을 포함할 수 있다. 상술한 3가지의 디코딩들은 선택적으로 사용되거나, 하나 또는 그 이상의 디코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 디코딩은 상술한 예시에 국한되는 것은 아니다.
실시예들에 따른 아리스메틱 디코더(11005)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩한다.
실시예들에 따른 역양자화부(11006)는 디코딩된 어트리뷰트 비트스트림 또는 디코딩 결과 확보한 어트리뷰트에 대한 정보를 역양자화(inverse quantization)하고 역양자화된 어트리뷰트들(또는 어트리뷰트 값들)을 출력한다. 역양자화는 포인트 클라우드 비디오 인코더의 어트리뷰트 인코딩에 기반하여 선택적으로 적용될 수 있다.
실시예들에 따라 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 상술한 바와 같이 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 포인트 클라우드 비디오 인코더의 인코딩에 따라 그에 대응하는 디코딩 동작을 선택적으로 수행할 수 있다.
실시예들에 따른 컬러 역변환부(11010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 컬러 역변환부(11010)의 동작은 포인트 클라우드 비디오 인코더의 컬러 변환부(40006)의 동작에 기반하여 선택적으로 수행될 수 있다.
도 11의 포인트 클라우드 비디오 디코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 콘텐트 제공 시스템에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 11의 포인트 클라우드 비디오 디코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도11의 포인트 클라우드 비디오 디코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다.
도 12는 실시예들에 따른 전송 장치의 예시이다.
도 12에 도시된 전송 장치는 도 1의 전송장치(10000) (또는 도 4의 포인트 클라우드 비디오 인코더)의 예시이다. 도 12에 도시된 전송 장치는 도 1 내지 도 9에서 설명한 포인트 클라우드 비디오 인코더의 동작들 및 인코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다. 실시예들에 따른 전송 장치는 데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), 아리스메틱 (Arithmetic) 코더(12006), 메타데이터 처리부(12007), 색상 변환 처리부(12008), 어트리뷰트 변환 처리부(또는 속성 변환 처리부)(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011) 및/또는 전송 처리부(12012)를 포함할 수 있다.
실시예들에 따른 데이터 입력부(12000)는 포인트 클라우드 데이터를 수신 또는 획득한다. 데이터 입력부(12000)는 포인트 클라우드 비디오 획득부(10001)의 동작 및/또는 획득 방법(또는 도2에서 설명한 획득과정(20000))과 동일 또는 유사한 동작 및/또는 획득 방법을 수행할 수 있다.
데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), Arithmetic 코더(12006)는 지오메트리 인코딩을 수행한다. 실시예들에 따른 지오메트리 인코딩은 도 1 내지 도 9에서 설명한 지오메트리 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 양자화 처리부(12001)는 지오메트리(예를 들면 포인트들의 위치값, 또는 포지션값)을 양자화한다. 양자화 처리부(12001)의 동작 및/또는 양자화는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 양자화와 동일 또는 유사하다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 복셀화 처리부(12002)는 양자화된 포인트들의 포지션 값을 복셀화한다. 복셀화 처리부(120002)는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 복셀화 과정과 동일 또는 유사한 동작 및/또는 과정을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 옥트리 오큐판시 코드 생성부(12003)는 복셀화된 포인트들의 포지션들을 옥트리 구조를 기반으로 옥트리 코딩을 수행한다. 옥트리 오큐판시 코드 생성부(12003)는 오큐판시 코드를 생성할 수 있다. 옥트리 오큐판시 코드 생성부(12003)는 도 4 및 도 6에서 설명한 포인트 클라우드 비디오 인코더 (또는 옥트리 분석부(40002))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 표면 모델 처리부(12004)는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다. 포면 모델 처리부(12004)는 도 4 에서 설명한 포인트 클라우드 비디오 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 인트라/인터 코딩 처리부(12005)는 포인트 클라우드 데이터를 인트라/인터 코딩할 수 있다. 인트라/인터 코딩 처리부(12005)는 도 7에서 설명한 인트라/인터 코딩과 동일 또는 유사한 코딩을 수행할 수 있다. 구체적인 설명은 도 7에서 설명한 바와 동일하다. 실시예들에 따라 인트라/인터 코딩 처리부(12005)는 아리스메틱 코더(12006)에 포함될 수 있다.
실시예들에 따른 아리스메틱 코더(12006)는 포인트 클라우드 데이터의 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. 아리스메틱 코더(12006)는 아리스메틱 인코더(40004)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 메타데이터 처리부(12007)는 포인트 클라우드 데이터에 관한 메타데이터, 예를 들어 설정 값 등을 처리하여 지오메트리 인코딩 및/또는 어트리뷰트 인코딩 등 필요한 처리 과정에 제공한다. 또한 실시예들에 따른 메타데이터 처리부(12007)는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 관련된 시그널링 정보를 생성 및/또는 처리할 수 있다. 실시예들에 따른 시그널링 정보는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 별도로 인코딩처리될 수 있다. 또한 실시예들에 따른 시그널링 정보는 인터리빙 될 수도 있다.
색상 변환 처리부(12008), 어트리뷰트 변환 처리부(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011)는 어트리뷰트 인코딩을 수행한다. 실시예들에 따른 어트리뷰트 인코딩은 도 1 내지 도 9에서 설명한 어트리뷰트 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 색상 변환 처리부(12008)는 어트리뷰트들에 포함된 색상값을 변환하는 색상 변환 코딩을 수행한다. 색상 변환 처리부(12008)는 재구성된 지오메트리를 기반으로 색상 변환 코딩을 수행할 수 있다. 재구성된 지오메트리에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하다. 또한 도 4에서 설명한 컬러 변환부(40006)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다.
실시예들에 따른 어트리뷰트 변환 처리부(12009)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 어트리뷰트 변환 처리부(12009)는 도 4에 설명한 어트리뷰트 변환부(40007)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다. 실시예들에 따른 예측/리프팅/RAHT 변환 처리부(12010)는 변환된 어트리뷰트들을 RAHT 코딩, LOD 기반의 예측 변환 코딩 및 리프팅 변환 코딩 중 어느 하나 또는 하나 이상을 조합하여 코딩할 수 있다. 예측/리프팅/RAHT 변환 처리부(12010)는 도 4에서 설명한 RAHT 변환부(40008), LOD 생성부(40009) 및 리프팅 변환부(40010)의 동작들과 동일 또는 유사한 동작들 중 적어도 하나 이상을 수행한다. 또한 LOD 기반의 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 코더(12011)는 코딩된 어트리뷰트들을 아리스메틱 코딩에 기반하여 인코딩할 수 있다. 아리스메틱 코더(12011)는 아리스메틱 인코더(40012)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 전송 처리부(12012)는 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트 및/또는 메타 데이터를 포함하는 각 비트스트림을 전송하거나, 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트 및/또는 메타 데이터를 하나의 비트스트림으로 구성하여 전송할 수 있다. 실시예들에 따른 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트 및/또는 메타 데이터가 하나의 비트스트림으로 구성되는 경우, 비트스트림은 하나 또는 그 이상의 서브 비트스트림들을 포함할 수 있다. 실시예들에 따른 비트스트림은 시퀀스 레벨의 시그널링을 위한 SPS (Sequence Parameter Set), 지오메트리 정보 코딩의 시그널링을 위한 GPS(Geometry Parameter Set), 어트리뷰트 정보 코딩의 시그널링을 위한 APS(Attribute Parameter Set), 타일 레벨의 시그널링을 위한 TPS (Tile Parameter Set 또는 tile inventory라 함)를 포함하는 시그널링 정보 및 슬라이스 데이터를 포함할 수 있다. 슬라이스 데이터는 하나 또는 그 이상의 슬라이스들에 대한 정보를 포함할 수 있다. 실시예들에 따른 하나의 슬라이스는 하나의 지오메트리 비트스트림(Geom00) 및 하나 또는 그 이상의 어트리뷰트 비트스트림들(Attr00, Attr10)을 포함할 수 있다.
슬라이스란 코딩된 포인트 클라우드 프레임의 전체 또는 일부를 나타내는 신택스 엘리먼트의 시리즈를 말한다.
실시예들에 따른 TPS(또는 타일 인벤토리)는 하나 또는 그 이상의 타일들에 대하여 각 타일에 관한 정보(예를 들면 bounding box의 좌표값 정보 및 높이/크기 정보 등)을 포함할 수 있다. 지오메트리 비트스트림은 헤더와 페이로드를 포함할 수 있다. 실시예들에 따른 지오메트리 비트스트림의 헤더는 GPS에 포함된 파라미터 세트의 식별 정보(geom_parameter_set_id), 타일 식별자(geom_tile_id), 슬라이스 식별자(geom_slice_id) 및 페이로드에 포함된 데이터에 관한 정보 등을 포함할 수 있다. 상술한 바와 같이 실시예들에 따른 메타데이터 처리부(12007)는 시그널링 정보를 생성 및/또는 처리하여 전송 처리부(12012)로 전송할 수 있다. 실시예들에 따라, 지오메트리 인코딩을 수행하는 엘레멘트들 및 어트리뷰트 인코딩을 수행하는 엘레멘트들은 점선 처리된 바와 같이 상호 데이터/정보를 공유할 수 있다. 실시예들에 따른 전송 처리부(12012)는 트랜스미터(10003)의 동작 및/또는 전송 방법과 동일 또는 유사한 동작 및/또는 전송 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 2에서 설명한 바와 동일하므로 생략한다.
도 13은 실시예들에 따른 수신 장치의 예시이다.
도 13에 도시된 수신 장치는 도 1의 수신장치(10004) (또는 도 10 및 도 11의 포인트 클라우드 비디오 디코더)의 예시이다. 도 13에 도시된 수신 장치는 도 1 내지 도 11에서 설명한 포인트 클라우드 비디오 디코더의 동작들 및 디코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다.
실시예들에 따른 수신 장치는 수신부(13000), 수신 처리부(13001), 아리스메틱 (arithmetic) 디코더(13002), 오큐판시 코드 (Occupancy code) 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(삼각형 재구성, 업-샘플링, 복셀화)(13004), 인버스(inverse) 양자화 처리부(13005), 메타데이터 파서(13006), 아리스메틱 (arithmetic) 디코더(13007), 인버스(inverse)양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009), 색상 역변환 처리부(13010) 및/또는 렌더러(13011)를 포함할 수 있다. 실시예들에 따른 디코딩의 각 구성요소는 실시예들에 따른 인코딩의 구성요소의 역과정을 수행할 수 있다.
실시예들에 따른 수신부(13000)는 포인트 클라우드 데이터를 수신한다. 수신부(13000)는 도 1의 리시버(10005)의 동작 및/또는 수신 방법과 동일 또는 유사한 동작 및/또는 수신 방법을 수행할 수 있다. 구체적인 설명은 생략한다.
실시예들에 따른 수신 처리부(13001)는 수신한 데이터로부터 지오메트리 비트스트림 및/또는 어트리뷰트 비트스트림을 획득할 수 있다. 수신 처리부(13001)는 수신부(13000)에 포함될 수 있다.
아리스메틱 디코더(13002), 오큐판시 코드 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(13004) 및 인버스 양자화 처리부(13005)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 도 1 내지 도 10에서 설명한 지오메트리 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 디코더(13002)는 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩할 수 있다. 아리스메틱 디코더(13002)는 아리스메틱 디코더(11000)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.
실시예들에 따른 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 재구성할 수 있다. 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 옥트리 합성부(11001)의 동작 및/또는 옥트리 생성 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 실시예들에 따른 표면 모델 처리부(13004)는 트라이숩 지오메트리 인코딩이 적용된 경우, 표면 모델 방식에 기반하여 트라이숩 지오메트리 디코딩 및 이와 관련된 지오메트리 리컨스트럭션(예를 들면 삼각형 재구성, 업-샘플링, 복셀화)을 수행할 수 있다. 표면 모델 처리부(13004)는 서페이스 오프록시메이션 합성부(11002) 및/또는 지오메트리 리컨스트럭션부(11003)의 동작과 동일 또는 유사한 동작을 수행한다.
실시예들에 따른 인버스 양자화 처리부(13005)는 디코딩된 지오메트리를 인버스 양자화할 수 있다.
실시예들에 따른 메타데이터 파서(13006)는 수신한 포인트 클라우드 데이터에 포함된 메타데이터, 예를 들어 설정 값 등을 파싱할 수 있다. 메타데이터 파서(13006)는 메타데이터를 지오메트리 디코딩 및/또는 어트리뷰트 디코딩에 전달할 수 있다. 메타데이터에 대한 구체적인 설명은 도 12에서 설명한 바와 동일하므로 생략한다.
아리스메틱 디코더(13007), 인버스 양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009) 및 색상 역변환 처리부(13010)는 어트리뷰트 디코딩을 수행한다. 어트리뷰트 디코딩는 도 1 내지 도 10에서 설명한 어트리뷰트 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 디코더(13007)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩할 수 있다. 아리스메틱 디코더(13007)는 재구성된 지오메트리를 기반으로 어트리뷰트 비트스트림의 디코딩을 수행할 수 있다. 아리스메틱 디코더(13007)는 아리스메틱 디코더(11005)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.
실시예들에 따른 인버스 양자화 처리부(13008)는 디코딩된 어트리뷰트 비트스트림을 인버스 양자화할 수 있다. 인버스 양자화 처리부(13008)는 역양자화부(11006)의 동작 및/또는 역양자화 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 예측/리프팅/RAHT 역변환 처리부(13009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 예측/리프팅/RAHT 역변환 처리부(13009)는 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)의 동작들 및/또는 디코딩들과 동일 또는 유사한 동작들 및/또는 디코딩들 중 적어도 어느 하나 이상을 수행한다. 실시예들에 따른 색상 역변환 처리부(13010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 색상 역변환 처리부(13010)는 컬러 역변환부(11010)의 동작 및/또는 역변환 코딩과 동일 또는 유사한 동작 및/또는 역변환 코딩을 수행한다. 실시예들에 따른 렌더러(13011)는 포인트 클라우드 데이터를 렌더링할 수 있다.
도 14는 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도 14의 구조는 서버(17600), 로봇(17100), 자율 주행 차량(17200), XR 장치(17300), 스마트폰(17400), 가전(17500) 및/또는 HMD(Head-Mount Display, 17700) 중에서 적어도 하나 이상이 클라우드 네트워크(17000)와 연결된 구성을 나타낸다. 로봇(17100), 자율 주행 차량(17200), XR 장치(17300), 스마트폰(17400) 또는 가전(17500) 등은 장치라 호칭된다. 또한, XR 장치(17300)는 실시예들에 따른 포인트 클라우드 압축 데이터 (PCC) 장치에 대응되거나 PCC장치와 연동될 수 있다.
클라우드 네트워크(17000)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(17000)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
서버(17600)는 로봇(17100), 자율 주행 차량(17200), XR 장치(17300), 스마트폰(17400), 가전(17500) 및/또는 HMD(17700) 중에서 적어도 하나 이상과 클라우드 네트워크(17000)을 통하여 연결되고, 연결된 장치들(17100 내지 17700)의 프로세싱을 적어도 일부를 도울 수 있다.
HMD (Head-Mount Display)(17700)는 실시예들에 따른 XR 디바이스 및/또는 PCC 디바이스가 구현될 수 있는 타입 중 하나를 나타낸다. 실시예들에 따른HMD 타입의 디바이스는, 커뮤니케이션 유닛, 컨트롤 유닛, 메모리 유닛, I/O 유닛, 센서 유닛, 그리고 파워 공급 유닛 등을 포함한다.
이하에서는, 상술한 기술이 적용되는 장치(17100 내지 17500)의 다양한 실시 예들을 설명한다. 여기서, 도 14에 도시된 장치(17100 내지 17500)는 상술한 실시예들에 따른 포인트 클라우드 데이터 송수신 장치와 연동/결합될 수 있다.
<PCC+XR>
XR/PCC 장치(17300)는 PCC 및/또는 XR(AR+VR) 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수도 있다.
XR/PCC 장치(17300)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 어트리뷰트 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR/PCC 장치(17300)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
<PCC+자율주행+XR>
자율 주행 차량(17200)은 PCC 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR/PCC 기술이 적용된 자율 주행 차량(17200)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(17200)은 XR 장치(17300)와 구분되며 서로 연동될 수 있다.
XR/PCC영상을 제공하는 수단을 구비한 자율 주행 차량(17200)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR/PCC 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(17200)은 HUD를 구비하여 XR/PCC 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR/PCC 객체를 제공할 수 있다.
이때, XR/PCC 객체가 HUD에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR/PCC 객체가 자율 주행 차량의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(17200)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR/PCC 객체들을 출력할 수 있다.
실시예들에 의한 VR (Virtual Reality) 기술, AR (Augmented Reality) 기술, MR (Mixed Reality) 기술 및/또는 PCC(Point Cloud Compression) 기술은, 다양한 디바이스에 적용 가능하다.
즉, VR 기술은, 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하는 디스플레이 기술이다. 반면, AR 기술은, 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 보여 주는 기술을 의미한다. 나아가, MR 기술은, 현실세계에 가상 객체들을 섞고 결합시켜서 보여준다는 점에서 전술한 AR 기술과 유사하다. 그러나, AR 기술에서는 현실 객체와 CG 영상으로 만들어진 가상 객체의 구별이 뚜렷하고, 현실 객체를 보완하는 형태로 가상 객체를 사용하는 반면, MR 기술에서는 가상 객체가 현실 객체와 동등한 성격으로 간주된다는 점에서 AR 기술과는 구별이 된다. 보다 구체적으로 예를 들면, 전술한 MR 기술이 적용된 것이 홀로그램 서비스 이다.
다만, 최근에는 VR, AR, MR 기술을 명확히 구별하기 보다는 XR (extended Reality) 기술로 부르기도 한다. 따라서, 본 명세서의 실시예들은 VR, AR, MR, XR 기술 모두에 적용 가능하다. 이러한 기술은 PCC, V-PCC, G-PCC 기술 기반 인코딩/디코딩이 적용될 수 있다.
실시예들에 따른 PCC 방법/장치는 자율 주행 서비스를 제공하는 차량에 적용될 수 있다.
자율 주행 서비스를 제공하는 차량은 PCC 디바이스와 유/무선 통신이 가능하도록 연결된다.
실시예들에 따른 포인트 클라우드 압축 데이터 (PCC) 송수신 장치는 차량과 유/무선 통신이 가능하도록 연결된 경우, 자율 주행 서비스와 함께 제공할 수 있는 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 차량에 전송할 수 있다. 또한 포인트 클라우드 데이터 송수신 장치 차량에 탑재된 경우, 포인트 클라우드 송수신 장치는 사용자 인터페이스 장치를 통해 입력된 사용자 입력 신호에 따라 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 사용자에게 제공할 수 있다. 실시예들에 따른 차량 또는 사용자 인터페이스 장치는 사용자 입력 신호를 수신할 수 있다. 실시예들에 따른 사용자 입력 신호는 자율 주행 서비스를 지시하는 신호를 포함할 수 있다.
도 1 내지 도 14에서 설명한 것처럼, 포인트 클라우드 데이터는 포인트들의 집합으로 구성되며, 각 포인트는 지오메트리(또는 지오메트리 정보라 호칭한다)와 어트리뷰트(또는 어트리뷰트 정보라 호칭한다)를 가질 수 있다. 지오메트리 정보는 각 포인트의 3차원 위치 정보(xyz)이다. 즉, 각 포인트의 위치는 3차원 공간을 나타내는 좌표계상의 파라미터들(예를 들면 공간을 나타내는 3개의 축인 X축, Y축 및 Z축의 파라미터들 (x,y,z))로 표현된다. 그리고, 어트리뷰트 정보는 그 포인트의 색상(RGB, YUV 등), 반사도(reflectance), 법선(normal vectors), 투명도(transparency) 등을 의미한다.
