KR20230135720A - Cement mortar composition comprising chitosan-based polymer and steel slag fine aggregate - Google Patents

Cement mortar composition comprising chitosan-based polymer and steel slag fine aggregate Download PDF

Info

Publication number
KR20230135720A
KR20230135720A KR1020220032807A KR20220032807A KR20230135720A KR 20230135720 A KR20230135720 A KR 20230135720A KR 1020220032807 A KR1020220032807 A KR 1020220032807A KR 20220032807 A KR20220032807 A KR 20220032807A KR 20230135720 A KR20230135720 A KR 20230135720A
Authority
KR
South Korea
Prior art keywords
cbp
fine aggregate
mortar composition
cement mortar
cement
Prior art date
Application number
KR1020220032807A
Other languages
Korean (ko)
Other versions
KR102650024B1 (en
Inventor
최세진
고혜민
배성호
최희영
Original Assignee
원광대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원광대학교산학협력단 filed Critical 원광대학교산학협력단
Priority to KR1020220032807A priority Critical patent/KR102650024B1/en
Publication of KR20230135720A publication Critical patent/KR20230135720A/en
Application granted granted Critical
Publication of KR102650024B1 publication Critical patent/KR102650024B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/142Steelmaking slags, converter slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/144Slags from the production of specific metals other than iron or of specific alloys, e.g. ferrochrome slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/38Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0032Controlling the process of mixing, e.g. adding ingredients in a quantity depending on a measured or desired value
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00068Mortar or concrete mixtures with an unusual water/cement ratio
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

본 발명은 생체모사 고분자인 키토산계 폴리머와 산업 부산물인 강 슬래그 잔골재를 혼합함에 따라 압축강도, 인장강도 및 내구성이 향상된 시멘트 모르타르 조성물에 관한 것이다.
본 발명은 「시멘트, 잔골재 및 배합수를 포함하는 모르타르 조성물로서, 상기 배합수에는 키토산계 폴리머(chitosan-based polymer : CBP) 용액이 5~10 wt% 포함되고, 상기 잔골재에는 강 슬래그(steel slag) 잔골재가 포함된 것을 특징으로 하는 시멘트 모르타르 조성물」을 제공한다.
The present invention relates to a cement mortar composition with improved compressive strength, tensile strength and durability by mixing chitosan-based polymer, a biomimetic polymer, and steel slag fine aggregate, an industrial by-product.
The present invention is a mortar composition containing cement, fine aggregate, and mixing water, wherein the mixing water contains 5 to 10 wt% of a chitosan-based polymer (CBP) solution, and the fine aggregate contains steel slag. ) It provides a “cement mortar composition characterized in that it contains fine aggregate.”

Description

키토산계 폴리머 및 강 슬래그 잔골재를 포함한 시멘트 모르타르 조성물{Cement mortar composition comprising chitosan-based polymer and steel slag fine aggregate}Cement mortar composition comprising chitosan-based polymer and steel slag fine aggregate}

본 발명은 생체모사 고분자인 키토산계 폴리머와 산업 부산물인 강 슬래그 잔골재를 혼합함에 따라 압축강도, 인장강도 및 내구성이 향상된 시멘트 모르타르 조성물에 관한 것이다.The present invention relates to a cement mortar composition with improved compressive strength, tensile strength and durability by mixing chitosan-based polymer, a biomimetic polymer, and steel slag fine aggregate, an industrial by-product.

콘크리트 산업 분야에서는 환경 피해와 천연골재 고갈 방지를 위해 산업 부산물을 골재로 사용하는 것뿐만 아니라 천연골재에 대한 대안 개발을 위한 여러 연구가 수행되어 왔다. 철강 산업 부산물인 철강 슬래그는 골재 형태로 생성되며 입자 크기가 천연골재와 비슷하다. 따라서 다른 산업 부산물에 비해 모르타르나 콘크리트에 적용하기에 적합하다. In the concrete industry, several studies have been conducted to develop alternatives to natural aggregates as well as to use industrial by-products as aggregates to prevent environmental damage and depletion of natural aggregates. Steel slag, a by-product of the steel industry, is produced in the form of aggregate and has a particle size similar to natural aggregate. Therefore, it is suitable for application to mortar and concrete compared to other industrial by-products.

최근 대표적인 슬래그 골재인 고로슬래그(BS) 외에도 니켈산업에서 부산물로 생성되는 페로니켈슬래그(FS)가 모르타르나 콘크리트 골재로 큰 주목을 받고 있다. Saha 외 연구진은 FS와 천연모래(NS)의 혼합물을 골재로 사용한 모르타르의 압축 강도가 50% FS를 사용했을 때 증가했다고 밝혔다(Saha, A.K.; Sarker, P.K. Compressive strength of mortar containing ferronickel slag as replacement of natural sand. Procedia Eng. 2017, 171, 689-694.). Liu 외 연구진은 FS 잔골재를 사용하여 콘크리트의 내구성을 검토하였고, 27% FS를 사용하였을 때 콘크리트의 황산 저항성이 향상되었음을 밝혔다(Liu, X.; Li, T.; Tian, W.; Wang, Y.; Chen, Y. Study on the durability of concrete with FNS fine aggregate. J. Hazard. Mater. 2020, 381, 120936.). Ngii 외 연구진은 FS와 NS의 혼합물을 총체로 사용하였고, FS 함량 25%가 콘크리트의 압축 강도 향상을 위한 최적 함량임을 밝혔다(Ngii, E.; Kadir, A.; Rachman, R.M.; Serah, M. Optimum combination of ferro-nickel slag (FeNi4) to the normal sand for the concrete compressive strength. IOP Conf. Ser. Earth Environ. Sci. 2021, 622, 012038.). 그러나 이러한 노력에도 불구하고 FS의 재활용률은 높지 않다(Choi, S.; Kim, J.; Bae, S.; Oh, T. Effect of fly ash on compressive strength, drying shrinkage, and carbonation depth of mortar with ferronickel-slag powder. Appl. Sci. 2021, 11, 1037.).Recently, in addition to blast furnace slag (BS), a representative slag aggregate, ferronickel slag (FS), which is produced as a by-product in the nickel industry, is receiving great attention as a mortar or concrete aggregate. Saha et al. found that the compressive strength of mortar using a mixture of FS and natural sand (NS) as aggregate increased when 50% FS was used (Saha, AK; Sarker, PK Compressive strength of mortar containing ferronickel slag as replacement of natural sand. Procedia Eng. 2017 , 171 , 689-694.). Liu et al. examined the durability of concrete using FS fine aggregate and found that the sulfuric acid resistance of concrete was improved when 27% FS was used (Liu, X.; Li, T.; Tian, W.; Wang, Y .; Chen, Y. Study on the durability of concrete with FNS fine aggregate. J. Hazard. Mater . 2020 , 381 , 120936.). Ngii et al. used a total mixture of FS and NS and found that 25% FS content was the optimal content for improving the compressive strength of concrete (Ngii, E.; Kadir, A.; Rachman, RM; Serah, M. Optimum combination of ferro-nickel slag (FeNi4) to the normal sand for the concrete compressive strength. IOP Conf. Ser. Earth Environ. Sci . 2021 , 622 , 012038.). However, despite these efforts, the recycling rate of FS is not high (Choi, S.; Kim, J.; Bae, S.; Oh, T. Effect of fly ash on compressive strength, drying shrinkage, and carbonation depth of mortar with ferronickel -slag powder. Appl. Sci. 2021 , 11 , 1037.).

