KR20230132049A - Plasma treated boron nitride nanosheets-reinforced epoxy composites and its manufacturing method - Google Patents

Plasma treated boron nitride nanosheets-reinforced epoxy composites and its manufacturing method Download PDF

Info

Publication number
KR20230132049A
KR20230132049A KR1020220029080A KR20220029080A KR20230132049A KR 20230132049 A KR20230132049 A KR 20230132049A KR 1020220029080 A KR1020220029080 A KR 1020220029080A KR 20220029080 A KR20220029080 A KR 20220029080A KR 20230132049 A KR20230132049 A KR 20230132049A
Authority
KR
South Korea
Prior art keywords
boron nitride
hours
nitride nanosheets
plasma
mixture
Prior art date
Application number
KR1020220029080A
Other languages
Korean (ko)
Inventor
박수진
최원종
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020220029080A priority Critical patent/KR20230132049A/en
Publication of KR20230132049A publication Critical patent/KR20230132049A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Abstract

플라즈마 처리된 질화붕소 나노시트와 에폭시수지를 유기용매에서 초음파 처리 및 혼합하여 안정된 분산액을 얻고, 유기용매를 제거 한 후 경화제와 혼합하여 금형에 수작업으로 부어 핫프레스에서 총 3단계로 2~12시간 경화시켜 기계적 강도 및 열적특성이 향상된 플라즈마 처리한 질화붕소 나노시트로 강화된 에폭시 복합소재를 제공하기 위한 것이다.
보다 상세하게는 (1) 플라즈마 처리기를 사용하여 질화붕소 나노시트의 표면처리를 하는 단계; (2) 상기 (1) 단계에서 플라즈마 처리된 질화붕소 나노시트를 아세톤, 에탄올, 메탄올 및 에테르 중 어느 1종 이상의 유기용매를 이용하여 에폭시 수지와 혼합하는 단계; (3) 상기 (2) 단계에서 제조된 혼합물의 안정화 단계; (4) 상기 (3) 단계에서 제조된 혼합물에 아민계, 산무수물계, 폴리아미드계, 음이온 중합형 및 다관형 경화제 중 어느 1종 이상의 경화제를 첨가하는 단계; (5) 상기 (4) 단계에서 제조된 혼합물을 진공오븐에서 안정화하는 단계; 및 (6) 상기 (5) 단계에서 제조된 질화붕소 나노시트, 에폭시 수지 및 경화제의 혼합물을 금형에 부어 경화하는 단계; 를 포함하는 에폭시 복합 재료의 제조방법을 제공한다.
Plasma-treated boron nitride nanosheets and epoxy resin are ultrasonicated and mixed in an organic solvent to obtain a stable dispersion. After removing the organic solvent, the mixture is mixed with a curing agent and poured manually into a mold in a hot press for 2 to 12 hours in a total of 3 steps. The purpose is to provide an epoxy composite material reinforced with plasma-treated boron nitride nanosheets that have improved mechanical strength and thermal properties by hardening.
More specifically, (1) surface treatment of boron nitride nanosheets using a plasma processor; (2) mixing the boron nitride nanosheets plasma-treated in step (1) with an epoxy resin using at least one organic solvent selected from acetone, ethanol, methanol, and ether; (3) stabilizing the mixture prepared in step (2); (4) adding at least one type of curing agent among amine-based, acid anhydride-based, polyamide-based, anionic polymerization-type, and multi-tube type curing agents to the mixture prepared in step (3); (5) stabilizing the mixture prepared in step (4) in a vacuum oven; and (6) pouring the mixture of boron nitride nanosheets, epoxy resin, and curing agent prepared in step (5) into a mold and curing it. It provides a method for manufacturing an epoxy composite material containing.

Description

플라즈마로 표면처리된 질화붕소 나노시트강화 에폭시 복합소재 및 그 제조방법{PLASMA TREATED BORON NITRIDE NANOSHEETS-REINFORCED EPOXY COMPOSITES AND ITS MANUFACTURING METHOD}Plasma-treated boron nitride nanosheet-reinforced epoxy composite material and its manufacturing method {PLASMA TREATED BORON NITRIDE NANOSHEETS-REINFORCED EPOXY COMPOSITES AND ITS MANUFACTURING METHOD}

본 발명은 플라즈마로 표면처리된 질화붕소 나노시트 (Plasma treated boron nitride nanosheets: PBNNS) 에폭시 복합재료 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 에폭시 복합소재의 열전도도, 계면 및 기계적 특성이 향상된 PBNNS로 강화된 에폭시 복합재료 및 그 제조방법에 관한 것이다.The present invention relates to plasma treated boron nitride nanosheets (PBNNS) epoxy composite materials and a method for manufacturing the same. More specifically, to PBNNS, which has improved thermal conductivity, interface, and mechanical properties of epoxy composite materials. It relates to reinforced epoxy composite materials and their manufacturing methods.