실시예들에 따르면, 포인트 클라우드 데이터의 인코딩 과정은 옥트리, 트라이숩 또는 예측 기반으로 지오메트리 정보를 압축하고, 압축을 통해 변경된 위치 정보들로 재구성 된 지오메트리(reconstructed geometry=디코딩된 지오메트리) 정보를 기반으로 어트리뷰트 정보를 압축하는 과정으로 이루어진다. 또한, 포인트 클라우드 데이터의 디코딩 과정은, 인코딩된 지오메트리 비트스트림(bitstream)과 어트리뷰트 비트스트림을 전송 받아서 옥트리, 트라이숩 또는 예측 기반으로 지오메트리 정보를 디코딩하고 디코딩 과정을 통해 재구성된 지오메트리 정보를 기반으로 어트리뷰트 정보를 복호화하는 과정으로 이루어진다.
실시예들에 따른 옥트리 기반 또는 트라이숩 기반의 지오메트리 정보 압축은 도 4 내지 도 13에서 상세히 설명하였으므로, 여기서는 생략한다.
이후, 본 명세서는 예측 기반으로 지오메트리 정보를 압축하는 것을 일 실시예로 설명한다. 실시예들에 따른 예측 기반의 지오메트리 정보 압축은 포인트 클라우드 데이터에 대해 예측 구조(prediction structure)를 정의하여 수행된다. 이러한 구조는 포인트 클라우드 데이터의 각 포인트와 연관된 버텍스(vertex, 꼭지점)를 갖는 예측 트리(predictive tree)로 표현된다. 예측 트리는 루트 버텍스(root vertex 또는 루트 포인트라 함) 및 리프 버텍스(leaf vertex 또는 리프 포인트라 함)을 포함할 수 있으며, 루트 포인트 이하의 포인트들은 적어도 하나 이상의 자식을 가질 수 있고, 리프 포인트 방향으로 깊이(depth)가 증가한다. 각 포인트는 예측 트리 내의 부모 노드들로부터 예측할 수 있다. 실시예들에 따르면, 각 포인트는, 해당 포인트의 부모(parent), 조부모 (grand-parent), 증조부모(grand-grandparent) 등의 포인트 위치들을 기반으로 다양한 예측 모드들(예를 들면, 예측 없음, 델타 예측(delta prediction), 리니어 예측(linear prediction), 평행사변형 예측(parallelogram prediction)) 중 하나가 적용되어 예측될 수 있다.
이때, 루트 노드(즉, 초기값)는 예측이 수행되지 않고 즉, 압축 없이 포인트의 위치 정보(즉, 루트 노드의 x, y, z 좌표)가 수신측으로 전송된다. 이는 예측 트리 내 각 포인트는 적어도 하나의 부모 노드를 기반으로 예측이 이루어지는데 루트 노드는 부모 노드가 존재하지 않기 때문이다.
즉, 예측 기반의 지오메트리 압축 방법은 연속된 포인트들의 위치 유사성을 기반으로 전달되는 정보량을 줄이는데 사용될 수 있다. 이때, 각 포인트는 다양한 예측 모드가 적용되어 예측될 수 있는데, 그 중 초기값(예를 들어, 루트 노드)은 참조할 포인트(즉, 부모 포인트)가 없으므로 예측하지 않고 실제 값(즉, x, y, z 좌표 값)을 수신측으로 전송한다.
도 15는 실시예들에 따른 예측 트리 구조의 예시를 보인 도면이다.
즉, 최종적인 예측 트리는 압축 대상이 되는 포인트 (도 15에서와 같이 부모, 조부모(grandparent), 증조부모(grand-grandparent) 등의 관계를 갖는 포인트 클라우드 집합 중 특정 포인트)를 자식(child)으로 정의하고, 예측 대상이 되는 포인트를 부모로 정의하고, 부모-자식(parent-child)의 관계를 찾아가는 과정으로 정의할 수 있으며, 부모-자식의 연속으로 구성될 수 있다. 예를 들어, 포인트(50013)를 압축 대상이 되는 포인트라고 가정하면, 포인트(50012)는 부모가 되고, 포인트(50011)는 조부모가 되며, 포인트(50010)는 증조부모가 된다.
실시예들에 따르면, 예측 트리 구성시, 압축의 처음 시작이 되는 포인트를 루트 버텍스(또는 루트 노드)로 설정한다. 그리고 포인트(50011)는 루트 버텍스(즉, 루트 포인트)(50010)를 부모로 삼는 자식이 된다. 실시예들에 따르면, 포인트(50011)는 지오메트리를 기반으로 루트 포인트(50010)와 유사성이 가장 높다고 가정할 수 있다. 실시예들에 따르면, 예측 트리는 복수개의 자식들을 갖는 포인트(또는 버텍스)가 존재할 수 있다. 실시예들에 따르면, 자식들의 개수는 일정 개수(예를 들어, 3)로 한정되거나 무제한일 수 있다. 예를 들어, 포인트(또는 버텍스)(50014)는 3개의 자식을 가지고 있고, 포인트(버텍스)(50015)는 2개의 자식을 가지고 있음을 보인다.
실시예들에 따르면, 도 15와 같이 예측 트리가 생성되면, 예측 모드(prediction mode)를 사용하여 포인트들의 예측을 진행할 수 있다.
예를 들어, V(p)를 예측 트리 상에서 압축 대상이 되는 포인트 즉, p번째 포인트로 정의하고, V(p-1)을 p번째 포인트의 부모(parent) 포인트(또는 버텍스), V(p-2)를 p번째 포인트의 조부모(grandparent) 포인트, V(p-3)를 p번째 포인트의 증조부모(grand-grandparent 또는 great-grandparent) 포인트, V(p-4)를 p번째 포인트의 고조부모(grand-grand grandparent 또는 great-great grandparent) 포인트로 정의할 때 예측 모드별 예측 에러(E)는 다음의 수학식 5와 같이 정의할 수 있다. 예를 들어, 포인트 (V(p))에 대해 하기 수학식 5의 예측 모드들을 각각 적용하여 7개의 예측 에러 값들(E)을 계산하고, 계산된 7개의 예측 에러 값들 중 가장 작은 예측 에러 값을 갖는 예측 모드를 포인트 (V(p))의 예측 모드로 설정할 수 있다. 예를 들어, 7개의 예측 에러 값들 중 두번째 식을 적용하여 구한 예측 에러 값(E = { [ V(p)-V(p-1) ] - a * [ V(p-1) - V(p-2) ] - b})이 가장 작은 값(즉, 에러를 최소화하는 값)이라면, 포인트 (V(p))의 예측 모드는 예측 모드 2(mode 2)로 설정(또는 선택)할 수 있다. 그리고 설정(선택)된 예측 모드 정보(pred_mode)와 이때의 계수 정보(예를 들어, a, b 등)는 시그널링 정보 및/또는 슬라이스에 시그널링되어 수신 장치로 전송될 수 있다. 상기 시그널링 정보는 파라미터 세트들(예를 들어, SPS, GPS, APS, 및 TPS (또는 타일 인벤토리라 함) 등), 해당 잔여 정보(또는 예측 에러라 함)를 캐리하는 슬라이스의 헤더 등을 포함할 수 있다. 상기 예측 모드 정보는 인트라 모드 정보 또는 인트라 예측 모드라 칭하기도 한다.
[수학식 5]
Figure pct00008
하기의 수학식 6은 예측 모드별 예측 정보를 구하는 식의 예시들이다. 예를 들어, 수학식 5를 적용하여 선택된 포인트 (V(p))의 예측 모드가 예측 모드 2(mode 2)라면, 예측 모드 2에 해당하는 예측 정보(V'(p))는 수학식 6의 두번째 식(V'(p) = (a+1) * V(p-1) - a * V(p-2) + b)을 적용하여 구할 수 있다. 즉, 위의 수학식 5에 대해 에러를 최소화하는 V'(p)는 하기 수학식 6과 같이 예측할 수 있다.
[수학식 6]
Figure pct00009
실시예들에 따라, 모드 1을 델타 예측(delta prediction), 모드 2 또는 모드 3을 리니어 예측(linear prediction), 모드 4, 모드 5, 모드 6 또는 모드 7을 평행사변형 예측(parallelogram predictor or parallelogram prediction)이라 칭하기도 한다.
이때, 루트 노드를 제외한 다른 노드(즉, 포인트)들의 경우, 송신단에서는 각 포인트에 대한 인트라 예측 모드 및 포인트의 위치와 예측 위치 사이의 차이(이를 잔여 정보 또는 예측 에러라 함)를 수신측으로 전송할 수 있다.
그리고 본 문서는 전술한 다양한 예측 방법에 대해 미리 지정된 방법을 일정 단위 (e.g., 슬라이스 단위, 코딩 블록 단위, 프레임 단위, N개 단위 등)로 사용 및 시그널링 하거나 또는 매 포인트 마다 에러가 최소화 되는 방법에 대해 시그널링 할 수 있다. 또한 예측 계수 a, b 에 대해서도 미리 정해진 값을 사용 및 시그널링하거나 또는 매 포인트 마다 에러가 최소화 되는 방법에 대해 시그널링 할 수 있다.
이때, 루트 노드(50010)의 경우, 종래에는 예측을 수행하지 않으며 또한 별도의 예측 모드를 시그널링 하고 위치 정보를 직접 수신측으로 전송한다.
실시예들에 따르면, 예측 기반의 압축은 유사한 포인트들이 인접하게 존재할수록 예측의 정확도가 높아지는데, 이를 고려하여 예측 대상 포인트를 유사한 포인트끼리 인접하도록 재배열할 수 있다. 재배열은 포인트 클라우드 전체에 대해서 수행하거나, 또는 슬라이스 단위로 수행할 수도 있으며, 또는 두가지 방법을 모두 사용할 수도 있다.
위에서 설명한 예측 기반의 압축은 현재 프레임 내에서 포인트 간의 유사성을 줄이기 위한 방법이다.
한편, 포인트 클라우드 데이터가 연속된 프레임들로 구성된 경우 인접 프레임 간의 상관관계가 높다. 본 문서는 이러한 특징을 이용하여 프레임 간 상관 관계에 기반하여 중복되는 정보를 제거함으로써, 더 높은 코딩 효율(즉, 압축 효율)을 얻을 수 있도록 한다.
본 문서는 포인트 클라우드 데이터가 연속된 프레임들로 구성될 때, 예측 기반의 지오메트리(즉, 위치) 정보의 압축 효율을 높이기 위한 방법에 대해서 기술한다.
즉, 본 문서는 지오메트리 정보를 압축함에 있어 예측 기반 코딩의 압축 효율을 높이기 위한 기술을 다루며, 특히 서로 다른 프레임 간의 정보 유사성을 기반으로 압축 효율을 높이기 위한 방법에 대해 기술한다. 다시 말해, 포인트 클라우드 데이터가 연속된 프레임들 상에 존재하는 경우 인접 프레임 간 포인트 분포의 유사성이 존재할 수 있으며, 이 경우 프레임 간 유사성을 제거함으로써, 포인트 클라우드 데이터 압축 효율을 높일 수 있다.
본 문서에서 제안하는 방법은 포인트 클라우드 데이터의 압축에 일반적으로 사용할 수 있으며, 또한 포인트 클라우드 데이터의 스케일러블 압축에도 사용될 수 있다. 또한 본 문서에서 기술하는 예측 기반의 지오메트리 압축 방법은 예측 기반의 어트리뷰트 압축에도 사용될 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터의 인코딩 과정은 도 1의 포인트 클라우드 비디오 인코더(10002), 도 2의 인코딩(20001), 도 4의 포인트 클라우드 비디오 인코더, 도 12의 포인트 클라우드 비디오 인코더, 도 16의 지오메트리 인코더(51003), 도 17의 지오메트리 인코더, 또는 도 23의 지오메트리 인코딩 과정에서 수행될 수 있다. 실시예들에 따른 포인트 클라우드 데이터의 디코딩 과정은 도 1의 포인트 클라우드 비디오 디코더(10006), 도 2의 디코딩(20003), 도 11의 포인트 클라우드 비디오 디코더, 도 13의 포인트 클라우드 비디오 디코더, 도 30의 지오메트리 디코더(61003), 도 31의 지오메트리 디코더 또는 도 32의 지오메트리 디코딩 과정에서 수행될 수 있다. 도 30 내지 도 32의 상세 설명은 뒤에서 다시 하기로 한다.
도 16은 실시예들에 따른 포인트 클라우드 송신 장치의 또 다른 예시를 보인 도면이다. 도 16에 도시된 포인트 클라우드 송신 장치의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합등으로 구현될 수 있다.
실시예들에 따르면, 포인트 클라우드 송신 장치는 데이터 입력부(51001), 시그널링 처리부(51002), 지오메트리 인코더(51003), 어트리뷰트 인코더(51004), 및 전송 처리부(51005)를 포함할 수 있다.
도 16은 실시예들에 따른 포인트 클라우드 송신 장치의 또 다른 예시를 보인 도면이다. 도 16에 도시된 포인트 클라우드 송신 장치의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합등으로 구현될 수 있다.
실시예들에 따르면, 포인트 클라우드 송신 장치는 데이터 입력부(51001), 시그널링 처리부(51002), 지오메트리 인코더(51003), 어트리뷰트 인코더(51004), 및 전송 처리부(51005)를 포함할 수 있다.
상기 지오메트리 인코더(51003)와 어트리뷰트 인코더(51004)는 도 1의 포인트 클라우드 비디오 인코더(10002), 도 2의 인코딩(20001), 도 4의 포인트 클라우드 비디오 인코더, 도 12의 포인트 클라우드 비디오 인코더에서 설명된 동작의 일부 또는 전체를 수행할 수 있다.
실시예들에 따른 데이터 입력부(51001)는 포인트 클라우드 데이터를 수신 또는 획득한다. 상기 데이터 입력부(51001)는 도 1의 포인트 클라우드 비디오 획득부(10001)의 동작의 일부 또는 전부를 수행할 수도 있고 또는 도 12의 데이터 입력부(12000)의 동작의 일부 또는 전부를 수행할 수도 있다.
상기 데이터 입력부(51001)는 포인트 클라우드 데이터의 포인트들의 포지션들을 지오메트리 인코더(51003)로 출력하고, 포인트 클라우드 데이터의 포인트들의 어트리뷰트들을 어트리뷰트 인코더(51004)로 출력한다. 또한 파라미터들은 시그널링 처리부(51002)로 출력한다. 실시예들에 따라 파라미터들은 지오메트리 인코더(51003)와 어트리뷰트 인코더(51004)로 제공될 수도 있다.
상기 지오메트리 인코더(51003)는 입력되는 포인트들의 포지션들을 이용하여 예측 트리를 구성하고, 예측 트리를 기반으로 지오메트리 압축을 수행한다. 이때, 지오메트리 압축을 위한 예측은 프레임 내에서 수행될 수도 있고, 프레임 간에 수행될 수도 있다. 본 문서는 전자를 인트라 프레임 예측이라 칭하고, 후자를 인터 프레임 예측이라 칭한다. 상기 지오메트리 인코더(51003)는 압축된 지오메트리 정보에 대해 엔트로피 인코딩을 수행하여 지오메트리 비트스트림 형태로 전송 처리부(51005)로 출력한다.
상기 지오메트리 인코더(51003)는 압축을 통해 변경된 포지션들을 기반으로 지오메트리 정보를 재구성하고, 재구성된(또는 복호화된) 지오메트리 정보를 상기 어트리뷰트 인코더(51004)로 출력한다.
상기 어트리뷰트 인코더(51004)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리 정보를 기반으로 어트리뷰트 정보를 압축한다. 일 실시예로, 상기 어트리뷰트 정보는 RAHT 코딩, LOD 기반의 예측 변환 코딩 및 리프팅 변환 코딩 중 어느 하나 또는 하나 이상을 조합하여 코딩될 수 있다. 상기 어트리뷰트 인코더(51004)는 압축된 어트리뷰트 정보에 대해 엔트로피 인코딩을 수행하여 어트리뷰트 비트스트림 형태로 전송 처리부(51005)로 출력한다.
상기 시그널링 처리부(51002)는 지오메트리 정보와 어트리뷰트 정보의 인코딩/디코딩/렌더링 등에 필요한 시그널링 정보를 생성 및/또는 처리하여 지오메트리 인코더(51003), 어트리뷰트 인코더(51004) 및/또는 전송 처리부(51005)로 제공할 수 있다. 또는 상기 시그널링 처리부(51002)가 지오메트리 인코더(51003), 어트리뷰트 인코더(51004) 및/또는 전송 처리부(51005)에서 생성된 시그널링 정보를 제공받을 수도 있다. 상기 시그널링 처리부(51002)는 수신 장치에서 피드백되는 정보(예를 들어, 헤드 오리엔테이션 정보 및/또는 뷰포트 정보를 지오메트리 인코더(51003), 어트리뷰트 인코더(51004) 및/또는 전송 처리부(51005)로 제공할 수도 있다.
본 명세서에서 시그널링 정보는 parameter set (SPS: sequence parameter set, GPS: geometry parameter set, APS: attribute parameter set, TPS: Tile Parameter Set (또는 tile inventory라 함) 등) 단위로 시그널링되어 전송될 수 있다. 또한 슬라이스 또는 타일과 같이 각 영상의 코딩 유닛(또는 압축 단위 또는 예측 단위) 단위로 시그널링되어 전송될 수도 있다.
상기 전송 처리부(51005)는 도 12의 전송 처리부(12012)의 동작 및/또는 전송 방법과 동일 또는 유사한 동작 및/또는 전송 방법을 수행할 수도 있고, 도 1의 트랜스미터(1003)의 동작 및/또는 전송 방법과 동일 또는 유사한 동작 및/또는 전송 방법을 수행할 수 있다. 구체적인 설명은 도 1 또는 도 12의 설명을 참조하기로 하고 여기서는 생략한다.
상기 전송 처리부(51005)는 상기 지오메트리 인코더(51003)에서 출력되는 지오메트리 비트스트림, 상기 어트리뷰트 인코더(51004)에서 출력되는 어트리뷰트 비트스트림, 상기 시그널링 처리부(51002)에서 출력되는 시그널링 비트스트림을 하나의 비트스트림으로 다중화한 후 그대로 전송하거나 또는 파일이나 세그먼트 등로 인캡슐레이션하여 전송할 수 있다. 본 문서에서 파일은 ISOBMFF 파일 포맷인 것을 일 실시예로 한다.
실시예들에 따라 파일 또는 세그먼트는 수신 장치로 전송되거나, 디지털 저장매체(예를 들면 USB, SD, CD, DVD, 블루레이, HDD, SSD 등)에 저장될 수 있다. 실시예들에 따른 전송 처리부(51005)는 수신 장치와 4G, 5G, 6G 등의 네트워크를 통해 유/무선 통신 가능하다. 또한 전송 처리부(51005)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 또한 전송 처리부(51005)는 온 디맨드(On Demand) 방식에 따라 인캡슐레이션된 데이터를 전송할 수도 있다.
실시예들에 따르면, 지오메트리 예측과 관련된 정보는 상기 시그널링 처리부(51002), 지오메트리 인코더(51003), 전송 처리부(51005) 중 적어도 하나에 의해 GPS 및/또는 TPS 및/또는 지오메트리 데이터 유닛(또는 지오메트리 슬라이스 비트스트림이라 함)에 포함되어 전송될 수 있다.