한편, 폴리머 재료는 시멘트 모르타르나 콘크리트의 성능을 향상시키기 위해 널리 사용되어 왔다. Douba 외 연구진이 고인성 폴리머 콘크리트의 특성을 조사한 결과 탄소나노튜브와 폴리머 소재를 사용한 시료에서 인성이 향상되는 것으로 나타났다(Douba, A.; Emiroglu, M.; Kandil, U.F.; Taha, M.M.R. Very ductile polymer concrete using carbon nanotubes. Constr. Build. Mater. 2019, 196, 468-477.). Niaki 외 연구진은 현무암 섬유와 나노레이를 이용한 에폭시계 폴리머 콘크리트의 역학적, 열적 특성을 연구한 결과 현무암 섬유를 첨가하면 폴리머 콘크리트의 역학적 특성과 열적 안정성이 향상되는 것을 확인했다(Niaki, M.H.; Fereidoon, A.; Ahangari, M.G. Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete. Compos. Struct. 2018, 191, 231-238.). Wang 외 연구진은 산업용 부산물인 스크랩타이어 고무를 에폭시 폴리머 콘크리트에 첨가한 결과 고체 고무를 5% 첨가했을 때 콘크리트의 압축강도와 인장강도가 향상되는 것을 확인했다(Wang, J.; Dai, Q.; Guo, S.; Si, R. Mechanical and durability performance evaluation of crumb rubber-modified epoxy polymer concrete overlays. Constr. Build. Mater. 2019, 203, 469-480.). 이밖에, Asdollah 외 연구진은 올리에틸렌 테레프탈레이트(PET) 충전재(재활용 페트병을 분쇄해 제조)를 첨가하면 폴리머 콘크리트의 파괴인성을 향상시킬 수 있다고 보고하였다(Asdollah-Tabar, M.; Heidari-Rarani, M.; Aliha, M.R.M. The effect of recycled PET bottles on the fracture toughness of polymer concrete. Compos. Commun. 2021, 25, 100684.). 그러나 모르타르나 콘크리트에 중합체 재료를 사용한 대부분의 선행 연구는 천연골재에 초점을 맞추었고 강 슬래그 잔골재와 생체모방 중합체를 사용한 시멘트 합성물에 대한 보고는 없었다. 따라서 본 발명에서는 강 슬래그를 잔골재로 사용한 시멘트 모르타르에 생체모방 중합체인 키토산 기반 폴리머(CBP)의 적용성을 검토하였다.Meanwhile, polymer materials have been widely used to improve the performance of cement mortar or concrete. Douba et al. investigated the properties of high-toughness polymer concrete and found that toughness was improved in samples using carbon nanotubes and polymer materials (Douba, A.; Emiroglu, M.; Kandil, UF; Taha, MMR Very ductile polymer concrete using carbon nanotubes. Constr. Build. Mater. 2019 , 196 , 468-477.). Niaki et al. studied the mechanical and thermal properties of epoxy polymer concrete using basalt fibers and nanolays and found that adding basalt fibers improved the mechanical properties and thermal stability of polymer concrete (Niaki, MH; Fereidoon, A.; Ahangari, MG Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete. Compos. Struct. 2018 , 191 , 231-238.). Wang et al. added scrap tire rubber, an industrial by-product, to epoxy polymer concrete and found that the compressive and tensile strengths of concrete improved when 5% solid rubber was added (Wang, J.; Dai, Q.; Guo, S.; Si, R. Mechanical and durability performance evaluation of crumb rubber-modified epoxy polymer concrete overlays. Constr. Build. Mater. 2019 , 203 , 469-480.). In addition, Asdollah et al. reported that adding olethylene terephthalate (PET) filler (manufactured by crushing recycled PET bottles) can improve the fracture toughness of polymer concrete (Asdollah-Tabar, M.; Heidari-Rarani, M.; Aliha, MRM The effect of recycled PET bottles on the fracture toughness of polymer concrete. Compos. Commun. 2021 , 25 , 100684.). However, most previous studies using polymeric materials in mortar or concrete focused on natural aggregates, and there were no reports on cement composites using steel slag fine aggregates and biomimetic polymers. Therefore, in the present invention, the applicability of chitosan-based polymer (CBP), a biomimetic polymer, to cement mortar using steel slag as a fine aggregate was examined.

1. 등록특허 10-1680527 "한천이 혼입된 모르타르의 제조방법"1. Registered Patent 10-1680527 “Method for manufacturing mortar mixed with agar” 2. 공개특허 10-2018-0083756 "콘크리트 강도 증진용 결합제 및 이를 포함하는 폴리머 시멘트 복합체 조성물"2. Patent Publication No. 10-2018-0083756 “Binder for improving concrete strength and polymer cement composite composition containing the same”

1. Douba, A.; Emiroglu, M.; Kandil, U.F.; Taha, M.M.R. Very ductile polymer concrete using carbon nanotubes. Constr. Build. Mater. 2019, 196, 468-477. 1. Douba, A.; Emiroglu, M.; Kandil, U.F.; Taha, M.M.R. Very ductile polymer concrete using carbon nanotubes. Constr. Build. Mater. 2019, 196, 468-477. 2. Niaki, M.H.; Fereidoon, A.; Ahangari, M.G. Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete. Compos. Struct. 2018, 191, 231-238. 2. Niaki, M.H.; Fereidoon, A.; Ahangari, M.G. Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete. Compos. Struct. 2018, 191, 231-238. 3. Wang, J.; Dai, Q.; Guo, S.; Si, R. Mechanical and durability performance evaluation of crumb rubber-modified epoxy polymer concrete overlays. Constr. Build. Mater. 2019, 203, 469-480.3. Wang, J.; Dai, Q.; Guo, S.; Si, R. Mechanical and durability performance evaluation of crumb rubber-modified epoxy polymer concrete overlays. Constr. Build. Mater. 2019, 203, 469-480. 4. Asdollah-Tabar, M.; Heidari-Rarani, M.; Aliha, M.R.M. The effect of recycled PET bottles on the fracture toughness of polymer concrete. Compos. Commun. 2021, 25, 100684.4. Asdollah-Tabar, M.; Heidari-Rarani, M.; Aliha, M.R.M. The effect of recycled PET bottles on the fracture toughness of polymer concrete. Compos. Commun. 2021, 25, 100684.

본 발명은 강 슬래그를 잔골재로 포함시킨 시멘트 모르타르에 생체모사 고분자인 키토산계 폴리머(chitosan-based polymer, CBP)의 적용성을 검토하여 시멘트 모르타르 조성물의 기계적 특성과 내구성을 향상시킬 수 있는 조건과 그에 따라 발현되는 모르타르 조성물의 물성적 특징을 제공함에 그 목적이 있다.The present invention examines the applicability of chitosan-based polymer (CBP), a biomimetic polymer, to cement mortar containing steel slag as a fine aggregate, and determines conditions for improving the mechanical properties and durability of cement mortar compositions. The purpose is to provide the physical characteristics of the mortar composition developed accordingly.

본 발명은 「시멘트, 잔골재 및 배합수를 포함하는 모르타르 조성물로서, 상기 배합수에는 키토산계 폴리머(chitosan-based polymer : CBP) 용액이 5~10 wt% 포함되고, 상기 잔골재에는 강 슬래그(steel slag) 잔골재가 포함된 것을 특징으로 하는 시멘트 모르타르 조성물」을 제공한다.The present invention is a mortar composition containing cement, fine aggregate, and mixing water, wherein the mixing water contains 5 to 10 wt% of a chitosan-based polymer (CBP) solution, and the fine aggregate contains steel slag. ) It provides a “cement mortar composition characterized in that it contains fine aggregate.”

상기 CBP는 탈아세틸화도(degree of deacetylation) 75%~85%인 것을 적용할 수 있으며, 상기 CBP는 키토산과 하이드로카페산(hydrocaffeic acid, HCA) 및 1-에틸-3(3-디메틸아미노프로필) 카르보디이미드 염산염(1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, EDC)사이의 아마이드 결합 반응(amide coupling reaction)을 통해 합성할 수 있다. 상기 CBP 용액은 물 1,000 ㎖ 당 CBP 450~550 mg이 용해된 것을 적용할 수 있다.The CBP can be applied with a degree of deacetylation of 75% to 85%, and the CBP includes chitosan, hydrocaffeic acid (HCA), and 1-ethyl-3 (3-dimethylaminopropyl). It can be synthesized through an amide coupling reaction between carbodiimide hydrochloride (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, EDC). The CBP solution can be prepared by dissolving 450 to 550 mg of CBP per 1,000 ml of water.

상기 잔골재는 강 슬래그가 50 vol% 이하(0 vol% 제외) 혼합되어 잔골재 표준입도분포 범위에 부합하는 것을 적용할 수 있으며, 상기 강 슬래그는 고로 슬래그(BS) 또는 페로니켈 슬래그(FS) 중 어느 한가지 이상을 적용할 수 있다.The fine aggregate may be a mixture of steel slag of 50 vol% or less (excluding 0 vol%) that meets the standard particle size distribution range of fine aggregate, and the steel slag may be either blast furnace slag (BS) or ferronickel slag (FS). More than one can be applied.

