KR20230142207A - Monascus ruber having attenuated or deleted MpigI or MpigI' gene, composition and method for increasing monascus pigment production comprising the same - Google Patents

Monascus ruber having attenuated or deleted MpigI or MpigI' gene, composition and method for increasing monascus pigment production comprising the same Download PDF

Info

Publication number
KR20230142207A
KR20230142207A KR1020220041160A KR20220041160A KR20230142207A KR 20230142207 A KR20230142207 A KR 20230142207A KR 1020220041160 A KR1020220041160 A KR 1020220041160A KR 20220041160 A KR20220041160 A KR 20220041160A KR 20230142207 A KR20230142207 A KR 20230142207A
Authority
KR
South Korea
Prior art keywords
mpigi
monascus
ruber
gene
pigment
Prior art date
Application number
KR1020220041160A
Other languages
Korean (ko)
Inventor
김효진
윤혜리
숙 한
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020220041160A priority Critical patent/KR20230142207A/en
Publication of KR20230142207A publication Critical patent/KR20230142207A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/181Heterocyclic compounds containing oxygen atoms as the only ring heteroatoms in the condensed system, e.g. Salinomycin, Septamycin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/182Heterocyclic compounds containing nitrogen atoms as the only ring heteroatoms in the condensed system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 MpigI (Monascus pigment I) 또는 MpigI' (Monascus pigment I') 유전자가 감쇄 또는 결실된 모나스커스 루버(Monascus ruber)에 관한 것이다. 본 발명의 모나스커스 루버 또는 이를 포함하는 조성물을 이용할 경우 유전자의 과발현을 일으키지 않으면서도 식품에 사용하기 적합한 모나스커스 색소의 생산을 증가시킬 수 있고, 이를 식품 산업에 이용할 수 있다.The present invention relates to Monascus ruber in which the MpigI (Monascus pigment I) or MpigI' (Monascus pigment I') gene is attenuated or deleted. When using the Monascus louver of the present invention or a composition containing it, the production of Monascus pigments suitable for use in food can be increased without causing overexpression of genes, and this can be used in the food industry.

Description

MpigI 또는 MpigI' 유전자가 감쇄 또는 결실된 모나스커스 루버, 이를 포함한 모나스커스 색소 생산 증가용 조성물 및 방법 {Monascus ruber having attenuated or deleted MpigI or MpigI' gene, composition and method for increasing monascus pigment production comprising the same}Monascus ruber having attenuated or deleted MpigI or MpigI' gene, composition and method for increasing monascus pigment production comprising the same}

MpigI 또는 MpigI' 유전자가 감쇄 또는 결실된 모나스커스 루버, 이를 포함한 모나스커스 색소 생산 증가용 조성물 및 방법에 관한 것이다.The present invention relates to a Monascus ruber in which the MpigI or MpigI' gene is attenuated or deleted, and a composition and method for increasing Monascus pigment production including the same.

모나스커스(Monascus) 색소는 폴리케타이드 성분으로, 구조적으로도 아자필론에 속하며, 이는 산소화된 이환형 핵과 4차 중심을 갖는 화합물이다. 모나스커스 색소는 모나스커스 루버(Monascus ruber)가 생산하는 것으로 알려져 있다. 주요 색소로는 황색, 주황색 및 적색을 포함하고, 이의 주성분으로 황색 색소인 모나신(monacin), 안카플라빈(ankaflavin), 주황색 색소인 모나스코루브린 (monascorubrin), 적색 색소인 모나스코루브라민(monascorubramine), 루브로펑타민(rubropunctamine) 등이 알려져 있다. 모나스커스 색소는 천연 식용 색소로 사용될 뿐만 아니라 항산화, 항종양, 항균, 항돌연변이 특성 및 잠재적인 항비만 활성으로 이어지는 여러 생물학적 기능을 가지고 있다. Monascus pigment is a polyketide component and structurally belongs to the azaphilone family, which is a compound with an oxygenated bicyclic nucleus and a quaternary center. Monascus pigment is known to be produced by Monascus ruber . Main pigments include yellow, orange, and red, and their main components include monacin and ankaflavin, which are yellow pigments, monascorubrin, which is an orange pigment, and Monascorubra, which is a red pigment. Monascorubramine, rubropunctamine, etc. are known. Monascus pigment is not only used as a natural food coloring, but also has several biological functions leading to antioxidant, antitumor, antibacterial, antimutagenic properties and potential anti-obesity activity.

종래 CRISPR/Cas9 시스템을 이용하여 특정 표적 부위를 유전적으로 조작함으로써, 유용한 산물을 얻으려는 시도가 있어왔다. 예컨대, 푸사리움 옥시스포룸(Fusarium oxysporum)에 CRISPR/Cas9 시스템을 이용하여 항균 및 항종양 활성을 갖는 진균 적색 색소인 비카베린의 색소 생산을 조작하였다.Conventionally, attempts have been made to obtain useful products by genetically manipulating specific target sites using the CRISPR/Cas9 system. For example, the production of bicarberine, a fungal red pigment with antibacterial and antitumor activity, was engineered in Fusarium oxysporum using the CRISPR/Cas9 system.

종래 모나스커스 색소의 생산성 증대를 위하여, 균주개량, 영양기질 변화 등의 실험들이 수행되어 왔다. 이에, 유전자 교정을 통해 유전자 과발현을 일으키지 않으면서 식품에 사용하기 적합한 모나스커스 색소의 생산을 증가시키는 방법에 대한 개발이 절실하다.In order to increase the productivity of conventional Monascus pigments, experiments such as strain improvement and nutritional substrate changes have been conducted. Accordingly, there is an urgent need to develop a method to increase the production of Monascus pigments suitable for use in food without causing gene overexpression through gene editing.

한국특허 0973690호Korean Patent No. 0973690

본 발명의 목적은 유전자의 과발현을 일으키지 않으면서도 식품에 사용하기 적합한 모나스커스 색소의 생산을 증가시키는 것이다.The purpose of the present invention is to increase the production of Monascus pigments suitable for use in foods without causing overexpression of genes.

1. MpigI (Monascus pigment I) 또는 MpigI' (Monascus pigment I') 유전자가 감쇄 또는 결실된 모나스커스 루버(Monascus ruber).1. Monascus ruber in which the MpigI (Monascus pigment I) or MpigI' (Monascus pigment I') gene is attenuated or deleted.

2. 위 1에 있어서, 서열번호 1로 표시되는 MpigI 유전자좌 또는 서열번호 2로 표시되는 MpigI' 유전자좌 중 적어도 하나에서 삽입(insertion), 치환(substitution) 또는 결실(deletion) 중 적어도 하나의 변이를 포함하는, 모나스커스 루버(Monascus ruber).2. In 1 above, at least one mutation of insertion, substitution, or deletion is included in at least one of the MpigI locus represented by SEQ ID NO: 1 or the MpigI' locus represented by SEQ ID NO: 2. Monascus ruber .

3. 위 1에 있어서, 서열번호 1로 표시되는 MpigI 유전자좌의 969번 내지 1452번 위치에서 삽입, 치환 또는 결실 중 적어도 하나의 변이를 포함하거나;3. In item 1 above, it contains at least one mutation among insertion, substitution, or deletion at positions 969 to 1452 of the MpigI locus represented by SEQ ID NO: 1;

서열번호 2로 표시되는 MpigI' 유전자좌의 132번 내지 539번 위치에서 삽입, 치환 또는 결실 중 적어도 하나의 변이를 포함하는, 모나스커스 루버.Monascus ruber, comprising at least one mutation of insertion, substitution, or deletion at positions 132 to 539 of the MpigI' locus shown in SEQ ID NO: 2.

4. 위 1에 있어서, 서열번호 1로 표시되는 MpigI 유전자좌에서 972번 내지 1452번 위치에서 적어도 하나의 염기가 결실되거나, 서열번호 1로 표시되는 MpigI 유전자좌에서 986번 내지 1446번 위치의 염기 중 적어도 하나의 염기가 치환된; 또는 4. In 1 above, at least one base is deleted from positions 972 to 1452 in the MpigI locus shown in SEQ ID NO: 1, or at least one base is deleted from positions 986 to 1446 in the MpigI locus shown in SEQ ID NO: 1. One base is substituted; or

서열번호 2로 표시되는 MpigI' 유전자좌에서 150번 내지 534번 위치에서 적어도 하나의 염기가 결실되거나, 서열번호 2로 표시되는 MpigI' 유전자좌에서 148번 위치 및 149번 위치 사이에 서열번호 28로 표시되는 서열이 삽입된; 모나스커스 루버.At least one base is deleted from positions 150 to 534 in the MpigI' locus shown in SEQ ID NO: 2, or at least one base is deleted between positions 148 and 149 in the MpigI' locus shown in SEQ ID NO: 28. sequence inserted; Monascus Louver.

5. 위 1 내지 4 중 어느 한 항의 모나스커스 루버(Monascus ruber)를 포함하는 모나스커스 색소 생산용 조성물.5. A composition for producing Monascus pigment containing the Monascus ruber of any one of 1 to 4 above.

6. 모나스커스 루버(Monascus ruber)에서 MpigI (Monascus pigment I) 또는 MpigI' (Monascus pigment I') 유전자를 감쇄 또는 결실시키는 단계를 포함하는 모나스커스 색소 생산을 증가시키는 방법.6. A method of increasing Monascus pigment production comprising the step of attenuating or deleting the MpigI (Monascus pigment I) or MpigI' (Monascus pigment I') gene in Monascus ruber .

7. 위 1 내지 4 중 어느 한 항의 모나스커스 루버(Monascus ruber)를 배양하는 단계를 포함하는 모나스커스 색소의 생산 방법.7. A method of producing a Monascus pigment comprising culturing the Monascus ruber of any one of 1 to 4 above.

본 발명의 모나스커스 루버 또는 이를 포함하는 조성물을 이용할 경우 유전자의 과발현을 일으키지 않으면서도 식품에 사용하기 적합한 모나스커스 색소의 생산을 증가시킬 수 있고, 이를 식품 산업에 이용할 수 있다.When using the Monascus louver of the present invention or a composition containing it, the production of Monascus pigments suitable for use in food can be increased without causing overexpression of genes, and this can be used in the food industry.

도 1a는 M. ruber 및 M. purpureus YY-1 게놈 위치의 비교를 나타낸다. 바깥쪽 고리의 왼쪽은 M. ruber의 콘티그 수를 나타내고 바깥쪽 고리의 오른쪽은 M. purpureus YY-1의 염색체 수를 나타낸다. 서로 다른 색상의 내부 리본은 두 균주 간에 공유되는 상동 서열 영역을 연결한다.
도 1b는 Monascus spp.의 시트리닌 유전자 클러스터의 도식적 표현. (He & Cox, 2016) 및 M. ruber의 시트리닌 유전자 클러스터를 나타낸다.
도 1c는 M. ruber 야생형 및 돌연변이 균주(갈색 선) 및 M. purpureus BCRC 31541 균주(파란색 선)의 HPLC 결과를 나타낸다. 각 플롯은 삼중 반복의 평균을 나타내고 오차 막대는 표준 편차를 나타낸다.
도 1d는 전체 게놈 서열에 따라 구축된 모나스커스 색소의 생합성 경로를 나타낸다. 주황색 색소는 폴리케타이드 발색단과 β-케오산의 에스테르화 반응에 의해 생성된다. 적색 색소는 주황색 색소의 아미노화 반응에 의해 형성되고 황색 색소는 주황색 색소의 환원에 의해 형성된다.
도 1e는 전체 게놈 서열에 따라 구축된 모나콜린 K의 생합성 경로를 나타낸다. 일단 모나콜린 J가 합성되면 2-메틸부탄산이 모나콜린 J에 결합하여 모나콜린 K가 형성된다.
도 2a는 MpigI 유전자좌(Locus_001524-RA) 및 MpigI' 유전자좌(Locus_001525-RA)에서 모나스커스 색소 및 이중 표적 부위의 유전자 클러스터의 도식적 표현. MpigI 및 MpigI'의 Cas9 매개 절단은 이중 sgRNA와 결합되었다.
도 2b는 절단 부위에 인접하는 프라이머를 사용하여 MpigI(왼쪽 패널) 및 MpigI'(오른쪽 패널) 유전자좌에서 표적 영역의 PCR 증폭. 레인 1: H2O; 레인 2: 야생형; 레인 3-12: 형질전환체.
도 2c, 도 2d 및 도 2e는 돌연변이

Figure pat00001
MpigI16-7,
Figure pat00002
MpigI16-15,
Figure pat00003
MpigI16-17,
Figure pat00004
MpigI16-22,
Figure pat00005
MpigI'14-5 및
Figure pat00006
MpigI'14-7의 서열 분석.
도 3a는 야생형 M. ruber의 콜로니 지름(녹색선),
Figure pat00007
MpigI16-7(황색 선),
Figure pat00008
MpigI16-15(파란색 선),
Figure pat00009
MpigI16-17(주황색 선),
Figure pat00010
MpigI16-22(진회색 선),
Figure pat00011
MpigI'14-5(카키색 선) 및 MpigI'14-7(밝은 회색 선).
각 플롯은 삼중 반복의 평균을 나타내고 오차 막대는 표준 편차를 나타낸다.
도 3b는 야생형의 콜로니 형태,
Figure pat00012
MpigI16-7,
Figure pat00013
MpigI16-15,
Figure pat00014
MpigI16-17,
Figure pat00015
MpigI16-22,
Figure pat00016
MpigI'14-5 및
Figure pat00017
MpigI'14-7. 측정은 세 번 수행되었으며 그림은 이러한 측정 중 하나를 나타낸다.
도 3c는 야생형 M. ruber(녹색 선),
Figure pat00018
MpigI16-7(황색 선),
Figure pat00019
MpigI16-15(파란색 선),
Figure pat00020
MpigI16-17(주황색 선),
Figure pat00021
MpigI16-22(진회색 선),
Figure pat00022
MpigI'14-5(카키색 선) 및
Figure pat00023
MpigI'14-7(밝은 회색 선)의 황색 색소의 색소 생산을 나타낸다.
도 3d는 야생형 M. ruber(녹색 선),
Figure pat00024
MpigI16-7(황색 선),
Figure pat00025
MpigI16-15(파란색 선),
Figure pat00026
MpigI16-17(주황색 선),
Figure pat00027
MpigI16-22(진회색 선),
Figure pat00028
MpigI '14-5(카키색 선) 및
Figure pat00029
MpigI'14-7(밝은 회색 선)의 주황색 색소의 색소 생산을 나타낸다.
도 3e는 야생형 M. ruber(녹색 선),
Figure pat00030
MpigI16-7(황색 선),
Figure pat00031
MpigI16-15(파란색 선),
Figure pat00032
MpigI16-17(주황색 선),
Figure pat00033
MpigI16-22(진회색 선),
Figure pat00034
MpigI '14-5(카키색 선) 및
Figure pat00035
MpigI'14-7(밝은 회색 선)의 적색 색소의 색소 생산을 나타낸다. 각 플롯은 삼중 반복의 평균을 나타내고 오차 막대는 표준 편차를 나타낸다.
도 3f는 야생형,
Figure pat00036
MpigI16-7,
Figure pat00037
MpigI16-15,
Figure pat00038
MpigI16-17,
Figure pat00039
MpigI16-22,
Figure pat00040
MpigI'14-5 및
Figure pat00041
MpigI'14-7의 색소 분석을 나타낸다. 측정은 세 번 수행되었으며 그림은 이러한 측정 중 하나를 나타낸다.
도 4a는 표준 시트리닌 100㎍/mL(분홍색 선)과 비교한 야생형 M. ruber 및 돌연변이 균주(갈색 선) 및 M. purpureus BCRC 31541 균주(파란색 선)의 HPLC-FLD 크로마토그램을 나타낸다. 체류 시간: 9.746분 시트리닌 측정은 3회 수행되었으며 그림은 이러한 측정 중 하나를 나타낸다.
도 4b는 야생형 및 돌연변이체의 모나콜린 K 분석. 총 모나콜린 K는 HPLC-UV 검출기를 통해 측정하였다. 각 막대 그림은 삼중 반복의 평균을 나타내고 오차 막대는 표준 편차를 나타낸다.
도 4c는 모나스커스 색소와 관련된 유전자 발현의 RT-PCR 분석을 나타낸다.Figure 1A shows a comparison of M. ruber and M. purpureus YY-1 genome positions. The left side of the outer ring represents the contig number of M. ruber, and the right side of the outer ring represents the chromosome number of M. purpureus YY-1. Internal ribbons of different colors connect regions of homologous sequence shared between the two strains.
Figure 1B is a schematic representation of the citrinin gene cluster of Monascus spp. (He & Cox, 2016) and represents the citrinin gene cluster of M. ruber.
Figure 1c shows HPLC results of M. ruber wild-type and mutant strains (brown lines) and M. purpureus BCRC 31541 strain (blue line). Each plot represents the mean of triplicate replicates and error bars represent standard deviation.
Figure 1d shows the biosynthetic pathway of Monascus pigment constructed according to the entire genome sequence. The orange pigment is produced by the esterification reaction of polyketide chromophore and β-keoic acid. Red pigment is formed by the amination reaction of orange pigment, and yellow pigment is formed by reduction of orange pigment.
Figure 1e shows the biosynthetic pathway of monacolin K constructed according to the entire genome sequence. Once monacolin J is synthesized, 2-methylbutanoic acid binds to monacolin J to form monacolin K.
Figure 2A is a schematic representation of the gene clusters of Monascus pigments and dual targeting sites at the MpigI locus (Locus_001524-RA) and MpigI' locus (Locus_001525-RA). Cas9-mediated cleavage of MpigI and MpigI' combined with dual sgRNA.
Figure 2B shows PCR amplification of the target region at the MpigI (left panel) and MpigI' (right panel) loci using primers adjacent to the cut site. Lane 1: HO; Lane 2: wild type; Lanes 3-12: Transformants.
Figure 2C, Figure 2D and Figure 2E are mutant
Figure pat00001
MpigI16-7;
Figure pat00002
MpigI16-15,
Figure pat00003
MpigI16-17;
Figure pat00004
MpigI16-22,
Figure pat00005
MpigI'14-5 and
Figure pat00006
Sequence analysis of MpigI'14-7.
Figure 3a shows colony diameter (green line) of wild-type M. ruber;
Figure pat00007
MpigI16-7 (yellow line);
Figure pat00008
MpigI16-15 (blue line);
Figure pat00009
MpigI16-17 (orange line);
Figure pat00010
MpigI16-22 (dark gray line);
Figure pat00011
MpigI'14-5 (khaki line) and MpigI'14-7 (light gray line).
Each plot represents the mean of triplicate replicates and error bars represent standard deviation.
Figure 3b shows the colony morphology of the wild type;
Figure pat00012
MpigI16-7;
Figure pat00013
MpigI16-15,
Figure pat00014
MpigI16-17;
Figure pat00015
MpigI16-22,
Figure pat00016
MpigI'14-5 and
Figure pat00017
MpigI'14-7. Measurements were performed in triplicate and the figure represents one of these measurements.
Figure 3C shows wild-type M. ruber (green line);
Figure pat00018
MpigI16-7 (yellow line);
Figure pat00019
MpigI16-15 (blue line);
Figure pat00020
MpigI16-17 (orange line);
Figure pat00021
MpigI16-22 (dark gray line);
Figure pat00022
MpigI'14-5 (khaki line) and
Figure pat00023
Indicates pigment production of the yellow pigment of MpigI'14-7 (light gray line).
Figure 3d shows wild type M. ruber (green line);
Figure pat00024
MpigI16-7 (yellow line);
Figure pat00025
MpigI16-15 (blue line);
Figure pat00026
MpigI16-17 (orange line);
Figure pat00027
MpigI16-22 (dark gray line);
Figure pat00028
MpigI '14-5 (khaki line) and
Figure pat00029
Indicates pigment production of the orange pigment of MpigI'14-7 (light gray line).
Figure 3e shows wild-type M. ruber (green line);
Figure pat00030
MpigI16-7 (yellow line);
Figure pat00031
MpigI16-15 (blue line);
Figure pat00032
MpigI16-17 (orange line);
Figure pat00033
MpigI16-22 (dark gray line);
Figure pat00034
MpigI '14-5 (khaki line) and
Figure pat00035
Indicates pigment production of the red pigment of MpigI'14-7 (light gray line). Each plot represents the mean of triplicate replicates and error bars represent standard deviation.
Figure 3f is wild type,
Figure pat00036
MpigI16-7;
Figure pat00037
MpigI16-15;
Figure pat00038
MpigI16-17;
Figure pat00039
MpigI16-22,
Figure pat00040
MpigI'14-5 and
Figure pat00041
Chromogenic analysis of MpigI'14-7 is shown. Measurements were performed in triplicate and the figure represents one of these measurements.
Figure 4A shows HPLC-FLD chromatograms of wild-type M. ruber and mutant strains (brown line) and M. purpureus BCRC 31541 strain (blue line) compared to standard citrinin 100 μg/mL (pink line). Retention time: 9.746 minutes Citrinin measurements were performed in triplicate and the figure represents one of these measurements.
Figure 4b: Monacolin K analysis of wild type and mutants. Total monacolin K was measured using HPLC-UV detector. Each bar plot represents the mean of triplicate replicates and error bars represent standard deviation.
Figure 4c shows RT-PCR analysis of gene expression associated with Monascus pigment.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 MpigI (Monascus pigment I) 또는 MpigI' (Monascus pigment I') 유전자가 감쇄 또는 결실된 모나스커스 루버(Monascus ruber)에 관한 것이다.The present invention relates to Monascus ruber in which the MpigI (Monascus pigment I) or MpigI' (Monascus pigment I') gene is attenuated or deleted.

"감쇄(attenuation)"는 대상 유전자의 발현이 감소한 것을 나타낼 수 있고, "결실(deletion)"은 대상 유전자의 발현이 상실된 것을 나타낼 수 있다. 감쇄 또는 결실은 유전자 서열의 변이, 예를 들면, 유전자좌의 변형(예컨대 치환, 결실, 삽입 또는 그들의 조합)에 의하여 발생할 수 있다. 상기 감쇄 또는 결실은 유전자 조절 부의 서열의 변이(예컨대, 치환, 결실, 삽입 또는 그들의 조합)에 의하여 발생할 수 있다.“Attenuation” may indicate a decrease in the expression of the gene of interest, and “deletion” may indicate loss of expression of the gene of interest. Attenuation or deletion may result from a mutation in the gene sequence, for example, a modification of the locus (e.g., substitution, deletion, insertion, or combination thereof). The attenuation or deletion may occur due to a mutation in the sequence of the gene regulatory portion (eg, substitution, deletion, insertion, or a combination thereof).

"유전자좌(locus)" 또는 "유전자좌(loci)"는 유전자 (또는 중요 서열)의 특정 위치(들), DNA 서열, 폴리펩타이드-암호화 서열, 또는 유기체 게놈의 염색체 상의 자리를 포함한다. 예를 들어, “MpigI 유전자좌"는 MpigI 유전자의 특정 위치, MpigI DNA 서열, MpigI-암호화 서열, 또는 이러한 서열이 존재하는 곳으로 확인된 유기체 게놈의 염색체 상의 MpigI 자리를 지칭할 수도 있다. MpigI 유전자좌는, 제한되는 것이 아니라, 인핸서, 프로모터, 5' 및/또는 3' UTR, 또는 이것들의 조합을 포함하는 MpigI 유전자의 조절 요소를 포함할 수도 있다. 당업자들은, 일부 구체예에서, 염색체가 수백 개 또는 심지어 수천 개의 유전자를 함유할 수도 있으며 다른 종들 간의 비교시 유사한 유전자좌의 물리적 공존(co-localization)을 입증할 수도 있다는 것을 인정할 것이다.“Locus” or “loci” includes a specific location(s) of a gene (or key sequence), DNA sequence, polypeptide-coding sequence, or location on a chromosome of the genome of an organism. For example, “MpigI locus” may refer to a specific location in the MpigI gene, a MpigI DNA sequence, a MpigI-coding sequence, or a MpigI locus on a chromosome in the genome of an organism where such sequences have been identified. The MpigI locus is , but is not limited to regulatory elements of the MpigI gene, including enhancers, promoters, 5' and/or 3' UTRs, or combinations thereof. Those skilled in the art will recognize that in some embodiments, the chromosomes have hundreds or It will be appreciated that they may even contain thousands of genes and that comparisons between different species may demonstrate physical co-localization of similar loci.

MpigI와 MpigI는 동일한 표현형을 가지나, 다른 서열을 갖는 별개의 유전자로, MpigI 유전자좌는 서열번호 1로 표시되는 서열이고, Mpig I' 유전자좌는 서열번호 2로 표시되는 서열이다.MpigI and MpigI have the same phenotype, but are separate genes with different sequences. The MpigI locus is the sequence represented by SEQ ID NO: 1, and the Mpig I' locus is the sequence represented by SEQ ID NO: 2.

서열번호 1: ATGTGGATTGGCCTGCTCTTCGGCGTGATGTGCCTGGGCGCTGCTTTTCAGCGCCAGCGGTCGTCGCAGATGCCCGACCCGCAGCAGCTGGTCCGTCTGTACCGGGAGAGGATCATCCAGTGCCTGGTCGTGGGGAAATACGCCAAATGCGCGCCGTACACGCTCGAGACGCTGCTGCTCTACCTGAACATCGAGTCCCTGCAGAGCGAGGACACCCGCGTCGAGACCTGGATCCTGCTGGGCGTCATCGTGCGCCTGGCGCTGCGCATGGGCTACCACCGCGATGCCAGCCACTTCCCGCACATCTCCCCCTTCGCGGCCGAGATGCGCCGGCGCGTCTGGGCTCTCATCGTCCAGTTCSEQ ID NO: 1: ATGTGGATTGGCCTGCTCTTCGGCGTGATGTGCCTGGGCGCTGCTTTTCAGCGCCAGCGGTCGTCGCAGATGCCCGACCCGCAGCAGCTGGTCCGTCTGTACCGGGAGAGGATCATCCAGTGCCTGGTCGTGGGGAAATACGCCAAATGCGCGCCGTACACGCTCGAGACGCTGCTGCTCTACCTGAACATCGAGTCCCTGCAGAGCGAGGACACCCGCGTCGAGACCTGGATCCTGCT GGGCGTCATCGTGCGCCTGGCGCTGCGCATGGGCTACCACCGCGATGCCAGCCACTTCCCGCACATCTCCCCCTTCGCGGCCGAGATGCGCCGGCGCGTCTGGGCTCTCATCGTCCAGTTC

GACTGTCTGACATCTGCCCAGGTCGGGCTGCCGCGCATGATCCGCGACTCGCAGTCGGACACGGCGGAGCCGCGCAACCTGCTCGACGAAGACTTCGACGAGGACAGCACTGCCCTGCCGCTGCCCCAGCCCAGCACGGTGCAGACGCCGGTGCAGTATATCGTGGCGAAGAACCGCATTGTCGCGGTCTTCGGCCGCATCTGCGACCTGATCACATCCAGCAGAGCGCCCTCCTACACCGAAGTGATGCAGCTGGACGAAACCCTACATGAGACCTACCGCTGCGTGCCGGGGGGCCTGCAGATGCGGCCGATGACCAGATCGCTCACGGACGGGGCGACGGTTATCCTGCGCCGGATGTACATTGTCCTGCTCTACCACAAGGCCGTCTGCATGCTGCACCACCGCTACATGGTCCCGGCCCGGACGGACGGGCGTTATGCCTACTCCCGCTCGACCTGTGTTGCGGCCGCTCTGCAGATCGTCTCGCACCAGTGGACGCTGCATAATGAAGCCCAGCCGGGAGGCCGTCTGTACGAAGAGCGCTGGAAGGTCTCATCGCTCGTCAAGAGCACCTTCTTCCTGGGCACTACGATCCTGTGCGCAGAACTCGACTGCTCCCTCCACAAGGAGCCCGCCGACGCCGAGCAATCGCCGGCCGAGACAGGCCTGCGGCAGCAGGTCATCCAGGCTCTGCATAATTCGCACACGATCTGGCGGGACTGTCTGACATCTGCCCAGGTCGGGCTGCCGCGCATGATCCGCGACTCGCAGTCGGACACGGCGGAGCCGCGCAACCTGCTCGACGAAGACTTCGACGAGGACAGCACTGCCCTGCCGCTGCCCCAGCCCAGCACGGTGCAGACGCCGGTGCAGTATATCGTGGCGAAGAACCGCATTGTCGCGGTCTTCGGCCGCATCTGCGACCTGATCACATCCAGCAGAGCGCCCTCCTACACCGAAGTGATGCAGCTG GACGAAACCCTACATGAGACCTACCGCTGCGTGCCGGGGGGCCTGCAGATGCGGCCGATGACCAGATCGCTCACGGACGGGGCGACGGTTATCCTGCGCCGGATGTACATTGTCCTGCTCTACCACAAGGCCGTCTGCATGCTGCACCACCGCTACATGGTCCCGGCCCGGACGGACGGGCGTTATGCCTACTCCCGCTCGACCTGTGTTGCGGCCGCTCTGCAGATCGTCTCGCACCAGTGGACGCTGCATAA TGAAGCCCAGCCGGGAGGCCGTCTGTACGAAGAGCGCTGGAAGGTCTCATCGCTCGTCAAGAGCACCTTCTTCCTGGGCACTACGATCCTGTGCGCAGAACTCGACTGCTCCCTCCACAAGGAGCCCGCCGACGCCGAGCAATCGCCGGCCGAGACAGGCCTGCGGCAGCAGGTCATCCAGGCTCTGCATAATTCGCACACGATCTGGCGG

CAGGCTAGTGACTCCTCGCGCGAGGCCAGGCTTGCGGCTGATGTGTCCGGTCTGCTTCTCACCCGGGCACAGAGGAAATGGAAGCTAGAGATGCGGCAAGCCGGAAACATGGGTGTGTATTCTCTCTCTGTCTGTCTCCGTCTGCCTCTGACTCTTGCACCTCGACTGAGATACTGTTCACATAGGCATGTCGTCGGAAACCCCCTTCATGGGAGTGTCAATCCCGCCACAGAGCACTACAATGGCTGCTGCCGCCGTTGCACAGCCGCTGAGCATGCCGCAGCTGCTGCAGTTCAATACCGCGGCGCACATAGACTATAGCGATGTCGGTGCGGAGCCGTTGGGTCTTGTAAGCGCACCTCTGGGCTACGGCTGACAGGCTAGTGACTCCTCGCGCGAGGCCAGGCTTGCGGCTGATGTGTCCGGTCTGCTTCTCACCCGGGCACAGAGGAAATGGAAGCTAGAGATGCGGCAAGCCGGAAACATGGGTGTGTATTCTCTCTCTGTCTGTCTCCGTCTGCCTCTGACTCTTGCACCTCGACTGAGATACTGTTCACATAGGCATGTCGTCGGAAACCCCCTTCATGGGAGTGTCAATCCCGCCACAGAGCACTACAAATGGCTGCTGCC GCCGTTGCACAGCCGCTGAGCATGCCGCAGCTGCTGCAGTTCAATACCGCGGCGCACATAGACTATAGCGATGTCGGTGCGGAGCCGTTGGGTCTTGTAAGCGCACCTCTGGGCTACGGCTGA

서열번호 2: TCAAGTCAGCCGGCGGGGGATCATGGCTGCCACGGCCGCAGAAACTGCCTCACCAGGGGCGATGTCTTTGTTGATGAAATACTCGGTCACCAGTCGGTCGACCAGCGGCCGCGGGAGCATCGCCGACAGGATCTCCTCCCTGCTCACACAACGGTAGCTCCCGAACAGGATATCGGGCTCGTCGGGCTCTGTAGGCTCTGCCGCAGCTCCTGGCCCTTGGAAGGGCGCGCTGTCGACCGGATTCTGCTCCTCGCGGAAGTGGTCCCGGAGCTCTGCAATCTGGGACAGCGTGCTGGTCAGCCAAGGATCAAGCCGGGGGAGGGGGGGCGGCCACATTACCCCGTCCAAGATGGCCGTCCAGTGCGTACTCTCGACGTAGGCAGTCTCCATCTTCTCGATCTTGATGCGACCGAAGCGGTCCGACAGCTGCGGTGCCTCCTCCCTAGCCGCCGAGTCGGCCGCATTGACGGCCTCGCCAGGCGCCGTGGCGGGAGCGGCAGCGCCAGCGGCAGCAGCAGCTCCTTCAAAGCCAGCTGCGGTCGAGTCGGACGGCATGGGCTCTTTGGCGGATGGCGTTCTGCCCGCGTGGACCGTGTCCATCAACGTGGTGATCAGCCGCTCCAGCTGGCCGATCCGCTCCGGCAGGTTTTCAACGCCCGCCGGACGGCCCTGGGCGCGGTCGATGCGCTCGGGCGCTGCACTGGGAGGGCGGACATAGGTGCACGACAGCGAAAGGCCGCGGCGGACACACGTTTCGCATGGCTGGCGGCGGTCACATCGGAGCCTGGCAGGTCAGTGAGATGGGCATCCGCGCATCCGGGCATSEQ ID NO: 2: TCAAGTCAGCCGGCGGGGGATCATGGCTGCCACGGCCGCAGAAACTGCCTCACCAGGGGGCGATGTCTTTGTTGATGAAATACTCGGTCACCAGTCGGTCGACCAGCGGCCGCGGGAGCATCGCCGACAGGATCTCCTCCCTGCTCACACAACGGTAGCTCCCGAACAGGATATCGGGCTCGTCGGGCTCTGTAGGCTCTGCCGCAGCTCCTGGCCCTTGGAAGGGCGCGCTGTCGACC GGATTCTGCTCCTCGCGGAAGTGGTCCCGGAGCTCTGCAATCTGGGACAGCGTGCTGGTCAGCCAAGGATCAAGCCGGGGGAGGGGGGGCGGCCACATTACCCCGTCCAAGATGGCCGTCCAGTGCGTACTCTCGACGTAGGCAGTCTCCATCTTCTCGATCTTGATGCGACCGAAGCGGTCCGACAGCTGCGGTGCCTCCTCCCTAGCCGCCGAGTCGGCCGCATTGACGGCCTCGCCAGGCGCCGTGGCGGGAG CGGCAGCGCCAGCGGCAGCAGCAGCTCCTTCAAAGCCAGCTGCGGTCGAGTCGGACGGCATGGGCTCTTTGGCGGATGGCGTTCTGCCCGCGTGGACCGTGTCCATCAACGTGGTGATCAGCCGCTCCAGCTGGCCGATCCGCTCCGGCAGGTTTTCAACGCCCGCCGGACGGCCCTGGGCGCGGTCGATGCGCTCGGGCGCTGCACTGGGAGGGCGGACATAGGTGCACGACAGCGAAAGGCCGCGGCGGACACACACA CACGTTTCGCATGGCTGGCGGCGGTCACATCGGAGCCTGGCAGGTCAGTGAGATGGGCATCCGCGCATCCGGGCAT

모나스커스 루버(Monascus ruber, M.ruber)는 홍국균 (Monascus) 균주로 분류되는 종으로서, 모나스커스(Monascus) 색소를 생성하는 것으로 알려져 있다. 모나스커스 색소는 천연 식용 색소로 사용되며, 항산화, 항종양, 항균, 항돌연변이 특성 등을 가지고 있다.Monascus ruber ( M. ruber ) is a species classified as a Monascus strain and is known to produce Monascus pigment. Monascus pigment is used as a natural food coloring and has antioxidant, antitumor, antibacterial, and antimutagenic properties.

모나스커스 루버에는 시트리닌 생합성의 유전자 클러스터가 대부분 손실되어 곰팡이 독소성분으로 알려진 시트리닌을 생산하지 않아 유용하다.Monascus louver is useful because it has lost most of the gene cluster for citrinin biosynthesis and does not produce citrinin, a known fungal toxin.

일반적으로 야생형 모나스커스 루버는 주로 황색 색소를 생산하였고, 적색 및 주황색 색소 생산은 저하된다. 이와 달리, MpigI 유전자가 감쇄 또는 결실된 모나스커스 루버는 증가된 황색 색소와 함께 적색 및 주황색 색소를 생성하는 능력을 얻을 수 있다.In general, wild-type Monascus ruber mainly produced yellow pigment, and red and orange pigment production was reduced. In contrast, Monascus ruber with the MpigI gene attenuated or deleted can gain the ability to produce red and orange pigments along with increased yellow pigment.

또한, MpigI 또는 MpigI' 유전자를 감쇄 또는 결실하더라도 모나스커스 루버의 생장에 문제가 없으며, 여전히 시트리닌을 생산하지 않아 독성 문제를 일으키지 않는다. In addition, even if the MpigI or MpigI' gene is attenuated or deleted, there is no problem with the growth of Monascus ruber, and it still does not produce citrinin, so it does not cause toxicity problems.

따라서, 모나스커스 루버에서 MpigI 또는 MpigI' 유전자의 감쇄 또는 결실을 일으킨다면, 모나스커스 색소 생산을 증가시킬 수 있다. 특히, MpigI 또는 MpigI' 유전자의 감쇄 또는 결실은 유전자 과발현 없이도 생산물을 증가시킬 수 있으며, 상기 색소는 독성 문제가 없어 식품에 사용하기 적합하며 유용하다.Therefore, if the MpigI or MpigI' gene is attenuated or deleted in Monascus ruber, Monascus pigment production can be increased. In particular, attenuation or deletion of the MpigI or MpigI' gene can increase the product without overexpressing the gene, and the pigment has no toxicity problems, making it suitable and useful for use in foods.

MpigI (Monascus pigment I) 유전자의 감쇄 또는 결실은 서열번호 1로 표시되는 MpigI 유전자좌 및/또는 서열번호 2로 표시되는 MpigI 유전자좌에서 유전자 서열의 변이, 예를 들면, 치환, 결실, 삽입 또는 그들의 조합에 의하여 발생할 수 있다.Attenuation or deletion of the MpigI (Monascus pigment I) gene is caused by a mutation in the gene sequence at the MpigI locus represented by SEQ ID NO: 1 and/or the MpigI locus represented by SEQ ID NO: 2, such as substitution, deletion, insertion, or a combination thereof. It may occur due to

MpigI 또는 Mpig I’ 유전자의 감쇄 또는 결실이 되는 위치는 MpigI 또는 Mpig I’유전자를 비활성화시킬 수 있다면 MpigI 또는 Mpig I’ 유전자좌 내에서 그 위치는 제한되지 않는다.The location of attenuation or deletion of the MpigI or Mpig I' gene is not limited within the MpigI or Mpig I' locus as long as the MpigI or Mpig I' gene can be inactivated.

본 발명의 모나스커스 루버는 서열번호 1로 표시되는 MpigI 유전자좌에서 삽입(insertion), 치환(substitution) 또는 결실(deletion) 중 적어도 하나의 변이를 포함할 수 있다. 구체적으로, 본 발명의 모나스커스 루버는 서열번호 1로 표시되는 MpigI 유전자좌의 969번 내지 1452번 위치에서 삽입, 치환 또는 결실 중 적어도 하나의 변이를 포함할 수 있다.Monascus ruber of the present invention may include at least one mutation among insertion, substitution, or deletion at the MpigI locus represented by SEQ ID NO: 1. Specifically, the Monascus ruber of the present invention may include at least one mutation among insertions, substitutions, or deletions at positions 969 to 1452 of the MpigI locus represented by SEQ ID NO: 1.

예를 들어, 본 발명의 모나스커스 루버는 서열번호 1로 표시되는 MpigI 유전자좌에서 972번 내지 1452번 위치에서 적어도 하나의 염기가 결실되거나, 서열번호 1로 표시되는 MpigI 유전자좌에서 986번 내지 1446번 위치의 염기 중 적어도 하나의 염기가 치환될 것일 수 있다.For example, the Monascus ruber of the present invention has at least one base deleted at positions 972 to 1452 in the MpigI locus shown in SEQ ID NO: 1, or at positions 986 to 1446 in the MpigI locus shown in SEQ ID NO: 1. At least one base among the bases may be substituted.

일 실시예에 따르면, 본 발명의 모나스커스 루버는 서열번호 1로 표시되는 MpigI 유전자좌에서 986번 내지 1452번 위치의 염기가 결실된 것일 수 있다. 본 발명의 모나스커스 루버는 서열번호 1로 표시되는 MpigI 유전자좌에서 986번 내지 1446번 위치의 염기가 결실된 것일 수 있다.According to one embodiment, the Monascus ruber of the present invention may have the base at positions 986 to 1452 in the MpigI locus represented by SEQ ID NO: 1 deleted. The Monascus ruber of the present invention may be one in which the base at positions 986 to 1446 in the MpigI locus represented by SEQ ID NO: 1 has been deleted.

다른 실시예에 따르면, 본 발명의 모나스커스 루버는 서열번호 1로 표시되는 MpigI 유전자좌에서 972번 내지 1452번 위치의 염기가 결실된 것일 수 있다. 본 발명의 모나스커스 루버는 서열번호 1로 표시되는 MpigI 유전자좌에서 972번 내지 1448번 위치의 염기가 결실된 것일 수 있다.According to another example, the Monascus ruber of the present invention may have the base at positions 972 to 1452 in the MpigI locus represented by SEQ ID NO: 1 deleted. Monascus ruber of the present invention may have the base at positions 972 to 1448 deleted from the MpigI locus shown in SEQ ID NO: 1.

다른 실시예에 따르면, 본 발명의 모나스커스 루버는 서열번호 1로 표시되는 MpigI 유전자좌에서 986번, 988번, 991번 내지 992번, 994번 내지 995번, 1425번 내지 1429번, 1431번 내지 1433번, 1437번 내지 1438번, 1440번 내지 1441번, 1444번 및 1446번 위치의 염기가 치환된 것일 수 있다.According to another embodiment, the Monascus ruber of the present invention has positions 986, 988, 991 to 992, 994 to 995, 1425 to 1429, and 1431 to 1433 at the MpigI locus represented by SEQ ID NO: 1. The bases at positions 1437 to 1438, 1440 to 1441, 1444, and 1446 may be substituted.

다른 실시예에 따르면, 본 발명의 모나스커스 루버는 서열번호 1로 표시되는 MpigI 유전자좌에서 986번, 988번, 991번 내지 992번, 994번 내지 995번, 1425번 내지 1435번, 1437번 내지 1439번, 1441번 내지 1442번 및 1445번 위치의 염기가 치환된 것일 수 있다.According to another embodiment, the Monascus ruber of the present invention has positions 986, 988, 991 to 992, 994 to 995, 1425 to 1435, and 1437 to 1439 at the MpigI locus represented by SEQ ID NO: 1. The bases at positions 1441 to 1442 and 1445 may be substituted.

본 발명의 모나스커스 루버는 서열번호 2로 표시되는 MpigI' 유전자좌에서 삽입(insertion), 치환(substitution) 또는 결실(deletion) 중 적어도 하나의 변이를 포함할 수 있다. 구체적으로, 본 발명의 모나스커스 루버는 서열번호 2로 표시되는 MpigI' 유전자좌의 132번 내지 539번 위치에서 삽입, 치환 또는 결실 중 적어도 하나의 변이를 포함할 수 있다.Monascus ruber of the present invention may contain at least one mutation among insertion, substitution, or deletion at the MpigI' locus represented by SEQ ID NO: 2. Specifically, the Monascus ruber of the present invention may include at least one mutation among insertions, substitutions, or deletions at positions 132 to 539 of the MpigI' locus shown in SEQ ID NO: 2.

예를 들어, 본 발명의 모나스커스 루버는 서열번호 2로 표시되는 MpigI' 유전자좌에서 150번 내지 534번 위치에서 적어도 하나의 염기가 결실되거나, 서열번호 2로 표시되는 MpigI' 유전자좌에서 148번 위치 및 149번 위치 사이에서 삽입이 일어난 것일 수 있다.For example, the Monascus ruber of the present invention has at least one base deleted at positions 150 to 534 in the MpigI' locus shown in SEQ ID NO: 2, or at position 148 in the MpigI' locus shown in SEQ ID NO: 2 and An insertion may have occurred between positions 149.

일 실시예에 따르면, 본 발명의 모나스커스 루버는 서열번호 2로 표시되는 MpigI' 유전자좌에서 150번 내지 534번 위치의 염기가 결실된 것일 수 있다.According to one embodiment, the Monascus ruber of the present invention may be one in which the base at positions 150 to 534 in the MpigI' locus represented by SEQ ID NO: 2 has been deleted.

다른 실시예에 따르면, 본 발명의 모나스커스 루버는 서열번호 2로 표시되는 MpigI' 유전자좌에서 148번 위치 및 149번 위치 사이에 서열번호 28로 표시되는 서열이 삽입된 것일 수 있다. 서열번호 28: TAATACGACTCACTATAGGAGCTCCTTCAAAGCCAGCTGGCTTTAGAGC.According to another example, the Monascus ruber of the present invention may have the sequence shown in SEQ ID NO: 28 inserted between positions 148 and 149 in the MpigI' locus shown in SEQ ID NO: 2. SEQ ID NO: 28: TAATACGACTCACTATAGGAGCTCCTTCAAAGCCAGCTGGCTTTAGAGC.

MpigI 또는 MpigI' 유전자의 감쇄 또는 결실은 당 분야에 공지된 방법으로 수행될 수 있고, 예컨대 T-DNA(transfer-DNA), siRNA(small interfering RNA), shRNA(short hairpin RNA), miRNA(microRNA), 리보자임(ribozyme), PNA(peptide nucleic acids) 또는 CRISPR/Cas9 뉴클레아제((Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated sequences9 nuclease)에 의한 것일 수 있다.Attenuation or deletion of the MpigI or MpigI' gene can be performed by methods known in the art, such as transfer-DNA (T-DNA), small interfering RNA (siRNA), short hairpin RNA (shRNA), and microRNA (miRNA). , ribozyme, PNA (peptide nucleic acids), or CRISPR/Cas9 nuclease (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated sequences9 nuclease).

예를 들어, CRISPR/Cas9 뉴클레아제를 이용하는 경우, MpigI 유전자좌에 포함된 PAM(Proto-spacer-adjacent Motif) 서열에 위치하거나 PAM 서열에 인접하여 위치하는 소정의 서열들을 절단하여 결실, 삽입, 또는 치환의 변이를 일으킬 수 있고, 결과적으로 MpigI(Monascus pigment I) 유전자의 기능을 저해할 수 있다.For example, when using CRISPR/Cas9 nuclease, certain sequences located in or adjacent to the PAM (Proto-spacer-adjacent Motif) sequence included in the MpigI locus are cut to delete, insert, or Substitution mutations can occur and, as a result, the function of the MpigI (Monascus pigment I) gene can be inhibited.

예컨대 MpigI 유전자의 감쇄 또는 결실은 서열번호 1로 표시되는 MpigI 유전자좌의 969번 내지 1452번 위치에 삽입, 치환 또는 결실 중 적어도 하나의 변이를 포함함으로써 발생할 수 있다.For example, attenuation or deletion of the MpigI gene may occur by including at least one mutation among insertion, substitution, or deletion at positions 969 to 1452 of the MpigI locus shown in SEQ ID NO: 1.

예컨대 MpigI 유전자의 감쇄 또는 결실은 서열번호 2로 표시되는 MpigI 유전자좌의 132번 내지 539번 위치에 삽입, 치환 또는 결실 중 적어도 하나의 변이를 포함함으로써 발생할 수 있다.For example, attenuation or deletion of the MpigI gene may occur by including at least one mutation among insertion, substitution, or deletion at positions 132 to 539 of the MpigI locus shown in SEQ ID NO: 2.

또한, 본 발명은 모나스커스 색소 생산용 조성물에 관한 것이다. Additionally, the present invention relates to a composition for producing Monascus pigment.

본 발명의 조성물은 전술한 모나스커스 루버(Monascus ruber)를 포함한다. The composition of the present invention includes the Monascus ruber described above.

본 발명의 조성물은 MpigI 또는 Mpig I’ 유전자가 감쇄 또는 결실된 모나스커스 루버의 파쇄된 세포벽 분획, 생균, 사균, 건조균 또는 배양물을 유 효성분으로 포함할 수 있다. 상기 배양물은 본 발명의 홍 국균 변이주를 액체배지 또는 고체배지에서 배양한 배양물 자체, 상기 배양물을 여과 또는 원심분리하여 균주를 제거한 여액(원심분리한 상등액) 등을 포함할 수 있다.The composition of the present invention may contain as active ingredients the shattered cell wall fraction, live cells, dead cells, dried cells or cultures of Monascus ruber in which the MpigI or Mpig I' gene is attenuated or deleted. The culture may include the culture itself obtained by culturing the red aspergillus variant of the present invention on a liquid medium or solid medium, a filtrate obtained by filtering or centrifuging the culture to remove the strain (centrifuged supernatant), etc.

또한, 상기 조성물은 필요에 따라 당업계 공지된 담체, 부형제 또는 희석제를 더 포함할 수 있다. 구체적으로 담체, 부형제 및 희석제의 예를 들면, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네 슘 스테아레이트 및 광물유를 포함할 수 있다.Additionally, the composition may further include carriers, excipients, or diluents known in the art, if necessary. Specifically, examples of carriers, excipients, and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, and methyl. It may contain cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.

또한, 상기 조성물은 필요에 따라 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 더 포함할 수 있다.In addition, the composition may further include fillers, anti-coagulants, lubricants, wetting agents, fragrances, emulsifiers, and preservatives, if necessary.

또한, 본 발명은 모나스커스 색소 생산을 증가시키는 방법에 관한 것이다. The present invention also relates to a method of increasing Monascus pigment production.

본 발명의 방법은 모나스커스 루버(Monascus ruber)에서 MpigI (Monascus pigment I) 또는 Mpig I’ (Monascus pigment I') 유전자를 감쇄 또는 결실시키는 단계를 포함한다.The method of the present invention includes the step of attenuating or deleting the MpigI (Monascus pigment I) or Mpig I' (Monascus pigment I') gene in Monascus ruber.

MpigI 또는 Mpig I' 유전자의 감쇄 또는 결실은 당분야에 공지된 방법에 의해 수행될 수 있다. 예를 들면, CRISPR/Cas 시스템, 아연 핑거 뉴클레아제(ZFN), 전사 활성인자 유사 효과기 뉴클레아제(TALEN), 메가뉴클레아제, 또는 이들의 임의의 조합에 의해 달성될 수 있다.Attenuation or deletion of the MpigI or Mpig I' gene can be performed by methods known in the art. For example, this can be achieved by the CRISPR/Cas system, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), meganucleases, or any combination thereof.

일 실시예에 따르면, MpigI 또는 Mpig I' 유전자의 특정 표적 부위를 유전적으로 조작하기 위해서 CRISPR/Cas9 시스템을 사용할 수 있다. According to one embodiment, the CRISPR/Cas9 system can be used to genetically manipulate a specific target site of the MpigI or Mpig I' gene.

CRISPR/Cas9 시스템에서 MpigI 또는 Mpig I' 유전자의 표적 부위는 "gRNA(guide RNA)"에 의하여 특정될 수 있다. gRNA는 DNA 중에 어떤 부분을 변형할 것인지 안내하는 가이드 역할을 하는 RNA로, 표적 서열에 상보적 결합이 가능하므로, CRISPR가 이러한 gRNA의 특성을 활용하여 표적 서열에 결합할 수 있다. 한편, gRNA는 표적 서열로부터 당해 공지된 방법에 의해 제작될 수 있다.In the CRISPR/Cas9 system, the target site of the MpigI or Mpig I' gene can be specified by “gRNA (guide RNA).” gRNA is an RNA that acts as a guide to guide which part of DNA to modify, and is capable of complementary binding to the target sequence, so CRISPR can utilize this characteristic of gRNA to bind to the target sequence. Meanwhile, gRNA can be produced from a target sequence by a known method.

일 실시예에 따르면, sgRNA는 듀얼 sgRNA일 수 있다. 단일 sgRNA 대신 듀얼 sgRNA를 사용하는 경우, 표적 부위에 큰 인델이 검출될 수 있으므로 듀얼 sgRNA는 표적 유전자의 비활성화에 유용할 수 있다.According to one embodiment, the sgRNA may be a dual sgRNA. When dual sgRNA is used instead of single sgRNA, large indels may be detected in the target region, so dual sgRNA may be useful for inactivation of target genes.

"CRISPR/Cas9"이란 3세대 유전자 가위의 한 종류이며, "gRNA"와 DNA를 절단하는 효소인 "Cas9"으로 이루어져 있다. CRISPR는 박테리아와 고세균과 같은 원핵생물 유기체의 게놈에서 발견되는 DNA 서열이다. Cas9은 CRISPR 서열에 상보적인 DNA의 특정 줄기를 인식하고 절단하기 위하여 가이드로서 CRISPR 서열을 사용하는 효소이다. 여기서 gRNA는 DNA의 이중 나선을 절단하는 제한효소인 Cas9과 복합체를 형성한다. 유전자를 조작하고 싶은 부분에 이 효소를 넣으면 목표한 DNA 서열을 찾아내 Cas9가 DNA를 절단한다. 세포는 DNA가 절단되었을 때, 복구하는 기능을 가지고 있다. 이 과정이 반복되면 "복구 오류"가 나타나고 원래의 서열과 몇 개의 염기에서 차이를 보이게 된다. 이러한 차이가 생기면 CRISPR는 작동을 멈추고, 복구 오류로 변화된 서열은 원래의 기능을 발휘하지 못하게 된다.“CRISPR/Cas9” is a type of third-generation genetic scissors and consists of “gRNA” and “Cas9,” an enzyme that cuts DNA. CRISPR is a DNA sequence found in the genomes of prokaryotic organisms such as bacteria and archaea. Cas9 is an enzyme that uses the CRISPR sequence as a guide to recognize and cleave specific strands of DNA that are complementary to the CRISPR sequence. Here, gRNA forms a complex with Cas9, a restriction enzyme that cuts the double helix of DNA. When this enzyme is placed in the part where the gene is to be manipulated, the target DNA sequence is found and Cas9 cuts the DNA. Cells have the ability to repair DNA when it is broken. If this process is repeated, a “recovery error” appears and several bases differ from the original sequence. When this difference occurs, CRISPR stops working, and the sequence changed due to a repair error cannot perform its original function.

이와 같은 방식으로 절단하고자 하는 유전자를 정확하게 찾아내, 녹아웃 시키는 것이 가능해지며, 또한 이 기술을 활용해 절단뿐만 아니라 원하는 곳에 유전자를 추가할 수 있다. In this way, it becomes possible to accurately find and knock out the gene to be cut, and by using this technology, not only can the gene be cut, but also the gene can be added to the desired location.

결과적으로, CRISPR/Cas9은 표적 부위에 무작위로 형성된 삽입 또는 결실(indel)이 생성되어 유전자 녹아웃을 초래할 수 있다.As a result, CRISPR/Cas9 can generate randomly formed insertions or deletions (indels) at the target site, resulting in gene knockout.

예를 들면, MpigI (Monascus pigment I) 유전자를 표적으로 하는 gRNA와 CRISPR/Cas9를 사용하면 gRNA에 의해 MpigI 유전자로 가이드된 CRISPR/Cas9에 의해 MpigI 유전자에서 삽입 또는 결실이 일어나 결과적으로 MpigI 유전자가 녹아웃되고, 그에 따라 모나스커스 색소 생산이 증가될 수 있다.For example, when gRNA targeting the MpigI (Monascus pigment I) gene and CRISPR/Cas9 are used, insertion or deletion occurs in the MpigI gene by CRISPR/Cas9 guided to the MpigI gene by gRNA, resulting in knockout of the MpigI gene. and, accordingly, the production of Monascus pigment can be increased.

일 실시예에 따르면, CRISPR/Cas9 시스템을 사용하여 서열번호 1로 표시되는 MpigI 유전자좌의 989번 내지 991번의 위치에 존재하는 제1 PAM 서열 및 서열번호 1로 표시되는 MpigI 유전자좌의 1450번 내지 1452번의 위치에 존재하는 제2 PAM 서열을 인식하여 서열번호 1로 표시되는 MpigI 유전자좌의 변이를 일으킬 수 있다.According to one embodiment, the first PAM sequence present at positions 989 to 991 of the MpigI locus shown in SEQ ID NO: 1 and positions 1450 to 1452 of the MpigI locus shown in SEQ ID NO: 1 using the CRISPR/Cas9 system. Mutation of the MpigI locus represented by SEQ ID NO: 1 can be caused by recognizing the second PAM sequence present at the position.