분자 내에 epoxy group(C-O-C)을 두 개 이상 가지고 있는 에폭시는 다양한 경화제와 반응시켜 단단하며 용해되지 않는 고분자 소재로 제조할 수 있다. 높은 인장탄성률, 접착 특성, 내화학성, 구조적 안정성 등의 특성으로 에폭시 수지는 복합재의 기지재료로서 우주항공, 선박, 자동차, 코팅재, 전기전자 산업 등에서 적용되고 있다. 그러나, 경화된 에폭시 수지의 높은 가교반응은 에폭시 복합소재의 취성을 높여 충격에 매우 취약하며, 낮은 열전도도 (0.2 W/mK)로 인해 열안정성 문제가 대두되고 있다.Epoxy, which has two or more epoxy groups (C-O-C) in the molecule, can be manufactured into a hard and insoluble polymer material by reacting with various hardeners. Due to its properties such as high tensile modulus, adhesive properties, chemical resistance, and structural stability, epoxy resin is used as a base material for composites in aerospace, ships, automobiles, coating materials, and electrical and electronic industries. However, the high crosslinking reaction of the cured epoxy resin increases the brittleness of the epoxy composite material, making it very vulnerable to impact, and the low thermal conductivity (0.2 W/mK) is causing problems with thermal stability.

한편, 최근 이러한 기계적 강도 및 열전도도를 향상시키기 위해 다른 고분자나 탄소소재, 나노 또는 마이크로 사이즈의 입자를 복합하는 등의 방법을 도입한 연구들이 보고되고 있다.Meanwhile, recent studies have been reported introducing methods such as combining other polymers, carbon materials, and nano- or micro-sized particles to improve mechanical strength and thermal conductivity.

다양한 필러소재들 중 세라믹소재는 에폭시 기지에 복합되어 기계적 특성 및 열전도도를 향상시킬 수 있다. 다양한 세라믹소재 중 질화붕소 나노시트 (Boron nitride nanosheets)는 2차원 구조의 독특한 표면특성 및 우수한 열전도도 및 안정성, 뛰어난 기계적 특성 그리고 마찰특성 등을 갖는다. 그러나 질화붕소 나노시트는 van der Waals 상호작용으로 응집되는 현상으로 인해 표면개질이 요구된다. 최근 이러한 질화붕소 나노시트의 표면을 개질하여 고분자 기지에 도입해 기존 고분자의 기계적 특성 및 열전도도를 향상시킨 연구사례가 보고되고 있다.Among various filler materials, ceramic materials can be combined with an epoxy base to improve mechanical properties and thermal conductivity. Among various ceramic materials, boron nitride nanosheets have unique surface characteristics of a two-dimensional structure, excellent thermal conductivity and stability, and excellent mechanical and friction characteristics. However, boron nitride nanosheets require surface modification due to the agglomeration phenomenon due to van der Waals interaction. Recently, research cases have been reported in which the surface of these boron nitride nanosheets was modified and introduced into a polymer matrix to improve the mechanical properties and thermal conductivity of existing polymers.

본 발명의 목적은, 기계적 강도 및 열전도도가 강화된 에폭시 소재를 제공하는데 있어서 플라즈마로 표면처리된 질화붕소 나노시트강화 에폭시 복합재료 및 그 제조 방법을 제공하는데 있다.The purpose of the present invention is to provide an epoxy material with enhanced mechanical strength and thermal conductivity, a boron nitride nanosheet-reinforced epoxy composite material surface-treated with plasma, and a method for manufacturing the same.

상기 목적을 달성하기 위하여, 본 발명은 기계적 강도 및 열전도도가 향상된 에폭시 복합재료 및 그 제조 방법을 제공한다.In order to achieve the above object, the present invention provides an epoxy composite material with improved mechanical strength and thermal conductivity and a method for manufacturing the same.

본 발명의 플라즈마로 표면처리된 질화붕소 나노시트강화 에폭시 복합재료의 제조방법은 (1) 플라즈마 처리기를 사용하여 질화붕소 나노시트의 표면처리를 하는 단계; (2) 상기 (1) 단계에서 플라즈마 처리된 질화붕소 나노시트를 아세톤, 에탄올, 메탄올 및 에테르 중 어느 1종 이상의 유기용매를 이용하여 에폭시 수지와 혼합하는 단계; (3) 상기 (2) 단계에서 제조된 혼합물의 안정화 단계; (4) 상기 (3) 단계에서 제조된 혼합물에 아민계, 산무수물계, 폴리아미드계, 음이온 중합형 및 다관형 경화제 중 어느 1종 이상의 경화제를 첨가하는 단계; (5) 상기 (4) 단계에서 제조된 혼합물을 진공오븐에서 안정화하는 단계; 및 (6) 상기 (5) 단계에서 제조된 질화붕소 나노시트, 에폭시 수지 및 경화제의 혼합물을 금형에 부어 경화하는 단계; 를 포함한다. The method for producing a plasma-treated boron nitride nanosheet-reinforced epoxy composite material of the present invention includes the steps of (1) surface treating the boron nitride nanosheet using a plasma processor; (2) mixing the boron nitride nanosheets plasma-treated in step (1) with an epoxy resin using at least one organic solvent selected from acetone, ethanol, methanol, and ether; (3) stabilizing the mixture prepared in step (2); (4) adding at least one type of curing agent among amine-based, acid anhydride-based, polyamide-based, anionic polymerization-type, and multi-tube type curing agents to the mixture prepared in step (3); (5) stabilizing the mixture prepared in step (4) in a vacuum oven; and (6) pouring the mixture of boron nitride nanosheets, epoxy resin, and curing agent prepared in step (5) into a mold and curing it. Includes.