도 17은 실시예들에 따른 지오메트리 인코더(51003)의 상세 블록도의 예시를 보인 도면이다. 도 17에 도시된 지오메트리 인코더의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합등으로 구현될 수 있다.
실시예들에 따르면, 지오메트리 인코더(51003)는 클러스터링 및 정렬부(51031), 예측 트리 생성부(51032), 인트라 프레임 예측부(51033), 모드 선택부(51034), 엔트로피 인코딩부(51035), 예측 유닛 생성부(51036), 움직임 추정부(51037), 움직임 보상부(51038), 및 인터 프레임 예측부(51039)를 포함할 수 있다.
상기 클러스터링 및 정렬부(51031)는 클러스터링부와 정렬부로 구분할 수 있다. 클러스터링부는 디바이더로 호칭할 수 있다. 각 블록의 수행 순서는 변경될 수 있으며, 일부 블록은 생략될 수 있고, 일부 블록은 새로 추가될 수 있다.
일 실시예로, 상기 클러스터링 및 정렬부(51031)는 동일 프레임에 속하는 포인트들을 정렬한다. 이때, 압축 효율이 높아질 수 있도록 포인트들의 위치 정보를 정렬한다.
다른 실시예로, 상기 클러스터링 및 정렬부(51031)는 입력되는 포인트 클라우드 데이터의 포인트들의 위치 정보를 기반으로 클러스터링하여 입력되는 포인트 클라우드 데이터의 포인트들을 복수개의 클러스터들(예, 슬라이스들)로 나눈다. 그리고, 클러스터별로, 클러스터 내에서 각 포인트의 지오메트리 정보를 고려하여 포인트 클라우드 데이터의 포인트들을 정렬(sorting)한다.
이때, 압축 효율이 높아질 수 있도록 각 클러스터 내 포인트들을 정렬할 수 있다. 예를 들어, LiDAR와 같이 회전축으로부터 방사형으로 데이터를 획득하는 경우 레이저의 수직방향 위치, 회전 각도, 중심축으로부터의 거리로 좌표계를 변환하여 정렬(sorting) 할 수 있는데, 이 경우 정렬의 방향성을 지그재그로 함으로써 포인트 간 연관성을 높여줄 수 있다.
상기 예측 트리 생성부(51032)는 상기 클러스터링 및 정렬부(51031)에서 프레임 또는 각 클러스터의 내 포인트 클라우드 데이터의 포인트들의 정렬이 수행되고 나면, 프레임 또는 각 클러스터 내에서 예측 트리를 구성할 수 있다.
상기 인트라 프레임 예측부(51033)는 상기 예측 트리 생성부(51032)에서 예측 트리가 생성되면, 예측 트리 내 포인트들에 대해 부모-자식 관계를 설정하여 각 포인트의 인트라 예측 모드를 결정하고, 결정된 인트라 예측 모드를 기반으로 각 포인트의 잔여 정보를 구한 후, 인트라 예측 모드 정보와 잔여 정보를 모드 선택부(51034)로 출력한다. 일 실시예로, 상기 인트라 프레임 예측부(51033)는 각 포인트에 수학식 5와 수학식 6을 적용하여 최적의 압축율을 제공하는 인트라 예측 모드를 결정한다. 일 실시예로, 각 포인트의 인트라 예측 모드는 모드 1 내지 모드 7 중 하나가 될 수 있다.
상기 예측 유닛 생성부(51036)는 프레임 간 예측이 허용되는 경우 상기 예측 트리 생성부(51032)에서 생성된 예측 트리(또는 예측 트리 내 포인트들)를 복수개의 예측 유닛(prediction unit, PU)들로 분할한다. 본 문서에서 예측 유닛(PU)은 예측 트리(predictive tree)에 속하는 부분 집합의 개념으로 정의한다.
실시예들에 따르면, PU를 정의함에 있어서 PU에 속하는 노드들은 서로 부모-자식의 관계를 가질 수 있으며, 이는 예측 트리에서 정의하는 부모-자식의 관계를 따를 수 있다.
본 문서에서 PU를 정의하는 방법은 다양한 방법들이 사용될 수 있다. 예를 들어, 예측 트리 내에서 거리상으로 인접한 포인트들의 집합으로 PU를 구분하는 방법이 사용될 수 있다. 다른 예로, 예측 트리 내의 포인트들을 순서대로 나열했을 때 일정 개수에 따라 PU를 구분하는 방법이 사용될 수 있다. 이때 각 포인트는 PU들 중 하나와 일대일 매칭이 될 수 있다.
실시예들에 따르면, 프레임 간에 존재하는 움직임은 x,y,z와 같은 3차원 공간에서 정의될 수 있으며, 프레임 간의 움직임을 글로벌 움직임 벡터(global motion vector)로 정의할 수 있다. 이와는 달리 프레임 내에서 지역적으로 서로 다른 움직임을 가질 수 있는데 이를 로컬 움직임 벡터(local motion vector)로 정의할 수 있다.
실시예들에 따르면, 움직임 벡터(Motion Vector, MV)는 외부에서 전달되거나 (예를 들어, 차량에 장착된 LiDAR에 의해 데이터가 획득되는 경우 차량의 GPS 정보 등을 통해 global motion vector를 획득할 수 있음), 또는 프레임 간의 움직임 벡터를 추정하기 위한 움직임 추정(motion estimation) 기술을 사용할 수 있다. 그리고, 획득된 MV는 이전 프레임 내의 정보를 기반으로 현재 프레임의 정보를 추정하기 위해 사용될 수 있다.
즉, 각각의 PU에 대해 참조 프레임(또는 이전 프레임이라 함) 상에서 움직임 벡터(MV)를 찾기 위한 범위인 서치 윈도우(search window) 내에서 움직임 추정(ME)을 수행할 수 있다.
다음은 움직임 벡터(MV)를 추정하기 위한 움직임 추정(motion estimation)부(51037)에 대해 설명한다.
상기 예측 유닛 생성부(51036)에서 PU가 생성되면, 상기 움직임 추정부(51037)는 예측 유닛(prediction unit, PU) 단위로 움직임 추정을 수행한다. 즉, 움직임 추정은 PU별로 수행될 수 있다.
도 18은 실시예들에 따른 현재 프레임과 이전 프레임과의 관계의 예시를 보인 도면이다. 도 18에서 프레임 n (즉, n번째 프레임)은 현재 프레임을 나타내고, 프레임 n-1은 이전 프레임을 나타낸다. 특히, 도 18은 n 번째 프레임에 속하는m 번째 예측 트리 내에 k 번째 PU에 대한 정의를 묘사하고, 이전 프레임과의 관계성을 나타낸다. 도 18은 PU에 속하는 포인트들의 수를 8개로 정의한 경우의 예시이다. 여기서, 8개는 당업자의 이해를 돕기 위한 일 실시예이며, PU에 속하는 포인트들의 개수는 8개로 제한되지 않는다.
실시예들에 따르면, 현재 프레임의 k번째 PU(즉, PU k)에 대해서 참조 프레임(reference frame, 즉 이전 프레임) 내에서 포인트 분포가 유사한 부분을 선택함으로써 움직임 정보를 추정할 수 있다. 이때, 참조 프레임은 코딩이 완료된 프레임 전체 혹은 일부가 될 수 있다. 실시예들에 따르면, 코딩이 완료된 참조 프레임을 저장하기 위해 포인트 클라우드 송신 장치 또는 지오메트리 인코더는 버퍼(도시되지 않음)을 구비할 수 있다. 또한, 버퍼는 복수개의 참조 프레임들을 저장할 수 있으며, 움직임 추정부(51036)는 움직임 추정을 위해 버퍼에 저장된 복수개의 참조 프레임들 중 하나 이상을 선택할 수 있다.
도 18에서는 n-1 번째 프레임을 선택된 참조 프레임으로 가정하고, 참조 프레임 내 움직임 벡터를 찾기 위한 범위 (즉, search window) 내에서 PU k와 유사한 특성을 갖는 포인트들의 집합을 구하는 예시를 나타내고 있다. 이때 서치 윈도우(search window)는 참조 프레임의 전체 또는 일부로 정의 될 수 있으며, 3차원 공간에서 정의될 수 있다. 실시예들에 따르면, 서치 범위(search range) 내에서 가장 유사한 특성을 갖는 포인트의 집합을 예측기(predictor)로 정의할 수 있다. 그리고, 예측기의 바운딩 박스(bounding box) 크기는 PU의 바운딩 박스의 크기와 같거나 또는 스케일링된 값을 고려할 수 있다.
실시예들에 따르면, PU를 추정하기 위한 최적의 예측기를 찾기 위해서는 서치 윈도우 내에서 PU 바운딩 박스 크기의 후보 중에서 에러를 최소화하는 방법을 사용할 수 있다. 이때 에러는 블록 전체에 대한 에러로 정의할 수 있으며, 블록 에러를 추정하기 위한 범위인 서치 윈도우는 n-1번째 프레임 전체 또는 일부로 정의 될 수 있다. 본 문서에서 정의하는 PU 바운딩 박스, 예측기 바운딩 박스, 서치 범위 등은 3차원 공간에 정의되는 경우를 고려하며 각 축 방향으로의 서치 범위를 갖는 직사각기둥의 형태가 될 수 있다.
다음의 수학식 7은 블록 에러를 구하는 식이다.
[수학식 7]
Figure pct00010
수학식 7에서 distortion은 PU 내의 각 포인트와 가장 인접한 예측기 내 포인트와의 위치 차이 또는 어트리뷰트 차이 또는 위치와 어트리뷰트 차이를 나타낸다. Rate는 움직임 벡터를 사용하는 경우 필요한 비트스트림 크기 예측값을 나타낸다. 그리고, Lambda는 distortion과 rate의 비중을 조절하는 변수를 나타낸다.
상기 움직임 추정부(5137)에서 움직임 추정이 수행되면, 움직임 보상(motion compensation)부(51038)에서는 움직임 추정의 결과로 획득된 움직임 벡터(MV)를 기반으로 움직임 보상을 수행하여 PU와 유사성을 갖는 하나의 예측기를 참조 프레임 내에서 생성할 수 있다.
다음은 움직임 보상(motion compensation)에 대한 설명이다.
실시예들에 따르면, 움직임 추정을 통해 획득한 움직임 벡터(MV)를 기반으로 코딩하고자 하는 PU의 예측기를 참조 프레임에서 추정할 수 있다. 이때, 수신기에서는 PU 바운딩 박스를 추정할 수 없으므로 별도로 전달받은 예측기의 바운딩 박스 정보와 움직임 벡터, 그리고 참조 프레임 인덱스 (ref_frame_id)를 이용하여 예측기를 생성할 수 있다.
도 19는 실시예들에 따라 움직임이 적용된 예측기를 생성하는 예시를 보인 도면이다. 도 19는 ref_frame_id = n-1, predictor bounding box = PU bounding box 인 경우를 나타낸 것이다. 실시예들에 따라, ref_frame_id로 지칭하는 참조 프레임에 대해서 움직임 벡터와 예측기의 바운딩 박스 크기를 기준으로 예측기의 위치 및 크기를 정의할 수 있다. 또한, 예측기 내에 속한 포인트들에 움직임 벡터를 적용함으로써 움직임이 적용된 예측기를 생성할 수 있다.
상기 움직임 보상부(51038)에서 움직임이 적용된 예측기가 생성되면, 인터 프레임 예측부(51039)는 상기 예측기를 이용하여 인터 프레임 예측 모드를 선택하는 인터 프레임 예측을 수행한다. 즉, 상기 인터 프레임 예측부(51039)는 상기 움직임 보상부(51038)에서 생성된 예측기 내에서 현재 PU의 압축 대상 포인트와 유사한 포인트를 찾고 이를 기반으로 프레임 간 예측을 수행할 수 있다.
다음은 인터 프레임 예측 모드 선택(Inter frame prediction mode selection )에 대해 설명한다.
인터 프레임 예측 모드 선택 (Inter frame prediction mode selection)
본 문서는 움직임 벡터를 기반으로 추정된 예측기를 이용하여 현재 프레임에 있는 포인트의 압축 효율을 높일 수 있다. 실시예들에 따른 예측 기반의 압축 방법은 이미 코딩된 포인트의 정보를 기반으로 현재 포인트를 추정하는 방법이다. 이때, 추정의 정확도를 높이기 위해서는 이미 코딩된 포인트들 중 현재 포인트와 가장 유사한 포인트를 사용하는 것이 중요하다. 따라서, 프레임 간 상관관계에 기반하여 예측을 하는 경우(예, 인터 프레임 예측), 압축 대상 프레임 (즉, 참조 프레임)에서 현재 포인트와 유사한 포인트를 사용함으로써, 프레임 내 상관관계에 기반하여 예측하는 방법(예, 인트라 프레임 예측)보다 더 높은 압축 효율을 얻을 수 있다. 특히 예측 트리의 루트와 같이 인접 포인트 정보를 사용하지 않고 포인트 정보를 그대로 압축하는 경우, 인접 프레임(즉, 참조 프레임)의 포인트 정보를 사용함으로써 압축 효율이 높아지는 효과를 얻을 수 있다.
1) 예측기의 예측 트리 구성
실시예들에 따르면, 인터 프레임 예측부(51039)는 참조 프레임에서 최소의 MV를 갖는 예측기에 대해 포인트 간의 예측 트리를 구성할 수 있다. 이때 구성 방법은 기존의 예측 트리 구성 방법을 사용할 수 있다. 예를 들어, 몰톤 코드(Morton code) 순서에 따라 예측기의 예측 트리를 구성하거나, x 축 방향, y 축 방향, z 축 방향과 같이 축의 우선순위에 따라서 한번에 하나의 축을 중심으로 순차적으로 정렬하여 예측기의 예측 트리를 구성할 수 있다. 즉, xy 평면(plane)을 고정 후 z 에 대해 오름차순으로 정렬하거나 또는, xz 평면을 고정 후 y에 대해 오름차순으로 정렬하거나 또는 yz 평면을 고정 후 x 에 대해 오름차순으로 정렬함으로써, 예측기의 예측 트리를 생성할 수 있다. 본 문서는 예측 트리 생성 방법을 별도로 시그널링할 수 있다(예, predictor_pred_tree_generation_type).
만일, 좌표 변환(coordinate conversion) 이 필요한 경우, 좌표 변환 이후에 정렬이 이루어짐을 별도로 시그널링 할 수 있다(예, predictor_coordinate_type). 예를 들어, 별도의 좌표(coordinate)를 사용하는 경우, 참조 프레임에 대한 좌표 변환 후에 사전에 정의된 혹은 별도의 시그널을 통해 알려주는 r 축, phi 축, laser id축의 우선 순위에 따라 정렬함으로써 예측기의 예측 트리를 구성할 수 있다. 만약 별도의 시그널링이 없는 경우 예측 코딩(predictive coding)에서 사용되는 좌표를 그대로 사용함을 나타낼 수 있다. 경우에 따라서 참조 프레임에 대해 예측 코딩 좌표(predictive coding coordinate)와 같은 좌표 공간으로 변환이 필요할 수 있다.
도 20(a), 도 20(b)는 실시예들에 따른 예측기의 예측 트리 생성의 예시를 보인 도면이다. 즉, 도 20(a)와 도 20(b)에서, 도면 부호 51040(즉, 실선의 사각형)은 참조 프레임 내 예측기(예, 예측기 k)의 3D 바운딩 박스를 나타내고, 동그라미들은 참조 프레임에 속한 포인트들 중에 상기 예측기에 속한 포인트들을 나타낸다. 그리고, 도 20(b)에서 동그라미 사이의 실선은 전술한 방법에 의해 생성된 예측 트리에 의해 부모-자식(parent-child) 관계를 나타낸다.
2) 인터 프레임 상관(Inter-frame correlation)
실시예들에 따르면, 도 20(b)와 같이 예측기의 예측 트리가 생성되면, 인터 프레임 예측부(51039)는 예측기 내의 포인트들에 대해 현재 포인트와의 관계성을 부여할 수 있다. 본 문서는 예측기와 PU 에 속한 포인트들 사이의 관계를 정의함에 있어서 포인트 사이의 거리를 사용하는 것을 일 실시예로 한다.
도 21은 실시예들에 따라 움직임 벡터에 의한 차이가 보상된 예측기와 PU를 동시에 표현한 도면이다. 도 21에서 헤칭이 없는 동그라미들은 현재 프레임의 k 번째 PU에 속한 포인트들을 나타내고, 헤칭이 있는 동그라미들은 참조 프레임의 예측기(즉, k 번째 PU와 가장 유사한 포인트들의 집합)에 속한 포인트들을 나타낸다. 그리고, 동그라미 사이의 실선은 예측 트리에 의해 부모-자식 관계를 나타내고, 사각형은 PU와 예측기의 3D 바운딩 박스를 나타낸다. 즉, PU의 바운딩 박스의 크기와 예측기의 바운딩 박스 크기가 같은 경우의 예시이다. 이때, 예측기의 예측 트리는 이전 단계에서 구한 방법을 사용할 수 있으며, PU의 예측 트리는 PU 포인트 사이의 관계를 기반으로 예측 트리를 구성할 수 있다.
도 21에서와 같이 k번째 PU와 가장 유사한 포인트들의 집합인 예측기를 사용하여 압축을 수행하면, 적은 에러를 가지는 참조 프레임(즉, 이전 프레임)의 노드 위치로 현재 프레임의 노드 위치를 추정할 수 있다.
즉, PU에 속한 포인트들과 예측기에 속한 포인트들에 대해서, PU의 포인트로부터 예측기의 포인트와의 거리(distance, 또는 dist라 함)를 다음의 수학식 8과 같이 정의할 수 있다.
[수학식 8]
Figure pct00011
수학식 8에서 pPU (n)는 PU에 속한 n 번째 포인트를 나타내고, Ppredictor (m)은 예측기에 속한 m 번째 포인트의 위치 또는 어트리뷰트 또는 위치와 어트리뷰트(위치/어트리뷰트/위치와 어트리뷰트)를 나타낼 수 있다. 위에서 정의하는 dist를 기반으로 PU 에 포함된 각 포인트와 예측기에 속한 포인트 사이의 dist를 구할 수 있으며, dist가 최소화 되는 예측기의 포인트를 PU의 포인트와의 상관(correlation)이 높은 포인트로 정의할 수 있으며, 이를 인터 프레임 상관 포인트(inter-frame correlated point)라 지칭할 수 있다.
이때, 예측기에 따라서 포인트 사이의 일대일 매칭이 이루어 지지 않을 수 있다. 예를 들어, 예측기 내 하나의 포인트가 PU의 복수의 포인트들과 관계를 가질 수 있다. 반대로, 예측기 내 복수개의 포인트들이 PU의 하나의 포인트와 관계를 가질 수 있다.
도 22는 실시예들에 따른 k번째 PU에 속하는 포인트들과 움직임 보상 이후의 예측기에 속하는 포인트들 사이의 인터 프레임 상관 관계의 예시를 보인 도면이다. 도 22는 PU에 속한 포인트의 개수가 예측기에 속한 포인트들의 개수보다 작은 경우의 예시이다. 도 22에서, PU의 각 포인트에 대해 점선으로 연결된 예측기의 각 포인트는 인터 프레임 상관 포인트(inter-frame correlated point)를 나타낸다.