일 실시예에 따르면, CRISPR/Cas9 시스템을 사용하여 서열번호 2로 표시되는 MpigI' 유전자좌의 152번 내지 154번의 위치에 존재하는 제1 PAM 서열 및 서열번호 2로 표시되는 MpigI' 유전자좌의 537번 내지 539번의 위치에 존재하는 제2 PAM 서열을 인식하여 서열번호 2로 표시되는 MpigI 유전자좌의 변이를 일으킬 수 있다.According to one embodiment, using the CRISPR/Cas9 system, a first PAM sequence present at positions 152 to 154 of the MpigI' locus shown in SEQ ID NO: 2 and positions 537 to 537 of the MpigI' locus shown in SEQ ID NO: 2 By recognizing the second PAM sequence present at position 539, mutation of the MpigI locus represented by SEQ ID NO: 2 can be caused.

또한, 본 발명은 전술한 모나스커스 루버(Monascus ruber) 또는 전술한 조성물 내의 모나스커스 루버(Monascus ruber)를 배양하는 단계를 포함하는 모나스커스 색소의 생산 방법에 관한 것이다.The present invention also relates to a method for producing a Monascus pigment comprising culturing the Monascus ruber described above or the Monascus ruber in the composition described above.

MpigI (Monascus pigment I) 또는 Mpig I’ (Monascus pigment I’) 유전자가 감쇄 또는 결실된 모나스커스 루버(Monascus ruber) 및 이를 포함하는 조성물은 전술한 바와 같다. Monascus ruber with attenuated or deleted MpigI (Monascus pigment I) or Mpig I' (Monascus pigment I') gene and a composition containing the same are as described above.

본 발명의 모나스커스 루버를 배양하는 방법은 통상적인 모나스커스 (Monascus)속 진균류 미생물의 배양 방법에 의할 수 있다. 예컨대, 배양 배지로는 탄소원, 질소원, 및 균 성장에 필수적인 미량원소로 구성된 액체배지 또는 고체배지를 사용할 수 있다. The method for cultivating the Monascus louver of the present invention may be a conventional culturing method of fungal microorganisms of the Monascus genus. For example, a liquid medium or solid medium composed of a carbon source, a nitrogen source, and trace elements essential for bacterial growth can be used as the culture medium.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and the present invention is not limited thereto.

실시예Example

1. 재료 및 방법1. Materials and Methods

(1) 균주 및 플라스미드(1) Strains and plasmids

Escherichia coli TOP10 균주 (Invitrogen Co, Carlsbad, CA, USA)를 일반 클로닝 숙주로 사용하였다. 플라스미드의 증식은 Luria-Bertani (LB) 배지 (0.5% [w/v] 효모 추출물, 1% [w/v] 트립톤, 1% [w/v] NaCl) at 37 ℃ 50 ㎍/ml 암피실린에서 성장되었다. 균주 M. ruber는 한국 전통 발효식품에서 분리하였으며, 균주 M. purpureus BCRC 31541는 대만의 BCRC(Bioresources Collection and Research Center)에서 구입하였다. 두 균주 모두 균사 수집을 위해 PDA 배지에서 30℃에서 배양하였다. 원형질체 재생 및 형질전환 저항성을 위해, 200 ㎍/ml 하이그로마이신(hygromycin) B와 함께 molten 재생 배지 (0.1% [w/v] 효모 추출물, 0.1% [w/v] 카제인 효소 가수분해물, 1 M 수크로스, 1.6% [w/v] Agar)을 선별용으로 준비하였다. Cas9 발현 카세트를 포함하는 플라스미드 pFC 332 (#87845)는 Addgene Inc (Watertown, MA, USA)에서 구입하였다. 프라이머 합성은 바이오니아(대전, 대한민국)에서 수행하였으며, 본 발명에 사용된 프라이머는 표 1과 같다.Escherichia coli TOP10 strain (Invitrogen Co, Carlsbad, CA, USA) was used as a general cloning host. The plasmid was propagated in Luria-Bertani (LB) medium (0.5% [w/v] yeast extract, 1% [w/v] tryptone, 1% [w/v] NaCl) at 37°C with 50 μg/ml ampicillin. has grown Strain M. ruber was isolated from Korean traditional fermented food, and strain M. purpureus BCRC 31541 was purchased from BCRC (Bioresources Collection and Research Center) in Taiwan. Both strains were cultured at 30°C in PDA medium for mycelial collection. For protoplast regeneration and transformation resistance, molten regeneration medium (0.1% [w/v] yeast extract, 0.1% [w/v] casein enzyme hydrolyzate, 1 M) with 200 μg/ml hygromycin B. Sucrose, 1.6% [w/v] Agar) was prepared for selection. Plasmid pFC 332 (#87845) containing the Cas9 expression cassette was purchased from Addgene Inc (Watertown, MA, USA). Primer synthesis was performed at Bioneer (Daejeon, Korea), and the primers used in the present invention are listed in Table 1.

서열order
번호number
프라이머primer 서열 (5' → 3')Sequence (5' → 3') 설명explanation
33 F_ M. ruber F_ M. ruber CTCAATGCTTGGTCGTCTCGCTCAATGCTGGTCGTCTCG random PCR of
M. ruber
random PCR of
M. ruber
44 R_M. ruber R_ M. ruber TGACTACCTCTCTCCGGGAATGACTACCTCTCTCCGGGAA 55 F_cas9 pFC332F_cas9pFC332 GAAGTATAGCATCGGGCTGGGAAGTATAGCATCGGGCTGG flanking regions of cas9flanking regions of cas9 66 R_cas9 pFC332R_cas9pFC332 TGACTAAGGTCGATACGGGTTGACTAAGGTCGATACGGGT 77 F_MpigI F_MpigI TCAGCCGTAGCCCAGAGGTGTCAGCCGTAGCCCAGAGGTG amplification of MpigI amplification of MpigI 88 R_MpigI R_MpigI ATGTGGATTGGCCTGCTCTTCGATGTGGATTGGCCTGCTCTTCG 99 F_MpigI' F_MpigI ' GCAGAAACTGCCTCACCAGGGCAGAAACTGCCTCACCAGG amplification of MpigI' amplification of MpigI' 1010 R_MpigI' R_MpigI ' ATCTCACTGACCTGCCAGGCATCTCACTGACCTGCCAGGC 1111 F_sgRNA 1F_sgRNA 1 TAATACGACTCACTATAGGACTCGACTGCTCCCTCCACAGTTTTAGAGCTAGAATAATACGACTCACTATAGGACTCGACTGCTCCCTCCACAGTTTTAGAGCTAGAA in vitro transcription of sgRNA in vitro transcription of sgRNA 1212 F_sgRNA 2F_sgRNA 2 TAATACGACTCACTATAGGGTAAGCGCACCTCTGGGCTAGTTTTAGAGCTAGAATAATACGACTCACTATAGGGTAAGCGCACCTCTGGGCTAGTTTTAGAGCTAGAA 1313 F_sgRNA 3F_sgRNA 3 TAATACGACTCACTATAGGTCTCCTCCCTGCTCACACAAGTTTTAGAGCTAGAATAATACGACTCACTATAGGTCTCCTCCCTGCTCACACAAGTTTTAGAGCTAGAA 1414 F_sgRNA 4F_sgRNA 4 TAATACGACTCACTATAGGAGCTCCTTCAAAGCCAGCTGGTTTTAGAGCTAGAATAATACGACTCACTATAGGAGCTCCTTCAAAGCCAGCTGGTTTTAGAGCTAGAA 1515 R_sgRNAR_sgRNA AGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAACAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC 1616 F_MpigI_del F_MpigI_del TTCAGGTAGAGCAGCAGCGTTTCAGGTAGAGCAGCAGCGT flanking regions of MpigI flanking regions of MpigI 1717 R_MpigI_del R_MpigI_del GGGCAGATTGATCGTCCGATGGGCAGATTGATCGTCCGAT 1818 F_MpigI'_delF_ MpigI' _del TGGCCGCTGCGAAGGGAATATGGCCGCTGCGAAGGGAATA flanking regions of MpigI' flanking regions of MpigI' 1919 R_MpigI'_delR_ MpigI' _del ATCGTGCACAGCGTGGCATTCATCGTGCACAGCGTGGCATTC 2020 GAPDH_FGAPDH_F GAGATCAAGCAGGCCATCAAGGAGATCAAGCAGGCCATCAAG RT-PCR analysis of GAPDHRT-PCR analysis of GAPDH 2121 GAPDH_RGAPDH_R GTAACCCCACTCGTTGTCGTGTAACCCCACTCGTTGTCGT 2222 F_MpigI_RT F_MpigI_RT AGACGCTGCTGCTCTACCTAGACGCTGCTGCTCTACCT RT-PCR analysis of MpigI RT-PCR analysis of MpigI 2323 R_MpigI_RT R_MpigI_RT CAGACAGTCGAACTGGACGACAGACAGTCGAACTGGACGA 2424 F_MpigI'_RTF_ MpigI' _RT GGCGGACATAGGTGCACGGGCGGACATAGGTGCACG RT-PCR analysis of MpigI' RT-PCR analysis of MpigI' 2525 R_MpigI'_RTR_ MpigI' _RT CAGCAGCAGCTCCTTCAAAGCAGCAGCAGCTCCTTCAAAAG 2626 F_MpigA_RT F_MpigA_RT CCTGAATGGGTGCAACGAGTACCCTGAATGGGTGCAACGAGTAC RT-PCR analysis of MpigA RT-PCR analysis of MpigA 2727 R_MpigA_RT R_MpigA_RT TATGTACCGCCTCTGCACTGTATGTACCGCCTCTGCACTG

(2) 곰팡이 DNA 추출 및 전체 게놈 시퀀싱(2) Fungal DNA extraction and whole genome sequencing

M. ruber의 게놈 DNA는 이전에 약간 변형된 유리 구슬 방법(glass beads method)을 통해 추출되었다 (Aamir, 2015). PDA에서 얻은 곰팡이 덩어리를 멸균 유리 비드와 용해 완충액(100mM Tris HCl pH 8.0, 50mM EDTA, 3% [w/v] SDS)이 들어 있는 2mL 튜브에 넣었다. 곰팡이 덩어리가 들어 있는 튜브를 20분 동안 격렬하게 볼텍스하였다. 균질화 과정 이후, RNase A를 첨가하고 37℃에서 15분간 배양하였다. 그 다음, 동량의 페놀:클로로포름:이소아밀 알코올(25:24:1)을 상등액에 첨가하고 10분 동안 12,000rpm으로 원심분리하였다. 상부 수성 층을 취한 다음 동일한 부피의 100% 에탄올을 첨가하였다. 혼합물을 -20℃에서 30분간 유지하고 12,000rpm으로 10분간 원심분리하였다. 침전된 DNA 펠릿을 70% 에탄올로 2회 세척하고 공기 건조하고 TE 완충액에 용해시켰다. DNA의 양과 순도는 NanoVue Plus Spectrophotometer(GE Health Care Co., Nordrhein-Westfalen, Germany)와 Agilent 2100 Bioanalyzer(Agilent Technologies, Santa Clara, CA, USA)를 사용하여 결정되었다. Genomic DNA of M. ruber was previously extracted using a slightly modified glass beads method (Aamir, 2015). The fungal mass obtained from PDA was placed in a 2 mL tube containing sterile glass beads and lysis buffer (100 mM Tris HCl pH 8.0, 50 mM EDTA, 3% [w/v] SDS). The tube containing the fungal mass was vortexed vigorously for 20 minutes. After the homogenization process, RNase A was added and incubated at 37°C for 15 minutes. Next, an equal amount of phenol:chloroform:isoamyl alcohol (25:24:1) was added to the supernatant and centrifuged at 12,000 rpm for 10 minutes. The upper aqueous layer was taken and then an equal volume of 100% ethanol was added. The mixture was kept at -20°C for 30 minutes and centrifuged at 12,000 rpm for 10 minutes. The precipitated DNA pellet was washed twice with 70% ethanol, air dried, and dissolved in TE buffer. The quantity and purity of DNA were determined using a NanoVue Plus Spectrophotometer (GE Health Care Co., Nordrhein-Westfalen, Germany) and an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

샘플은 PacBio Sequel 시스템에서 시퀀싱하기 위한 프로토콜에 따라 준비되었다. DNA 템플릿은 PacBio RS II 시퀀서를 사용하여 시퀀싱되었다. FALCON 및 CANU(v1.7) 소프트웨어를 사용하여 De novo 어셈블리를 수행하였다. 이는 싱글 패스 판독(single pass reads)을 판독 길이 분포의 가장 긴 부분을 나타내는 시드 판독에 매핑(mapping)하여 수행되었다. 그 후, 매핑된 리드의 공통 시퀀스가 생성되어 표적 게놈의 길고 매우 정확한 단편이 생성되었다. 그 다음, 일부 판독이 게놈 구성에 대한 추가 정보를 제공하지 않았기 때문에 판독을 수정하고 필터링하였다. 또한 너무 높거나 낮은 중첩이 있는 판독은 필터링되었다. 겹치는 데이터로 각 콘티그(contig)의 정보를 담고 있으므로 자동-매핑(self-mapping) 단계를 통해 더 높은 품질의 콘티그를 구성하였다. 완전한 게놈이 조립된 후, 단백질 코딩 서열의 위치, 유전자가 확인되었다. 그 다음, 해당 기능에 주석을 달았다. Maker(v.2.31.8)는 위치를 예측하는 데 사용되었으며 Protein BLAST+는 UniProt Swiss-Prot(201806)로 수행되었다.Samples were prepared according to the protocol for sequencing on the PacBio Sequel system. DNA templates were sequenced using a PacBio RS II sequencer. De novo assembly was performed using FALCON and CANU (v1.7) software. This was accomplished by mapping single pass reads to seed reads representing the longest part of the read length distribution. Afterwards, a consensus sequence of mapped reads was generated, resulting in a long, highly accurate fragment of the target genome. Next, the reads were corrected and filtered because some reads did not provide additional information about the genome organization. Additionally, reads with too high or too low overlap were filtered out. Since the overlapping data contains information about each contig, higher quality contigs were constructed through a self-mapping step. After the complete genome was assembled, the locations of protein coding sequences and genes were identified. Next, I annotated the function. Maker (v.2.31.8) was used to predict positions, and Protein BLAST+ was performed with UniProt Swiss-Prot (201806).

(3) 분석 방법(3) Analysis method

시트리닌은 HPLC를 통해 분석되었다. 상층액을 12,000rpm에서 10분간 원심분리한 후 0.22㎛ 멤브레인 필터로 여과하였다. HPLC는 UltiMate 3000 BioRS 시스템(Thermo Fisher Scientific, Walthan, MA, USA)에서 수행되었으며 inertsil ODS-3 컬럼(4.6 mm × 250 mm, i.d., 5 ㎛)을 고정상으로 사용하였다. ACN, 물 및 0.5% 오르토인산의 비율이 70:25.5:4.5(v/v/v)인 혼합물을 0.8 mL/분의 유속으로 이동상으로 사용하였다. 주입 부피는 10μL이고, 컬럼 온도는 30℃로 설정되었다. Citrinin was analyzed via HPLC. The supernatant was centrifuged at 12,000 rpm for 10 minutes and then filtered through a 0.22㎛ membrane filter. HPLC was performed on an UltiMate 3000 BioRS system (Thermo Fisher Scientific, Walthan, MA, USA), and an inertsil ODS-3 column (4.6 mm × 250 mm, i.d., 5 μm) was used as the stationary phase. A mixture of ACN, water, and 0.5% orthophosphoric acid in a ratio of 70:25.5:4.5 (v/v/v) was used as the mobile phase at a flow rate of 0.8 mL/min. The injection volume was 10 μL, and the column temperature was set at 30°C.

시트리닌 함량은 331 nm 여기 파장 및 500 nm 방출 파장에서 형광 검출기로 모니터링되었다. 원심분리를 통해 상층액을 제거하고, 발효 샘플을 2일마다 채취하였다. 여과 후 UV-1800 분광광도계(Shimadzu Co., Kyoto, Japan)를 사용하여 3가지 모나스커스 색소(황색, 주황색 및 적색)의 흡광도를 측정하였다. 410, 465 및 505 nm에서 광학 밀도(OD) 값을 측정하여 색소 수율을 결정하였다. 모나콜린 K 분석에 앞서 보고된 방법에 따라 약간 수정하여 모나콜린 K를 추출하였다. 야생형 및 돌연변이를 PDB에 14일 동안 접종하였다. 균사체를 60℃에서 오븐 가열하여 건조시키고 미세하게 분쇄하여 분말로 만들었다. 약 0.1g의 제제를 초음파 배스에서 10분 동안 4mL의 75% 에탄올로 추출한 후 4200rpm에서 10분 동안 원심분리하였다. 상층액을 0.22 ㎛ 멤브레인 필터를 통해 여과하였다. 모나콜린 K는 이전에 설명한 대로 HPLC를 통해 분석되었다. HPLC는 UltiMate 3000 BioRS 시스템(Thermo Fisher Scientific, Walthan, MA, USA)에서 수행되었으며 inertsil ODS-3 컬럼(4.6 mm × 250 mm, i.d., 5 ㎛)을 고정상으로 사용하였다. ACN, 물 및 0.5% 오르토인산의 비율이 60:37:3(v/v/v/)인 혼합물을 1.0 mL/min의 유속으로 이동상으로 사용하였다. 주입 부피는 20μL이고 컬럼 온도는 25℃로 설정되었다. 모나콜린 K 함량은 237 nm에서 DAD 검출기로 모니터링되었다.Citrinin content was monitored with a fluorescence detector at 331 nm excitation wavelength and 500 nm emission wavelength. The supernatant was removed through centrifugation, and fermentation samples were collected every two days. After filtration, the absorbance of three Monascus pigments (yellow, orange, and red) was measured using a UV-1800 spectrophotometer (Shimadzu Co., Kyoto, Japan). The pigment yield was determined by measuring optical density (OD) values at 410, 465, and 505 nm. Prior to monacolin K analysis, monacolin K was extracted according to the reported method with slight modifications. Wild type and mutants were inoculated into PDB for 14 days. The mycelium was dried by heating in an oven at 60°C and finely ground to powder. Approximately 0.1 g of the preparation was extracted with 4 mL of 75% ethanol for 10 minutes in an ultrasonic bath and then centrifuged at 4200 rpm for 10 minutes. The supernatant was filtered through a 0.22 μm membrane filter. Monacolin K was analyzed via HPLC as previously described. HPLC was performed on an UltiMate 3000 BioRS system (Thermo Fisher Scientific, Walthan, MA, USA), and an inertsil ODS-3 column (4.6 mm × 250 mm, i.d., 5 μm) was used as the stationary phase. A mixture of ACN, water, and 0.5% orthophosphoric acid in a ratio of 60:37:3 (v/v/v/) was used as the mobile phase at a flow rate of 1.0 mL/min. The injection volume was 20 μL and the column temperature was set at 25°C. Monacolin K content was monitored with a DAD detector at 237 nm.

(4) 유전적 방법(4) Genetic methods

표적 유전자를 효율적으로 비활성화하기 위해 듀얼 sgRNA(dual sgRNA)는 Cas9가 MpigI에서 438bp, MpigI'에서 362bp 떨어져 있는 두 부위를 동시에 절단하도록 유도하도록 설계되었다. PAM 서열은 표적 DNA 서열의 3' 말단에 존재하여야 한다. MpigI 및 MpigI'에서 PAM 서열(5'-20NGG-3')의 20개 뉴클레오타이드 상류(upstream)는 SnapGene 도구로 설계되었다. 제조사의 프로토콜에 따라 MEGAscript T7 키트(Thermo Fisher Scientific, Walthan, MA, USA)를 사용하여 sgRNA DNA 템플릿을 조립하고 전사하였다. 시험관 내 전사 후, 효소 반응을 MEGAclaer 키트(Thermo Fisher Scientific, Walthan, MA, USA)로 정제하였다. sgRNA의 양과 순도는 NanoVue Plus Spectrophotometer(GE Health Care Co., Nordrhein-Westfalen, Germany)를 사용하여 측정하였다. 정제된 sgRNA는 -80℃에서 보관하였고, 합성된 sgRNA 단편 100㎍을 Cas9 발현 형질전환체로 형질전환시켰다. To efficiently inactivate the target gene, a dual sgRNA was designed to induce Cas9 to simultaneously cleave two sites located 438 bp away from MpigI and 362 bp away from MpigI'. The PAM sequence must be present at the 3' end of the target DNA sequence. Twenty nucleotides upstream of the PAM sequence (5'-20NGG-3') in MpigI and MpigI' were designed with the SnapGene tool. The sgRNA DNA template was assembled and transcribed using the MEGAscript T7 kit (Thermo Fisher Scientific, Walthan, MA, USA) according to the manufacturer's protocol. After in vitro transcription, the enzymatic reaction was purified with the MEGAclaer kit (Thermo Fisher Scientific, Walthan, MA, USA). The amount and purity of sgRNA were measured using a NanoVue Plus Spectrophotometer (GE Health Care Co., Nordrhein-Westfalen, Germany). The purified sgRNA was stored at -80°C, and 100 μg of the synthesized sgRNA fragment was transformed into a Cas9 expression transformant.

PEG를 이용한 형질전환 방법은 약간의 변형이 뒤따랐다. 야생형 M. ruber 균주를 PDA에 접종하고 30℃에서 7일 동안 배양하였다. 플레이트의 무성 포자(분생포자)는 멸균 증류수로 한천을 부드럽게 긁어서 수확하였다. 포자를 40 ㎛ 나일론 필터를 통해 여과한 후 여과된 포자 현탁액을 PDB 100 mL에 30℃에서 18시간 동안 접종하였다. 그런 다음 균사체를 수집하고 멸균 0.7M NaCl로 세척하였다. 그 후, 균사체를 10mL의 효소 용액에 현탁시키고 30℃에서 2시간 동안 인큐베이션하였다. 현미경 관찰에 의해 원형질체 방출을 30분마다 확인하였다. 방출된 원형질체를 먼저 멸균된 Miracloth를 사용한 다음 40㎛ 나일론 필터를 사용하여 두 번 조심스럽게 여과하였다. 그 다음, 원형질체를 STC 완충액(1M 수크로스, 50mM Tris-HCl 및 50mM CaCl2 pH 8.0)으로 3회 세척하였다. 마지막으로 원형질체를 500μL STC 완충액에 재현탁하고 밀도를 약 107-108로 조정하였다. 선형화된 플라스미드 DNA 약 10㎍ 및 sgRNA 100㎍을 원형질체 현탁액 100㎕에 첨가하고 얼음 위에서 20분 동안 인큐베이션하였다. 그 다음, 새로 제조된 PEG 완충액(40% [w/v] PEG 4000, 50mM Tris-HCl 및 50mM CaCl2 pH 8.0)을 첨가하였다. 형질전환 후, 원형질체를 3-5일 동안 30℃에서 용융된 재생 배지에서 인큐베이션하였다. 마지막으로, 게놈 DNA 추출 및 추가 분석을 위해 형질전환체를 무작위로 선택하고 PDA에서 배양하였다. The transformation method using PEG was followed with some modifications. The wild-type M. ruber strain was inoculated onto PDA and cultured at 30°C for 7 days. Asexual spores (conidia) on the plate were harvested by gently scraping the agar with sterile distilled water. After filtering the spores through a 40 ㎛ nylon filter, the filtered spore suspension was inoculated into 100 mL of PDB at 30°C for 18 hours. The mycelium was then collected and washed with sterile 0.7M NaCl. Afterwards, the mycelium was suspended in 10 mL of enzyme solution and incubated at 30°C for 2 hours. Protoplast release was confirmed every 30 minutes by microscopic observation. The released protoplasts were carefully filtered twice, first using sterilized Miracloth and then using a 40 μm nylon filter. Next, the protoplasts were washed three times with STC buffer (1M sucrose, 50mM Tris-HCl, and 50mM CaCl 2 pH 8.0). Finally, the protoplasts were resuspended in 500 μL STC buffer and the density was adjusted to approximately 107-108. Approximately 10 μg of linearized plasmid DNA and 100 μg of sgRNA were added to 100 μl of protoplast suspension and incubated on ice for 20 minutes. Then, freshly prepared PEG buffer (40% [w/v] PEG 4000, 50mM Tris-HCl, and 50mM CaCl 2 pH 8.0) was added. After transformation, protoplasts were incubated in molten regeneration medium at 30°C for 3-5 days. Finally, transformants were randomly selected and cultured on PDA for genomic DNA extraction and further analysis.

게놈 DNA는 상기 설명한 것과 동일하게 추출되었다. Cas9의 통합을 확인하기 위해 AccuPower Taq PCR premix(Bioneer Co., Daejeon, Korea)를 사용하여 PCR 증폭을 수행하고 겔 전기영동을 통해 평가하였다. 개별 형질전환체의 유전자 파괴는 Sanger 시퀀싱에 의해 확인되었다.Genomic DNA was extracted as described above. To confirm the integration of Cas9, PCR amplification was performed using AccuPower Taq PCR premix (Bioneer Co., Daejeon, Korea) and evaluated through gel electrophoresis. Gene disruption in individual transformants was confirmed by Sanger sequencing.

(5) RNA 추출 및 RT-PCR 분석(5) RNA extraction and RT-PCR analysis

야생형 M. ruber 균주의 균사체 및 7일령 배양물의 돌연변이를 액체 질소에서 균질화하고 미리 냉각된 모르타르 및 유봉에서 분말로 분쇄하였다. 그런 다음, 제조사의 프로토콜에 따라 Universal RNA 추출 키트(바이오니아(주), 대전, 대한민국)로 처리하였다. RNA 시료의 양과 순도는 NanoVue Plus Spectrophotometer(GE Health Care Co., Nordrhein-Westfalen, Germany)를 사용하여 측정하였으며, cDNA는 AccuPower RT premix kit(Bioneer Co., 대전, 대한민국)를 사용하여 합성하였다. cDNA 합성을 위해 20 μL 반응에서 1 ㎍의 RNA가 역전사되었다. GAPDH를 내부 대조군으로 사용하였고, PCR 산물의 밴드 강도를 GAPDH와 비교하였다. cDNA 합성 및 PCR 증폭은 다음의 열 순환 조건으로 수행되었다: 60 분 동안 42℃에서 cDNA 합성, 5분 동안 94℃에서 역전사효소 불활성화, 및 20초 동안 95℃20초 동안 60℃및 20초 동안 72℃의 24 사이클로 cDNA의 증폭. 이전과 같이 AccuPower Taq PCR premix와 적절한 프라이머(표 1)를 이용하여 PCR 증폭을 수행하고, 겔 전기영동을 통해 평가하였다.Mycelia of wild-type M. ruber strains and mutants from 7-day-old cultures were homogenized in liquid nitrogen and ground to powder in a precooled mortar and pestle. Then, it was processed with the Universal RNA extraction kit (Bioneer Co., Ltd., Daejeon, South Korea) according to the manufacturer's protocol. The amount and purity of RNA samples were measured using a NanoVue Plus Spectrophotometer (GE Health Care Co., Nordrhein-Westfalen, Germany), and cDNA was synthesized using an AccuPower RT premix kit (Bioneer Co., Daejeon, Korea). For cDNA synthesis, 1 μg of RNA was reverse transcribed in a 20 μL reaction. GAPDH was used as an internal control, and the band intensity of the PCR product was compared with GAPDH. cDNA synthesis and PCR amplification were performed with the following thermal cycling conditions: cDNA synthesis at 42°C for 60 min, reverse transcriptase inactivation at 94°C for 5 min, and 95°C for 20 s, 60°C for 20 s, and 60°C for 20 s. Amplification of cDNA with 24 cycles at 72°C. As before, PCR amplification was performed using AccuPower Taq PCR premix and appropriate primers (Table 1) and evaluated through gel electrophoresis.

2. 실험 결과2. Experimental results

(1) 전체 게놈 시퀀싱 및 어셈블리(1) Whole genome sequencing and assembly

M. ruber의 전체 게놈 서열은 PacBio RSII 시퀀서(Pacific Biosciences, Menlo Park, CA, USA)를 사용하여 생성되었고, 새로운 게놈 조립은 CANU(v1.7) 소프트웨어를 사용하여 수행되었다. M. ruber의 전체 게놈 서열의 일반적인 특징은 표 2와 같다. 표 2: M. ruber 게놈의 일반적인 특징The complete genome sequence of M. ruber was generated using a PacBio RSII sequencer (Pacific Biosciences, Menlo Park, CA, USA), and de novo genome assembly was performed using CANU (v1.7) software. The general characteristics of the entire genome sequence of M. ruber are listed in Table 2. Table 2: General features of the M. ruber genome.

특성characteristic value 전체 길이 (Mb)Total length (Mb) 25.925.9 GC 함량 (%)GC content (%) 48.8448.84 유전자 수gene count 9,6399,639 DNA 콘티그DNA contig 1313 콘티그 N50 (bp)Contig N50 (bp) 3,185,1323,185,132 평균 콘티그 길이 (bp)Average contig length (bp) 1,993,0011,993,001 최대 콘티그 길이 (bp)Maximum contig length (bp) 3,583,3283,583,328 최소 콘티그 길이 (bp)Minimum contig length (bp) 21,88621,886

필터링 이후 PacBio SMRT 긴 판독 시퀀싱(long-read sequencing)은 14.9kb의 N50 값과 함께 737,395개의 판독을 생성하였다. 게놈의 동일한 영역에서 시작된 중복 판독은 함께 연결되어 콘티그를 형성할 수 있다. 결과적으로 13개의 콘티그에서 25.9Mb의 총 길이가 생성되었으며 GC 함량은 48.84%이었다. N50 값이 14.9 kb에서 3.1Mb로 증가하였다. 최대 콘티그의 길이는 약 3.6Mb이고 콘티그의 평균 길이는 약 2.0Mb이다. 그 결과, 더 높은 품질의 공통 서열이 생성되었고 M. ruber 균주의 거의 완전한 서열이 달성되었다. 게놈을 분석한 후, 단백질 유전자의 위치를 예측하고 기능에 주석을 달았다. Maker(v2.31.8)를 사용하여 위치를 예측하는 동안 단백질 BLAST+(v2.6.0)를 UniProt Swiss-Prot(201806)로 수행하였다. 총 9,639개의 유전자가 예측되고 주석이 달렸다. RNA의 경우 154개의 tRNA와 41개의 rRNA가 예측되었다. PacBio SMRT long-read sequencing after filtering yielded 737,395 reads with an N50 value of 14.9 kb. Duplicate reads originating from the same region of the genome can be linked together to form contigs. As a result, a total length of 25.9 Mb was generated from 13 contigs, and the GC content was 48.84%. The N50 value increased from 14.9 kb to 3.1Mb. The maximum contig length is approximately 3.6 Mb and the average contig length is approximately 2.0 Mb. As a result, a higher quality consensus sequence was generated and a nearly complete sequence of M. ruber strains was achieved. After analyzing the genome, the locations of protein genes were predicted and their functions were annotated. Protein BLAST+ (v2.6.0) was performed with UniProt Swiss-Prot (201806), while position prediction was performed using Maker (v2.31.8). A total of 9,639 genes were predicted and annotated. For RNA, 154 tRNAs and 41 rRNAs were predicted.

공개적으로 이용 가능한 Monascus spp.의 전체 게놈 서열은 이전 연구에서 NGS로부터 입수하였다. 이전 연구에 따르면 M. purpureus YY-1은 중국에서 식용 색소로 널리 사용되어 왔으며 이 균주의 게놈 크기는 7,491개 유전자를 포함하여 24.1Mb로 보고되었다. 도 1a는 M. ruber와 M. purpureus YY-1 게놈 위치의 비교를 나타낸다. M. Pilosus NBRC4520, M. purpureus NBRC4478 및 M. ruber NCBR4485의 게놈 정보도 Illumina Miseq 플랫폼을 사용하여 제한된 정보로 보고되었다. M. pilosus NBRC4520, M. purpureus NBRC4478, M. ruber NCBR4485의 게놈 크기는 약 24Mb였으며, 유전자는 약 8,600~8,900개이었다. 따라서, 공개적으로 이용 가능한 Monascus spp.의 전체 게놈 서열 중에서 분리된 M. ruber 균주는 더 많은 유전자를 보유하고 게놈 크기가 증가된 것으로 나타났다.The publicly available complete genome sequence of Monascus spp. was obtained from NGS in a previous study. According to a previous study, M. purpureus YY-1 has been widely used as food coloring in China, and the genome size of this strain was reported to be 24.1 Mb, including 7,491 genes. Figure 1A shows a comparison of M. ruber and M. purpureus YY-1 genome positions. The genome information of M. Pilosus NBRC4520, M. purpureus NBRC4478, and M. ruber NCBR4485 were also reported with limited information using the Illumina Miseq platform. The genome size of M. pilosus NBRC4520, M. purpureus NBRC4478, and M. ruber NCBR4485 was approximately 24 Mb and contained approximately 8,600 to 8,900 genes. Accordingly, among the publicly available whole genome sequences of Monascus spp., the isolated M. ruber strains possessed more genes and showed increased genome size.

(2) 곰팡이 게놈에서 이차 대사 산물 유전자 클러스터 식별(2) Identification of secondary metabolite gene clusters in fungal genomes

M. ruber의 게놈에서 2차 대사산물의 생합성에 관여하는 유전자 클러스터를 확인하였다 (표 3).Gene clusters involved in the biosynthesis of secondary metabolites were identified in the genome of M. ruber (Table 3).

모나콜린 K 및 모나스커스 색소 생합성과 관련된 모든 유전자는 콘티그 2에 위치하였다. 유전자 주석의 결과에서 두 개의 다른 MpigI 유전자좌가 발견되었고, 이는 두 개의 다른 MpigI가 M. ruber에 존재함을 보여주었다. 모나스커스 색소와 모나콜린 k의 유전자 클러스터가 존재하는 반면, 시트리닌의 유전자 클러스터는 거의 손실되어 M. ruber가 시트리닌 생산 없이 유망한 산업 균주가 될 수 있음을 시사한다. 이전 연구에 따르면, 시트리닌 생산은 배양 조건의 최적화 또는 유전 공학의 적용에 의해 제어되었다. 배양 조건의 최적화는 시트리닌 수치를 조절하기 위한 전통적인 전략이었고 시트린 생성을 완전히 차단하기는 어려웠다. 따라서, 시트리닌 생합성 관련 유전자의 조작은 유전공학을 적용하여 시트리닌 농도를 제거하는 보다 실용적인 방법이 될 수 있다. 표 3: 유전자 주석 정보All genes related to monacolin K and monascus pigment biosynthesis were located in contig 2. The results of gene annotation found two different MpigI loci, showing that two different MpigIs exist in M. ruber. While the gene clusters for Monascus pigment and monacolin k are present, the gene cluster for citrinin is almost lost, suggesting that M. ruber could be a promising industrial strain without citrinin production. According to previous studies, citrinin production was controlled by optimization of culture conditions or application of genetic engineering. Optimization of culture conditions is a traditional strategy to control citrinin levels, and it is difficult to completely block citrin production. Therefore, manipulation of citrinin biosynthesis-related genes can be a more practical way to eliminate citrinin concentration by applying genetic engineering. Table 3: Gene annotation information

공학적 접근을 위해 M. ruber 균주의 게놈을 자세히 조사하였다. Monascus spp.와 분리된 M. ruber 균주의 시트리닌 유전자 클러스터를 도 1b에 나타내었다. ctnA를 포함한 M. ruber의 시트리닌 유전자 클러스터는 대부분 소실되었다(도 1b). M. purpureus에서 ctnA 유전자의 파괴는 시트리닌 생산을 거의 감지할 수 없는 수준으로 감소시켰다. 따라서 M. ruber는 액상 발효 중에 시트리닌을 생산하지 못할 수 있다. 이를 검증하기 위해 HPLC 분석을 수행하여 시트리닌을 검출하고 M. purpureus 균주를 대조군 균주로 사용하였다. M. purpureus BCRC 31541은 배양 18일째에 약 238.26 ± 15 ㎍/mL의 시트리닌을 생산하였지만, M. ruber 야생형 및 CRISPR 돌연변이 균주는 시트리닌을 생산할 수 없었다(도 1c). M. ruber 균주와 M. purpureus BCRC 31541 균주 간에는 생육에 큰 차이가 없었다. 종합하면, 게놈 서열과 HPLC 분석의 결과는 모두 M. ruber가 신독소 시트리닌을 생산하는 능력이 파괴되었으며 이 균주는 유망한 산업 균주로 제공될 수 있음을 보여주었다.For engineering approaches, the genome of M. ruber strains was investigated in detail. The citrinin gene cluster of M. ruber strains isolated from Monascus spp. is shown in Figure 1b. Most of the citrinin gene cluster of M. ruber, including ctnA, was lost (Fig. 1b). Disruption of the ctnA gene in M. purpureus reduced citrinin production to barely detectable levels. Therefore, M. ruber may not be able to produce citrinin during liquid fermentation. To verify this, HPLC analysis was performed to detect citrinin, and M. purpureus strain was used as a control strain. M. purpureus BCRC 31541 produced approximately 238.26 ± 15 μg/mL of citrinin on day 18 of culture, but M. ruber wild type and CRISPR mutant strains were unable to produce citrinin (Figure 1c). There was no significant difference in growth between the M. ruber strain and the M. purpureus BCRC 31541 strain. Taken together, the results of the genome sequence and HPLC analysis both showed that the ability of M. ruber to produce the nephrotoxin citrinin was disrupted and that this strain could serve as a promising industrial strain.

M. ruber 균주의 게놈에서 모나콜린 K 생합성에 관여하는 유전자가 발견되었다(도 1d). 추정상의 mokA(LOCUS_001578)는 모나콜린 k 노나케타이드 합성효소로 작용하는 것으로 보이며, 추정상의 mokB(LOCUS_001587)는 측쇄 디케타이드 부분의 생합성을 담당하는 것으로 보인다. mokH(LOCUS_001585)는 모나콜린 K 생합성에 관여하는 유전자를 조절하는 전사 인자 역할을 할 수 있다(표 3). 이들 유전자 외에, 탈수소효소를 코딩하는 추정 mokE(LOCUS_001582), 추정 아실트랜스퍼라제 mokF(LOCUS_001583), 및 디하이드로모나콜린 L 모노옥시게나제를 코딩하는 2개의 mokC(LOCUS_001576 및 LOCUS_001577)가 모노옥시게나콜린 K 생합성 경로를 구성할 가능성이 있었다. A gene involved in monacolin K biosynthesis was found in the genome of the M. ruber strain (Figure 1d). The putative mokA (LOCUS_001578) appears to function as a monacolin k nonaketide synthetase, and the putative mokB (LOCUS_001587) appears to be responsible for the biosynthesis of the side chain diketide moiety. mokH (LOCUS_001585) may act as a transcription factor regulating genes involved in monacolin K biosynthesis (Table 3). In addition to these genes, a putative mokE (LOCUS_001582) encoding a dehydrogenase, a putative acyltransferase mokF (LOCUS_001583), and two mokCs (LOCUS_001576 and LOCUS_001577) encoding a dihydromonacolin L monooxygenase are known to be monooxygenacolin. There was a possibility of constructing a K biosynthetic pathway.

모나스커스 색소 생합성의 개략적인 경로는 도 1e에 나타난다. 게놈 서열에 기초하여, 모나스커스 색소의 생합성은 추정되는 폴리케타이드 합성효소(MpgiA, LOCUS_001533)에 의한 헥사케타이드 발색단의 형성을 주도하는 Acetyl CoA와 Malonyl-CoA의 축합으로 시작되는 것으로 나타났다(표 3). 모나스커스 색소 합성은 폴리케타이드 발색단과 β-케토산의 에스테르화에 의한 화학 반응을 필요로 한다. M. ruber 균주의 게놈에서 추정되는 아민 산화효소 MpigF(LOCUS_001528) 및 추정되는 지방산 합성효소 소단위 알파 MpigJ(LOCUS_001523)가 이러한 과정에 관여할 가능성이 있다. 3-O-에틸트랜스퍼라제를 인코딩하는 MpigD(LOCUS_001530)는 에스테르화에 의해 주황색 색소의 형성을 유도할 수 있다. 모나스커스 색소의 전사 조절은 전사 활성제(MpigB, LOCUS_001532)와 음성 조절 인자 2개(MpigI, LOCUS_001524 및 LOCUS_001525)에 의해 조절되는 것으로 보인다.The schematic pathway of Monascus pigment biosynthesis is shown in Figure 1e. Based on the genome sequence, the biosynthesis of the Monascus pigment appears to begin with the condensation of Acetyl-CoA and Malonyl-CoA, leading to the formation of a hexaketide chromophore by a putative polyketide synthase (MpgiA, LOCUS_001533) (Table 3). Monascus pigment synthesis requires a chemical reaction by esterification of a polyketide chromophore and β-keto acid. In the genome of M. ruber strains, the putative amine oxidase MpigF (LOCUS_001528) and the putative fatty acid synthase subunit alpha MpigJ (LOCUS_001523) are likely to be involved in this process. MpigD (LOCUS_001530), encoding 3-O-ethyltransferase, can induce the formation of an orange pigment by esterification. Transcriptional regulation of Monascus pigments appears to be controlled by a transcriptional activator (MpigB, LOCUS_001532) and two negative regulators (MpigI, LOCUS_001524 and LOCUS_001525).

일반적으로 주황색 색소의 환원 반응은 황색 색소를 형성하는 반면 주황색 색소의 아민화 반응은 적색 색소를 형성하는 것으로 알려져 있다. 모나스커스 색소 생합성의 유전자 클러스터에 대한 여러 연구가 수행되었고, MpigA가 폴리케타이드 합성효소를 암호화하고 주요 방향족 고리 중간체의 생합성을 촉매한다는 것을 발견되었다. 따라서 MpKS5의 동족체인 MpigA의 비활성화는 색소를 없애고 M. purpureus 돌연변이 W 13에서 알비노 표현형을 표시하여 MpigA가 색소 생산에 관여했음을 확인하였다. In general, it is known that the reduction reaction of an orange pigment forms a yellow pigment, while the amination reaction of an orange pigment forms a red pigment. Several studies have been conducted on the gene cluster of Monascus pigment biosynthesis, and it has been found that MpigA encodes a polyketide synthase and catalyzes the biosynthesis of the major aromatic ring intermediate. Therefore, inactivation of MpigA, a homolog of MpKS5, abolished pigmentation and displayed an albino phenotype in M. purpureus mutant W 13, confirming that MpigA was involved in pigment production.

(3) M. ruber 균주에 대한 CRISPR/Cas9 시스템 구축(3) Construction of CRISPR/Cas9 system for M. ruber strain

CRISPR/Cas9 시스템을 구축하려면 cas9 유전자를 유기체에 성공적으로 통합하여야 한다. 안정적인 Cas9 발현 형질전환체를 얻기 위해, Aspergillus nidulans의 tef1 프로모터 및 터미네이터의 제어 하에 SV40 핵 국소화 신호(NLS)를 갖는 cas9 유전자를 함유하는 플라스미드 pFC 332를 PEG 매개 형질전환을 통해 형질전환시켰다. 안정적이고 생존 가능한 원형질체 형성은 PEG-매개 형질전환에 가장 중요한 인자이므로 원형질체의 수율은 현미경으로 자주 관찰되었다. M. ruber의 일련의 하이그로마이신(Hygromycin) 내성 형질전환체가 생성되었다. 플라스미드 pFC 332에는 진균 복제 기점이 없기 때문에 플라스미드를 게놈에 통합하면 cas9 코딩 영역에서 절단이 발생할 수 있다. cas9 코딩 영역이 하이그로마이신 내성 형질전환체에 올바르게 삽입되었는지 확인하기 위해 cas9 코딩 서열에 인접하는 프라이머를 사용한 게놈 PCR을 수행하였다. 15개의 형질전환체 중 11개는 4.1kb의 cas9 유전자가 게놈에 올바르게 통합된 것으로 확인되었다. To construct a CRISPR/Cas9 system, the cas9 gene must be successfully integrated into an organism. To obtain stable Cas9 expression transformants, plasmid pFC 332 containing the cas9 gene with SV40 nuclear localization signal (NLS) under the control of the tef1 promoter and terminator of Aspergillus nidulans was transformed through PEG-mediated transformation. Since the formation of stable and viable protoplasts is the most important factor in PEG-mediated transformation, the yield of protoplasts was frequently observed under the microscope. A series of hygromycin-resistant transformants of M. ruber were generated. Because plasmid pFC 332 lacks a fungal replication origin, integration of the plasmid into the genome may result in excision in the cas9 coding region. To confirm that the cas9 coding region was correctly inserted into the hygromycin-resistant transformants, genomic PCR was performed using primers adjacent to the cas9 coding sequence. Eleven of the 15 transformants were confirmed to have the 4.1 kb cas9 gene correctly integrated into the genome.

CRISPR/Cas9 시스템에서 sgRNA는 플라스미드를 통해 또는 합성 올리고뉴클레오타이드로 전달될 수 있다. 그러나 벡터 기반 sgRNA 시스템은 각기 다른 표적 유전자에 대해 서로 다른 sgRNA를 가진 여러 벡터의 구성이 필요하기 때문에 조립하기 어려울 수 있다. 본 발명에서, 시험관 내 합성 sgRNA는 MpigI 및 MpigI'를 비활성화하기 위해 Cas9 형질전환체의 형질전환에 채택되었다. 앞서 언급했듯이 MpigI는 이전 연구에서 음성 전사 조절자로 추측되었다. Monascus spp.에서 모나스커스 색소의 증가된 생산은 제한적으로 연구되었지만, 음성 조절제의 비활성화가 모나스커스 색소의 생산을 억제할 수 있다고 가정하였다. 상기 가설을 확인하기 위해 우리는 CRISPR/Cas9 시스템을 통해 MpigI 및 MpigI'의 비활성화를 수행하였다. CRISPR/Cas9 시스템을 사용하여 돌연변이를 유도하는 효율성은 주로 선택된 표적 부위에서 DSB(이중 가닥 절단)의 유도에 의존하였다. 선택된 표적 부위를 효율적으로 녹아웃시키기 위해 듀얼 sgRNA는 Cas9가 MpigI에서 438bp, MpigI'에서 362bp 간격으로 두 부위를 동시에 절단하는 것을 가이드하도록 설계되었다. 도 2a는 MpigI의 타겟 1과 2(가운데)와 MpigI'의 타겟 3과 4의 MpigI'(하단)의 각 궤적의 이중 타겟 사이트의 위치를 설명하였다. 도 2a에서 MpigI의 Locus 001524 서열은 서열번호 1의 서열이고, MpigI'의 Locus 001525 서열은 서열번호 2의 서열이다. 듀얼 sgRNA를 사용한 형질전환은 두 표적 부위에서 DSB를 생성하여 InDel(insertion and deletion)을 생성할 것으로 예상되며, 이는 PCR 앰플리콘을 통해 쉽게 검출될 수 있다. 따라서, 2개의 sgRNA를 갖는 InDel의 생성은 유전자의 기능을 녹아웃시킨 다음 색소 생성 억제를 비활성화시킬 것이다.In the CRISPR/Cas9 system, sgRNA can be delivered via plasmids or as synthetic oligonucleotides. However, vector-based sgRNA systems can be difficult to assemble because they require the construction of multiple vectors with different sgRNAs for different target genes. In the present invention, in vitro synthesized sgRNA was adopted for transformation of Cas9 transformants to inactivate MpigI and MpigI'. As previously mentioned, MpigI was speculated to be a negative transcriptional regulator in previous studies. Although increased production of Monascus pigments has been studied to a limited extent in Monascus spp., it was hypothesized that inactivation of negative regulators could inhibit production of Monascus pigments. To confirm the above hypothesis, we performed inactivation of MpigI and MpigI' via the CRISPR/Cas9 system. The efficiency of inducing mutations using the CRISPR/Cas9 system mainly depended on the induction of double-strand breaks (DSBs) at selected target sites. To efficiently knock out the selected target site, dual sgRNA was designed to guide Cas9 to simultaneously cleave both sites at an interval of 438 bp for MpigI and 362 bp for MpigI'. Figure 2a illustrates the location of the dual target sites of each locus of targets 1 and 2 of MpigI (middle) and targets 3 and 4 of MpigI' (bottom). In Figure 2a, the Locus 001524 sequence of MpigI is the sequence of SEQ ID NO: 1, and the Locus 001525 sequence of MpigI' is the sequence of SEQ ID NO: 2. Transformation using dual sgRNA is expected to generate DSBs at both target sites, resulting in insertion and deletion (InDel), which can be easily detected through PCR amplicons. Therefore, the production of InDel with two sgRNAs will knock out the function of the gene and then inactivate the inhibition of pigment production.

(4) CRISPR 돌연변이의 시퀀싱 분석(4) Sequencing analysis of CRISPR mutations

도입된 DSB는 NHEJ 시스템의 오류가 발생하기 쉬운 복구 메커니즘으로 인해 무작위 돌연변이로 이어졌다. 추정되는 형질전환체는 상류 및 하류 절단 부위 모두에 인접하는 프라이머를 사용하여 게놈 DNA로부터 MpigI 및 MpigI' 코딩 서열의 PCR 증폭에 의해 유전형이 지정되었으며, 예상 크기는 MpigI에서 1.9kb 및 MpigI'에서 1.4kb이다. 도 2b에 도시된 바와 같이, 일부 형질전환체의 생성된 PCR 앰플리콘은 예상보다 짧은 길이를 보여 일부 DNA 단편이 표적 영역에서 결실될 수 있음을 시사한다. CRISPR 표적 유전자에서 인델이 있는 돌연변이 및 야생형으로부터 PCR 산물의 크기를 구별하는 것은 PCR 유전자형에 의해 검출될 수 있다. 일부 치환은 형질전환체로부터 유사한 크기의 PCR 산물을 생성할 수 있기 때문에 CRISPR/Cas9에 의한 MpigI 및 MpigI' 유전자의 돌연변이를 확인하기 위해 추가 시퀀싱 분석이 필요하였다. PCR 앰플리콘을 더 자세히 조사하기 위해 추정 MpigI 및 MpigI' 유전자좌에서 돌연변이가 존재하는 형질전환체의 PCR 산물을 정제한 다음 시퀀싱을 수행하였다. The introduced DSBs led to random mutations due to the error-prone repair mechanism of the NHEJ system. Putative transformants were genotyped by PCR amplification of the MpigI and MpigI' coding sequences from genomic DNA using primers flanking both upstream and downstream cleavage sites, with an expected size of 1.9 kb for MpigI and 1.4 kb for MpigI'. It is kb. As shown in Figure 2B, the resulting PCR amplicons of some transformants showed shorter lengths than expected, suggesting that some DNA fragments may be deleted in the target region. Distinguishing the size of PCR products from wild type and mutants with indels in the CRISPR target gene can be detected by PCR genotyping. Additional sequencing analysis was necessary to confirm mutations in the MpigI and MpigI' genes by CRISPR/Cas9 because some substitutions could generate PCR products of similar size from the transformants. To examine the PCR amplicons in more detail, PCR products from transformants harboring mutations at the putative MpigI and MpigI' loci were purified and then sequenced.

듀얼 sgRNA를 사용하여 35개의 형질전환체가 생성되었다. 겔 전기영동 및 시퀀싱 결과에 따라 6개의 추정 돌연변이가 얻어졌다:

Figure pat00043
MpigI16-7,
Figure pat00044
MpigI16-15,
Figure pat00045
MpigI16-17,
Figure pat00046
MpigI16-22,
Figure pat00047
MpigI'14-5, 및
Figure pat00048
MpigI'14-7.
Figure pat00049
MpigI16-7 및
Figure pat00050
MpigI16-15의 PCR 유전자형 분석 결과는 야생형 PCR 앰플리콘(amplicon)과 거의 동일하였다. 그러나, 시퀀싱을 했을 때 MpigI의 두 표적 부위 사이에서 뉴클레오타이드 치환이 동시에 일어났고, 이러한 뉴클레오타이드 치환은 야생형 서열과 비교했을 때 하나의 뉴클레오타이드 삽입을 일으켰다(도 2c, 도 2d 및 도 2e).
Figure pat00051
MpigI16-17,
Figure pat00052
MpigI16-22 및
Figure pat00053
MpigI'14-7의 PCR 유전자형 분석은 더 짧은 앰플리콘을 생성하여 표적 영역에서 결실이 발생했음을 나타낸다. 시퀀싱 결과
Figure pat00054
MpigI16-17에서 461bp 결실,
Figure pat00055
MpigI'16-22에서 477bp 결실,
Figure pat00056
MpigI'14-7에서 385bp 결실이 나타났다(도 2c, 도 2d 및 도 2e).
Figure pat00057
MpigI'14-5의 PCR 산물은 야생형 균주보다 약간 길었고, 이는 일부 DNA 단편이 표적 부위에 삽입될 수 있음을 시사한다. 시퀀싱 결과 표적에 48 bp 삽입이 도입된 것으로 나타났다(도 2c, 도 2d 및 도 2e).
Figure pat00058
MpigI'14-5의 MpigI' 서열에 어떤 DNA 단편이 삽입되었는지 확인하기 위해 서열을 추가로 분석하였다. 흥미롭게도, 삽입된 서열은 T7 프로모터 및 tracrRNA의 서열을 포함하는 sgRNA 4로 특성화되었다. 따라서, MpigI' 프로토스페이서(protospacer) 4의 sgRNA는 실제로 sgRNA MpigI' 프로토스페이서 3의 표적 부위에 삽입되었다(도 2a). 돌연변이의 시퀀싱 데이터는 MpigI 및 MpigI' 둘 다의 표적 부위 사이에 큰 인델의 검출을 보여주었다. 그러나, 표적 부위에서 다양한 작은 인델, 단일 뉴클레오타이드 인델 또는 치환은 이때 관찰되지 않았다. 듀얼 sgRNA 시스템이 Cas9가 각 표적 부위를 절단하도록 안내하기 위해 사용되었기 때문에, 이 시점에서 두 표적 부위 사이의 DNA 서열의 큰 결실이 검출된 것으로 보였다. 표적 부위에 단일 sgRNA를 적용하는 대신, 듀얼 sgRNA를 전달하면 큰 인델이 검출될 수 있으므로 듀얼 sgRNA는 표적 유전자의 비활성화에 유용할 수 있다.Thirty-five transformants were generated using dual sgRNA. According to gel electrophoresis and sequencing results, six putative mutations were obtained:
Figure pat00043
MpigI16-7;
Figure pat00044
MpigI16-15,
Figure pat00045
MpigI16-17;
Figure pat00046
MpigI16-22,
Figure pat00047
MpigI'14-5, and
Figure pat00048
MpigI'14-7.
Figure pat00049
MpigI16-7 and
Figure pat00050
The results of PCR genotyping of MpigI16-15 were almost identical to the wild-type PCR amplicon. However, when sequenced, nucleotide substitutions occurred simultaneously between the two target sites of MpigI, and these nucleotide substitutions resulted in a single nucleotide insertion compared to the wild-type sequence (Figures 2C, 2D, and 2E).
Figure pat00051
MpigI16-17;
Figure pat00052
MpigI16-22 and
Figure pat00053
PCR genotyping of MpigI'14-7 produced a shorter amplicon, indicating that a deletion occurred in the target region. Sequencing results
Figure pat00054
461bp deletion in MpigI16-17;
Figure pat00055
477bp deletion in MpigI'16-22;
Figure pat00056
A 385 bp deletion was seen in MpigI'14-7 (Figure 2C, Figure 2D and Figure 2E).
Figure pat00057
The PCR product of MpigI'14-5 was slightly longer than that of the wild-type strain, suggesting that some DNA fragments may be inserted into the target site. Sequencing results showed that a 48 bp insertion was introduced into the target (Figure 2C, Figure 2D and Figure 2E).
Figure pat00058
The sequence was further analyzed to confirm which DNA fragment was inserted into the MpigI' sequence of MpigI'14-5. Interestingly, the inserted sequence was characterized as sgRNA 4, which contains the sequences of the T7 promoter and tracrRNA. Therefore, the sgRNA of MpigI' protospacer 4 was actually inserted into the target site of sgRNA MpigI' protospacer 3 (Figure 2a). Sequencing data of the mutants showed detection of a large indel between the target sites of both MpigI and MpigI'. However, various small indels, single nucleotide indels or substitutions at the target site were not observed at this time. Because a dual sgRNA system was used to guide Cas9 to cleave each target site, large deletions of DNA sequence between the two target sites appeared to be detected at this point. Instead of applying a single sgRNA to the target site, delivering dual sgRNAs allows for the detection of large indels, so dual sgRNAs may be useful for inactivation of target genes.

(5) CRISPR 돌연변이의 특성화(5) Characterization of CRISPR mutations

콜로니 직경은 곰팡이 성장의 신뢰할 수 있는 지표이다. MpigI 또는 MpigI' 유전자좌의 파괴가 비정상적인 성장으로 이어지는지 확인하기 위해 야생형 M. ruber 및 PDA에서 성장하는 돌연변이의 개별 콜로니를 14일 동안 2일 간격으로 측정하였다(도 3a). 돌연변이 중

Figure pat00059
MpigI16-15와
Figure pat00060
MpigI16-22는 약간 작은 콜로니 직경을 보였다. 두 돌연변이를 제외한 다른 돌연변이는 야생형 M. ruber 균주와 유사한 콜로니 직경을 나타내어 MpigI 또는 MpigI' 유전자좌의 파괴가 성장에 큰 영향을 미치지 않았음을 나타낸다. Colony diameter is a reliable indicator of mold growth. To determine whether disruption of the MpigI or MpigI' loci led to abnormal growth, individual colonies of wild-type M. ruber and mutants growing on PDA were measured at 2-day intervals for 14 days ( Fig. 3A ). During mutation
Figure pat00059
With MpigI16-15
Figure pat00060
MpigI16-22 showed slightly smaller colony diameters. All but two mutants showed similar colony diameters to the wild-type M. ruber strain, indicating that disruption of the MpigI or MpigI' loci did not significantly affect growth.

생성된 돌연변이 표현형을 조사하기 위해 야생형 M. ruber 균주 및 돌연변이의 콜로니 형태를 12일 동안 4일 간격으로 모니터링하였다. PDA에 대한 돌연변이의 콜로니 표현형은 야생형 M. ruber의 콜로니 표현형과 비교할 때 달랐다(도 3b). 앞서 언급했듯이 이 유전자의 파괴는 Cas9 엔도뉴클레아제와 sgRNA가 표적 게놈에 대해 M. ruber에 적절하게 적용될 때 색소 생성 억제를 비활성화할 수 있다. 가설에 따르면, MpigI 및 MpigI'의 Cas9 매개 절단은 돌연변이가 더 많은 색소를 생성하도록 유도하였다. 이러한 결과는 모나스커스 색소 생산에서 유전자 억제에 관여하는 음성 조절인자의 비활성화로 인해 발생할 수 있다. 모나스커스 색소를 더 자세히 조사하기 위해 세 가지 주요 모나스커스 색소(황색, 주황색 및 적색)를 UV-vis 분광광도계를 사용하여 분석하였다. 야생형 및 돌연변이의 모나스커스 색소 생산은 액상 발효에서 검출되었다. 야생형과 돌연변이의 3가지 주요 모나스커스 색소(도 3(c) 황색, (d) 주황색, (e) 적색 색소)를 14일 동안 2일 간격으로 측정하였다. To investigate the resulting mutant phenotypes, the colony morphology of the wild-type M. ruber strain and the mutants was monitored at 4-day intervals for 12 days. The colony phenotype of the mutants for PDA was different when compared to that of wild-type M. ruber ( Fig. 3B ). As previously mentioned, disruption of this gene can disable pigment production inhibition when the Cas9 endonuclease and sgRNA are appropriately applied to M. ruber against the target genome. According to the hypothesis, Cas9-mediated cleavage of MpigI and MpigI' led the mutant to produce more pigment. These results may occur due to inactivation of negative regulators involved in gene repression in Monascus pigment production. To investigate Monascus pigments in more detail, the three main Monascus pigments (yellow, orange, and red) were analyzed using UV-vis spectrophotometry. Monascus pigment production of wild type and mutants was detected in liquid phase fermentation. The three major Monascus pigments (Figure 3(c) yellow, (d) orange, and (e) red pigment) of wild type and mutant were measured every 2 days for 14 days.

야생형 M. ruber는 주로 황색 색소를 생산하였고, 적색 및 주황색 색소 생산은 저하되었다. 그러나 돌연변이는 증가된 황색 색소와 함께 적색 및 주황색 색소를 생성하는 능력을 얻었다. MpigI 및 MpigI'의 Cas9 매개 파괴는 돌연변이가 더 많은 색소를 생성하도록 하는 것으로 나타났다. 분명히, 액체 상태 발효에서 색소 생산의 결과는 콜로니 형태(morphology)의 결과와 일치하였다.

Figure pat00061
MpigI 및
Figure pat00062
MpigI' 돌연변이 중
Figure pat00063
MpigI'14-5(황색 선)는 액체 상태 발효에서 다른 돌연변이보다 주황색과 적색에서 훨씬 적은 색소를 생성하였다. 다른 돌연변이와 달리 Cas9 매개 절단은
Figure pat00064
MpigI'14-5의 단일 표적 부위에 작은 삽입을 초래하여 색소 억제가 완전히 방해받지 않았다. 듀얼 sgRNA로 확립된 다른 돌연변이는 야생형 M. ruber보다 훨씬 더 많은 색소를 생성하였다. 이들 돌연변이 중
Figure pat00065
MpigI16-17(주황색 선)은 다른 돌연변이보다 가장 많은 색소를 생산하였으며,
Figure pat00066
MpigI16-17의 콜로니 형태는 맑은 적색 원의 표현형을 입증하였다. 돌연변이의 겉보기 색상은 더 복잡했지만 모나스커스 색소의 생산은 야생형 균주보다 유의하게 증가하였다(도 3f). 전체적으로 Cas9 매개 절단에 의해 유전자의 기능이 파괴되었고 MpigI 및 MpigI'에 의한 색소 억제가 억제된 것으로 나타났다. Wild-type M. ruber mainly produced yellow pigment, and red and orange pigment production was reduced. However, the mutant gained the ability to produce red and orange pigments along with increased yellow pigment. Cas9-mediated disruption of MpigI and MpigI' was shown to cause the mutant to produce more pigment. Clearly, the results of pigment production in liquid phase fermentation were consistent with the results of colony morphology.
Figure pat00061
MpigI and
Figure pat00062
Among MpigI' mutations
Figure pat00063
MpigI'14-5 (yellow line) produced significantly less pigment in orange and red than the other mutants in liquid phase fermentation. Unlike other mutations, Cas9-mediated cleavage
Figure pat00064
A small insertion into the single target site of MpigI'14-5 resulted in pigment inhibition being completely undisturbed. Other mutants established with dual sgRNA produced significantly more pigment than wild-type M. ruber. Among these mutations
Figure pat00065
MpigI16-17 (orange line) produced the most pigment than other mutants;
Figure pat00066
Colony morphology of MpigI16-17 demonstrated a clear red circle phenotype. Although the apparent color of the mutant was more complex, the production of Monascus pigment was significantly increased compared to the wild-type strain (Figure 3f). Overall, the function of the gene was disrupted by Cas9-mediated cleavage, and pigmentation inhibition by MpigI and MpigI' was suppressed.

MpigI 및 MpigI'의 Cas9 매개 절단이 시트리닌 생성에 영향을 미칠 수 있는지 확인하기 위해 시트리닌 생성을 HPLC-FLD 검출기를 사용하여 분석하였다. 앞서 언급했듯이 PacBio SMRT 시퀀싱 결과는 시트리닌 생합성의 유전자 클러스터가 M. ruber에서 대부분 손실되었다는 결론을 내렸다. 야생형 M. ruber 균주는 시트리닌 생성에 실패했지만 CRISPR 돌연변이에서 시트리닌 생성을 재확인할 필요가 있었다. 도 4a에서 보는 바와 같이 야생형 M. ruber는 시트리닌을 생산하지 않은 반면, M. purpureus BCRC 31541은 115.6 ±10.8 ㎍/mL의 시트리닌을 생산하였다. 또한, 동일한 조건에서 성장한 돌연변이 중 어느 것도 시트리닌을 생산하지 않았다. 따라서 MpigI 및 MpigI'의 Cas9 매개 절단은 시트리닌 생합성에 영향을 미치지 않는 것으로 나타났다. 14일 배양 후 모나콜린 K를 추출한 후 HPLC-UV 검출기를 이용하여 분석하였다.To determine whether Cas9-mediated cleavage of MpigI and MpigI' could affect citrinin production, citrinin production was analyzed using HPLC-FLD detector. As previously mentioned, PacBio SMRT sequencing results concluded that the gene cluster of citrinin biosynthesis was largely lost in M. ruber. Although the wild-type M. ruber strain failed to produce citrinin, it was necessary to reconfirm citrinin production in the CRISPR mutant. As shown in Figure 4a, wild-type M. ruber did not produce citrinin, while M. purpureus BCRC 31541 produced 115.6 ± 10.8 μg/mL of citrinin. Additionally, none of the mutants grown under identical conditions produced citrinin. Therefore, Cas9-mediated cleavage of MpigI and MpigI' did not appear to affect citrinin biosynthesis. After 14 days of culture, monacolin K was extracted and analyzed using an HPLC-UV detector.

모나콜린 K의 락톤(lactone)과 산(acid) 형태는 모두 야생형과 돌연변이에서 발견되었다. 도 4b는 두 가지 형태의 모나콜린 K의 총량을 나타낸다. 야생형 M. ruber 균주는 총 모나콜린 K의 3.52 ± 0.37 ㎍/mL를 생산하였다. 돌연변이

Figure pat00067
MpigI16-22 및
Figure pat00068
MpigI'14-5는 야생형 M. ruber 균주에 비해 유의하게 증가된 양의 모나콜린 K를 생성하였다. 돌연변이
Figure pat00069
MpigI16-17은 야생형 균주와 비교하여 모나콜린 K의 양의 감소를 보였다. 돌연변이
Figure pat00070
MpigI16-17은 붉은색과 오렌지색 색소를 현저하게 생산했기 때문에 모나콜린 K 생산을 줄일 수 있다. 모나스커스 색소와 모나콜린 K는 빌딩 블록으로 malonyl-CoA와 acetyl-CoA를 필요로 하므로 하나의 과잉 생산이 다른 것을 감소시킬 수 있다. 다른 돌연변이 균주에서는 CRISPR/Cas9 기술에 의한 MpigI 및 MpigI'의 비활성화 효과가 무시할 수 있는 것으로 간주된다. 전체적으로 MpigI 및 MpigI'의 Cas9 매개 절단은 모나콜린 K 생합성에 어떤 상관관계도 나타내지 않았다.Both lactone and acid forms of monacolin K were found in wild type and mutant. Figure 4b shows the total amount of both forms of monacolin K. The wild-type M. ruber strain produced 3.52 ± 0.37 μg/mL of total monacolin K. mutation
Figure pat00067
MpigI16-22 and
Figure pat00068
MpigI'14-5 produced a significantly increased amount of monacolin K compared to the wild-type M. ruber strain. mutation
Figure pat00069
MpigI16-17 showed a decrease in the amount of monacolin K compared to the wild-type strain. mutation
Figure pat00070
MpigI16-17 can reduce monacolin K production because it significantly produced red and orange pigments. Monascus pigment and monacolin K require malonyl-CoA and acetyl-CoA as building blocks, so overproduction of one can reduce the other. In other mutant strains, the effect of inactivation of MpigI and MpigI' by CRISPR/Cas9 technology is considered negligible. Overall, Cas9-mediated cleavage of MpigI and MpigI' did not show any correlation to monacolin K biosynthesis.

(6) CRISPR 돌연변이의 RT-PCR 분석(6) RT-PCR analysis of CRISPR mutations

MpigI 및 MpigI'의 발현을 조사하기 위해 야생형 M. ruber 균주의 total RNA와

Figure pat00071
MpigI 및
Figure pat00072
MpigI'의 돌연변이를 oligo-dT 프라이머를 사용하여 추출하고 cDNA로 합성하였다(표 1). 7일 된 배양액에서 추출한 총 RNA를 RT-PCR의 주형으로 사용하였다. 역전사 단계가 생략된 경우 증폭된 산물이 검출되지 않아 게놈 DNA 오염이 배제되었다. RT-PCR 증폭의 겔 이미지는 내부 대조군으로서 MpigA(폴리케타이드 합성효소), MpigI, MpigI' 및 GAPDH(glyceraldehyde 3-phosphate dehydrogenase)의 특정 증폭을 초래하였다(도 4c). 도 4c에 도시된 바와 같이, 유전자의 발현은 겔 이미지를 이용하여 정량화하였다. 모나스커스 색소 생산과 관련된 유전자 중 MpigI의 Cas9 매개 절단은 야생형 균주와 비교하여 돌연변이(
Figure pat00073
MpigI16-7,
Figure pat00074
MpigI16-15,
Figure pat00075
MpigI16-17,
Figure pat00076
MpigI16-22)의 하향 조절을 유도하였다. 또한 MpigI'의 Cas9 매개 절단은 MpigI'14-7의 상당한 하향 조절을 유도하였다. 그러나 MpigI'14-5에서는 MpigI' 유전자 발현의 유의한 하향 조절이 발견되지 않았다. 이는 돌연변이 균주가 삽입 후에도 전사체의 발현이 여전히 유지되었지만 음성 조절인 MpigI'의 기능이 손상되었음을 나타내었다. 모나스커스 색소 생합성에 관여하는 MpigA 유전자의 전사체 수준은 야생형 균주에 비해 CRISPR 매개 돌연변이 균주에서 증가하였다. 이는 음성 조절자(MpigI 및 MpigI')의 비활성화로 인한 것으로 보인다. 전체적으로 모나스커스 색소 경로의 탈억제(derepression)는 음성 조절자의 비활성화에 의해 유도되어 모나스커스 색소의 생산을 증가시켰다.To investigate the expression of MpigI and MpigI', total RNA of wild-type M. ruber strain and
Figure pat00071
MpigI and
Figure pat00072
Mutations in MpigI' were extracted using oligo-dT primers and synthesized into cDNA (Table 1). Total RNA extracted from 7-day-old culture was used as a template for RT-PCR. If the reverse transcription step was omitted, no amplified product was detected, ruling out genomic DNA contamination. Gel images of RT-PCR amplification resulted in specific amplification of MpigA (polyketide synthase), MpigI, MpigI′, and GAPDH (glyceraldehyde 3-phosphate dehydrogenase) as internal controls ( Fig. 4C ). As shown in Figure 4c, gene expression was quantified using gel images. Among the genes involved in Monascus pigment production, Cas9-mediated cleavage of MpigI was observed in mutant (
Figure pat00073
MpigI16-7;
Figure pat00074
MpigI16-15,
Figure pat00075
MpigI16-17;
Figure pat00076
Downregulation of MpigI16-22) was induced. Additionally, Cas9-mediated cleavage of MpigI' led to significant downregulation of MpigI'14-7. However, no significant down-regulation of MpigI' gene expression was found in MpigI'14-5. This indicated that although the expression of the transcript was still maintained in the mutant strain after insertion, the function of the negative regulator MpigI' was impaired. The transcript level of the MpigA gene, which is involved in Monascus pigment biosynthesis, was increased in the CRISPR-mediated mutant strain compared to the wild-type strain. This appears to be due to inactivation of negative regulators (MpigI and MpigI'). Overall, derepression of the Monascus pigment pathway was induced by inactivation of negative regulators, resulting in increased production of Monascus pigment.

M. ruber의 전체 게놈은 9,639개 유전자를 가진 13개 콘티그에서 총 25.9Mb의 길이를 갖는 것으로 밝혀졌다. 게놈의 모나스커스 색소 유전자 클러스터 중 2개의 유전자(MpigI 및 MpigI')가 CRISPR/Cas9 기술에 의해 조작되었다. CRISPR로 조작된 돌연변이는 모나스커스 색소의 생산 증가를 분명히 보여주었다. 본 발명은 천연 식용 색소 생산의 게놈 기반 미생물 공학에 대한 귀중한 정보를 제공할 것이다.The entire genome of M. ruber was found to have a total length of 25.9 Mb in 13 contigs with 9,639 genes. Among the Monascus pigment gene clusters in the genome, two genes (MpigI and MpigI') were manipulated by CRISPR/Cas9 technology. The CRISPR-engineered mutant clearly showed increased production of Monascus pigment. The present invention will provide valuable information for genome-based microbial engineering of natural food coloring production.

<110> SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION <120> Monascus ruber having attenuated or deleted MpigI or MpigI' gene, composition and method for increasing monascus pigment production comprising the same <130> 21P08035 <160> 28 <170> KoPatentIn 3.0 <210> 1 <211> 1456 <212> DNA <213> Unknown <220> <223> Monascus ruber <400> 1 atgtggattg gcctgctctt cggcgtgatg tgcctgggcg ctgcttttca gcgccagcgg 60 tcgtcgcaga tgcccgaccc gcagcagctg gtccgtctgt accgggagag gatcatccag 120 tgcctggtcg tggggaaata cgccaaatgc gcgccgtaca cgctcgagac gctgctgctc 180 tacctgaaca tcgagtccct gcagagcgag gacacccgcg tcgagacctg gatcctgctg 240 ggcgtcatcg tgcgcctggc gctgcgcatg ggctaccacc gcgatgccag ccacttcccg 300 cacatctccc ccttcgcggc cgagatgcgc cggcgcgtct gggctctcat cgtccagttc 360 gactgtctga catctgccca ggtcgggctg ccgcgcatga tccgcgactc gcagtcggac 420 acggcggagc cgcgcaacct gctcgacgaa gacttcgacg aggacagcac tgccctgccg 480 ctgccccagc ccagcacggt gcagacgccg gtgcagtata tcgtggcgaa gaaccgcatt 540 gtcgcggtct tcggccgcat ctgcgacctg atcacatcca gcagagcgcc ctcctacacc 600 gaagtgatgc agctggacga aaccctacat gagacctacc gctgcgtgcc ggggggcctg 660 cagatgcggc cgatgaccag atcgctcacg gacggggcga cggttatcct gcgccggatg 720 tacattgtcc tgctctacca caaggccgtc tgcatgctgc accaccgcta catggtcccg 780 gcccggacgg acgggcgtta tgcctactcc cgctcgacct gtgttgcggc cgctctgcag 840 atcgtctcgc accagtggac gctgcataat gaagcccagc cgggaggccg tctgtacgaa 900 gagcgctgga aggtctcatc gctcgtcaag agcaccttct tcctgggcac tacgatcctg 960 tgcgcagaac tcgactgctc cctccacaag gagcccgccg acgccgagca atcgccggcc 1020 gagacaggcc tgcggcagca ggtcatccag gctctgcata attcgcacac gatctggcgg 1080 caggctagtg actcctcgcg cgaggccagg cttgcggctg atgtgtccgg tctgcttctc 1140 acccgggcac agaggaaatg gaagctagag atgcggcaag ccggaaacat gggtgtgtat 1200 tctctctctg tctgtctccg tctgcctctg actcttgcac ctcgactgag atactgttca 1260 cataggcatg tcgtcggaaa cccccttcat gggagtgtca atcccgccac agagcactac 1320 aatggctgct gccgccgttg cacagccgct gagcatgccg cagctgctgc agttcaatac 1380 cgcggcgcac atagactata gcgatgtcgg tgcggagccg ttgggtcttg taagcgcacc 1440 tctgggctac ggctga 1456 <210> 2 <211> 824 <212> DNA <213> Unknown <220> <223> Monascus ruber <400> 2 tcaagtcagc cggcggggga tcatggctgc cacggccgca gaaactgcct caccaggggc 60 gatgtctttg ttgatgaaat actcggtcac cagtcggtcg accagcggcc gcgggagcat 120 cgccgacagg atctcctccc tgctcacaca acggtagctc ccgaacagga tatcgggctc 180 gtcgggctct gtaggctctg ccgcagctcc tggcccttgg aagggcgcgc tgtcgaccgg 240 attctgctcc tcgcggaagt ggtcccggag ctctgcaatc tgggacagcg tgctggtcag 300 ccaaggatca agccggggga gggggggcgg ccacattacc ccgtccaaga tggccgtcca 360 gtgcgtactc tcgacgtagg cagtctccat cttctcgatc ttgatgcgac cgaagcggtc 420 cgacagctgc ggtgcctcct ccctagccgc cgagtcggcc gcattgacgg cctcgccagg 480 cgccgtggcg ggagcggcag cgccagcggc agcagcagct ccttcaaagc cagctgcggt 540 cgagtcggac ggcatgggct ctttggcgga tggcgttctg cccgcgtgga ccgtgtccat 600 caacgtggtg atcagccgct ccagctggcc gatccgctcc ggcaggtttt caacgcccgc 660 cggacggccc tgggcgcggt cgatgcgctc gggcgctgca ctgggagggc ggacataggt 720 gcacgacagc gaaaggccgc ggcggacaca cgtttcgcat ggctggcggc ggtcacatcg 780 gagcctggca ggtcagtgag atgggcatcc gcgcatccgg gcat 824 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Monascus ruber_forward primer <400> 3 ctcaatgctt ggtcgtctcg 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Monascus ruber_reverse primer <400> 4 tgactacctc tctccgggaa 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> cas9 pFC332_forward primer <400> 5 gaagtatagc atcgggctgg 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> cas9 pFC332_reverse primer <400> 6 tgactaaggt cgatacgggt 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MpigI_forward primer <400> 7 tcagccgtag cccagaggtg 20 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> MpigI_reverse primer <400> 8 atgtggattg gcctgctctt cg 22 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MpigI'_forward primer <400> 9 gcagaaactg cctcaccagg 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MpigI'_reverse primer <400> 10 atctcactga cctgccaggc 20 <210> 11 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> F_sgRNA 1 <400> 11 taatacgact cactatagga ctcgactgct ccctccacag ttttagagct agaa 54 <210> 12 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> F_sgRNA 2 <400> 12 taatacgact cactataggg taagcgcacc tctgggctag ttttagagct agaa 54 <210> 13 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> F_sgRNA 3 <400> 13 taatacgact cactataggt ctcctccctg ctcacacaag ttttagagct agaa 54 <210> 14 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> F_sgRNA 4 <400> 14 taatacgact cactatagga gctccttcaa agccagctgg ttttagagct agaa 54 <210> 15 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> R_sgRNA <400> 15 agcaccgact cggtgccact ttttcaagtt gataacggac tagccttatt ttaacttgct 60 atttctagct ctaaaac 77 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F_MpigI_del <400> 16 ttcaggtaga gcagcagcgt 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R_MpigI_del <400> 17 gggcagattg atcgtccgat 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F_MpigI'_del <400> 18 tggccgctgc gaagggaata 20 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> R_MpigI'_del <400> 19 atcgtgcaca gcgtggcatt c 21 <210> 20 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_F <400> 20 gagatcaagc aggccatcaa g 21 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_R <400> 21 gtaaccccac tcgttgtcgt 20 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> F_MpigI_RT <400> 22 agacgctgct gctctacct 19 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R_MpigI_RT <400> 23 cagacagtcg aactggacga 20 <210> 24 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> F_MpigI'_RT <400> 24 ggcggacata ggtgcacg 18 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R_MpigI'_RT <400> 25 cagcagcagc tccttcaaag 20 <210> 26 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> F_MpigA_RT <400> 26 cctgaatggg tgcaacgagt ac 22 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R_MpigA_RT <400> 27 tatgtaccgc ctctgcactg 20 <210> 28 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> 14-5 insertion <400> 28 taatacgact cactatagga gctccttcaa agccagctgg ctttagagc 49 <110> SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION <120> Monascus ruber having attenuated or deleted MpigI or MpigI' gene, composition and method for increasing monascus pigment production comprising the same <130> 21P08035 <160> 28 <170> KoPatentIn 3.0 <210> 1 <211> 1456 <212> DNA <213> Unknown <220> <223> Monascus ruber <400> 1 atgtggattg gcctgctctt cggcgtgatg tgcctgggcg ctgcttttca gcgccagcgg 60 tcgtcgcaga tgcccgaccc gcagcagctg gtccgtctgt accgggagag gatcatccag 120 tgcctggtcg tggggaaata cgccaaatgc gcgccgtaca cgctcgagac gctgctgctc 180 tacctgaaca tcgagtccct gcagagcgag gacacccgcg tcgagacctg gatcctgctg 240 ggcgtcatcg tgcgcctggc gctgcgcatg ggctaccacc gcgatgccag ccacttccccg 300 cacatctccc ccttcgcggc cgagatgcgc cggcgcgtct gggctctcat cgtccagttc 360 gactgtctga catctgccca ggtcgggctg ccgcgcatga tccgcgactc gcagtcggac 420 acggcggagc cgcgcaacct gctcgacgaa gacttcgacg aggacagcac tgccctgccg 480 ctgccccagc ccagcacggt gcagacgccg gtgcagtata tcgtggcgaa gaaccgcatt 540 gtcgcggtct tcggccgcat ctgcgacctg atcacatcca gcagagcgcc ctcctacacc 600 gaagtgatgc agctggacga aaccctacat gagacctacc gctgcgtgcc ggggggcctg 660 cagatgcggc cgatgaccag atcgctcacg gacggggcga cggttatcct gcgccggatg 720 tacattgtcc tgctctacca caaggccgtc tgcatgctgc accaccgcta catggtcccg 780 gcccggacgg acgggcgtta tgcctactcc cgctcgacct gtgttgcggc cgctctgcag 840 atcgtctcgc accagtggac gctgcataat gaagcccagc cgggaggccg tctgtacgaa 900 gagcgctgga aggtctcatc gctcgtcaag agcaccttct tcctgggcac tacgatcctg 960 tgcgcagaac tcgactgctc cctccacaag gagcccgccg acgccgagca atcgccggcc 1020 gagacaggcc tgcggcagca ggtcatccag gctctgcata attcgcacac gatctggcgg 1080 caggctagtg actcctcgcg cgaggccagg cttgcggctg atgtgtccgg tctgcttctc 1140 acccgggcac agaggaaatg gaagctagag atgcggcaag ccggaaaacat gggtgtgtat 1200 tctctctctg tctgtctccg tctgcctctg actcttgcac ctcgactgag atactgttca 1260 cataggcatg tcgtcggaaaa cccccttcat gggagtgtca atcccgccac agagcactac 1320 aatggctgct gccgccgttg cacagccgct gagcatgccg cagctgctgc agttcaatac 1380 cgcggcgcac atagactata gcgatgtcgg tgcggagccg ttgggtcttg taagcgcacc 1440 tctgggctac ggctga 1456 <210> 2 <211> 824 <212> DNA <213> Unknown <220> <223> Monascus ruber <400> 2 tcaagtcagc cggcggggga tcatggctgc cacggccgca gaaactgcct caccaggggc 60 gatgtctttg ttgatgaaat actcggtcac cagtcggtcg accagcggcc gcgggagcat 120 cgccgacagg atctcctccc tgctcacaca acggtagctc ccgaacagga tatcgggctc 180 gtcgggctct gtaggctctg ccgcagctcc tggcccttgg aagggcgcgc tgtcgaccgg 240 attctgctcc tcgcggaagt ggtcccggag ctctgcaatc tgggacagcg tgctggtcag 300 ccaagggatca agccggggga gggggggcgg ccacattacc ccgtccaaga tggccgtcca 360 gtgcgtactc tcgacgtagg cagtctccat cttctcgatc ttgatgcgac cgaagcggtc 420 cgacagctgc ggtgcctcct ccctagccgc cgagtcggcc gcattgacgg cctcgccagg 480 cgccgtggcg ggagcggcag cgccagcggc agcagcagct ccttcaaagc cagctgcggt 540 cgagtcggac ggcatgggct ctttggcgga tggcgttctg cccgcgtgga ccgtgtccat 600 caacgtggtg atcagccgct ccagctggcc gatccgctcc ggcaggtttt caacgcccgc 660 cggacggccc tgggcgcggt cgatgcgctc gggcgctgca ctgggagggc ggacataggt 720 gcacgacagc gaaaggccgc ggcggacaca cgtttcgcat ggctggcggc ggtcacatcg 780 gagcctggca ggtcagtgag atgggcatcc gcgcatccgg gcat 824 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Monascus ruber_forward primer <400> 3 ctcaatgctt ggtcgtctcg 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Monascus ruber_reverse primer <400> 4 tgactacctc tctccgggaa 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> cas9 pFC332_forward primer <400> 5 gaagtatagc atcgggctgg 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> cas9 pFC332_reverse primer <400> 6 tgactaaggt cgatacgggt 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MpigI_forward primer <400> 7 tcagccgtag cccagaggtg 20 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> MpigI_reverse primer <400> 8 atgtggattg gcctgctctt cg 22 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MpigI'_forward primer <400> 9 gcagaaactg cctcaccagg 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> MpigI'_reverse primer <400> 10 atctcactga cctgccaggc 20 <210> 11 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> F_sgRNA 1 <400> 11 taatacgact cactatagga ctcgactgct ccctccacag ttttagagct agaa 54 <210> 12 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> F_sgRNA 2 <400> 12 taatacgact cactataggg taagcgcacc tctgggctag ttttagagct agaa 54 <210> 13 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> F_sgRNA 3 <400> 13 taatacgact cactataggt ctcctccctg ctcacacaag ttttagagct agaa 54 <210> 14 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> F_sgRNA 4 <400> 14 taatacgact cactatagga gctccttcaa agccagctgg ttttagagct agaa 54 <210> 15 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> R_sgRNA <400> 15 agcaccgact cggtgccact ttttcaagtt gataacggac tagccttatt ttaacttgct 60 atttctagct ctaaaac 77 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F_MpigI_del <400> 16 ttcaggtaga gcagcagcgt 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R_MpigI_del <400> 17 gggcagattg atcgtccgat 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F_MpigI'_del <400> 18 tggccgctgc gaaggggaata 20 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> R_MpigI'_del <400> 19 atcgtgcaca gcgtggcatt c 21 <210> 20 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_F <400> 20 gagatcaagc aggccatcaa g 21 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_R <400> 21 gtaaccccac tcgttgtcgt 20 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> F_MpigI_RT <400> 22 agacgctgct gctctacct 19 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R_MpigI_RT <400> 23 cagacagtcg aactggacga 20 <210> 24 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> F_MpigI'_RT <400> 24 ggcggacata ggtgcacg 18 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R_MpigI'_RT <400> 25 cagcagcagc tccttcaaag 20 <210> 26 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> F_MpigA_RT <400> 26 cctgaatggg tgcaacgagt ac 22 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R_MpigA_RT <400> 27 tatgtaccgc ctctgcactg 20 <210> 28 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> 14-5 insertion <400> 28 taatacgact cactatagga gctccttcaa agccagctgg ctttagagc 49

Claims (7)

MpigI (Monascus pigment I) 또는 MpigI' (Monascus pigment I') 유전자가 감쇄 또는 결실된 모나스커스 루버(Monascus ruber).
Monascus ruber in which the MpigI (Monascus pigment I) or MpigI' (Monascus pigment I') gene is attenuated or deleted.
청구항 1에 있어서, 서열번호 1로 표시되는 MpigI 유전자좌 또는 서열번호 2로 표시되는 MpigI' 유전자좌 중 적어도 하나에서 삽입(insertion), 치환(substitution) 또는 결실(deletion) 중 적어도 하나의 변이를 포함하는, 모나스커스 루버(Monascus ruber).
The method of claim 1, comprising at least one mutation of insertion, substitution, or deletion in at least one of the MpigI locus represented by SEQ ID NO: 1 or the MpigI' locus represented by SEQ ID NO: 2. Monascus ruber .
청구항 1에 있어서, 서열번호 1로 표시되는 MpigI 유전자좌의 969번 내지 1452번 위치에서 삽입, 치환 또는 결실 중 적어도 하나의 변이를 포함하거나;
서열번호 2로 표시되는 MpigI 유전자좌의 132번 내지 539번 위치에서 삽입, 치환 또는 결실 중 적어도 하나의 변이를 포함하는, 모나스커스 루버.
The method according to claim 1, comprising at least one mutation of insertion, substitution, or deletion at positions 969 to 1452 of the MpigI locus represented by SEQ ID NO: 1;
Monascus ruber, comprising at least one mutation of insertion, substitution, or deletion at positions 132 to 539 of the MpigI locus shown in SEQ ID NO: 2.
청구항 1에 있어서, 서열번호 1로 표시되는 MpigI 유전자좌에서 972번 내지 1452번 위치에서 적어도 하나의 염기가 결실되거나, 서열번호 1로 표시되는 MpigI 유전자좌에서 986번 내지 1446번 위치의 염기 중 적어도 하나의 염기가 치환된; 또는
서열번호 2로 표시되는 MpigI' 유전자좌에서 150번 내지 534번 위치에서 적어도 하나의 염기가 결실되거나, 서열번호 2로 표시되는 MpigI 유전자좌에서 148번 위치 및 149번 위치 사이에 서열번호 28로 표시되는 서열이 삽입된; 모나스커스 루버.
The method of claim 1, wherein at least one base is deleted at positions 972 to 1452 in the MpigI locus represented by SEQ ID NO: 1, or at least one base is deleted at positions 986 to 1446 in the MpigI locus represented by SEQ ID NO: 1. base is substituted; or
At least one base is deleted from positions 150 to 534 in the MpigI locus shown in SEQ ID NO: 2, or the sequence shown in SEQ ID NO: 28 between positions 148 and 149 in the MpigI locus shown in SEQ ID NO: 2 This is inserted; Monascus Louver.
청구항 1 내지 4 중 어느 한 항의 모나스커스 루버(Monascus ruber)를 포함하는 모나스커스 색소 생산용 조성물.
A composition for producing Monascus pigment containing the Monascus ruber of any one of claims 1 to 4.
모나스커스 루버(Monascus ruber)에서 MpigI (Monascus pigment I) 또는 MpigI' (Monascus pigment I') 유전자를 감쇄 또는 결실시키는 단계를 포함하는 모나스커스 색소 생산을 증가시키는 방법.
A method of increasing Monascus pigment production comprising the step of attenuating or deleting the MpigI (Monascus pigment I) or MpigI' (Monascus pigment I') gene in Monascus ruber .
청구항 1 내지 4 중 어느 한 항의 모나스커스 루버(Monascus ruber) 를 배양하는 단계를 포함하는 모나스커스 색소의 생산 방법.A method for producing a Monascus pigment comprising culturing the Monascus ruber of any one of claims 1 to 4.
KR1020220041160A 2022-04-01 2022-04-01 Monascus ruber having attenuated or deleted MpigI or MpigI' gene, composition and method for increasing monascus pigment production comprising the same KR20230142207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220041160A KR20230142207A (en) 2022-04-01 2022-04-01 Monascus ruber having attenuated or deleted MpigI or MpigI' gene, composition and method for increasing monascus pigment production comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220041160A KR20230142207A (en) 2022-04-01 2022-04-01 Monascus ruber having attenuated or deleted MpigI or MpigI' gene, composition and method for increasing monascus pigment production comprising the same

Publications (1)

Publication Number Publication Date
KR20230142207A true KR20230142207A (en) 2023-10-11

Family

ID=88295154

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220041160A KR20230142207A (en) 2022-04-01 2022-04-01 Monascus ruber having attenuated or deleted MpigI or MpigI' gene, composition and method for increasing monascus pigment production comprising the same

Country Status (1)

Country Link
KR (1) KR20230142207A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973690B1 (en) 2008-01-31 2010-08-04 주식회사 에프앤피 Monascus sp. mutant and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973690B1 (en) 2008-01-31 2010-08-04 주식회사 에프앤피 Monascus sp. mutant and use thereof

Similar Documents

Publication Publication Date Title
KR101829885B1 (en) A method for preparing a genome-edited plant from protoplasts
US10351880B2 (en) Drimenol synthases I
Sharma et al. Simultaneous knockout of multiple LHCF genes using single sgRNAs and engineering of a high‐fidelity Cas9 for precise genome editing in marine algae
Yoon et al. Improved natural food colorant production in the filamentous fungus Monascus ruber using CRISPR-based engineering
US10550409B2 (en) Drimenol synthases III
Bhandawat et al. Biolistic delivery of programmable nuclease (CRISPR/Cas9) in bread wheat
KR20230142207A (en) Monascus ruber having attenuated or deleted MpigI or MpigI&#39; gene, composition and method for increasing monascus pigment production comprising the same
JP7026671B2 (en) Vetiver
KR20190139756A (en) Method for regenerating modified plant from cell having modified gene involved in flavonoid biosynthesis using CRISPR/Cas9 system in Petunia protoplast
KR20220154073A (en) Method for producing genome-edited Petunia plant with enhanced flower longevity by PhACO1 gene editing and genome-edited Petunia plant with enhanced flower longevity produced by the same method
Zhou et al. Construction of an expression platform for fungal secondary metabolite biosynthesis in Penicillium crustosum
JP2018510647A (en) Production of aromatic compounds
KR102675540B1 (en) Method for producing tomato plant having controlled disease-resistance using gene editing and tomato plant produced by the same method
WO2022176989A1 (en) Method for producing target protein
JP7452884B2 (en) Method for producing plant cells with edited DNA, and kit for use therein
TWI853215B (en) Method for producing target proteins
Lin Agrobacterium-Mediated Transformation and Gene Editing of Phaeoacremonium minimum
CN118599899A (en) Expression vector, application of broccoli gene in improvement of broccoli purple and improvement method
Shochatovitz The Role of a MYB2 Gene in Mimulus Cupreus Petal Lobe Anthocyanin Biosynthesis: Design and Construction of a Polycistronic TRNA-gRNA CRISPR/Cas9 MYB2 Knockout Transgene
WO2023111130A1 (en) Modified agrobacteria for editing plants
CN118599900A (en) Application of BoEDR gene in antifungal disease of brassica vegetables, gene editing system and expression vector
WO2021108248A1 (en) Tal-effector nucleases for gene editing
CN118421675A (en) Yellow pigment synthetic gene and application thereof in genetic manipulation of penicillium citrinum
JP2008161064A (en) Gene increasing formation of aspergillus conidium, protein and recombinant vector
JP2006149202A (en) Protein and gene participating in perpetual blooming of angiosperm