상기와 같은 본 발명에 따르면, 플라즈마로 표면처리 된 질화붕소 나노시트를 충전재로 사용하여 에폭시 수지에 첨가함으로써, 관능성 질화붕소 나노시트의 많은 관능기들이 열경화성 수지로 가공이 용이한 에폭시 수지와의 강한 계면 결합력을 이끌어내어, 기계적 강도 및 열전도도가 향상된 에폭시 복합소재가 제조되는 효과가 있다.According to the present invention as described above, by using plasma-treated boron nitride nanosheets as a filler and adding them to the epoxy resin, many functional groups of the functional boron nitride nanosheets form a strong bond with the epoxy resin, which is easily processed into a thermosetting resin. By deriving interfacial bonding force, an epoxy composite material with improved mechanical strength and thermal conductivity is produced.

도 1 은 본 발명의 실시예에 따른 PBNNS로 강화된 에폭시 복합소재와 비교예의 열전도도 및 향상정도의 비교 그래프이다
도 2 은 본 발명의 실시예에 따른 PBNNS로 강화된 에폭시 복합소재와 비교예의 파괴인성 및 향상정도의 비교 그래프이다.
도 3 는 본 발명에서 제조한 PBNNS로 강화된 에폭시 복합소재의 실시예 2의 파괴인성 측정 후 파단면의 SEM 사진이다.
Figure 1 is a graph comparing the thermal conductivity and degree of improvement of an epoxy composite material reinforced with PBNNS according to an embodiment of the present invention and a comparative example.
Figure 2 is a graph comparing the fracture toughness and degree of improvement of an epoxy composite material reinforced with PBNNS according to an embodiment of the present invention and a comparative example.
Figure 3 is an SEM photograph of the fracture surface after measuring the fracture toughness of Example 2 of the epoxy composite material reinforced with PBNNS manufactured in the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 PBNNS로 강화된 에폭시 복합재료의 제조방법은 (1) 플라즈마 표면처리기를 사용하여 질화붕소 나노시트에 산소함유관능기를 부착하는 단계; (2) 플라즈마 처리 이후, 유기용매를 이용하여 플라즈마 표면처리 된 질화붕소 나노시트와 에폭시 수지를 혼합하는 단계; (3) 상기 제조된 혼합물의 안정화하는 단계; (4) 경화제를 첨가하여 혼합하는 단계; (5) 상기 제조된 혼합물을 진공 오븐에서 안정화하는 단계; (6) 상기 제조된 혼합물을 핫 프레스로 경화시켜 수산화기-관능성 질화붕소 나노시트가 도입된 에폭시 복합소재를 제조한다. The method for manufacturing an epoxy composite material reinforced with PBNNS of the present invention includes the steps of (1) attaching an oxygen-containing functional group to a boron nitride nanosheet using a plasma surface treatment machine; (2) After plasma treatment, mixing the plasma surface-treated boron nitride nanosheets and epoxy resin using an organic solvent; (3) stabilizing the prepared mixture; (4) adding and mixing a curing agent; (5) stabilizing the prepared mixture in a vacuum oven; (6) The prepared mixture is cured with a hot press to prepare an epoxy composite material into which hydroxyl-functional boron nitride nanosheets are introduced.

본 발명의 제조과정을 상세히 살펴보면, 상기 (1) 플라즈마 표면처리기(ATMOS-Multi, PLASMART co., Korea)를 아르곤(99%), 산소(1%) 가스조건 하에서 14MHz, 200W로 7분 동안 질화붕소 나노시트를 개질하였다. (2) 표면개질을 완료한 질화붕소 나노시트를 유기용매를 이용하여 에폭시 수지와 혼합하였다. 아세톤(C3H6O) 200mL에 에폭시 대비 30g PBNNS를 넣은 뒤, 10에서 50℃의 온도범위에서 1에서 2시간 동안 초음파 처리를 진행한다. 상기 반응이 끝난 혼합물에 에폭시 수지를 넣은 뒤 30에서 65℃의 온도범위에서 가열하여 유지시키고 1에서 4시간 동안 교반한다.Looking at the manufacturing process of the present invention in detail, (1) nitriding using a plasma surface treatment machine (ATMOS-Multi, PLASMART co., Korea) at 14MHz and 200W for 7 minutes under argon (99%) and oxygen (1%) gas conditions. Boron nanosheets were modified. (2) Boron nitride nanosheets that had completed surface modification were mixed with epoxy resin using an organic solvent. After adding 30 g of PBNNS compared to epoxy to 200 mL of acetone (C 3 H 6 O), ultrasonic treatment is performed for 1 to 2 hours at a temperature range of 10 to 50 ° C. After adding the epoxy resin to the reaction mixture, it is heated and maintained at a temperature range of 30 to 65°C and stirred for 1 to 4 hours.