실시예들에 따르면, 포인트 클라우드 송신 장치에서는 각 포인트와 관련된 인터 프레임 상관 포인트에 대한 정보를 전달할 수 있다(예, correlated_point_index). 본 문서에서는 인터 프레임 상관 포인트의 위치를 전달하기 위한 다양한 방법이 사용될 수 있다. 예를 들어, 각각의 포인트의 위치를 직접 전달할 수 있다. 다른 예로, 참조 프레임 상에서의 위치를 직접 전달하는 경우 필요한 비트를 줄이기 위해 움직임 벡터를 기준으로 각 포인트 위치의 차이값을 전달할 수 있다. 또 다른 예로, 연속된 상관 포인트 간의 각 포인트의 위치의 유사성을 기반으로 PU 포인트의 코딩 순서에 따라 선행 상관 포인트와 현재 상관 포인트의 차이를 전달할 수 있다. 또 다른 예로, 예측기에 대한 예측 트리 구성을 기반으로 포인트 인덱스(혹은 선행 포인트 인텍스와의 차이(difference) 값)를 전달할 수 있다(예, correlated_point_index). 실시예들에 따르면 포인트 인덱스를 전달하는 방법의 경우, 전달하는 정보량이 가장 적을 수 있지만 포인트 클라우드 수신 장치에서 예측기의 예측 트리를 생성해야 하는 부분이 부담이 될 수 있다. 예를 들어, correlated_point_index는 참조 프레임에서 정의된 예측기에 대해 현재 포인트와 관련있는 포인트를 특징하기 위한 방법으로써 인덱스를 알려줄 수 있다.
또 다른 방법으로는 인터 프레임 상관 포인트(inter-frame correlated point)에 대한 정보를 유추할 수 있다. 예를 들어 n 번째 포인트 p(n)을 코딩할 때, 코딩을 마친 PU 포인트들 p(0)~p(n-1) 에 대해서 인터 프레임 상관 포인트 c(0)~c(n-1)를 예측기 내에서 찾을 수 있다. 이때 부모-자식 유사성 및 PU-예측기 유사성에 기반하여 p(n-1)의 상관 포인트인 c(n-1)의 자식을 p(n)에 대한 상관 포인트 c(n)으로 가정할 수 있다. 이 경우 상관 포인트에 대한 정보를 별도로 전송하지 않아도 된다는 장점이 있지만, p(n)과 c(n) 사이의 상관관계가 높지 않은 경우 잔여 정보(residual 또는 잔차라 함)의 크기가 커질 수 있다.
3) 최적의 인터 예측 모드(Inter-prediction mode) 선택
실시예들에 따르면, 도 22와 같이 인터 프레임 상관 포인트가 결정되면, 인터 프레임 예측부(51039)는 예측 에러(또는 잔여 정보 또는 잔차라 함)가 최소가되는 최적의 인터 예측 모드를 선택할 수 있다.
즉, k 번째 PU에 대한 예측기 k 를 PU의 각 포인트에 대한 예측에 사용할 수 있다. 예측 기반의 압축 방법은 코딩된 포인트 정보를 기반으로 현재의 포인트를 예측한다는 측면에서, 예측에 사용되는 대상 포인트(예, 예측기의 포인트)와 압축 대상이 되는 포인트(예, PU의 포인트)가 높은 유사성을 갖는 경우 압축 효율을 높일 수 있다. 본 문서의 실시 예에서는 압축 대상 포인트와 높은 유사성을 갖는 예측 대상 포인트를 선택하기 위한 방법으로써, 움직임 추정을 통해 최소의 블록 에러를 갖는 예측기를 참조 프레임에서 선택하고, 예측기 내에서 최소의 거리(즉, PU의 압축 대상 포인트와의 거리)를 갖는 포인트(이를 인터 프레임 상관 포인트라 칭함)를 선택하는 방법을 사용한다. 따라서 서로 다른 프레임에 존재하는 포인트 간 유사성(inter-frame correlation) 이 높은 포인트를 예측에 사용할 수 있게 된다.
이때, PU의 n번째 포인트 p(n)를 예측함에 있어서 참조 프레임 상에서 연관성이 있는 포인트(즉, 상관 포인트)를 c(n)으로 정의하고, 상관 포인트(correlated point)의 부모를 c(n-1)으로, 상관 포인트의 자식을 c(n+1)으로, PU 내 현재 포인트 p(n)의 부모를 p(n-1)로 정의하는 경우, 아래의 수학식 9와 같이 가중치 평균(weighted average)을 통해 인터 프레임 예측을 수행할 수 있다.
아래의 수학식 9는 인터 프레임 상관에 기반하여 예측하는 경우에 대한 실시예이다. 본 문서는 보다 넓은 범위 (e.g., grandparent, grandchild) 또는 조합을 사용하거나 보다 일반적인 경우로써 p(n)으로부터의 거리 또는 어트리뷰트 또는 거리와 어트리뷰트(거리/어트리뷰트/거리와 어트리뷰트) 측면에서 상관도가 높은 예측기 이웃 포인트(predictor neighbor point)에 대한 조합 (e.g., weighted mean)을 사용할 수도 있다.
[수학식 9]
Figure pct00012
수학식 9에서, p'(n)는 p(n)에 대한 예측값을 나타내고, InterMode 0~InterMode3는 인터 예측 모드 0~인터 예측 모드 3이라 칭하기로 한다. 그리고, w0, ..., w7은 가중치를 나타내며, 스케일(scale) 값, 임의의 상수, 또는 포인트 사이의 거리에 대한 역수에 대한 함수로 정의될 수 있으며, 미리 정한 값을 사용하거나 임의의 값을 시그널링 할 수 있다. 예를 들어, interMode 1 인 경우 현재 프레임의 예측값이 참조 프레임의 예측값보다 정확도가 더 높다고 가정하는 경우 w1 = 5/8, w2=3/8와 같은 가중치를 사용할 수 있다.
실시예들에 따르면, PU의 n번째 포인트 p(n)에 대해 수학식 9의 인터 예측 모듣들(즉, InterMode 0~InterMode3)을 각각 적용하여 4개의 예측 에러 값들을 계산하고, 계산된 4개의 예측 에러 값들 중 가장 작은 예측 에러 값을 갖는 인터 예측 모드를 PU의 n번째 포인트 p(n)의 최적의 인터 예측 모드로 설정할 수 있다.
즉, 포인트 클라우드 송신 장치에서는 각각의 인터 예측 모드를 사용하는 경우에 대해 엔트로피 측면에서 최적의 인터 예측 모드를 선택할 수 있으며, 선택된 인터 예측 모드 또는 인터 예측 모드를 식별하기 위한 정보(예, interMode)를 포인트 클라우드 수신 장치에 전달할 수 있다. 예를 들어, interMode는 인터 프레임 기반의 예측 사용되는 경우, 선택된 인터 예측 모드를 나타낼 수 있다. 필요에 따라 interMode에 따른 가중치 w0, ..., w7를 예측 계수 coeff 를 통해 전달할 수 있다.
실시예들에 따른 포인트 클라우드 수신 장치에서는 포인트 클라우드 송신 장치에서 전달한 인터 예측 모드 또는 인터 예측 모드를 식별하기 위한 정보를 기반으로 포인트를 예측하기 위한 대상 포인트들(예, c(n), c(n-1), c(n+1), p(n-1) 등)을 현재 프레임 또는 참조 프레임으로부터 선택할 수 있다.
이때, 인터 프레임 예측부(51039)는 위에서 설명한 바와 같이 최적의 인터 예측 모드가 선택되면, 선택된 인터 예측 모드를 기반으로 현재 포인트 p(n)에 대한 예측 포인트 p'(n)을 생성할 수 있으며, 예측에 의한 잔차(또는 잔여 정보라 함) r(n)은 다음의 수학식 10과 같이 정의하고 포인트 클라우드 수신 장치에 전달할 수 있다.
[수학식 10]
Figure pct00013
상기 인터 프레임 예측부(51039)에서 선택된 인터 예측 모드 정보와 상기 선택된 인터 예측 모드 정보를 기반으로 구한 잔여 정보는 모드 선택부(51034)로 출력된다.
상기 모드 선택부(51034)는 상기 인트라 프레임 예측부(51033)에서 출력되는 인트라 예측 모드 정보와 잔여 정보 그리고, 상기 인터 프레임 예측부(51039)에서 출력되는 인터 예측 모드 정보와 잔여 정보 중 하나를 선택하여 엔트로피 코딩부(51035)로 출력한다. 본 문서는 상기 인트라 프레임 예측부(51033)에서 출력되는 인트라 예측 모드 정보를 가장 최선의 인트라 예측 모드인 bestIntraMode라 칭하고, 상기 인터 프레임 예측부(51039)에서 출력되는 인터 예측 모드 정보를 가장 최선의 인터 예측 모드인 bestInterMode라 칭하기로 한다.
상기 모드 선택부(51034)는 포인트/PU/슬라이스/예측 트리/데이터 유닛/프레임 단위로 인터 예측 모드 정보와 잔여 정보 또는 인트라 예측 모드 정보와 잔여 정보를 선행적으로 선택할 수 있다. 즉, 압축 대상에 대해 프레임 내 예측 및 프레임 간 예측이 수행되고 나면, 상기 모드 선택부(51034)는 최적의 예측을 위해 인트라 예측 모드와 인터 예측 모드 중 하나를 선택할 수 있다. 이때, 예측 모드를 선택하는 단위는 프레임, 데이터 유닛, 예측 트리, 슬라이스, PU, 또는 포인트 중 하나가 될 수 있다.
실시예들에 따르면, 상기 모드 선택부(51034)는 인트라 예측 모드를 사용하는 경우와 인터 예측 모드를 사용하는 경우에 발생하는 코스트(cost)를 다음의 수학식 11과 같이 구할 수 있다.
[수학식 11]
Figure pct00014
수학식 11에서 distortion(mode)는 모드를 사용하는 경우 발생하는 차이로 인해 발생된 코스트를 나타낸다. Rate(mode)는 모드를 사용함으로 인해 사용하게 되는 비트스트림 사이즈를 나타낸다. 즉, 모드를 사용하는 경우 필요한 비트스트림 사이즈를 나타낸다. 그리고, Lambda는 distortion과 rate의 비중을 조절하는 변수를 나타낸다.
이때, 모드(mode)는 bestInterMode또는 bestIntraMode 중 하나가 될 수 있으며, 각각의 코스트를 비교하여 포인트/PU/슬라이스/예측 트리/데이터 유닛/프레임 단위로 인터 예측 또는 인트라 예측 여부를 선택적으로 결정할 수 있다.
예를 들어, 하기와 같이 인트라 예측 모드일 때의 코스트가 인터 예측 모드일 때의 코스트보다 작으면 인트라 예측 모드를 선택하고, 그렇지 않으면 인터 예측 모드를 선택할 수 있다.
If cost (bestIntraMode) < cost (bestInterMode) intra-prediction
Else inter-prediction
상기 모드 선택부(51034)에서 각 노드(또는 포인트)에 대해 최적의 압축율을 제공하는 예측 모드가 결정되면, 결정된 예측 모드, 결정된 예측 모드를 기반으로 구한 잔여 정보(즉, 예측 에러에 의한 잔차 (residual)), 움직임 벡터, 바운딩 박스 사이즈 등의 정보가 엔트로피 인코딩부(51035)에서 엔트로피 인코딩되어 비트스트림(또는 지오메트리 비트스트림이라 함) 형태로 출력된다.
도 23은 실시예들에 따른 예측 기반의 압축을 수행하기 위한 지오메트리 인코딩 과정의 예시를 보인 흐름도이다.
먼저 포인트 클라우드 데이터의 포인트들을 정렬한 후 예측 트리를 생성하여 부모-자식 관계를 설정한다(단계 51051).
그리고, 인터 프레임 예측을 위해, 상기 예측 트리(즉, 예측 트리 내 포인트들)를 복수개의 예측 유닛(PU)들로 분할하여 PU들을 생성한다(단계 51052).
각각의 PU에 대해, 프레임 간 예측을 위한 참조 프레임을 선택하고(단계 51053), 움직임 벡터 선택 범위인 서치 윈도우(search window) 내에서 예측기 크기 단위로 가장 최소의 에러를 갖는 움직임 벡터를 찾는 움직임 추정 과정을 수행한다(단계 51054). 단계 51054는 움직임 추정을 위해 서치 윈도우와 예측기 크기를 입력받을 수 있다.
상기 움직임 추정을 통해 선택된 움직임 벡터를 기반으로 움직임 보상 과정을 수행하여, 현재 PU와 유사성을 갖는 하나의 예측기를 참조 프레임을 기반으로 생성한다(단계 51055). 그리고, 생성된 예측기에 대해 포인트 간의 예측 트리를 구성한다(단계 51056). 단계 51056는 예측기의 예측 트리 생성을 위해 예측 트리 생성 방법을 입력받을 수 있다.
상기 예측기의 예측 트리 내에서 현재 PU의 압축 대상 포인트와 가장 유사한 포인트(이를 인터 프레임 상관 포인트라 칭함)를 찾는다(단계 51057). 즉, 예측기의 예측 트리 내 각 포인트를 인덱스로 지정하도록 한 후, 가장 가까운 이웃 서치(nearest neighbor search)와 같은 방법을 이용하여 현재 PU의 압축 대상 포인트와 가장 인접한 포인트를 예측기 내에서 선택한다. 그리고, 본 문서는 선택된 포인트를 상관 포인트 또는 인터 프레임 상관 포인트라 칭한다.
단계 51057에서 찾은 상관 포인트를 기반으로 인터 프레임 예측을 수행하여 최적의 인터 예측 모드(bsetInterMode)를 선택하고, 상기 선택된 인터 예측 모드를 기반으로 잔여 정보를 생성한다(단계 51058~단계 51060). 여기서 잔여 정보는 압축 대상 포인트(즉, 현재 PU의 포인트)의 위치값과 예측 대상 포인트(즉, 예측기의 상관 포인트)의 위치값의 차이로 구해진다. 실시예들에 따라, 각 인터 예측 모드(예, InterMode 0~InterMode 3)에 대해 Rate distortion에 기반한 코스트(cost)를 비교하여 최소의 코스트를 갖는 인터 예측 모드를 최적의 인터 예측 모드(bsetInterMode)로 선택할 수 있다.
한편, 단계 51051에서 예측 트리가 생성되면, 인트라 프레임 예측을 수행하여 가장 최적의 인트라 예측 모드를 선택하고, 상기 선택된 인트라 예측 모드를 기반으로 잔여 정보를 생성한다(단계 51062~단계 51064). 실시예들에 따라, 각 인트라 예측 모드(예, mode 1~mode 7)에 대해 Rate distortion에 기반한 코스트(cost)를 비교하여 최소의 코스트를 갖는 인트라 예측 모드를 최적의 인트라 예측 모드(bsetIntraMode)로 선택할 수 있다.
그리고, 최적의 인터 예측 모드와 최적의 인트라 예측 모드를 비교하여 적은 비트 사이즈로 낮은 예측 에러를 생성하는 모드를 최종 예측 모드로 선택할 수 있다(단계 51061). 또는 최적의 인트라 예측 모드일 때의 코스트가 최적의 인터 예측 모드일 때의 코스트보다 작으면 최적의 인트라 예측 모드를 선택하고, 그렇지 않으면 최적의 인터 예측 모드를 선택할 수 있다.
이와 같은 과정은 모든 포인트에 대해 수행할 수 있으며, 프레임 내 예측 또는 프레임 간 예측의 선택은 프레임/데이터 유닛/슬라이스/예측 트리/예측 유닛/포인트 단위로 선택할 수 있다.
도 23에서 설명되지 않거나 생략된 부분은 도 15 내지 도 22의 설명을 참조하기로 한다.
도 24는 실시예들에 따른 송/수신을 위한 포인트 클라우드 데이터의 비트스트림 구조의 예시를 나타낸다. 실시예들에 따르면, 도 1, 도 2, 도 4, 도 12, 도 16 중 어느 하나의 포인트 클라우드 비디오 인코더에서 출력되는 비트스트림은 도 24의 형태일 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터의 비트스트림은 포인트 클라우드 데이터를 영역별로 나누어 처리할 수 있도록 타일 또는 슬라이스를 제공한다. 실시예들에 따른 비트스트림의 각각의 영역은 서로 다른 중요도를 가질 수 있다. 따라서, 포인트 클라우드 데이터가 타일들로 나누어지는 경우, 각 타일별로 다른 필터(인코딩 방법), 다른 필터 유닛을 적용할 수 있다. 또한 포인트 클라우드 데이터가 슬라이스들로 나누어지는 경우, 각 슬라이스별로 다른 필터, 다른 필터 유닛을 적용할 수 있다.
실시예들에 따른 송신 장치는, 도 24와 같은 비트스트림의 구조에 따라 포인트 클라우드 데이터를 전송함으로써, 중요도에 따라서 다른 인코딩 동작을 적용할 수 있게 하고, 품질(quality)이 좋은 인코딩 방법을 중요한 영역에 사용할 수 있는 방안을 제공할 수 있다. 또한 포인트 클라우드 데이터의 특성에 따른 효율적인 인코딩 및 전송을 지원하고 사용자의 요구사항에 따른 어트리뷰트 값을 제공할 수 있다.
실시예들에 따른 수신 장치는, 도 24와 같은 비트스트림의 구조에 따라 포인트 클라우드 데이터를 수신함으로써, 수신 장치의 처리능력(capacity)에 따라서 포인트 클라우드 데이터 전체에 복잡한 디코딩(필터링) 방법을 사용하는 대신 영역별로 (타일 또는 슬라이스로 나누어진 영역) 서로 다른 필터링(디코딩 방법)을 적용할 수 있게 된다. 따라서, 사용자에게 중요한 영역에 더 좋은 화질과 시스템 상으로 적절한 레이턴시(latency)을 보장할 수 있다.
실시예들에 따른 지오메트리 비트스트림, 어트리뷰트 비트스트림, 및/또는 시그널링 비트스트림(또는 시그널링 정보)이 도 24와 같이 하나의 비트스트림(또는 G-PCC 비트스트림)으로 구성되는 경우, 비트스트림은 하나 또는 그 이상의 서브 비트스트림들을 포함할 수 있다. 실시예들에 따른 비트스트림은 시퀀스 레벨의 시그널링을 위한 SPS (Sequence Parameter Set), 지오메트리 정보 코딩의 시그널링을 위한 GPS(Geometry Parameter Set), 어트리뷰트 정보 코딩의 시그널링을 위한 하나 이상의 APS(Attribute Parameter Set, APS0, APS1), 타일 레벨의 시그널링을 위한 타일 인벤토리(또는 TPS라 함), 하나 이상의 슬라이스들(slice 0 ~ slice n)를 포함할 수 있다. 즉, 실시예들에 따른 포인트 클라우드 데이터의 비트스트림은 하나 이상의 타일들을 포함할 수 있으며, 각 타일은 하나 이상의 슬라이스들(slice 0 ~ slice n)를 포함하는 슬라이스들의 그룹일 수 있다. 실시예들에 따른 타일 인벤토리(즉, TPS)는 하나 이상의 타일들에 대하여 각 타일에 관한 정보(예를 들면 tile bounding box의 좌표값 정보 및 높이/크기 정보 등)를 포함할 수 있다. 각 슬라이스는 하나의 지오메트리 비트스트림(Geom0) 및/또는 하나 이상의 어트리뷰트 비트스트림들(Attr0, Attr1)을 포함할 수 있다. 예를 들어, 슬라이스 0(slice 0)는 하나의 지오메트리 비트스트림(Geom00) 및 하나 이상의 어트리뷰트 비트스트림들(Attr00, Attr10)을 포함할 수 있다.