본 발명이 제공하는 시멘트 모르타르 조성물은 시멘트를 단위체적 1㎥ 당 320~350 kg 잔골재를 단위체적 1㎥ 당 700~750 kg, 배합수를 물-시멘트비 45~50 wt%에 따라 혼합할 수 있으며, The cement mortar composition provided by the present invention can be mixed with 320 to 350 kg of cement per 1 ㎥ of unit volume, 700 to 750 kg of fine aggregate per 1 ㎥ of unit volume, and mixing water according to a water-cement ratio of 45 to 50 wt%,

이에 따라 상기 시멘트 모르타르 조성물은 모르타르 플로우 175~200 mm; 재령 56일 압축강도 45 MPa 이상; 재령 28일 할렬인장강도 3 MPa 이상; 촉진 탄산화 깊이 1.0 mm 이하; 및 재령 28일 염화물 이온 투과량 6000 C 이하; 의 물성이 발현되도록 할 수 있다.Accordingly, the cement mortar composition has a mortar flow of 175 to 200 mm; Age 56 days Compressive strength 45 MPa or more; Age: 28 days, splitting tensile strength: 3 MPa or more; Accelerated carbonation depth of 1.0 mm or less; and chloride ion permeation of 6000 C or less at age 28 days; The physical properties can be expressed.

전술한 본 발명에 따르면,According to the present invention described above,

키토산계 폴리머 용액을 배합수에 포함시키고, 잔골재 중에 강 슬래그 잔골재를 혼입시킴으로써 시멘트 모르타르 조성물의 압축강도, 인장강도 등의 강성과 탄선화 저항성, 염화물 침투 저항성 등의 내구성을 함께 향상시킬 수 있다.By including a chitosan-based polymer solution in the mixing water and incorporating steel slag fine aggregate into the fine aggregate, the rigidity such as compressive strength and tensile strength of the cement mortar composition and durability such as carbonation resistance and chloride penetration resistance can be improved.

[도 1]은 각 시료 잔골재의 입도분포곡선이다.
[도 2]는 CBP 합성 과정의 구조도이다.
[도 3]은 CBP 샘플의 1H-NMR 분광기 분석 결과를 나타낸 것이다.
[도 4]는 CBP 샘플의 UV-Vis 흡수 피크를 나타낸 것이다.
[도 5]는 CBP 샘플의 FT-IR 스펙트럼의 피크를 나타낸 것이다.
[도 6]은 강 슬래그 잔골재와 CBP를 포함하는 모르타르 조성물의 플로우값을 나타낸 그래프이다.
[도 7]은 강 슬래그 잔골재와 CBP를 사용한 시멘트 모르타르 혼합물 시험체들의 재령별 압축 강도 변화를 나타낸 것이다.
[도 8]은 CBP 용액에 담그기 전과 후의 BS 샘플과 FS 샘플의 SEM 이미지이다.
[도 9]는 시멘트 모르타르 조성물 시험체들의 재령 28일 할렬인장강도를 나타낸 것이다.
[도 10]은 시멘트 모르타르 조성물 시험체들을 28일간 촉진 탄산화시킨 후 측정된 탄산화 깊이를 나타낸 것이다.
[도 11]은 BS50과 PBS50의 SEM 이미지이다.
[도 12]는 시멘트 모르타르 조성물 시험예별 재령 28일 총 투과 전하량을 나타낸 것이다.
[Figure 1] is the particle size distribution curve of the fine aggregate of each sample.
[Figure 2] is a structural diagram of the CBP synthesis process.
[Figure 3] shows the results of 1 H-NMR spectroscopy analysis of the CBP sample.
[Figure 4] shows the UV-Vis absorption peak of the CBP sample.
[Figure 5] shows the peaks of the FT-IR spectrum of the CBP sample.
[Figure 6] is a graph showing the flow value of a mortar composition containing fine steel slag aggregate and CBP.
[Figure 7] shows the change in compressive strength by age of cement mortar mixture test specimens using steel slag fine aggregate and CBP.
[Figure 8] are SEM images of the BS sample and the FS sample before and after immersion in the CBP solution.
[Figure 9] shows the splitting tensile strength of cement mortar composition test specimens at 28 days of age.
[Figure 10] shows the carbonation depth measured after accelerated carbonation of cement mortar composition test specimens for 28 days.
[Figure 11] is an SEM image of BS50 and PBS50.
[Figure 12] shows the total transmitted charge for each cement mortar composition test example at 28 days of age.

본 발명은 「시멘트, 잔골재 및 배합수를 포함하는 모르타르 조성물로서, 상기 배합수에는 키토산계 폴리머(chitosan-based polymer : CBP) 용액이 5~10 wt% 포함되고, 상기 잔골재에는 강 슬래그(steel slag) 잔골재가 포함된 것을 특징으로 하는 시멘트 모르타르 조성물」을 제공한다.The present invention is a mortar composition containing cement, fine aggregate, and mixing water, wherein the mixing water contains 5 to 10 wt% of a chitosan-based polymer (CBP) solution, and the fine aggregate contains steel slag. ) It provides a “cement mortar composition characterized in that it contains fine aggregate.”

상기 CBP는 탈아세틸화도(degree of deacetylation) 75%~85%인 것을 적용할 수 있으며, 상기 CBP는 키토산과 하이드로카페산(hydrocaffeic acid, HCA) 및 1-에틸-3(3-디메틸아미노프로필) 카르보디이미드 염산염(1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, EDC)사이의 아마이드 결합 반응(amide coupling reaction)을 통해 합성할 수 있다. 상기 CBP 용액은 물 1,000 ㎖ 당 CBP 450~550 mg이 용해된 것을 적용할 수 있다.The CBP can be applied with a degree of deacetylation of 75% to 85%, and the CBP includes chitosan, hydrocaffeic acid (HCA), and 1-ethyl-3 (3-dimethylaminopropyl). It can be synthesized through an amide coupling reaction between carbodiimide hydrochloride (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, EDC). The CBP solution can be prepared by dissolving 450 to 550 mg of CBP per 1,000 ml of water.

조개껍질에서 추출한 키틴은 대표적인 천연 다당류 중 하나로 탈아세틸화 과정을 통해 키토산을 생산할 수 있는 최적의 재료로 꼽힌다. 일반적으로 키틴은 가격이 저렴하고, 키토산 생산에 수반되는 화학반응이 대량 생산에 적합하기 때문에 키토산의 생산에 사용된다. 이 화학반응은 80℃ 이상의 온도에서 키틴과 수산화나트륨의 처리를 포함한다. 따라서 키토산은 β-1,4 글리코사이드 결합에 의해 연결된 D-아세틸-D-글루코사민 단위를 갖는 무작위 공합체로 얻어진다. 탈아세틸화의 정도는 D-글루코사민과 N-아세틸-D-글루코사민 단위의 질량비에 의해 결정되며, 중합체의 분자량에 영향을 미친다.Chitin extracted from clam shells is one of the representative natural polysaccharides and is considered the optimal material for producing chitosan through the deacetylation process. In general, chitin is used for the production of chitosan because it is inexpensive and the chemical reaction involved in chitosan production is suitable for mass production. This chemical reaction involves the treatment of chitin and sodium hydroxide at temperatures above 80°C. Chitosan is thus obtained as a random conjugate with D-acetyl-D-glucosamine units linked by β-1,4 glycosidic bonds. The degree of deacetylation is determined by the mass ratio of D-glucosamine and N-acetyl-D-glucosamine units and affects the molecular weight of the polymer.

최근 키토산은 생체활동성, 생분해성, 생체적합성, 식품·제약·섬유·조직공학 산업에 폭넓게 적용할 수 있다는 점에서 큰 주목을 받고 있다. 그러나 키토산은 수용성 산성 매질에만 용해되기 때문에 더 많은 응용이 제한된다. 따라서 키토산의 적용범위를 확대하기 위해 카테콜과 같은 페놀산 그룹을 다양한 아미드 결합 반응을 이용하여 중추에 접목하여 용해도를 개선한다. 페놀산 이식술은 키토산의 용해성뿐만 아니라 물리화학적 특성도 향상시킨다. 또한 페놀산을 함유한 키토산은 순수 키토산에 비해 생물학적 활성(항산화제, 항균제, 항알레르기제, 항암제)이 우수하다. Recently, chitosan has received great attention for its bioactivity, biodegradability, biocompatibility, and wide applicability in the food, pharmaceutical, textile, and tissue engineering industries. However, chitosan is soluble only in aqueous acidic media, which limits its further applications. Therefore, to expand the application range of chitosan, phenolic acid groups such as catechol are grafted onto the backbone using various amide bond reactions to improve solubility. Phenolic acid grafting improves not only the solubility but also the physicochemical properties of chitosan. In addition, chitosan containing phenolic acid has superior biological activity (antioxidant, antibacterial, antiallergenic, and anticancer agent) compared to pure chitosan.

