KR20230145859A - SARS-CoV 슈도타입화된 복제-가능 레트로바이러스 벡터 시스템 - Google Patents

SARS-CoV 슈도타입화된 복제-가능 레트로바이러스 벡터 시스템 Download PDF

Info

Publication number
KR20230145859A
KR20230145859A KR1020220044787A KR20220044787A KR20230145859A KR 20230145859 A KR20230145859 A KR 20230145859A KR 1020220044787 A KR1020220044787 A KR 1020220044787A KR 20220044787 A KR20220044787 A KR 20220044787A KR 20230145859 A KR20230145859 A KR 20230145859A
Authority
KR
South Korea
Prior art keywords
cells
cov
sars
gene
vector system
Prior art date
Application number
KR1020220044787A
Other languages
English (en)
Inventor
정용태
김도우
이세영
Original Assignee
단국대학교 천안캠퍼스 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 천안캠퍼스 산학협력단 filed Critical 단국대학교 천안캠퍼스 산학협력단
Priority to KR1020220044787A priority Critical patent/KR20230145859A/ko
Publication of KR20230145859A publication Critical patent/KR20230145859A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/215Coronaviridae, e.g. avian infectious bronchitis virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/10041Use of virus, viral particle or viral elements as a vector
    • C12N2740/10043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/20Vectors comprising a special translation-regulating system translation of more than one cistron
    • C12N2840/203Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Pulmonology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Communicable Diseases (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 본 발명은 SARS-CoV-2 슈도타입화된 복제-가능 레트로바이러스 벡터 시스템 에 관한 것으로, 본 발명의 SARS-CoV 스파이크 단백질로 슈도타입화된(pseudotyped) 레트로바이러스 벡터 시스템이 공동-형질감염된 생산자 세포는 SARS-CoV 슈도타입 레트로바이러스를 안정적으로 생산하여 방출하였으며, 상기 레트로바이러스에 감염된 세포는 합포체를 형성하는 것을 확인할 수 있었다. 또한 II형 막관통 세린 프로테아제(type II transmembrane serine protease, TMPRSS2)를 발현하는 세포에서는 합포체 형성이 증가하였으며, SARS-CoV 스파이크 전장 단백질을 포함하는 레트로바이러스보다 스파이크 단백질에서 C-말단의 19개 아미노산을 절단하는 경우에 더 많은 합포체를 형성하였다. 따라서 본 발명의 s-RCR 벡터 시스템을 이용하여 새로운 융합 억제제 약물의 스크리닝이 가능하다.

Description

SARS-CoV 슈도타입화된 복제-가능 레트로바이러스 벡터 시스템 {REPLICATION-COMPETENT RETROVIRAL VECTOR SYSTEM PSEUDOTYPED WITH SARS-COV}
본 발명은 SARS-CoV-2 슈도타입화된 복제-가능 레트로바이러스 벡터 시스템에 관한 것이다.
코로나바이러스 2019(COVID-19)의 대유행은 중증 급성 호흡기 증후군 코로나바이러스 2(SARS-CoV-2)에 의해 발생했다. 코로나바이러스는 알파-CoV, 베타-CoV, 감마-CoV, 델타-CoV-2의 4가지 속으로 분류된다. SARS-CoV-2는 외피가 있는 단일 가닥의 포지티브 센스 RNA 바이러스로 베타 코로나바이러스(Betacoronavirus) 속의 새로운 구성원으로 확인되었다. 이 바이러스는 스파이크 당단백질(S)을 사용하여 동족 수용체-안지오텐신 전환 효소 2(angiotensin-converting enzyme 2, ACE2)에 결합하고, II형 막관통 세린 프로테아제(type II transmembrane serine protease, TMPRSS2)에 의해 숙주 세포에 들어가기 위해 상기 스파이크는 단백질 분해적으로 활성화된다. ACE2 단백질은 호흡 상피 세포의 정점 원형질막에 국한되어 있다. 결장암 세포주(Caco-2), 폐암 세포주(Calu-3) 및 원숭이 신장 세포주(Vero E6)는 정단막 도메인에서 ACE2를 발현한다. SARS-CoV-2 감염에서 TMPRSS2는 중요한 역할을 할 수 있다. TMPRSS2는 단일 아르기닌 또는 라이신 잔기(R/K)를 절단하고 TMPRSS2 억제제인 카모스타트 메실레이트(camostat mesylate)는 SARSCoV-2가 세포로 들어가는 것을 차단할 수 있다. TMPRSS2를 구성적으로 발현하는 Vero E6 세포(Vero E6/TMPRSS2)는 SARS-CoV-2 감염에 매우 취약하다. HEK293T 세포는 내인성 hACE2를 발현하지 않았기 때문에 HEK293T 세포는 완만한 바이러스 복제만을 보였다. 그러나 HEK293T-hACE2 세포는 SARS-CoV-2 감염에 가장 널리 사용되는 인간 ACE2 수용체를 안정적으로 발현한다.
SARS-CoV-2에 감염된 세포는 스파이크 단백질을 발현하고 ACE2 수용체 양성 이웃 세포와 융합하여 합포체를 형성한다. 다른 단백질(M; membrane, E; envelope, N; nucleocapsid)이 없는 경우에도 스파이크 단백질 단독의 발현은 수용체 의존성 합포체 형성을 유도한다. S1 수용체-결합 및 S2 융합 소단위의 두 가지 소단위를 포함하는 스파이크 단백질은 S1/S2 부위에서 푸린(furin)에 의해 절단되고 S2' 부위에서 TMPRSS2에 의해 절단된다. 높은 투과율은 독특한 푸린과 유사한 절단 부위(682-RRAR-685)에서 기인한다. 푸린 억제제는 SARS-CoV-2 스파이크 매개 합포체 형성을 차단한다. SARS-CoV-2의 계통발생학적 분석을 통해 S1/S2 부위에서 "RRAR"이 확인되었지만 SARS-CoV 및 기타 SARS 관련 코로나바이러스에는 존재하지 않는다. 대조적으로, SARS-CoV-2-S의 S2' 절단 부위는 SARS-CoV-S의 절단 부위와 유사하다.
관련이 없는 바이러스의 외피 단백질은 더 안전한 비복제성 바이러스 입자로 "슈도타입형(pseudotyped)"이 될 수 있다. 이 단백질은 슈도타입 바이러스가 세포로 침입하는 것을 촉진한다. 슈도타입 바이러스 입자의 생산은 바이러스 친화성과 면역원성을 연구하기 위한 강력한 도구이다. SARS-CoV-2는 BSL-3(biosafety level 3) 시설에서 취급해야 하지만 슈도타입 바이러스는 BSL-2 시설에서 항바이러스 스크리닝을 수행할 수 있다. 최근에는 인간면역결핍바이러스(HIV), 쥐백혈병바이러스(MLV), 수포성 구내염 바이러스(VSV)를 기반으로 한 SARS-CoV-2 슈도타입 바이러스가 개발됐다. VSV 기반 SARS-CoV-2 슈도타입 바이러스의 역가는 HIV-기반 슈도타입 렌티바이러스 입자보다 약 100배 높지만 전자는 HIV-1 기반 SARS-CoV-2 슈도타입 바이러스만큼 실용적이지 않다. HIV-1 기반 SARS-CoV-2 슈도타입 바이러스는 중화 효율 및 진입 억제를 평가할 수 있다. 스파이크 단백질에서 C-말단의 19개 아미노산을 절단하여 슈도타입 바이러스의 낮은 수율을 극복했다. 이전 연구에서는 스파이크 단백질의 C-말단 절단과 D614G 돌연변이가 수도바이러스 역가를 향상시키는 것으로 나타났다.
뮤린 백혈병 바이러스(MLV)는 작은 RNA 바이러스이며 3개의 유전자(gag, pol env)를 포함한다. 복제-결함 레트로바이러스(Replication-defective retroviral, RDR) 벡터는 유전자 전달 효능(103-106 transduction units/mL)이 충분하지 않고 유전자를 비분할 세포로 전달할 수 없다. 이러한 벡터의 낮은 수준의 형질도입 효율을 개선하기 위해 MLV-기반 RCR(복제-가능 레트로바이러스, replication-competent retroviral) 벡터가 개발되었다. RCR 벡터는 유전자 전달의 개선된 효능을 입증했지만 여전히 우발적인 확산의 위험이 있다. 이러한 위험을 줄이기 위해 반-복제 가능 레트로바이러스(s-RCR, semi-replication competent retroviral) 벡터가 개발되었다. 이들은 RCR 벡터만큼 효율적으로 이식유전자를 전파하고 최대 7.3kb의 이식유전자의 삽입 용량을 갖는다. 반-복제 가능 레트로바이러스(s-RCR) 시스템에서 gag-polenv 유전자는 두 벡터로 분할되었다. 새로운 키메라 복제 가능 MoMLV-10A1-EGFP 벡터는 s-RCR을 구성하기 위한 백본 플라스미드로 사용되었다.
대한민국 공개특허 제10-2022-0027785호
본 발명자는 합포체 형성을 유도하는 s-RCR 벡터를 구축하기 위해 SARS-CoV-2 S 단백질을 MLV 입자에 통합하는 것을 연구했다. 강화된 녹색 형광 단백질(EGFP) 리포터 유전자는 표적 세포의 형질도입 후 합포체 형성의 검출을 용이하게 하기 위해 gag-pol 벡터 또는 env 벡터에서 발현되었다. 또한 MLV 기반 SARS-CoV-2 슈도타입 바이러스는 일시적인 형질감염을 통해 높은 역가를 나타내지 않으면서 안정적인 생산자 세포(stable producer cell)에서 방출되는 s-RCR 벡터를 개발했다.
합포체 형성을 유도하는 고역가 s-RCR 벡터를 얻기 위해 일시적인 형질감염 시스템을 안정한 생산자 세포와 비교했을 때 안정한 생산자 세포에서 얻은 s-RCR 바이러스의 역가는 일시적인 형질감염에서 얻은 바이러스의 역가보다 높았다. 본 발명은 또한 HEK293-hACE2 및 Vero E6-TMPRSS2 세포 배양에서 s-RCR 바이러스가 합포체 형성을 점진적으로 복제하고 유도한다는 것을 보여준다.
본 발명의 일실시예에 따르면, gag 유전자 및 pol 유전자를 포함하는 제1재조합 레트로바이러스 벡터 및 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 스파이크 유전자를 포함하는 제2재조합 레트로바이러스 벡터를 포함하고, 세포의 합포체 형성을 유도하는 것을 특징으로 하는 SARS-CoV-2 슈도타입화된 복제가능 레트로바이러스 벡터 시스템을 제공한다.
상기 gag 유전자는 서열번호 1의 염기서열로 이루어지고, 상기 pol 유전자는 서열번호 2의 염기서열로 이루어지고, 상기 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 스파이크 유전자는 서열번호 3의 염기서열로 이루어진다.
상기 제1재조합 레트로바이러스 벡터는 pol 유전자 뒤에 IRES(internal ribosomal entry site) 서열 또는 형광유전자를 더 포할 수 있다.
상기 제2재조합 레트로바이러스 벡터는 제2재조합 레트로바이러스 벡터는 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 스파이크 유전자 뒤에 IRES(internal ribosomal entry site) 서열 또는 형광유전자를 더 포함할 수 있다.
상기 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 스파이크 유전자는 서열번호 5의 염기서열로 이루어진다.
상기 II형 막관통 세린 프로테아제(type II transmembrane serine protease, TMPRSS2) 유전자를 포함하는 제3재조합 레트로바이러스 벡터를 포함할 수 있다.
상기 벡터는 pCLXSN인 벡터 시스템이다.
다른 실시예에 따르면, 상기 벡터 시스템에 의하여 공동 형질감염된(co-transfected) 세포를 제공한다.
상기 세포는 VERO, WI38, MRC5, A549, HEK293 세포, B-50 세포, B-50이 아닌 HeLa 세포, HepG2, Saos-2, HuH7 및 HT1080으로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되는 것은 아니다.
상기 세포, 구체적으로 HEK293 세포는 안지오텐신 전환 효소 2(angiotensin-converting enzyme 2, ACE2)를 발현하는 것을 특징으로 한다.
또 다른 실시예에 따르면, 상기 세포에 의하여 생산된 레트로바이러스를 제공한다.
또 다른 실시예에 따르면, 상기 레트로바이러스를 특정 세포에 감염시키는 단계; 상기 바이러스 감염 세포에 시험물질을 처리하는 단계 및 상기 시험물질이 처리된 세포에서 합포체(syncytia) 형성 정도를 측정하는 단계를 포함하는 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 치료제 스크리닝 방법을 제공한다.
상기 시험물질이 처리된 세포에서 합포체(syncytia) 형성 정도를 측정하는 단계 이후에, 합포체(syncytia) 형성을 감소시키는 시험물질을 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 치료제로 판단하는 단계를 더 포함할 수 있다.
상기 합포체(syncytia) 형성 정도는 형광 유전자의 발현 또는 활성 정도로 측정하는 것을 특징으로 한다.
상기 형광 유전자는 루시페라제(Luciferase), 녹색 형광 단백질(green fluorescent protein; GFP), 황색 형광 단백질(yellow fluorescent protein; YFP) 또는 적색 형광 단백질(red fluorescent protein; RFP)을 암호화하는 유전자일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 SARS-CoV 스파이크 단백질로 슈도타입화된(pseudotyped) 레트로바이러스 벡터 시스템이 공동-형질감염된 생산자 세포는 SARS-CoV 슈도타입 레트로바이러스를 안정적으로 생산하여 방출하였으며, 상기 레트로바이러스에 감염된 세포는 합포체를 형성하는 것을 확인할 수 있었다. 또한 II형 막관통 세린 프로테아제(type II transmembrane serine protease, TMPRSS2)를 발현하는 세포에서는 합포체 형성이 증가하였으며, SARS-CoV 스파이크 전장 단백질을 포함하는 레트로바이러스보다 스파이크 단백질에서 C-말단의 19개 아미노산을 절단하는 경우에 더 많은 합포체를 형성하였다. 따라서 본 발명의 s-RCR 벡터 시스템을 이용하여 새로운 융합 억제제 약물의 스크리닝이 가능하다.
도 1은 s-RCR 벡터의 구조를 나타내는 도면이다. 플라스미드 pCLXSN-gag-pol은 전체 MoMLV gag-pol 코딩 서열과 네오마이신 내성 유전자를 포함한다. IRES-EGFP 구조물은 pCLXSN-gag-pol-IRES-EGFP를 구축하기 위해 pCLXSN-gag-polgag-pol 서열의 다운스트림에 삽입되었다. 플라스미드 pCLXSN-S env는 코돈 최적화 스파이크 단백질 유전자를 포함한다. C-말단 HA 태그가 지정된 SΔ19를 pCLXSN-IRES-EGFP에 삽입하여 pCLXSN-SΔ19 env-EGFP를 생성했다.
도 2는 스파이크 단백질을 인코딩하는 s-RCR 바이러스의 생성 여부를 나타내는 이미지이다. Vero E6 세포를 6웰 플레이트에서 3μg pCLXSN-S env 및 3μg pCLXSN-gag-pol-IRES-EGFP로 형질감염시켜 s-RCR 바이러스를 생성했다. Vero E6 세포에서 pCLXSN-gag-pol-IRES-EGFP 단독의 형질감염은 음성 대조군이며, 합포체 형성은 형질감염 후 3, 6, 7 및 8일에 형광 현미경을 사용하여 검출되었다.
도 3은 바이러스 용해물 및 세포 용해물에서 SARS-CoV-2 SΔ19의 웨스턴 블롯 분석 결과를 나타내는 이미지이다. SARS-CoV-2 SΔ19가 s-RCR 바이러스에 통합되었는지 확인하기 위해 안정한 생산자 세포에서 얻은 농축 상층액을 바이러스 용해물로 사용했다. 안정한 생산자 세포에서 스파이크 단백질의 존재는 또한 웨스턴 블롯에 의해 분석되었다. 바이러스 용해물; 레인 1, S 및 S2에 해당하는 밴드. 레인 M, 단백질 마커. 세포 용해물; 레인 1, 음성 대조군, 레인 2, S 및 S2에 해당하는 밴드.
도 4는 일시적 형질감염 또는 안정적인 생산자 세포에서 생성된 슈도타입 바이러스의 수율을 비교한 이미지이다. A) Vero E6 세포를 일시적 형질감염에서 얻은 s-RCR 바이러스로 감염시켰다. B) HEK 293-hACE 세포를 안정한 생산자 세포에서 얻은 s-RCR 바이러스로 감염시켰다. 이틀 후, 빛 및 형광 현미경을 사용하여 합포체 형성이 감지되었다. 바이러스 역가를 결정하기 위해 FACSCaliburTM 유세포 분석기(Becton, Dickinson and Company, NJ, USA)를 사용하여 EGFP-양성 세포를 분석했다. 배율, 100Х.
도 5는 합포체 형성에 대한 TMPRSS2의 영향을 나타내는 이미지이다. Vero 세포 및 Vero-TMPRSS2 세포를 MOI = 0.1에서 안정한 생산자 세포로부터 얻은 s-RCR 바이러스로 감염시켰다. 감염 후 5, 7, 9일에 광학 현미경을 사용하여 합포체 형성을 비교했다. 바이러스 역가는 합포체 형성 단위(sfu/mL)로 측정되었다. 배율, 100Х.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 일 실시예에서, SARS-CoV 슈도타입화된 복제가능 레트로바이러스 벡터 시스템을 제공하고, 상기 벡터 시스템은 gag 유전자 및 pol 유전자를 포함하는 제1재조합 레트로바이러스 벡터 및 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 스파이크 유전자를 포함하는 제2재조합 레트로바이러스 벡터를 포함할 수 있다.
상기 벡터 시스템에 공동-형질 감염된 생산자 세포는 SARS-CoV 슈도타입 레트로바이러스를 안정적으로 생산할 수 있으며, 상기 벡터 시스템이 공동-형질 감염된 세포는 합포체를 형성할 수 있으며, 상기 생산자 세포로부터 생산된 SARS-CoV 슈도타입 레트로바이러스에 감염된 세포 또한 합포체를 형성할 수 있는 것을 확인하였다. 따라서 상기 벡터 시스템은 감염 세포의 합포체 형성을 유도하는 것을 특징으로 한다.
본 발명자의 실험에 의하면, 상기 벡터를 세포에 공동형질감염시키는 경우, EGFP-양성 세포 및 합포체 형성의 점진적인 증가가 검출된 반면, 제1재조합 레트로바이러스 벡터만으로 형질감염된 세포에서 합포체 형성이 관찰되지 않았다(도 2).
이에 구체적으로, 본 발명의 SARS-CoV-2 슈도타입화된 복제가능 레트로바이러스 벡터 시스템은 SARS-CoV-2 슈도타입화된 반-복제가능 레트로바이러스 벡터 시스템이라고 할 수 있다.
본 발명의 복제가능 레트로바이러스(Replication Competent Retrovirus, RCR) 벡터는 비용균성(nonlytic) 바이러스이기 때문에 숙주 면역 시스템에 의해 세포 손상이 일어나지 않으며, 바이러스에 대한 항체가 생성되지 않기 때문에 바이러스 제거(viral clearance)가 일어나지 않아 유전자 전달체로써 매우 우수하다.
상기 복제가능(Replication Competent)은 특정 바이러스에 대해 감염성이 높은 동물 세포에 상기 바이러스 유전자를 트랜스팩션 또는 상기 바이러스를 감염시켰을 경우, 그 결과로 얻어진 감염 혹은 형질전환된 세포에서 바이러스를 생산할 수 있는 능력을 가졌음을 의미할 수 있다.
본원에서 사용된 "비리온(Virion)", "바이러스 입자(viral particle)" 및 "레트로바이러스 입자(retroviral particle)"는 RNA 게놈, pol 유전자 유래 단백질, gag 유전자 유래 단백질 및 외피(당) 단백질을 나타내는 지질 이중층을 포함하는 하나의 바이러스를 의미한다. RNA 게놈은 보통 재조합 RNA 게놈이므로, 본래 바이러스성 게놈에 외인성인 RNA 서열을 포함할 수 있다. RNA 게놈은 또한 결함이 있는 내인성 바이러스 서열(defective endogenous viral sequence)을 포함할 수 있다.
"슈도타입화된(pseudotyped)" 레트로바이러스는 RNA 게놈 유래의 바이러스 이외의 바이러스로부터 유래된 외피 단백질을 갖는 레트로바이러스 입자이다. 외피 단백질은 예를 들어, 다양한 레트로바이러스로부터 또는 비레트로바이러스성 근원으로부터 유래될 수 있으나, 이에 한정되는 것은 아니다. 외피 단백질은 본원에서 기술된 바와 같이, 중증급성호흡기증후군 코로나바이러스(SARS-CoV)의 외피 단백질일 수 있다.
본원에서 사용된 "형질전환(Transformation)"은 외인성 DNA가 표적 세포로 들어가는 과정을 의미한다. 형질전환은 원핵 또는 진핵 숙주 세포 내로 외래 핵산 서열을 삽입하는 임의의 알려진 방법에 의하고, 바이러스의 감염, 일렉트로포레이션(electroporation), 열 충격, 리포펙션(lipofection), 및 입자 충격(particle bombardment)을 포함할 수 있으나, 이에 한정되는 것은 아니다. "형질전환된(Transformed)" 세포는 삽입된 핵산이 자율적으로 복제 플라스미드로서 또는 숙주 염색체의 일부로서 복제될 수 있는 안정하게 형질전환된 세포를 포함한다. 또한, 일시적으로 목적 유전자를 발현하는 세포들도 포함된다.
본 발명에서 "벡터"란 목적 유전자를 코딩하는 DNA, RNA 등의 핵산 서열을 숙주 세포로 도입되기 위한 수단을 의미한다. 특히, 적당한 숙주세포에서 목적 단백질 또는 목적 RNA을 발현할 수 있는 벡터로서, 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 제작물이다. 상기한 용어 "작동가능하게 연결된(operably linked)"는 핵산 발현 조절 서열과 목적 단백질 또는 RNA를 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 것을 말한다.
상기 gag 유전자는 레트로바이러스 코어를 구성하는 4종의 단백질을 암호화하는 폴리뉴클레오티드일 수 있다. 한편, 상기 pol 유전자는 레트로바이러스의 역전사 효소를 암호화하는 폴리뉴클레오티드일 수 있고, 상기 env 유전자는 레트로바이러스의 외피 당단백질을 암호화하는 폴리뉴클레오티드일 수 있다.
레트로바이러스 게놈은 입자 형성과 복제에 관여하는 유전자인 gag, pol 및 env라고 불리는 유전자를 포함한다. gag 유전자는 MA (matrix), CA (capsid) 및 NC (nucleocapsid)의 단백질로 프로세싱된다. pol 유전자는 역전사 효소 및 인터그레이즈(integrase) 유전자등 복제에 필요한 효소를 코딩하고 있다. SARS-CoV 스파이크 유전자는 바이러스 외피의 표면 당단백질을 코딩하고 있다. SARS-CoV 스파이크 단백질은 숙주세포의 세포 수용체 단백질과 상호작용하여 바이러스 막과 세포막의 융합이 유도되고 이에 의해 바이러스 감염이 일어나게 한다. 이들 유전자는 프로바이러스의 2개의 LTR(long terminal repeat) 사이에 위치한다. LTR은 레트로바이러스 DNA의 양 끝에 위치하는 것으로 U5, R 및 U3를 나타내는 3개의 요소로 나뉜다. 이들 요소는 레트로바이러스의 생물학적 활성에 필요한 다양한 서열을 포함한다. U3는 프로모터와 인핸서 서열과 같은 프로바이러스의 전사 조절요소의 대부분을 가진다. R 영역은 레트로바이러스의 역전사에 중용한 역할을 하고 폴리아데닐레이션 신호를 포함한다. U5는 레트로바이러스 게놈의 패키징에 중요한 서열을 포함한다.
레트로바이러스 벡터는 U5 및 gag 유전자 사이에 패키징 신호(ψ)가 위치할 수 있으며, 상기 패키징 신호(ψ)는 바이러스 입자 형성 동안 레트로바이러스 RNA 가닥의 캡슐화를 위해 필요한 레트로바이러스 게놈 내에 위치되는 비암호 서열을 지칭한다(예를 들어, 문헌[Clever et al., 1995. J. of Virology, Vol. 69, No. 4; pp. 2101-2109] 참조).
상기 gag 유전자는 서열번호 1의 염기서열로 이루어지고, 상기 pol 유전자는 서열번호 2의 염기서열로 이루어지고, 상기 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 스파이크 유전자는 서열번호 3 또는 서열번호 5의 염기서열로 이루어질 수 있으나, 이에 제한되는 것은 아니다. 상기 서열번호 3의 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 스파이크 유전자는 제2형 중증급성호흡기증후군 코로나바이러스(SARS-CoV-2) 스파이크 유전자이다. 상기 서열번호 5의 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 스파이크 유전자는 제2형 중증급성호흡기증후군 코로나바이러스(SARS-CoV-2) 스파이크 단백질의 C-말단의 19개 아미노산이 절단된 단백질을 코딩할 수 있다.
본 발명자는 SARS-CoV 스파이크 전장 단백질을 포함하는 레트로바이러스보다 SARS-CoV 스파이크 단백질에서 C-말단의 19개 아미노산을 절단하는 경우에 더 많은 합포체를 형성하는 것을 확인하였다. 구체적으로 C-말단 19개 aa-truncated SARS-CoV-2 S로 슈도타입화된(pseudotyped)된 MLV는 SARS-CoV-2 S보다 HEK293-hACE2 세포를 더 효율적으로 감염시켰다(도 4).
상기 gag 유전자는 MuLV(Murine Leukemia virus, MuLV) gag 유전자 및 MuLV Pol 유전자일 수 있으나, 이에 제한되는 것은 아니다.
상기 제1재조합 레트로바이러스 벡터는 pol 유전자 뒤에 IRES(internal ribosomal entry site) 서열 또는 형광유전자를 더 포함할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로 상기 제1재조합 레트로바이러스 벡터는 5'에서 3'의 순서로, gag 유전자; pol 유전자; IRES 서열 및 형광유전자를 포함할 수 있다.
상기 제2재조합 레트로바이러스 벡터는 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 스파이크 유전자 뒤에 IRES(internal ribosomal entry site) 서열 또는 형광유전자를 더 포함할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로 상기 제2재조합 레트로바이러스 벡터는 5'에서 3'의 순서로, gag 유전자; pol 유전자; IRES 서열 및 형광유전자를 포함할 수 있다.
상기 IRES(internal ribosomal entry site) 서열은 서열번호 4의 염기서열을 갖는다.
상기 형광 유전자는 루시페라제(Luciferase), 녹색 형광 단백질(green fluorescent protein; GFP), 황색 형광 단백질(yellow fluorescent protein; YFP) 또는 적색 형광 단백질(red fluorescent protein; RFP)을 암호화하는 유전자일 수 있으나, 이에 제한되지 않는다.
상기 IRES 서열 및 형광유전자는 제1재조합 레트로바이러스 벡터 및 제2재조합 레트로바이러스 벡터 중 어느 하나에만 포함되는 것이 바람직하다. 도 2를 참고하면, 합포체를 형성하는 SARS-CoV 스파이크(env) 유전자와 형광을 유도할 수 있는 IRES-형광유전자를 각각 서로 다른 플라스미드에 위치시키고, 공동형질감염시키는 경우, 각각의 플라스미드로부터 레트로바이러스가 만들어지고, 각각의 바이러스가 별개의 세포를 감염시키면 그 세포는 합포체는 형성하지만 형광을 나타내지 않고, 반대로 형광은 내지만 합포체는 형성되지 않을 것이다.
그러나 각각의 바이러스가 하나의 세포에 동시에 감염시키면 그 세포는 형광을 나타냄과 동시에 합포체를 형성할 수 있으며, 이를 반-복제 가능 레트로바이러스(s-RCR, semi-replication competent retroviral) 시스템이라고 한다. 따라서, 본 발명의 SARS-CoV-2 슈도타입화된 복제가능 레트로바이러스 벡터 시스템은 SARS-CoV-2 슈도타입화된 반-복제가능 레트로바이러스 벡터 시스템이라고 할 수 있다.
상기 벡터 시스템은 상기 II형 막관통 세린 프로테아제(type II transmembrane serine protease, TMPRSS2) 유전자를 포함하는 제3재조합 레트로바이러스 벡터를 더 포함할 수 있다. 상기 II형 막관통 세린 프로테아제(type II transmembrane serine protease, TMPRSS2)를 발현하는 세포에서는 합포체 형성이 증가하는 효과를 나타낸다.
상기 벡터는 상기 레트로바이러스 벡터는 HIV-1 렌티바이러스 벡터, HIV-2 렌티바이러스 벡터, 알파레트로바이러스 벡터, 말 감염성 빈혈증 바이러스 (EIAV) 렌티바이러스 벡터, MoMLV 벡터, X-MLV 벡터, P-MLV 벡터, A-MLV 벡터, GALV 벡터, HEV-W 벡터, SIV-1 벡터, FIV-1 벡터, 및 SERV-1-5 벡터로 구성된 군에서 선택될 수 있으나 이에 제한되는 것은 아니며, 구체적으로 pCLXSN일 수 있다.
서열번호 유전자 서열
1 gag atgggccagactgttaccactcccttaagtttgaccttaggtcactggaaagatgtcgagcggatcgctcacaaccagtcggtagatgtcaagaagagacgttgggttaccttctgctctgcagaatggccaacctttaacgtcggatggccgcgagacggcacctttaaccgagacctcatcacccaggttaagatcaaggtcttttcacctggcccgcatggacacccagaccaggtcccctacatcgtgacctgggaagccttggcttttgacccccctccctgggtcaagccctttgtacaccctaagcctccgcctcctcttcctccatccgccccgtctctcccccttgaacctcctcgttcgaccccgcctcgatcctccctttatccagccctcactccttctctaggcgccaaacctaaacctcaagttctttctgacagtggggggccgctcatcgacctacttacagaagaccccccgccttatagggacccaagaccacccccttccgacagggacggaaatggtggagaagcgacccctgcgggagaggcaccggacccctccccaatggcatctcgcctacgtgggagacgggagccccctgtggccgactccactacctcgcaggcattccccctccgcgcaggaggaaacggacagcttcaatactggccgttctcctcttctgacctttacaactggaaaaataataacccttctttttctgaagatccaggtaaactgacagctctgatcgagtctgttctcatcacccatcagcccacctgggacgactgtcagcagctgttggggactctgctgaccggagaagaaaaacaacgggtgctcttagaggctagaaaggcggtgcggggcgatgatgggcgccccactcaactgcccaatgaagtcgatgccgcttttcccctcgagcgcccagactgggattacaccacccaggcaggtaggaaccacctagtccactatcgccagttgctcctagcgggtctccaaaacgcgggcagaagccccaccaatttggccaaggtaaaaggaataacacaagggcccaatgagtctccctcggccttcctagagagacttaaggaagcctatcgcaggtacactccttatgaccctgaggacccagggcaagaaactaatgtgtctatgtctttcatttggcagtctgccccagacattgggagaaagttagagaggttagaagatttaaaaaacaagacgcttggagatttggttagagaggcagaaaagatctttaataaacgagaaaccccggaagaaagagaggaacgtatcaggagagaaacagaggaaaaagaagaacgccgtaggacagaggatgagcagaaagagaaagaaagagatcgtaggagacatagagagatgagcaagctattggccactgtcgttagtggacagaaacaggatagacagggaggagaacgaaggaggtcccaactcgatcgcgaccagtgtgcctactgcaaagaaaaggggcactgggctaaagattgtcccaagaaaccacgaggacctcggggaccaagaccccagacctccctcctgaccctagatgactag
2 pol ggaggtcagggtcaggagcccccccctgaacccaggataaccctcaaagtcggggggcaacccgtcaccttcctggtagatactggggcccaacactccgtgctgacccaaaatcctggacccctaagtgataagtctgcctgggtccaaggggctactggaggaaagcggtatcgctggaccacggatcgcaaagtacatctagctaccggtaaggtcacccactctttcctccatgtaccagactgtccctatcctctgttaggaagagatttgctgactaaactaaaagcccaaatccactttgagggatcaggagctcaggttatgggaccaatggggcagcccctgcaagtgttgaccctaaatatagaagatgagcatcggctacatgagacctcaaaagagccagatgtttctctagggtccacatggctgtctgattttcctcaggcctgggcggaaaccgggggcatgggactggcagttcgccaagctcctctgatcatacctctgaaagcaacctctacccccgtgtccataaaacaataccccatgtcacaagaagccagactggggatcaagccccacatacagagactgttggaccagggaatactggtaccctgccagtccccctggaacacgcccctgctacccgttaagaaaccagggactaatgattataggcctgtccaggatctgagagaagtcaacaagcgggtggaagacatccaccccaccgtgcccaacccttacaacctcttgagcgggctcccaccgtcccaccagtggtacactgtgcttgatttaaaggatgcctttttctgcctgagactccaccccaccagtcagcctctcttcgcctttgagtggagagatccagagatgggaatctcaggacaattgacctggaccagactcccacagggtttcaaaaacagtcccaccctgtttgatgaggcactgcacagagacctagcagacttccggatccagcacccagacttgatcctgctacagtacgtggatgacttactgctggccgccacttctgagctagactgccaacaaggtactcgggccctgttacaaaccctagggaacctcgggtatcgggcctcggccaagaaagcccaaatttgccagaaacaggtcaagtatctggggtatcttctaaaagagggtcagagatggctgactgaggccagaaaagagactgtgatggggcagcctactccgaagacccctcgacaactaagggagttcctagggacggcaggcttctgtcgcctctggatccctgggtttgcagaaatggcagcccccttgtaccctctcaccaaaacggggactctgtttaattggggcccagaccaacaaaaggcctatcaagaaatcaagcaagctcttctaactgccccagccctggggttgccagatttgactaagccctttgaactctttgtcgacgagaagcagggctacgccaaaggtgtcctaacgcaaaaactgggaccttggcgtcggccggtggcctacctgtccaaaaagctagacccagtagcagctgggtggcccccttgcctacggatggtagcagccattgccgtactgacaaaggatgcaggcaagctaaccatgggacagccactagtcattctggccccccatgcagtagaggcactagtcaaacaaccccccgaccgctggctttccaacgcccggatgactcactatcaggccttgcttttggacacggaccgggtccagttcggaccggtggtagccctgaacccggctacgctgctcccactgcctgaggaagggctgcaacacaactgccttgatatcctggccgaagcccacggaacccgacccgacctaacggaccagccgctcccagacgccgaccacacctggtacacggatggaagcagtctcttacaagagggacagcgtaaggcgggagctgcggtgaccaccgagaccgaggtaatctgggctaaagccctgccagccgggacatccgctcagcgggctgaactgatagcactcacccaggccctaaagatggcagaaggtaagaagctaaatgtttatactgatagccgttatgcttttgctactgcccatatccatggagaaatatacagaaggcgtgggttgctcacatcagaaggcaaagagatcaaaaataaagacgagatcttggccctactaaaagccctctttctgcccaaaagacttagcataatccattgtccaggacatcaaaagggacacagcgccgaggctagaggcaaccggatggctgaccaagcggcccgaaaggcagccatcacagagactccagacacctctaccctcctcatagaaaattcatcaccctacacctcagaacattttcattacacagtgactgatataaaggacctaaccaagttgggggccatttatgataaaacaaagaagtattgggtctaccaaggaaaacctgtgatgcctgaccagtttacttttgaattattagactttcttcatcagctgactcacctcagcttctcaaaaatgaaggctctcctagagagaagccacagtccctactacatgctgaaccgggatcgaacactcaaaaatatcactgagacctgcaaagcttgtgcacaagtcaacgccagcaagtctgccgttaaacagggaactagggtccgcgggcatcggcccggcactcattgggagatcgatttcaccgagataaagcccggattgtatggctataaatatcttctagtttttatagataccttttctggctggatagaagccttcccaaccaagaaagaaaccgccaaggtcgtaaccaagaagctactagaggagatcttccccaggttcggcatgcctcaggtattgggaactgacaatgggcctgccttcgtctccaaggtgagtcagacagtggccgatctgttggggattgattggaaattacattgtgcatacagaccccaaagctcaggccaggtagaaagaatgaatagaaccatcaaggagactttaactaaattaacgcttgcaactggctctagagactgggtgctcctactccccttagccctgtaccgagcccgcaacacgccgggcccccatggcctcaccccatatgagatcttatatggggcacccccgccccttgtaaacttccctgaccctgacatgacaagagttactaacagcccctctctccaagctcacttacaggctctctacttagtccagcacgaagtctggagacctctggcggcagcctaccaagaacaactggaccgaccggtggtacctcacccttaccgagtcggcgacacagtgtgggtccgccgacaccagactaagaacctagaacctcgctggaaaggaccttacacagtcctgctgaccacccccaccgccctcaaagtagacggcatcgcagcttggatacacgccgcccacgtgaaggctgccgaccccgggggtggaccatcctctagactgacatggcgcgttcaacgctctcaaaaccccttaaaaataaggttaacccgcgaggccccctaa
3 SARS-CoV-2 env atgttcgtcttcctggtcctgctgcctctggtctcctcacagtgcgtcaatctgacaactcggactcagctgccacctgcttatactaatagcttcaccagaggcgtgtactatcctgacaaggtgtttagaagctccgtgctgcactctacacaggatctgtttctgccattctttagcaacgtgacctggttccacgccatccacgtgagcggcaccaatggcacaaagcggttcgacaatcccgtgctgccttttaacgatggcgtgtacttcgcctctaccgagaagagcaacatcatcagaggctggatctttggcaccacactggactccaagacacagtctctgctgatcgtgaacaatgccaccaacgtggtcatcaaggtgtgcgagttccagttttgtaatgatcccttcctgggcgtgtactatcacaagaacaataagagctggatggagtccgagtttagagtgtattctagcgccaacaactgcacatttgagtacgtgagccagcctttcctgatggacctggagggcaagcagggcaatttcaagaacctgagggagttcgtgtttaagaatatcgacggctacttcaaaatctactctaagcacacccccatcaacctggtgcgcgacctgcctcagggcttcagcgccctggagcccctggtggatctgcctatcggcatcaacatcacccggtttcagacactgctggccctgcacagaagctacctgacacccggcgactcctctagcggatggaccgccggcgctgccgcctactatgtgggctacctccagccccggaccttcctgctgaagtacaacgagaatggcaccatcacagacgcagtggattgcgccctggaccccctgagcgagacaaagtgtacactgaagtcctttaccgtggagaagggcatctatcagacatccaatttcagggtgcagccaaccgagtctatcgtgcgctttcctaatatcacaaacctgtgcccatttggcgaggtgttcaacgcaacccgcttcgccagcgtgtacgcctggaataggaagcggatcagcaactgcgtggccgactatagcgtgctgtacaactccgcctctttcagcacctttaagtgctatggcgtgtcccccacaaagctgaatgacctgtgctttaccaacgtctacgccgattctttcgtgatcaggggcgacgaggtgcgccagatcgcccccggccagacaggcaagatcgcagactacaattataagctgccagacgatttcaccggctgcgtgatcgcctggaacagcaacaatctggattccaaagtgggcggcaactacaattatctgtaccggctgtttagaaagagcaatctgaagcccttcgagagggacatctctacagaaatctaccaggccggcagcaccccttgcaatggcgtggagggctttaactgttatttcccactccagtcctacggcttccagcccacaaacggcgtgggctatcagccttaccgcgtggtggtgctgagctttgagctgctgcacgccccagcaacagtgtgcggccccaagaagtccaccaatctggtgaagaacaagtgcgtgaacttcaacttcaacggcctgaccggcacaggcgtgctgaccgagtccaacaagaagttcctgccatttcagcagttcggcagggacatcgcagataccacagacgccgtgcgcgacccacagaccctggagatcctggacatcacaccctgctctttcggcggcgtgagcgtgatcacacccggcaccaatacaagcaaccaggtggccgtgctgtatcaggacgtgaattgtaccgaggtgcccgtggctatccacgccgatcagctgaccccaacatggcgggtgtacagcaccggctccaacgtcttccagacaagagccggatgcctgatcggagcagagcacgtgaacaattcctatgagtgcgacatcccaatcggcgccggcatctgtgcctcttaccagacccagacaaactctcccagaagagcccggagcgtggcctcccagtctatcatcgcctataccatgtccctgggcgccgagaacagcgtggcctactctaacaatagcatcgccatcccaaccaacttcacaatctctgtgaccacagagatcctgcccgtgtccatgaccaagacatctgtggactgcacaatgtatatctgtggcgattctaccgagtgcagcaacctgctgctccagtacggcagcttttgtacccagctgaatagagccctgacaggcatcgccgtggagcaggataagaacacacaggaggtgttcgcccaggtgaagcaaatctacaagaccccccctatcaaggactttggcggcttcaatttttcccagatcctgcctgatccatccaagccttctaagcggagctttatcgaggacctgctgttcaacaaggtgaccctggccgatgccggcttcatcaagcagtatggcgattgcctgggcgacatcgcagccagggacctgatctgcgcccagaagtttaatggcctgaccgtgctgccacccctgctgacagatgagatgatcgcacagtacacaagcgccctgctggccggcaccatcacatccggatggaccttcggcgcaggagccgccctccagatcccctttgccatgcagatggcctataggttcaacggcatcggcgtgacccagaatgtgctgtacgagaaccagaagctgatcgccaatcagtttaactccgccatcggcaagatccaggacagcctgtcctctacagccagcgccctgggcaagctccaggatgtggtgaatcagaacgcccaggccctgaataccctggtgaagcagctgagcagcaacttcggcgccatctctagcgtgctgaatgacatcctgagccggctggacaaggtggaggcagaggtgcagatcgaccggctgatcaccggccggctccagagcctccagacctatgtgacacagcagctgatcagggccgccgagatcagggccagcgccaatctggcagcaaccaagatgtccgagtgcgtgctgggccagtctaagagagtggacttttgtggcaagggctatcacctgatgtccttccctcagtctgccccacacggcgtggtgtttctgcacgtgacctacgtgcccgcccaggagaagaacttcaccacagcccctgccatctgccacgatggcaaggcccactttccaagggagggcgtgttcgtgtccaacggcacccactggtttgtgacacagcgcaatttctacgagccccagatcatcaccacagacaacaccttcgtgagcggcaactgtgacgtggtcatcggcatcgtgaacaataccgtgtatgatccactccagcccgagctggacagctttaaggaggagctggataagtatttcaagaatcacacctcccctgacgtggatctgggcgacatcagcggcatcaatgcctccgtggtgaacatccagaaggagatcgaccgcctgaacgaggtggctaagaatctgaacgagagcctgatcgacctccaggagctgggcaagtatgagcagtacatcaagtggccctggtacatctggctgggcttcatcgccggcctgatcgccatcgtgatggtgaccatcatgctgtgctgtatgacatcctgctgttcttgcctgaagggctgctgtagctgtggctcctgctgtaagtttgacgaggatgactctgaacctgtgctgaagggcgtgaagctgcattacacctaa