상기 제조된 혼합물을 사용하여 상기 (3) 단계의 제조된 혼합물의 안정화하는 단계를 진행하였다. 상기 (2) 단계에서 제조된 혼합물은 유기용매를 100℃에서 150℃의 온도범위에서 4에서 10시간 동안 제거하는 것이 바람직하다. 이어서, (4) 안정화된 혼합물에 경화제로서 4,4’-diaminodiphenylmethane를 에폭시 수지 100wt.% 대비 21 내지 23wt.%를 첨가하여 20에서 70℃ 온도 범위에서 1에서 5시간 동안 반응시킨다. 그 다음, (5) 잔류하는 PBNNS와 에폭시수지를 상기 (4) 단계의 경화제를 첨가한 혼합물을 안정화하는 단계를 진행하였다. 상기 (5) 단계의 (4) 단계에서 제조된 혼합물을 진공오븐에서 안정화하는 단계는 상기 (4) 단계에서 제조된 혼합물은 에폭시 수지에 경화제가 첨가 되어 화학적 반응으로 인해 기포가 생기며 진공오븐에서 감압 하에 10에서 60℃ 온도 범위에서 1에서 3시간 동안 기포를 제거하는 것이 바람직하다. 혼합과정에서 발생한 기포는 최종적으로 제조된 에폭시 복합재료 내에 기공을 형성하여 질화붕소 나노시트-강화 에폭시 복합소재를 제조하는 단계로써, 금형에 상기 (5) 단계에서 제조된 혼합물을 부어준다. 그 다음, 핫 프레스에서 1단계는 60에서 90℃ 온도 범위에서 1에서 2시간, 2단계는 90에서 125℃ 온도 범위에서 1에서 2시간, 3단계는 140에서 170℃ 온도범위에서 1에서 2시간으로 총 3단계로 3에서 6시간 경화시켜 PBNNS로 강화된 에폭시 복합소재를 제조하였다. 경화온도가 110℃ 미만일 경우에는 완전히 경화되지 않으며, 170℃ 이상일 경우에는 물성저하를 초래한다.The step of stabilizing the mixture prepared in step (3) above was performed using the prepared mixture. It is preferable to remove the organic solvent from the mixture prepared in step (2) at a temperature ranging from 100°C to 150°C for 4 to 10 hours. Next, (4) 21 to 23 wt.% of 4,4'-diaminodiphenylmethane as a curing agent relative to 100 wt.% of epoxy resin is added to the stabilized mixture and reacted for 1 to 5 hours at a temperature range of 20 to 70°C. Next, (5) the step of stabilizing the mixture of the remaining PBNNS and epoxy resin by adding the curing agent of step (4) above was performed. In the step of stabilizing the mixture prepared in step (4) of step (5) in a vacuum oven, the mixture prepared in step (4) is formed by adding a curing agent to the epoxy resin, causing bubbles to form due to a chemical reaction, and the mixture is depressurized in a vacuum oven. It is desirable to remove air bubbles for 1 to 3 hours at a temperature range of 10 to 60°C. The bubbles generated during the mixing process form pores in the final epoxy composite material to produce a boron nitride nanosheet-reinforced epoxy composite material. The mixture prepared in step (5) is poured into the mold. Then, in the hot press, step 1 is from 60 to 90℃ for 1 to 2 hours, step 2 is from 90 to 125℃ for 1 to 2 hours, and step 3 is from 140 to 170℃ for 1 to 2 hours. An epoxy composite material reinforced with PBNNS was manufactured by curing in three steps for 3 to 6 hours. If the curing temperature is less than 110℃, it is not completely cured, and if it is higher than 170℃, it causes a decrease in physical properties.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로써, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되는 않는 것은 당업계에서 통상의 지식을 가진자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be obvious to those skilled in the art that the scope of the present invention should not be construed as limited by these examples.

실시예 1.Example 1.