각 슬라이스 내 지오메트리 비트스트림은 지오메트리 슬라이스 헤더(geom_slice_header)와 지오메트리 슬라이스 데이터(geom_slice_data)로 구성될 수 있다. 실시예들에 따르면, 각 슬라이스 내 지오메트리 비트스트림은 지오메트리 데이터 유닛, 지오메트리 슬라이스 헤더는 지오메트리 데이터 유닛 헤더, 지오메트리 슬라이스 데이터는 지오메트리 데이터 유닛 데이터라 칭하기도 한다. 실시예들에 따른 지오메트리 슬라이스 헤더(또는 지오메트리 데이터 유닛 헤더)는 지오메트리 파라미터 세트(GPS)에 포함된 파라미터 세트의 식별 정보(geom_parameter_set_id), 타일 식별자(geom_tile_id), 슬라이스 식별자(geom_slice_id) 및 지오메트리 슬라이스 데이터(geom_slice_data)에 포함된 데이터에 관한 정보 (geomBoxOrigin, geom_box_log2_scale, geom_max_node_size_log2, geom_num_points) 등을 포함할 수 있다. geomBoxOrigin는 해당 지오메트리 슬라이스 데이터의 박스 원점을 나타내는 지오메트리 박스 오리진 정보이고, geom_box_log2_scale는 해당 지오메트리 슬라이스 데이터의 로그 스케일을 나타내는 정보이며, geom_max_node_size_log2는 루트 지오메트리 옥트리 노드의 사이즈를 나타내는 정보이며, geom_num_points는 해당 지오메트리 슬라이스 데이터의 포인트들의 개수와 관련된 정보이다. 실시예들에 따른 지오메트리 슬라이스 데이터(또는 지오메트리 데이터 유닛 데이터)는 해당 슬라이스 내 포인트 클라우드 데이터의 지오메트리 정보(또는 지오메트리 데이터)를 포함할 수 있다.
각 슬라이스 내 각 어트리뷰트 비트스트림은 어트리뷰트 슬라이스 헤더(attr_slice_header)와 어트리뷰트 슬라이스 데이터(attr_slice_data)로 구성될 수 있다. 실시예들에 따르면, 각 슬라이스 내 어트리뷰트 비트스트림은 어트리뷰트 데이터 유닛, 어트리뷰트 슬라이스 헤더는 어트리뷰트 데이터 유닛 헤더, 어트리뷰트 슬라이스 데이터는 어트리뷰트 데이터 유닛 데이터라 칭하기도 한다. 실시예들에 따른 어트리뷰트 슬라이스 헤더(또는 어트리뷰트 데이터 유닛 헤더)는 해당 어트리뷰트 슬라이스 데이터(또는 해당 어트리뷰트 데이터 유닛)에 관한 정보를 포함할 수 있고, 어트리뷰트 슬라이스 데이터는 해당 슬라이스 내 포인트 클라우드 데이터의 어트리뷰트 정보(또는 어트리뷰트 데이터 또는 어트리뷰트 값이라 함)를 포함할 수 있다. 하나의 슬라이스 내 어트리뷰트 비트스트림이 복수개 있는 경우, 각각은 서로 다른 어트리뷰트 정보를 포함할 수 있다. 예를 들어, 하나의 어트리뷰트 비트스트림은 색상에 해당하는 어트리뷰트 정보를 포함하고, 다른 하나의 어트리뷰트 스트림은 반사율에 해당하는 어트리뷰트 정보를 포함할 수 있다.
실시예들에 따르면, 포인트 클라우드 데이터의 인코딩 및/또는 디코딩에 필요한 파라미터들은 포인트 클라우드 데이터의 파라미터 세트들((예를 들어, SPS, GPS, APS, 및 TPS (또는 타일 인벤토리라 함) 등) 및/또는 해당 슬라이스의 헤더 등에 새로 정의될 수 있다. 예를 들어, 지오메트리 정보의 인코딩 및/또는 디코딩을 수행할 때에는 지오메트리 파라미터 세트(GPS)에, 타일 기반의 인코딩 및/또는 디코딩을 수행할 때에는 타일 및/또는 슬라이스 헤더에 추가할 수 있다.
실시예들에 따르면, 예측 기반의 지오메트리 압축 정보는 지오메트리 파라미터 세트, 지오메트리 슬라이스 헤더(또는 지오메트리 데이터 유닛 헤더라 함), 또는 지오메트리 슬라이스 데이터(또는 지오메트리 데이터 유닛 데이터라 함) 중 적어도 하나에 시그널링될 수 있다.
실시예들에 따르면, 예측 기반의 지오메트리 압축 정보는 어트리뷰트 코딩 방법과 연계하거나 어트리뷰트 코딩에 적용하기 위해 어트리뷰트 파라미터 세트 및/또는 어트리뷰트 슬라이스 헤더(또는 어트리뷰트 데이터 유닛 헤더라 함)에 시그널링될 수 있다.
실시예들에 따르면, 예측 기반의 지오메트리 압축 정보는 시퀀스 파라미터 세트 및/또는 타일 파라미터 세트에 시그널링될 수 있다.
실시예들에 따르면, 예측 기반의 지오메트리 압축 정보는 지오메트리 예측 트리 데이터(geometry_predtree_data())에 시그널링될 수 있다. 상기 지오메트리 예측 트리 데이터(geometry_predtree_data())는 지오메트리 슬라이스 (또는 지오메트리 데이터 유닛이라 함)에 포함될 수 있다.
실시예들에 따르면, 아래 정의된 신택스 엘리먼트(syntax element)가 현재 포인트 클라우드 데이터 스트림뿐 아니라 복수의 포인트 클라우드 데이터 스트림에 적용될 수 있는 경우에는 상위 개념의 파라미터 세트 등을 통해 예측 기반의 지오메트리 압축 정보를 전달할 수 있다.
실시예들에 따르면, 예측 기반의 지오메트리 압축 정보는 어플리케이션, 시스템에 따라 상응되는 위치 또는 별도의 위치에 정의하여 적용 범위, 적용 방법 등을 다르게 사용할 수 있다. 이후 설명되는 본 명세서의 신택스들에서 사용되는 용어인 필드는 파라미터 또는 신택스 엘리먼트와 동일한 의미를 가질 수 있다.
실시예들에 따르면, 예측 기반의 지오메트리 압축 정보를 포함하는 파라미터(메타데이터, 시그널링 정보 등 다양하게 호칭 가능함)는 송신 장치의 메타데이터 처리부(또는 메타데이터 제너레이터)나 시그널링 처리부에서 생성될 수 있고, 수신 장치에 전달되어 디코딩/재구성 과정에 이용될 수 있다. 예를 들어, 송신 장치에서 생성되어 전송되는 파라미터는 수신 장치의 메타데이터 파서에서 획득될 수 있다.
실시예들에 따르면, 슬라이스 간 참조 관계를 통한 압축은 슬라이스의 시작 노드(즉, 루트 노드) 뿐 아니라 임의의 노드에 대해서도 다른 슬라이스 내의 노드를 참조(reference)하도록 적용할 수 있다. 또한 예측 트리간 참조 관계로 확장하여 적용할 수 있다.
전술한 바와 같이 지오메트리 슬라이스 비트스트림은 지오메트리 슬라이스 헤더와 지오메트리 슬라이스 데이터를 포함할 수 있다. 본 문서는 설명의 편의를 위해 지오메트리 슬라이스 비트스트림은 지오메트리 데이터 유닛이라, 지오메트리 슬라이스 헤더는 지오메트리 데이터 유닛 헤더라, 지오메트리 슬라이스 데이터는 지오메트리 데이터 유닛 데이터라 칭하기로 한다.
실시예들에 따른 지오메트리 파라미터 세트는 geom_tree_type 필드를 포함할 수 있다. 상기 geom_tree_type 필드는 위치 정보(즉, 지오메트리 정보)가 옥트리를 사용하여 인코딩되었는지 아니면 예측 트리를 사용하여 인코딩되었는지를 지시한다. 예를 들어, 상기 geom_tree_type 필드의 값이 0이면 위치 정보(즉, 지오메트리 정보)가 옥트리를 사용하여 인코딩되었음을 지시하고, 1이면 위치 정보(즉, 지오메트리 정보)가 예측 트리를 사용하여 인코딩되었음을 지시한다.
도 25는 실시예들에 따른 지오메트리 데이터 유닛(geometry_data_unit())의 신택스 구조의 예시를 보인 도면이다.
실시예들에 따른 지오메트리 데이터 유닛(geometry_data_unit())은 지오메트리 데이터 유닛 헤더(geometry_data_unit_header( )), byte_alignment(), 및 geometry_data_unit_footer()를 포함한다.
실시예들에 따른 지오메트리 데이터 유닛(geometry_data_unit())은 상기 지오메트리 파라미터 세트에 포함된 geom_tree_type 필드의 값이 0이면 지오메트리 옥트리 데이터(geometry_octree())를 더 포함하고, 1이면 지오메트리 예측 트리 데이터(geometry_predtree_data())를 더 포함한다.
도 26은 실시예들에 따른 지오메트리 데이터 유닛 헤더(geometry_data_unit_header())의 신택스 구조의 예시를 보인 도면이다.
도 26에서, gsh_geometry_parameter_set_id 필드는 액티브 GPS의 gps_geom_parameter_set_id 필드의 값을 나타낸다(gsh_geometry_parameter_set_id specifies the value of the gps_geom_parameter_set_id of the active GPS).
gsh_tile_id 필드는 해당 지오메트리 데이터 유닛 헤더에 의해 참조되는 해당 타일(tile)의 식별자를 나타낸다.
gsh_slice_id필드는 다른 신택스 엘레먼트들에 의한 참조를 위해 해당 슬라이스의 식별자를 나타낸다(identifies the slice header for reference by other syntax elements).
slice_tag 필드는 slice_tag의 특정 값을 갖는 하나 이상의 슬라이스들을 식별하기 위해 사용될 수 있다.
frame_ctr_lsb 필드는 notional frame number counter의 LSB(least significant bits)를 나타낸다.
실시예들에 따른 지오메트리 데이터 유닛 헤더는 entropy_continuation_enabled_flag 필드의 값이 거짓이면 gsh_entropy_continuation_flag 필드를 더 포함하고, 상기 gsh_entropy_continuation_flag 필드의 값이 참이면 gsh_prev_slice_id 필드를 더 포함한다.
상기 entropy_continuation_enabled_flag 필드는 SPS에 포함될 수 있다. 상기 entropy_continuation_enabled_flag 필드의 값이 1(즉 참)이면 슬라이스의 초기 엔트로피 콘텍스트 상태가 이전 슬라이스(preceeding slice)의 마지막 엔트로피 콘텍스트 상태에 종속적임을 지시한다(equal to 1 indicates that a slice's initial entropy context state may depend upon the final entropy context state of the preceeding slice). 상기 entropy_continuation_enabled_flag 필드의 값이 0(즉 거짓)이면 각 슬라이스의 초기 엔트로피 콘텍스트 상태가 독립적임을 지시한다.
상기 gsh_prev_slice_id 필드는 비트스트림 순서에서 이전 지오메트리 데이터 유닛의 슬라이스 식별자(즉 gsh_slice_id 필드)의 값을 나타낸다.
실시예들에 따른 지오메트리 데이터 유닛 헤더는 gps_gsh_box_log2_scale_present_flag 필드의 값이 참이면 gsh_box_log2_scale 필드를 포함할 수 있다.
상기 gps_gsh_box_log2_scale_present_flag 필드는 GPS에 포함될 수 있다. 상기 gps_gsh_box_log2_scale_present_flag 필드의 값이 1이면 gsh_box_log2_scale 필드가 현재 GPS를 참조하는 각 지오메트리 데이터 유닛에 시그널링됨을 지시한다. 상기 gps_gsh_box_log2_scale_present_flag 필드의 값이 0이면 gsh_box_log2_scale 필드가 각 지오메트리 데이터 유닛에 시그널링되지 않음을 지시하며 또한 모든 슬라이스들을 위한 커먼 스케일이 현재 GPS의 gps_gsh_box_log2_scale 필드에 시그널링됨을 지시한다.
상기 gsh_box_log2_scale 필드는 해당 슬라이스 오리진의 스케일링 팩터를 나타낸다.
실시예들에 따른 지오메트리 데이터 유닛 헤더는 gsh_box_origin_bits_minus1 필드를 포함할 수 있다.
상기 gsh_box_origin_bits_minus1 필드의 값에 1을 더하여, 다음에 위치한 gsh_box_origin_xyz[k] 필드의 길이를 비트 단위로 나타낸다.
상기 gsh_box_origin_xyz[k] 필드는 해당 슬라이스 오리진의 양자화된 (x,y,z) 좌표의 k번째 컴포넌트를 나타낸다.
실시예들에 따른 지오메트리 데이터 유닛 헤더는 geom_slice_angular_origin_present_flag 필드의 값이 참이면 gsh_angular_origin_bits_minus1 필드와 gsh_angular_origin_xyz[k] 필드를 포함할 수 있다.
상기 geom_slice_angular_origin_present_flag 필드는 GPS에 포함될 수 있다. 상기 geom_slice_angular_origin_present_flag 필드의 값이 1이면 슬라이스 관련 앵귤러 오리진(slice relative angular origin)이 해당 지오메트리 데이터 유닛 헤더에 존재함을 지시한다. 상기 geom_slice_angular_origin_present_flag 필드의 값이 0이면 앵귤러 오리진이 해당 지오메트리 데이터 유닛 헤더에 존재하지 않음을 지시한다.
상기 gsh_angular_origin_bits_minus1 필드에 1을 더하여, 다음에 위치한 gsh_angular_origin_xyz[ k ] 필드의 길이를 비트 단위로 나타낸다.
상기 gsh_angular_origin_xyz[ k ] 필드는 앵귤러 코딩 모드의 프로세싱에서 사용된 오리진의 (x,y,z) 좌표의 k번째 컴포넌트를 나타낸다.
실시예들에 따른 지오메트리 데이터 유닛 헤더는 geom_tree_type 필드의 값이 0(즉, 옥트리 기반 코딩)이면 geom_tree_depth_minus1 필드와 gsh_entropy_stream_cnt_minus1 필드를 포함할 수 있다.
상기 geom_tree_depth_minus1 필드에 1을 더하여, 그 데이터 유닛에 존재하는 지오메트리 트리 레벨들의 개수를 지시한다.
상기 gsh_entropy_stream_cnt_minus1 필드에 1을 더하여, 지오메트리 트리 데이터를 나르기(convey) 위해 사용된 엔트로피 스트림들의 최대 개수를 나타낸다.
실시예들에 따른 지오메트리 데이터 유닛 헤더는 geom_tree_type 필드의 값이 0(즉, 옥트리 기반 코딩)이고 geom_tree_coded_axis_list_present_flag 필드의 값이 참이면 geom_tree_depth_minus1 필드의 값만큼 반복되는 반복문을 포함할 수 있다. 상기 반복문은 geom_tree_coded_axis_flag[ lvl ][ k ] 필드를 포함할 수 있다.
상기 geom_tree_coded_axis_list_present_flag 필드는 GPS에 포함될 수 있다. 상기 geom_tree_coded_axis_list_present_flag 필드의 값이 1이면 각 지오메트리 데이터 유닛이 지오메트리 루트 노드 사이즈를 유추(derive)하기 위해 사용된 geom_tree_coded_axis_flag 필드를 포함함을 지시한다. 상기 geom_tree_coded_axis_list_present_flag 필드의 값이 0이면 geom_tree_coded_axis_flag 필드가 해당 지오메트리 데이터 유닛에 존재하지 않으며 코드된 지오메트리 트리는 큐빅 볼륨(cubic volume)를 나타낸다.
상기 geom_tree_coded_axis_flag[ lvl ][ k ] 필드는 k번째 축(k-th axis)이 지오메트리 트리의 v번째 레벨(즉, 주어진 뎁스)에서 코드되었는지 여부를 지시한다. 상기 geom_tree_coded_axis_flag[ lvl ][ k ] 필드는 루트 노드의 사이즈를 결정하기 위해 사용될 수 있다.
실시예들에 따른 지오메트리 데이터 유닛 헤더는 geom_scaling_enabled_flag 필드의 값이 참이면 geom_slice_qp_offset 필드를 포함하고, geom_tree_type 필드의 값이 1(즉, 예측 트리 기반 코딩)이면 geom_qp_offset_intvl_log2_delta 필드를 더 포함할 수 있다.
상기 geom_scaling_enabled_flag 필드는 GPS에 포함될 수 있다. 상기 geom_scaling_enabled_flag 필드의 값이 1이면 지오메트리 포지션들을 위한 스케일링 과정이 지오메트리 디코딩 과정 동안 적용(invoked)됨을 지시한다. 상기 geom_scaling_enabled_flag 필드의 값이 0이면 지오메트리 포지션들은 스케일링을 요구하지 않음을 지시한다.
실시예들에 따른 지오메트리 데이터 유닛 헤더는 geom_tree_type 필드의 값이 1(즉, 예측 트리 기반 코딩)이면 ptn_residual_abs_log2_bits[ k ] 필드를 포함하고, geometry_angular_enabled_flag 필드의 값이 참이면 ptn_radius_min_value 필드를 더 포함할 수 있다.
상기 ptn_residual_abs_log2_bits[ k ] 필드는 ptn_residual_abs_log2 필드의 k번째 컴포넌트를 코딩하기 위해 사용된 빈들(bins)의 개수를 지시한다. 상기 ptn_residual_abs_log2 필드의 설명은 뒤에서 다시 하기로 한다.
상기 geometry_angular_enabled_flag 필드는 GPS에 포함될 수 있다. 상기 geometry_angular_enabled_flag 필드의 값이 1이면 앵귤러 코딩 모드가 액티브임을 지시한다. 상기 geometry_angular_enabled_flag 필드의 값이 0이면 앵귤러 코딩 모드(angular coding mode)가 액티브하지 않음을 지시한다.
상기 ptn_radius_min_value 필드는 radius의 최소 값을 나타낸다.
도 27은 실시예들에 따른 지오메트리 예측 트리 데이터(geometry_predtree_data())의 신택스 구조의 예시를 보인 도면이다.
실시예들에 따르면, 도 27의 지오메트리 예측 트리 데이터(geometry_predtree_data())는 도 25의 지오메트리 데이터 유닛에 포함될 수 있다. 상기 지오메트리 예측 트리 데이터(geometry_predtree_data())는 지오메트리 슬라이스 데이터 또는 지오메트리 데이터 유닛 데이터로 지칭될 수 있다.
상기 지오메트리 예측 트리 데이터(geometry_predtree_data())는 변수 PtnNodeIdx=0으로 시작하고, gpt_end_of_trees_flag 필드의 값이 거짓(false)이면 종료되는 반복문을 포함한다. 이 반복문은 geometry_predtree_node(PtnNodeIdx)와 gpt_end_of_trees_flag 필드를 포함한다.
변수 PtnNodeIdx은 깊이 우선 순서(depth-first order)에서 파싱된 예측 트리 노드들 상에서 반복을 위해 사용되는 카운터이다(The variable PtnNodeIdx is a counter used to iterate over parsed predictive tree nodes in a depth-first order). 변수 PtnNodeIdx은 디코딩 과정의 시작에서 0으로 초기화되고, 그 트리의 반복되는 순회(recusrive traversal) 동안 증가한다(이 It is initialized to 0 at the start of the decoding process and incremented during the recusrive traversal of the tree).
상기 gpt_end_of_trees_flag 필드의 값이 0이면 또 다른 예측 트리가 이 데이터 유닛을 따른다는 것을 지시한다(equal to 0 specifies that another predictive tree is following in the data unit). 상기 gpt_end_of_trees_flag 필드의 값이 1이면 이 데이터 유닛에 존재하는 예측 트리들은 없음을 지시한다.
도 28은 실시예들에 따른 geometry_predtree_node(PtnNodeIdx) 의 신택스 구조의 예시를 보인 도면이다.
즉, 도 28의 geometry_predtree_node(PtnNodeIdx) 는 예측 기반의 지오메트리 압축 정보를시그널링하는 것을 일 실시예로 한다.
이를 위해 geometry_predtree_node(PtnNodeIdx) 는 ptn_qp_offset_abs_gt0_flag 필드, ptn_qp_offset_sign_flag 필드, ptn_qp_offset_abs_minus1 필드, ptn_point_cnt_gt1_flag 필드, ptn_point_cnt_minus2 필드, ptn_child_cnt[ nodeIdx ] 필드, inter_prediction_enabled_flag 필드, predtree_inter_prediction (), ptn_pred_mode[ nodeIdx ], ptn_phi_mult_abs_gt0_flag 필드, ptn_phi_mult_sign_flag 필드, ptn_phi_mult_abs_gt1_flag 필드, ptn_phi_mult_abs_minus2 필드, ptn_phi_mult_abs_minus9 필드, ptn_residual_abs_gt0_flag[ k ] 필드, ptn_residual_sign_flag[ k ] 필드, ptn_residual_abs_log2[ k ] 필드, ptn_residual_abs_remaining[ k ] 필드, ptn_sec_residual_abs_gt0_flag[ k ] 필드, ptn_sec_residual_sign_flag[ k ] 필드, ptn_sec_residual_abs_gt1_flag[ k ] 필드, ptn_sec_residual_abs_minus2[ k ] 필드, 또는 geometry_predtree_node(++PtnNodeIdx ) 필드 중 적어도 하나를 포함할 수 있다.
실시예들에 따르면, geom_scaling_enabled_flag 필드의 값이 1이고 nodeIdx % PtnQpInterval의 값이 0이면 geometry_predtree_node(PtnNodeIdx)는 상기 ptn_qp_offset_abs_gt0_flag 필드를 포함할 수 있고, 상기 ptn_qp_offset_abs_gt0_flag 필드의 값이 1이면 geometry_predtree_node(PtnNodeIdx)는 상기 ptn_qp_offset_sign_flag 필드와 상기 ptn_qp_offset_abs_minus1 필드를 포함할 수 있다.
상기 geom_scaling_enabled_flag 필드는 GPS에 포함될 수 있다. 상기 geom_scaling_enabled_flag 필드의 값이 1이면 지오메트리 포지션들을 위한 스케일링 과정이 지오메트리 디코딩 과정 동안 적용(invoked)됨을 지시한다. 상기 geom_scaling_enabled_flag 필드의 값이 0이면 지오메트리 포지션들은 스케일링을 요구하지 않음을 지시한다.
상기 ptn_qp_offset_abs_gt0_flag 필드, 상기 ptn_qp_offset_sign_flag 필드, 그리고 상기 ptn_qp_offset_abs_minus1 필드는 함께 슬라이스 지오메트리 양자화 파라미터에 대한 옵셋을 나타낸다(together specify an offset to the slice geometry quantisation parameter).
실시예들에 따르면, duplicate_points_enabled_flag 필드의 값이 1이면 geometry_predtree_node(PtnNodeIdx)는 상기 ptn_point_cnt_gt1_flag 필드를 포함할 수 있고, 상기 ptn_point_cnt_gt1_flag 필드의 값이 1이면 geometry_predtree_node(PtnNodeIdx)는 상기 ptn_point_cnt_minus2 필드를 포함할 수 있다.
상기 duplicate_points_enabled_flag 필드는 GPS에 포함될 수 있다. 상기 duplicate_points_enabled_flag 필드의 값이 0이면 현재 GPS를 참조하는 모든 슬라이스들에서, 모든 출력 포인트들은 하나의 슬라이스 내에서 유니크한 포지션들을 가짐을 지시한다(duplicate_points_enabled_flag equal to 0 indicates that in all slices that refer to the current GPS, all output points have unique positions within a slice). 상기 duplicate_points_enabled_flag 필드의 값이 1이면 현재 GPS를 참조하는 모든 슬라이스들에서, 출력 포인트들 중 2개 이상이 하나의 슬라이스 내에서 같은 포지션들을 가짐을 나타낸다(duplicate_points_enabled_flag equal to 1 indicates that in all slices that refer to the current GPS, two or more of the output points may have same positions within a slice).
상기 ptn_point_cnt_gt1_flag 필드와 상기 ptn_point_cnt_minus2 필드는 함께 현재 예측 트리 노드에 의해 표시되는(represent) 포인트들의 개수를 지시한다.
실시예들에 따르면, 현재 예측 트리 노드에 의해 표시되는 포인트들의 개수(PtnPointCount[nodeIdx])는 다음과 같이 구할 수 있다.
PtnPointCount[nodeIdx] = 1 + ptn_point_cnt_gt1_flag 필드 + ptn_point_cnt_minus2 필드
상기 ptn_child_cnt[ nodeIdx ] 필드는 그 지오메트리 예측 트리에 존재하는 현재 예측 트리 노드의 다이렉트 자식 노드들의 개수를 나타낸다.
실시예들에 따르면, 상기 inter_prediction_enabled_flag 필드의 값이 1이면 geometry_predtree_node(PtnNodeIdx)는 predtree_inter_prediction ()를 포함할 수 있고, 0이면 ptn_pred_mode[ nodeIdx ]를 포함할 수 있다.
상기 inter_prediction_enabled_flag 필드는 geometry_predtree_node(PtnNodeIdx)가 predtree_inter_prediction ()를 포함하는지 아니면 ptn_pred_mode[ nodeIdx ]를 포함하는지를 지시한다.
predtree_inter_prediction ()는 예측 기반의 지오메트리 압축 정보에 포함되는 인터 프레임 예측 관련 정보를 시그널링하는 것을 일 실시예로 한다.
predtree_inter_prediction ()에 포함되는 필드들의 상세 설명은 도 29에서 하기로 한다.
ptn_pred_mode[ nodeIdx ]는 현재 노드와 관련된 포지션을 예측하기 위해 사용된 모드를 나타낸다.
상기 geometry_angular_enabled_flag 필드의 값이 1이면 geometry_predtree_node(PtnNodeIdx)에 포함되는 상기 ptn_phi_mult_abs_gt0_flag 필드, 상기 ptn_phi_mult_sign_flag 필드, 상기 ptn_phi_mult_abs_gt1_flag 필드, 상기 ptn_phi_mult_abs_minus2 필드, 및 상기 ptn_phi_mult_abs_minus9 필드는 함께 델타 앵귤러 예측에서 사용된 곱셈 인자(multiplicative factor)를 나타낸다. 상기 ptn_phi_mult_sign_flag 필드의 값이 1이면 인자의 부호(factor's sign)은 포지티브이고, 0이면 네가티브임을 지시한다.
실시예들에 따르면, 현재 트리 노드를 위한 파이 인자(phi factor)( PtnPhiMult[nodeIdx] )는 다음과 같이 추출될 수 있다.
PtnPhiMult[nodeIdx] = (2 × ptn_phi_mult_sign_flag - 1)
× (ptn_phi_mult_abs_gt0_flag + ptn_phi_mult_abs_gt1_flag
+ ptn_phi_mult_abs_minus2 + ptn_phi_mult_abs_minus9)
실시예들에 따르면, geometry_predtree_node(PtnNodeIdx)에서 numComp은 다음과 같이 구해질 수 있다.
numComp = geometry_angular_enabled_flag && !number_lasers_minus1 ? 2 : 3
실시예들에 따르면, geometry_predtree_node(PtnNodeIdx)는 상기 numComp의 값만큼 반복되는 반복문을 포함할 수 있다. 이 반복문에 포함되는 상기 ptn_residual_abs_gt0_flag[ k ] 필드, 상기 ptn_residual_sign_flag[ k ] 필드, 상기 ptn_residual_abs_log2[ k ] 필드, 및 상기 ptn_residual_abs_remaining[ k ] 필드는 함께 k번째 지오메트리 포지션 컴포넌트의 첫번째 예측 잔여 정보를 나타낸다. 예를 들어, 상기 ptn_residual_sign_flag[ k ] 필드의 값이 1이면 잔여 컴포넌트의 부호는 포지티브이고, 0이면 네가티브임을 나타낸다.
실시예들에 따르면, 현재 트리 노드와 관련된 첫번째 예측 잔여 정보(first prediction residual associated with the current tree node)( PtnResidual[nodeIdx][k])는 다음과 같이 추출될 수 있다. 여기서, k는 x,y,z 좌표 각각을 나타낸다.
for (k = 0; k < 3; k++)
PtnResidual[nodeIdx][k] = (2 × ptn_residual_sign_flag - 1) × (ptn_residual_abs_gt0_flag[k] + ((1 << ptn_residual_abs_log2[k]) >> 1) + ptn_residual_abs_remaining[k])
상기 geometry_angular_enabled_flag 필드의 값이 1이면 포함되는 상기 ptn_sec_residual_abs_gt0_flag[ k ] 필드, 상기 ptn_sec_residual_sign_flag[ k ] 필드, 상기 ptn_sec_residual_abs_gt1_flag[ k ] 필드, 및 상기ptn_sec_residual_abs_minus2[ k ] 필드는 함께 k번째 지오메트리 포지션 컴포넌트의 두번째 예측 잔여 정보를 나타낸다. 예를 들어, 상기 ptn_sec_residual_sign_flag[ k ] 필드의 값이 1이면 잔여 컴포넌트의 부호는 포지티브이고 0이면 네가티브임을 나타낸다.
실시예들에 따르면, 현재 트리 노드와 관련된 두번째 예측 잔여 정보(second prediction residual associated with the current tree node)( PtnResidual[nodeIdx][k])는 다음과 같이 추출될 수 있다. 여기서, k는 x,y,z 좌표 각각을 나타낸다.
for (k = 0; k < 3; k++)
PtnSecResidual[nodeIdx][k] = (2 × ptn_sec_residual_sign_flag - 1) × (ptn_sec_residual_abs_gt0_flag[k] + ptn_sec_residual_abs_gt1_flag[k] + ptn_sec_residual_abs_minus2[k])
실시예들에 따르면, geometry_predtree_node(PtnNodeIdx)는 상기 ptn_child_cnt[ nodeIdx ] 필드의 값만큼 반복되는 반복문을 포함할 수 있다. 이 반복문은 geometry_predtree_node(++PtnNodeIdx )를 포함할 수 있다. 즉, 1 증가된 geometry_predtree_node(PtnNodeIdx)가 포함된다.
도 29는 실시예들에 따른 predtree_inter_prediction ()의 신택스 구조의 예시를 보인 도면이다.
실시예들에 따르면, predtree_inter_prediction ()는 geometry_predtree_node(PtnNodeIdx)에 포함된다.
도 29의 predtree_inter_prediction ()는 예측 기반의 지오메트리 압축 정보에 포함되는 인터 프레임 예측 관련 정보를 시그널링하는 것을 일 실시예로 한다.
실시예들에 따르면, 인터 프레임 예측 관련 정보 즉, predtree_inter_prediction ()는 ref_frame_id 필드, motion_vector[i] 필드, predictor_bbox[i] 필드, predictor_coordinate_type 필드, predictor_predtree_generation_type 필드, correlated_point_index 필드, interMode 필드, 및 coeff 필드를 포함할 수 있다.
상기 ref_frame_id 필드는 현재 PU의 예측에 사용되는 참조 프레임의 인덱스를 나타낸다.
상기 motion_vector[i] 필드는 현재 PU를 기준으로 예측기의 (x,y,z) 좌표의 k번째 컴포넌트의 움직임 벡터는 나타낸다. 상기 motion_vector[i] 필드는 예측기의 각 축 방향 움직임 벡터를 나타낼 수 있다.
상기 predictor_bbox[i] 필드는 현재 PU를 기준으로 예측기의 (x,y,z) 좌표의 k번째 컴포넌트의 바운딩 박스의 크기를 나타낸다. 즉, 상기 predictor_bbox[i] 필드는 예측기의 바운딩 박스에 대한 각 축 방향 크기를 나타낼 수 있다.
상기 predictor_predtree_generation_type 필드는 예측기의 예측 트리를 생성하는 방법을 나타낸다. 예를 들어, 상기 predictor_predtree_generation_type 필드의 값이 0이면 몰톤 코드(morton code) 순서로 정렬하는 방법을 나타내고, 1이면 xy 평면을 고정 후 z 에 대해 오름차순으로 정렬하는 방법을 나타내고, 2이면 xz 평면을 고정 후 y에 대해 오름차순으로 정렬하는 방법을 나타내고, 3이면 yz 평면을 고정 후 x 에 대해 오름차순으로 정렬하는 방법을 나타낼 수 있다.
상기 predictor_coordinate_type 필드는 예측기가 정의되는 좌표 공간에 대해 시그널링 할 수 있다. 상기 predictor_coordinate_type 필드의 값이 0이면 Cartesian coordinate, 1이면 Spherical coordinate, 2이면 radius, phi, laser id 좌표 공간, 3이면 radius, angular id, laser id 좌표 공간을 사용함을 지시할 수 있다. 만일, 정의되지 않는 경우 예측 지오메트리 코딩(predictive geometry coding) 에서 사용하는 좌표(coordinate)를 그대로 사용할 수 있다.
상기 correlated_point_index 필드는 참조 프레임에서 정의된 예측기에 대해 현재 PU의 포인트와 관련있는 포인트를 특징하기 위한 방법으로써 인덱스를 알려줄 수 있다.
상기 interMode 필드는 인터 프레임 예측 기반의 지오메트리 압축이 사용되는 경우 인터 예측 모드를 나타낼 수 있다. 예를 들어 인터 프레임 예측을 위한 인터 예측 모드들은 아래와 같이 정의할 수 있다. 각 인터 예측 모드의 상세 설명은 위의 수학식 9의 설명을 참조하기로 한다.
InterMode 0 : p'(n) = w0*c(n)
InterMode 1 : p'(n) = w1*c(n) + w2*p(n-1)
InterMode 2 : p'(n) = w3*c(n) + w4*c(n-1)
InterMode 3 : p'(n) = w5*c(n) + w6*c(n-1) + w7*c(n+1)
실시예들에 따르면, 필요에 따라 인터 예측 모드(interMode)에 따른 예측 계수 (예, w0, ..., w7)를 coeff 필드를 통해 전달할 수 있다.
도 30은 실시예들에 따른 포인트 클라우드 수신 장치의 또 다른 예시를 보인 도면이다. 도 30에 도시된 포인트 클라우드 수신 장치의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합등으로 구현될 수 있다.
실시예들에 따르면, 포인트 클라우드 수신 장치는 수신 처리부(61001), 시그널링 처리부(61002), 지오메트리 디코더(61003), 어트리뷰트 디코더(61004), 및 후 처리부(Post-processor, 61005)를 포함할 수 있다.
실시예들에 따른 수신 처리부(61001)는 하나의 비트스트림을 수신할 수도 있고, 또는 지오메트리 비트스트림, 어트리뷰트 비트스트림, 시그널링 비트스트림을 각각 수신할 수도 있다. 실시예들에 따른 수신 처리부(61001)는 파일 및/또는 세그먼트가 수신되면, 수신된 파일 및/또는 세그먼트를 디캡슐레이션하여 비트스트림으로 출력할 수 있다.
실시예들에 따른 수신 처리부(61001)는 하나의 비트스트림이 수신(또는 디캡슐레이션)되면, 하나의 비트스트림으로부터 지오메트리 비트스트림, 어트리뷰트 비트스트림, 및/또는 시그널링 비트스트림을 디멀티플렉싱하고, 디멀티플렉스된 시그널링 비트스트림은 시그널링 처리부(61002)로, 지오메트리 비트스트림은 지오메트리 디코더(61003)로, 어트리뷰트 비트스트림은 어트리뷰트 디코더(61004)로 출력할 수 있다.
실시예들에 따른 수신 처리부(61001)는 지오메트리 비트스트림, 어트리뷰트 비트스트림, 및/또는 시그널링 비트스트림이 각각 수신(또는 디캡슐레이션)되면, 시그널링 비트스트림은 시그널링 처리부(61002)로, 지오메트리 비트스트림은 지오메트리 디코더(61003)로, 어트리뷰트 비트스트림은 어트리뷰트 디코더(61004)로 전달할 수 있다.
상기 시그널링 처리부(61002)는 입력된 시그널링 비트스트림으로부터 시그널링 정보 예를 들어, SPS, GPS, APS, TPS, 메타 데이터 등에 포함된 정보를 파싱 및 처리하여 지오메트리 디코더(61003), 어트리뷰트 디코더(61004), 후 처리부(61005)로 제공할 수 있다. 다른 실시예로, 지오메트리 데이터 유닛 헤더 및/또는 어트리뷰트 데이터 유닛 헤더에 포함된 시그널링 정보도 해당 슬라이스 데이터를 디코딩하기 전에 상기 시그널링 처리부(61002)에서 미리 파싱될 수도 있다.
실시예들에 따르면, 시그널링 처리부(61002)는 지오메트리 데이터 유닛에 시그널링된 시그널링 정보(예를 들어, 예측 기반의 지오메트리 압축 정보)도 파싱 및 처리하여 지오메트리 디코더(61003)로 제공할 수 있다.
실시예들에 따르면, 지오메트리 디코더(61003)는 압축된 지오메트리 비트스트림에 대해 시그널링 정보를 기반으로 도 16의 지오메트리 인코더(51003)의 역과정을 수행하여 지오메트리를 복원할 수 있다. 상기 지오메트리 디코더(61003)에서 복원된(또는 재구성된(reconstructed)) 지오메트리 정보는 어트리뷰트 디코더(61004)로 제공된다. 상기 어트리뷰트 디코더(61004)는 압축된 어트리뷰트 비트스트림에 대해 시그널링 정보와 재구성된 지오메트리 정보를 기반으로 도 16의 어트리뷰트 인코더(51004)의 역과정을 수행하여 어트리뷰트를 복원할 수 있다.
실시예들에 따르면, 후 처리부(61005)는 상기 지오메트리 디코더(61003)에서 복원되어 출력되는 지오메트리 정보(즉, 포지션들)과 상기 어트리뷰트 디코더(61004)에서 복원되어 출력되는 어트리뷰트 정보를 매칭하여 포인트 클라우드 데이터를 재구성하고 디스플레이/렌더링할 수 있다.
도 31은 실시예들에 따른 지오메트리 디코더(61003)의 상세 블록도의 예시를 보인 도면이다. 도 31에 도시된 지오메트리 디코더의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합등으로 구현될 수 있다.
실시예들에 따르면, 지오메트리 디코더(61003)는 엔트로피 디코딩부(61031), 모드 검출부(61032), 인트라 프레임 예측부(61033), 움직임 보상부(61034), 상관 포인트 검출부(61035), 인터 프레임 예측부(61036), 및 재구성부(61037)를 포함할 수 있다. 각 블록의 수행 순서는 변경될 수 있으며, 일부 블록은 생략될 수 있고, 일부 블록은 새로 추가될 수 있다.
실시예들에 따르면, 지오메트리 디코더(61003)는 송신 장치의 지오메트리 인코더의 역과정을 수행하여 지오메트리 정보를 복원한다. 즉, 상기 엔트로피 디코딩부(61031)는 수신 처리부(61001)를 통해 입력되는 비트스트림에 포함된 각 슬라이스의 포인트들에 대한 잔여 정보(즉, 예측 에러)와 예측 모드 정보를 엔트로피 디코딩한다.
상기 모드 검출부(61032)는 상기 엔트로피 디코딩부(61031)에서 엔트로피 디코딩된 예측 모드 정보가 인터 예측 모드 정보인지 아니면 인트라 예측 모드 정보인지를 확인한다. 실시예들에 따르면, 지오메트리 데이터 유닛에 포함된 예측 기반의 지오메트리 압축 정보(즉, geometry_predtree_node(PtnNodeIdx))에 포함된 inter_prediction_enabled_flag 필드를 이용하여 인트라 예측 모드인지 인터 예측 모드인지를 검출할 수 있다. 이때, 상기 inter_prediction_enabled_flag 필드를 전달하는 단위에 따라 프레임/데이터 유닛/슬라이스/예측 트리/예측 단위/포인트 등의 인터 예측 또는 인트라 예측을 사용할 수 있다.
상기 모드 검출부(61032)에서 인터 예측 모드로 검출된 경우, 상기 움직임 보상부(61033)는 예측 기반의 지오메트리 압축 정보(즉, geometry_predtree_node(PtnNodeIdx))에 포함된 인터 프레임 예측 관련 정보(즉, predtree_inter_prediction ())를 기반으로 움직임 보상을 수행하여 예측기를 생성할 수 있다. 일 실시예로, 상기 움직임 보상부(61033)는 인터 프레임 예측 관련 정보(즉, predtree_inter_prediction ())에 포함된 참조 프레임 인덱스 정보(ref_frame_id 필드)에 의해 지정된 참조 프레임을 제공받고, 움직임 벡터 정보(motion_voctor 필드)와 예측기의 바운딩 박스 정보(predictor_bbox 필드)를 기반으로 움직임 보상을 수행하여 상기 참조 프레임 내에서 예측기를 생성할 수 있다. 즉, 수신 장치에서는 PU의 바운딩 박스를 추정할 수 없으므로 인터 프레임 예측 관련 정보에 포함된 예측기의 바운딩 박스 정보, 움직임 벡터 정보, 그리고 참조 프레임 인덱스 정보를 이용하여 예측기를 생성할 수 있다.
상기 상관 포인트 검출부(61034)는 상기 움직임 보상부(61034)에서 생성된 예측기에 대해 디코딩에 사용되는 포인트는 인터 프레임 예측 관련 정보에 포함된 상관 포인트 인덱스 정보(correlated_point_index 필드)를 통해 특정할 수 있다. 그리고, 예측기 내에서의 포인트 인덱스(point index)에 따른 위치를 파악하기 위해 인터 프레임 예측 관련 정보에 포함된 예측기의 예측 트리 생성 방법(predictor_predtree_generation_type 필드)에서 지정하는 방법을 통해 예측기의 예측 트리를 생성하고 인덱스와 포인트와의 관계를 통해 상관 포인트를 찾을 수 있다.
상기 인터 프레임 예측부(61036)은 인터 프레임 예측 관련 정보에 포함된 인터 예측 모드 정보(interMode필드)에서 지정하는 인터 프레임 예측 방법과 상기 상관 포인트를 이용하여 프레임 간 예측(즉, 인터 프레임 예측)을 수행하여 예측 값(또는 예측된 정보라 함)을 생성한다.
상기 재구성부(61037)는 상기 인터 프레임 예측부(61036)에서 생성된 디코딩될 포인트의 예측된 정보와 상기 인터 예측 모드 정보(interMode필드)와 함께 수신된 잔여 정보(residual)(또는 예측 잔여 정보라 함)를 더하여 최종 포인트를 복원한다. 즉, 상기 재구성부(61037)는 인터 프레임 예측을 통해 예측된 정보와 이때의 잔여 정보를 이용하여 지오메트리 정보(즉, 최종 포인트의 위치)를 재구성(또는 복원)한다. 이때, 좌표 변환(coordinate conversion)이 사용된 경우 (즉, coding coordinate와 output coordinate가 다른 경우), 두 종류의 예측 잔여 정보(residual)가 geometry_predtree_node(nodeIdx)에 포함되어 전달될 수 있다. 이 경우, 첫번째 예측 잔여 정보를 기반으로 예측 에러를 보정하고, 보정된 값에 대해 두번째 예측 잔여 정보를 기반으로 좌표 변환 과정에서 발생하는 에러를 보정할 수 있다.
한편, 상기 모드 검출부(61032)에서 인트라 예측 모드로 검출된 경우, 상기 인트라 프레임 예측부(61033)는 예측 기반의 지오메트리 정보에 포함된 인트라 예측 모드 정보를 이용하여 프레임 내 예측(즉, 인트라 프레임 예측)을 수행하여 예측 값(또는 예측된 정보라 함)을 생성한다.
상기 재구성부(61037)는 상기 인트라 프레임 예측부(61033)에서 생성된 디코딩될 포인트의 예측된 정보와 상기 인트라 예측 모드 정보와 함께 수신되어 디코딩을 통해 복원된 잔여 정보(residual)(또는 예측 잔여 정보라 함)를 더하여 최종 포인트를 복원한다. 즉, 상기 재구성부(61037)는 인트라 프레임 예측을 통해 예측된 정보와 이때의 잔여 정보를 이용하여 지오메트리 정보(즉, 최종 포인트의 위치)를 재구성(또는 복원)한다.
도 31에서 언급된 예측 기반의 지오메트리 압축 정보 및 상기 예측 기반의 지오메트리 압축 정보에 포함된 인터 프레임 예측 관련 정보의 상세 내용은 도 25 내지 도 29의 설명을 참조하기로 한다.
도 32는 실시예들에 따른 예측 기반으로 압축된 지오메트리를 복원하기 위한 지오메트리 디코딩 방법의 예시를 보인 흐름도이다. 즉, 시그널링 정보인 예측 기반의 지오메트리 압축 정보에 포함된 inter_prediction_enabled_flag 필드를 이용하여 수신된 예측 모드가 인트라 예측 모드인지 인터 예측 모드인지를 결정한다(단계 61051). 예를 들어, 상기 inter_prediction_enabled_flag 필드의 값이 0(즉, No)이면 인트라 예측 모드라 판단하고, 1(즉, Yes)이면 인터 예측 모드라 판단할 수 있다.
단계 61051에서 인터 예측 모드로 확인되면, 상기 ref_frame_id 필드를 이용하여 참조 프레임을 선택한다(단계 61052). 상기 선택된 참조 프레임에 대해 상기 motion_vector 필드를 기반으로 움직임 보상을 수행하여(단계 61053), 참조 프레임 내에서 예측에 사용할 예측기를 생성한다. 이때, 상기 predictor_bbox 필드를 이용하여 예측기의 범위를 설정할 수 있다(단계 61054). 그리고, 상기 predictor_predtree_generation_type 필드를 기반으로 상기 예측기의 예측 트리를 생성하고(단계 61055), 상기 correlated_point_index 필드를 기반으로 상기 예측기의 예측 트리에서 예측에 사용될 포인트(이를 예측 포인트라 칭함)를 검출한다(단계 61056). 이때, 움직임 추정에서 사용되는 포인트의 좌표를 상기 predictor_coordinate_type 필드를 통해 전달받은 경우, 참조 프레임의 좌표를 변경할 수 있다. 만일 별도의 시그널링이 없는 경우에는 코딩 좌표 시스템(coding coordinate system)을 따를 수 있다. 본 문서의 실시예에서는 현재 프레임의 노드(즉, 포인트)의 예측에 사용되는 예측기 내의 노드(즉, 포인트)를 상기 correlated_point_index 필드를 통해 전달하는데, 이때 인덱스는 예측기 내부의 포인트에 대하여, 예측 트리에 의한 상대적인 순서/위치를 나타낼 수 있다. 따라서 예측기 내에서 예측에 사용될 포인트를 선택하기 위해 상기 predictor_predtree_generation_type 필드를 이용하여 예측 트리를 구성한 후 상기 correlated_point_index 필드가 지정하는 포인트를 예측 포인트로 사용할 수 있다.
단계 61056에서 예측 포인트가 검출되면, 상기 interMode 필드에서 지정하는 인터 예측 모드를 기반으로 상기 예측 포인트에 대해 인터 프레임 예측을 수행하여 예측 정보를 생성한다(단계 61057). 이때 사용되는 계수(예, 각 인터 예측 모드의 가중치들)는 coeff 필드를 통해 전달 받을 수 있다.
한편, 단계 61051에서 인트라 예측 모드로 확인되면(즉, Inter_predicion_enabled_flag 필드=0), 프레임 내 예측 방법을 기반으로 예측을 수행하여 예측 정보를 생성한다(단계 61059).
그리고, 프레임 간 관련 포인트 또는 프레임 내 관련 포인트를 기반으로 생성된 예측 정보(단계 61057 또는 단계 61059)와 디코딩을 통해 복원된 잔여 정보(또는 잔차값이라 함)을 이용하여 최종 포인트를 복원한다(단계 61058). 이때, 코딩 좌표(coding coordinate)와 출력 좌표(output coordinate)가 다른 경우와 같이 좌표 변환(coordinate conversion)이 사용되는 경우, 두 종류의 잔여 정보가 시그널링 정보에 포함되어 수신될 수 있다. 이 경우, 첫번째 잔여 정보를 이용하여 예측 에러를 보정하고, 보정된 값에 대해 두번째 잔여 정보를 적용하여 좌표 변환 과정에서 발생하는 에러를 보정할 수 있다.
도 32에서 언급된 필드들의 상세 내용은 도 25 내지 도 29의 설명을 참조하기로 한다.
도 33은 실시예들에 따른 포인트 클라우드 데이터 송신 방법의 흐름도를 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 획득하는 단계(71001), 포인트 클라우드 데이터를 인코딩하는 단계(71002), 인코드된 포인트 클라우드 데이터와 시그널링 정보를 전송하는 단계(71003)를 포함할 수 있다. 이때, 상기 인코드된 포인트 클라우드 데이터와 시그널링 정보를 포함하는 비트스트림이 파일로 인캡슐레이션되어 전송될 수도 있다.
포인트 클라우드 데이터를 획득하는 단계(71001)는 도 1의 포인트 클라우드 비디오 획득부(10001)의 동작의 일부 또는 전부를 수행할 수도 있고 또는 도 12의 데이터 입력부(12000)의 동작의 일부 또는 전부를 수행할 수도 있다.
포인트 클라우드 데이터를 인코딩하는 단계(71002)는 지오메트리 정보의 인코딩을 위해 도 1의 포인트 클라우드 비디오 인코더(10002), 도 2의 인코딩(20001), 도 4의 포인트 클라우드 비디오 인코더, 도 12의 포인트 클라우드 비디오 인코더, 도 16의 지오메트리 인코더, 도 17의 지오메트리 인코더 또는 도 23의 지오메트리 인코딩 과정의 동작의 일부 또는 전체를 수행할 수 있다.
실시예들에 따른 포인트 클라우드 데이터를 인코딩하는 단계(71002)는 전술한 인터 프레임 예측 및/또는 인트라 프레임 예측을 수행하여 지오메트리 정보를 압축할 수 있다.
본 문서는 인터 프레임 예측 및/또는 인트라 프레임 예측을 수행하는 내용은 전술한 도 15 내지 도 29의 설명을 참조하기로 하고 여기서는 생략한다. 전술한 인터 프레임 예측 및/또는 인트라 프레임 예측을 통해 각 포인트에 적용된 예측 모드와 잔여 정보는 엔트로피 인코딩된 후 지오메트리 비트스트림 형태로 출력된다.
실시예들에 따르면, 포인트 클라우드 데이터를 인코딩하는 단계(71002)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리 정보를 기반으로 어트리뷰트 정보를 압축한다. 일 실시예로, 상기 어트리뷰트 정보는 RAHT 코딩, LOD 기반의 예측 변환 코딩 및 리프팅 변환 코딩 중 어느 하나 또는 하나 이상을 조합하여 코딩될 수 있다. 다른 실시예로, 상기 어트리뷰트 정보는 전술한 지오메트리 정보의 인코딩과 유사하게 예측 트리 기반의 인코딩을 수행할 수 있다. 상기 예측 트리 기반의 어트리뷰트 인코딩은 전술한 지오메트리 정보의 인코딩을 참조하기로 한다.
본 명세서에서 시그널링 정보는 예측 기반의 지오메트리 압축 정보를 포함할 수 있고, 예측 기반의 지오메트리 압축 정보는 인터 프레임 예측 관련 정보를 포함할 수 있다. 예측 기반의 지오메트리 압축 정보는 지오메트리 데이터 유닛에 포함되는 것을 일 실시예로 한다. 다른 실시예로, 예측 기반의 지오메트리 압축 정보는 SPS, GPS, APS, 또는 TPS에 시그널링될 수 있다. 상기 예측 기반의 지오메트리 압축 정보의 상세 설명은 위에서 상세히 하였으므로 여기서는 생략하기로 한다.
도 34는 실시예들에 따른 포인트 클라우드 데이터 수신 방법의 흐름도를 나타낸다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법은 인코드된 포인트 클라우드 데이터와 시그널링 정보를 수신하는 단계(81001), 시그널링 정보를 기반으로 포인트 클라우드 데이터를 디코딩하는 단계(81002), 및 디코드된 포인트 클라우드 데이터를 렌더링하는 단계(81003)를 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터와 시그널링 정보를 수신하는 단계(81001)는 도 1의 리시버(10005), 도 2의 진송(20002) 또는 디코딩(20003), 도 13의 수신부(13000) 또는 수신 처리부(13001)에서 수행될 수 있다.
실시예들에 따른 포인트 클라우드 데이터를 디코딩하는 단계(81002)는 지오메트리 정보의 디코딩을 위해 도 1의 포인트 클라우드 비디오 디코더(10006), 도 2의 디코딩(20003), 도 11의 포인트 클라우드 비디오 디코더, 도 13의 포인트 클라우드 비디오 디코더, 도 30의 지오메트리 디코더, 도 31의 지오메트리 디코더 또는 도 31의 지오메트리 디코딩 과정의 동작의 일부 또는 전체를 수행할 수 있다.
실시예들에 따른 포인트 클라우드 데이터를 디코딩하는 단계(81002)는 시그널링 정보에 포함된 예측 기반의 지오메트리 압축 정보를 기반으로 인터 프레임 예측 및/또는 인트라 프레임 예측을 수행하여 지오메트리 정보를 디코딩(즉, 복원)할 수 있다. 상세 내용은 도 30 내지 도 32의 설명을 참조하기로 한다.
실시예들에 따른 포인트 클라우드 데이터를 디코딩하는 단계(81002)는 상기 복원된 지오메트리 정보를 기반으로 어트리뷰트 정보를 디코딩(즉, 압축 해제)한다. 일 실시예로, 상기 어트리뷰트 정보는 RAHT 코딩, LOD 기반의 예측 변환 코딩 및 리프팅 변환 코딩 중 어느 하나 또는 하나 이상을 조합하여 디코딩될 수 있다. 다른 실시예로, 상기 어트리뷰트 정보는 전술한 지오메트리 정보의 디코딩과 유사하게 예측 트리 기반의 디코딩을 수행할 수 있다. 상기 예측 트리 기반의 어트리뷰트 디코딩은 전술한 지오메트리 정보의 디코딩을 참조하기로 한다.
실시예들에 따른 렌더링하는 단계(81003)는 복원된(또는 재구성된) 지오메트리 정보와 어트리뷰트 정보를 기반으로 포인트 클라우드 데이터를 복원하고 다양한 렌더링 방식에 따라 렌더링할 수 있다. 예를 들어, 포인트 클라우드 콘텐트의 포인트들은 일정 두께를 갖는 정점, 해당 정점 위치를 중앙으로 하는 특정 최소 크기를 갖는 정육면체, 또는 정점 위치를 중앙으로 하는 원 등으로 렌더링 될 수도 있다. 렌더링된 포인트 클라우드 콘텐트의 전부 또는 일부 영역은 디스플레이 (예를 들면 VR/AR 디스플레이, 일반 디스플레이 등)을 통해 사용자에게 제공된다. 실시예들에 따른 포인트 클라우드 데이터를 렌더링하는 단계(81003)는 도 1의 렌더러(10007) 또는 도 2의 렌더링(20004) 또는 도 13의 렌더러(13011) 에서 수행될 수 있다.
이와 같이, 예측 기반의 코딩은 포인트 클라우드 데이터에 대해 이웃(neighbor, 주변부) 포인트 정보를 기반으로 예측을 수행한다. 그리고, 이러한 예측 기반의 코딩은 전체 포인트들에 대한 단계적인 스캐닝을 수행하지 않으므로 모든 포인트 클라우드 데이터가 캡쳐되기를 기다릴 필요가 없고, 점차적으로(progressive) 캡쳐된 포인트 클라우드 데이터를 인코딩할 수 있어 저지연 처리가 필요한 포인트 클라우드 데이터 콘텐트에 적합하다. 즉, 예측 기반의 코딩은 코딩 속도가 빠르다는 장점이 있다.
특히, 포인트 클라우드 데이터가 연속된 프레임들로 구성된 경우, 프레임 간 상관 관계에 기반하여 중복 정보를 제거함으로써, 지오메트리 정보의 압축 효율을 높일 수 있다.
상술한 실시예들의 동작은 메모리 및/또는 프로세서를 포함하는 포인트 클라우드 송수신 장치/방법의 구성요소를 통해 수행될 수 있다. 메모리는 실시예들에 따른 동작을 처리/제어하기 위한 프로그램들을 저장할 수 있다. 실시예들에 따른 포인트 클라우드 송수신 장치/방법의 각 구성요소는 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 조합에 대응할 수 있다. 프로세서는 본 문서에서 설명한 다양한 동작을 제어할 수 있다. 프로세서는 컨트롤러 등으로 지칭 가능하다. 실시예들에 동작들은 펌웨어, 소프트웨어, 및/또는 그것들의 조합에 의해 수행될 수 있고, 펌웨어, 소프트웨어, 및/또는 그것들의 조합은 프로세서에 저장되거나 메모리에 저장될 수 있다. 본 실시예에서는 포인트 클라우드 데이터의 지오메트리 정보를 압축하는 방법에 대해서 기술하지만 어트리뷰트 정보 압축 및 기타 압축 방법에 본 명세서에서 기술하는 방법을 적용할 수 있다.
전술한 각각의 파트, 모듈 또는 유닛은 메모리(또는 저장 유닛)에 저장된 연속된 수행과정들을 실행하는 소프트웨어, 프로세서, 하드웨어 파트일 수 있다. 전술한 실시예에 기술된 각 단계들은 프로세서, 소프트웨어, 하드웨어 파트들에 의해 수행될 수 있다. 전술한 실시예에 기술된 각 모듈/블락/유닛들은 프로세서, 소프트웨어, 하드웨어로서 동작할 수 있다. 또한, 실시예들이 제시하는 방법들은 코드로서 실행될 수 있다. 이 코드는 프로세서가 읽을 수 있는 저장매체에 쓰여질 수 있고, 따라서 장치(apparatus)가 제공하는 프로세서에 의해 읽혀질 수 있다.
또한 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 그리고 명세서에 기재된 “…부”등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
본 명세서는 설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시 예들을 병합하여 새로운 실시 예를 구현하도록 설계하는 것도 가능하다. 그리고, 통상의 기술자의 필요에 따라, 이전에 설명된 실시 예들을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체를 설계하는 것도 실시예들의 권리범위에 속한다.
실시예들에 따른 장치 및 방법은 상술한 바와 같이 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
실시예들의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 실시예들은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 실시예들의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 실시예들의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.
실시예들의 장치의 다양한 구성요소들은 하드웨어, 소프트웨어, 펌웨어 또는 그것들의 조합에 의해 수행될 수 있다. 실시예들의 다양한 구성요소들은 하나의 칩, 예를 들면 하나의 하드웨어 서킷으로 구현될 수 있다. 실시예들에 따른 구성요소들은 각각 별도의 칩들로 구현될 수 있다. 실시예들에 따른 장치의 구성요소들 중 적어도 하나 이상은 하나 또는 그 이상의 프로그램들을 실행 할 수 있는 하나 또는 그 이상의 프로세서들로 구성될 수 있으며, 하나 또는 그 이상의 프로그램들은 실시예들에 따른 동작/방법들 중 어느 하나 또는 그 이상의 동작/방법들을 수행시키거나, 수행시키기 위한 인스트럭션들을 포함할 수 있다. 실시예들에 따른 장치의 방법/동작들을 수행하기 위한 실행 가능한 인스트럭션들은 하나 또는 그 이상의 프로세서들에 의해 실행되기 위해 구성된 일시적이지 않은 CRM 또는 다른 컴퓨터 프로그램 제품들에 저장될 수 있거나, 하나 또는 그 이상의 프로세서들에 의해 실행되기 위해 구성된 일시적인 CRM 또는 다른 컴퓨터 프로그램 제품들에 저장될 수 있다. 또한 실시예들에 따른 메모리는 휘발성 메모리(예를 들면 RAM 등)뿐 만 아니라 비휘발성 메모리, 플래쉬 메모리, PROM등을 전부 포함하는 개념으로 사용될 수 있다. 또한, 인터넷을 통한 전송 등과 같은 반송파의 형태로 구현되는 것도 포함될 수 있다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
이 문서에서 "/"와 ","는 "및/또는"으로 해석된다. 예를 들어, "A/B"는 "A 및/또는 B"로 해석되고, "A, B"는 "A 및/또는 B"로 해석된다. 추가적으로, "A/B/C"는 "A, B, 및/또는 C 중 적어도 하나"를 의미한다. 또한, "A, B, C"도 "A, B 및/또는 C 중 적어도 하나"를 의미한다. 추가적으로, 이 문서에서 “또는”는 “및/또는”으로 해석된다. 예를 들어, "A 또는 B"은, 1) "A"만을 의미하고, 2) "B"만을 의미하거나, 3) "A 및 B"를 의미할 수 있다. 달리 표현하면, 본 문서의 “또는”은 “추가적으로 또는 대체적으로(additionally or alternatively)”를 의미할 수 있다.
실시예들의 다양한 엘리먼트들은 하드웨어, 소프트웨어, 펌웨어 또는 그것들의 조합에 의해 수행될 수 있다. 실시예들의 다양한 엘리먼트는 하드웨어 회로와 같은 싱글 칩 상에서 수행될 수 있다. 실시예들에 따라, 실시예들은 선택적으로 개별적인 칩들 상에서 수행될 수 있다. 실시예들에 따라, 실시예들의 엘리먼트들 중 적어도 하나는 실시예들에 따른 동작을 수행하는 인스트럭션들을 포함하는 하나 또는 하나 이상의 프로세서 내에서 수행될 수 있다.
또한, 본 문서에서 설명하는 실시예들에 따른 동작은 실시예들에 따라서 하나 이상의 메모리들 및/또는 하나 이상의 프로세서들을 포함하는 송수신 장치에 의해 수행될 수 있다. 하나 이상의 메모리들을 실시예들에 따른 동작을 처리/제어하기 위한 프로그램들을 저장할 수 있고, 하나 이상의 프로세서들을 본 문서에서 설명한 다양한 동작을 제어할 수 있다. 하나 이상의 프로세서들은 컨트롤러 등으로 지칭 가능하다. 실시예들에 동작들은 펌웨어, 소프트웨어, 및/또는 그것들의 조합에 의해 수행될 수 있고, 펌웨어, 소프트웨어, 및/또는 그것들의 조합은 프로세서에 저장되거나 메모리에 저장될 수 있다.
제1, 제2 등과 같은 용어는 실시예들의 다양한 구성요소들을 설명하기 위해 사용될 수 있다. 하지만 실시예들에 따른 다양한 구성요소들은 위 용어들에 의해 해석이 제한되어서는 안된다. 이러한 용어는 하나의 구성요소를 다른 구성요소와 구별하기 위해 사용되는 것에 불과하다. 것에 불과하다. 예를 들어, 제1 사용자 인풋 시그널은 제2사용자 인풋 시그널로 지칭될 수 있다. 이와 유사하게, 제2사용자 인풋 시그널은 제1사용자 인풋 시그널로 지칭될 수 있다. 이러한 용어의 사용은 다양한 실시예들의 범위 내에서 벗어나지 않는 것으로 해석되어야만 한다. 제1사용자 인풋 시그널 및 제2사용자 인풋 시그널은 모두 사용자 인풋 시그널들이지만, 문맥 상 명확하게 나타내지 않는 한 동일한 사용자 인풋 시그널들을 의미하지 않는다.
실시예들을 설명하기 위해 사용된 용어는 특정 실시예들을 설명하기 위한 목적으로 사용되고, 실시예들을 제한하기 위해서 의도되지 않는다. 실시예들의 설명 및 청구항에서 사용된 바와 같이, 문맥 상 명확하게 지칭하지 않는 한 단수는 복수를 포함하는 것으로 의도된다. 및/또는 표현은 용어 간의 모든 가능한 결합을 포함하는 의미로 사용된다. “포함한다” 표현은 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들이 존재하는 것을 설명하고, 추가적인 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들을 포함하지 않는 것을 의미하지 않는다. 실시예들을 설명하기 위해 사용되는, ~인 경우, ~때 등의 조건 표현은 선택적인 경우로만 제한 해석되지 않는다. 특정 조건을 만족하는 때, 특정 조건에 대응하여 관련 동작을 수행하거나, 관련 정의가 해석되도록 의도되었다.
또한, 본 문서에서 설명하는 실시예들에 따른 동작은 실시예들에 따라서 메모리 및/또는 프로세서를 포함하는 송수신 장치에 의해 수행될 수 있다. 메모리는 실시예들에 따른 동작을 처리/제어하기 위한 프로그램들을 저장할 수 있고, 프로세서는 본 문서에서 설명한 다양한 동작을 제어할 수 있다. 프로세서는 컨트롤러 등으로 지칭 가능하다. 실시예들에 따른 동작들은 펌웨어, 소프트웨어, 및/또는 그것들의 조합에 의해 수행될 수 있고, 펌웨어, 소프트웨어, 및/또는 그것들의 조합은 프로세서에 저장되거나 메모리에 저장될 수 있다.
발명의 실시를 위한 형태
발명의 실시를 위한 최선의 형태에서 구체적으로 설명되었다.
본 실시예들의 사상이나 범위를 벗어나지 않고 본 실시예들에서 다양한 변경 및 변형이 가능함은 당업자에게 자명하다. 따라서, 실시예들은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 실시예들의 변경 및 변형을 포함하는 것으로 의도된다.

Claims (15)

  1. 포인트 클라우드 데이터를 지오메트리 데이터를 인코딩하는 단계;
    상기 지오메트리 데이터를 기반으로 상기 포인트 클라우드 데이터의 어트리뷰트 데이터를 인코딩하는 단계; 및
    상기 인코딩된 지오메트리 데이터, 상기 인코딩된 어트리뷰트 데이터, 및 시그널링 정보를 전송하는 단계를 포함하며,
    상기 지오메트리 데이터를 인코딩하는 단계는,
    상기 지오메트리 데이터를 기반으로 예측 트리를 생성하는 단계,
    상기 예측 트리를 복수개의 예측 단위들로 분할하는 단계,
    예측 단위별로, 참조 프레임 상에서 움직임 추정과 움직임 보상을 수행하여 현재 예측 단위의 포인트들과 유사한 특성을 갖는 포인트들의 집합인 예측기를 상기 참조 프레임 내에서 생성하는 단계,
    상기 예측기에서 예측 트리를 생성하는 단계, 및
    상기 예측기의 예측 트리와 인터 예측 모드 정보를 기반으로 프레임 간 예측을 수행하여 잔여 정보를 획득하는 단계를 포함하는 포인트 클라우드 데이터 송신 방법.
  2. 제 1 항에 있어서, 상기 프레임 간 예측을 수행하는 단계는
    현재 예측 단위의 인코드될 포인트와 유사한 포인트를 상기 예측기에서 선택하여 프레임 간 예측을 수행하는 단계를 더 포함하는 포인트 클라우드 데이터 송신 방법.
  3. 제 1 항에 있어서, 상기 지오메트리 데이터를 인코딩하는 단계는
    상기 예측 트리와 인트라 예측 모드 정보를 기반으로 프레임 내 예측을 수행하여 잔여 정보를 획득하는 단계를 더 포함하는 포인트 클라우드 데이터 송신 방법.
  4. 제 3 항에 있어서, 상기 지오메트리 데이터를 인코딩하는 단계는
    상기 프레임 간 예측에 적용된 인터 예측 모드 정보와 상기 프레임 내 예측에 적용된 인트라 예측 모드 정보를 비교하여 최종 예측 모드 정보를 선택하는 단계, 및
    상기 선택된 예측 모드 정보를 식별하기 위한 정보와 상기 선택된 예측 모드 정보를 기반으로 획득한 잔여 정보를 엔트로피 코딩하여 전송하는 단계를 더 포함하는 포인트 클라우드 데이터 송신 방법.
  5. 제 2 항에 있어서,
    상기 시그널링 정보는 예측 기반의 지오메트리 압축 정보를 포함하고,
    상기 예측 기반의 지오메트리 압축 정보는 상기 참조 프레임을 식별하기 위한 정보, 상기 움직임 추정을 통해 획득된 움직임 벡터 정보, 상기 예측기의 바운딩 박스 크기 정보, 상기 예측기에서 선택된 포인트를 식별하기 위한 정보 또는 상기 인터 예측 모드 정보 중 적어도 하나를 포함하는 포인트 클라우드 데이터 송신 방법.
  6. 포인트 클라우드 데이터의 지오메트리 데이터를 인코딩하는 지오메트리 인코더;
    상기 지오메트리 데이터를 기반으로 상기 포인트 클라우드 데이터의 어트리뷰트 데이터를 인코딩하는 어트리뷰트 인코더; 및
    상기 인코딩된 지오메트리 데이터, 상기 인코딩된 어트리뷰트 데이터, 및 시그널링 정보를 전송하는 전송부를 포함하며,
    상기 지오메트리 인코더는,
    상기 지오메트리 데이터를 기반으로 예측 트리를 생성하는 제1 예측 트리 생성부,
    상기 예측 트리를 복수개의 예측 단위들로 분할하는 예측 단위 생성부,
    예측 단위별로, 참조 프레임 상에서 움직임 추정과 움직임 보상을 수행하여 현재 예측 단위의 포인트들과 유사한 특성을 갖는 포인트들의 집합인 예측기를 상기 참조 프레임 내에서 생성하는 예측기 생성부,
    상기 예측기에서 예측 트리를 생성하는 제2 예측 트리 생성부, 및
    상기 예측기의 예측 트리와 인터 예측 모드 정보를 기반으로 프레임 간 예측을 수행하여 잔여 정보를 획득하는 인터 프레임 예측부를 포함하는 포인트 클라우드 데이터 송신 장치.
  7. 제 6 항에 있어서, 상기 인터 프레임 예측부는
    현재 예측 단위의 인코드될 포인트와 유사한 포인트를 상기 예측기에서 선택하여 프레임 간 예측을 수행하는 포인트 클라우드 데이터 송신 장치.
  8. 제 6 항에 있어서, 상기 지오메트리 인코더는
    상기 예측 트리의 인코드될 포인트와 인트라 예측 모드 정보를 기반으로 프레임 내 예측을 수행하여 잔여 정보를 획득하는 인트라 프레임 예측부를 더 포함하는 포인트 클라우드 데이터 송신 장치.
  9. 제 8 항에 있어서, 상기 지오메트리 인코더는
    상기 프레임 간 예측에 적용된 인터 예측 모드 정보와 상기 프레임 내 예측에 적용된 인트라 예측 모드 정보를 비교하여 최종 예측 모드 정보를 선택하는 모드 선택부, 및
    상기 선택된 예측 모드 정보를 식별하기 위한 정보와 상기 선택된 예측 모드 정보를 기반으로 획득한 잔여 정보를 엔트로피 코딩하여 전송하는 엔트로피 코더를 더 포함하는 포인트 클라우드 데이터 송신 장치.
  10. 제 7 항에 있어서,
    상기 시그널링 정보는 예측 기반의 지오메트리 압축 정보를 포함하고,
    상기 예측 기반의 지오메트리 압축 정보는 상기 참조 프레임을 식별하기 위한 정보, 상기 움직임 추정을 통해 획득된 움직임 벡터 정보, 상기 예측기의 바운딩 박스 크기 정보, 상기 예측기에서 선택된 포인트를 식별하기 위한 정보 또는 상기 인터 예측 모드 정보 중 적어도 하나를 포함하는 포인트 클라우드 데이터 송신 장치.
  11. 지오메트리 데이터, 어트리뷰트 데이터, 및 시그널링 정보를 수신하는 단계;
    상기 시그널링 정보를 기반으로 상기 지오메트리 데이터를 디코딩하는 단계;
    상기 시그널링 정보와 상기 디코딩된 지오메트리 데이터를 기반으로 상기 어트리뷰트 데이터를 디코딩하는 단계; 및
    상기 시그널링 정보를 기반으로 상기 디코딩된 지오메트리 데이터와 상기 디코딩된 어트리뷰트 데이터로부터 복원된 포인트 클라우드 데이터를 렌더링하는 단계를 포함하며,
    상기 지오메트리 데이터를 디코딩하는 단계는,
    상기 시그널링 정보를 기반으로 참조 프레임 상에서 움직임 보상을 수행하여 예측기를 상기 참조 프레임 내에서 생성하는 단계,
    상기 시그널링 정보를 기반으로 상기 예측기에서 예측 트리를 생성하는 단계,
    상기 시그널링 정보에 포함된 예측 모드 정보와 상기 예측기의 예측 트리를 기반으로 프레임 간 예측을 수행하여 예측 정보를 생성하는 단계, 및
    상기 예측 정보와 수신되어 디코딩된 잔여 정보를 기반으로 지오메트리 데이터를 복원하는 단계를 포함하는 포인트 클라우드 데이터 수신 방법.
  12. 제 11 항에 있어서, 상기 프레임 간 예측을 수행하는 단계는
    상기 시그널링 정보를 기반으로 상기 프레임 간 예측에 사용할 포인트를 상기 예측기에서 선택하는 단계를 더 포함하는 포인트 클라우드 데이터 수신 방법.
  13. 제 11 항에 있어서, 상기 지오메트리 데이터를 디코딩하는 단계는,
    상기 시그널링 정보에 포함된 예측 모드 정보가 인터 예측 모드 정보인지 인트라 예측 모드 정보인지를 결정하는 단계를 더 포함하는 포인트 클라우드 데이터 수신 방법.
  14. 제 12 항에 있어서,
    상기 시그널링 정보는 예측 기반의 지오메트리 압축 정보를 포함하고,
    상기 예측 기반의 지오메트리 압축 정보는 상기 참조 프레임을 식별하기 위한 정보, 상기 움직임 보상을 위한 움직임 벡터 정보, 상기 예측기의 바운딩 박스 크기 정보, 상기 예측기에서 포인트를 선택하기 위한 정보 또는 상기 인터 예측 모드 정보 중 적어도 하나를 포함하는 포인트 클라우드 데이터 수신 방법.
  15. 제 11 항에 있어서, 상기 지오메트리 데이터를 디코딩하는 단계는,
    송신측에서 좌표 변환이 수행되면, 상기 시그널링 정보에 포함된 제1 잔여 정보를 기반으로 상기 지오메트리 데이터의 예측 에러를 보정하고, 상기 시그널링 정보에 포함된 제2 잔여 정보를 상기 보정된 지오메트리 데이터에 적용하여 상기 좌표 변환의 과정에서 발생한 에러를 보정하는 단계를 더 포함하는 포인트 클라우드 데이터 수신 방법.
KR1020237031621A 2021-03-05 2022-03-07 포인트 클라우드 데이터 송신 장치, 포인트 클라우드데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 KR20230148197A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020210029535 2021-03-05
KR20210029535 2021-03-05
PCT/KR2022/003206 WO2022186675A1 (ko) 2021-03-05 2022-03-07 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법

Publications (1)

Publication Number Publication Date
KR20230148197A true KR20230148197A (ko) 2023-10-24

Family

ID=83154320

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237031621A KR20230148197A (ko) 2021-03-05 2022-03-07 포인트 클라우드 데이터 송신 장치, 포인트 클라우드데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법

Country Status (5)

Country Link
US (1) US20240163426A1 (ko)
EP (1) EP4304180A1 (ko)
KR (1) KR20230148197A (ko)
CN (1) CN117121487A (ko)
WO (1) WO2022186675A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230209099A1 (en) * 2020-06-05 2023-06-29 Lg Electronics Inc. Point cloud data processing device and processing method
US20230014820A1 (en) * 2021-07-19 2023-01-19 Tencent America LLC Methods and apparatuses for dynamic mesh compression

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3698328A1 (en) * 2017-10-19 2020-08-26 InterDigital VC Holdings, Inc. Method and device for predictive encoding/decoding of a point cloud
WO2020146341A1 (en) * 2019-01-07 2020-07-16 Futurewei Technologies, Inc. Point cloud bitstream structure and auxiliary information differential coding
WO2020190093A1 (ko) * 2019-03-20 2020-09-24 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020189895A1 (ko) * 2019-03-21 2020-09-24 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법

Also Published As

Publication number Publication date
US20240163426A1 (en) 2024-05-16
EP4304180A1 (en) 2024-01-10
WO2022186675A1 (ko) 2022-09-09
CN117121487A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
KR102358759B1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
KR102295825B1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
KR102423499B1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
KR102406845B1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
KR102609776B1 (ko) 포인트 클라우드 데이터 처리 방법 및 장치
KR20210040253A (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
KR102634079B1 (ko) 포인트 클라우드 데이터 처리 장치 및 방법
US20230239501A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
US20230154052A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device and point cloud data reception method
US20220230360A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
KR20230173094A (ko) 포인트 클라우드 데이터 전송 방법, 포인트 클라우드데이터 전송 장치, 포인트 클라우드 데이터 수신 방법 및 포인트 클라우드 데이터 수신 장치
US20240163426A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
KR102294613B1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
CN116349229A (zh) 点云数据发送装置和方法、点云数据接收装置和方法
US20240196012A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
US20230386088A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
US20240276013A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device and point cloud data reception method
US20230206510A1 (en) Point cloud data processing device and processing method
EP4429248A1 (en) Device for transmitting point cloud data, method for transmitting point cloud data, device for receiving point cloud data, and method for receiving point cloud data
EP4425928A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data transmission method
EP4432657A1 (en) Point cloud data transmission method, point cloud data transmission device, point cloud data reception method, and point cloud data reception device
EP4373098A1 (en) Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
KR20240047385A (ko) 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 수신 방법 및 포인트 클라우드 데이터 수신 장치
KR20240117567A (ko) 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 수신 방법 및 포인트 클라우드 데이터 수신 장치
KR20240108387A (ko) 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 수신 방법 및 포인트 클라우드 데이터 수신 장치