이에 따라, 시멘트 모르타르의 성질을 향상시키기 위해 키토산을 사용하는 것이 연구된 바 있다. 생체모방 중합체인 키토산 기반 폴리머(이하, 'CBP')를 적정량 추가하면 시멘트 모르타르의 압축강도 및 탄산화 저항성이 개선될 수 있다Choi, S.; Bae, S.; Lee, J.; Bang, E.; Ko, H. Strength, carbonation resistance, and chloride-ion penetrability of cement mortars containing catechol-functionalized chitosan. J. Polym. Mater. 2021, 14, 6395.). 따라서 본 발명에서는 CBP를 합성하여 강 슬래그 잔골재를 함유한 시멘트 모르타르에 첨가하였다. 또한, 생성된 시멘트 모르타르의 압축 강도, 인장 강도, 가속 탄산화 깊이 및 염화물 이온 투과성을 평가하였다.Accordingly, the use of chitosan to improve the properties of cement mortar has been studied. Compressive strength and carbonation resistance of cement mortar can be improved by adding an appropriate amount of chitosan-based polymer (hereinafter referred to as 'CBP'), a biomimetic polymer. Choi, S.; Bae, S.; Lee, J.; Bang, E.; Ko, H. Strength, carbonation resistance, and chloride-ion penetrability of cement mortars containing catechol-functionalized chitosan. J. Polym. Mater. 2021 , 14 , 6395.). Therefore, in the present invention, CBP was synthesized and added to cement mortar containing fine steel slag aggregate. Additionally, the compressive strength, tensile strength, accelerated carbonation depth, and chloride ion permeability of the produced cement mortar were evaluated.

1. 시험 재료1. Test materials

- 키토산 : 중분자량, 탈아세틸화도 75%~85%- Chitosan: medium molecular weight, degree of deacetylation 75% to 85%

- HCA : 하이드로카페산(hydrocaffeic acid, HCA)- HCA: hydrocaffeic acid (HCA)

- EDC : 1-에틸-3(3-디메틸아미노프로필)카르보디이미드 염산염(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride)- EDC: 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride

- 투석막 : Spectra/Por MWCO, 12-14 kDa- Dialysis membrane: Spectra/Por MWCO, 12-14 kDa

- 초순수 : Q-Grade 1 정화 카트리지로 증류- Ultrapure water: Distilled with Q-Grade 1 purification cartridge

- 보통 포틀랜드시멘트 : 비중 3.15 g/㎤, 분말도 3,430 ㎠/g- Normal Portland cement: Specific gravity 3.15 g/cm3, fineness 3,430 ㎠/g

- 천연 잔골재(NS) : 대한민국 남원 채취- Natural fine aggregate (NS): collected in Namwon, Korea

- 강 슬래그 잔골재 : 고로슬래그(BS) 및 페로니켈슬래그(FS) 사용(비중 및 조립율은 [표 1] 참조). 잔골재의 표준입도분포를 고려하여 강 슬래그의 최대 사용량은 50 vol%로 고정함.- Steel slag fine aggregate: blast furnace slag (BS) and ferronickel slag (FS) are used (see [Table 1] for specific gravity and assembly ratio). Considering the standard particle size distribution of fine aggregate, the maximum amount of steel slag used is fixed at 50 vol%.

- 시료 구분 - Sample classification

· N100 : 잔골재가 NS 100 vol%로 이루어진 시멘트 모르타르· N100: Cement mortar with fine aggregate of NS 100 vol%

· BS50 : 잔골재가 NS 50 vol%, BS 50 vol%로 이루어진 시멘트 모르타르· BS50: Cement mortar composed of fine aggregate of 50 vol% NS and 50 vol% BS

· BF50 : 잔골재가 NS 50 vol%, BS 25 vol%, FS 25 vol%로 이루어진 시멘트 모르타르· BF50: Cement mortar with fine aggregates of 50 vol% NS, 25 vol% BS, and 25 vol% FS.

· FS50 : 잔골재가 NS 50 vol%, FS 50 vol%로 이루어진 시멘트 모르타르· FS50: Cement mortar composed of fine aggregate of 50 vol% NS and 50 vol% FS

※ 각 시료 잔골재의 입도분포곡선은 첨부된 [도 1]에 나타난 바와 같이 잔골재 표준입도분포 범위에 일치시킴.※ The particle size distribution curve of the fine aggregate of each sample matches the standard particle size distribution range of fine aggregate as shown in the attached [Figure 1].

2. CBP 합성2. CBP synthesis

키토산(500 ㎎)을 증류수(DW, 50 mL)에 용해시키고 1.0 M HCl을 첨가하여 용액의 pH를 5.5로 조정하였다. 상기 키토산 용액에는 에탄올/DW 혼합액(10 ㎖/ 10 ㎖)에 HCA(500 mg)가 용해된 용액과 에탄올/DW 혼합액(2.5 ㎖/2.5 ㎖)에 EDC(500 mg)가 용해된 용액을 방울로 가하여 첨가하였다. Chitosan (500 mg) was dissolved in distilled water (DW, 50 mL) and the pH of the solution was adjusted to 5.5 by adding 1.0 M HCl. In the chitosan solution, a solution of HCA (500 mg) dissolved in ethanol/DW mixture (10 mL/10 mL) and a solution of EDC (500 mg) dissolved in ethanol/DW mixture (2.5 mL/2.5 mL) were added as droplets. It was added.

위와 같은 반응 혼합물의 pH는 1.0 M HCl을 첨가하여 5.5로 유지하였으며, 반응 혼합물은 상온에서 12시간 동안 교반하였다. 상기 반응 혼합물은 0.1 M NaCl 용액(NaCl 30 g/4.5 ℓ DW)에 투석하고, 이틀간 1.0 M HCl을 첨가한 후 4시간 동안 4.5 L DW를 첨가함으로써 pH를 5.0으로 조정하였다. 잔류물은 냉장고에서 -20℃로 냉동한 후 저온 살균되었다.The pH of the above reaction mixture was maintained at 5.5 by adding 1.0 M HCl, and the reaction mixture was stirred at room temperature for 12 hours. The reaction mixture was dialyzed against a 0.1 M NaCl solution (NaCl 30 g/4.5 L DW), and the pH was adjusted to 5.0 by adding 1.0 M HCl for two days and then adding 4.5 L DW for 4 hours. The residue was frozen at -20°C in a refrigerator and then pasteurized.

수용성 CBP 용액의 흡광도는 자외선-가시광선(UV-Vis) 분광광도계(GENESYS 180, USA Thermo Fisher)를 사용하여 측하였다. CBP 샘플의 양성자 핵자기공명(1H-NMR) 스펙트럼(500MHz, JEOL)을 얻기 위해, 수용성 CBP 용액을 D2O(중수)에 용해하였다. CBP 샘플의 푸리에 변환 적외선(FT-IR, Nicolet iS5, Thermo Fisher Scientific) 스펙트럼은 1 cm-1 해상도에서 400~4,000 cm-1의 파수 범위(wavenumber range)에 걸쳐 기록되었다.The absorbance of the aqueous CBP solution was measured using an ultraviolet-visible (UV-Vis) spectrophotometer (GENESYS 180, Thermo Fisher, USA). To obtain proton nuclear magnetic resonance ( 1 H-NMR) spectra (500 MHz, JEOL) of CBP samples, the aqueous CBP solution was dissolved in D 2 O (deuterated water). Fourier transform infrared (FT-IR, Nicolet iS5, Thermo Fisher Scientific) spectra of CBP samples were recorded over a wavenumber range of 400 to 4,000 cm -1 at 1 cm -1 resolution.