플라즈마 표면처리기(ATMOS-Multi, PLASMART co., Korea)를 아르곤(99%), 산소(1%) 가스조건 하에서 14MHz, 200W로 1분 동안 질화붕소 나노시트를 개질하였다. 표면개질을 완료한 질화붕소 나노시트를 유기용매를 이용하여 에폭시 수지와 혼합하였다. 구체적으로는, 아세톤(C3H6O) 200mL에 30g PBNNS를 넣은 뒤, 10에서 50℃의 온도범위에서 1에서 2시간 동안 초음파 처리를 진행한다. 상기 반응이 끝난 혼합물에 에폭시 수지 100g을 넣은 뒤 30에서 65℃의 온도범위에서 가열하여 유지시키고 1에서 4시간 동안 교반한다. 이어서, 유기용매를 100℃에서 150℃의 온도범위에서 4에서 10시간 동안 제거한다. 이후, 경화제로서 4,4’-diaminodiphenylmethane를 에폭시 수지 100wt.% 대비 21 내지 23wt.%를 첨가하여 20에서 70℃ 온도 범위에서 1에서 5시간 동안 반응시킨다. 이 후, 진공오븐에서 감압 하에 10에서 60℃ 온도 범위에서 1에서 3시간 동안 기포를 제거하였다. 그다음 금형에 부은 후, 핫 프레스에서 1단계는 60에서 90℃ 온도 범위에서 1에서 2시간, 2단계는 90에서 125℃ 온도 범위에서 1에서 2시간, 3단계는 140에서 170℃ 온도 범위에서 1에서 2시간으로 총 3단계로 2에서 8시간 경화시켜 PBNNS로 강화된 에폭시 복합소재를 제조하였다.Boron nitride nanosheets were modified using a plasma surface treatment machine (ATMOS-Multi, PLASMART co., Korea) at 14 MHz and 200 W for 1 minute under argon (99%) and oxygen (1%) gas conditions. Boron nitride nanosheets that had completed surface modification were mixed with epoxy resin using an organic solvent. Specifically, 30 g of PBNNS is added to 200 mL of acetone (C 3 H 6 O), and then ultrasonicated for 1 to 2 hours at a temperature range of 10 to 50°C. 100 g of epoxy resin was added to the reaction mixture, heated and maintained at a temperature range of 30 to 65°C, and stirred for 1 to 4 hours. Then, the organic solvent is removed for 4 to 10 hours at a temperature ranging from 100°C to 150°C. Thereafter, 21 to 23 wt.% of 4,4'-diaminodiphenylmethane as a curing agent relative to 100 wt.% of the epoxy resin is added and reacted for 1 to 5 hours at a temperature range of 20 to 70°C. Afterwards, air bubbles were removed in a vacuum oven under reduced pressure at a temperature ranging from 10 to 60°C for 1 to 3 hours. After pouring into the mold, the first step is 1 to 2 hours at a temperature range of 60 to 90℃, the second step is 1 to 2 hours at a temperature range of 90 to 125℃, and the third step is 1 to 2 hours at a temperature range of 140 to 170℃ in a hot press. An epoxy composite material reinforced with PBNNS was manufactured by curing in three steps, from 2 to 8 hours, for a total of 2 hours.

실시예 2.Example 2.

상기 실시예 1과 동일하게 과정을 실시하되, PBNNS의 플라즈마 표면처리시간을 3분으로 하여 PBNNS로 강화된 에폭시 복합소재를 제조하였다. The same process as Example 1 was performed, but the plasma surface treatment time of PBNNS was set to 3 minutes to produce an epoxy composite material reinforced with PBNNS.

실시예 3.Example 3.

상기 실시예 1과 동일하게 과정을 실시하되, PBNNS의 플라즈마 표면처리시간을 5분으로 하여 PBNNS로 강화된 에폭시 복합소재를 제조하였다. An epoxy composite material reinforced with PBNNS was manufactured in the same manner as in Example 1, except that the PBNNS plasma surface treatment time was 5 minutes.

실시예 4.Example 4.

상기 실시예 1과 동일하게 과정을 실시하되, PBNNS의 플라즈마 표면처리시간을 7분으로 하여 PBNNS로 강화된 에폭시 복합소재를 제조하였다. An epoxy composite material reinforced with PBNNS was manufactured in the same manner as in Example 1, except that the PBNNS plasma surface treatment time was 7 minutes.

실시예 5.Example 5.

상기 실시예 1과 동일하게 과정을 실시하되, PBNNS의 플라즈마 표면처리 시간을 10분으로 하여 PBNNS로 강화된 에폭시 복합소재를 제조하였다. An epoxy composite material reinforced with PBNNS was manufactured in the same manner as in Example 1, except that the PBNNS plasma surface treatment time was 10 minutes.

실시예 6.Example 6.

상기 실시예 1과 동일하게 과정을 실시하되, PBNNS의 플라즈마 표면처리 시간을 60분으로 하여 PBNNS로 강화된 에폭시 복합소재를 제조하였다.The same process as Example 1 was performed, but the plasma surface treatment time of PBNNS was set to 60 minutes to produce an epoxy composite material reinforced with PBNNS.

실시예 7.Example 7.

상기 실시예 1과 동일하게 과정을 실시하되, PNMMS의 플라즈마 표면처리 시간을 120분으로 하여 PBNNS로 강화된 에폭시 복합소재를 제조하였다.The same process as Example 1 was performed, but the PNMMS plasma surface treatment time was set to 120 minutes to produce an epoxy composite material reinforced with PBNNS.

비교예 1.Comparative Example 1.

BNNS를 유기용매를 이용하여 에폭시 수지와 혼합하였다. 아세톤(C3H6O) 200 mL에 에폭시 대비 30g BNNS를 넣은 뒤, 10에서 50℃의 온도범위에서 1에서 2시간 동안 초음파 처리를 진행한다. 상기 반응이 끝난 혼합물에 에폭시 수지를 넣은 뒤 30에서 65℃의 온도범위에서 가열하여 유지시키고 1에서 4시간 동안 교반한다. 이어서, 유기용매를 100℃에서 150℃의 온도범위에서 4에서 10시간 동안 제거한다. 이후, 경화제로서 4,4’-diaminodiphenylmethane를 에폭시 수지 100wt.% 대비 21 내지 23wt.%를 첨가하여 20에서 70℃ 온도 범위에서 1에서 5시간 동안 반응시킨다. 이 후, 진공오븐에서 감압 하에 10에서 60℃ 온도 범위에서 1에서 3시간 동안 기포를 제거하였다. 그다음 금형에 부은 후, 핫 프레스에서 1단계는 60에서 90℃ 온도 범위에서 1에서 2시간, 2단계는 90에서 125℃ 온도 범위에서 1에서 2시간, 3단계는 140에서 170℃ 온도 범위에서 1에서 2시간으로 총 3단계로 3에서 6시간 경화시켜 BNNS로 강화된 에폭시 복합소재를 제조하였다.BNNS was mixed with epoxy resin using an organic solvent. After adding 30 g of BNNS compared to epoxy to 200 mL of acetone (C 3 H 6 O), ultrasonic treatment is performed for 1 to 2 hours at a temperature range of 10 to 50 ° C. After adding the epoxy resin to the reaction mixture, it is heated and maintained at a temperature range of 30 to 65°C and stirred for 1 to 4 hours. Then, the organic solvent is removed for 4 to 10 hours at a temperature ranging from 100°C to 150°C. Thereafter, 21 to 23 wt.% of 4,4'-diaminodiphenylmethane as a curing agent relative to 100 wt.% of the epoxy resin is added and reacted for 1 to 5 hours at a temperature range of 20 to 70°C. Afterwards, air bubbles were removed in a vacuum oven under reduced pressure at a temperature ranging from 10 to 60°C for 1 to 3 hours. After pouring into the mold, the first step is 1 to 2 hours at a temperature range of 60 to 90℃, the second step is 1 to 2 hours at a temperature range of 90 to 125℃, and the third step is 1 to 2 hours at a temperature range of 140 to 170℃ in a hot press. An epoxy composite material reinforced with BNNS was manufactured by curing in three steps, from 3 to 6 hours, for a total of 2 hours.

측정예 1. 본 발명에서 제조한 PBNNS로 강화된 에폭시 복합소재 열전도도 시험Measurement Example 1. Thermal conductivity test of epoxy composite material reinforced with PBNNS manufactured in the present invention

열전도도는 열전도도 분석기 (LFA 447 NanoFlash® Nederland, Germany)를 사용하여 그라파이트 스프레이 코팅 후 세 번 이상 측정하였다. 또한 제조 된 PBNNS로 강화된 현무암 섬유 강화 에폭시 복합소재의 열 흡수 능력을 보기위해 적외선 열 화상 카메라를 사용했다.Thermal conductivity was measured at least three times after graphite spray coating using a thermal conductivity analyzer (LFA 447 NanoFlash® Nederland, Germany). Additionally, an infrared thermal imaging camera was used to examine the heat absorption ability of the prepared PBNNS-reinforced basalt fiber-reinforced epoxy composite.

측정예 2. 본 발명에서 제조한 PBNNS로 강화된 에폭시 복합소재 파괴인성 시험Measurement Example 2. Fracture toughness test of epoxy composite material reinforced with PBNNS manufactured in the present invention

파괴인성 시험은 만능재료시험기(Lloyd LR5k)를 사용하여 PBNNS로 강화된 에폭시 복합소재를 ASTM E399에 따라 시편을 제조한 후 short-beam 3포인트 굽힘 시험방법 측정하였다. The fracture toughness test was performed using a universal testing machine (Lloyd LR5k) using a short-beam three-point bending test method after manufacturing specimens of epoxy composite materials reinforced with PBNNS according to ASTM E399.

측정예 3. 본 발명에서 제조한 PBNNS로 강화된 에폭시 복합소재 파괴인성 후 파단면 관찰Measurement Example 3. Observation of fracture surface after fracture toughness of epoxy composite material reinforced with PBNNS manufactured in the present invention

본 발명에서 scanning electron microscopy (SEM, SU 8010, Hitachi, Ltd., Japan)을 사용하여 제조된 PBNNS로 강화된 에폭시 복합소재의 구조를 변화시켰는지 관찰하였다.In the present invention, scanning electron microscopy (SEM, SU 8010, Hitachi, Ltd., Japan) was used to observe whether the structure of the epoxy composite reinforced with PBNNS was changed.