4 IRES gcccctctccctcccccccccctaacgttactggccgaagccgcttggaataaggccggtgtgcgtttgtctatatgttattttccaccatattgccgtcttttggcaatgtgagggcccggaaacctggccctgtcttcttgacgagcattcctaggggtctttcccctctcgccaaaggaatgcaaggtctgttgaatgtcgtgaaggaagcagttcctctggaagcttcttgaagacaaacaacgtctgtagcgaccctttgcaggcagcggaaccccccacctggcgacaggtgcctctgcggccaaaagccacgtgtataagatacacctgcaaaggcggcacaaccccagtgccacgttgtgagttggatagttgtggaaagagtcaaatggctctcctcaagcgtattcaacaaggggctgaaggatgcccagaaggtaccccattgtatgggatctgatctggggcctcggtgcacatgctttacatgtgtttagtcgaggttaaaaaaacgtctaggccccccgaaccacggggacgtggttttcctttgaaaaacacgatgataatatggccaca
5 SARS-CoV-2 env △19 aa atgttcgtcttcctggtcctgctgcctctggtctcctcacagtgcgtcaatctgacaactcggactcagctgccacctgcttatactaatagcttcaccagaggcgtgtactatcctgacaaggtgtttagaagctccgtgctgcactctacacaggatctgtttctgccattctttagcaacgtgacctggttccacgccatccacgtgagcggcaccaatggcacaaagcggttcgacaatcccgtgctgccttttaacgatggcgtgtacttcgcctctaccgagaagagcaacatcatcagaggctggatctttggcaccacactggactccaagacacagtctctgctgatcgtgaacaatgccaccaacgtggtcatcaaggtgtgcgagttccagttttgtaatgatcccttcctgggcgtgtactatcacaagaacaataagagctggatggagtccgagtttagagtgtattctagcgccaacaactgcacatttgagtacgtgagccagcctttcctgatggacctggagggcaagcagggcaatttcaagaacctgagggagttcgtgtttaagaatatcgacggctacttcaaaatctactctaagcacacccccatcaacctggtgcgcgacctgcctcagggcttcagcgccctggagcccctggtggatctgcctatcggcatcaacatcacccggtttcagacactgctggccctgcacagaagctacctgacacccggcgactcctctagcggatggaccgccggcgctgccgcctactatgtgggctacctccagccccggaccttcctgctgaagtacaacgagaatggcaccatcacagacgcagtggattgcgccctggaccccctgagcgagacaaagtgtacactgaagtcctttaccgtggagaagggcatctatcagacatccaatttcagggtgcagccaaccgagtctatcgtgcgctttcctaatatcacaaacctgtgcccatttggcgaggtgttcaacgcaacccgcttcgccagcgtgtacgcctggaataggaagcggatcagcaactgcgtggccgactatagcgtgctgtacaactccgcctctttcagcacctttaagtgctatggcgtgtcccccacaaagctgaatgacctgtgctttaccaacgtctacgccgattctttcgtgatcaggggcgacgaggtgcgccagatcgcccccggccagacaggcaagatcgcagactacaattataagctgccagacgatttcaccggctgcgtgatcgcctggaacagcaacaatctggattccaaagtgggcggcaactacaattatctgtaccggctgtttagaaagagcaatctgaagcccttcgagagggacatctctacagaaatctaccaggccggcagcaccccttgcaatggcgtggagggctttaactgttatttcccactccagtcctacggcttccagcccacaaacggcgtgggctatcagccttaccgcgtggtggtgctgagctttgagctgctgcacgccccagcaacagtgtgcggccccaagaagtccaccaatctggtgaagaacaagtgcgtgaacttcaacttcaacggcctgaccggcacaggcgtgctgaccgagtccaacaagaagttcctgccatttcagcagttcggcagggacatcgcagataccacagacgccgtgcgcgacccacagaccctggagatcctggacatcacaccctgctctttcggcggcgtgagcgtgatcacacccggcaccaatacaagcaaccaggtggccgtgctgtatcaggacgtgaattgtaccgaggtgcccgtggctatccacgccgatcagctgaccccaacatggcgggtgtacagcaccggctccaacgtcttccagacaagagccggatgcctgatcggagcagagcacgtgaacaattcctatgagtgcgacatcccaatcggcgccggcatctgtgcctcttaccagacccagacaaactctcccagaagagcccggagcgtggcctcccagtctatcatcgcctataccatgtccctgggcgccgagaacagcgtggcctactctaacaatagcatcgccatcccaaccaacttcacaatctctgtgaccacagagatcctgcccgtgtccatgaccaagacatctgtggactgcacaatgtatatctgtggcgattctaccgagtgcagcaacctgctgctccagtacggcagcttttgtacccagctgaatagagccctgacaggcatcgccgtggagcaggataagaacacacaggaggtgttcgcccaggtgaagcaaatctacaagaccccccctatcaaggactttggcggcttcaatttttcccagatcctgcctgatccatccaagccttctaagcggagctttatcgaggacctgctgttcaacaaggtgaccctggccgatgccggcttcatcaagcagtatggcgattgcctgggcgacatcgcagccagggacctgatctgcgcccagaagtttaatggcctgaccgtgctgccacccctgctgacagatgagatgatcgcacagtacacaagcgccctgctggccggcaccatcacatccggatggaccttcggcgcaggagccgccctccagatcccctttgccatgcagatggcctataggttcaacggcatcggcgtgacccagaatgtgctgtacgagaaccagaagctgatcgccaatcagtttaactccgccatcggcaagatccaggacagcctgtcctctacagccagcgccctgggcaagctccaggatgtggtgaatcagaacgcccaggccctgaataccctggtgaagcagctgagcagcaacttcggcgccatctctagcgtgctgaatgacatcctgagccggctggacaaggtggaggcagaggtgcagatcgaccggctgatcaccggccggctccagagcctccagacctatgtgacacagcagctgatcagggccgccgagatcagggccagcgccaatctggcagcaaccaagatgtccgagtgcgtgctgggccagtctaagagagtggacttttgtggcaagggctatcacctgatgtccttccctcagtctgccccacacggcgtggtgtttctgcacgtgacctacgtgcccgcccaggagaagaacttcaccacagcccctgccatctgccacgatggcaaggcccactttccaagggagggcgtgttcgtgtccaacggcacccactggtttgtgacacagcgcaatttctacgagccccagatcatcaccacagacaacaccttcgtgagcggcaactgtgacgtggtcatcggcatcgtgaacaataccgtgtatgatccactccagcccgagctggacagctttaaggaggagctggataagtatttcaagaatcacacctcccctgacgtggatctgggcgacatcagcggcatcaatgcctccgtggtgaacatccagaaggagatcgaccgcctgaacgaggtggctaagaatctgaacgagagcctgatcgacctccaggagctgggcaagtatgagcagtacatcaagtggccctggtacatctggctgggcttcatcgccggcctgatcgccatcgtgatggtgaccatcatgctgtgctgtatgacatcctgctgttcttgcctgaagggctgctgtagctgtggctcctgctgt
본 발명의 다른 실시예에 따르면, 상기 벡터 시스템에 의하여 공동 형질감염된(co-transfected) 세포를 제공한다. 상기 벡터 시스템에 의하여 공동 형질감염된(co-transfected) 세포는 SARS-CoV 슈도타입 레트로바이러스를 안정적으로 생산하는 생산자 세포이다.
상기 세포는 VERO, WI38, MRC5, A549, HEK293 세포, B-50 세포, B-50이 아닌 HeLa 세포, HepG2, Saos-2, HuH7 및 HT1080으로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되는 것은 아니고, 구체적으로 Vero E6 또는 HEK293 세포이다.
바람직하게, 상기 HEK293 세포는 안지오텐신 전환 효소 2(angiotensin-converting enzyme 2, ACE2)를 발현한다. 본 발명자의 실험에 의하면 hACE2가 발현되지 않는 HEK293 세포는 본 발명의 바이러스에 의하여 감염이 되지 않았다.
본 발명의 또 다른 실시예에 따르면, 상기 세포에 의하여 생산된 레트로바이러스를 제공한다. 상기 레트로바이러스에 의하여 감염된 세포는 합포체를 형성할 수 있다.
본 발명의 또 다른 실시예에 따르면 상기 레트로바이러스를 특정 세포에 감염시키는 단계; 상기 바이러스 감염 세포에 시험물질을 처리하는 단계 및 상기 시험물질이 처리된 세포에서 합포체(syncytia) 형성 정도를 측정하는 단계를 포함하는 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 치료제 스크리닝 방법을 제공한다.
상기 시험물질이 처리된 세포에서 합포체(syncytia) 형성 정도를 측정하는 단계 이후에, 합포체(syncytia) 형성을 감소시키는 시험물질을 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 치료제로 판단하는 단계를 더 포함할 수 있으며, 상기 합포체(syncytia) 형성 정도는 형광 유전자의 발현 또는 활성 정도로 측정될 수 있다.
본 발명의 레트로바이러스에 의하여 감염된 세포는 합포체를 형성할 수 있으며, 상기 합포체는 SARS-CoV 스파이크 단백질과 수용체 사이의 융합에 의하여 발생하게 된다. 따라서 특정 시험물질이 처리된 세포에서 합포체 형성이 감소된다면 상기 특정 시험물질은 SARS-CoV 치료제로 사용될 수 있다.
상기 형광 유전자는 루시페라제(Luciferase), 녹색 형광 단백질(green fluorescent protein; GFP), 황색 형광 단백질(yellow fluorescent protein; YFP) 또는 적색 형광 단백질(red fluorescent protein; RFP)을 암호화하는 유전자일 수 있으나, 이에 제한되는 것은 아니다.
이하, 본 발명을 하기 실시예에 의해 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
<실험예>
1. 세포주
인간 배아 신장 세포주 HEK293(ATCC, CRL-1573), SV40 T-항원을 발현하는 HEK-293T 세포(ATCC, CRL-3216) 및 아프리카 녹색 원숭이 신장 세포주 Vero E6(ATCC, CRL-1586)는 10% 소태아 혈청, 100U/mL 페니실린 및 100μg/mL 스트렙토마이신이 포함된 DMEM에서 유지되었다.
2. HEK293-hACE2 및 Vero E6-TMPRSS2 세포 생성
최혜련(Addgene plasmid #1786)과 Roger Reeves(Addgene plasmid #53887)로부터 각각 pcDNA3.1-hACE2와 pCSDestTMPRSS2를 얻었다. HEK293-hACE2 세포를 제조하기 위해, pcDNA3.1-hACE2의 hACE2를 pCLXSN 레트로바이러스 벡터의 EcoRIBamHI 부위에 클로닝하여 pCLXSN-hACE2를 생성했다. 다음으로, 6웰 플레이트에서 3.5 Х 105 HEK-293T 세포를 pCLXSN-hACE2 및 패키징 플라스미드로 공동 형질감염시켜 VSV-G-슈도타입 레트로바이러스 패키징 인간 ACE2를 생성했다(pVpack-GP 2μg 및 pCMV-VSV-G 2μg). 생성된 레트로바이러스를 사용하여 8㎍/ml 폴리브렌(polybrene)의 존재하에 HEK293 세포를 감염시켰다. 형질도입된 세포는 14일 동안 G418(800μg/mL)을 포함하는 성장 배지에서 선택되었다.
TMPRSS2는 레트로바이러스 벡터 pLPCX-IRES-EGFP(pLPCX-TMPRSS2)의 EcoRINotI 부위에 클로닝되었다. VSV-G-슈도타입 레트로바이러스 패키징 인간 TMPRSS2를 상기와 동일한 방식으로 구축하였다. TMPRSS2를 발현하는 Vero E6 세포는 VSV-G-슈도타입 레트로바이러스 벡터 pLPCX-TMPRSS2로 6웰 플레이트에서 4Х105 Vero E6 세포를 형질도입함으로써 생성되었다. 형질도입된 세포는 10일 동안 퓨로마이신(3㎍/mL)을 함유하는 성장 배지에서 선택되었다.
3. C-말단 19 aa-절단된 SARS-CoV-2 S 단백질의 구축
전장 SARS-CoV-2 S 단백질은 GenScript를 사용하여 코돈 최적화 및 합성되었다(Piscataway, NJ, USA; https://www.molecularcloud.org/plasmid/pUC57-2019-nCoV-SHuman/MC-0101081.html). SARS-CoV-2 S 유전자는 pcDNA3.1 벡터(pcDNA3.1-S env)의 EcoRI 및 NotI 부위에 서브클로닝되었다.
헤마글루티닌(HA) 태그 및 C-말단 절단 SARS-CoV-2 S 발현 구조는 정방향 프라이머 5'-GTG CTG GGC CAG TCT AAG AGA-3' 및 역방향 프라이머 5'-GGA TCC TTA AGC GTA ATC TGG AAC ATC GTA TGG GTA ACA GCA GGA GCC ACA GCT ACA-3' 사용하여 약 760bp의 단편을 증폭하여 생성되었다(BamHI 제한 사이트는 밑줄이 그어져 있다). C-말단이 잘린 SARS-CoV-2 S 단백질 구조의 중합효소 연쇄 반응(PCR) 산물을 pGEM-T Easy Vector System(Promega, Madison, WI, USA)에 연결했다.
제한효소 DraIIIBamHI를 사용하여 pGEM-T-SARS-CoV-2 SΔ19를 절단하고, 상기 단편을 pcDNA3.1-S env에 연결하여 C-말단 19개 aa 절단된 SARS-CoV-2 S 및 HA 태그를 인코딩하는 pcDNA3.1-SΔ19 env를 생성했다.
4, s-RCR 벡터의 구성
이전에 개발된 s-RCR 벡터 시스템은 고역가 레트로바이러스 벡터의 개발에 사용되었다. s-RCR 벡터를 생성하기 위해 SARS-CoV-2의 EcoRI/BamHI 단편을 레트로바이러스 벡터 pCLXSN에 클로닝하여 pCLXSN-S env를 구성했다. pCLXSN-gag-pol-IRES-EGFP 플라스미드의 구성은 본 발명자가 이전에 출원한 출원번호 제10-2022-0034092호에 설명되었다. gag-polenv 벡터의 상보성(complementation)을 조사하기 위해 6웰 플레이트의 3 Х 105 Vero E6 세포를 CalPhos Mammalian Transfection Kit를 사용하여 3μg의 pCLXSN-gag-pol-IRES-EGFP 및 3μg의 pCLXSN-S env로 일시적으로 동시 형질감염했다(TaKaRa Bio, Shiga, Japan). s-RCR 바이러스의 복제는 합포체의 확산과 EGFP-양성 세포의 증가를 평가하여 측정되었다. 안정적인 생산자 세포주로부터 s-RCR 바이러스를 얻기 위해 6웰 플레이트에 있는 7 Х 105 HEK-293T 세포에 3㎍의 pCLXSN-gag-pol, 3μg의 pCMV-VSV-G 및 3μg의 pCLXSN-S env-EGFP 또는 3μg의 pCLXSN-SΔ19 env-EGFP을 일시적으로 동시 형질감염시켰다. 다음으로, 6-웰 플레이트의 6 Х 105 HEK-293T 세포를 형질감염된 HEK-293T 세포에서 얻은 s-RCR 바이러스 1mL로 감염시켰다. 2일 후, HEK293 세포를 G418(800㎍/mL)에서 14일 동안 선택했다. 일시적 형질감염에서 s-RCR 바이러스를 생성하기 위해 6웰 플레이트의 7 Х 105 HEK-293T 세포를 3㎍의 외피 발현 플라스미드(pCLXSN-S env 또는 pCLXSN-VSV-G) 및 3㎍의 pCLXSN-gag pol-IRES-EGFP로 공동 형질감염시켰다. 안정한 생산자 세포에서 비리온의 방출을 조사하기 위해 바이러스 용해물 및 세포 용해물은 항-HA 항체(Sigma-Aldrich, MO, USA), 마우스 모노클로날 항체 항-MLV p30(1:1,000; Abcam, Cambridge, UK) 및 토끼 다클론항체 항-β-액틴(1:10,000; AbClon, Seoul, Korea)로 검출되었다. 바이러스 역가를 결정하기 위해 FACSCalibur 유세포 분석기(Becton, Dickinson and Company, NJ, USA)를 사용하여 EGFP-양성 세포를 분석했다. 벡터 역가는 다음 식(N x P)/(V x D)을 사용하여 계산되었다: N = 감염에 사용된 각 웰의 세포 수; P = GFP-양성 세포의 백분율; V = 감염에 사용된 바이러스 부피; 및 D = 희석 인자.
5. 감염성 분석
수용체 의존성 합포체 형성은 SARS-CoV-2 S 발현을 통해 유도되었다. s-RCR 바이러스에 의해 유도된 세포융합 형성을 조사하기 위해 12웰 플레이트의 6 Х 105 HEK293-hACE2 세포와 12웰 플레이트의 6 Х 105 Vero E6-TMPRSS2 세포에 안정한 생산자 세포에서 얻은 0.5mL의 이 바이러스를 감염시켰다. EGFP-양성 및 합포체-형성 세포 둘 모두를 형광 현미경을 사용하여 분석하였다. Vero E6-TMPRSS2 표적 세포를 안정한 생산자 세포로부터 얻은 바이러스 상청액의 10배 연속 희석액으로 감염시켜 바이러스 역가(융합 형성 단위 [sfu]/mL)를 결정했다.
<실시예>
1. s-RCR 벡터의 구성
s-RCR 벡터 시스템은 두 개의 복제-결함 벡터(replication-defective vector)가 두 벡터에 의해 감염된 세포로부터 감염성 바이러스를 생성할 수 있는 것으로 구성되었다(도 1). 두 개의 상보적인 복제-결함 벡터는 Moloney-MLV(Mo-MLV) 벡터를 기반으로 한다. env 벡터(pCLXSN-S env-EGFP 또는 pCLXSN-S△19 env-EGFP)를 생성하기 위해 상기 스파이크 단백질 유전자를 레트로바이러스 벡터 pCLXSN에 삽입했으며 IRES-EFGP는 유전자의 바로 하류에 위치했다. gag-pol 벡터를 생성하기 위해 이전에 개발된 pCLXSN-gag-pol-IRES-EGFP 재조합 벡터에서 EGFP 유전자를 삭제하여 pCLXSN-gag-pol을 구성했다. ER/Golgi 보유 신호를 암호화하는 C-말단의 19개 아미노산은 S△19 환경에 존재하지 않는다.
2. s-RCR 바이러스의 생산
상보적 결함 벡터의 증식을 확인하기 위해 gag-pol 벡터(pCLXSN-gag-pol-IRES-EGFP) 및 env 벡터(pCLXSN-S env)를 Vero E6 세포에 공동 형질감염시켰다. 도 2에 도시된 바와 같이, EGFP-양성 세포 및 합포체 형성의 점진적인 증가가 검출된 반면, 합포체 형성은 pCLXSN-gag-pol-IRES-EGFP 단독으로 형질감염된 Vero E6 세포에서 관찰되지 않았다. 이 결과는 s-RCR이 형질감염된 Vero E6 세포를 통해 퍼질 수 있고 이 바이러스 전파가 점진적인 합포체 형성을 동반함을 시사한다.
3. s-RCR 바이러스는 안정적인 생산자 세포에서 효율적으로 방출된다.
MLV gag-pol 및 S 또는 S△19를 발현하는 안정한 HEK293 세포는 형질도입을 통해 생성되었다. 안정한 HEK293 세포의 상층액에서 방출된 SARS-CoV-2 S△19 슈도타입 바이러스의 존재를 웨스턴 블롯팅을 사용하여 분석하였다. 안정한 HEK293 세포에서 스파이크 단백질의 존재와 안정한 생산자로부터 생성된 MLV 바이러스 입자는 HA에 대한 항체를 사용하여 검출되었다(도 3). 이러한 결과는 S△19가 MLV 바이러스 입자에 효율적으로 통합되었음을 보여준다.
SARS-CoV-2 스파이크 슈도타입 바이러스는 일시적 형질감염에 의해 비효율적으로 방출된다는 보고가 있다. 이전 결과와 일치하여 VSV-G 및 SARS-CoV-2 스파이크 슈도타입 바이러스에 대해 각각 5 Х 105 형질 도입 단위(TU)/mL 및 1 Х 104 형질 도입 단위(TU)/mL의 역가가 얻어졌다(도 4a). SARS-CoV-2 스파이크 슈도타입 바이러스의 역가는 VSV-G 슈도타입 양성 대조군 벡터보다 50배 낮았다. 도 4b에 나타난 바와 같이, 안정한 생산자 세포의 배양 상청액에서 SARS-CoV-2 S△19 env 수도바이러스 역가는 형광 활성화 세포 분류(FACS)에 의해 검출된 3 Х 104 형질도입 단위(TU, transducing units)/mL인 반면, SARS-CoV-2 S의 바이러스 역가는 2 Х 104 형질도입 단위(TU)/mL였다. GFP 양성 세포와 합포체 형성이 모두 검출되었다.
4. s-RCR 바이러스는 Vero E6-TMPRSS2에서 합포체 형성을 유도했다.
합포체 형성에 대한 TMPRSS2의 영향을 조사하기 위해 VeroE6-TMPRSS2 세포를 s-RCR 바이러스에 감염시켰다. 도 5에 도시된 바와 같이, VeroE6-TMPRSS2 세포에서 형성된 합포체는 Vero E6 세포보다 더 컸다. SARS-CoV-2 S△19 env 수도바이러스 역가는 2 Х 103 sfu/mL였다. 또한, s-RCR 바이러스가 배양물 전체에 퍼짐에 따라 합포체 형성이 시간이 지남에 따라 증가했다. 이러한 결과는 TMPRSS2가 합포체 형성을 향상시킨다는 것을 시사한다.
<논의>
SARS-CoV-2 스파이크 단백질로 슈도타입화된(pseudotyped) 레트로바이러스 벡터는 SARS-CoV-2 유입 억제제(entry inhibitor)를 스크리닝하고 중화 분석(neutralization assay)을 위한 강력한 도구이다. 그러나 Mo-MLV는 일시적 형질감염 시스템에서 전장 SARS-CoV-2 스파이크 단백질을 효율적으로 슈도타입화할 수 없다. 본 발명자는 또한 일시적 형질감염 시스템을 사용하여 Mo-MLV 기반 SARS-CoV-2 슈도타입(pseudotyped) 바이러스의 매우 낮은 역가를 얻었다(도 4a). 안정 생산자 세포에서 얻은 C-말단 19개 aa-절단 SARS-CoV-2 S 단백질로 슈도타입화된 MLV는 야생형 SARS-CoV-2 S 단백질보다 HEK293-hACE2 세포를 더 효율적으로 감염시킨다. 본 발명자는 안정적인 생산자 세포에서 s-RCR 바이러스의 대규모 생산을 위해 합포체 형성을 유도하는 s-RCR 벡터 시스템을 개발했다.
두 개의 결함이 있는 레트로바이러스 벡터의 상보성전환(transcomplementation)을 통한 s-RCR 바이러스의 생성을 조사하기 위해 EGFP 리포터 유전자를 운반하는 gag-pol 벡터와 env 벡터를 Vero E6 세포에 공동 형질감염시켰다. 도 2에 나타난 바와 같이, EGFP 양성 세포의 수가 점진적으로 증가하고 합포체 형성이 관찰되어 s-RCR 바이러스의 성공적인 생성을 시사한다. 녹색 형광을 나타내는 합포체는 SARS-CoV-2 S와 EGFP의 공동 발현을 시사한다.
안정적인 생산자 세포를 생성하기 위해 pCLXSN-gag-pol 및 pCLXSN-S env-EGFP 또는 pCLXSN-SΔ19 env-EGFP를 사용하여 HEK293 세포를 형질도입했다. EGFP 양성이고 G418에 내성인 클론이 선택되었다. 안정한 생산자 세포의 상청액에서 S△19 env의 존재를 웨스턴 블롯팅을 통해 확인하였다. s-RCR 바이러스의 웨스턴 블롯은 대부분의 스파이크 단백질이 S1/S2 형태로 절단되었음을 보여주었다(도 3). C-말단 19개 aa-truncated SARS-CoV-2 S로 슈도타입화된(pseudotyped)된 MLV는 SARS-CoV-2 S보다 HEK293-hACE2 세포를 더 효율적으로 감염시켰습니다(도 4). 흥미롭게도, 전장 스파이크 단백질로 슈도타입화된 MLV도 합포체 형성을 유도했다. 이러한 데이터는 2개의 복제-결함 패키지 가능한 벡터가 반-복제-능력 바이러스를 생성하기 위해 서로를 보완함을 시사한다.
SARS-CoV-2 바이러스에 감염된 세포는 원형질막에서 스파이크 단백질을 발현하고 hACE2 양성 이웃 세포와 융합한다. 또한, SARS-CoV-2 스파이크 단백질 단독(다른 바이러스 단백질 부재)의 발현은 수용체 의존성 합포체 형성을 유도하는 것으로 알려져 있다. TMPRSS2는 스파이크 단백질과 수용체 사이의 융합에 관여하여 합포체 형성을 증가시킨다. 합포체 형성에 대한 TMPRSS2의 영향을 조사하기 위해 Vero E6-TMPRSS2 세포를 s-RCR 바이러스에 감염시켰다. 도 5에 도시된 바와 같이, Vero 세포보다 Vero E6-TMPRSS2 세포에서 더 큰 합포체가 형성되었다. 이러한 결과는 S△19 env가 S env보다 s-RCR에 더 잘 통합되었고 TMPRSS2가 SΔ19 env-수용체 융합에 관여했음을 시사합니다. Vero E6 세포는 아프리카 녹색 원숭이 ACE2를 고도로 발현하는 것으로 알려져 있지만 이 클론에서 TMPRSS2의 발현 수준은 상당히 낮다. TMPRSS2를 과발현하는 Vero E6 세포는 SARS-CoV-2를 복제하고 분리하는데 널리 사용된다. hACE2 또는 TMPRSS2의 발현 수준이 스파이크 매개 합포체 형성에 기여하는지 여부를 결정하기 위해 293T-hACE2-TMPRSS2 안정 세포주의 구축이 추가 연구에 필요하다. ImageJ 소프트웨어는 약물 스크리닝 중 합포체 형성의 크기와 수를 측정하는데 사용할 수 있다.
결론적으로 합포체 형성을 유도하는 s-RCR 벡터를 제작하였다. 상기 합포체 형성은 HEK293-hACE2 및 Vero E6-TMPRSS2 세포를 안정한 생산자 세포에서 얻은 s-RCR 바이러스로 감염 시 쉽게 감지되었다. 따라서 본 발명의 s-RCR 벡터 시스템과 두 개의 세포주를 이용하여 새로운 융합 억제제 약물의 스크리닝이 가능하다.
이상에서 본 발명의 대표적인 실시예들을 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
<110> Dankook University Cheonan Campus Industry Academic Cooperation Foundation <120> REPLICATION-COMPETENT RETROVIRAL VECTOR SYSTEM PSEUDOTYPED WITH SARS-COV <130> DPn-0010 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 1617 <212> DNA <213> Artificial Sequence <220> <223> MuLV-gag <400> 1 atgggccaga ctgttaccac tcccttaagt ttgaccttag gtcactggaa agatgtcgag 60 cggatcgctc acaaccagtc ggtagatgtc aagaagagac gttgggttac cttctgctct 120 gcagaatggc caacctttaa cgtcggatgg ccgcgagacg gcacctttaa ccgagacctc 180 atcacccagg ttaagatcaa ggtcttttca cctggcccgc atggacaccc agaccaggtc 240 ccctacatcg tgacctggga agccttggct tttgaccccc ctccctgggt caagcccttt 300 gtacacccta agcctccgcc tcctcttcct ccatccgccc cgtctctccc ccttgaacct 360 cctcgttcga ccccgcctcg atcctccctt tatccagccc tcactccttc tctaggcgcc 420 aaacctaaac ctcaagttct ttctgacagt ggggggccgc tcatcgacct acttacagaa 480 gaccccccgc cttataggga cccaagacca cccccttccg acagggacgg aaatggtgga 540 gaagcgaccc ctgcgggaga ggcaccggac ccctccccaa tggcatctcg cctacgtggg 600 agacgggagc cccctgtggc cgactccact acctcgcagg cattccccct ccgcgcagga 660 ggaaacggac agcttcaata ctggccgttc tcctcttctg acctttacaa ctggaaaaat 720 aataaccctt ctttttctga agatccaggt aaactgacag ctctgatcga gtctgttctc 780 atcacccatc agcccacctg ggacgactgt cagcagctgt tggggactct gctgaccgga 840 gaagaaaaac aacgggtgct cttagaggct agaaaggcgg tgcggggcga tgatgggcgc 900 cccactcaac tgcccaatga agtcgatgcc gcttttcccc tcgagcgccc agactgggat 960 tacaccaccc aggcaggtag gaaccaccta gtccactatc gccagttgct cctagcgggt 1020 ctccaaaacg cgggcagaag ccccaccaat ttggccaagg taaaaggaat aacacaaggg 1080 cccaatgagt ctccctcggc cttcctagag agacttaagg aagcctatcg caggtacact 1140 ccttatgacc ctgaggaccc agggcaagaa actaatgtgt ctatgtcttt catttggcag 1200 tctgccccag acattgggag aaagttagag aggttagaag atttaaaaaa caagacgctt 1260 ggagatttgg ttagagaggc agaaaagatc tttaataaac gagaaacccc ggaagaaaga 1320 gaggaacgta tcaggagaga aacagaggaa aaagaagaac gccgtaggac agaggatgag 1380 cagaaagaga aagaaagaga tcgtaggaga catagagaga tgagcaagct attggccact 1440 gtcgttagtg gacagaaaca ggatagacag ggaggagaac gaaggaggtc ccaactcgat 1500 cgcgaccagt gtgcctactg caaagaaaag gggcactggg ctaaagattg tcccaagaaa 1560 ccacgaggac ctcggggacc aagaccccag acctccctcc tgaccctaga tgactag 1617 <210> 2 <211> 3600 <212> DNA <213> Artificial Sequence <220> <223> MuLV-pol <400> 2 ggaggtcagg gtcaggagcc cccccctgaa cccaggataa ccctcaaagt cggggggcaa 60 cccgtcacct tcctggtaga tactggggcc caacactccg tgctgaccca aaatcctgga 120 cccctaagtg ataagtctgc ctgggtccaa ggggctactg gaggaaagcg gtatcgctgg 180 accacggatc gcaaagtaca tctagctacc ggtaaggtca cccactcttt cctccatgta 240 ccagactgtc cctatcctct gttaggaaga gatttgctga ctaaactaaa agcccaaatc 300 cactttgagg gatcaggagc tcaggttatg ggaccaatgg ggcagcccct gcaagtgttg 360 accctaaata tagaagatga gcatcggcta catgagacct caaaagagcc agatgtttct 420 ctagggtcca catggctgtc tgattttcct caggcctggg cggaaaccgg gggcatggga 480 ctggcagttc gccaagctcc tctgatcata cctctgaaag caacctctac ccccgtgtcc 540 ataaaacaat accccatgtc acaagaagcc agactgggga tcaagcccca catacagaga 600 ctgttggacc agggaatact ggtaccctgc cagtccccct ggaacacgcc cctgctaccc 660 gttaagaaac cagggactaa tgattatagg cctgtccagg atctgagaga agtcaacaag 720 cgggtggaag acatccaccc caccgtgccc aacccttaca acctcttgag cgggctccca 780 ccgtcccacc agtggtacac tgtgcttgat ttaaaggatg cctttttctg cctgagactc 840 caccccacca gtcagcctct cttcgccttt gagtggagag atccagagat gggaatctca 900 ggacaattga cctggaccag actcccacag ggtttcaaaa acagtcccac cctgtttgat 960 gaggcactgc acagagacct agcagacttc cggatccagc acccagactt gatcctgcta 1020 cagtacgtgg atgacttact gctggccgcc acttctgagc tagactgcca acaaggtact 1080 cgggccctgt tacaaaccct agggaacctc gggtatcggg cctcggccaa gaaagcccaa 1140 atttgccaga aacaggtcaa gtatctgggg tatcttctaa aagagggtca gagatggctg 1200 actgaggcca gaaaagagac tgtgatgggg cagcctactc cgaagacccc tcgacaacta 1260 agggagttcc tagggacggc aggcttctgt cgcctctgga tccctgggtt tgcagaaatg 1320 gcagccccct tgtaccctct caccaaaacg gggactctgt ttaattgggg cccagaccaa 1380 caaaaggcct atcaagaaat caagcaagct cttctaactg ccccagccct ggggttgcca 1440 gatttgacta agccctttga actctttgtc gacgagaagc agggctacgc caaaggtgtc 1500 ctaacgcaaa aactgggacc ttggcgtcgg ccggtggcct acctgtccaa aaagctagac 1560 ccagtagcag ctgggtggcc cccttgccta cggatggtag cagccattgc cgtactgaca 1620 aaggatgcag gcaagctaac catgggacag ccactagtca ttctggcccc ccatgcagta 1680 gaggcactag tcaaacaacc ccccgaccgc tggctttcca acgcccggat gactcactat 1740 caggccttgc ttttggacac ggaccgggtc cagttcggac cggtggtagc cctgaacccg 1800 gctacgctgc tcccactgcc tgaggaaggg ctgcaacaca actgccttga tatcctggcc 1860 gaagcccacg gaacccgacc cgacctaacg gaccagccgc tcccagacgc cgaccacacc 1920 tggtacacgg atggaagcag tctcttacaa gagggacagc gtaaggcggg agctgcggtg 1980 accaccgaga ccgaggtaat ctgggctaaa gccctgccag ccgggacatc cgctcagcgg 2040 gctgaactga tagcactcac ccaggcccta aagatggcag aaggtaagaa gctaaatgtt 2100 tatactgata gccgttatgc ttttgctact gcccatatcc atggagaaat atacagaagg 2160 cgtgggttgc tcacatcaga aggcaaagag atcaaaaata aagacgagat cttggcccta 2220 ctaaaagccc tctttctgcc caaaagactt agcataatcc attgtccagg acatcaaaag 2280 ggacacagcg ccgaggctag aggcaaccgg atggctgacc aagcggcccg aaaggcagcc 2340 atcacagaga ctccagacac ctctaccctc ctcatagaaa attcatcacc ctacacctca 2400 gaacattttc attacacagt gactgatata aaggacctaa ccaagttggg ggccatttat 2460 gataaaacaa agaagtattg ggtctaccaa ggaaaacctg tgatgcctga ccagtttact 2520 tttgaattat tagactttct tcatcagctg actcacctca gcttctcaaa aatgaaggct 2580 ctcctagaga gaagccacag tccctactac atgctgaacc gggatcgaac actcaaaaat 2640 atcactgaga cctgcaaagc ttgtgcacaa gtcaacgcca gcaagtctgc cgttaaacag 2700 ggaactaggg tccgcgggca tcggcccggc actcattggg agatcgattt caccgagata 2760 aagcccggat tgtatggcta taaatatctt ctagttttta tagatacctt ttctggctgg 2820 atagaagcct tcccaaccaa gaaagaaacc gccaaggtcg taaccaagaa gctactagag 2880 gagatcttcc ccaggttcgg catgcctcag gtattgggaa ctgacaatgg gcctgccttc 2940 gtctccaagg tgagtcagac agtggccgat ctgttgggga ttgattggaa attacattgt 3000 gcatacagac cccaaagctc aggccaggta gaaagaatga atagaaccat caaggagact 3060 ttaactaaat taacgcttgc aactggctct agagactggg tgctcctact ccccttagcc 3120 ctgtaccgag cccgcaacac gccgggcccc catggcctca ccccatatga gatcttatat 3180 ggggcacccc cgccccttgt aaacttccct gaccctgaca tgacaagagt tactaacagc 3240 ccctctctcc aagctcactt acaggctctc tacttagtcc agcacgaagt ctggagacct 3300 ctggcggcag cctaccaaga acaactggac cgaccggtgg tacctcaccc ttaccgagtc 3360 ggcgacacag tgtgggtccg ccgacaccag actaagaacc tagaacctcg ctggaaagga 3420 ccttacacag tcctgctgac cacccccacc gccctcaaag tagacggcat cgcagcttgg 3480 atacacgccg cccacgtgaa ggctgccgac cccgggggtg gaccatcctc tagactgaca 3540 tggcgcgttc aacgctctca aaacccctta aaaataaggt taacccgcga ggccccctaa 3600 3600 <210> 3 <211> 3822 <212> DNA <213> Artificial Sequence <220> <223> SARS-CoV-2 env <400> 3 atgttcgtct tcctggtcct gctgcctctg gtctcctcac agtgcgtcaa tctgacaact 60 cggactcagc tgccacctgc ttatactaat agcttcacca gaggcgtgta ctatcctgac 120 aaggtgttta gaagctccgt gctgcactct acacaggatc tgtttctgcc attctttagc 180 aacgtgacct ggttccacgc catccacgtg agcggcacca atggcacaaa gcggttcgac 240 aatcccgtgc tgccttttaa cgatggcgtg tacttcgcct ctaccgagaa gagcaacatc 300 atcagaggct ggatctttgg caccacactg gactccaaga cacagtctct gctgatcgtg 360 aacaatgcca ccaacgtggt catcaaggtg tgcgagttcc agttttgtaa tgatcccttc 420 ctgggcgtgt actatcacaa gaacaataag agctggatgg agtccgagtt tagagtgtat 480 tctagcgcca acaactgcac atttgagtac gtgagccagc ctttcctgat ggacctggag 540 ggcaagcagg gcaatttcaa gaacctgagg gagttcgtgt ttaagaatat cgacggctac 600 ttcaaaatct actctaagca cacccccatc aacctggtgc gcgacctgcc tcagggcttc 660 agcgccctgg agcccctggt ggatctgcct atcggcatca acatcacccg gtttcagaca 720 ctgctggccc tgcacagaag ctacctgaca cccggcgact cctctagcgg atggaccgcc 780 ggcgctgccg cctactatgt gggctacctc cagccccgga ccttcctgct gaagtacaac 840 gagaatggca ccatcacaga cgcagtggat tgcgccctgg accccctgag cgagacaaag 900 tgtacactga agtcctttac cgtggagaag ggcatctatc agacatccaa tttcagggtg 960 cagccaaccg agtctatcgt gcgctttcct aatatcacaa acctgtgccc atttggcgag 1020 gtgttcaacg caacccgctt cgccagcgtg tacgcctgga ataggaagcg gatcagcaac 1080 tgcgtggccg actatagcgt gctgtacaac tccgcctctt tcagcacctt taagtgctat 1140 ggcgtgtccc ccacaaagct gaatgacctg tgctttacca acgtctacgc cgattctttc 1200 gtgatcaggg gcgacgaggt gcgccagatc gcccccggcc agacaggcaa gatcgcagac 1260 tacaattata agctgccaga cgatttcacc ggctgcgtga tcgcctggaa cagcaacaat 1320 ctggattcca aagtgggcgg caactacaat tatctgtacc ggctgtttag aaagagcaat 1380 ctgaagccct tcgagaggga catctctaca gaaatctacc aggccggcag caccccttgc 1440 aatggcgtgg agggctttaa ctgttatttc ccactccagt cctacggctt ccagcccaca 1500 aacggcgtgg gctatcagcc ttaccgcgtg gtggtgctga gctttgagct gctgcacgcc 1560 ccagcaacag tgtgcggccc caagaagtcc accaatctgg tgaagaacaa gtgcgtgaac 1620 ttcaacttca acggcctgac cggcacaggc gtgctgaccg agtccaacaa gaagttcctg 1680 ccatttcagc agttcggcag ggacatcgca gataccacag acgccgtgcg cgacccacag 1740 accctggaga tcctggacat cacaccctgc tctttcggcg gcgtgagcgt gatcacaccc 1800 ggcaccaata caagcaacca ggtggccgtg ctgtatcagg acgtgaattg taccgaggtg 1860 cccgtggcta tccacgccga tcagctgacc ccaacatggc gggtgtacag caccggctcc 1920 aacgtcttcc agacaagagc cggatgcctg atcggagcag agcacgtgaa caattcctat 1980 gagtgcgaca tcccaatcgg cgccggcatc tgtgcctctt accagaccca gacaaactct 2040 cccagaagag cccggagcgt ggcctcccag tctatcatcg cctataccat gtccctgggc 2100 gccgagaaca gcgtggccta ctctaacaat agcatcgcca tcccaaccaa cttcacaatc 2160 tctgtgacca cagagatcct gcccgtgtcc atgaccaaga catctgtgga ctgcacaatg 2220 tatatctgtg gcgattctac cgagtgcagc aacctgctgc tccagtacgg cagcttttgt 2280 acccagctga atagagccct gacaggcatc gccgtggagc aggataagaa cacacaggag 2340 gtgttcgccc aggtgaagca aatctacaag acccccccta tcaaggactt tggcggcttc 2400 aatttttccc agatcctgcc tgatccatcc aagccttcta agcggagctt tatcgaggac 2460 ctgctgttca acaaggtgac cctggccgat gccggcttca tcaagcagta tggcgattgc 2520 ctgggcgaca tcgcagccag ggacctgatc tgcgcccaga agtttaatgg cctgaccgtg 2580 ctgccacccc tgctgacaga tgagatgatc gcacagtaca caagcgccct gctggccggc 2640 accatcacat ccggatggac cttcggcgca ggagccgccc tccagatccc ctttgccatg 2700 cagatggcct ataggttcaa cggcatcggc gtgacccaga atgtgctgta cgagaaccag 2760 aagctgatcg ccaatcagtt taactccgcc atcggcaaga tccaggacag cctgtcctct 2820 acagccagcg ccctgggcaa gctccaggat gtggtgaatc agaacgccca ggccctgaat 2880 accctggtga agcagctgag cagcaacttc ggcgccatct ctagcgtgct gaatgacatc 2940 ctgagccggc tggacaaggt ggaggcagag gtgcagatcg accggctgat caccggccgg 3000 ctccagagcc tccagaccta tgtgacacag cagctgatca gggccgccga gatcagggcc 3060 agcgccaatc tggcagcaac caagatgtcc gagtgcgtgc tgggccagtc taagagagtg 3120 gacttttgtg gcaagggcta tcacctgatg tccttccctc agtctgcccc acacggcgtg 3180 gtgtttctgc acgtgaccta cgtgcccgcc caggagaaga acttcaccac agcccctgcc 3240 atctgccacg atggcaaggc ccactttcca agggagggcg tgttcgtgtc caacggcacc 3300 cactggtttg tgacacagcg caatttctac gagccccaga tcatcaccac agacaacacc 3360 ttcgtgagcg gcaactgtga cgtggtcatc ggcatcgtga acaataccgt gtatgatcca 3420 ctccagcccg agctggacag ctttaaggag gagctggata agtatttcaa gaatcacacc 3480 tcccctgacg tggatctggg cgacatcagc ggcatcaatg cctccgtggt gaacatccag 3540 aaggagatcg accgcctgaa cgaggtggct aagaatctga acgagagcct gatcgacctc 3600 caggagctgg gcaagtatga gcagtacatc aagtggccct ggtacatctg gctgggcttc 3660 atcgccggcc tgatcgccat cgtgatggtg accatcatgc tgtgctgtat gacatcctgc 3720 tgttcttgcc tgaagggctg ctgtagctgt ggctcctgct gtaagtttga cgaggatgac 3780 tctgaacctg tgctgaaggg cgtgaagctg cattacacct aa 3822 <210> 4 <211> 585 <212> DNA <213> Artificial Sequence <220> <223> IRES <400> 4 gcccctctcc ctcccccccc cctaacgtta ctggccgaag ccgcttggaa taaggccggt 60 gtgcgtttgt ctatatgtta ttttccacca tattgccgtc ttttggcaat gtgagggccc 120 ggaaacctgg ccctgtcttc ttgacgagca ttcctagggg tctttcccct ctcgccaaag 180 gaatgcaagg tctgttgaat gtcgtgaagg aagcagttcc tctggaagct tcttgaagac 240 aaacaacgtc tgtagcgacc ctttgcaggc agcggaaccc cccacctggc gacaggtgcc 300 tctgcggcca aaagccacgt gtataagata cacctgcaaa ggcggcacaa ccccagtgcc 360 acgttgtgag ttggatagtt gtggaaagag tcaaatggct ctcctcaagc gtattcaaca 420 aggggctgaa ggatgcccag aaggtacccc attgtatggg atctgatctg gggcctcggt 480 gcacatgctt tacatgtgtt tagtcgaggt taaaaaaacg tctaggcccc ccgaaccacg 540 gggacgtggt tttcctttga aaaacacgat gataatatgg ccaca 585 <210> 5 <211> 3762 <212> DNA <213> Artificial Sequence <220> <223> SARS-CoV-2 env-Del 19 aa <400> 5 atgttcgtct tcctggtcct gctgcctctg gtctcctcac agtgcgtcaa tctgacaact 60 cggactcagc tgccacctgc ttatactaat agcttcacca gaggcgtgta ctatcctgac 120 aaggtgttta gaagctccgt gctgcactct acacaggatc tgtttctgcc attctttagc 180 aacgtgacct ggttccacgc catccacgtg agcggcacca atggcacaaa gcggttcgac 240 aatcccgtgc tgccttttaa cgatggcgtg tacttcgcct ctaccgagaa gagcaacatc 300 atcagaggct ggatctttgg caccacactg gactccaaga cacagtctct gctgatcgtg 360 aacaatgcca ccaacgtggt catcaaggtg tgcgagttcc agttttgtaa tgatcccttc 420 ctgggcgtgt actatcacaa gaacaataag agctggatgg agtccgagtt tagagtgtat 480 tctagcgcca acaactgcac atttgagtac gtgagccagc ctttcctgat ggacctggag 540 ggcaagcagg gcaatttcaa gaacctgagg gagttcgtgt ttaagaatat cgacggctac 600 ttcaaaatct actctaagca cacccccatc aacctggtgc gcgacctgcc tcagggcttc 660 agcgccctgg agcccctggt ggatctgcct atcggcatca acatcacccg gtttcagaca 720 ctgctggccc tgcacagaag ctacctgaca cccggcgact cctctagcgg atggaccgcc 780 ggcgctgccg cctactatgt gggctacctc cagccccgga ccttcctgct gaagtacaac 840 gagaatggca ccatcacaga cgcagtggat tgcgccctgg accccctgag cgagacaaag 900 tgtacactga agtcctttac cgtggagaag ggcatctatc agacatccaa tttcagggtg 960 cagccaaccg agtctatcgt gcgctttcct aatatcacaa acctgtgccc atttggcgag 1020 gtgttcaacg caacccgctt cgccagcgtg tacgcctgga ataggaagcg gatcagcaac 1080 tgcgtggccg actatagcgt gctgtacaac tccgcctctt tcagcacctt taagtgctat 1140 ggcgtgtccc ccacaaagct gaatgacctg tgctttacca acgtctacgc cgattctttc 1200 gtgatcaggg gcgacgaggt gcgccagatc gcccccggcc agacaggcaa gatcgcagac 1260 tacaattata agctgccaga cgatttcacc ggctgcgtga tcgcctggaa cagcaacaat 1320 ctggattcca aagtgggcgg caactacaat tatctgtacc ggctgtttag aaagagcaat 1380 ctgaagccct tcgagaggga catctctaca gaaatctacc aggccggcag caccccttgc 1440 aatggcgtgg agggctttaa ctgttatttc ccactccagt cctacggctt ccagcccaca 1500 aacggcgtgg gctatcagcc ttaccgcgtg gtggtgctga gctttgagct gctgcacgcc 1560 ccagcaacag tgtgcggccc caagaagtcc accaatctgg tgaagaacaa gtgcgtgaac 1620 ttcaacttca acggcctgac cggcacaggc gtgctgaccg agtccaacaa gaagttcctg 1680 ccatttcagc agttcggcag ggacatcgca gataccacag acgccgtgcg cgacccacag 1740 accctggaga tcctggacat cacaccctgc tctttcggcg gcgtgagcgt gatcacaccc 1800 ggcaccaata caagcaacca ggtggccgtg ctgtatcagg acgtgaattg taccgaggtg 1860 cccgtggcta tccacgccga tcagctgacc ccaacatggc gggtgtacag caccggctcc 1920 aacgtcttcc agacaagagc cggatgcctg atcggagcag agcacgtgaa caattcctat 1980 gagtgcgaca tcccaatcgg cgccggcatc tgtgcctctt accagaccca gacaaactct 2040 cccagaagag cccggagcgt ggcctcccag tctatcatcg cctataccat gtccctgggc 2100 gccgagaaca gcgtggccta ctctaacaat agcatcgcca tcccaaccaa cttcacaatc 2160 tctgtgacca cagagatcct gcccgtgtcc atgaccaaga catctgtgga ctgcacaatg 2220 tatatctgtg gcgattctac cgagtgcagc aacctgctgc tccagtacgg cagcttttgt 2280 acccagctga atagagccct gacaggcatc gccgtggagc aggataagaa cacacaggag 2340 gtgttcgccc aggtgaagca aatctacaag acccccccta tcaaggactt tggcggcttc 2400 aatttttccc agatcctgcc tgatccatcc aagccttcta agcggagctt tatcgaggac 2460 ctgctgttca acaaggtgac cctggccgat gccggcttca tcaagcagta tggcgattgc 2520 ctgggcgaca tcgcagccag ggacctgatc tgcgcccaga agtttaatgg cctgaccgtg 2580 ctgccacccc tgctgacaga tgagatgatc gcacagtaca caagcgccct gctggccggc 2640 accatcacat ccggatggac cttcggcgca ggagccgccc tccagatccc ctttgccatg 2700 cagatggcct ataggttcaa cggcatcggc gtgacccaga atgtgctgta cgagaaccag 2760 aagctgatcg ccaatcagtt taactccgcc atcggcaaga tccaggacag cctgtcctct 2820 acagccagcg ccctgggcaa gctccaggat gtggtgaatc agaacgccca ggccctgaat 2880 accctggtga agcagctgag cagcaacttc ggcgccatct ctagcgtgct gaatgacatc 2940 ctgagccggc tggacaaggt ggaggcagag gtgcagatcg accggctgat caccggccgg 3000 ctccagagcc tccagaccta tgtgacacag cagctgatca gggccgccga gatcagggcc 3060 agcgccaatc tggcagcaac caagatgtcc gagtgcgtgc tgggccagtc taagagagtg 3120 gacttttgtg gcaagggcta tcacctgatg tccttccctc agtctgcccc acacggcgtg 3180 gtgtttctgc acgtgaccta cgtgcccgcc caggagaaga acttcaccac agcccctgcc 3240 atctgccacg atggcaaggc ccactttcca agggagggcg tgttcgtgtc caacggcacc 3300 cactggtttg tgacacagcg caatttctac gagccccaga tcatcaccac agacaacacc 3360 ttcgtgagcg gcaactgtga cgtggtcatc ggcatcgtga acaataccgt gtatgatcca 3420 ctccagcccg agctggacag ctttaaggag gagctggata agtatttcaa gaatcacacc 3480 tcccctgacg tggatctggg cgacatcagc ggcatcaatg cctccgtggt gaacatccag 3540 aaggagatcg accgcctgaa cgaggtggct aagaatctga acgagagcct gatcgacctc 3600 caggagctgg gcaagtatga gcagtacatc aagtggccct ggtacatctg gctgggcttc 3660 atcgccggcc tgatcgccat cgtgatggtg accatcatgc tgtgctgtat gacatcctgc 3720 tgttcttgcc tgaagggctg ctgtagctgt ggctcctgct gt 3762

Claims (15)

  1. gag 유전자 및 pol 유전자를 포함하는 제1재조합 레트로바이러스 벡터 및
    중증급성호흡기증후군 코로나바이러스(SARS-CoV) 스파이크 유전자를 포함하는 제2재조합 레트로바이러스 벡터를 포함하고,
    세포의 합포체 형성을 유도하는 것을 특징으로 하는, SARS-CoV-2 슈도타입화된 복제가능 레트로바이러스 벡터 시스템.
  2. 제1항에 있어서,
    상기 gag 유전자는 서열번호 1의 염기서열로 이루어지고,
    상기 pol 유전자는 서열번호 2의 염기서열로 이루어지고,
    상기 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 스파이크 유전자는 서열번호 3의 염기서열로 이루어지는 것을 특징으로 하는 벡터 시스템.
  3. 제1항에 있어서,
    상기 제1재조합 레트로바이러스 벡터는 pol 유전자 뒤에 IRES(internal ribosomal entry site) 서열 또는 형광유전자를 더 포함하는 것을 특징으로 하는 벡터 시스템.
  4. 제1항에 있어서,
    상기 제2재조합 레트로바이러스 벡터는 제2재조합 레트로바이러스 벡터는 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 스파이크 유전자 뒤에 IRES(internal ribosomal entry site) 서열 또는 형광유전자를 더 포함하는 것을 특징으로 하는 벡터 시스템.
  5. 제1항에 있어서,
    상기 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 스파이크 유전자는 서열번호 5의 염기서열로 이루어지는 것을 특징으로 하는 벡터 시스템.
  6. 제1항에 있어서,
    상기 II형 막관통 세린 프로테아제(type II transmembrane serine protease, TMPRSS2) 유전자를 포함하는 제3재조합 레트로바이러스 벡터를 포함하는 것을 특징으로 하는 벡터 시스템.
  7. 제1항에 있어서,
    상기 벡터는 pCLXSN인 벡터 시스템.
  8. 제1항 내지 제7항 중 어느 하나의 벡터 시스템에 의하여 공동 형질감염된(co-transfected) 세포.
  9. 제8항에 있어서,
    상기 세포는 VERO, WI38, MRC5, A549, HEK293 세포, B-50 세포, B-50이 아닌 HeLa 세포, HepG2, Saos-2, HuH7 및 HT1080으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 세포.
  10. 제9항에 있어서,
    상기 HEK293 세포는 안지오텐신 전환 효소 2(angiotensin-converting enzyme 2, ACE2)를 발현하는 것을 특징으로 하는 세포.
  11. 제8항의 세포에 의하여 생산된 레트로바이러스.
  12. 제11항 바이러스를 특정 세포에 감염시키는 단계;
    상기 바이러스 감염 세포에 시험물질을 처리하는 단계 및
    상기 시험물질이 처리된 세포에서 합포체(syncytia) 형성 정도를 측정하는 단계를 포함하는 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 치료제 스크리닝 방법.
  13. 제12항에 있어서,
    시험물질이 처리된 세포에서 합포체(syncytia) 형성 정도를 측정하는 단계 이후에,
    합포체(syncytia) 형성을 감소시키는 시험물질을 중증급성호흡기증후군 코로나바이러스(SARS-CoV) 치료제로 판단하는 단계를 더 포함하는 스크리닝 방법.
  14. 제12항에 있어서,
    상기 합포체(syncytia) 형성 정도는 형광 유전자의 발현 또는 활성 정도로 측정하는 것을 특징으로 하는 스크리닝 방법.
  15. 제14항에 있어서,
    상기 형광 유전자는 루시페라제(Luciferase), 녹색 형광 단백질(green fluorescent protein; GFP), 황색 형광 단백질(yellow fluorescent protein; YFP) 또는 적색 형광 단백질(red fluorescent protein; RFP)을 암호화하는 유전자인 것을 특징으로 하는 스크리닝 방법.
KR1020220044787A 2022-04-11 2022-04-11 SARS-CoV 슈도타입화된 복제-가능 레트로바이러스 벡터 시스템 KR20230145859A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220044787A KR20230145859A (ko) 2022-04-11 2022-04-11 SARS-CoV 슈도타입화된 복제-가능 레트로바이러스 벡터 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220044787A KR20230145859A (ko) 2022-04-11 2022-04-11 SARS-CoV 슈도타입화된 복제-가능 레트로바이러스 벡터 시스템

Publications (1)

Publication Number Publication Date
KR20230145859A true KR20230145859A (ko) 2023-10-18

Family

ID=88508310

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220044787A KR20230145859A (ko) 2022-04-11 2022-04-11 SARS-CoV 슈도타입화된 복제-가능 레트로바이러스 벡터 시스템

Country Status (1)

Country Link
KR (1) KR20230145859A (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220027785A (ko) 2020-08-27 2022-03-08 주식회사 셀리드 신규한 코로나바이러스 재조합 스파이크 단백질, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터 및 상기 벡터를 포함하는 코로나바이러스감염증 예방 또는 치료용 백신

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220027785A (ko) 2020-08-27 2022-03-08 주식회사 셀리드 신규한 코로나바이러스 재조합 스파이크 단백질, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터 및 상기 벡터를 포함하는 코로나바이러스감염증 예방 또는 치료용 백신

Similar Documents

Publication Publication Date Title
Quinonez et al. Lentiviral vectors for gene delivery into cells
Johnston et al. Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors
Goff Intracellular trafficking of retroviral genomes during the early phase of infection: viral exploitation of cellular pathways
Lindemann et al. Efficient pseudotyping of murine leukemia virus particles with chimeric human foamy virus envelope proteins
Lever Lentiviral vectors
Gottwein et al. Analysis of human immunodeficiency virus type 1 Gag ubiquitination
Schmitz et al. Lv2, a novel postentry restriction, is mediated by both capsid and envelope
Bock et al. Cells expressing the human foamy virus (HFV) accessory Bet protein are resistant to productive HFV superinfection
Lindemann et al. Characterization of a human foamy virus 170-kilodalton Env-Bet fusion protein generated by alternative splicing
West et al. Mutation of the dominant endocytosis motif in human immunodeficiency virus type 1 gp41 can complement matrix mutations without increasing Env incorporation
ES2886919T3 (es) Partícula para la encapsidación de un sistema de ingeniería del genoma
Farley et al. Factors that influence VSV‐G pseudotyping and transduction efficiency of lentiviral vectors—in vitro and in vivo implications
US5929222A (en) Expression of a foamy virus envelope protein
Kramer et al. The human endogenous retrovirus K (HML-2) has a broad envelope-mediated cellular tropism and is prone to inhibition at a post-entry, pre-integration step
EP0932693A1 (en) Alphavirus-retrovirus vectors
Certo et al. Nonreciprocal pseudotyping: murine leukemia virus proteins cannot efficiently package spleen necrosis virus-based vector RNA
Gregory et al. Multiple Gag domains contribute to selective recruitment of murine leukemia virus (MLV) Env to MLV virions
Farley et al. Development of a replication-competent lentivirus assay for dendritic cell-targeting lentiviral vectors
Certo et al. The nucleocapsid domain is responsible for the ability of spleen necrosis virus (SNV) Gag polyprotein to package both SNV and murine leukemia virus RNA
Lee et al. Cooperative effect of gag proteins p12 and capsid during early events of murine leukemia virus replication
KR20230145859A (ko) SARS-CoV 슈도타입화된 복제-가능 레트로바이러스 벡터 시스템
Grunwald et al. Reducing mobilization of simian immunodeficiency virus based vectors by primer complementation
Al Dhaheri et al. Cross-packaging of genetically distinct mouse and primate retroviral RNAs
Amberg et al. Expanded tropism and altered activation of a retroviral glycoprotein resistant to an entry inhibitor peptide
US7981656B2 (en) Pseudotyped retrovirus with modified ebola glycoprotein