2. 모르타르 시험 방법2. Mortar test method

본 발명이 제공하는 시멘트 모르타르 조성물은 시멘트를 단위체적 1㎥ 당 320~350 kg 잔골재를 단위체적 1㎥ 당 700~750 kg, 배합수를 물-시멘트비 45~50 wt%에 따라 혼합할 수 있다. The cement mortar composition provided by the present invention can be mixed with 320 to 350 kg of cement per 1 m3 of unit volume, 700 to 750 kg of fine aggregate per 1 m3 of unit volume, and mixing water according to a water-cement ratio of 45 to 50 wt%.

[표 2]는 시험예별 시멘트 모르타르 조성물의 배합표이다. 물-시멘트비는 50%로 고정하고, 물 1,000 mL에 CBP 500 mg이 용해된 CBP 용액을 시멘트 모르타르 조성물에 첨가하였다. 시험예별 시멘트 모르타르에 함유된 수량(水量) 대비 CBP 용액의 첨가량은 0% 또는 10.0%이다.[Table 2] is a formulation table of cement mortar compositions for each test example. The water-cement ratio was fixed at 50%, and a CBP solution containing 500 mg of CBP dissolved in 1,000 mL of water was added to the cement mortar composition. The amount of CBP solution added compared to the amount of water contained in the cement mortar for each test example is 0% or 10.0%.

압축강도 시험을 위해 가로, 세로, 높이 각 50 mm 크기의 입방체 시편을 준비하였고, 할렬인장강도 시험을 위해 직경 50 mm, 높이 100mm 크기의 원기둥형 시편을 준비하였다. 또한 촉진 탄산화 시험을 위해 가로, 세로, 높이 각 40mm, 40mm, 160mm의 사각기둥형 시편과 염화물 이온 침투 시험을 위해 직경 100 mm, 두께 50 mm 크기의 시편을 준비하였다. 각 시편은 몰드 내 타설 후 24시간 후에 탈형되고 20℃에서 수중 양생하였다. For the compressive strength test, cubic specimens measuring 50 mm in width, length, and height were prepared, and for the splitting tensile strength test, cylindrical specimens with a diameter of 50 mm and a height of 100 mm were prepared. In addition, for the accelerated carbonation test, a square column-shaped specimen with a width, length, and height of 40 mm, 40 mm, and 160 mm was prepared, and a specimen with a diameter of 100 mm and a thickness of 50 mm was prepared for the chloride ion penetration test. Each specimen was demolded 24 hours after being placed in the mold and cured in water at 20°C.

시멘트 모르타르 조성물의 유동성 및 압축강도는 KS L 5105 규격에 따라 측정하였고, 인장강도는 KS F 2423 규격에 따라 측정하였다. 촉진 탄산화 시험은 KS F 2584 규격에 따라 촉진 탄산화 챔버에서 탄산화 후 페놀프탈레인 용액을 이용하여 탄산화 깊이를 측정하였다. 또한 염화물 이온 침투 시험은 ASTM C1202 규격에 따라 수행하였다. 시멘트 모르타르 조성물의 주사전자현미경(SEM) 이미지는 AIS1800C 주사전자현미경(SERON Technologies, Korea)을 사용하여 촬영하였다.The fluidity and compressive strength of the cement mortar composition were measured according to the KS L 5105 standard, and the tensile strength was measured according to the KS F 2423 standard. In the accelerated carbonation test, the depth of carbonation was measured using a phenolphthalein solution after carbonation in an accelerated carbonation chamber according to the KS F 2584 standard. Additionally, the chloride ion penetration test was performed according to the ASTM C1202 standard. Scanning electron microscopy (SEM) images of the cement mortar composition were taken using an AIS1800C scanning electron microscope (SERON Technologies, Korea).

4. 시험결과 분석4. Analysis of test results

(1) CBP 특성(1) CBP characteristics

CBP는 키토산과 EDC, HCA 사이의 아마이드 결합 반응을 통해 합성되었다([도 2] 참조). 합성 후, 하얀색 스폰지 모양의 고체를 얻었다. CBP was synthesized through an amide bond reaction between chitosan, EDC, and HCA (see [Figure 2]). After synthesis, a white sponge-shaped solid was obtained.

BP 샘플의 구조는 1H NMR, UV-Vis, FT-IR 분광기를 분석되었다. 키토산 골격의 카테콜기는 분자 내 수소 결합 상호작용의 강도를 감소시킴으로써 물에서 CBP의 용해도를 높이는 데 중요한 역할을 했다. 카테콜과 아세틸기 사이의 양성자 연관 비율은 CBP에서 카테콜 접합도(degree of catechol conjugation, DOCcat)를 계산하기 위해 1H NMR 분광기를 통해 측정되었으며, 이는 약 7%로 나타났다([도 3] 참조).The structure of the BP sample was analyzed by 1 H NMR, UV-Vis, and FT-IR spectroscopy. The catechol group of the chitosan skeleton played an important role in increasing the solubility of CBP in water by reducing the strength of intramolecular hydrogen bond interactions. The proton association ratio between catechol and acetyl group was measured through 1 H NMR spectroscopy to calculate the degree of catechol conjugation (DOC cat ) in CBP, which was found to be about 7% (Figure 3) reference).

또한 CBP의 DOCcat은 HCA 흡수 피크를 이용하여 280 nm에서의 UV-Vis 흡수 피크로부터 측정되었다([도 4] 참조). 이 결과는 키토산의 아미노기 중 4% 이하가 HCA와 반응하여 3,4-다이하이드록시하이드로시나믹산기(3,4-dihydroxyhydrocinnamic acid groups)와 결합된 아마이드를 형성한다는 것을 나타낸다. 또한 CBP의 FT-IR 스펙트럼은 각각 하이드록시기와 아민기, 아미드의 카보닐기에 해당하는 3,353 cm-1과 1632 cm-1에서 피크(peak)를 나타냈다([도 5]).Additionally, the DOC cat of CBP was measured from the UV-Vis absorption peak at 280 nm using the HCA absorption peak (see [Figure 4]). This result indicates that less than 4% of the amino groups of chitosan react with HCA to form amides combined with 3,4-dihydroxyhydrocinnamic acid groups. Additionally, the FT-IR spectrum of CBP showed peaks at 3,353 cm -1 and 1,632 cm -1 corresponding to the hydroxy group, amine group, and carbonyl group of amide, respectively ([Figure 5]).

(2) 모르타르 플로우(2) Mortar flow

[도 6]은 강 슬래그 잔골재와 CBP를 포함하는 모르타르 조성물의 플로우값을 나타낸 그래프이다. 잔골재가 NS만으로 이루어진 N100은 플로우값이 165mm로 가장 낮았다. BS50의 플로우값은 약 167mm로 나타났고, 이는 N100과 비슷하다. FS50의 플로우값은 약 185mm로 N100보다 12.1% 높았다. [Figure 6] is a graph showing the flow value of a mortar composition containing fine steel slag aggregate and CBP. N100, which consists of only NS fine aggregate, had the lowest flow value of 165mm. The flow value of BS50 was found to be about 167mm, which is similar to N100. The flow value of FS50 was about 185mm, which was 12.1% higher than that of N100.

모르타르 플로우는 사용된 잔골재가 어떤 것이든 CBP를 추가함에 따라 증가했다. PN100의 플로우값은(CBP와 NS 포함)은 약 176mm로 N100보다 약 6.6% 높았다. CBP 및 강 슬래그 잔골재를 사용한 조성물의 플로우값은 약 187~200 mm로, CBP를 사용하지 않은 혼합물의 흐름보다 약 10.4~11.9% 더 높았다. 그 결과, 천연 잔골재만을 사용한 모르타르보다 강 슬래그 잔골재를 혼용한 경우 CBP 첨가에 따른 모르타르 조성물의 유동성이 더욱 향상되는 것으로 나타났다. Mortar flow increased with the addition of CBP to whatever fine aggregate was used. The flow value (including CBP and NS) of PN100 was about 176 mm, which was about 6.6% higher than that of N100. The flow value of the composition using CBP and steel slag fine aggregate was about 187 to 200 mm, which was about 10.4 to 11.9% higher than the flow of the mixture without CBP. As a result, it was found that the fluidity of the mortar composition was further improved by adding CBP when steel slag fine aggregate was mixed compared to mortar using only natural fine aggregate.

(3) 압축강도(3) Compressive strength

[도 7]은 강 슬래그 잔골재와 CBP를 사용한 시멘트 모르타르 혼합물 시험체들의 재령별 압축 강도 변화를 나타낸 것이다. N100과 BS50은 재령 7일 압축강도가 42.8 MPa 수준으로 비슷했고, FS50은 47.5 MPa로 N100보다 10.9% 높았다. 이러한 강도의 증가는 FS의 고밀도 및 낮은 흡수율에 기인하는 것으로 분석된다. N100과 BS50의 압축강도는 각각 PN100과 PBS50의 압축강도와 유사했다. 그러나 PBF50과 PFS50의 재령 7일 압축강도는 각각 BF50과 FS50보다 낮았다.[Figure 7] shows the change in compressive strength by age of cement mortar mixture test specimens using steel slag fine aggregate and CBP. N100 and BS50 had similar compressive strengths at 42.8 MPa at 7 days of age, and FS50 was 47.5 MPa, 10.9% higher than N100. This increase in strength is analyzed to be due to the high density and low absorption rate of FS. The compressive strengths of N100 and BS50 were similar to those of PN100 and PBS50, respectively. However, the 7-day compressive strengths of PBF50 and PFS50 were lower than those of BF50 and FS50, respectively.

N100과 BS50은 재령 28일 압축강도 역시 45.0 MPa 수준으로 유사하게 나타났다. BF50과 FS50의 재령 28일 압축강도는 각각 49.5, 55.3 MPa로 N100보다 각각 11.2%, 24.2% 높았다.The compressive strength of N100 and BS50 at 28 days was also similar at 45.0 MPa. The 28-day compressive strengths of BF50 and FS50 were 49.5 and 55.3 MPa, respectively, which were 11.2% and 24.2% higher than N100, respectively.

그러나, CBP를 사용한 조성물의 압축 강도는 완전히 다른 경향을 보였다. PN100의 재령 28일 압축 강도는 약 48.7 MPa로 N100보다 약 9.4% 높았다. PBS50의 재령 28일 압축강도는 46.0 MPa로 BS50(45.9 MPa)과 비슷했다. 이에 반해 PBF50과 PFS50의 재령 28일 압축강도는 각각 44.5, 42.9 MPa로 BF50과 FS50 보다 각각 10.1%, 22.4% 낮게 나타났다. PBF50과 PFS50의 낮은 압축 강도는 CBP와 FS 간의 약한 친화성(compatibility)에 기인할 수 있다. [도 8]은 7일 동안 CBP 용액에 담그기 전과 후의 BS 샘플과 FS 샘플의 SEM 이미지를 보여준다. BS 샘플의 표면은 CBP 용액에 담근 후에도 변하지 않는다. 그러나 FS 샘플의 표면에는 CBP 용액에 담근 후 수많은 균열이 관찰된다. 따라서 CBP가 첨가된 시멘트 모르타르 조성물의 압축강도 면에서는 BS가 FS보다 더 적합한 것으로 확인된다.However, the compressive strength of compositions using CBP showed a completely different trend. The compressive strength of PN100 at 28 days of age was about 48.7 MPa, which was about 9.4% higher than that of N100. The compressive strength of PBS50 at 28 days of age was 46.0 MPa, which was similar to that of BS50 (45.9 MPa). In contrast, the 28-day compressive strengths of PBF50 and PFS50 were 44.5 and 42.9 MPa, respectively, which were 10.1% and 22.4% lower than those of BF50 and FS50, respectively. The low compressive strength of PBF50 and PFS50 may be due to the weak compatibility between CBP and FS. [Figure 8] shows SEM images of the BS sample and the FS sample before and after immersion in the CBP solution for 7 days. The surface of the BS sample does not change after immersion in the CBP solution. However, numerous cracks are observed on the surface of the FS sample after immersion in the CBP solution. Therefore, BS is confirmed to be more suitable than FS in terms of compressive strength of cement mortar compositions to which CBP is added.

모르타르 조성물의 재령 56일 압축강도는 28일 압축강도와 유사한 경향을 보였다. FS50은 55.9 MPa의 가장 높은 56일 압축강도를 보였다. 그러나 PBF50과 PFS50은 각각 44.7과 45.5 MPa의 56일 압축강도를 보여 BF50과 FS50보다 각각 12.6%, 20.0% 낮았다. 또한 PN100과 PBS50은 각각 51.3 MPa, 49.9 MPa의 재령 56일 압축강도를 보여 N100(45.5 MPa)과 BS50(49.2 MPa)보다 높은 압축강도를 보였다.The compressive strength of the mortar composition at 56 days showed a similar trend to the compressive strength at 28 days. FS50 showed the highest 56-day compressive strength of 55.9 MPa. However, PBF50 and PFS50 showed 56-day compressive strengths of 44.7 and 45.5 MPa, respectively, which were 12.6% and 20.0% lower than BF50 and FS50, respectively. In addition, PN100 and PBS50 showed compressive strengths of 51.3 MPa and 49.9 MPa at 56 days, respectively, showing higher compressive strengths than N100 (45.5 MPa) and BS50 (49.2 MPa).

(4) 할렬 인장강도(4) Split tensile strength

[도 9]는 시멘트 모르타르 조성물 시험체들의 재령 28일 할렬인장강도를 나타낸 것이다. N100의 인장강도는 2.51 MPa이나, PN100의 인장강도는 3.03 MPa로 N100보다 20.7% 높았다. 또한 PBS50(3.22MPa)의 28일 인장강도는 BS50(2.94MPa)보다 약간 높았다. [Figure 9] shows the splitting tensile strength of cement mortar composition test specimens at 28 days of age. The tensile strength of N100 was 2.51 MPa, but the tensile strength of PN100 was 3.03 MPa, which was 20.7% higher than that of N100. Additionally, the 28-day tensile strength of PBS50 (3.22 MPa) was slightly higher than that of BS50 (2.94 MPa).

그러나 BF50 및 FS50의 인장강도는 각각 3.48 MPa 및 3.42 MPa로 나타났으며, 대조적으로 PBF50 및 PFS50의 인장 강도는 각각 3.28 MPa 및 2.55 MPa로 나타나, BF 또는 FS가 잔골재로 사용될 때 CBP가 첨가된 조성물의 인장 강도는 CBP가 첨가되지 않은 경우보다 5.7%~25.4% 낮게 나타났다.However, the tensile strengths of BF50 and FS50 were found to be 3.48 MPa and 3.42 MPa, respectively. In contrast, the tensile strengths of PBF50 and PFS50 were shown to be 3.28 MPa and 2.55 MPa, respectively, showing that when BF or FS is used as a fine aggregate, the composition to which CBP is added The tensile strength was 5.7% to 25.4% lower than when CBP was not added.

(5) 탄산화 깊이(5) Carbonation depth

[도 10]은 시멘트 모르타르 조성물 시험체들을 28일간 촉진 탄산화시킨 후 측정된 탄산화 깊이를 나타낸 것이다. N100의 탄산화 깊이는 약 0.89mm였다. PN100의 탄산화 깊이는 약 0.54mm이며 N100보다 약 39.3% 낮다. PN100의 탄산화 깊이가 얕은 것(즉, 탄산화 저항성이 큰 것)은 N100보다 압축강도가 크기 때문인 것으로 사료된다.[Figure 10] shows the carbonation depth measured after accelerated carbonation of cement mortar composition test specimens for 28 days. The carbonation depth of N100 was about 0.89 mm. The carbonation depth of PN100 is about 0.54 mm, which is about 39.3% lower than that of N100. It is believed that the shallow carbonation depth of PN100 (i.e., greater carbonation resistance) is due to its greater compressive strength than N100.