다음은 본 발명에 따른 PBNNS로 강화된 에폭시 복합소재의 제조조건을 표1에 표시하고, 본 발명에 따른 PBNNS로 강화된 에폭시 복합소재로 제조된 복합재료의 열전도도, 표면에너지, 파괴인성, 및 향상정도, 수치값을 표2에 표시한다.Next, the manufacturing conditions of the epoxy composite material reinforced with PBNNS according to the present invention are shown in Table 1, and the thermal conductivity, surface energy, fracture toughness, and The degree of improvement and numerical values are shown in Table 2.

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할것이다. As above, specific parts of the present invention have been described in detail, and it is clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (6)

(1) 플라즈마 처리기를 사용하여 질화붕소 나노시트의 표면처리를 하는 단계;
(2) 상기 (1) 단계에서 플라즈마 처리된 질화붕소 나노시트를 아세톤, 에탄올, 메탄올 및 에테르 중 어느 1종 이상의 유기용매를 이용하여 에폭시 수지와 혼합하는 단계;
(3) 상기 (2) 단계에서 제조된 혼합물의 안정화 단계;
(4) 상기 (3) 단계에서 제조된 혼합물에 아민계, 산무수물계, 폴리아미드계, 음이온 중합형 및 다관형 경화제 중 어느 1종 이상의 경화제를 첨가하는 단계;
(5) 상기 (4) 단계에서 제조된 혼합물을 진공오븐에서 안정화하는 단계; 및
(6) 상기 (5) 단계에서 제조된 질화붕소 나노시트, 에폭시 수지 및 경화제의 혼합물을 금형에 부어 경화하는 단계; 를 포함하는 에폭시 복합 재료의 제조방법.
(1) surface treatment of boron nitride nanosheets using a plasma processor;
(2) mixing the boron nitride nanosheets plasma-treated in step (1) with an epoxy resin using at least one organic solvent selected from acetone, ethanol, methanol, and ether;
(3) stabilizing the mixture prepared in step (2);
(4) adding at least one type of curing agent among amine-based, acid anhydride-based, polyamide-based, anionic polymerization-type, and multi-tube type curing agents to the mixture prepared in step (3);
(5) stabilizing the mixture prepared in step (4) in a vacuum oven; and
(6) pouring the mixture of boron nitride nanosheets, epoxy resin, and curing agent prepared in step (5) into a mold and curing it; Method for producing an epoxy composite material comprising.
제 1 항에 있어서,
상기 (1) 단계는, 플라즈마 표면처리기를 사용하여 아르곤, 질소, 산소 및 수소 중 어느 1종 이상의 가스 조건 하에서 10~80MHz, 200~1000W로 1~120분 동안 질화붕소 나노시트를 플라즈마 처리하는 단계이며,
상기 (2) 단계는, 유기용매 10~1000 mL에 에폭시 수지 100wt.% 대비 25~35wt.%의 플라즈마 처리된 질화붕소 나노시트를 넣은 뒤, 10~60℃ 온도범위에서 1에서 24시간 동안 초음파 처리를 진행하여 상기 반응이 끝난 혼합물에 에폭시수지를 넣은 뒤 20에서 120℃의 온도범위에서 가열하여 유지시키고 1에서 24시간 동안 교반하는 단계인, 에폭시 복합 재료의 제조방법.
According to claim 1,
Step (1) is the step of plasma treating boron nitride nanosheets for 1 to 120 minutes at 10 to 80 MHz and 200 to 1000 W under the condition of one or more gases of argon, nitrogen, oxygen and hydrogen using a plasma surface treatment machine. and
In step (2), 25 to 35 wt.% of plasma-treated boron nitride nanosheets relative to 100 wt.% of epoxy resin are added to 10 to 1000 mL of organic solvent, and then ultrasonicated for 1 to 24 hours at a temperature range of 10 to 60°C. A method of producing an epoxy composite material, which includes adding an epoxy resin to the reaction mixture, heating and maintaining it at a temperature range of 20 to 120°C, and stirring for 1 to 24 hours.
제 1 항에 있어서,
상기 (3) 단계는, (2) 단계에서 제조된 혼합물을 20~300℃까지의 온도범위에서 1~24시간동안 가열하여 유기 용매를 제거하여 안정화하는 단계인, 에폭시 복합 재료의 제조방법.
According to claim 1,
The step (3) is a step of stabilizing the mixture prepared in step (2) by heating it in the temperature range of 20 to 300°C for 1 to 24 hours to remove the organic solvent.
제 1 항에 있어서,
상기 (4) 단계는, (3) 단계에서 제조된 혼합물에 상기 경화제를 에폭시 수지 당량비 1~100g을 첨가하여 20~120℃ 온도 범위에서 1~12시간 동안 반응시키는 단계인, 에폭시 복합 재료의 제조방법.
According to claim 1,
The step (4) is the step of adding the curing agent to the mixture prepared in step (3) at an epoxy resin equivalent ratio of 1 to 100 g and reacting the mixture for 1 to 12 hours at a temperature range of 20 to 120°C. Manufacturing of an epoxy composite material. method.
제 1 항에 있어서,
상기 (5) 단계는, (4) 단계에서 제조된 혼합물을 진공오븐에서 감압하에 10~200℃ 온도 범위에서 1~24시간 동안 기포를 제거하여 안정화하는 단계인, 에폭시 복합 재료의 제조방법.
According to claim 1,
The step (5) is a step of stabilizing the mixture prepared in step (4) by removing air bubbles in a vacuum oven under reduced pressure at a temperature of 10 to 200°C for 1 to 24 hours.
제 1 항에 있어서,
상기 (6) 단계는, (5) 단계에서 제조된 혼합물을 금형에 부어 핫프레스에서 20~90℃ 온도 범위에서 1에서 6시간 경화, 이어서 90에서 140℃ 온도 범위에서 1에서 8시간 경화, 이어서 140에서 300℃ 온도범위에서 1에서 12시간으로 경화시키는 단계인, 에폭시 복합 재료의 제조방법.
According to claim 1,
In step (6), the mixture prepared in step (5) is poured into a mold and cured in a hot press at a temperature range of 20 to 90°C for 1 to 6 hours, then cured at a temperature range of 90 to 140°C for 1 to 8 hours, and then A method of manufacturing an epoxy composite material, which involves curing in a temperature range of 140 to 300°C for 1 to 12 hours.
KR1020220029080A 2022-03-08 2022-03-08 Plasma treated boron nitride nanosheets-reinforced epoxy composites and its manufacturing method KR20230132049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220029080A KR20230132049A (en) 2022-03-08 2022-03-08 Plasma treated boron nitride nanosheets-reinforced epoxy composites and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220029080A KR20230132049A (en) 2022-03-08 2022-03-08 Plasma treated boron nitride nanosheets-reinforced epoxy composites and its manufacturing method

Publications (1)

Publication Number Publication Date
KR20230132049A true KR20230132049A (en) 2023-09-15

Family

ID=88017448

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220029080A KR20230132049A (en) 2022-03-08 2022-03-08 Plasma treated boron nitride nanosheets-reinforced epoxy composites and its manufacturing method

Country Status (1)

Country Link
KR (1) KR20230132049A (en)

Similar Documents

Publication Publication Date Title
KR102185380B1 (en) Manufacturing method of basalt fiber-reinforced epoxy composites with natural graphite flakes intrduced
Chen et al. Thermal stability and impact and flexural properties of epoxy resins/epoxidized castor oil/nano-CaCO 3 ternary systems
KR102214478B1 (en) Carbon fiber-reinforced epoxy composites with ozone-treated carbon blacks and manufacturing method.
KR102185383B1 (en) Basalt fiber reinforced epoxy composites reinforced with ozone treated single-walled carbon nanotubes and method for manufacturing the same
Xu et al. Curing behavior and toughening performance of epoxy resins containing hyperbranched polyester
Jung et al. Evaluation of the mechanical properties of polyether sulfone-toughened epoxy resin for carbon fiber composites
Jahandideh et al. Mechanical and thermal properties of octadecylamine-functionalized graphene oxide reinforced epoxy nanocomposites
Ren et al. Improving Interfacial Interactions of CF/PEEK composites with sulfonated polyether sulfone
CN116215028B (en) Environment-friendly composite board based on recycled fibers and manufacturing process thereof
KR20230132049A (en) Plasma treated boron nitride nanosheets-reinforced epoxy composites and its manufacturing method
KR102008760B1 (en) Epoxy nanocomposite reinforced with graphene oxide decorated with nanodiamond nanocluster and method for manufacturing thereof
CN111303486B (en) Amino-terminated modified graphene oxide and epoxy nanocomposite thereof
KR101730437B1 (en) Epoxy composites having enhanced thermal stability and mechnical behaviors and manufacturing method of the same
KR102404145B1 (en) Basalt fiber-reinforced epoxy composites with graphene oxide and method for manufacturing the same
KR102479378B1 (en) Epoxy-based composites with amino-functional nanodiamonds and manufacturing method thereof
KR102578206B1 (en) Epoxy-based composites with amino-functional graphitic nanofibers and menufacturing method thereof
CN113861624A (en) Preparation method of epoxy resin composite material
KR20240027411A (en) Epoxy composite material containing coal based graphene oxide and manufacturing method thereof
CN114507417A (en) Modified epoxy resin and use method thereof
KR20230106323A (en) Epoxy composite material reinforced with dry-ozoneized basalt fiber and its manufacturing method
KR102496995B1 (en) Carbon fibers-reinforced epoxy composites with graphene oxide/graphitic nanofibers composites and manufacturing method thereof
KR102496991B1 (en) Carbon fiber-reinforced epoxy composites with ozone-treated graphitic nanofibers and manuacutring method thereof
KR20220046318A (en) Carbon fiber-reinforced epoxy composites with ozone-treated single-walled carbon nanotubes and manufacturing method thereof
JPH02275760A (en) Production of fiber-reinforced b4c composite
CN112063116A (en) Modified epoxy resin composition and preparation method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal