KR20230144759A - Gene-defined cancer-origin cell, and a classification method thereof - Google Patents

Gene-defined cancer-origin cell, and a classification method thereof Download PDF

Info

Publication number
KR20230144759A
KR20230144759A KR1020220043848A KR20220043848A KR20230144759A KR 20230144759 A KR20230144759 A KR 20230144759A KR 1020220043848 A KR1020220043848 A KR 1020220043848A KR 20220043848 A KR20220043848 A KR 20220043848A KR 20230144759 A KR20230144759 A KR 20230144759A
Authority
KR
South Korea
Prior art keywords
cell
cells
origin
brain cancer
tumor
Prior art date
Application number
KR1020220043848A
Other languages
Korean (ko)
Inventor
강석구
최란주
윤선진
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020220043848A priority Critical patent/KR20230144759A/en
Priority to PCT/KR2023/004698 priority patent/WO2023195811A1/en
Publication of KR20230144759A publication Critical patent/KR20230144759A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Abstract

본 발명은 뇌실하대로부터 분리된 세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 확인하는 단계를 포함하는, 뇌암 기원 세포의 분리 방법에 관한 것이다. 본 발명자들은 뇌암, 특히 유효한 치료제의 발굴이 어렵고 예후와 생존률이 매우 불량한 교모세포종에 있어서, 상기 인자들이 신뢰도 높은 진단 표지자로 기능할 뿐 아니라, 이들의 발현 조절을 통해 종양을 억제하여 난치성 질환인 교모세포종 환자의 생존률을 현저히 개선하는 근본적인 치료제 조성물로 유용하게 이용될 수 있다.The present invention is a group consisting of NRXN1, It relates to a method of isolating brain cancer origin cells, comprising the step of confirming the expression level of one or more selected proteins or genes encoding them. The present inventors have found that in brain cancer, especially glioblastoma, for which it is difficult to find an effective treatment and the prognosis and survival rate are very poor, the above factors not only function as reliable diagnostic markers, but also suppress the tumor by regulating their expression, thereby suppressing the intractable disease, glioblastoma. It can be useful as a fundamental therapeutic composition that significantly improves the survival rate of patients with blastoma.

Description

유전자로 정의된 암기원세포, 및 이의 분류방법{Gene-defined cancer-origin cell, and a classification method thereof}Gene-defined cancer-origin cell, and a classification method thereof}

본 발명은 유전자로 정의된 암기원세포, 및 이의 분류방법에 관한 것이다.The present invention relates to cancer origin cells defined by genes, and methods for classifying them.

암은 전세계적으로 가장 보편적인 사망원인 중의 하나이다. 약 천만 건의 새로운 케이스가 매년 발생하며, 전체 사망원인의 약 12%를 차지하여 세 번째로 많은 사망의 원인이 되고 있다. 여러 가지 종류의 암 중에서 특히 뇌암은 연령에 관계없이 발생되며, 소아에 발생 빈도가 다른 암에 비하여 높은 특징이 있다. 뇌암은 뇌조직과 뇌를 싸고 있는 뇌막에서 발생되는 일차성 뇌종양과 두개골이나 신체의 다른 부위에서 발생된 암으로부터 전이된 이차성 뇌종양으로 구별되는데, 증세로는 운동 마비, 지각마비, 언어 장애, 시력 장애, 평형 장애 등과 같은 국소 증상과 두개내압항진 증상을 들 수 있다. 상기 뇌암은 조직특이적으로 1 내지 2종의 암이 발병되는 다른 조직에서 발병되는 암과는 달리 다형성아교모세포종, 악성신경교종, 임파선종, 배아세포종, 전이성 종양 등의 다양한 종류의 암을 포함하는데, 그 중 신경교종(glioma)은 원발성 뇌 종양(primary brain tumor)의 60%를 차지하는 종양으로서, 발생 빈도가 높고 치료가 어려워, 현재까지도 방사선 치료 외엔 특별한 치료법이 없는 악성 종양에 해당한다. 그 중 가장 악성으로 분류되고 있는 교모세포종(glioblastoma, GBM)의 경우, 다른 암과 비교하였을 때 방사선 및 항암제 치료에 대한 저항성이 매우 높아 일단 진단되면 생존기간이 1년에 불과하므로, 각 환자의 발생 기원과 과정에 대한 적절한 진단 및 이해가 중요하다. 또한, 상기 뇌 종양의 경우, 뇌혈관 장벽(Brain Blood Barrier)이 존재하기 때문에 치료를 위한 약물 전달이 목적하는 뇌 부위로 전달되기 어려울 뿐만 아니라, 상대적으로 뇌신경 생물학에 대한 이해가 부족하여 치료제 개발이 활발하지 못한 것이 현실이다. 더욱이, 교모세포종은 다른 뇌 종양과 비교해볼 때 공격적 변이(aggressive variant)를 나타내어, 이를 빠른 시일 내에 치료하지 않으면 몇 주 이내에 치명적인 결과를 초래할 수 있다. 교모세포종의 치료에는 외과적 처치 이외에 방사선 치료 및 화학 약물 치료가 함께 수행되고 있으나, 상기 치료는 내성 변이의 발생, 종양줄기세포에 의한 재발 등의 원인으로 인하여 완벽한 치료법이 없다.Cancer is one of the most common causes of death worldwide. Approximately 10 million new cases occur each year, accounting for approximately 12% of all deaths, making it the third most common cause of death. Among various types of cancer, brain cancer in particular occurs regardless of age and has a higher incidence in children than other cancers. Brain cancer is divided into primary brain tumors that develop in brain tissue and the meninges surrounding the brain, and secondary brain tumors that metastasize from cancer that originates in the skull or other parts of the body. Symptoms include motor paralysis, sensory paralysis, language impairment, and visual impairment. , local symptoms such as balance disorders, and symptoms of intracranial hypertension. The brain cancer includes various types of cancer such as glioblastoma multiforme, malignant glioma, lymphadenoma, germ cell tumor, and metastatic tumor, unlike cancer that occurs in other tissues in which one or two types of cancer are tissue-specific. , Among them, glioma is a tumor that accounts for 60% of primary brain tumors. It has a high incidence and is difficult to treat, so it is a malignant tumor for which there is no specific treatment other than radiation therapy. Among them, glioblastoma (GBM), which is classified as the most malignant, has a very high resistance to radiation and anticancer drug treatment compared to other cancers, and once diagnosed, the survival period is only 1 year, so each patient's Proper diagnosis and understanding of the origin and course are important. In addition, in the case of brain tumors, not only is it difficult for drugs for treatment to be delivered to the target brain area due to the presence of the brain blood barrier, but also the development of treatments is difficult due to the relative lack of understanding of brain neurobiology. The reality is that it is not active. Moreover, compared to other brain tumors, glioblastoma shows an aggressive variant, which can lead to fatal results within a few weeks if not treated quickly. In addition to surgical treatment, glioblastoma is treated with radiation therapy and chemical drug treatment, but there is no perfect treatment due to causes such as the occurrence of resistant mutations and recurrence by tumor stem cells.

따라서, 교모세포종의 발생 기원에 대한 초기 진단과 이해 및 그에 기반한 새로운 치료법의 개발을 위한 연구로서, 뇌실하대(subventricular zone)에서 분리된 세포가 교모세포종 기원세포(Oc1 및 Oc2)임을 확인하고, 상기 교모세포종 기원세포를 유전자 발현 양상으로 정의하였다. 본 발명의 교모세포종 기원세포, 및 뇌실하대로부터 이를 분류하는 방법은 교모세포종 발생 근원을 이해하고 암 기원세포로부터 암세포로의 진행을 차단함으로써, 교모세포종 예방 및 치료에 크게 이용될 것으로 기대된다. Therefore, as a study for early diagnosis and understanding of the origin of glioblastoma and development of new treatments based thereon, it was confirmed that cells isolated from the subventricular zone were glioblastoma origin cells (Oc1 and Oc2), and the above Glioblastoma cells of origin were defined by gene expression patterns. The glioblastoma origin cells of the present invention and the method for classifying them from the subventricular zone are expected to be greatly used in the prevention and treatment of glioblastoma by understanding the origin of glioblastoma development and blocking the progression from cancer origin cells to cancer cells.

본 발명자들은 뇌암, 특히 유효한 치료제의 발굴이 어렵고 예후와 생존률이 매우 불량한 교모세포종의 발생 근원을 발굴하기 위하여 예의 연구 노력하였다. 그 결과, 뇌실하대(subventricular zone)에서 분리된 세포에서 유전자 발현 분석을 통해 교모세포종 기원세포(Oc1 및 Oc2)를 분리 및 정의함으로써, 본 발명을 완성하게 되었다.The present inventors have made extensive research efforts to discover the origin of brain cancer, especially glioblastoma, for which it is difficult to find an effective treatment and its prognosis and survival rate are very poor. As a result, the present invention was completed by isolating and defining glioblastoma origin cells (Oc1 and Oc2) through gene expression analysis in cells isolated from the subventricular zone.

따라서 본 발명의 목적은 뇌실하대로부터 분리된 세포에서 LUZP2, RORA, SLC1A2, TNR, XKR4, CERCAM, FTL, LAMA2, MBP, PLP1, PLXDC2, 및 TF 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 확인하는 단계를 포함하는, 뇌암 기원 세포의 분리 방법을 제공하는 데 있다.Therefore, the object of the present invention is to produce one or more proteins selected from the group consisting of LUZP2, RORA, SLC1A2, TNR, The aim is to provide a method of isolating brain cancer origin cells, which includes the step of confirming the expression level of the gene.

본 발명의 다른 목적은 LUZP2, RORA, SLC1A2, TNR, XKR4, CERCAM, FTL, LAMA2, MBP, PLP1, PLXDC2, 및 TF 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 제제를 유효성분으로 포함하는 교모세포종 진단용 조성물을 제공하는 데 있다.Another object of the present invention is to measure the expression level of one or more proteins selected from the group consisting of LUZP2, RORA, SLC1A2, TNR, XKR4, CERCAM, FTL, LAMA2, MBP, PLP1, PLXDC2, and TF, or genes encoding them The object is to provide a composition for diagnosing glioblastoma containing the following agent as an active ingredient.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당 업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.

이하, 본원에 기재된 다양한 구체예가 도면을 참조로 기재된다. 하기 설명에서, 본 발명의 완전한 이해를 위해서, 다양한 특이적 상세사항, 예컨대, 특이적 형태, 조성물 및 공정 등이 기재되어 있다. 그러나, 특정의 구체예는 이들 특이적 상세 사항 중 하나 이상 없이, 또는 다른 공지된 방법 및 형태와 함께 실행될 수 있다. 다른 예에서, 공지된 공정 및 제조 기술은 본 발명을 불필요하게 모호하게 하지 않게 하기 위해서, 특정의 상세사항으로 기재되지 않는다. "한 가지 구체예" 또는 "구체예"에 대한 본 명세서 전체를 통한 참조는 구체예와 결부되어 기재된 특별한 특징, 형태, 조성 또는 특성이 본 발명의 하나 이상의 구체예에 포함됨을 의미한다. 따라서, 본 명세서 전체에 걸친 다양한 위치에서 표현된 "한 가지 구체예에서" 또는 "구체예"의 상황은 반드시 본 발명의 동일한 구체예를 나타내지는 않는다. 추가로, 특별한 특징, 형태, 조성, 또는 특성은 하나 이상의 구체예에서 어떠한 적합한 방법으로 조합될 수 있다.DETAILED DESCRIPTION OF THE INVENTION Various embodiments described herein are described below with reference to the drawings. In the following description, various specific details, such as specific forms, compositions, and processes, are set forth in order to provide a thorough understanding of the invention. However, certain embodiments may be practiced without one or more of these specific details or in conjunction with other known methods and forms. In other instances, well-known processes and manufacturing techniques are not described in specific detail so as not to unnecessarily obscure the invention. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, form, composition or characteristic described in connection with the embodiment is included in one or more embodiments of the invention. Accordingly, the phrases “in one embodiment” or “an embodiment” expressed in various places throughout this specification do not necessarily refer to the same embodiment of the invention. Additionally, particular features, shapes, compositions, or properties may be combined in any suitable way in one or more embodiments.

명세서에서 특별한 정의가 없으면 본 명세서에 사용된 모든 과학적 및 기술적인 용어는 본 발명이 속하는 기술분야에서 당업자에 의하여 통상적으로 이해되는 것과 동일한 의미를 가진다.Unless there is a special definition in the specification, all scientific and technical terms used in the specification have the same meaning as commonly understood by a person skilled in the art in the technical field to which the present invention pertains.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to “include” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.

본 발명의 일 양태에 따르면, 본 발명은 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포에서 NRXN1(Neurexin 1), XKR4(XK Related 4), MAP2(Microtubule Associated Protein 2), SLC1A2(Solute Carrier Family 1 Member 2), MEG3(Maternally Expressed 3), TNR(Tenascin R),, NRCAM(Neuronal Cell Adhesion Molecule), PTPRZ1(Protein Tyrosine Phosphatase Receptor Type Z1), LUZP2(Leucine Zipper Protein 2), RORA(RAR Related Orphan Receptor A), PLP1(Proteolipid Protein 1), TF(Transferrin), MBP(Myelin Basic Protein), CERCAM(Cerebral Endothelial Cell Adhesion Molecule), TMEM144(Transmembrane Protein 144), PLXDC2(Plexin Domain Containing 2), FTL(Ferritin Light Chain), 및 LAMA2(Laminin Subunit Alpha 2) 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 확인하는 단계;를 포함하는, 뇌암 기원 세포의 분리 방법을 제공한다.According to one aspect of the present invention, NRXN1 (Neurexin 1), 1 Member 2), MEG3 (Maternally Expressed 3), TNR (Tenascin R), NRCAM (Neuronal Cell Adhesion Molecule), PTPRZ1 (Protein Tyrosine Phosphatase Receptor Type Z1), LUZP2 (Leucine Zipper Protein 2), RORA (RAR Related Orphan) Receptor A), PLP1 (Proteolipid Protein 1), TF (Transferrin), MBP (Myelin Basic Protein), CERCAM (Cerebral Endothelial Cell Adhesion Molecule), TMEM144 (Transmembrane Protein 144), PLXDC2 (Plexin Domain Containing 2), FTL (Ferritin) Light Chain), and LAMA2 (Laminin Subunit Alpha 2), confirming the expression level of one or more proteins selected from the group consisting of, or genes encoding the same.

본 발명자들은 뇌암, 특히 유효한 치료제의 발굴이 어렵고 예후와 생존률이 매우 불량한 교모세포종의 발생 근원을 발굴하기 위하여 예의 연구 노력하였다. 그 결과, 뇌실하대(subventricular zone)에서 분리된 세포에서 유전자 발현 분석을 통해 교모세포종 기원세포(Oc1 및 Oc2)를 분리 및 정의함으로써, 본 발명을 완성하게 되었다.The present inventors have made extensive research efforts to discover the origin of brain cancer, especially glioblastoma, for which it is difficult to find an effective treatment and its prognosis and survival rate are very poor. As a result, the present invention was completed by isolating and defining glioblastoma origin cells (Oc1 and Oc2) through gene expression analysis in cells isolated from the subventricular zone.

본 명세서에서 용어 "뇌실하대(SVZ)"는 척추동물 뇌의 각 측뇌실의 외벽에 위치한 영역을 의미한다. 이 영역은 태아와 성인의 뇌 모두에 존재하며, 배아 생활에서 뇌실하대는 신경 발생 과정에서 분열하여 뉴런을 생성하는 신경 전구 세포를 포함하는 2차 증식 영역을 나타낸다. As used herein, the term “subventricular zone (SVZ)” refers to a region located on the outer wall of each lateral ventricle of the vertebrate brain. This region is present in both fetal and adult brains, and in embryonic life the subventricular zone represents a secondary proliferative zone containing neural progenitor cells that divide during neurogenesis to generate neurons.

본 명세서에서 용어 "뇌암(brain tumor)"은 두개골 안에서 만들어지는 고(액)체 신생물로, 뇌나 척주관 안의 종양을 의미하며, 뇌질과 뇌막에 발생하는 종양의 총칭이다. 이는 뇌세포에서 자란 종양. 혈관을 비롯 신경, 뇌막 등에서 발생하여 두개골 내에서 발육하는 신생물을 모두 포괄한다. 증상은 생기는 부위에 따라 다른데, 보편적으로 두통, 구토, 팔다리의 운동 이상(경련, 마비), 시각 장애 증세를 보인다. As used herein, the term “brain tumor” refers to a solid (liquid) neoplasm formed within the skull, a tumor within the brain or spinal canal, and is a general term for tumors occurring in the brain matter and meninges. This is a tumor that grows in brain cells. It includes all neoplasms that develop within the skull, originating from blood vessels, nerves, and meninges. Symptoms vary depending on where they occur, but commonly include headaches, vomiting, abnormal movements of the limbs (convulsions, paralysis), and visual impairment.

본 발명의 구체적인 구현예에 따르면, 상기 뇌암 기원세포는 교모세포종(glioblastoma, GBM)으로 발전되는 세포인 것인, 분리 방법이다.According to a specific embodiment of the present invention, there is a separation method in which the brain cancer origin cells are cells that develop into glioblastoma (GBM).

본 명세서에서 용어 "교모세포종(glioblastoma; GBM)"은 교종의 일종으로 뇌에서 일차적으로 발생하는 가장 흔하고 심한 형태의 종양을 의미한다. 처음 발생하는 증상과 징후는 질병에 특이적이지 않고 두통, 성격변화, 또는 구역질 등 뇌졸중과 유사한 증상일 수 있다. 빠른 증상악화가 있으며 의식불명에 이를 수 있다.As used herein, the term “glioblastoma (GBM)” refers to a type of glioma, the most common and severe form of tumor that occurs primarily in the brain. Symptoms and signs that first occur are not disease-specific and may be stroke-like, such as headaches, personality changes, or nausea. Symptoms worsen rapidly and may lead to unconsciousness.

본 발명의 구체적인 구현예에 따르면, 상기 뇌실하대로부터 분리된 세포에서 7번 염색체의 복제 수 증가를 확인하는 단계;를 추가로 포함하는, 분리 방법이다.According to a specific embodiment of the present invention, there is a separation method further comprising: confirming an increase in the copy number of chromosome 7 in cells isolated from the subventricular zone.

본 발명의 다른 양태에 따르면, 본 발명은 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 제제를 유효성분으로 포함하는, 뇌암 발병 예측용 조성물을 제공한다.According to another aspect of the present invention, the present invention provides a group consisting of NRXN1, Provided is a composition for predicting the development of brain cancer, comprising as an active ingredient an agent for measuring the expression level of one or more proteins selected from, or genes encoding the same.

본 명세서에서 용어"예측"은 한 객체가 특정 질병 또는 질환이 현재 중증으로 진행되었거나 또는 향후 중증으로 진행될 위험이 있는지 여부를 중증도와 유의한 상관관계를 가지는 표지자를 기반으로 평가하는 것을 의미한다.As used herein, the term “prediction” refers to evaluating whether a subject has developed a specific disease or disease to a severe degree or is at risk of developing a severe disease in the future based on a marker that has a significant correlation with the severity.

본 명세서에서 용어"예측용 조성물"은 대상체의 교모세포종이 발명했거나 향후 발병될 위험성을 가지는지를 예측하기 위해 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 제제를 포함하는 통합적인 혼합물(mixture) 또는 장비(device)를 의미하며, 이에"예측용 키트"로 표현될 수도 있다. As used herein, the term “predictive composition” refers to NRXN1, , an integrated mixture or device containing an agent for measuring the expression level of one or more proteins selected from the group consisting of MBP, CERCAM, TMEM144, PLXDC2, FTL, and LAMA2, or the genes encoding them. This means that it can also be expressed as a “prediction kit.”