BS50은 최대 1.33 mm의 탄산화 깊이를 보였다. BF50과 FS50의 탄산화 깊이는 각각 0.96mm, 0.93mm로 BS50보다 낮았다. 그러나 PBS50은 BS50과 비슷한 재령 56일 압축강도를 보였지만 탄산화 깊이는 0.59 mm로 BS50보다 현저히 낮았다(55.6%). 이것은 BS와 CBP 사이의 반응에 의해 형성된 생성물이 시멘트 경화 매트릭스를 더 밀도 있게 만드는 데 기여했기 때문인 것으로 사료된다. [도 11]은 BS50과 PBS50의 SEM 이미지이다. PBS50의 표면은 BS50의 표면보다 상대적으로 밀도가 높다. 두 조성물(BS50 및 PBS50)의 재령 58일 압축강도가 모두 49 MPa 이상으로 높다는 점을 고려할 때, 경화된 시멘트 매트릭스의 경도 증가는 시멘트 모르타르 조성물의 강도에 영향을 미치지 않았지만, 이산화탄소 가스의 침투를 효과적으로 방지했다고 할 수 있다.BS50 showed a carbonation depth of up to 1.33 mm. The carbonation depth of BF50 and FS50 was 0.96 mm and 0.93 mm, respectively, which was lower than that of BS50. However, PBS50 showed similar compressive strength to BS50 at 56 days, but the carbonation depth was 0.59 mm, which was significantly lower than BS50 (55.6%). This is believed to be because the products formed by the reaction between BS and CBP contributed to making the cement hardening matrix more dense. [Figure 11] is an SEM image of BS50 and PBS50. The surface of PBS50 is relatively denser than that of BS50. Considering that the compressive strengths of both compositions (BS50 and PBS50) at 58 days were high, above 49 MPa, the increase in hardness of the hardened cement matrix did not affect the strength of the cement mortar composition, but effectively prevented the penetration of carbon dioxide gas. It can be said that it was prevented.

(6) 염화물 이온 투과성(6) Chloride ion permeability

[도 12]는 시멘트 모르타르 조성물 시험예별 재령 28일 총 투과 전하량(total charge passed)을 나타낸 것이다. N100을 통과한 총 전하량이 가장 많았고(9030 C), 이는 PN100(8028 C)보다 11.0% 높았다. BS50, BF50, FS50을 통과하는 총 충전량은 각각 7331 C, 7172 C, 6769 C로 N100 보다 18.8~25.3% 낮았다. [Figure 12] shows the total charge passed for each test example of the cement mortar composition at 28 days of age. The total amount of charge passing through N100 was the highest (9030 C), which was 11.0% higher than PN100 (8028 C). The total charge passing through BS50, BF50, and FS50 was 7331 C, 7172 C, and 6769 C, respectively, which were 18.8-25.3% lower than that of N100.

강 슬래그 잔골재와 CBP를 사용한 시료를 통과하는 총 전하량은 약 5741~6050 C로 PN100보다 24.6~28.4% 낮았다. 시료를 통과한 총 전하량은 CBP를 첨가한 후 주의적으로 감소했다. 특히, 강 슬래그 골재와 CBP를 사용하는 경우 모르타르 조성물의 염화이온 투과 저항성이 증가하였다.The total charge passing through the sample using steel slag fine aggregate and CBP was approximately 5741~6050 C, which was 24.6~28.4% lower than that of PN100. The total charge passing through the sample was carefully reduced after addition of CBP. In particular, when steel slag aggregate and CBP were used, the chloride ion penetration resistance of the mortar composition increased.

위 시험결과를 정리하면 다음과 같다.The above test results can be summarized as follows.

(1) CBP 첨가에 따라 시멘트 모르타르 조성물의 플로우값이 증가하는 경향이 나타난다.(1) The flow value of the cement mortar composition tends to increase with the addition of CBP.

(2) PN100과 PBS50의 재령 56일 압축강도가 N100과 BS50보다 높았다. 그러나 PBF50과 PFS50의 압축강도는 각각 BF50과 FS50보다 낮았다. 따라서 BS는 FS보다 CBP와 강 슬래그 잔골재를 사용한 시멘트 모르타르 조성물의 압축강도 향상에 더 효과적이다.(2) The compressive strength of PN100 and PBS50 at 56 days of age was higher than that of N100 and BS50. However, the compressive strengths of PBF50 and PFS50 were lower than BF50 and FS50, respectively. Therefore, BS is more effective than FS in improving the compressive strength of cement mortar compositions using CBP and steel slag fine aggregate.

(3) NS 또는 BS를 사용한 샘플에서 CBP를 첨가하였을 때 압축강도 및 인장강도가 향상되었다. 그러나 FS를 사용한 샘플에서는 CBP 첨가 후 인장 강도가 감소했다.(3) Compressive and tensile strengths were improved when CBP was added to samples using NS or BS. However, in samples with FS, the tensile strength decreased after addition of CBP.

(4) PBS50의 탄산화 깊이는 0.59 mm로 BS50보다 현저히 낮다.(4) The carbonation depth of PBS50 is 0.59 mm, which is significantly lower than that of BS50.

(5) CBP 첨가 후 시료를 통과한 총 전하량은 감소하였다. 모르타르 시료의 염화물 이온 침투 저항은 CBP와 강 슬래그 잔골재를 모두 사용할 때 증가했다.(5) After adding CBP, the total amount of charge passing through the sample decreased. The chloride ion penetration resistance of mortar samples increased when both CBP and steel slag fine aggregates were used.

CBP와 강 슬래그를 함께 적용한 시험예 중 PBS50 및 PBF50은 모르타르 플로우 175~200 mm, 재령 56일 압축강도 45 MPa 이상, 재령 28일 할렬인장강도 3 MPa 이상, 촉진 탄산화 깊이 1.0 mm 이하 및 재령 28일 염화물 이온 투과량 6000 C 이하의 물성이 모두 충족된다.Among the test examples in which CBP and steel slag were applied together, PBS50 and PBF50 had a mortar flow of 175 to 200 mm, a compressive strength of 45 MPa or more at 56 days, a splitting tensile strength of 3 MPa or more at 28 days, an accelerated carbonation depth of 1.0 mm or less, and an age of 28 days. All physical properties of chloride ion permeability below 6000 C are met.

이상의 결과로부터 제조된 그대로의 CBP가 시멘트 모르타르의 물성을 향상시킬 수 있는 유망한 재료이며 BS 골재를 포함하는 시멘트 복합재와 상용성이 높다는 것이 확인된다.From the above results, it is confirmed that as-manufactured CBP is a promising material that can improve the physical properties of cement mortar and is highly compatible with cement composites containing BS aggregate.

본 발명은 상기에서 언급한 바와 같이 시험예와 관련하여 설명되었으나, 본 발명의 요지를 벗어남이 없는 범위 내에서 다양한 수정 및 변형이 가능하며, 다양한 분야에서 사용 가능하다. 따라서 본 발명의 청구범위는 이전 발명의 진정한 범위 내에 속하는 수정 및 변형을 포함한다.Although the present invention has been described in relation to test examples as mentioned above, various modifications and variations are possible without departing from the gist of the present invention, and can be used in various fields. Accordingly, the scope of the present invention includes modifications and variations falling within the true scope of the foregoing invention.

해당없음Not applicable

Claims (8)