본 발명의 구체적인 구현예에 따르면, 상기 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질의 발현량을 측정하는 제제는 상기 단백질에 특이적으로 결합하는 앱타머, 항체 또는 이의 항원 결합 단편인 것인, 조성물일 수 있다.According to a specific embodiment of the present invention, from the group consisting of NRXN1, The agent for measuring the expression level of one or more selected proteins may be a composition that is an aptamer, antibody, or antigen-binding fragment thereof that specifically binds to the protein.

본 발명에 따르면, 본 발명의 상기 단백질을 항원-항체 반응을 이용한 면역분석(immunoassay) 방법에 따라 검출하여 개체의 교모세포종을 분석하는 데 이용될 수 있다. 이러한 면역분석은 종래에 개발된 다양한 면역분석 또는 면역염색 프로토콜에 따라 실시될 수 있다. According to the present invention, the protein of the present invention can be detected according to an immunoassay method using an antigen-antibody reaction and used to analyze glioblastoma in an individual. This immunoassay can be performed according to various immunoassay or immunostaining protocols developed conventionally.

예를 들어, 본 발명의 방법이 방사능면역분석 방법에 따라 실시되는 경우, 방사능동위원소(예컨대, C14, I125, P32 및 S35)로 표지된 항체가 이용될 수 있다. 본 발명에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질을 특이적으로 인식하는 항체는 폴리클로날 또는 모노클로날 항체이며, 보다 구체적으로는 모노클로날 항체이다.For example, when the method of the present invention is performed according to a radioimmunoassay method, antibodies labeled with radioisotopes (e.g., C14, I125, P32, and S35) may be used. In the present invention, one or more proteins selected from the group consisting of NRXN1, Antibodies that are recognized as adversaries are polyclonal or monoclonal antibodies, and more specifically, monoclonal antibodies.

본 발명의 항체는 당업계에서 통상적으로 실시되는 방법들, 예를 들어, 융합 방법, 재조합 DNA 방법 또는 파아지 항체 라이브러리 방법에 의해 제조될 수 있다. The antibody of the present invention can be produced by methods commonly practiced in the art, for example, a fusion method, a recombinant DNA method, or a phage antibody library method.

상술한 면역분석 과정에 의한 최종적인 시그널의 강도를 분석함으로써, 교모세포종을 예측할 수 있다. 즉, 개체의 시료에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질에 대한 시그널이 정상 시료 보다 약하거나 강하게 나오는 경우에는 교모세포종의 위험도가 증가된 것으로 판단된다.Glioblastoma can be predicted by analyzing the intensity of the final signal by the above-described immunoassay process. That is, one or more selected from the group consisting of NRXN1, If the signal for the protein is weaker or stronger than that of a normal sample, the risk of glioblastoma is judged to be increased.

본 명세서에서 용어"항원 결합 단편(antigen binding fragment)"은 면역글로불린 전체 구조 중 항원이 결합할 수 있는 폴리펩티드의 일부를 의미하며, 예를 들어 F(ab')2, Fab', Fab, Fv 및 scFv를 포함하나, 이에 제한되는 것은 아니다. As used herein, the term “antigen binding fragment” refers to a portion of a polypeptide that can bind an antigen in the overall structure of an immunoglobulin, such as F(ab')2, Fab', Fab, Fv, and Including, but not limited to scFv.

본 명세서에서 용어, "특이적으로 결합(specifically binding)" 은 "특이적으로 인식(specifically recognizing)"과 동일한 의미로서, 항원과 항체(또는 이의 단편)가 면역학적 반응을 통해 특이적으로 상호작용하는 것을 의미한다.As used herein, the term “specifically binding” has the same meaning as “specifically recognizing,” meaning that an antigen and an antibody (or a fragment thereof) specifically interact through an immunological reaction. It means to do.

본 발명은 항체 대신 본 발명의 상기 마커 단백질에 특이적으로 결합하는 앱타머를 이용할 수도 있다. 본 명세서에서 용어"앱타머"는 특정 표적물질에 높은 친화력과 특이성으로 결합하는 단일 줄기의(single-stranded) 핵산(RNA 또는 DNA) 분자 또는 펩타이드 분자를 의미한다. The present invention may use an aptamer that specifically binds to the marker protein of the present invention instead of an antibody. As used herein, the term “aptamer” refers to a single-stranded nucleic acid (RNA or DNA) molecule or peptide molecule that binds to a specific target substance with high affinity and specificity.

발명의 구체적인 구현예에 따르면, 상기 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질을 코딩하는 유전자의 발현량을 측정하는 제제는 상기 유전자에 특이적으로 결합하는 프라이머 또는 프로브인 것인, 조성물일 수 있다.According to a specific embodiment of the invention, selected from the group consisting of NRXN1, An agent for measuring the expression level of a gene encoding one or more proteins may be a composition that is a primer or probe that specifically binds to the gene.

본 명세서에서, 용어 "핵산 분자"는 DNA(gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 갖으며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)도 포함한다.As used herein, the term "nucleic acid molecule" is meant to comprehensively include DNA (gDNA and cDNA) and RNA molecules, and nucleotides, which are the basic structural units in nucleic acid molecules, include not only natural nucleotides but also those with modified sugars or base sites. Also includes analogues.

본 명세서에서 사용되는 용어"프라이머"는 핵산쇄(주형)에 상보적인 프라이머 연장 산물의 합성이 유도되는 조건, 즉, 뉴클레오타이드와 DNA 중합효소와 같은 중합제의 존재, 적합한 온도와 pH의 조건에서 합성의 개시점으로 작용하는 올리고뉴클레오타이드를 의미한다. 구체적으로는, 프라이머는 디옥시리보뉴클레오타이드 단일쇄이다. 본 발명에서 이용되는 프라이머는 자연(naturally occurring) dNMP(즉, dAMP, dGMP, dCMP 및 dTMP), 변형 뉴클레오타이드 또는 비-자연 뉴클레오타이드를 포함할 수 있으며, 리보뉴클레오타이드도 포함할 수 있다.As used herein, the term "primer" refers to conditions that induce the synthesis of a primer extension product complementary to a nucleic acid chain (template), that is, the presence of nucleotides and a polymerizing agent such as DNA polymerase, and synthesis under conditions of appropriate temperature and pH. refers to an oligonucleotide that acts as the starting point. Specifically, the primer is a single strand of deoxyribonucleotide. Primers used in the present invention may include naturally occurring dNMP (i.e., dAMP, dGMP, dCMP, and dTMP), modified nucleotides, or non-natural nucleotides, and may also include ribonucleotides.

본 발명의 프라이머는 타겟 핵산에 어닐링 되어 주형-의존성 핵산 중합효소에 의해 타겟 핵산에 상보적인 서열을 형성하는 연장 프라이머(extension primer)일 수 있으며, 이는 고정화 프로브가 어닐링 되어 있는 위치까지 연장되어 프로브가 어닐링 되어 있는 부위를 차지한다.The primer of the present invention may be an extension primer that anneals to the target nucleic acid to form a sequence complementary to the target nucleic acid by template-dependent nucleic acid polymerase, which extends to the position where the immobilized probe is annealed, thereby forming the probe. Occupies the annealed area.

본 발명에서 이용되는 연장 프라이머는 타겟 핵산, 예를 들어 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 유전자의 특정 염기서열에 상보적인 혼성화 뉴클레오타이드 서열을 포함한다. 용어"상보적"은 소정의 어닐링 또는 혼성화 조건하에서 프라이머 또는 프로브가 타겟 핵산 서열에 선택적으로 혼성화할 정도로 충분히 상보적인 것을 의미하며, 실질적으로 상보적(substantially complementary)인 경우 및 완전히 상보적(perfectly complementary)인 경우를 모두 포괄하는 의미이며, 구체적으로는 완전히 상보적인 경우를 의미한다. 본 명세서에서 용어"실질적으로 상보적인 서열"은 완전히 일치되는 서열뿐만 아니라, 특정 서열에 어닐링하여 프라이머 역할을 할 수 있는 범위 내에서, 비교 대상의 서열과 부분적으로 불일치되는 서열도 포함되는 의미이다.Extension primers used in the present invention target nucleic acids, such as NRXN1, It includes a hybridized nucleotide sequence complementary to a specific base sequence of one or more genes selected from the group consisting of. The term “complementary” means that a primer or probe is sufficiently complementary to selectively hybridize to a target nucleic acid sequence under predetermined annealing or hybridization conditions, including substantially complementary and perfectly complementary. ), and specifically means completely complementary cases. As used herein, the term “substantially complementary sequence” refers not only to completely identical sequences, but also to sequences that are partially mismatched with the sequence being compared, to the extent that they can anneal to a specific sequence and serve as a primer.

프라이머는, 중합제의 존재 하에서 연장 산물의 합성을 프라이밍시킬 수 있을 정도로 충분히 길어야 한다. 프라이머의 적합한 길이는 다수의 요소, 예컨대, 온도, pH 및 프라이머의 소스(source)에 따라 결정되지만 전형적으로 15-30 뉴클레오타이드이다. 짧은 프라이머 분자는 주형과 충분히 안정된 혼성 복합체를 형성하기 위하여 일반적으로 보다 낮은 온도를 요구한다. 이러한 프라이머의 설계는 타겟 뉴클레오티드 서열을 참조하여 당업자가 용이하게 실시할 수 있으며, 예컨대, 프라이머 디자인용 프로그램(예: PRIMER 3 프로그램)을 이용하여 할 수 있다.Primers should be sufficiently long to prime the synthesis of the extension product in the presence of a polymerizing agent. The suitable length of the primer depends on a number of factors, such as temperature, pH, and the source of the primer, but is typically 15-30 nucleotides. Short primer molecules generally require lower temperatures to form sufficiently stable hybrid complexes with the template. The design of such primers can be easily performed by a person skilled in the art by referring to the target nucleotide sequence, for example, by using a primer design program (eg, PRIMER 3 program).

본 명세서에서 용어"프로브"는 특정 뉴클레오타이드 서열에 혼성화될 수 있는 디옥시리보뉴클레오타이드 및 리보뉴클레오타이드를 포함하는 자연 또는 변형되는 모노머 또는 결합을 갖는 선형의 올리고머를 의미한다. 구체적으로, 프로브는 혼성화에서의 최대 효율을 위하여 단일가닥이며, 더욱 구체적으로는 디옥시리보뉴클레오타이드이다. 본 발명에 이용되는 프로브로서, 본 발명의 마커 유전자의 특정 염기서열에 완전하게(perfectly) 상보적인 서열이 이용될 수 있으나, 특이적 혼성화를 방해하지 않는 범위 내에서 실질적으로(substantially) 상보적인 서열이 이용될 수도 있다. 일반적으로, 혼성화에 의해 형성되는 듀플렉스(duplex)의 안정성은 말단의 서열의 일치에 의해 결정되는 경향이 있기 때문에, 타겟 서열의 3'-말단 또는 5'-말단에 상보적인 프로브를 사용하는 것이 바람직하다. As used herein, the term “probe” refers to a linear oligomer having a natural or modified monomer or linkage containing deoxyribonucleotides and ribonucleotides that can hybridize to a specific nucleotide sequence. Specifically, the probes are single-stranded, more specifically deoxyribonucleotides, for maximum efficiency in hybridization. As a probe used in the present invention, a sequence that is completely complementary to the specific base sequence of the marker gene of the present invention may be used, but a substantially complementary sequence may be used to the extent that it does not interfere with specific hybridization. This may also be used. In general, because the stability of the duplex formed by hybridization tends to be determined by the match of the terminal sequences, it is preferable to use a probe complementary to the 3'-end or 5'-end of the target sequence. do.

발명의 구체적인 구현예에 따르면, 상기 뇌암은 교모세포종(glioblastoma, GBM)인 것인, 조성물일 수 있다.According to a specific embodiment of the invention, the composition may be one in which the brain cancer is glioblastoma (GBM).

본 발명의 또 다른 양태에 따르면, 본 발명은 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 제제를 유효성분으로 포함하는 뇌암 발병 예측용 조성물을 포함하는, 뇌암 발병 예측용 키트를 제공한다. According to another aspect of the present invention, the present invention consists of NRXN1, Provided is a kit for predicting the development of brain cancer, which includes a composition for predicting the development of brain cancer containing as an active ingredient an agent for measuring the expression level of one or more proteins selected from the group, or genes encoding the same.

발명의 구체적인 구현예에 따르면, 상기 키트는 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포를 대상으로 사용되는 것인, 키트일 수 있다.According to a specific embodiment of the invention, the kit may be used for cells isolated from the subventricular zone (SVZ).

발명의 구체적인 구현예에 따르면, 상기 뇌실하대로부터 분리된 세포는 7번 염색체의 복제 수가 증가된 세포인 것인, 키트일 수 있다.According to a specific embodiment of the invention, the cells isolated from the subventricular zone may be cells with an increased copy number of chromosome 7, which may be a kit.

발명의 구체적인 구현예에 따르면, 상기 키트는 RT-PCR 키트, DNA 칩 키트, ELISA 키트, 단백질 칩 키트, 래피드(rapid) 키트 또는 MRM(Multiple reaction monitoring) 키트인 것인, 키트일 수 있다. According to a specific embodiment of the invention, the kit may be an RT-PCR kit, a DNA chip kit, an ELISA kit, a protein chip kit, a rapid kit, or a multiple reaction monitoring (MRM) kit.

본 발명의 또 다른 양태에 따르면, 본 발명은 목적하는 개체의 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 단계;를 포함하는, 뇌암의 발병 예측 방법을 제공한다.According to another aspect of the present invention, NRXN1, , measuring the expression level of one or more proteins selected from the group consisting of TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, and LAMA2, or genes encoding the same. .

발명의 구체적인 구현예에 따르면, 상기 뇌실하대로부터 분리된 세포에서 7번 염색체의 복제 수 증가를 확인하는 단계;를 추가로 포함하는, 예측 방법일 수 있다. According to a specific embodiment of the invention, the prediction method may further include the step of confirming an increase in the copy number of chromosome 7 in cells isolated from the subventricular zone.

발명의 구체적인 구현예에 따르면, 상기 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, 및 RORA로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 증가된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법일 수 있다.According to a specific embodiment of the invention, when the expression of one or more proteins selected from the group consisting of NRXN1, It may be a prediction method that predicts that the individual has a high possibility of developing brain cancer.

발명의 구체적인 구현예에 따르면, 상기 LUZP2, RORA, SLC1A2, TNR, 및 XKR4로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 증가된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법일 수 있다.According to a specific embodiment of the invention, when the expression of one or more proteins selected from the group consisting of LUZP2, RORA, SLC1A2, TNR, and XKR4, or the genes encoding them, is increased, the likelihood of the subject developing brain cancer is high. It may be a predictive or predictive method.

발명의 구체적인 구현예에 따르면, 상기 PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 감소된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법일 수 있다.According to a specific embodiment of the invention, when the expression of one or more proteins selected from the group consisting of PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, and LAMA2, or the genes encoding them, is reduced, the It may be a predictive method that predicts that the likelihood of developing brain cancer is high.

발명의 구체적인 구현예에 따르면, 상기 CERCAM, FTL, LAMA2, MBP, PLP1, PLXDC2, 및 TF로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 감소된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법일 수 있다.According to a specific embodiment of the invention, when the expression of one or more proteins selected from the group consisting of CERCAM, FTL, LAMA2, MBP, PLP1, PLXDC2, and TF, or the genes encoding them, is reduced, the subject develops brain cancer. It may be a prediction method that predicts what is likely.

발명의 구체적인 구현예에 따르면, 상기 뇌암은 교모세포종(glioblastoma, GBM)인 것인, 예측 방법일 수 있다.According to a specific embodiment of the invention, the brain cancer may be glioblastoma (GBM), a prediction method.

본 발명의 또 다른 양태에 따르면, 본 발명은 (a) 제 1항의 방법으로 분리한 뇌암 기원세포에 뇌암 예방용 후보물질을 처리하는 단계; 및,According to another aspect of the present invention, the present invention includes the steps of (a) treating brain cancer origin cells isolated by the method of claim 1 with a candidate substance for preventing brain cancer; and,

(b) 상기 뇌암 기원세포가 사멸된 경우에 상기 후보물질이 뇌암 예방 효과가 있는 것으로 판단하는 단계;를 포함하는, 뇌암 예방용 후보물질의 스크리닝 방법을 제공한다.(b) determining that the candidate material has a brain cancer prevention effect when the brain cancer origin cells are killed.

본 발명의 스크리닝 방법을 언급하면서 사용되는 용어"후보물질"은 뇌암 예방 효과를 타진하기 위한 목적으로 미지의 시료에 첨가되어 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 활성 또는 발현량에 영향을 미치는지 여부를 검사하기 위하여 스크리닝에서 이용되는 물질을 의미한다. 상기 시험물질은 화합물, 뉴클레오타이드, 펩타이드 및 천연 추출물을 포함하나, 이에 `제한되는 것은 아니다. 시험물질을 처리한 생물학적 시료에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량 또는 활성을 측정하는 단계는 당업계에 공지된 다양한 발현량 및 활성 측정방법에 의해 수행될 수 있다. The term "candidate" used when referring to the screening method of the present invention is added to an unknown sample for the purpose of testing the brain cancer prevention effect, and is used to determine the brain cancer prevention effect of NRXN1, , one or more proteins selected from the group consisting of PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, and LAMA2, or used in screening to test whether they affect the activity or expression level of the gene encoding them. means substance. The test substances include, but are not limited to, compounds, nucleotides, peptides, and natural extracts. In biological samples treated with test substances, selected from the group consisting of NRXN1, The step of measuring the expression level or activity of one or more proteins, or the genes encoding them, can be performed by various expression level and activity measurement methods known in the art.

본 발명의 또 다른 양태에 따르면, 본 발명은 (a) 제 1항의 방법으로 분리한 뇌암 기원세포에 뇌암 예방용 후보물질을 처리하는 단계;According to another aspect of the present invention, the present invention includes the steps of (a) treating brain cancer origin cells isolated by the method of claim 1 with a candidate substance for preventing brain cancer;

(b) 상기 뇌암 기원세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 재확인하는 단계; 및,(b) selected from the group consisting of NRXN1, Reconfirming the expression level of one or more proteins or genes encoding them; and,

(c) 상기 단백질, 또는 유전자의 발현 정도가 후보물질 처리 전과 비교하여 유의하게 달라진 경우에 상기 후보물질이 뇌암 예방 효과가 있는 것으로 판단하는 단계;를 포함하는, 뇌암 예방용 후보물질의 스크리닝 방법을 제공한다.(c) determining that the candidate material has a brain cancer prevention effect when the expression level of the protein or gene is significantly different compared to before treatment with the candidate material; a screening method for a candidate material for preventing brain cancer, including to provide.

본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:

(a) 본 발명은 뇌실하대로부터 분리된 세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 확인하는 단계를 포함하는, 뇌암 기원 세포의 분리 방법을 제공한다.(a) The present invention is NRXN1, Provided is a method of isolating brain cancer origin cells, comprising the step of confirming the expression level of one or more proteins selected from the group consisting of, or the genes encoding them.

(b) 본 발명자들은 뇌암, 특히 유효한 치료제의 발굴이 어렵고 예후와 생존률이 매우 불량한 교모세포종에 있어서, 상기 인자들이 신뢰도 높은 진단 표지자로 기능할 뿐 아니라, 이들의 발현 조절을 통해 종양을 억제하여 난치성 질환인 교모세포종 환자의 생존률을 현저히 개선하는 근본적인 치료제 조성물로 유용하게 이용될 수 있다.(b) The present inventors have found that in brain cancer, especially glioblastoma, for which it is difficult to find an effective treatment and the prognosis and survival rate are very poor, the above factors not only function as highly reliable diagnostic markers, but also suppress the tumor by regulating their expression, resulting in incurable disease. It can be useful as a fundamental therapeutic composition that significantly improves the survival rate of patients with glioblastoma disease.

도 1은 교모세포종 원세포를 찾기 위한 인체 조직 기반 식별 연구에 관한 것이다. 트랜스크립텀의 차세대 시퀀싱은 인간 조직으로부터의 염색체 획득 및 손실과 같은 염색체 수준의 구조적 변화 패턴을 예측하기 위해 사용될 수 있다. 인간 뇌의 심실하부 샘플인 줄기세포 틈새를 이 연구에 포함시켰다. 벌크 조직 및 세포 수준(단세포 및 단핵) RNA 염기서열 분석과 더불어 염색체 패턴 식별을 위한 전체 염기서열 분석 데이터(SRP145073)를 포함하였다. 1b는 대량 조직 RNA 배열 샘플에 의해 계산된 염색체 복사 번호 패턴에 대한 것으로, 샘플 퍼센티지는 7번 염색체와 10번 염색체의 패턴으로 파이 차트에 요약된다. 1c는 단핵 RNA 배열 기반 세포 식별에 관한 것으로, 두 종류의 세포는 뚜렷한 유전자 발현 패턴을 보였으며, 세포 1과 세포 2로 라벨이 붙여졌다. 7번 염색체 q-arm 획득과 10번 염색체 손실의 세포 수준 염색체 패턴을 확인한 후, 7번 염색체 q-arm 획득만을 나타내는 세포를 GBM의 기원세포 1(origin-cell 1; Oc1), 7번 염색체 q-arm 획득 및 10번 염색체 손실을 나타내는 세포를 GBM의 기원세포 2(origin-cell 2)라고 정의하였다. 1d는 7번 염색체와 10번 염색체의 변형 패턴을 가진 종양-전립자 프로파일링 전략에 대해 나타내며, 복사 번호(copy number) 패턴과 두 오리진 세포의 세포 시그니처를 교아종 종양 세포로 변환하기 전에 취약한 세포를 찾기 위한 마커 도구로 가정하였다.
도 2a는 통합된 인체 조직 유래 데이터로부터 두 가지 유형의 기원지가 발견되었다(총 세포 n = 59,417). 원점세포1(갈색) 및 원점세포2(노란색)는 신경전구세포군(연청색), 뉴런양세포군(회색), 세포주기활성세포군(파란색), 간엽세포군(빨간색)으로 이루어진 종양세포의 주클러스터에 인접해 있다. 본 발명은 종양의 주성단에 초점을 맞췄다. 2b는 종양이 없는 뇌실하대 샘플(왼쪽, 대조군 질병의 종양이 없는 뇌실하대 샘플, 교모세포종에서 얻은 종양이 없는 뇌실하대 샘플) 또는 종양 관련 샘플(오른쪽, 종양 -교모세포종 또는 교모세포종 종양 조직의 침윤된 뇌실하 구역 샘플)에 대해 나타냈으며, 2c는 단핵 환자 GN1에 초점을 맞췄고 두 가지 세포 유형인 Origin-cell 1과 2는 심실 하부와 종양에서 발견되었다. 2d는 무종양 심실하부 샘플에서 1 카피 획득(주황색), 2 카피 획득(빨간색) 또는 1 카피 손실(파란색)의 염색체 획득 이벤트를 검사한다. 2e는 일치하는 종양 샘플은 Origin-cell 1 클러스터가 Origin-cell 2 및 다른 세포보다 염색체 중립 상태에 있을 가능성이 높다는 것을 보여준다. 2f는 환자 GN1의 세포는 Origin-cell 1에서 Origin-cell 2로의 염색체 7q 암의 누적 복사 번호를 나타낸다. 2g는 개별 세포 수준에서 두 가지 유형의 염색체 변경을 비교하면 염색체 사본 수 변경의 순서가 밝혀졌다. 왼쪽, 염색체 7q 다음에는 염색체 7p가 증가한다. 오른쪽, 염색체 7q 획득 이후에 염색체 10 손실 사건이 발생한다.
도 3은 세포 유형별 리간드 리셉터 시그널링의 커넥텀에 대해 나타낸다. 3a는 맨 위에, 종양 침윤이 없는 교아세포종의 무종양 심실하부 샘플이 있다. 아래쪽, 교아세포종 종양 조직이며, 모드 특이적 수용체와 배위자 유전자에 의해 다른 모드가 정의된다. 줄기세포 모드는 3개의 수용체(CD44, ITGA4, NRCAM)와 4개의 리간드(BCAN, CD14, LPL, VIM)로 정의된다. 3b는 유전자에 의한 커넥텀 엣지웨이트 Origin-cell 1(갈색), Origin-cell 2(노란색) 및 cycling cell(파란색)은 심실하부 검체와 종양 검체에 대해 선택되었다. 상단의, 심실하부 샘플의 상호연결 유전자의 순환 플롯을 나타내며, 맨 아래, 교아종 종양 샘플의 서로 연결된 유전자의 순환 플롯을 나타낸다. 3c는 원세포, 순환세포, 암줄기세포의 관점에서 두 가지 유형의 교아종 종양을 검사한다. 교아종 종양 샘플은 종양 조직에서 TERT 프로모터의 돌연변이 상태에 따라 하위분류된다. 일치하는 심실하부 샘플은 모종의 TERT 프로모터 돌연변이 상태에 따라 라벨링되며, 세포 존재는 단세포 수준의 RNA 배열 데이터에서 추출한 4개의 유전자 세트(기원 세포 1, 기원 세포 2, 사이클 세포 및 암 줄기세포 24)를 벌크 조직 RNA 배열 데이터 세트의 발현 값에 적용하여 예측되었다(본 분석에 TERT 프로모터 사용 가능한 데이터 샘플 사용). 왼쪽, TERT 프로모터 야생형 교아세포종 종양과 환자가 심실하부 샘플과 일치한다. TERT 프로모터 돌연변이 교아세포종 종양과 환자가 심실하부 샘플과 일치한다. student t-test, <0.001**, <0.01**, 유의하지 않은 결과는 표시되지 않는다.
도 4는 CRISPR/Cas9 기반의 유전자 편집 기술2의 마우스 셀 모델에 관한것으로 4a는 EGFRvii 유전자의 유도로 Trp53과 Pten에서 유전자 돌연변이를 가지고 있는 생쥐의 심실하부 세포를 분리하였다. 심실하부의 돌연변이 세포는 돌연변이 도입 후 약 11~16주 후에 생쥐 교아종 종양으로 변화한다. 세 가지 유형의 셀이 라벨로 표시되어 비교되었다. 4b는 세포 특이적 마커를 사용하여 세 가지 유형의 세포에서 세포의 하위 집단을 식별하였다. 다른 세포 마커는 이 세 가지 유형의 세포에 대해 음성이었다. 4c는 종양 세포의 종양 발생에 대한 것으로, 다른 세포에서 종양 발생은 발견되지 않았다. 즉, 유전자 수정 없이 대측방 심실 하부에서 분리된 세포 또는 CRISPR/Cas9 편집 심실 하부에서 분리된 원세포였다. 4d 세 가지 세포 유형의 개별 세포 통합 지도에 대한 것으로, 왼쪽, 혼합된 세 가지 세포 유형을 나타내고, 오른쪽, 세 가지 세포 유형에서 식별된 네 가지 세포 상태를 보여준다. 4e는 3가지 마우스 세포 유형에서 4가지 세포 상태의 정량적 비교에 대한 것이며, 4f는 유전자 모듈 점수는 3가지 마우스 세포 유형의 단세포 RNA 시퀀싱으로 계산되었다. 유전자 모듈 점수는 지정된 세포 상태(임의 상대 단위)의 상대 세포 수를 예측하는 데 사용되었다. 또한 인간 기원 세포 1 특정 유전자를 마우스 호몰로그 유전자로 변환하여 마우스 세포 점수를 산출하였다. 마우스 세포 점수에는 인간 기원 세포 2 특정 유전자를 이용한다. 4g는 단세포 RNA 배열에서 염색체 변화가 계산되었으며, 셀 상태 맵에서 가장 중요한 변화가 언급되었다. 7번 염색체 앞부분과 뒷부분은 3개의 마우스 세포 모델에서 염색체 변화 패턴이 달랐음을 확인하였다.
도 5는 교아종 발생 세포 식별을 위해 성인 인간의 뇌에서 심실하부 샘플샘 수집한 것을 나타낸다. 도 5a는 인간 연구 파트의 개요로써, 교아세포종 원세포의 식별을 위해 새로운 데이터 세트와 이전에 공개된 데이터 세트(SRP145073)2를 사용하였다. 도 5b는 환자 검체의 단일 세포 수준 RNA 염기서열 분석 번호를 1부터 14까지 지정했지만 대량 조직 수준 RNA 염기서열 분석 환자 검체는 지정하지 않았고, 환자 사례 4는 검체 준비 품질 때문에 제외되었다. 도 5c는 수술 중 성인의 뇌에서 심실하부 샘플을 준비하는 간단한 그래픽 요약한 것이다. 도 5d 내지 5f는 환자의 자기공명 의료 영상과 심실하부의 샘플링 위치를 나타낸다. 도 5d는 교아세포종(GN으로 시작하는 라벨)이 있는 단일 핵 RNA 시퀀싱 환자 사례를 나타내며, 모든 심실하부 검체는 병리학적 평가에 의해 종양에 의해 오염되지 않았다. 즉, 단핵 RNA가 대조군 질환의 환자(CN으로 시작하는 라벨)를 시퀀싱하는 것이다. 시료에서 종양세포 오염은 발견되지 않았다. 도 5f는 교아세포종 환자의 단세포 RNA 염기서열 분석에 관한 것으로 두 개의 심실 영역 검체(GC11 및 GC13)에서 단세포 RNA 시퀀싱에 실패하였다. 종양 혼합 심실하부 샘플도 대조군 그룹(GC12)으로 연구에 포함되었다.
도 6은 벌크 조직 RNA 배열 및 벌크 조직 전체 엑솜 배열 데이터에서 얻은 심실 부위의 기원 세포 증거를 나타낸다. 도 6a는 심실하부 그룹의 유전자 발현 비교에 대한 것으로, 좌측 교아세포종의 무종양 심실하부를 제어질환과 비교하였다. 우측, 제어 질환보다 무종양 심실 하부에서 고조절된 유전자의 농축 분석 결과를 설정하였다. 도 6b는 심실하부와 교아종양을 비교한 유전자 세트 농축 분석을 나타낸것으로, 교아세포종의 심실하부에서 상향조절된 유전자에서 도출된다. 제어 질환의 심실하부는 제외되었다. 도 6c 내지 6e는 SRP145073의 전체 엑솜 배열 데이터셋에서 성인 인간 뇌의 무종양 심실 영역의 염색체 패턴, 변종 대립 유전자 빈도 및 돌연변이 시간을 나타낸다. 도 6c는 환자 P245 사례에서 7번 염색체의 q-arm 측에서 카피 번호 획득의 염색체 패턴을 발견하였다. 도 6d는 염색체 패턴은 심실하부에서 종양으로 단방향 공유 돌연변이로 식별된 심실하부 검체에서 비교적 뚜렷하였다(P520, P276, P26, P499). 도 6e는 환자 검체(P37, P396, P881, P246)에서 염색체 7 q-arm이 확실히 증가하지 않는 것을 확인하였다. 도 6f는 모든 염색체를 통한 카피 번호의 염색체 패턴에 관한 것으로, 이전에 발표된 알고리즘을 사용하여 대량 조직 RNA 시퀀싱에서 계산되었다. 모든 카피 번호 결과가 전체 샘플에 걸쳐 조정되고 정규화된다. 제어 질환의 무종양 심실하대(n = 9)를 가진 카피 번호 계산에 참조 그룹을 사용하였다. 도 6g는 전체 염기서열 분석 데이터 및 대량 조직 수준의 RNA 염기서열 분석 데이터에서의 염색체 패턴 검증을 나타낸 것으로, 이 두 가지 방법이 한계를 보여주기 때문에, 우리는 단세포 수준 분석을 준비하였다.
도 7은 모든 환자 검체 내 원점 세포의 특정 유전자 세트 및 원점 세포의 환자 고유 비율(도 2a 내지 2b 관련)에 관한 것이다. 도 7a는 기원세포 1의 유전자 시그니처의 네트워크 플롯을 나타내며, 유전자 세트의 농축 분석은 교토 유전자와 게놈 백과사전(KEGG)에 근거해 이루어졌으며, 상위 100개의 유전자가 기원 세포 1을 정의하였다. 유전자는 환자 GN1의 통합된 단일 핵 RNA 배열 데이터 세트(종양이 없는 심실하부 및 교아세포종)에서 추출되었다. 도 7b는 기원세포 2의 네트워크 플롯을 나타내며, 기원 세포 2의 상위 100개 유전자는 통합된 단일 핵 RNA 시퀀싱 환자 샘플 GN1에서 추출되었다. 도 7c는 세포 유형을 정의하는 유전자를 추출하고 히트맵에 정규화된 발현을 묘사하였다. 노란색은 높은 발현, 보라색은 낮은 발현을 나타낸다. 분석을 위해 모든 단세포 수준의 RNA 배열 데이터 세트가 통합되었으며, 프로세스 전체에 리보솜 단백질 유전자 또는 미토콘드리아 유전자를 포함시켰고 이러한 유전자는 유전자 세트 추출 과정 전에 제거되었다. 도 7d는 세포 유형 백분율은 개별 환자에 의해 요약되며, 단핵 RNA 배열 시료 GN1은 교아세포종 종양과 교아세포종의 무종양 심실하부로 구성된다. 기원세포 1, 2는 각각 갈색, 노란색으로 표기된다. 세포 백분율 그래프는 단일 핵 RNA 배열 데이터 세트(GN-dataset)의 올리고덴드로사이트(연갈색)이 우위 발현된다. 단세포 RNA 배열 데이터 세트(GC-dataset)에서 인간 조직 샘플은 대부분 올리고덴드로사이트(연갈색)가 아닌 신경원조세포(연청색)에 의해 우위 발현된다. 이들 시료 중 교아종(GC14)의 종양혼합 심실하대(GC12 및 GC13)는 2개의 단세포 RNA 염기서열분석 기반의 무종양 심실하대(GC12 및 GC13)보다 올리고덴드로사이트(연갈색)의 비율이 낮다. 제어 질환(CN8, CN9 및 CN10)의 무종양 심실 영역 샘플은 올리고덴드로사이트(연갈색)와 마이크로글리아(녹색)에 의해 우위 발현된다. 모든 샘플에서 두 가지 유형의 기원세포가 식별되었다.
도 8은 무종양 뇌실하 영역 및 교모세포종 종양 조직의 세포 유형 지도 상의 염색체 패턴(도 2e 내지 2g 관련)에 대한 것이다. 7번 염색체 p-arm, 7번 q-arm 및 10번 염색체의 염색체 패턴은 환자 및 샘플 유형별로 요약되어 있고, 7명의 환자 샘플이 위에서 아래로 나열되며, 샘플 유형은 왼쪽에서 오른쪽으로 나뉜다. 뇌실하 영역 샘플(연한 파란색) 및 종양 샘플(연한 빨간색)을 나타내며, 7개의 단일 핵 RNA 시퀀싱 환자 사례가 표시된다. 개별 세포 위치는 도 2a에서 파생된다. 패널은 조직 유형(뇌실하 영역 또는 교모세포종 종양), 세포 유형(기원 세포 1, 기원 세포 2, 신경 전구 유사 세포 또는 중간엽 세포)에 따른 세포 위치 지도 및 염색체 패턴(염색체 7 p-암, 염색체 7 q-암 또는 염색체 10)을 나타낸다. 전반적으로, 종양 샘플은 7p-arm 및 7q-arm(GN5의 교모세포종 제외)의 복제 수 증가의 염색체 패턴을 보여주며, GN2 및 GN5를 제외한 종양 샘플에서 10번 염색체 손실이 발견되었다. 종양이 없는 뇌실하 영역 샘플에서 두 가지 유형의 기원 세포가 발견된다. 또한, 염색체 7 q-arm 복제수(copy number) 증가에 의해 영향을 받는 세포는 샘플의 10번 염색체 손실 이벤트보다 종양이 없는 뇌실하대 샘플의 2개 기원 세포 그룹에 풍부하다. 즉, GN7의 기원 세포 제외 뇌실하 영역 샘플: 염색체 패턴 7 p-arm, 7 q-arm 및 염색체 10은 염색체 패턴의 영향을 받는 소수의 세포와 비교할 수 없다. 종양이 없는 뇌실하 영역 및 교모세포종 종양 샘플에 대한 위의 설명을 요약하면 두 가지 유형의 기원 세포가 염색체 패턴의 중심에 있다.
도 9는 단일 세포 수준의 RNA 시퀀싱의 모든 샘플에서 기원 세포의 유전자 시그니처가 발견되었으며, 기원 세포 1-rooted pseudotime은 초기 단계에서 기원 세포 2를 나타냈다. 도 9a는 기원 세포 1을 시작점 또는 루트로 사용하는 의사 시간 궤적 플롯을 나타낸다. 왼쪽, 단일 핵 RNA 시퀀싱(GN1, GN2, GN3, GN5, GN6 및 GN7) 및 단일 세포 RNA 시퀀싱 데이터(GC14)의 종양이 없는 뇌실하 영역 샘플에 통합된 궤적 플롯을 나타내며, 보라색은 루트가 초기 이벤트인 경우 루트에서 분화된 초기 세포, 노란색은 루트가 초기 이벤트인 경우에만 루트에서 더 분화된 세포를 나타낸다. 오른쪽, 궤적 플롯은 모든 단일 세포 수준 종양 샘플(GN1, GN2, GN3, GN5, CN6, CN7, GC11, GC12, GC13 및 GC14)을 기반으로 한다. 도 9b 및 9c는 뇌실하 영역 세포와 종양 세포는 각 환자에 의해 서브샘플링되고, 인위적으로 기원 세포 1을 루트로 선택하고 기원 세포 2 그룹이 궤적 분석에서 비교적 초기 세포로 표시되는 것을 발견하였다. 도 9b는 단일 핵 RNA 시퀀싱 데이터 세트의 궤적 플롯에 관한 것으로, 아래의 단일 세포 RNA 시퀀싱 데이터 세트와 달리 뉴런 유사 클러스터(진한 회색)가 환자 GN2, GN3 및 GN5에서 기원 세포 1의 다운스트림 아래에 있음을 발견하였다. 도 9c는 단일 세포 RNA 시퀀싱 데이터 세트의 궤적 플롯을 보여주며, 환자 GC11은 기원 세포 1 또는 2 세포 클러스터를 가로지르는 궤적선이 없다는 것을 확인하였다.
도 10은 기원 세포 관련 유전자 시그니처, 샘플에서의 농축, 벌크 조직 RNA 시퀀싱의 세포 식별 점수를 기반으로 한 교모세포종 환자 생존에 미치는 영향에 대한 것이다. 도 10a는 세 가지 유형의 샘플에 대한 대량 조직 수준 RNA 시퀀싱 데이터에서 기원 세포 1 및 2(세포 식별 점수)의 동일성 추정(대조군 질병의 종양이 없는 뇌실하 영역(n = 9)), 종양이 없는 뇌실하 교모세포종 영역(n = 40) 및 교모세포종 종양 샘플(n = 126)을 나타낸다. 왼쪽, 기원 세포 1은 교모세포종 환자 GN1의 종양이 없는 뇌실하 영역의 기원 세포 1에서 파생된 유전자 세트로 추정되었다. 오른쪽, 기원 세포 2는 교모세포종 환자 GN1의 종양이 없는 뇌실하 영역의 기원 세포 2의 유전자 세트로 추정되었다. 도 10b 및 10c는 두 개의 기원 세포의 세포 식별 점수에 의한 교모세포종 수술 후 환자 생존에 대해 나타낸다. 도 10b는 심실하 영역 샘플에서 기원 세포 점수에 의한 환자 생존을 나타내며, 도 10c는 종양 조직에서 기원 세포 점수에 의한 환자 생존을 나타낸다. 도 10d는 서로 다른 유전자 세트의 세포 식별 점수는 히트맵에 요약되어 있다. 시그니처 지정 유전자를 찾기 위해 공개 데이터 세트 또는 공개된 유전자 세트를 사용하였다. 히트맵은 그룹(Brain cell type group26, Glioblastoma MGH group27, Columbia group28, 및 본 연구의 origin-cell 유형)으로 구분되며, subgroup signature는 Euclidean distance로 클러스터링되었다. 도 10e 및 10f는 시그니처 간의 상호 상관은 세포 식별 점수의 내적과 함께 계산되었으며, 빨간색은 서명 간의 더 높은 상관 관계를 나타내고, 파란색은 서명 간의 낮은 상관 관계를 의미한다. 도 10e는 교모세포종의 종양이 없는 뇌실하 영역 샘플의 내부 제품 히트맵(n = 40)을 나타내며, 도 10f는 모든 종양 샘플의 내부 제품 히트맵(n = 126)을 나타낸다.
도 11은 CRISPR/Cas9 기반 돌연변이 유발 마우스 뇌의 뇌실하 영역에서 기원 세포가 확인되었으며, 분리된 기원 세포는 뇌 동종이식 모델에서 비종양유발성임을 확인하였다. 도 11a는 이전에 발표된 종양억제제 돌연변이와 EGFRvII 증폭을 가진 CRISPR/Cas9 기반 게놈 편집 마우스를 생성하는 방법 요약에 관한 것으로, 플라스미드의 전기천공 후 마우스 뇌의 심실하 영역에 tdTomato 양성세포(빨간색)를 생성한다. 4-14주 후, 마우스 뇌섹션은 심실하부에서 피질하 영역으로 이동하는 세포를 보여준다. 전기천공 후 14~23주 후에 종양세포 또는 생쥐 교아세포종으로 표시된 괴사를 수반하는 종양을 발견할 수 있었다. 도 11b는 마우스 뇌의 관상 섹션의 대표적인 시계열 이미지가 정렬됨을 나타낸다. 상단, 공초점 이미지(빨간색: tdTomato 양성 세포), 하단, H&E 이미지. 스케일 바: 1mm. 종양 형성 동안 개념적 시간 창은 기원 세포와 종양 세포(심실하 영역에서 이동한 종양 세포)의 분리에 사용할 수 있다. 도 11c는 실험에 사용된 세포가 예시된 개념적 위치를 의미한다. Origin-cell는 플라스미드가 삽입된 tdTomato 양성 세포이며, 종양 세포는 플라스미드가 삽입된 tdTomato 양성 세포이다. 도 11d는 구형 배양 조건에서 포획된 세포의 대표적인 현미경 이미지를 나타낸다. 스케일 바: 200μm. BF, 명시야; tdTomato 필터: 빨간색은 tdTomato 양성을 나타낸다. 도 11e는 세 가지 유형의 세포에 대한 해부학 기반 그림을 보여준다. 도 11f는 마우스 뇌 주입 실험은 각기 다른 위치, 뇌실하 영역 또는 종양에서 분리된 세포를 사용하여 종양 형성 가능성의 지표로 사용되었다. 이 세포를 쥐의 뇌에 주입했고, 종양 세포를 주입한 마우스는 생존율이 좋지 않은 반면, 기원 세포를 주입한 마우스는 영향을 받지 않았다(도 4c 관련). IVIS의 대표영상, 자기공명영상(9.4T), H&E, tdTomato(적색)를 이용한 공초점 영상을 제시한다. 스케일 바: 1mm.
도 12는 CRISPR/Cas9 기반의 기원 세포(origin-cells)는 대조군 상태에서 종양 상태까지의 중간 세포 상태를 단계별로 전사체 변화와 염색체 변형 패턴으로 보여준다. 도 12a는 히트맵(Heatmap)은 3개의 다른 세포(대조군 세포, 기원 세포 및 종양 세포)의 통합된 단일 세포 RNA 시퀀싱 데이터에서 4가지 세포 상태(대조군, 초기, 후기 및 종양 상태)의 세포 상태 지정 유전자를 보여준다. 도 12b는 희소돌기아교세포 전구체 세포 마커인 Cspg4의 유전자 발현을 상태 및 세포 유형별로 비교하였다. 도 12c는 세 가지 유형의 셀에 대한 통합 데이터 세트에서 4가지 상태의 모듈 점수를 나타내며, 유전자 세트를 인간에서 마우스로 변환하고 각 세포 상태에 대한 점수를 계산하였다(도 4f 관련). 도 12d는 마우스 뇌실하 영역 세포 모델의 염색체 패턴이 요약되어 있다. 대조군 세포의 대조군 상태를 기준 세포군으로 사용하였다(도 4g 관련). 도 12e는 세 가지 세포 유형의 통합 데이터에 대한 의사 시간 궤적 플롯을 나타내며, 궤적은 4개 상태 중 통제 상태에 뿌리를 두고 있다.
도 13은 CRISPR/Cas9 기반의 기원 세포는 신경구 형성(줄기)에서 우월한 능력을 보여주고 대조군 세포와 종양 세포보다 더 먼 거리(이동 능력)를 침범하는 것을 확인하였다. 도 13a는 줄기 세포 표현형을 추정하기 위한 구 형성 분석을 나타낸다. 다른 마우스 뇌의 세포는 그래프에서 분리된다. 스케일 바: 200μm. 도 13b는 72시간 동안 세포 속도를 추정하기 위한 세포 침입 분석. 다른 마우스 뇌의 세포는 그래프에서 분리됩니다. 스케일 바: 500μm. 도 13c는 마우스의 뇌실하대 모델의 기원 세포와 종양 세포 간의 분화 능력을 비교하였다. 10% 소태아혈청 함유 배지에서 2주간 배양한 후, 기원 세포 및 종양 세포에서 GFAP를 발현하였다. 기원 세포는 뉴런 마커인 TUBB3을 발현하였다. 스케일 바: 200μm.
도 14는 기원 세포 1 및 2의 그래픽 요약을 나타내며, 두 가지 유형의 성인 뇌 줄기 세포는 단일 세포 및 단일 핵 RNA 시퀀싱으로 구별된다(뇌실하 영역 n = 11, 교모세포종 n = 10). 염색체 패턴, 코넥톰 패턴 및 CRISPR/Cas9 기원 세포 모델의 일관성을 발견하였다.
Figure 1 relates to a human tissue-based identification study to find glioblastoma progenitor cells. Next-generation sequencing of the transcriptome can be used to predict patterns of structural changes at the chromosome level, such as chromosome gains and losses from human tissues. A stem cell niche, a subventricular sample of the human brain, was included in this study. In addition to bulk tissue and cellular level (single cell and mononuclear) RNA sequencing, we included complete sequencing data (SRP145073) for chromosomal pattern identification. 1b is for chromosome copy number patterns calculated from bulk tissue RNA sequencing samples, with sample percentages summarized in a pie chart as patterns for chromosomes 7 and 10. 1c concerns mononuclear RNA array-based cell identification, where two types of cells showed distinct gene expression patterns and were labeled as cell 1 and cell 2. After confirming the cell-level chromosomal patterns of chromosome 7 q-arm gain and chromosome 10 loss, cells showing only chromosome 7 q-arm gain were designated as GBM origin-cell 1 (Oc1), chromosome 7 q. The cell showing -arm gain and chromosome 10 loss was defined as origin-cell 2 of GBM. 1d shows the tumor-progenome profiling strategy with alteration patterns of chromosomes 7 and 10, copy number patterns and cellular signatures of the two origin cells as vulnerable cells before transformation into glioblastoma tumor cells. It was assumed to be a marker tool to find.
Figure 2A shows that two types of origins were discovered from integrated human tissue-derived data (total cells n = 59,417). Origin cell 1 (brown) and origin cell 2 (yellow) are adjacent to the main cluster of tumor cells consisting of neural progenitor cell group (light blue), neuron-like cell group (gray), cell cycle activated cell group (blue), and mesenchymal cell group (red). There is. The present invention focuses on the main cluster of tumors. 2b shows tumor-free subventricular zone samples (left, tumor-free subventricular zone samples from control disease, tumor-free subventricular zone samples from glioblastoma) or tumor-related samples (right, tumor-glioblastoma or infiltration of glioblastoma tumor tissue). 2c focuses on mononuclear patient GN1, and two cell types, Origin-cell 1 and 2, were found in the subventricular zone and in the tumor. 2D examines chromosomal gain events of 1 copy gain (orange), 2 copy gain (red), or 1 copy loss (blue) in tumor-free subventricular samples. 2e, matched tumor samples show that the Origin-cell 1 cluster is more likely to be in a chromosomally neutral state than Origin-cell 2 and other cells. 2f, cells from patient GN1 show the cumulative copy number of chromosome 7q arm from Origin-cell 1 to Origin-cell 2. 2g Comparing the two types of chromosomal alterations at the level of individual cells revealed the ordering of chromosomal copy number changes. Left, chromosome 7q is followed by an increase in chromosome 7p. Right, gain of chromosome 7q is followed by loss of chromosome 10.
Figure 3 shows the connectome of ligand receptor signaling for each cell type. 3a, top, a tumor-free subventricular sample of glioblastoma without tumor infiltration. Bottom, glioblastoma tumor tissue, with different modes defined by mode-specific receptors and ligand genes. The stem cell mode is defined by three receptors (CD44, ITGA4, NRCAM) and four ligands (BCAN, CD14, LPL, VIM). 3b, connectome edgeweight by gene Origin-cell 1 (brown), Origin-cell 2 (yellow), and cycling cell (blue) were selected for subventricular specimens and tumor specimens. At the top, a cycle plot of interconnected genes in a subventricular sample is shown, and at the bottom, a cycle plot of interconnected genes in a glioblastoma tumor sample is shown. 3c examines two types of glioblastoma tumors in terms of progenitor cells, circulating cells, and cancer stem cells. Glioblastoma tumor samples are subclassified according to the mutational status of the TERT promoter in the tumor tissue. Matched subventricular samples are labeled according to their respective TERT promoter mutation status, and cell presence is determined using four sets of genes (cell of origin 1, cell of origin 2, cycle cell, and cancer stem cell 24) extracted from single-cell level RNA array data. Predictions were made by applying them to expression values from bulk tissue RNA array data sets (TERT promoter available data samples were used for this analysis). Left, TERT promoter wild-type glioblastoma tumor and patient matched subventricular sample. TERT promoter mutant glioblastoma tumor and patient matched subventricular sample. student t-test, <0.001**, <0.01**, non-significant results are not shown.
Figure 4 relates to a mouse cell model of CRISPR/Cas9-based gene editing technology 2. In 4a, subventricular cells of mice with gene mutations in Trp53 and Pten were isolated by induction of the EGFRvii gene. Mutant cells in the subventricular region transform into mouse glioblastoma tumors approximately 11 to 16 weeks after mutation introduction. Three types of cells were labeled and compared. 4b used cell-specific markers to identify subpopulations of cells from the three cell types. Other cell markers were negative for these three types of cells. 4c is for tumorigenesis in tumor cells, no tumorigenesis was found in other cells. That is, they were cells isolated from the lower part of the contralateral ventricle without genetic modification or original cells isolated from the lower part of the CRISPR/Cas9-edited ventricle. 4d for individual cell integration maps of the three cell types, left, showing the three cell types mixed, and right, showing the four cell states identified in the three cell types. 4e is for quantitative comparison of four cell states in three mouse cell types, and in 4f, gene module scores were calculated by single-cell RNA sequencing of three mouse cell types. Gene module scores were used to predict the relative cell number of a given cell state (arbitrary relative units). Additionally, the mouse cell score was calculated by converting the cell 1 specific gene of human origin into the mouse homolog gene. Mouse cell scoring uses cell 2 specific genes of human origin. 4g Chromosomal changes were calculated from single-cell RNA arrays, and the most significant changes were noted in cell state maps. It was confirmed that the front and rear parts of chromosome 7 had different chromosomal change patterns in three mouse cell models.
Figure 5 shows a subventricular sample collected from an adult human brain for identification of glioblastoma cells. Figure 5A is an overview of the human study part, which used a new and previously published data set (SRP145073)2 for identification of glioblastoma progenitor cells. Figure 5B numbers single cell-level RNA sequencing of patient specimens from 1 to 14, but not bulk tissue-level RNA sequencing patient specimens, and patient case 4 was excluded due to specimen preparation quality. Figure 5C is a simple graphical summary of preparing subventricular samples from adult brains during surgery. 5D to 5F show magnetic resonance medical images of a patient and sampling locations in the subventricular region. Figure 5D represents a single nuclear RNA sequencing patient case with glioblastoma (label starting with GN), and all subventricular specimens were found to be uncontaminated by tumor by pathological evaluation. That is, mononuclear RNA is sequenced from patients with control disease (labels starting with CN). No tumor cell contamination was found in the samples. Figure 5f relates to single-cell RNA sequencing of a glioblastoma patient, and single-cell RNA sequencing failed in two ventricular zone specimens (GC11 and GC13). Tumor mixed subventricular samples were also included in the study as a control group (GC12).
Figure 6 shows cell of origin evidence for the ventricular region obtained from bulk tissue RNA array and bulk tissue whole exome array data. Figure 6a is a comparison of gene expression in the subventricular group, in which the tumor-free subventricular region of left glioblastoma was compared with control disease. Right, set enrichment analysis results of genes highly upregulated in the tumor-free lower ventricles than in control disease. Figure 6B shows gene set enrichment analysis comparing subventricular and glioblastoma tumors, resulting in genes upregulated in the subventricular region of glioblastoma. Subventricular areas of control disease were excluded. Figures 6C-6E show the chromosomal patterns, variant allele frequencies and mutation times of tumor-free ventricular regions of adult human brain in the whole exome sequencing dataset of SRP145073. Figure 6c shows the chromosomal pattern of copy number gain on the q-arm side of chromosome 7 in patient P245. Figure 6D shows that the chromosomal pattern was relatively distinct in the subventricular specimens identified as unidirectional shared mutations from the subventricular region to the tumor (P520, P276, P26, P499). Figure 6e confirms that chromosome 7 q-arm does not clearly increase in patient samples (P37, P396, P881, P246). Figure 6f relates the chromosomal pattern of copy numbers across all chromosomes, calculated from bulk tissue RNA sequencing using a previously published algorithm. All copy number results are adjusted and normalized across the entire sample. A reference group was used for copy number calculations with control disease-free subventricular zone (n = 9). Figure 6g shows chromosome pattern verification in whole sequencing data and bulk tissue-level RNA sequencing data. Since these two methods show limitations, we prepared single-cell level analysis.
Figure 7 relates to specific gene sets and patient-specific proportions of cells of origin in all patient samples (related to Figures 2A-2B). Figure 7A shows a network plot of the gene signature of cell of origin 1. Enrichment analysis of the gene set was done based on the Kyoto Encyclopedia of Genes and Genomes (KEGG), and the top 100 genes defined cell of origin 1. Genes were extracted from an integrated single nuclear RNA array dataset of patient GN1 (tumor-free subventricular and glioblastoma). Figure 7b shows the network plot of cell of origin 2, where the top 100 genes of cell of origin 2 were extracted from the integrated single nuclear RNA sequencing patient sample GN1. Figure 7C extracts genes defining cell types and depicts normalized expression in a heatmap. Yellow indicates high expression and purple indicates low expression. All single-cell-level RNA sequencing data sets were integrated for analysis, and ribosomal protein genes or mitochondrial genes were included throughout the process and these genes were removed prior to the gene set extraction process. Figure 7D shows cell type percentages summarized by individual patient, with mononuclear RNA array sample GN1 comprised of a glioblastoma tumor and a tumor-free subventricular region of glioblastoma. Cells of origin 1 and 2 are indicated in brown and yellow, respectively. The cell percentage graph shows that oligodendrocytes (light brown) are predominantly expressed in the single nuclear RNA array dataset (GN-dataset). In the single-cell RNA sequencing dataset (GC-dataset), human tissue samples are predominantly expressed by neural progenitor cells (light blue) rather than oligodendrocytes (light brown). Among these samples, the tumor-mixed subventricular zone (GC12 and GC13) of glioblastoma (GC14) has a lower proportion of oligodendrocytes (light brown) than the tumor-free subventricular zone (GC12 and GC13) based on two single-cell RNA sequencing analysis. Tumor-free ventricular zone samples from control disease (CN8, CN9, and CN10) are predominantly expressed by oligodendrocytes (light brown) and microglia (green). Two types of cell of origin were identified in all samples.
Figure 8: Chromosome patterns on cell type maps of tumor-free subventricular zone and glioblastoma tumor tissue (related to Figures 2E-2G). The chromosomal patterns of chromosome 7 p-arm, 7 q-arm and chromosome 10 are summarized by patient and sample type, with the seven patient samples listed from top to bottom, with sample types divided from left to right. Subventricular zone samples (light blue) and tumor samples (light red) are shown, and seven single nuclear RNA sequencing patient cases are shown. Individual cell locations are derived from Figure 2A. The panel provides maps of cell location by tissue type (subventricular zone or glioblastoma tumor), cell type (cell of origin 1, cell of origin 2, neural progenitor-like cells, or mesenchymal cells), and chromosome pattern (chromosome 7 p-arm, chromosome 7 q-arm or chromosome 10). Overall, the tumor samples showed a chromosomal pattern of copy number gains in the 7p-arm and 7q-arm (except in glioblastoma of GN5), and loss of chromosome 10 was found in tumor samples except in GN2 and GN5. Two types of cells of origin are found in tumor-free subventricular zone samples. Additionally, cells affected by chromosome 7 q-arm copy number gain are more abundant in the two cell groups of origin in tumor-free subventricular zone samples than are chromosome 10 loss events in the samples. That is, subventricular zone samples excluding the cell of origin of GN7: chromosome pattern 7 p-arm, 7 q-arm and chromosome 10 cannot be compared with the few cells affected by the chromosome pattern. To summarize the above description of the tumor-free subventricular zone and glioblastoma tumor samples, two types of cells of origin are at the center of the chromosomal pattern.
Figure 9 shows that the genetic signature of the cell of origin was found in all samples of RNA sequencing at the single cell level, with cell of origin 1-rooted pseudotime showing cell of origin 2 at an early stage. Figure 9A shows a pseudo-time trajectory plot using cell of origin 1 as the starting point or root. Left, represents integrated trajectory plots for tumor-free subventricular zone samples from single nuclear RNA sequencing (GN1, GN2, GN3, GN5, GN6, and GN7) and single cell RNA sequencing data (GC14), with purple indicating the root is the initial event. If the initial differentiated cells in the root, yellow indicates further differentiated cells in the root only if the root is an initial event. Right, trajectory plot is based on all single cell level tumor samples (GN1, GN2, GN3, GN5, CN6, CN7, GC11, GC12, GC13 and GC14). Figures 9B and 9C show that the subventricular zone cells and tumor cells were subsampled by each patient, artificially selecting cell of origin 1 as the root, and found that the cell of origin 2 group appeared as relatively early cells in the trajectory analysis. Figure 9B relates to a trajectory plot of a single-nucleus RNA sequencing dataset, which, unlike the single-cell RNA sequencing dataset below, shows neuron-like clusters (dark gray) downstream of cell of origin 1 in patients GN2, GN3, and GN5. was discovered. Figure 9C shows a trajectory plot of the single cell RNA sequencing data set, confirming that patient GC11 had no trace lines crossing the cell clusters 1 or 2 of origin.
Figure 10: Impact on glioblastoma patient survival based on cell-of-origin-related gene signatures, enrichment in samples, and cell identification scores from bulk tissue RNA sequencing. Figure 10A Estimated identity of cells of origin 1 and 2 (cell identity score) from bulk tissue-level RNA sequencing data for three types of samples: tumor-free subventricular region of control disease (n = 9), tumor-free Subventricular glioblastoma areas (n = 40) and glioblastoma tumor samples (n = 126) are shown. Left, cell of origin 1 was assumed to be a set of genes derived from cell of origin 1 in the tumor-free subventricular zone of glioblastoma patient GN1. Right, cell of origin 2 was assumed to be the gene set of cell of origin 2 in the tumor-free subventricular zone of glioblastoma patient GN1. Figures 10B and 10C show patient survival after glioblastoma surgery by cell identity score of the two cells of origin. Figure 10B shows patient survival by cell of origin score in subventricular zone samples and Figure 10C shows patient survival by cell of origin score in tumor tissue. In Figure 10D, the cell identification scores of different gene sets are summarized in a heatmap. Public data sets or published gene sets were used to find signature-assigned genes. The heatmap is divided into groups (Brain cell type group26, Glioblastoma MGH group27, Columbia group28, and origin-cell type in this study), and subgroup signatures were clustered by Euclidean distance. Figures 10e and 10f show that the cross-correlation between signatures was calculated with the dot product of cell identification scores, with red indicating higher correlation between signatures and blue meaning lower correlation between signatures. Figure 10E shows the internal product heatmap of tumor-free subventricular zone samples of glioblastoma (n = 40), and Figure 10F shows the internal product heatmap of all tumor samples (n = 126).
Figure 11 shows that cells of origin were identified in the subventricular zone of the CRISPR/Cas9-based mutagenic mouse brain, and that the isolated cells of origin were confirmed to be non-tumorigenic in a brain allograft model. Figure 11A is a summary of the previously published method for generating CRISPR/Cas9-based genome-edited mice with tumor suppressor mutations and EGFRvII amplification, followed by electroporation of plasmids to induce tdTomato-positive cells (red) in the subventricular zone of the mouse brain. Create. After 4-14 weeks, mouse brain sections show cells migrating from the subventricular to subcortical areas. Tumors with necrosis, labeled as tumor cells or mouse glioblastoma, could be detected 14 to 23 weeks after electroporation. Figure 11B shows representative time series images of a coronal section of a mouse brain aligned. Top, confocal image (red: tdTomato-positive cells); bottom, H&E image. Scale bar: 1 mm. A conceptual time window during tumorigenesis can be used for the separation of cells of origin and tumor cells (tumor cells that have migrated from the subventricular zone). Figure 11c refers to the conceptual location where the cells used in the experiment are illustrated. Origin-cells are tdTomato-positive cells into which a plasmid has been inserted, and tumor cells are tdTomato-positive cells into which a plasmid has been inserted. Figure 11D shows representative microscopic images of cells captured in spherical culture conditions. Scale bar: 200 μm. BF, bright field; tdTomato filter: Red indicates tdTomato positive. Figure 11e shows an anatomy-based illustration of three types of cells. Figure 11f shows mouse brain injection experiments using cells isolated from different locations, subventricular regions, or tumors as an indicator of tumor formation potential. These cells were injected into the brains of mice, and while mice injected with tumor cells had poor survival, mice injected with cells of origin were unaffected (see Figure 4c). Representative images of IVIS, magnetic resonance imaging (9.4T), H&E, and confocal images using tdTomato (red) are presented. Scale bar: 1 mm.
Figure 12 shows the intermediate cell state from the control state to the tumor state for CRISPR/Cas9-based origin-cells in terms of transcriptome changes and chromosomal modification patterns at each stage. Figure 12A Heatmap specifies cell states in four cell states (control, early, late, and tumor state) from integrated single-cell RNA sequencing data from three different cells (control cells, origin cells, and tumor cells). Shows genes. Figure 12b compares the gene expression of Cspg4, an oligodendrocyte precursor cell marker, by state and cell type. Figure 12c shows the module scores of the four states in the integrated data set for the three types of cells, where the gene sets were converted from human to mouse and scores for each cell state were calculated (related to Figure 4f). Figure 12D summarizes the chromosomal pattern of the mouse subventricular zone cell model. The control condition of control cells was used as the reference cell group (related to Figure 4g). Figure 12e shows a pseudo-time trajectory plot for integrated data from three cell types, with the trajectories rooted in the control state among the four states.
Figure 13 shows that CRISPR/Cas9-based origin cells show superior ability in neurosphere formation (stem) and invade a longer distance (migration ability) than control cells and tumor cells. Figure 13A shows sphere formation assay to estimate stem cell phenotype. Cells from different mouse brains are separated on the graph. Scale bar: 200 μm. Figure 13B: Cell invasion assay to estimate cell velocity over 72 hours. Cells from different mouse brains are isolated on the graph. Scale bar: 500 μm. Figure 13c compares the differentiation ability between origin cells and tumor cells in the mouse subventricular zone model. After culturing in medium containing 10% fetal bovine serum for 2 weeks, GFAP was expressed in origin cells and tumor cells. The cells of origin expressed the neuronal marker TUBB3. Scale bar: 200 μm.
Figure 14 shows a graphical summary of cells of origin 1 and 2, two types of adult brain stem cells distinguished by single cell and single nuclear RNA sequencing (subventricular zone n = 11, glioblastoma n = 10). We found consistency in the chromosomal pattern, connectome pattern, and CRISPR/Cas9 cell model of origin.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

실시예Example

실험방법Experiment method

윤리적 승인(Ethical approval)Ethical approval

이 연구는 인간 샘플의 전사체 분석 분석을 위해 세브란스 병원의 기관 심사 위원회의 승인을 받았다(IRB 4-2012-0212, 4-2021-1319). 이 연구에 사용된 절차는 1964년 헬싱키 선언의 신조를 준수하였다.This study was approved by the Institutional Review Board of Severance Hospital for transcriptomic analysis of human samples (IRB 4-2012-0212, 4-2021-1319). The procedures used in this study adhered to the tenets of the 1964 Declaration of Helsinki.

인간 환자 조직human patient tissue

총 196개의 인체 조직 샘플이 본 연구에 포함되었다. 이들 샘플은 뇌종양에 대한 신경외과 진단 후 잔류 샘플로 획득되었다. 이러한 샘플은 175개의 대량 조직 수준 RNA 배열 데이터와 21개의 단세포 수준 RNA 배열 데이터(16개의 단핵 RNA 배열 데이터, 5개의 단세포 RNA 배열 데이터)로 구성된다. 대량 RNA 염기서열 데이터는 세 가지 검체 그룹으로 구성되어 있다. 교아세포종의 무종양 SVZ(n = 40), 교아세포종 종양 조직(n = 126), 제어 질환의 무종양 SVZ(n = 9).A total of 196 human tissue samples were included in this study. These samples were obtained as residual samples after neurosurgical diagnosis of brain tumor. These samples consist of 175 bulk tissue-level RNA sequencing data and 21 single-cell level RNA sequencing data (16 mononuclear RNA sequencing data, 5 single-cell RNA sequencing data). Bulk RNA sequencing data consists of three sample groups. Tumor-free SVZ of glioblastoma (n = 40), glioblastoma tumor tissue (n = 126), and tumor-free SVZ of control disease (n = 9).

인간 샘플의 단일 세포 수준 RNA 시퀀싱 코호트(Single-cell-level RNA sequencing cohort of human samples)Single-cell-level RNA sequencing cohort of human samples

방법 및 준비 순서에 따라 단일 세포 수준 데이터베이스의 환자에 레이블을 지정했다. 단일 핵 RNA 시퀀싱으로 처리된 환자 샘플은 GN1, GN2, GN3, GN5, GN6, GN7, CN8, CN9 및 CN10으로 표시되었다. GN 환자 샘플은 교모세포종 환자 유래 샘플이고, CN 환자 샘플은 GBM이 아닌 환자의 종양이 없는 SVZ 샘플이다. 준비 과정에서 GN4 환자 샘플이 손실되어 샘플을 제외하였다. 단일 세포 RNA 시퀀싱 샘플은 GC11, GC12, GC13 및 GC14로 표시된다. 이 모든 샘플은 GBM 환자로부터 준비되었다. 이 샘플 중 2명의 다른 환자의 2개의 SVZ가 품질 관리 단계에서 실패했으며, 단 하나의 종양이 없는 SVZ와 하나의 종양이 혼합된 SVZ 샘플이 포함되었다.Patients in the single-cell level database were labeled according to method and preparation sequence. Patient samples processed for single nuclear RNA sequencing were designated GN1, GN2, GN3, GN5, GN6, GN7, CN8, CN9, and CN10. GN patient samples are glioblastoma patient-derived samples, and CN patient samples are tumor-free SVZ samples from non-GBM patients. The GN4 patient sample was lost during preparation and was excluded. Single cell RNA sequencing samples are indicated as GC11, GC12, GC13, and GC14. All these samples were prepared from GBM patients. Among these samples, two SVZs from two different patients failed the quality control step, including a single tumor-free SVZ and a mixed SVZ sample with one tumor.

인간 샘플의 단일 핵 분리(Single-nuclei isolation of human samples)Single-nuclei isolation of human samples

단일 핵은 이전 보고서에 따라 일부 수정에 따라 신선한 냉동 조직 샘플에서 분리되었다. 간단히 말해서, 조직 샘플을 용해 완충액[0.2% Triton X-100, 1X 프로테아제 억제제, 1mM DTT, 0.2U/μL RNAsin(Promega), PBS 중 2%(w/v) BSA]에서 메스로 분쇄하였다. 균질화된 조직 샘플을 40μm 스트레이너를 사용하여 여과한 다음 DAPI(0.5μg/ml; Sigma)를 첨가하여 핵을 염색하고, FACS(BD FACSAria?? 시스템, BD)로 분석할 20μm pluriStrainer Mini를 사용하여 자유 핵을 다시 여과하였다. DAPI 양성 집단의 단일 핵은 후속 snRNA 시퀀싱을 위해 분류되었다.Single nuclei were isolated from fresh frozen tissue samples according to previous reports with some modifications. Briefly, tissue samples were triturated with a scalpel in lysis buffer [0.2% Triton Homogenized tissue samples were filtered using a 40-μm strainer, then DAPI (0.5 μg/ml; Sigma) was added to stain the nuclei, and the nuclei were strained free using a 20-μm pluriStrainer Mini for analysis by FACS (BD FACSAria® systems, BD). The nuclei were filtered again. Single nuclei from the DAPI-positive population were sorted for subsequent snRNA sequencing.

인간 샘플의 단일 세포 분리(Single-cell isolation of human samples)Single-cell isolation of human samples

SVZ 및 GBM 종양 샘플에 대해 단일 세포 해리를 수행하였다. 각각의 살아있는 조직은 수술 직후에 동결보존되었고, 단세포 해리는 대략 1개월 후에 수행되었다. 요약하면, 수술 당일 생조직에 90% FBS와 10% DMSO가 혼합된 냉동보존액을 첨가하고 잘게 썰어 액체질소에서 약 한 달 동안 보관하였다. 약 1개월 후, 각각의 동결보존된 샘플을 300g에서 원심분리하고 무혈청 DMEM으로 2회 세척하여 펠렛을 얻었다. 펠렛을 1M PIPES 용액을 포함하는 배지에서 가능한 한 잘게 자르고 Papain(Worthington Biochemical) 및 0.4 U/mL DNase I 용액(Worthington Biochemical)으로 37°C에서 13분 동안 처리하였다. 310g에서 10분 동안 원심분리한 후, 100㎕의 7mg/ml Ovomucoid(Sigma-Aldrich) 및 0.4U/mL DNase I을 세척 배지에 첨가하여 파파인 효소를 불활성화시켰다. 그 후, 22% Percoll 용액(MP Biomedicals)으로 Percoll gradation을 사용하여 수초 및 파편을 제거하고, 594g에서 원심분리하여 상청액을 제거하여 최종 세포 펠렛을 얻었다. 펠렛층의 세포가 적혈구(RBC)를 포함하는 경우 10x RBC 용해 완충액(Stemcell Technologies)을 사용하여 제조업체의 사양에 따라 RBC 제거 프로세스를 수행하였다. 높은 응집으로 인해 일부 샘플에서는 단일 세포를 얻을 수 없다. 이 경우 제조사의 프로토콜에 따라 MACS(Magnetic Activated Cell Sorting) 선별(Miltenyi Biotec, Germany)을 수행하고, 응집 및 단일 세포 사멸을 방지하기 위해 1xPBS에 10% BSA, 1% FBS 및 ROCK(Rho kinase) 억제제를 추가하여 분리된 세포를 희석하였다.Single cell dissociation was performed on SVZ and GBM tumor samples. Each living tissue was cryopreserved immediately after surgery, and single cell dissociation was performed approximately 1 month later. In summary, on the day of surgery, a cryopreservation solution mixed with 90% FBS and 10% DMSO was added to the raw tissue, chopped into small pieces, and stored in liquid nitrogen for about a month. After approximately 1 month, each cryopreserved sample was centrifuged at 300 g and washed twice with serum-free DMEM to obtain a pellet. The pellet was minced as finely as possible in medium containing 1 M PIPES solution and treated with Papain (Worthington Biochemical) and 0.4 U/mL DNase I solution (Worthington Biochemical) at 37°C for 13 min. After centrifugation at 310 g for 10 minutes, 100 μl of 7 mg/ml Ovomucoid (Sigma-Aldrich) and 0.4 U/mL DNase I were added to the washing medium to inactivate the papain enzyme. Afterwards, myelin sheath and debris were removed using Percoll gradation with 22% Percoll solution (MP Biomedicals), and the supernatant was removed by centrifugation at 594 g to obtain the final cell pellet. If the cells in the pellet layer contained red blood cells (RBCs), the RBC removal process was performed according to the manufacturer's specifications using 10x RBC lysis buffer (Stemcell Technologies). Due to high aggregation, single cells cannot be obtained in some samples. In this case, Magnetic Activated Cell Sorting (MACS) sorting (Miltenyi Biotec, Germany) was performed according to the manufacturer's protocol, supplemented with 10% BSA, 1% FBS and Rho kinase (ROCK) inhibitor in 1xPBS to prevent aggregation and single cell death. The separated cells were diluted by adding.

라이브러리의 단일 세포 수준 RNA 시퀀싱(Single-cell-level RNA sequencing of the libraries)Single-cell-level RNA sequencing of the libraries

시퀀싱은 10x Genomics 독점 기술을 기반으로 하는 제조사의 프로토콜에 따라 10x Chromium Controller(10x Genomics)를 사용하여 연세대 게놈 센터 또는 마크로젠에서 수행되었다. 모든 단일 핵 및 단일 세포 RNA 시퀀싱 라이브러리는 제조업체의 프로토콜에 따라 Next GEM Single-cell 3' GEM, Library & Gel Bead Kit, V3.1(10x Genomics)을 사용하여 준비되었다. 초기 단계는 10x 세포 바코드, 고유한 분자 식별자 및 폴리(dT) 서열을 지닌 고유한 프라이머로 코팅된 겔 비드와 함께 개별 핵이 액적으로 분리되는 에멀젼을 수행하는 것으로 구성되었다. 역전사 반응을 수행하여 바코드가 있는 전체 길이 cDNA를 생성한 다음 DynaBeads MyOne Silane Beads(10X genomics)를 사용하여 회수제 및 cDNA 클린업을 사용하여 에멀젼을 파괴하였다. 벌크 cDNA는 SimpliAmp Thermal Cycler(3분 동안 98℃, 순환 11-13x(표적 세포 복구에 따라): 15초 동안 98℃, 20초 동안 67°C, 1분 동안 72°C)를 사용하여 증폭되었다(72℃에서 1분, 4℃에서 유지). 증폭된 cDNA 산물은 SPRIselect Reagent Kit(Beckman Coulter)를 사용하여 세척되었다. Chromium Single-cell 3 v3.1 시약 키트의 시약을 사용하여 인덱싱된 시퀀싱 라이브러리를 다음과 같이 구성하였다: 단편화, 말단 복구 및 A-테일링; SPRIselect로 크기 선택; 어댑터 결찰; SPRIselect를 사용한 결찰 후 정리; SPRIselect 비드를 사용한 샘플 인덱스 중합효소 연쇄 반응 및 정리. 라이브러리 정량화 및 품질 평가는 HSD1000 스크린 테이프(Agilent Genomics)를 사용하여 4200Tapestation을 사용하여 수행되었다. 인덱싱된 라이브러리는 paired-end 26x98 bp를 사용하여 Illumina HiSeq 시리즈에서 시퀀싱되었다.Sequencing was performed at the Yonsei University Genome Center or Macrogen using the 10x Chromium Controller (10x Genomics) according to the manufacturer's protocol based on 10x Genomics proprietary technology. All single nuclear and single cell RNA sequencing libraries were prepared using the Next GEM Single-cell 3' GEM, Library & Gel Bead Kit, V3.1 (10x Genomics) according to the manufacturer's protocol. The initial step consisted of performing an emulsion in which individual nuclei were separated into droplets with gel beads coated with a unique primer carrying a 10x cell barcode, a unique molecular identifier, and a poly(dT) sequence. A reverse transcription reaction was performed to generate barcoded full-length cDNA, and then the emulsion was disrupted using DynaBeads MyOne Silane Beads (10X genomics) as a retrieval agent and cDNA cleanup. Bulk cDNA was amplified using a SimpliAmp Thermal Cycler (98°C for 3 min, cycled 11-13x (depending on target cell recovery): 98°C for 15 s, 67°C for 20 s, 72°C for 1 min). (72°C for 1 minute, held at 4°C). The amplified cDNA product was washed using the SPRIselect Reagent Kit (Beckman Coulter). An indexed sequencing library was constructed using reagents from the Chromium Single-cell 3 v3.1 reagent kit as follows: fragmentation, end repair, and A-tailing; Select size with SPRIselect; adapter ligation; Post-ligation cleanup using SPRIselect; Sample index polymerase chain reaction and cleanup using SPRIselect beads. Library quantification and quality assessment were performed using the 4200Tapetation using HSD1000 screen tape (Agilent Genomics). Indexed libraries were sequenced on the Illumina HiSeq series using paired-end 26x98 bp.

단일 세포/핵 RNAseq 데이터 분석(Single-cell/nuclei RNAseq data analysis)Single-cell/nuclei RNAseq data analysis

원시 시퀀싱 데이터는 GRCh38 게놈(세포 범위 6.0.1)에서 계산되었다. 처리된 원시 및 필터링된 기능은 Seurat(버전 4.0.6)에 로드되었으며 그래프는 Seurat(버전 4.0.6) 및 dittoSeq(버전 1.6.0)를 사용하여 플롯되었다. 단일 핵 RNA 시퀀싱 데이터 샘플은 SoupX 알고리즘34 및 Seurat 패키지35를 사용하여 샘플의 원시 및 필터링된 매트릭스로 준비되었고, 데이터 세트는 SC 변환, PCA, UMAP(1에서 10까지), 가장 가까운 이웃 그래프 구성(1에서 차원 15까지) 및 클러스터 결정(해상도 0.5)으로 개별적으로 처리되었다. 이중선 제거를 위해 pN-pK 매개변수 스위핑 알고리즘이 적용되었다(1에서 10번째 주성분). 단일항 가정 셀은 이중선 비율 7.5%, 인공 이중선 수 0.25, PC 이웃 크기 0.09, 주성분 수 1에서 10까지로 계산되었다. 단일 세포 RNA 시퀀싱 데이터 샘플은 필터링된 매트릭스로 처리되었으며 SoupX 알고리즘은 적용되지 않았다. 데이터를 정규화하고 크기를 조정하고 차원 축소 플롯을 계산하였다. 단일 핵 RNA 시퀀싱 데이터 및 단일 세포 RNA 시퀀싱 데이터는 CCA 알고리즘을 사용하여 Seurat에 통합되었다.Raw sequencing data were computed from the GRCh38 genome (cell coverage 6.0.1). Processed raw and filtered features were loaded into Seurat (version 4.0.6) and graphs were plotted using Seurat (version 4.0.6) and dittoSeq (version 1.6.0). Single nuclear RNA sequencing data samples were prepared as raw and filtered matrices of samples using the SoupX algorithm34 and the Seurat package35, and the dataset was subjected to SC transformation, PCA, UMAP (from 1 to 10), nearest neighbor graph construction ( dimensions from 1 to 15) and cluster determination (resolution 0.5). The pN-pK parameter sweeping algorithm was applied to remove doublets (1st to 10th principal components). Singlet assumption cells were calculated with a doublet ratio of 7.5%, artificial doublet number of 0.25, PC neighborhood size of 0.09, and principal component number of 1 to 10. Single cell RNA sequencing data samples were processed as filtered matrices and the SoupX algorithm was not applied. Data were normalized and resized and dimension reduction plots were calculated. Single nuclear RNA sequencing data and single cell RNA sequencing data were integrated into Seurat using the CCA algorithm.

단일 세포 수준 데이터에서 세포 유형 식별(Cell-type identification in the single-cell level data)Cell-type identification in the single-cell level data

획득한 Seurat 개체는 단일 핵 RNA 시퀀싱 데이터 세트에서 SCT 분석의 기능 발현 프로그램에 대한 모듈 점수로 표시되었다. 정상 세포 프로그램의 경우 제3자 데이터 세트에서 추출한 희소돌기아교세포, 소교세포, 방사상 신경교 또는 혈관주위세포 프로그램을 사용하였다. GBM 관련 유전자 프로그램의 경우 GBM 종양 기사의 공개된 유전자 목록을 사용하였다. 모든 데이터 세트를 통합한 후(도 2a), 기원 세포 유형 1에 신경 전구 세포 서명(BCAN, SEZ6L) 및 희돌기아교세포 전구 서명(PTPRZ1, TNR 및 PDGFRA)이 풍부해졌다. 기원 세포 유형 2는 성상 세포 서명(AQP4, SPARCL1, ATP1A2) 및 신경 줄기 세포 서명(ADGRV1, SLC1A2)으로 풍부하였다.The obtained Seurat individuals were scored as modules for the functional expression program of SCT analysis in single nuclear RNA sequencing data sets. For normal cell programs, oligodendrocyte, microglial, radial glial, or pericyte programs extracted from third-party data sets were used. For the GBM-related gene program, published gene lists from GBM tumor articles were used. After integrating all data sets (Figure 2A), cell type 1 of origin was enriched for neural progenitor signatures (BCAN, SEZ6L) and oligodendrocyte progenitor signatures (PTPRZ1, TNR, and PDGFRA). Cell of origin type 2 was enriched with an astrocyte signature (AQP4, SPARCL1, ATP1A2) and neural stem cell signature (ADGRV1, SLC1A2).

자기 공명 영상(Magnetic resonance imaging)Magnetic resonance imaging

수술 전후의 축 또는 관상 자기 공명 영상(MRI)을 사용하여 SVZ 생검 부위를 시각화하였다. MRI는 SVZ 생검 부위의 수술 전 계획에 사용되었다. 계획된 SVZ 제거 영역은 외과의가 확인하고 비종양 침범 영역에서 얇은 층을 절개하였다.The SVZ biopsy site was visualized using pre- and postoperative axial or coronal magnetic resonance imaging (MRI). MRI was used for preoperative planning of the SVZ biopsy site. The planned SVZ removal area was identified by the surgeon and a thin layer was incised in the area of non-tumor involvement.

병리학자 검토(Pathologist review)Pathologist review

숙련된 병리학자(S.H.K.)는 질병 진단 중 또는 RNA 시퀀싱 분석을 위한 사후 병리학적 검토 중에 종양이 없는 SVZ 샘플을 종양이 혼합된 SVZ 샘플과 구별하였다.An experienced pathologist (S.H.K.) distinguished tumor-free SVZ samples from tumor-mixed SVZ samples during disease diagnosis or during post-mortem pathological review for RNA sequencing analysis.

대량 조직 수준 RNA 시퀀싱(Bulk-tissue-level RNA sequencing)Bulk-tissue-level RNA sequencing

RNA 시퀀싱은 hisat2 및 stringtie37에 대한 최상의 프로토콜을 따랐다. RNA sequencing followed the best protocol for hisat2 and stringtie37.

생존 분석(Survival analysis)Survival analysis

환자의 생존기간은 최초 신경외과 수술(단위: 개월)부터 마지막 임상 추시까지 또는 사망진단서(세브란스종양센터)에 수집된 자료로 계산하였다. 하위 그룹은 기점 셀 1과 원본 셀 2의 GSVA 점수에 따라 나누었으며 임계값은 0이다.환자의 생존을 조사하는 것을 목표로 하는 SVZ 기반 생존은 SVZ에서 특정 기원 세포를 찾는 것으로 구별되며, 종양 기반 생존은 환자의 생존이 GBM 조직의 특정 기원 세포 특징에 의해 영향을 받는지 여부를 결정하였다.Patient survival time was calculated from the first neurosurgical operation (unit: months) until the last clinical follow-up or from data collected from the death certificate (Severance Oncology Center). Subgroups were divided according to the GSVA scores of origin cell 1 and origin cell 2, with a threshold of 0.SVZ-based survival, which aims to investigate patient survival, is distinguished by finding specific cells of origin in the SVZ, and tumor-based Survival was determined whether patient survival was influenced by specific cell-of-origin characteristics of the GBM tissue.

카피수 변이 분석(Copy-number variation analysis)Copy-number variation analysis

인간 벌크 조직 수준 RNA 시퀀싱의 경우 염색체 패턴 추론 알고리즘은 500개 유전자의 이동 평균을 기반으로 하였다. 대조군의 무종양 SVZ 샘플을 대조군 기준 조직군으로 사용하였다. 단일 세포/핵 데이터 세트의 카피 수 변이 패턴은 대조 샘플(버전 1.10.1)로 희소돌기아교세포를 사용하여 infercnv로 처리되었다. UMAP 일러스트레이션 및 세포 수준 시퀀스 예측을 위해 6가지 상태의 카피 수 변경이 계산되었다. 이들은 infercnv 알고리즘의 숨겨진 Markov 모델을 기반으로 하였다.For human bulk tissue-level RNA sequencing, the chromosome pattern inference algorithm was based on a moving average of 500 genes. Tumor-free SVZ samples from the control group were used as the control reference tissue group. Copy number variation patterns of single cell/nucleus data sets were processed with infercnv using oligodendrocytes as control samples (version 1.10.1). Copy number changes in six states were calculated for UMAP illustration and cell-level sequence prediction. They are based on the hidden Markov model of the infercnv algorithm.

디콘볼루션 분석(Deconvolution analysis)Deconvolution analysis

벌크 조직 수준 RNA 시퀀싱 데이터 세트에서 세포 유형 식별을 위해 지정된 유전자 세트로 유전자 세트 변이 분석을 사용하였다. GSVA 패키지를 사용하여 서명별 정규화 점수(버전 1.42.0)를 계산했으며, 암 줄기 세포 유전자 세트의 경우 GBM24의 클러스터 0 서명을 사용하였다.Gene set variation analysis was used with designated gene sets for cell type identification in bulk tissue-level RNA sequencing data sets. Normalization scores per signature were calculated using the GSVA package (version 1.42.0), and for the cancer stem cell gene set, the cluster 0 signature of GBM24 was used.

의사 궤적 분석(Pseudo-trajectory analysis)Pseudo-trajectory analysis

의사 시간 궤적 플롯은 Monocle 3으로 계산되었다. 인간 데이터 세트의 경우 시작점으로 원점 셀 1이 선택되었고, 마우스 셀 데이터에서는 컨트롤 셀의 컨트롤 상태를 시작점으로 선택하였다.Pseudo-time trajectory plots were calculated with Monocle 3. For the human data set, origin cell 1 was selected as the starting point, and for the mouse cell data, the control state of the control cell was selected as the starting point.

체세포 돌연변이에 의해 유도된 마우스 기원 세포(Mouse origin-cells induced by somatic mutation)Mouse origin-cells induced by somatic mutation

모든 마우스 실험은 GLP 원칙에 따라 연세대학교 의과대학 기관 동물 관리 및 사용 위원회의 지침에 따라 승인되고 수행되었다. LSL-tdtomato(C57BL/6 균주, The Jackson Laboratory)가 있는 마우스를 LSL-EGFR viii47 대립유전자(FVB 균주)로 사육하고 신생아에게 플라스미드(p53 및 Pten 유전자용 sgRNA) 용액(2μg/μl, 함유 1% Fast Green). 간단히 말해서, 신생아, 2-3일 된 새끼(P2-P3)를 저체온으로 마취시킨 다음 플라스미드 용액을 우측 뇌실에 주입하였다. 성공적으로 주입된 동물은 ECM830 전기천공기(BTX-Harvard 장치) 및 1mm 핀셋 전극(CUY650P1, Nepagene)을 사용하여 5개의 전기 펄스(100V, 50ms, 950ms 간격)를 받았다.All mouse experiments were approved and performed in accordance with GLP principles and in accordance with the guidelines of the Institutional Animal Care and Use Committee of Yonsei University College of Medicine. Mice harboring LSL-tdtomato (C57BL/6 strain, The Jackson Laboratory) were bred with the LSL-EGFR viii47 allele (FVB strain) and newborns were administered plasmid (sgRNA for p53 and Pten genes) solution (2 μg/μl, containing 1% Fast Green). Briefly, newborn, 2- to 3-day-old pups (P2-P3) were anesthetized by hypothermia and then injected with the plasmid solution into the right ventricle. Successfully injected animals received five electrical pulses (100 V, 50 ms, 950 ms apart) using an ECM830 electroporator (BTX-Harvard Apparatus) and 1 mm tweezer electrodes (CUY650P1, Nepagene).

마우스 기원 세포 분리(Mouse origin-cell isolation)Mouse origin-cell isolation

종양 검체 또는 SVZ 검체 중 하나를 입체 현미경(S9i, Leica)을 사용하여 전기 분해된 생쥐에서 해부하였다. 시료로부터의 후속 세포 분리는 간단히 셀 분리 절차는 Dulbecco의 수정된 Eagle의 중간/영양분 혼합물 F-12(DMEM/F-12; Corning)에서 메스로 기계적 해리를 수행한 후 혼합물을 70μm 나일론 메시 셀 스트레이너(BD Falcon)를 통해 통과시켰다. 이어서 세포 현탁액을 DMEM/F-12에서 두 번 세척하고 B27 보충제(1X; Invitrogen), 염기성 섬유아세포증식인자(bFGF, Novoprotein), 표피증식인자(Novopein, Novopein) 20ng/ml를 포함한 DMEM/F-12로 구성된 완전한 배지에서 배양하였다. 모든 시험관내 실험은 앞서 언급한 배양 조건 하에서 수행되었다.Either tumor specimens or SVZ specimens were dissected from electrolyzed mice using a stereomicroscope (S9i, Leica). Subsequent cell isolation from the sample was brief. The cell isolation procedure consisted of performing mechanical dissociation with a scalpel in Dulbecco's modified Eagle's medium/nutrient mixture F-12 (DMEM/F-12; Corning), then straining the mixture through a 70-μm nylon mesh cell strainer. Passed through (BD Falcon). The cell suspension was then washed twice in DMEM/F-12 and cultured in DMEM/F-12 containing 20 ng/ml of B27 supplement (1X; Invitrogen), basic fibroblast growth factor (bFGF, Novoprotein), and epidermal growth factor (Novopein). Cultured in complete medium consisting of 12. All in vitro experiments were performed under previously mentioned culture conditions.

구체 형성 분석(Sphere formation assay)Sphere formation assay

분리된 단일 세포는 B27 보충제(1X; Invitrogen), 염기성 섬유아세포증식인자(bFGF, Novoprotein), 표피증식인자(EGF, Novoprotein) 20ng/ml, 페니실린 1%를 포함한 DMEM/F-12로 구성된 전체 배지에서 96-웰 판에서 해리성 단세포를 배양하였다. 동일한 조건에서 11일 동안 배양한 후 구양성 웰의 수를 계산하고 각 그룹의 구양성 웰의 비율을 계산하여 백분율로 표시하였다. ToupView 소프트웨어(ToupTek Photonics)를 사용하여 구면 양성 웰의 이미지를 캡처하고 분석하였다.Isolated single cells were grown in complete medium consisting of DMEM/F-12 containing B27 supplement (1 Dissociated single cells were cultured in 96-well plates. After culturing for 11 days under the same conditions, the number of 9-positive wells was calculated, and the ratio of 9-positive wells in each group was calculated and expressed as a percentage. Images of spherical positive wells were captured and analyzed using ToupView software (ToupTek Photonics).

3D 침공 분석(3D Invasion assay)3D Invasion assay

마우스 세포의 침입성은 3D 침입 분석을 사용하여 결정되었다. 단일 해리된 세포(3000개 세포)를 PrimeSurface 96M 플레이트(Shimadzu)의 각 웰에 접종하였다. 24시간 후, 각 웰은 Matrigel, 콜라겐 유형 I(Corning) 및 완전 배지로 구성된 Matrigel 매트릭스로 채워졌다. 30분 후, 완전한 배지(30μL/웰)를 겔 매트릭스에 첨가하여 건조를 방지하였다. 이미지는 Operetta CLS(Perkin Elmer)를 사용하여 캡처되었고, 침습 영역은 (72 h-0 h)/0 h에서 점유 영역으로 정량화되었다.The invasiveness of mouse cells was determined using a 3D invasion assay. Single dissociated cells (3000 cells) were seeded into each well of a PrimeSurface 96M plate (Shimadzu). After 24 hours, each well was filled with Matrigel matrix consisting of Matrigel, collagen type I (Corning), and complete medium. After 30 min, complete medium (30 μL/well) was added to the gel matrix to prevent drying. Images were captured using Operetta CLS (Perkin Elmer), and the invasive area was quantified as occupied area at (72 h-0 h)/0 h.

동소생착(Orthotopic engraftment)Orthotopic engraftment

동소 동종이식 모델의 경우, 6-8주 된 수컷 무흉선 누드 마우스(Central Lab. Animal Inc.)를 무균 조건의 마이크로 아이솔레이터 케이지에 수용하고 적절한 건강을 보장하기 위해 실험 전에 최소 1주일 동안 모니터링하였다. Zoletil(30 mg/kg; Virbac Korea)과 xylazine(10 mg/kg; Bayer Korea) 용액을 복강 내 투여하여 마우스를 마취시켰다. 해리된 세포(2 Х 105)는 이전에 설명한 대로 동소적으로 이식되었다(0일). 생체 발광 이미지 획득 및 분석은 생체 내 이미징 시스템(IVIS) 이미징 시스템 및 Living Image v4.2 소프트웨어(Caliper Life Sciences)를 사용하여 수행되었다. 신호 획득 15분 전에 마우스에 100μL D-루시페린(30mg/mL, PBS에 용해됨; Promega)을 복강내 주사하고 2.5% 이소플루란 마취 하에 투여하였다. 최대 체중에 비해 체중이 15% 이상 감소한 마우스는 승인된 프로토콜에 따라 안락사되었다.For the orthotopic allograft model, 6- to 8-week-old male athymic nude mice (Central Lab. Animal Inc.) were housed in microisolator cages under sterile conditions and monitored for at least 1 week prior to experiments to ensure appropriate health. Zoletil (30 mg/kg; Virbac Korea) and xylazine (10 mg/kg; Bayer Korea) solutions were administered intraperitoneally to anesthetize the mice. Dissociated cells (2 Х 105) were transplanted orthotopically as previously described (day 0). Bioluminescence image acquisition and analysis were performed using the In Vivo Imaging System (IVIS) imaging system and Living Image v4.2 software (Caliper Life Sciences). Fifteen minutes before signal acquisition, mice were injected intraperitoneally with 100 μL D-luciferin (30 mg/mL, dissolved in PBS; Promega) and administered under 2.5% isoflurane anesthesia. Mice that lost more than 15% of their maximum body weight were euthanized according to approved protocols.

마우스 뇌의 이미지 분석(Image analysis of mouse brain)Image analysis of mouse brain

마우스 뇌를 얻었고, 10% 포르말린에 고정하고, 30% 완충 자당에서 밤새 동결 보호하고, -80°C에서 보관된 냉동 블록(최적 절단 온도 화합물(OCT 화합물))에 보관하였다. Cryostat 절단 섹션(두께 10μm)은 bregma에서 떨어진 관상 섹션 지점 1, -1, -2 및 -3mm에서 얻었다. 핵 염색에는 DAPI(H-1200-10, Vector Laboratories)가 있는 장착 배지를 사용했으며, Zeiss LSM700 공초점 현미경(Zeiss)을 사용하여 이미지를 얻었다. H&E 염색을 위해 4μm cryo-stat-cut 섹션이 사용되었다.Mouse brains were obtained, fixed in 10% formalin, cryoprotected overnight in 30% buffered sucrose, and stored in cryoblocks (Optimal Cutting Temperature Compound (OCT Compound)) stored at -80°C. Cryostat cut sections (10 μm thick) were obtained at coronal section points 1, −1, −2, and −3 mm distal to bregma. Mounting medium with DAPI (H-1200-10, Vector Laboratories) was used for nuclear staining, and images were obtained using a Zeiss LSM700 confocal microscope (Zeiss). For H&E staining, 4 μm cryo-stat-cut sections were used.

단일 세포 RNA 시퀀싱을 위한 마우스 세포 준비(Mouse cell preparation for single-cell RNA sequencing)Mouse cell preparation for single-cell RNA sequencing

Trp53/Pten/hEGFRvIII 돌연변이 마우스 모델에서 분리된 마우스 기원 세포와 종양 세포는 B27 보충제(1X; Invitrogen), 20ng/ml의 기본 섬유아세포 성장 인자(bFGF, Novoprotein), 20ng/ml의 표피 성장 인자(EGF, Novoprotein) 및 1% 페니실린-스트렙토마이신(15140122, Thermo Fisher). 마우스 기원 세포 또는 종양 세포가 구체를 형성하면 구체를 수집하고 Accutase 용액(A6954, Sigma-Aldrich)으로 1분 동안 해리시켰다. 해리된 단일 세포를 PBS 중 0.04% BSA 용액으로 3회 세척하였다. 트리판 블루 염색으로 세포 생존력을 모니터링하고, 생존 세포를 후속 단일 세포 RNA 시퀀싱에 사용하였다.Cells of mouse origin and tumor cells isolated from the Trp53/Pten/hEGFRvIII mutant mouse model were incubated with B27 supplement (1X; Invitrogen), 20 ng/ml basic fibroblast growth factor (bFGF, Novoprotein), and 20 ng/ml epidermal growth factor (EGF). , Novoprotein) and 1% penicillin-streptomycin (15140122, Thermo Fisher). Once cells of mouse origin or tumor cells formed spheres, the spheres were collected and dissociated with Accutase solution (A6954, Sigma-Aldrich) for 1 min. Dissociated single cells were washed three times with 0.04% BSA solution in PBS. Cell viability was monitored by trypan blue staining, and surviving cells were used for subsequent single-cell RNA sequencing.

실험결과Experiment result

심실하부 조직의 염색체 패턴(Chromosome patterns in the subventricular zone tissues)Chromosome patterns in the subventricular zone tissues

본 발명은 염색체 패턴을 교모세포종(GBM)-기원세포를 추적하기 위한 지표로 사용하였다(염색체 7의 획득과 염색체 10의 손실). 공개된 전체 추출 배열 데이터 세트(SRP145073)2와 더불어 대량 조직 수준의 RNA 배열과 단세포 수준의 RNA 배열(도 5a)을 위해 환자 샘플을 수집하였다. 단세포 수준의 RNA 배열에는 단세포 RNA 배열과 단핵 RNA 배열이 포함된다(도 5b).The present invention used chromosome patterns as indicators for tracking glioblastoma (GBM)-originating cells (gain of chromosome 7 and loss of chromosome 10). Patient samples were collected for bulk tissue-level RNA sequencing and single-cell-level RNA sequencing (Figure 5a), along with the publicly available full extract sequencing data set (SRP145073)2. Single-cell-level RNA sequencing includes single-cell RNA sequencing and mononuclear RNA sequencing (Figure 5b).

본 연구의 가장 중요한 측면은 뇌의 SVZ의 종양 없는 상태이다(노란색 상자, 도 1a). SVZ 조직의 샘플링(도 5c) 후 병리학자가 종양 혼합 상태를 확인하지 않은 경우 SVZ 조직 샘플을 무종양으로 정의하였다. 본 연구에서는 단세포 RNA 배열 분석의 종양 혼합 SVZ 샘플 1개를 제외한 모든 SVZ 샘플은 무종양이다(도 1a). GBM의 무종양 SVZ 샘플링 위치는 종양 위치에 따라 다르다(도 5d). 무종양 SVZ 대조군은 비 GBM 환자로부터 확보된다(도 5e). SVZ의 샘플링은 수술 전 의료 영상으로 계획되어 있지만 병리학적 검사 결과 단세포 RNA 배열 분석 사례에서 종양 혼합 샘플이 있는 두 사례가 밝혀졌다(하류 분석의 경우 한 샘플이 실패하고 한 개의 종양 혼합 샘플만 포함됨, 도 5f). 따라서, 우리는 뇌의 SVZ를 달리 명시된 종양 없는 샘플이라고 부른다.The most important aspect of this study is the tumor-free status of the SVZ of the brain (yellow box, Figure 1a). SVZ tissue samples were defined as tumor-free if tumor admixture status was not confirmed by the pathologist after sampling of SVZ tissue ( Fig. 5C ). In this study, all SVZ samples except one tumor-mixed SVZ sample in single-cell RNA array analysis were tumor-free ( Fig. 1A ). The sampling location of the tumor-free SVZ of GBM differed depending on the tumor location ( Fig. 5D ). Tumor-free SVZ controls are obtained from non-GBM patients (Figure 5e). Sampling of the SVZ was planned with preoperative medical imaging, but pathological examination revealed two cases with tumor-mixed samples for single-cell RNA array analysis (for downstream analysis, one sample failed and only one tumor-mixed sample was included; Figure 5f). Therefore, we refer to the SVZ of the brain as otherwise specified tumor-free samples.

벌크 조직 수준의 RNA 염기서열 분석을 사용한 파일럿 연구에서는 유전자 발현 차이와 신경전달물질 관련 신호 전달의 상향 조절을 통한 대조군 SVZ와의 GBM의 SVZ 차이를 보여주었다(도 6a). GBM의 SVZ는 GBM 조직과 다시 비교되었으며 세포 이동 관련 시그니처는 GBM의 SVZ에서 상향 조절되었다.A pilot study using bulk tissue-level RNA sequencing showed differences in the SVZ of GBM from the control SVZ through differences in gene expression and upregulation of neurotransmitter-related signaling ( Fig. 6A ). The SVZ of GBM was again compared to GBM tissue and cell migration-related signatures were upregulated in the SVZ of GBM.

벌크 RNA 염기서열을 가진 다른 조직과 GBM의 SVZ의 차이를 바탕으로 GBM의 SVZ가 GBM-기원세포에 대한 증거를 포함할 수 있다는 가설을 세웠다. GBM은 7번 염색체 q-arm 획득과 10번 염색체 손실 패턴을 가지고 있기 때문에, 우리는 이 두 염색체의 염색체 패턴에 초점을 맞춘 전체 데이터 세트를 검토하였다. 흥미롭게도, 우리는 GBM의 SVZ(도 6c)에서 7q 염색체 획득 패턴을 발견하였다. 7번 염색체 패턴은 GBM의 SVZ의 다른 샘플에서도 뚜렷하게 나타났다(도 6d). 또한 7번 염색체는 SVZ 검체가 두드러지지 않았으므로(도 6e), 더 큰 벌크 RNA 배열 데이터 집합에서 염색체 패턴을 검증하려고 시도했고 카피 번호(copy number)를 비교하였다(도 1b, 및 6f).Based on the differences between the SVZ of GBM and other tissues with bulk RNA sequences, we hypothesized that the SVZ of GBM may contain evidence for GBM-progenitor cells. Because GBM has a pattern of chromosome 7 q-arm gain and chromosome 10 loss, we reviewed the entire data set focusing on the chromosomal patterns of these two chromosomes. Interestingly, we found a pattern of chromosome 7q gain in the SVZ of GBM (Figure 6C). The chromosome 7 pattern was also evident in other samples from the SVZ of GBM ( Fig. 6D ). Additionally, because chromosome 7 was not prominent in SVZ samples (Figure 6e), we attempted to validate the chromosome pattern in a larger bulk RNA array data set and compared copy numbers (Figures 1b and 6f).

종양 조직의 98%에서 GBM, 7번 염색체 획득 또는 10번 염색체 손실의 정의 염색체 패턴을 발견하였다(도 1b). GBM의 SVZ는 표본의 65%에서 2개의 CNV 변화를 보인 반면 대조군의 SVZ는 33% 표본에서 염색체 패턴을 보였다. 벌크 조직 기반 염색체 패턴 분석(도 6g)의 한계를 발견하여 단세포 수준의 RNA 염기서열 분석을 조사하였다.The defining chromosomal pattern of GBM, chromosome 7 gain or chromosome 10 loss, was found in 98% of tumor tissues (Figure 1B). The SVZ of GBM showed two CNV changes in 65% of samples, whereas the SVZ of controls showed a chromosomal pattern in 33% of samples. Having discovered the limitations of bulk tissue-based chromosome pattern analysis (Figure 6g), we investigated RNA sequencing at the single cell level.

단일 셀 레벨 분석 결과 SVZ에서 2개의 GBM-origin 셀이 검출되었다.As a result of single cell level analysis, two GBM-origin cells were detected in the SVZ.

단세포 수준 RNA 염기서열 분석 결과, 한 환자의 GBM 샘플의 SVZ에서 GBM 관련 염색체 패턴을 가진 두 가지 유형의 세포, 즉 7번 염색체 q-arm 획득과 10번 염색체 손실 패턴을 발견하였다(도 1c). 이 두 세포 유형의 공통 염색체 패턴은 7번 염색체 q-암 증폭이었다. 한 세포형은 모집단의 절반에서 10번 염색체 손실을 보였고 다른 세포형 모집단에서 10번 염색체 손실을 보이지 않았다(도 1c). 이 세포들은 GBM-기원세포의 이론적인 염색체 패턴을 나타냈기 때문에 우리는 7번 염색체 q-arm 획득만을 나타내는 세포를 GBM의 기원세포 1(origin-cell 1; Oc1), 7번 염색체 q-arm 획득 및 10번 염색체 손실을 나타내는 세포를 GBM의 기원세포 2(origin-cell 2)라고 정의하였다. 또한 이 두 셀의 세포형 시그니처가 확장된 수의 SVZ 샘플에 적용될 수 있다는 가설을 세웠다(도 1d).Single-cell-level RNA sequencing results revealed two types of cells with GBM-related chromosomal patterns in the SVZ of one patient's GBM sample: a chromosome 7 q-arm gain and a chromosome 10 loss pattern ( Fig. 1C ). The common chromosomal pattern of these two cell types was chromosome 7 q-arm amplification. One cell type showed loss of chromosome 10 in half of the population, while the other cell type showed no loss of chromosome 10 in the population (Figure 1c). Because these cells showed the theoretical chromosome pattern of the GBM-origin cell, we called the cell showing only chromosome 7 q-arm acquisition as GBM origin-cell 1 (Oc1), a cell that only showed chromosome 7 q-arm acquisition. And the cell showing loss of chromosome 10 was defined as origin-cell 2 of GBM. We also hypothesized that the cytotype signature of these two cells could be applied to an expanded number of SVZ samples ( Fig. 1D ).

확장된 코호트에서 우리는 위의 파일럿 단핵 RNA 배열 SVZ 샘플(Patient GN1)에서 얻은 정의 유전자 시그니처를 가진 두 개의 기원 세포 클러스터(도 2a)를 발견하였다. 이러한 원점 세포 시그니처는 PTPRZ1의 원점 세포 1(도 7a)과 AQP4의 원점 세포 2(도 7b)를 나타내는 유전자로 요약된다. 간단히 말해서, 우리는 각 단일 세포 수준 데이터 세트를 GN-1 SVZ 추출 유전자 세트로 라벨링하고 조화 데이터 세트를 찾기 위해 개별 데이터 세트를 통합하였다(도 2a, 및 도 7c). 이 두 가지 기원 세포 유형은 무종양 SVZ 샘플과 GBM 종양 조직에서 발견되었다(도 2b, 및 도 7d).In the expanded cohort, we found two clusters of cells of origin (Figure 2A) with defined genetic signatures obtained from the pilot mononuclear RNA array SVZ sample above (Patient GN1). This cell-of-origin signature is summarized by genes representing cell-of-origin 1 for PTPRZ1 (Figure 7A) and cell-of-origin 2 for AQP4 (Figure 7B). Briefly, we labeled each single-cell level data set with the GN-1 SVZ extracted gene set and integrated the individual data sets to find a harmonized data set (Figures 2A and 7C). These two cell types of origin were found in tumor-free SVZ samples and GBM tumor tissue (Figures 2B and 7D).

염색체 패턴의 순차적 축적(Sequential accumulation of chromosome patterns)Sequential accumulation of chromosome patterns

두 가지 유형의 원점 세포 시그니처가 샘플 전체에서 발견되었지만(도 2b), GBM의 염색체 패턴의 시간 순서를 조사하려고 하였다. SVZ와 종양의 환자 GN1 샘플은 뉴런 유사 세포를 제외한 치수 감소 플롯에서 중복 영역을 나타낸다(도 2c). 환자 GN1의 SVZ 샘플에서 두 가지 유형의 기원 세포가 뉴런 유사 세포 클러스터보다 염색체 7q-암 획득 이벤트와 염색체 10 손실 이벤트에 의해 지배된다는 것을 발견하였다(도 2d). GN1의 종양 세포에서 대부분의 염색체 변화 패턴은 두 가지 유형의 기원 세포와 연결된 세포 클러스터에서 발견되었다(도 2e). SVZ와 종양의 원세포에서 7번 염색체 획득과 10번 염색체 손실이 발견되었으므로, 환자 GN1에서 이 두 데이터 세트를 결합했고, 7개의 q-arm 축적 패턴이 원세포 연결 클러스터의 세포에서 발견되었다(도 2f). 동일한 통합 데이터 집합에서, 단일 세포 수준에서 염색체 7p 획득 또는 염색체 10 손실 사건보다 염색체 7q 획득 사건이 선행된다는 것을 발견하였다(도 2g). 우리는 두 가지 유형의 원점 세포가 SVZ 샘플과 종양 샘플을 연결하는 염색체 패턴을 나타내고 있다는 것을 발견할 수 있다. 즉, SVZ의 다른 세포에 비해 SVZ의 원점 세포에서 더 많은 7번 p-arm과 q-arm 획득이다. GBM의 다른 세포보다 GBM 종양의 원세포에서 7번 염색체 p-암과 q-암 증가율이 낮다. 10번 염색체 손실 사건도 SVZ에서 종양으로의 연결 패턴을 보여준다(도 8).Although two types of cell-of-origin signatures were found throughout the samples (Figure 2b), we sought to examine the temporal order of chromosomal patterns in GBM. Patient GN1 samples from the SVZ and tumor show overlapping areas in the dimension reduction plot excluding neuron-like cells (Figure 2c). In SVZ samples from patient GN1, we found that the two types of cells of origin were dominated by chromosome 7q-arm gain events and chromosome 10 loss events rather than neuron-like cell clusters ( Fig. 2D ). In tumor cells of GN1, most chromosomal change patterns were found in cell clusters associated with two types of cells of origin (Figure 2e). Since gain of chromosome 7 and loss of chromosome 10 were found in the protocells of the SVZ and the tumor, we combined these two data sets in patient GN1, and seven q-arm accumulation patterns were found in cells of the protocell junction cluster (Figure 2f). In the same integrated data set, we found that chromosome 7q gain events precede chromosome 7p gain or chromosome 10 loss events at the single cell level ( Fig. 2G ). We can find that both types of origin cells display chromosomal patterns linking SVZ samples and tumor samples. In other words, more p-arms and q-arms are acquired in the origin cells of the SVZ than in other cells of the SVZ. The increase rate of chromosome 7 p-arm and q-arm is lower in the original cells of GBM tumors than in other cells of GBM. Chromosome 10 loss events also show a connection pattern from the SVZ to the tumor (Figure 8).

상호 연결된 원본 셀(Interconnected origin-cells)Interconnected origin-cells

원점 세포 클러스터는 염색체 패턴의 양성 세포 클러스터(신경 전구체, 간엽성, 순환 세포)에 연결되어 있으므로 의사 주사 플롯(pseudotrajectory plot)을 계산하였다. 원점 세포 1이 다른 유형의 세포에 선행할 것으로 예상되었기 때문에, 우리는 세포를 시작점으로 설정하였다: 종양 없는 SVZ의 통합 데이터 세트는 원점 세포 1이 뉴런 유사 세포, 순환 세포 또는 간엽 세포로 이어질 수 있음을 보여주었다. 통합 종양 지도는 원점 세포 1이 모든 유형의 세포로 이어질 수 있음을 보여주었다(도 9a). 환자별 데이터는 기원 세포가 종양 세포 클러스터에 연결되어 있으며 뉴런 유사 세포, 신경 전구 세포, 간엽 세포 또는 순환 세포와의 연결을 보여준다(도 9b). 단세포 RNA 염기서열결정 데이터셋에서 샘플 전체에서 뉴런 유사 세포의 수가 적더라도 신경 전구 세포, 순환 세포 또는 간엽 세포와 같은 다른 종양 관련 세포에 대한 원세포의 연결성은 변경되지 않는다(도 9c).Since the cell cluster of origin is connected to the positive cell clusters (neural precursors, mesenchymal, and circulating cells) of the chromosomal pattern, a pseudotrajectory plot was calculated. Because cell of origin 1 was expected to precede other cell types, we set the cell as the starting point: integrated datasets from the tumor-free SVZ showed that cell of origin 1 could lead to neuron-like cells, circulating cells, or mesenchymal cells. showed. The integrated tumor map showed that cell of origin 1 could lead to all cell types (Figure 9A). Patient-specific data show that the cells of origin are connected to tumor cell clusters and have connections with neuron-like cells, neural progenitor cells, mesenchymal cells, or circulating cells (Figure 9B). In single-cell RNA sequencing datasets, the connectivity of protocells to other tumor-related cells, such as neural progenitor cells, circulating cells, or mesenchymal cells, is not altered, even though the number of neuron-like cells is low across samples (Figure 9C).

상호연결성을 위해 단세포 수준의 RNA 염기서열 분석 데이터에서 리간드-수용체 연결 분석을 적용하였다(도 3a). 줄기세포 모드에서, 우리는 SVZ 샘플에서 오리진 셀 1이 오리진 셀 2에 연결되어 있는 것을 발견하였다. 종양 샘플에서 사이클링 셀은 원본 셀 2에 연결되었다(도 3a). 중심도 그림에서 세 가지 유형의 세포가 발견되었으므로 유전자 수준에서 이러한 세포들 간의 상호 연관성을 분석하였다(도 3b). 우리는 BCAN-NRCAM 연결이 SVZ와 종양의 순환 플롯에서 공통적으로 발견되었음을 발견하였다. 특히 SVZ 샘플에서, EGFR은 원점 셀 1, 원점 셀 2, 순환 셀에 걸쳐 상향 조절되었다(도 3b).For interconnectivity, ligand-receptor linkage analysis was applied on single-cell level RNA sequencing data (Figure 3a). In stem cell mode, we found that origin cell 1 was connected to origin cell 2 in SVZ samples. In the tumor sample, the cycling cell was connected to the original cell 2 (Figure 3a). Since three types of cells were found in the centroid plot, we analyzed the interconnections between these cells at the gene level (Figure 3b). We found that BCAN-NRCAM connections were commonly found in circulation plots of SVZ and tumors. Particularly in SVZ samples, EGFR was upregulated across origin cell 1, origin cell 2, and circulation cells (Figure 3B).

원점세포 및 임상종양(Origin-cells and the clinical tumours)Origin-cells and the clinical tumors

연구 결과를 단세포 수준의 RNA 염기서열 분석에서 대량 조직 수준의 RNA 염기서열 분석 데이터로 확장하였다. 단일 셀 레벨 데이터가 셀 유형 간에 고해상도 상호 연결을 보일 수 있지만, 모집단 레벨 데이터는 위의 분석에서 얻을 수 없었다. 상기 분석의 유전자 시그니처를 이용하여 벌크 조직 수준의 RNA 배열 데이터(도 10a)에서 세포 식별 점수를 산출하였다. SVZ 표본에서 통계적 차이가 없는 대조군의 SVZ와 GBM의 SVZ에서 두 가지 유형의 원점 셀이 발견되었다(도 10a). 원점 세포 2의 세포 수는 종양 샘플에서 감소할 것으로 예측되었다. 또한 GBM 환자의 생존을 세포 식별 점수로 비교하였다. 무종양 SVZ 검체(도 10b) 또는 종양 검체(도 10c)의 원점 세포 점수 식별에 의한 생존 효과는 없었다. GBM의 TERT 프로모터 돌연변이 상태를 이용할 수 있는 표본으로 범위를 좁혔을 때, 우리는 두 개의 기원 세포 유형의 다른 패턴을 발견하였다(도 3c). 원점 세포 1은 TERT 프로모터 야생형 GBM에서 일반적이었다(도 3c). 원점 세포 2는 TERT 프로모터 돌연변이 GBM에서 더 흔하게 나타났다. 모든 데이터 세트에 따라, 원본 셀 2는 두 가지 TERT 프로모터 유형의 GBM에서 감소 추세를 보였다(도 3c, 및 도 10a). 이와는 대조적으로, 이 두 가지 유형의 GBM은 SVZ 샘플보다 종양 내 세포 순환과 암 줄기세포 시그니처의 증가 추세를 보였다. 또, 2개의 발신기지 셀의 시그니처를 다른 시그니처와 비교하였다(도 10d). GBM의 SVZ에서, 두 가지 유형의 원점 셀은 상관 행렬에서 높은 연관성을 보였다(도 10e). 단, 종양에서는 원세포 1 클러스터에서 원세포 2의 소결이 분리되었다(도 10f).The research results were expanded from single cell-level RNA sequencing data to large-scale tissue-level RNA sequencing data. Although single cell level data can show high-resolution interconnections between cell types, population level data was not available in the above analyses. A cell identification score was calculated from the bulk tissue-level RNA array data (FIG. 10A) using the genetic signature of the above analysis. Two types of origin cells were found in the SVZ of controls and the SVZ of GBM, with no statistical differences in SVZ samples ( Fig. 10A ). The cell number of cell of origin 2 was predicted to decrease in tumor samples. Additionally, the survival of GBM patients was compared by cell identification score. There was no survival effect by origin cell score identification for tumor-free SVZ specimens (Figure 10B) or tumor specimens (Figure 10C). When we narrowed down the TERT promoter mutation status of GBM to the samples for which it was available, we found different patterns of the two cell types of origin (Figure 3C). Cell of origin 1 was common in TERT promoter wild-type GBM (Figure 3C). Cell of origin 2 appeared more commonly in TERT promoter mutant GBM. According to all data sets, original cell 2 showed a decreasing trend in GBM of both TERT promoter types (Figure 3C and Figure 10A). In contrast, these two types of GBM showed a trend toward increased intratumoral cell circulation and cancer stem cell signatures than SVZ samples. Additionally, the signatures of the two transmitting base cells were compared with other signatures (Figure 10d). In the SVZ of GBM, the two types of origin cells showed high correlation in the correlation matrix (Figure 10e). However, in the tumor, the sintering of protocell 2 was separated from the protocell 1 cluster (Figure 10f).

GBM 기원 세포 마우스 모델(Mouse model of the GBM origin-cells)Mouse model of the GBM origin-cells

인간 SVZ 시료와 GBM 시료에 비추어 CRISPR/Cas9로 원세포 및 원세포 유래 종양 세포를 만들었고, 미수정 세포를 대조군으로 사용하였다(도 4a, 및 도 11a). 이 모델은 이전에 마우스 GBM(도 11b)를 형성하는 것으로 보고되었다. GBM-기원세포와 종양세포는 각각 마우스 심실하부와 종양에서 얻었다(도 11c). 이러한 세포는 배양 가능하고 세포에 CRISPR/Cas9 플라스미드를 도입하는 것을 암시하는 높은 tdTomato 양성으로 검증된다(도 11d). 이 세 가지 유형의 세포(도 11e)는 마우스 뇌에 주입될 때 종양을 형성할 수 있는지 검증된다(도 11f). 마커 유전자의 유사한 유전자 발현 패턴(도 4b)은 마우스 뇌 주입 모델에서 다른 종양 형성을 설명하기에 충분하지 않았다(도 4c, 및 도 11f). 통합 분석에서는 3종류의 세포를 4종류의 세포 상태로 분류할 수 있었다(도 4d). 간단히 말해서, 우리는 세포 상태 조성(도 4e), 인간 기원 세포의 유전자 시그니처 점수(도 4f), 염색체 패턴 분석(도 4g)을 비교하여 이들 4가지 세포 상태를 라벨링하였다.In light of human SVZ samples and GBM samples, protocells and protocell-derived tumor cells were generated with CRISPR/Cas9, and unmodified cells were used as controls (FIGS. 4A and 11A). This model was previously reported to form mouse GBM (Figure 11B). GBM-origin cells and tumor cells were obtained from the mouse subventricular region and tumor, respectively (Figure 11c). These cells are culturable and are verified by high tdTomato positivity, suggesting introduction of the CRISPR/Cas9 plasmid into the cells (Figure 11D). These three types of cells (Figure 11e) are verified to be capable of forming tumors when injected into the mouse brain (Figure 11f). Similar gene expression patterns of marker genes (Figure 4B) were not sufficient to explain different tumor formation in the mouse brain injection model (Figures 4C and 11F). In the integrated analysis, three types of cells could be classified into four types of cell states (Figure 4d). Briefly, we labeled these four cell states by comparing cell state composition (Figure 4e), gene signature scores of cells of human origin (Figure 4f), and chromosome pattern analysis (Figure 4g).

마우스 세포의 단세포 RNA 배열에 대한 자세한 내용은 도 12a 내지 12e에 요약되어 있다. 3종류의 세포 통합 분석에서도 마찬가지로 제어 유전자를 특정하는 세포 상태와 초기 상태를 과잉 발현한다(도 12a). 올리고덴드로사이트 전구세포 마커 Cspg4는 제어상태에서 높은 상태에서 종양상태로 점차 감쇠하는 2개의 원점세포 스코어와 동일한 순서로 발현된다(도 4f, 및 도 12b). 투우머 관련 세포 주기 시그니처 또는 간엽 시그니처는 대조군 상태에서 종양 상태로 상승하는 패턴을 보였다(도 12c). 세포 상태가 초기, 후기에서 종양 상태로 변화함에 따라 염색체 패턴과 이상 증가가 계산되었다(도 12d). 마지막으로, 우리는 제어 상태를 출발점으로 선택했고 의사 시간 분석에서 궤적의 끝에 있는 종양 세포가 밝혀졌다.Details of single-cell RNA sequencing of mouse cells are summarized in Figures 12A-12E. In the three types of cell integration analysis, cell states and initial states that specify control genes are similarly overexpressed (Figure 12a). The oligodendrocyte progenitor cell marker Cspg4 is expressed in the same order as the two origin cell scores, which gradually decrease from high in the control state to tumor state (Figures 4f and 12b). The tumor-related cell cycle signature or mesenchymal signature showed an ascending pattern from the control state to the tumor state (Figure 12c). The chromosomal patterns and increase in abnormalities were calculated as the cell state changed from early and late to tumor state (Figure 12D). Finally, we chose the control state as the starting point and pseudotime analysis revealed tumor cells at the end of the trajectory.

신경구 기반 분석(도 13a 내지 13b)에서 원점 세포의 흥미로운 표현형이 발견되었다. 서로 다른 마우스 뇌의 서로 다른 두 원점 세포에서 높은 신경구 형성 표현형이 발견되었다(도 13a). 세포 침입 분석을 조사했더니 72시간까지 원세포가 가장 멀리 있는 세포였다(도 13b). 원점 세포와 종양 세포를 분화하려고 했을 때, 원점 세포만이 TUBB3 양성 세포를 형성하고 있는 것이 확인되었다(도 13c).An interesting phenotype of cells of origin was discovered in the neurosphere-based analysis (Figures 13A-13B). A high neurosphere formation phenotype was found in two different origin cells from different mouse brains (Figure 13A). Cell invasion assays showed that the protocell was the most distant cell by 72 hours (Figure 13b). When trying to differentiate between origin cells and tumor cells, it was confirmed that only origin cells formed TUBB3-positive cells (Figure 13c).

간단히 말해서, 우리는 두 가지 유형의 인간 GBM-기원 세포를 확인했고 그 결과는 유전자 발현 패턴과 염색체 패턴을 가진 마우스 GBM-기원 세포에서 검증되었다. 특히 성인의 뇌에서 최초로 기원세포 1을 동정하고, TERT 프로모터 와일드형 GBM은 기원세포 1에서 발생할 수 있다(도 14).Briefly, we identified two types of human GBM-origin cells and the results were validated in mouse GBM-origin cells with gene expression patterns and chromosomal patterns. In particular, cell-of-origin 1 was identified for the first time in the adult brain, and TERT promoter wild-type GBM can arise from cell-of-origin 1 (Figure 14).

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (20)

뇌실하대(subventricular zone; SVZ)로부터 분리된 세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 확인하는 단계;를 포함하는, 뇌암 기원 세포의 분리 방법.
In cells isolated from the subventricular zone (SVZ), NRXN1, A method of isolating brain cancer origin cells comprising; confirming the expression level of one or more proteins selected from the group consisting of, or genes encoding the same.
제 1 항에 있어서,
상기 뇌암 기원세포는 교모세포종(glioblastoma, GBM)으로 발전되는 세포인 것인, 분리 방법.
According to claim 1,
Isolation method, wherein the brain cancer origin cells are cells that develop into glioblastoma (GBM).
제 1 항에 있어서,
상기 뇌실하대로부터 분리된 세포에서 7번 염색체의 복제 수 증가를 확인하는 단계;를 추가로 포함하는, 분리 방법.
According to claim 1,
A separation method further comprising: confirming an increase in the copy number of chromosome 7 in cells isolated from the subventricular zone.
NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 제제를 유효성분으로 포함하는, 뇌암 발병 예측용 조성물.
One or more proteins selected from the group consisting of NRXN1, A composition for predicting the development of brain cancer, comprising as an active ingredient an agent that measures the expression level of a gene.
제 4 항에 있어서,
상기 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질의 발현량을 측정하는 제제는 상기 단백질에 특이적으로 결합하는 앱타머, 항체 또는 이의 항원 결합 단편인 것인, 조성물.
According to claim 4,
The expression level of one or more proteins selected from the group consisting of NRXN1, A composition wherein the agent to be measured is an aptamer, antibody, or antigen-binding fragment thereof that specifically binds to the protein.
제 4 항에 있어서,
상기 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질을 코딩하는 유전자의 발현량을 측정하는 제제는 상기 유전자에 특이적으로 결합하는 프라이머 또는 프로브인 것인, 조성물.
According to claim 4,
A gene encoding one or more proteins selected from the group consisting of NRXN1, The composition for measuring the expression level is a primer or probe that specifically binds to the gene.
제 4항에 있어서,
상기 뇌암은 교모세포종(glioblastoma, GBM)인 것인, 조성물.
According to clause 4,
The composition, wherein the brain cancer is glioblastoma (GBM).
제 4항의 조성물을 포함하는, 뇌암 발병 예측용 키트.
A kit for predicting the development of brain cancer, comprising the composition of claim 4.
제 8 항에 있어서,
상기 키트는 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포를 대상으로 사용되는 것인, 키트.
According to claim 8,
The kit is used for cells isolated from the subventricular zone (SVZ).
제 9 항에 있어서,
상기 뇌실하대로부터 분리된 세포는 7번 염색체의 복제 수가 증가된 세포인 것인, 키트.
According to clause 9,
The kit, wherein the cells isolated from the subventricular zone are cells with an increased copy number of chromosome 7.
제 9 항에 있어서,
상기 키트는 RT-PCR 키트, DNA 칩 키트, ELISA 키트, 단백질 칩 키트, 래피드(rapid) 키트 또는 MRM(Multiple reaction monitoring) 키트인 것인, 키트.
According to clause 9,
The kit is an RT-PCR kit, DNA chip kit, ELISA kit, protein chip kit, rapid kit, or multiple reaction monitoring (MRM) kit.
목적하는 개체의 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 단계;를 포함하는, 뇌암의 발병 예측 방법.
In cells isolated from the subventricular zone (SVZ) of the subject of interest, NRXN1, , and measuring the expression level of one or more proteins selected from the group consisting of LAMA2, or the genes encoding them.
제 12 항에 있어서,
상기 뇌실하대로부터 분리된 세포에서 7번 염색체의 복제 수 증가를 확인하는 단계;를 추가로 포함하는, 예측 방법.
According to claim 12,
A prediction method further comprising: confirming an increase in the copy number of chromosome 7 in cells isolated from the subventricular zone.
제 12 항에 있어서,
상기 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, 및 RORA로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 증가된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법.
According to claim 12,
When the expression of one or more proteins selected from the group consisting of NRXN1, A prediction method that predicts high.
제 12 항에 있어서,
상기 LUZP2, RORA, SLC1A2, TNR, 및 XKR4로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 증가된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법.
According to claim 12,
A prediction method for predicting that the individual is likely to develop brain cancer when the expression of one or more proteins selected from the group consisting of LUZP2, RORA, SLC1A2, TNR, and XKR4, or the genes encoding them, is increased.
제 12 항에 있어서,
상기 PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 감소된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법.
According to claim 12,
Predicting that the individual is likely to develop brain cancer when the expression of one or more proteins selected from the group consisting of PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, and LAMA2, or the genes encoding them, is reduced , prediction method.
제 12 항에 있어서,
상기 CERCAM, FTL, LAMA2, MBP, PLP1, PLXDC2, 및 TF로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 감소된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법.
According to claim 12,
A prediction that predicts that the individual is likely to develop brain cancer when the expression of one or more proteins selected from the group consisting of CERCAM, FTL, LAMA2, MBP, PLP1, PLXDC2, and TF, or the genes encoding them, is reduced. method.
제 12항에 있어서,
상기 뇌암은 교모세포종(glioblastoma, GBM)인 것인, 예측 방법.
According to clause 12,
A prediction method wherein the brain cancer is glioblastoma (GBM).
(a) 제 1항의 방법으로 분리한 뇌암 기원세포에 뇌암 예방용 후보물질을 처리하는 단계; 및,
(b) 상기 뇌암 기원세포가 사멸된 경우에 상기 후보물질이 뇌암 예방 효과가 있는 것으로 판단하는 단계;를 포함하는, 뇌암 예방용 후보물질의 스크리닝 방법.
(a) treating brain cancer origin cells isolated by the method of claim 1 with a candidate substance for preventing brain cancer; and,
(b) determining that the candidate material has a brain cancer prevention effect when the brain cancer origin cells are killed.
(a) 제 1항의 방법으로 분리한 뇌암 기원세포에 뇌암 예방용 후보물질을 처리하는 단계;
(b) 상기 뇌암 기원세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 재확인하는 단계; 및,
(c) 상기 단백질, 또는 유전자의 발현 정도가 후보물질 처리 전과 비교하여 유의하게 달라진 경우에 상기 후보물질이 뇌암 예방 효과가 있는 것으로 판단하는 단계;를 포함하는, 뇌암 예방용 후보물질의 스크리닝 방법.
(a) treating brain cancer origin cells isolated by the method of claim 1 with a candidate substance for preventing brain cancer;
(b) selected from the group consisting of NRXN1, Reconfirming the expression level of one or more proteins or genes encoding them; and,
(c) determining that the candidate substance has a brain cancer prevention effect when the expression level of the protein or gene is significantly different compared to before treatment with the candidate substance.
KR1020220043848A 2022-04-08 2022-04-08 Gene-defined cancer-origin cell, and a classification method thereof KR20230144759A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220043848A KR20230144759A (en) 2022-04-08 2022-04-08 Gene-defined cancer-origin cell, and a classification method thereof
PCT/KR2023/004698 WO2023195811A1 (en) 2022-04-08 2023-04-07 Cancer progenitor cells defined by genes, and classification method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220043848A KR20230144759A (en) 2022-04-08 2022-04-08 Gene-defined cancer-origin cell, and a classification method thereof

Publications (1)

Publication Number Publication Date
KR20230144759A true KR20230144759A (en) 2023-10-17

Family

ID=88243277

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220043848A KR20230144759A (en) 2022-04-08 2022-04-08 Gene-defined cancer-origin cell, and a classification method thereof

Country Status (2)

Country Link
KR (1) KR20230144759A (en)
WO (1) WO2023195811A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101760464B1 (en) * 2010-10-13 2017-07-24 사회복지법인 삼성생명공익재단 Biomarker for Diagnosis or Confirming of Progress Stage of Glioblastoma and the Use Thereof
EP3169801A1 (en) * 2014-07-14 2017-05-24 F. Hoffmann-La Roche AG Diagnostic methods and compositions for treatment of glioblastoma
KR101838394B1 (en) * 2016-08-29 2018-03-14 연세대학교 산학협력단 Prediction method for using tissue origin of gliblastoma detecting genitic mutation and animal model for gliblastoma
KR102138131B1 (en) * 2018-02-06 2020-07-27 한국과학기술원 Animal model of brain tumor and manufacturing method of animal model
US20210222253A1 (en) * 2020-01-21 2021-07-22 10X Genomics, Inc. Identification of biomarkers of glioblastoma and methods of using the same

Also Published As

Publication number Publication date
WO2023195811A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
CN110582578B (en) Methods for cell type specific profiling to identify drug targets
John Lin et al. Identification of diverse astrocyte populations and their malignant analogs
US20210222253A1 (en) Identification of biomarkers of glioblastoma and methods of using the same
Liu et al. Single-cell analysis of long non-coding RNAs in the developing human neocortex
Norrie et al. Nucleome dynamics during retinal development
Wang et al. Single-cell profiling of human dura and meningioma reveals cellular meningeal landscape and insights into meningioma immune response
Corley et al. Epigenetic delay in the neurodevelopmental trajectory of DNA methylation states in autism spectrum disorders
Perez-Rodriguez et al. Investigation of somatic CNVs in brains of synucleinopathy cases using targeted SNCA analysis and single cell sequencing
Thomas et al. Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids
CN107614698A (en) Numerical analysis to the circulating tumor cell in blood sample
Lei et al. Spatially resolved gene regulatory and disease-related vulnerability map of the adult Macaque cortex
Cardona-Alberich et al. Elucidating the cellular dynamics of the brain with single-cell RNA sequencing
Su et al. A single-cell transcriptome atlas of glial diversity in the human hippocampus across the postnatal lifespan
Androvic et al. Spatial Transcriptomics-correlated Electron Microscopy maps transcriptional and ultrastructural responses to brain injury
Sanchez-Aguilera et al. Machine learning identifies experimental brain metastasis subtypes based on their influence on neural circuits
EP3828269B1 (en) Composition for prevention or treatment of intractable epilepsy comprising mtor inhibitor
Lu et al. Single-cell RNA-seq analysis maps the development of human fetal retina
Golan et al. Single-cell transcriptional profiling of the adult corticospinal tract reveals forelimb and hindlimb molecular specialization
KR20230144759A (en) Gene-defined cancer-origin cell, and a classification method thereof
KR20230144764A (en) Gene-defined cancer-origin cell, and a classification method thereof
Kearns et al. Dissecting the human leptomeninges at single-cell resolution
US11293065B2 (en) Compositions and methods for the quality control of stem cell preparations
Tuddenham et al. A cross-disease human microglial framework identifies disease-enriched subsets and tool compounds for microglial polarization
Kaya et al. T cells induce interferon-responsive oligodendrocytes during white matter aging
Pressl et al. Selective Vulnerability of Layer 5a Corticostriatal Neurons in Huntington’s Disease