시멘트, 잔골재 및 배합수를 포함하는 모르타르 조성물로서,
상기 배합수에는 키토산계 폴리머(chitosan-based polymer : CBP) 용액이 5~10 wt% 포함되고,
상기 잔골재에는 강 슬래그(steel slag) 잔골재가 포함된 것을 특징으로 하는 시멘트 모르타르 조성물.
A mortar composition containing cement, fine aggregate and mixing water,
The mixing water contains 5 to 10 wt% of chitosan-based polymer (CBP) solution,
A cement mortar composition, characterized in that the fine aggregate includes steel slag fine aggregate.
제1항에서,
상기 CBP는 탈아세틸화도(degree of deacetylation) 75%~85%인 것을 특징으로 하는 시멘트 모르타르 조성물.
In paragraph 1:
The CBP is a cement mortar composition characterized in that the degree of deacetylation is 75% to 85%.
제2항에서,
상기 CBP는 키토산과 하이드로카페산(hydrocaffeic acid, HCA) 및 1-에틸-3(3-디메틸아미노프로필) 카르보디이미드 염산염(1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, EDC)사이의 아마이드 결합 반응(amide coupling reaction)을 통해 합성된 것을 특징으로 하는 시멘트 모르타르 조성물.
In paragraph 2,
The CBP is between chitosan, hydrocaffeic acid (HCA), and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). A cement mortar composition characterized by being synthesized through an amide coupling reaction.
제1항에서,
상기 CBP 용액은 물 1,000 ㎖ 당 CBP 450~550 mg이 용해된 것을 특징으로 하는 시멘트 모르타르 조성물.
In paragraph 1:
The CBP solution is a cement mortar composition characterized in that 450 to 550 mg of CBP is dissolved per 1,000 ml of water.
제1항에서,
상기 잔골재는 강 슬래그가 50 vol% 이하(0 vol% 제외) 혼합되어 잔골재 표준입도분포 범위에 부합하는 것을 특징으로 하는 시멘트 모르타르 조성물.
In paragraph 1:
A cement mortar composition characterized in that the fine aggregate is mixed with 50 vol% or less of steel slag (excluding 0 vol%) and conforms to the standard particle size distribution range of fine aggregate.
제5항에서,
상기 강 슬래그는 고로 슬래그(BS) 또는 페로니켈 슬래그(FS) 중 어느 한가지 이상이 적용된 것을 특징으로 하는 시멘트 모르타르 조성물.
In paragraph 5,
A cement mortar composition characterized in that the steel slag is one or more of blast furnace slag (BS) or ferronickel slag (FS).
제1항 내지 제6항 중 어느 한 항에서,
상기 시멘트는 단위체적 1㎥ 당 320~350 kg 혼합되고,
상기 잔골재는 단위체적 1㎥ 당 700~750 kg 혼합되며,
상기 배합수는 물-시멘트비 45~50 wt%에 따라 혼합된 것을 특징으로 하는 시멘트 모르타르 조성물.
In any one of paragraphs 1 to 6,
The cement is mixed at 320 to 350 kg per 1 m3 of unit volume,
The fine aggregate is mixed at 700 to 750 kg per 1㎥ of unit volume,
A cement mortar composition, characterized in that the mixing water is mixed according to a water-cement ratio of 45 to 50 wt%.
제7항에서,
모르타르 플로우 175~200 mm;
재령 56일 압축강도 45 MPa 이상;
재령 28일 할렬인장강도 3 MPa 이상;
촉진 탄산화 깊이 1.0 mm 이하; 및
재령 28일 염화물 이온 투과량 6000 C 이하; 의 물성이 발현되는 것을 특징으로 하는 시멘트 모르타르 조성물.
In paragraph 7:
Mortar flow 175-200 mm;
Age 56 days Compressive strength 45 MPa or more;
Age: 28 days, splitting tensile strength: 3 MPa or more;
Accelerated carbonation depth of 1.0 mm or less; and
Age: 28 days Chloride ion permeation: 6000 C or less; A cement mortar composition characterized in that the physical properties of
KR1020220032807A 2022-03-16 2022-03-16 Cement mortar composition comprising chitosan-based polymer and steel slag fine aggregate KR102650024B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220032807A KR102650024B1 (en) 2022-03-16 2022-03-16 Cement mortar composition comprising chitosan-based polymer and steel slag fine aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220032807A KR102650024B1 (en) 2022-03-16 2022-03-16 Cement mortar composition comprising chitosan-based polymer and steel slag fine aggregate

Publications (2)

Publication Number Publication Date
KR20230135720A true KR20230135720A (en) 2023-09-26
KR102650024B1 KR102650024B1 (en) 2024-03-21

Family

ID=88191332

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220032807A KR102650024B1 (en) 2022-03-16 2022-03-16 Cement mortar composition comprising chitosan-based polymer and steel slag fine aggregate

Country Status (1)

Country Link
KR (1) KR102650024B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117843325A (en) * 2024-03-08 2024-04-09 南京能娃新型材料科技有限公司 Cement mortar doped with iron tailing sand and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680527B1 (en) 2016-09-23 2016-11-29 이경택 A Manufacturing Method Of Mortar With Agar
KR20180083756A (en) 2017-01-13 2018-07-23 코오롱인더스트리 주식회사 Binder for enhancing concrete strength and concrete polymer cement complex composition comprising the same
KR20200076566A (en) * 2018-12-19 2020-06-29 주식회사 포스코 Fine aggregate and concrete composition comprising the same
KR20230092073A (en) * 2021-12-16 2023-06-26 원광대학교산학협력단 Mortar composition comprising catechol-functionalized chitosan polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680527B1 (en) 2016-09-23 2016-11-29 이경택 A Manufacturing Method Of Mortar With Agar
KR20180083756A (en) 2017-01-13 2018-07-23 코오롱인더스트리 주식회사 Binder for enhancing concrete strength and concrete polymer cement complex composition comprising the same
KR20200076566A (en) * 2018-12-19 2020-06-29 주식회사 포스코 Fine aggregate and concrete composition comprising the same
KR20230092073A (en) * 2021-12-16 2023-06-26 원광대학교산학협력단 Mortar composition comprising catechol-functionalized chitosan polymer

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
1. Douba, A.; Emiroglu, M.; Kandil, U.F.; Taha, M.M.R. Very ductile polymer concrete using carbon nanotubes. Constr. Build. Mater. 2019, 196, 468-477.
2. Niaki, M.H.; Fereidoon, A.; Ahangari, M.G. Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete. Compos. Struct. 2018, 191, 231-238.
3. Wang, J.; Dai, Q.; Guo, S.; Si, R. Mechanical and durability performance evaluation of crumb rubber-modified epoxy polymer concrete overlays. Constr. Build. Mater. 2019, 203, 469-480.
4. Asdollah-Tabar, M.; Heidari-Rarani, M.; Aliha, M.R.M. The effect of recycled PET bottles on the fracture toughness of polymer concrete. Compos. Commun. 2021, 25, 100684.
최세진 외 4인., Materials Vol.14 No.21, (2021. 10. 공지) 1부.* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117843325A (en) * 2024-03-08 2024-04-09 南京能娃新型材料科技有限公司 Cement mortar doped with iron tailing sand and preparation method thereof

Also Published As

Publication number Publication date
KR102650024B1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
Gu et al. Tough, strong, and biodegradable composite film with excellent UV barrier performance comprising soy protein isolate, hyperbranched polyester, and cardanol derivative
Khan et al. Processing and properties of antibacterial silver nanoparticle-loaded hemp hurd/poly (lactic acid) biocomposites
Xia et al. Soy protein isolate-based films cross-linked by epoxidized soybean oil
KR102650024B1 (en) Cement mortar composition comprising chitosan-based polymer and steel slag fine aggregate
Nisticò et al. Chitosan and its char as fillers in cement-base composites: A case study
Gupta et al. Mechanical and thermal degradation behavior of sisal fiber (SF) reinforced recycled polypropylene (RPP) composites
Niu et al. Effective dispersion and crosslinking in PVA/cellulose fiber biocomposites via solid-state mechanochemistry
Rajapaksha et al. Development of cellulose based light weight polymer composites
Xu et al. Enhanced thermal and mechanical properties of lignin/polypropylene wood-plastic composite by using flexible segment-containing reactive compatibilizer
Yan et al. Carbon nanotubes/carbon black synergistic reinforced natural rubber composites
EP3594246A1 (en) Method for producing modified cellulose fiber
Liao et al. Effects of a novel compatible interface structure on the properties of starch–PCL composites
Gogoi et al. In situ synthesis of a microbial fouling resistant, nanofibrillar cellulose-hyperbranched epoxy composite for advanced coating applications
Verma et al. Experimental characterization of modified epoxy resin assorted with almond shell particles
Divya et al. Comprehensive characterization of Furcraea selloa K. Koch peduncle fiber-reinforced polyester composites—effect of fiber length and weight ratio
Haider et al. Insights into setting time, rheological and mechanical properties of chitin nanocrystals-and chitin nanofibers-cement paste
Olivia et al. Biopolymers to improve physical properties and leaching characteristics of mortar and concrete: A review
Chen et al. Preparation and characterization of poly (vinyl alcohol)/halloysite nanotubes composite sponges with improved mechanical properties
Lv et al. Strengthening and toughening effects of layered double hydroxide and hyperbranched polymer on epoxy resin
Li et al. Simultaneous improvements of thermal stability and mechanical properties of poly (propylene carbonate) via incorporation of environmental-friendly polydopamine
Kumar et al. Recent developments of lignocellulosic natural fiber reinforced hybrid thermosetting composites for high-end structural applications: A review
Francisco et al. Comprehensive study of cellulose nanocrystals acetylation effects on poly (butylene adipate-co-terephthalate) nanocomposite films obtained by solvent casting and heat pressing
RU2513766C2 (en) Superconcentrate and based on it composition materials
Echegaray et al. Physicochemical and mechanical properties of gelatin reinforced with nanocellulose and montmorillonite
CN112408892A (en) Ultrahigh-toughness concrete and preparation method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant