KR20230130862A - Sintered SiC ceramics with high specific stiffness and composition for producing the same - Google Patents

Sintered SiC ceramics with high specific stiffness and composition for producing the same Download PDF

Info

Publication number
KR20230130862A
KR20230130862A KR1020220027981A KR20220027981A KR20230130862A KR 20230130862 A KR20230130862 A KR 20230130862A KR 1020220027981 A KR1020220027981 A KR 1020220027981A KR 20220027981 A KR20220027981 A KR 20220027981A KR 20230130862 A KR20230130862 A KR 20230130862A
Authority
KR
South Korea
Prior art keywords
silicon carbide
sintered body
weight
carbide sintered
parts
Prior art date
Application number
KR1020220027981A
Other languages
Korean (ko)
Inventor
용석민
정동익
정욱기
김영욱
김경득
염정아
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020220027981A priority Critical patent/KR20230130862A/en
Publication of KR20230130862A publication Critical patent/KR20230130862A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

본 발명은 반사경용 소재로 사용 가능한 탄화규소(SiC) 소재 및 그 조성물에 관한 것으로서, 서브마이크론 탄화규소(SiC) 분말을 서브마이크론 탄화붕소(B4C) 분말과 나노 탄소의 전구체와 혼합하여 제조된 원료 조합을 사용하여 2,050℃ 내지 2,200℃의 온도에서 소결함으로써, 고상소결공정으로 제조된 비강성이 141×106 m2s-2 내지 155×106 m2s-2 범위를 갖고, 입계 및 삼중점에 편석된 탄화붕소(B4C) 입자를 복수 이상으로 포함하고 기공율이 0.3% 이하인 탄화규소 소결체 및 그 제조용 조성물을 제공한다.The present invention relates to a silicon carbide (SiC) material that can be used as a reflector material and its composition, which is manufactured by mixing submicron silicon carbide (SiC) powder with submicron boron carbide (B 4 C) powder and a precursor of nanocarbon. By sintering at a temperature of 2,050°C to 2,200°C using a combination of raw materials, the specific rigidity produced by the solid-state sintering process ranges from 141×10 6 m 2 s -2 to 155×10 6 m 2 s -2 , and the grain boundary and a silicon carbide sintered body containing a plurality or more of boron carbide (B 4 C) particles segregated at a triple point and having a porosity of 0.3% or less, and a composition for producing the same.

Description

높은 비강성을 가지는 탄화규소 소결체 및 탄화규소 소결체 제조용 조성물{Sintered SiC ceramics with high specific stiffness and composition for producing the same}Sintered SiC ceramics with high specific stiffness and composition for producing the same}

본 발명은 반사경용 소재로 사용가능한 탄화규소(SiC) 소재에서 높은 비강성을 가지는 탄화규소 소결체 및 탄화규소 소결체 제조용 조성물에 관한 것이다.The present invention relates to a silicon carbide sintered body having high specific rigidity from a silicon carbide (SiC) material that can be used as a material for a reflector and a composition for producing a silicon carbide sintered body.

비강성(specific stiffness, specific modulus)은 재료의 밀도 및 탄성율(Young's modulus)로 구성된 재료의 물성이다. 높은 비강성 소재는 최소 구조 중량이 필요한 항공 우주 응용 분야에서 광범위하게 적용되며, 비강성은 아래와 같은 방정식 1로 정의된다.Specific stiffness (specific modulus) is a physical property of a material consisting of the material's density and elastic modulus (Young's modulus). High specific stiffness materials are widely used in aerospace applications where minimum structural weight is required, and specific stiffness is defined by Equation 1 below:

[방정식 1][Equation 1]

비강성(specific stiffness) = E / dSpecific stiffness = E / d

상기 방정식 1에서 E는 탄성율(Young's modulus)이고, d는 밀도(density)이며, 탄성율과 밀도의 단위가 각각 GPa과 g/cm3일 때, 비강성은 106 m2s-2 단위를 갖는다.In Equation 1, E is Young's modulus, d is density, and when the units of elastic modulus and density are GPa and g/cm 3 , respectively, the specific stiffness has a unit of 10 6 m 2 s -2 .

탄화규소(SiC, silicon carbide)는 고온에서 안정성과 강도가 우수하고, 내열성, 열전도성 등의 물성이 우수한 특징을 가진 재료로, 가스터빈, 핵융합로, 반도체 치구, 내마모성 재료, 자동차 부품 또는 화학공장 등에 주로 이용되고 있다.Silicon carbide (SiC) is a material with excellent stability and strength at high temperatures and excellent physical properties such as heat resistance and thermal conductivity. It is used in gas turbines, fusion reactors, semiconductor fixtures, wear-resistant materials, automobile parts, or chemical plants. It is mainly used for etc.

그러나 탄화규소 소재는 비강성이 낮아 높은 비강성이 요구되는 부품에는 적용이 어려운 문제점이 있다.However, silicon carbide material has a low specific rigidity, making it difficult to apply to parts that require high specific rigidity.

한국 등록특허 제10-1620510호Korean Patent No. 10-1620510

상기와 같은 문제점을 해결하고자 본 발명은 탄화규소 소결체의 비강성을 높이기 위해 탄화규소(SiC) 소재와 탄성율은 비슷하지만 밀도를 낮출 수 있는 탄화붕소(B4C)의 첨가량을 조절함으로써 높은 비강성을 가지는 탄화규소 소결체 및 이와 같은 탄화규소 소결체 제조용 조성물을 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention is to increase the specific rigidity of the silicon carbide sintered body by controlling the addition amount of boron carbide (B 4 C), which has an elastic modulus similar to that of silicon carbide (SiC) material but can lower the density. The purpose is to provide a silicon carbide sintered body having a and a composition for producing such a silicon carbide sintered body.

상기와 같은 목적을 달성하기 위해 본 발명의 탄화규소 소결체는 탄화규소 소결체에 있어서, 상기 탄화규소 소결체의 입계 및 상기 탄화규소 소결체를 이루는 결정립 계면과 결정립 계면이 서로 만나며 형성되는 상중점에 편석된 복수의 탄화붕소(B4C) 입자를 포함하는 것이다.In order to achieve the above object, the silicon carbide sintered body of the present invention is a silicon carbide sintered body, and the grain boundary of the silicon carbide sintered body and the crystal grain interface forming the silicon carbide sintered body meet with each other and form a plurality of particles segregated at the middle point of the image. It contains boron carbide (B 4 C) particles.

상기 탄화규소 소결체는 비강성이 141×106 m2s-2 내지 155×106 m2s-2이고, 기공률이 0.3% 이하인 것을 특징으로 한다.The silicon carbide sintered body has a specific rigidity of 141×10 6 m 2 s -2 to 155×10 6 m 2 s -2 and a porosity of 0.3% or less.

상기 탄화규소 소결체는 알파상 탄화규소(α-SiC), 탄화붕소(B4C), 및 나노크기의 탄소(이하 '나노 탄소'라고도 함)로 이루어진 세라믹 분말 및 유기 바인더를 포함하는 조성물을 사용하여 소결 공정으로 제조되는 것이다.The silicon carbide sintered body uses a composition containing ceramic powder made of alpha-phase silicon carbide (α-SiC), boron carbide (B 4 C), and nano-sized carbon (hereinafter referred to as 'nano carbon') and an organic binder. It is manufactured through a sintering process.

전체 세라믹 분말 100 중량부를 기준으로, 상기 알파상 탄화규소(α-SiC)가 67.5 중량부 내지 92.0 중량부, 상기 탄화붕소(B4C)가 7.0 중량부 내지 30.0 중량부, 및 상기 나노 탄소가 1.0 중량부 내지 2.5 중량부를 포함하는 것이 바람직하다.Based on 100 parts by weight of the total ceramic powder, the alpha phase silicon carbide (α-SiC) is 67.5 parts by weight to 92.0 parts by weight, the boron carbide (B 4 C) is 7.0 parts by weight to 30.0 parts by weight, and the nano carbon is It is preferable to include 1.0 to 2.5 parts by weight.

상기 알파상 탄화규소(α-SiC) 및 상기 탄화붕소(B4C)의 입도는 0.1 ㎛ 이상 1 ㎛ 미만인 것이 바람직하다.The particle size of the alpha-phase silicon carbide (α-SiC) and boron carbide (B 4 C) is preferably 0.1 ㎛ or more and less than 1 ㎛.

상기 나노 탄소는 페놀 수지(phenol resin), 퍼퓨릴알콜 수지(furfuryl alcohol resin), 자이렌 수지(xylene resin) 및 이들의 조합으로 이루어진 군에서 선택된 어느 1종의 탄소 전구체로부터 변환된 것이며, 상기 나노 탄소는 입도가 0.1 ㎚ 내지 70 ㎚인 것이 바람직하다.The nano carbon is converted from any one type of carbon precursor selected from the group consisting of phenol resin, furfuryl alcohol resin, xylene resin, and combinations thereof, and the nano carbon Carbon preferably has a particle size of 0.1 nm to 70 nm.

상기 조성물에 포함되는 상기 유기 바인더는 폴리비닐부틸알(polyvinyl butyral), 폴리에틸렌글리콜(polyethylene glycol) 및 폴리메틸메스아크릴레이트(polymethyl methacrylate) 중에서 선택되는 어느 하나 이상인 것이 바람직하다.The organic binder included in the composition is preferably at least one selected from polyvinyl butyral, polyethylene glycol, and polymethyl methacrylate.

조성물 전체 100 중량부를 기준으로, 상기 유기 바인더는 0.2 내지 3.5 중량부를 포함하는 것이 바람직하다.Based on 100 parts by weight of the total composition, the organic binder preferably contains 0.2 to 3.5 parts by weight.

또 다른 목적을 달성하기 위한 본 발명의 탄화규소 소결체 제조용 조성물은 알파상 탄화규소(α-SiC), 탄화붕소(B4C), 및 탄소로 이루어진 세라믹 분말 및 유기 바인더를 포함하며, 상기 유기 바인더를 제외한 전체 세라믹 분말 100 중량부를 기준으로 상기 알파상 탄화규소(α-SiC)는 67.5 중량부 내지 92.0 중량부, 상기 탄화붕소(B4C)는 7.0 중량부 내지 30.0 중량부, 및 상기 탄소는 1.0 중량부 내지 2.5 중량부를 포함할 수 있다.The composition for producing a silicon carbide sintered body of the present invention for achieving another purpose includes a ceramic powder made of alpha-phase silicon carbide (α-SiC), boron carbide (B 4 C), and carbon, and an organic binder, and the organic binder Based on 100 parts by weight of the total ceramic powder excluding It may contain 1.0 to 2.5 parts by weight.

본 발명의 탄화규소 소결체 제조용 조성물에서 상기 알파상 탄화규소(α-SiC)의 입도는 0.1 ㎛ 이상 1 ㎛ 미만이고, 상기 탄화붕소(B4C)의 입도는 0.1 ㎛ 이상 1 ㎛ 미만인 것이 바람직하다.In the composition for producing a silicon carbide sintered body of the present invention, the particle size of the alpha-phase silicon carbide (α-SiC) is preferably 0.1 ㎛ or more and less than 1 ㎛, and the particle size of the boron carbide (B 4 C) is preferably 0.1 ㎛ or more and less than 1 ㎛. .

본 발명의 탄화규소 소결체 제조용 조성물에서 상기 나노 탄소는 페놀 수지(phenol resin), 퍼퓨릴알콜 수지(furfuryl alcohol resin), 자이렌 수지(xylene resin) 및 이들의 조합으로 이루어진 군에서 선택된 어느 1종의 탄소 전구체로부터 변환된 것이며, 상기 나노 탄소는 입도가 0.1 ㎚ 내지 70 ㎚인 것이 바람직하다.In the composition for producing a silicon carbide sintered body of the present invention, the nano carbon is any one selected from the group consisting of phenol resin, furfuryl alcohol resin, xylene resin, and combinations thereof. It is converted from a carbon precursor, and the nano-carbon preferably has a particle size of 0.1 nm to 70 nm.

본 발명의 탄화규소 소결체 제조용 조성물에서 상기 유기 바인더는 폴리비닐부틸알(polyvinyl butyral), 폴리에틸렌글리콜(polyethylene glycol) 및 폴리메틸메스아크릴레이트(polymethyl methacrylate) 중에서 선택되는 어느 하나 이상인 것을 사용하는 것이 바람직하다.In the composition for producing a silicon carbide sintered body of the present invention, it is preferable to use at least one organic binder selected from polyvinyl butyral, polyethylene glycol, and polymethyl methacrylate. .

조성물 전체 100 중량부를 기준으로, 상기 유기 바인더는 0.2 내지 3.5 중량부를 포함하는 것이 바람직하다.Based on 100 parts by weight of the total composition, the organic binder preferably contains 0.2 to 3.5 parts by weight.

일반적으로 탄화규소 소재의 탄성율이 450 GPa이고, 밀도가 이론밀도인 3.21 g/cm3인 경우에 탄화규소 소결체가 갖는 최대 비강성은 140.2×106 m2s-2 정도이다. 그러나 본 발명의 탄화규소 소결체는 기존 탄화규소 소재의 이론적인 한계치인 140.2×106 m2s-2를 초과하여 비강성이 141×106 m2s-2 내지 155×106 m2s-2이고, 기공율이 0.3% 이하이며, 탄화규소 소결체 입계 및 탄화규소 소결체를 이루는 결정립 계면과 결정립 계면이 서로 만나며 형성되는 삼중점에 편석된 복수의 탄화붕소(B4C) 입자가 있는 미세구조적 특징을 갖는다.In general, when the elastic modulus of the silicon carbide material is 450 GPa and the density is the theoretical density of 3.21 g/cm 3 , the maximum specific stiffness of the silicon carbide sintered body is about 140.2×10 6 m 2 s -2 . However, the silicon carbide sintered body of the present invention exceeds the theoretical limit of 140.2 × 10 6 m 2 s -2 of existing silicon carbide materials, and has a specific rigidity of 141 × 10 6 m 2 s -2 to 155 × 10 6 m 2 s - 2 , the porosity is 0.3% or less, and the microstructural feature is that there are a plurality of boron carbide (B 4 C) particles segregated at the triple point formed when the grain boundaries of the silicon carbide sintered body and the grain interfaces forming the silicon carbide sintered body meet each other. have

이와 같은 특징을 갖는 본 발명의 탄화규소 소결체는 높은 비강성의 특징으로 우주에서 운용되는 광학계의 반사경용 소재 등으로 적합하게 사용가능한 효과가 있다.The silicon carbide sintered body of the present invention, which has such characteristics, has the characteristic of high specific rigidity and is suitable for use as a material for a reflector of an optical system operated in space.

도 1은 본 발명의 일 실시예에 따른 탄화규소 소결체의 미세조직을 관찰한 모습이다.
도 2는 본 발명에 따른 탄화규소 소결체의 제조방법의 순서도이다.
Figure 1 is an observation of the microstructure of a silicon carbide sintered body according to an embodiment of the present invention.
Figure 2 is a flowchart of a method for manufacturing a silicon carbide sintered body according to the present invention.

이하 본 발명의 탄화규소 소결체에 대해 상세히 설명하며, 이는 일례로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에 설명하는 것에 한정되지 않는다.Hereinafter, the silicon carbide sintered body of the present invention will be described in detail. This is an example and can be implemented in various different forms by those skilled in the art to which the present invention pertains, so it is not limited to the description here.

본 발명의 탄화규소 소결체는 고상소결 공정으로 141×106 m2s-2 내지 155×106 m2s-2 범위의 비강성을 가지고, 기공률이 0.3% 이하이며, 상기 탄화규소 소결체의 입계 및 상기 탄화규소 소결체를 이루는 결정립 계면과 결정립 계면이 서로 만나며 형성되는 상중점에 편석된 탄화붕소(B4C) 입자를 복수 이상으로 포함한다.The silicon carbide sintered body of the present invention has a specific rigidity in the range of 141 × 10 6 m 2 s -2 to 155 × 10 6 m 2 s -2 through a solid-state sintering process, has a porosity of 0.3% or less, and the grain boundaries of the silicon carbide sintered body and a plurality or more of boron carbide (B 4 C) particles segregated at the midpoint of the silicon carbide sintered body, which is formed when the grain interface and the crystal grain interface meet each other.

상기와 같은 특징을 갖는 탄화규소 소결체를 제조하기 위한 탄화규소 소결체 제조용 조성물은 알파상 탄화규소(α-SiC), 탄화붕소(B4C), 및 나노 탄소로 이루어진 세라믹 분말 및 유기 바인더를 포함한다.The composition for manufacturing the silicon carbide sintered body for producing the silicon carbide sintered body having the above characteristics includes ceramic powder and an organic binder made of alpha-phase silicon carbide (α-SiC), boron carbide (B 4 C), and nano carbon. .

상기 유기 바인더를 제외한 전체 세라믹 분말 100 중량부를 기준으로 상기 알파상 탄화규소(α-SiC)는 67.5 중량부 내지 92.0 중량부, 상기 탄화붕소(B4C)는 7.0 중량부 내지 30.0 중량부, 및 상기 탄소는 1.0 중량부 내지 2.5 중량부를 포함한다.Based on 100 parts by weight of the entire ceramic powder excluding the organic binder, the alpha phase silicon carbide (α-SiC) is 67.5 parts by weight to 92.0 parts by weight, the boron carbide (B 4 C) is 7.0 parts by weight to 30.0 parts by weight, and The carbon contains 1.0 to 2.5 parts by weight.

상기 알파상 탄화규소(α-SiC)와 상기 탄화붕소(B4C)는 서브마이크론(sub-micron) 크기를 갖는 입자로, 상기 알파상 탄화규소(α-SiC) 및 상기 탄화붕소(B4C)의 입도는 0.1 ㎛ 이상 1 ㎛ 미만이다.The alpha-phase silicon carbide (α-SiC) and the boron carbide (B 4 C) are particles having a sub-micron size, and the alpha-phase silicon carbide (α-SiC) and the boron carbide (B 4 C) are particles having a submicron size. The particle size of C) is 0.1 ㎛ or more and less than 1 ㎛.

상기 탄화붕소(B4C)는 소결 도중에 입계에 편석되어 입계 에너지를 낮추어 입계 확산을 촉진하는 역할을 하며, 또한 소결이 진행됨에 따라 탄화규소 소결체를 이루는 결정립 계면과 결정립 계면이 서로 만나며 형성되는 상중점에 편석되어 탄화규소 입자의 입자 성장(grain growth)를 억제하는 역할을 한다.The boron carbide (B 4 C) is segregated at the grain boundaries during sintering and plays a role in lowering the grain boundary energy to promote grain boundary diffusion. Additionally, as sintering progresses, a phase is formed when the grain interfaces forming the silicon carbide sintered body meet each other. It is segregated at the center and plays a role in suppressing grain growth of silicon carbide particles.

상기 나노 탄소는 탄소 전구체로부터 변환된 것으로, 상기 탄소 전구체로는 페놀 수지(phenol resin), 퍼퓨릴알콜 수지(furfuryl alcohol resin), 자이렌 수지(xylene resin) 및 이들의 조합으로 이루어진 군에서 선택된 어느 1종을 사용한다.The nano carbon is converted from a carbon precursor, and the carbon precursor is any selected from the group consisting of phenol resin, furfuryl alcohol resin, xylene resin, and combinations thereof. Use type 1.

구체적으로 나노 탄소는 상기 탄소 전구체의 열분해에 의해 제조된 입도가 0.1 ㎚ 내지 70 ㎚인 나노 크기의 탄소이며, 상기 나노 탄소는 비정질, 결정질 또는 이들의 혼합물일 수 있다.Specifically, nanocarbon is nano-sized carbon with a particle size of 0.1 nm to 70 nm produced by thermal decomposition of the carbon precursor, and the nanocarbon may be amorphous, crystalline, or a mixture thereof.

상기 탄소 전구체의 열분해에 의해 제조된 나노 탄소는 아래 반응식 1과 같은 반응으로 소결 도중 탄화규소(SiC) 분말 표면에 있는 산화피막(SiO2)과 반응하여 산화피막(SiO2)을 제거하는 역할을 한다.Nanocarbon produced by thermal decomposition of the carbon precursor reacts with the oxide film (SiO 2 ) on the surface of the silicon carbide (SiC) powder during sintering through a reaction shown in Scheme 1 below, and serves to remove the oxide film (SiO 2 ). do.

탄화규소 분말의 표면에 있는 산화피막(SiO2)의 제거는 탄화규소(SiC) 분말의 표면에너지를 증가시켜 소결의 구동력을 증가시킨다.Removal of the oxide film (SiO 2 ) on the surface of the silicon carbide powder increases the surface energy of the silicon carbide (SiC) powder, thereby increasing the driving force for sintering.

[반응식 1][Scheme 1]

SiO2 + 3C → SiC + 2CO↑SiO 2 + 3C → SiC + 2CO↑

탄화규소 소결체 제조용 조성물에 포함되는 유기 바인더는 폴리비닐부틸알(polyvinyl butyral), 폴리에틸렌글리콜(polyethylene glycol) 및 폴리메틸메스아크릴레이트(polymethyl methacrylate) 중에서 선택되는 어느 하나 이상인 것을 사용할 수 있으며, 조성물 전체 100 중량부를 기준으로, 상기 유기 바인더는 0.2 내지 3.5 중량부를 포함한다.The organic binder included in the composition for producing a silicon carbide sintered body may be one or more selected from polyvinyl butyral, polyethylene glycol, and polymethyl methacrylate, and the total composition may be 100%. Based on parts by weight, the organic binder contains 0.2 to 3.5 parts by weight.

도 1은 본 발명의 일 실시예에 따른 탄화규소 소결체의 미세조직을 관찰한 모습이다.Figure 1 is an observation of the microstructure of a silicon carbide sintered body according to an embodiment of the present invention.

도 1에서 화살표는 입계 및 삼중점에 편석된 탄화붕소(B4C) 입자를 나타낸 것으로, 도시된 바와 같이 본 발명의 일 실시예에 따라 제조된 탄화규소 소결체의 미세조직에서 입계 및 삼중점에 편석된 탄화붕소(B4C) 입자를 포함하고 있는 것을 확인할 수 있다.In Figure 1, arrows indicate boron carbide (B 4 C) particles segregated at grain boundaries and triple points, and as shown, in the microstructure of the silicon carbide sintered body manufactured according to an embodiment of the present invention, particles segregated at grain boundaries and triple points. It can be confirmed that it contains boron carbide (B 4 C) particles.

상기와 같은 탄화규소 소결체를 제조하는 방법은 도 2에 나타낸 것과 같이 (a) 탄화규소, 탄화붕소, 탄소 전구체 및 유기 바인더를 포함하는 바인더를 혼합하여 혼합물을 제조하는 단계(S100), (b) 상기 혼합물을 과립화하여 과립을 제조하는 단계(S200), (c) 상기 과립을 성형하여 성형체를 제조하는 단계(S300) 및 (d) 상기 성형체를 소결하는 단계(S400)를 포함한다.The method of manufacturing the silicon carbide sintered body as described above includes the steps of (a) preparing a mixture by mixing a binder containing silicon carbide, boron carbide, a carbon precursor, and an organic binder (S100), (b) as shown in FIG. It includes the step of granulating the mixture to produce granules (S200), (c) manufacturing the molded body by molding the granules (S300), and (d) sintering the molded body (S400).

상기 (a) 단계(S100)은 알파상 탄화규소(α-SiC) 분말에 탄화붕소(B4C), 탄소 전구체 및 유기바인더를 첨가하여 탄화규소 볼과 에틸알콜(ethylalcohol)을 용매로 사용하여 12시간 내지 36시간 동안 통상의 볼밀링 공정으로 혼합하여 혼합물을 제조하는 것이 바람직하다.The step (a) (S100) is performed by adding boron carbide (B 4 C), a carbon precursor, and an organic binder to alpha-phase silicon carbide (α-SiC) powder, using silicon carbide balls and ethyl alcohol as a solvent. It is preferable to prepare the mixture by mixing using a typical ball milling process for 12 to 36 hours.

상기 용매는 에틸알콜(ethylalcohol)로 한정하는 것은 아니며 상기 탄소의 전구체를 용해 시킬 수 있는 용매이면, 어떤 것을 사용해도 무관하다.The solvent is not limited to ethyl alcohol, and any solvent that can dissolve the carbon precursor may be used.

(b) 단계(S200)은 상기 (a) 단계(S100)을 통해 제조된 혼합물을 통상의 분무 건조기를 사용하여 과립으로 제조된다.In step (b) (S200), the mixture prepared through step (a) (S100) is manufactured into granules using a typical spray dryer.

(c) 단계(S300)는 상기 (b) 단계에서 제조된 과립을 일정 형태의 성형체로 제조하는 단계로 냉간 정수압 성형, 일축 가압 성형, 일축 가압 성형과 냉간 정수압 성형의 혼합 성형법 중에서 선택되는 어느 하나의 방법을 사용해도 무관하다.Step (c) (S300) is a step of manufacturing the granules prepared in step (b) into a molded body of a certain shape, using any one of cold isostatic pressure forming, uniaxial pressure molding, and a mixed molding method of uniaxial pressure molding and cold isostatic pressure forming. It doesn't matter if you use any of the methods.

상기 성형방법 중에서 냉간 정수압 성형을 사용하는 경우 성형 압력은 150 MPa 내지 300 MPa의 압력으로 가압하는 것이 바람직하며, 상기 일축 가압 성형과 냉간 정수압 성형의 혼합 성형법을 사용하는 경우에 일축 가압 성형시 압력은 10 MPa 내지 50 MPa의 압력으로 가압하는 것이 바람직하며, 냉간 정수압 성형의 압력은 150 MPa 내지 300 MPa의 압력으로 가압하는 것이 바람직하다.Among the above forming methods, when cold isostatic pressing is used, the forming pressure is preferably pressurized to a pressure of 150 MPa to 300 MPa, and when using the mixed forming method of uniaxial pressing and cold isostatic pressing, the pressure during uniaxial pressing is Pressurization is preferably performed at a pressure of 10 MPa to 50 MPa, and the pressure of cold isostatic forming is preferably applied at a pressure of 150 MPa to 300 MPa.

(d) 단계(S400)는 상기 (c) 단계(S300)에서 제조된 성형체를 소결하여 탄화규소 소결체를 제조하는 단계이다.Step (d) (S400) is a step of manufacturing a silicon carbide sintered body by sintering the molded body manufactured in step (c) (S300).

상기 (d) 단계(S400)는 통상의 흑연로를 사용하여 2,050℃ 내지 2,200℃ 온도 범위에서 가압소결 또는 스파크플라즈마 소결 또는 상압 소결로 소결 공정을 수행하는 것이 바람직하고, 최고 온도에서 유지 시간은 1시간 내지 6시간인 것이 바람직하다.The step (d) (S400) is preferably performed by pressure sintering, spark plasma sintering, or normal pressure sintering at a temperature range of 2,050°C to 2,200°C using a conventional graphite furnace, and the holding time at the highest temperature is 1 hour. Preferably it is from 6 hours.

상기 소결 공정 중에 유기 바인더의 열분해를 위해 최고온도에 도달하기 전에 350℃ 내지 750℃ 온도 범위에서 0.5시간 내지 3시간 동안 0.1 torr 내지 80 torr 범위의 진공에서 유지하는 것이 바람직하다.During the sintering process, it is preferable to maintain a vacuum in the range of 0.1 torr to 80 torr for 0.5 to 3 hours at a temperature range of 350°C to 750°C before reaching the maximum temperature for thermal decomposition of the organic binder.

또한, 탄화규소(SiC) 분말 표면의 산화피막(SiO2)을 제거하기 위하여 소결 공정 도중에 1,450℃ 내지 1,600℃ 온도 범위에서 0.5시간 내지 3시간 동안 0.1 torr 내지 80 torr 범위의 진공에서 유지하는 것이 바람직하다.In addition, in order to remove the oxide film (SiO 2 ) on the surface of the silicon carbide (SiC) powder, it is preferable to maintain the vacuum in the range of 0.1 torr to 80 torr for 0.5 to 3 hours at a temperature of 1,450 ℃ to 1,600 ℃ during the sintering process. do.

상기 (d) 단계(S400)에서 소결 분위기는 상온에서 1,600℃까지 온도 구간에서는 0.1 torr 내지 80 torr 범위의 진공에서 소결하는 것이 바람직하고, 1,600℃ 이상에서 소결 온도 및 최고온도에서 유지 시간 동안에는 아르곤 분위기에서 소결하는 것이 바람직하다.In step (d) (S400), the sintering atmosphere is preferably sintered in a vacuum ranging from 0.1 torr to 80 torr in the temperature range from room temperature to 1,600°C, and an argon atmosphere during the sintering temperature above 1,600°C and the holding time at the highest temperature. It is desirable to sinter in .

이하 본 발명에 대해 실시예를 통해 상세하게 설명한다. 제시된 실시예는 예시적인 것으로 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. The presented embodiments are illustrative and the scope of the present invention is not limited thereto.

제조예 1 Manufacturing Example 1

평균 입경 0.5㎛인 알파상 탄화규소 (α-SiC) 분말, 평균 입경 0.5㎛인 탄화붕소(B4C) 분말 및 탄소 전구체로 페놀 수지(phenol resin) 분말을 첨가하여 탄화규소 소결체를 제조하기 위한 혼합물을 준비하였다.To produce a silicon carbide sintered body by adding alpha-phase silicon carbide (α-SiC) powder with an average particle diameter of 0.5㎛, boron carbide (B 4 C) powder with an average particle diameter of 0.5㎛, and phenol resin powder as a carbon precursor. The mixture was prepared.

여기서 상기 페놀 수지 분말에서 유도되는 탄소의 수율은 60%이므로 이를 고려하여 탄소를 산출하는 양의 페놀 수지를 첨가하여 혼합물을 제조하였다.Here, the yield of carbon derived from the phenol resin powder was 60%, so taking this into account, a mixture was prepared by adding phenol resin in an amount to calculate carbon.

상기 혼합물의 조성물 100 중량부에 대하여 에틸알콜 80 중량부를 추가로 첨가하고, 유기바인더로 폴리비닐부틸알을 0.5 중량부 첨가하여, 폴리프로필렌 용기와 탄화규소 볼을 사용하여 24시간 동안 볼밀링하여 균일한 혼합물 슬러리를 제조하였다.Based on 100 parts by weight of the mixture composition, 80 parts by weight of ethyl alcohol was additionally added, 0.5 parts by weight of polyvinyl butyral was added as an organic binder, and ball milled for 24 hours using a polypropylene container and silicon carbide balls to uniformly distribute the mixture. A mixture slurry was prepared.

상기 볼밀링된 슬러리를 통상의 분무 건조기를 사용하여 과립을 제조하였다.The ball milled slurry was used to prepare granules using a conventional spray dryer.

상기 준비된 과립을 일정 금형 몰드에 넣고 20 MPa의 압력으로 가성형체를 제조하고, 이를 다시 204 MPa의 압력으로 냉간 정수압 성형(cold isostatic pressing)하여 직경 30 mm × 높이 16 mm 의 원통형 성형체를 제조하였다.The prepared granules were placed in a mold to prepare a preformed body at a pressure of 20 MPa, which was then subjected to cold isostatic pressing at a pressure of 204 MPa to produce a cylindrical body with a diameter of 30 mm × height of 16 mm.

상기 성형체를 아르곤 분위기 하에서 2,050℃ 온도에서 35 MPa의 압력으로 2시간 동안 가압 고상소결하여 탄화규소 소결체를 제조하였다.The silicon carbide sintered body was manufactured by solid-phase sintering the molded body under argon atmosphere at a temperature of 2,050°C and a pressure of 35 MPa for 2 hours.

제조예 2Production example 2

제조예 2는 혼합물 슬러리 및 과립을 상기 제조예 1과 동일하게 실시하되, 준비된 과립을 일정 금형 몰드에 넣고 30 MPa의 압력으로 가성형체를 제조하고, 이를 다시 200 MPa의 압력으로 냉간 정수압 성형(cold isostatic pressing)하여 직경 30 mm × 높이 26 mm 의 원통형 성형체를 제조하였다.In Preparation Example 2, the mixture slurry and granules were prepared in the same manner as Preparation Example 1, except that the prepared granules were placed in a certain mold to prepare a preformed body at a pressure of 30 MPa, and then subjected to cold isostatic pressure forming (cold) at a pressure of 200 MPa. A cylindrical molded body with a diameter of 30 mm × height of 26 mm was manufactured by isostatic pressing.

상기 성형체를 아르곤 분위기 하에서 2,050℃ 온도에서 35 MPa의 압력으로 2시간 동안 가압 고상소결하여 탄화규소 소결체를 제조하였다.The silicon carbide sintered body was manufactured by solid-phase sintering the molded body under argon atmosphere at a temperature of 2,050°C and a pressure of 35 MPa for 2 hours.

제조예 3Production example 3

평균 입경 0.5㎛인 알파상 탄화규소 (α-SiC) 분말, 평균 입경 0.5㎛인 탄화붕소(B4C) 분말 및 탄소 전구체로 페놀 수지(phenol resin) 분말을 첨가하여 탄화규소 소결체를 제조하기 위한 혼합물을 준비하였다.To produce a silicon carbide sintered body by adding alpha-phase silicon carbide (α-SiC) powder with an average particle diameter of 0.5㎛, boron carbide (B 4 C) powder with an average particle diameter of 0.5㎛, and phenol resin powder as a carbon precursor. The mixture was prepared.

여기서 상기 페놀 수지에서 탄소의 수율은 60%이므로 이를 고려하여 탄소를 산출하는 양의 페놀 수지를 첨가하여 혼합물을 제조하였다.Here, since the yield of carbon in the phenol resin is 60%, a mixture was prepared by adding an amount of phenol resin to calculate carbon, taking this into consideration.

상기 혼합물의 조성물 100 중량부에 대하여 에틸알콜 75 중량부를 추가로 첨가하고, 유기바인더로 폴리에틸렌글리콜 0.3 중량부를 첨가하여, 폴리프로필렌 용기와 탄화규소 볼을 사용하여 24시간 동안 볼밀링하여 균일한 혼합물 슬러리를 제조하였다.Based on 100 parts by weight of the mixture composition, 75 parts by weight of ethyl alcohol was additionally added, 0.3 parts by weight of polyethylene glycol was added as an organic binder, and ball milled for 24 hours using a polypropylene container and silicon carbide balls to produce a uniform mixture slurry. was manufactured.

상기 볼밀링된 슬러리를 통상의 분무 건조기를 사용하여 과립을 제조하였다.The ball milled slurry was used to prepare granules using a conventional spray dryer.

상기 준비된 과립을 일정 금형 몰드에 넣고 25 MPa의 압력으로 가성형체를 제조하고, 이를 다시 200 MPa의 압력으로 냉간 정수압 성형(cold isostatic pressing)하여 40 mm × 40 mm × 26 mm의 직육면체 형태의 성형체를 제조하였다.The prepared granules were placed in a mold to produce a preformed body at a pressure of 25 MPa, and then cold isostatic pressed at a pressure of 200 MPa to form a rectangular parallelepiped body measuring 40 mm × 40 mm × 26 mm. Manufactured.

상기 성형체를 아르곤 분위기 하에서 2,150℃ 온도에서 압력을 가하지 않고 1시간 동안 상압 고상소결하여 탄화규소 소결체를 제조하였다.A silicon carbide sintered body was manufactured by solid-phase sintering the molded body in an argon atmosphere at 2,150°C for 1 hour without applying pressure.

<실시예 1 내지 실시예 5><Examples 1 to 5>

실시예 1 내지 실시예 5는 아래 표 1의 조성으로 상기 제조예 1과 동일한 방법으로 탄화규소 소결체를 제조한다.In Examples 1 to 5, silicon carbide sintered bodies were manufactured in the same manner as Preparation Example 1 with the compositions shown in Table 1 below.

<실시예 6 내지 실시예 8><Example 6 to Example 8>

실시예 6 내지 실시예 8은 아래 표 1의 조성으로 상기 제조예 2와 동일한 방법으로 탄화규소 소결체를 제조한다.In Examples 6 to 8, silicon carbide sintered bodies were manufactured in the same manner as Preparation Example 2 with the compositions shown in Table 1 below.

<실시예 9><Example 9>

실시예 9는 아래 표 1의 조성으로 상기 제조예 3과 동일한 방법으로 탄화규소 소결체를 제조한다.In Example 9, a silicon carbide sintered body was manufactured in the same manner as Preparation Example 3 with the composition shown in Table 1 below.

<비교예 1><Comparative Example 1>

비교예 1은 상기 실시예 1 내지 실시예 5와 달리 하기 표 1의 조성과 같이 탄화붕소의 함량이 7.0 내지 30.0 중량부를 벗어나서 0.1 중량부의 탄화붕소를 첨가하고, 나노 탄소는 1.0 내지 2.5 중량부 범위에 포함되는 1.5 중량부를 첨가하여 상기 제조예 1과 동일한 방법으로 탄화규소 소결체를 제조한다. In Comparative Example 1, unlike Examples 1 to 5, the content of boron carbide was different from 7.0 to 30.0 parts by weight as shown in Table 1, so 0.1 parts by weight of boron carbide was added, and nano carbon was in the range of 1.0 to 2.5 parts by weight. A silicon carbide sintered body was manufactured in the same manner as in Preparation Example 1 by adding 1.5 parts by weight contained in .

<비교예 2><Comparative Example 2>

비교예 2는 상기 실시예 1 내지 실시예 5와 달리 하기 표 1의 조성과 같이 나노 탄소의 함량이 1.0 내지 2.5 중량부 범위를 벗어나서 0.2 중량부를 첨가하였고, 탄화붕소의 함량은 7.0 내지 30.0 중량부 범위에 들어가는 7.0 중량부를 첨가하여 상기 제조예 1과 동일한 방법으로 탄화규소 소결체를 제조한다. In Comparative Example 2, unlike Examples 1 to 5, the content of nanocarbon was outside the range of 1.0 to 2.5 parts by weight and 0.2 parts by weight was added, as shown in Table 1 below, and the content of boron carbide was 7.0 to 30.0 parts by weight. A silicon carbide sintered body was manufactured in the same manner as in Preparation Example 1 by adding 7.0 parts by weight within the range.

구분
(중량부)
division
(part by weight)
알파상 탄화규소
(α-SiC)
Alpha phase silicon carbide
(α-SiC)
탄화붕소
(B4C)
boron carbide
(B 4 C)
나노 탄소nano carbon
비교예 1Comparative Example 1 98.498.4 0.10.1 1.51.5 비교예 2Comparative Example 2 92.892.8 7.07.0 0.20.2 실시예 1Example 1 91.591.5 7.07.0 1.51.5 실시예 2Example 2 88.588.5 10.010.0 1.51.5 실시예 3Example 3 83.583.5 15.015.0 1.51.5 실시예 4Example 4 73.573.5 25.025.0 1.51.5 실시예 5Example 5 68.568.5 30.030.0 1.51.5 실시예 6Example 6 87.587.5 10.010.0 2.52.5 실시예 7Example 7 91.091.0 7.07.0 2.02.0 실시예 8Example 8 88.088.0 10.010.0 2.02.0 실시예 9Example 9 89.589.5 8.08.0 2.252.25

상기 실시예 1 내지 실시예 9, 비교예 1 및 비교예 2의 탄화규소 소결체의 기공율, 소결밀도, 탄성율 및 비강성을 아래와 같은 방법으로 측정하였고, 그 결과는 하기 표 2에 나타내었다.The porosity, sintered density, elastic modulus, and specific stiffness of the silicon carbide sintered bodies of Examples 1 to 9, Comparative Example 1, and Comparative Example 2 were measured by the following methods, and the results are shown in Table 2 below.

기공율은 각각의 소결체로부터 5mm × 5mm × 5mm 크기의 시편 5개를 제조하여 아르키메스 방법으로 측정하여 평균치를 나타내었다.Porosity was measured using the Archimes method by manufacturing five specimens measuring 5 mm × 5 mm × 5 mm from each sintered body and showing the average value.

소결밀도는 소결체로부터 20mm × 20mm × 7mm 크기의 시편을 절단하여 연마한 후에 부피와 무게로부터 측정하였다.The sintered density was measured from the volume and weight after cutting and polishing a 20mm × 20mm × 7mm specimen from the sintered body.

탄성율은 상기 밀도를 측정한 동일한 시편을 사용하여 초음파 펄스-에코 방법(ultrasonic pulse-echo technique)으로 측정하였고 평균치를 나타내었다.The elastic modulus was measured using the ultrasonic pulse-echo technique using the same specimen from which the density was measured, and the average value was shown.

탄화규소 소결체의 비강성은 측정된 밀도와 탄성율을 사용하여 아래 방정식 1을 통해 계산하였다.The specific stiffness of the silicon carbide sintered body was calculated using Equation 1 below using the measured density and elastic modulus.

[방적식 1][Equation 1]

비강성(specific stiffness) = E / dSpecific stiffness = E / d

상기 방정식 1에서 E는 탄성율(Young's modulus)이고, d는 밀도(density)이다.In Equation 1, E is Young's modulus and d is density.

구분division 소결조건Sintering conditions 기공율
(%)
porosity
(%)
소결밀도
(g/cm3)
Sintered Density
(g/ cm3 )
탄성율
(GPa)
modulus of elasticity
(GPa)
비강성
(×106m2s-2)
Specific rigidity
(×10 6 m 2 s -2 )
온도
(℃)
temperature
(℃)
압력(MPa)Pressure (MPa) 시간
(hour)
hour
(hour)
비교예 1Comparative Example 1 2,0502,050 3535 22 9.59.5 2.9012.901 308.0308.0 106.2106.2 비교예 2Comparative Example 2 2,0502,050 3535 22 8.58.5 2.9232.923 331.7331.7 113.5113.5 실시예 1Example 1 2,0502,050 3535 22 0.010.01 3.1503.150 454.2454.2 144.2144.2 실시예 2Example 2 2,0502,050 3535 22 0.010.01 3.1233.123 452.9452.9 145.0145.0 실시예 3Example 3 2,0502,050 3535 22 0.010.01 3.0883.088 456.7456.7 147.9147.9 실시예 4Example 4 2,0502,050 3535 22 0.010.01 3.0103.010 459.8459.8 152.8152.8 실시예 5Example 5 2,0502,050 3535 22 0.010.01 2.9642.964 450.6450.6 152.0152.0 실시예 6Example 6 2,0502,050 3535 22 0.020.02 3.1053.105 441.1441.1 142.1142.1 실시예 7Example 7 2,0502,050 3535 22 0.010.01 3.1503.150 450.6450.6 143.0143.0 실시예 8Example 8 2,0502,050 3535 22 0.010.01 3.1373.137 462.5462.5 147.4147.4 실시예 9Example 9 2,1502,150 0.10.1 1One 0.080.08 3.0993.099 442.8442.8 142.9142.9

상기 표 2에 나타낸 바와 같이 상기 실시예 1 내지 실시예 5의 탄화규소 소결체는 기공율이 0.01%이었고, 비강성이 144.2×106 m2s-2 내지 152.8×106 m2s-2 범위였다.As shown in Table 2, the silicon carbide sintered body of Examples 1 to 5 had a porosity of 0.01% and a specific stiffness in the range of 144.2 × 10 6 m 2 s -2 to 152.8 × 10 6 m 2 s -2 . .

실시예 6 내지 실시예 8의 탄화규소 소결체는 기공율이 0.01% 내지 0.02%이었고, 비강성이 142.1×106 m2s-2 내지 147.4×106 m2s-2 범위였다.The silicon carbide sintered bodies of Examples 6 to 8 had a porosity of 0.01% to 0.02% and a specific stiffness in the range of 142.1 × 10 6 m 2 s -2 to 147.4 × 10 6 m 2 s -2 .

또한, 실시예 9의 탄화규소 소결체의 경우는 기공율이 0.08%이었고, 비강성이 142.9×106 m2s-2 이었다.Additionally, in the case of the silicon carbide sintered body of Example 9, the porosity was 0.08% and the specific rigidity was 142.9×10 6 m 2 s -2 .

반면에 비교예 1은 실시예 1과 동일한 조건으로 가압 고상소결하였으나, 기공율이 9.5%로 매우 높았고, 비강성도 106.2×106 m2s-2 으로 상기 실시예 1 내지 실시예 5 보다는 매우 낮은 비강성을 나타내었다.On the other hand, Comparative Example 1 was pressurized and solid-phase sintered under the same conditions as Example 1, but the porosity was very high at 9.5% and the specific stiffness was 106.2×10 6 m 2 s -2 , which was much lower than that of Examples 1 to 5. showed stiffness.

비교예 2의 경우도 실시예 1과 동일한 조건으로 가압 고상소결하였으나, 기공율이 8.5%로 매우 높았고, 비강성도 113.5×106 m2s-2 으로 상기 실시예 1 내지 실시예 5 보다는 매우 낮은 비강성을 나타내었다.In the case of Comparative Example 2, pressure solid phase sintering was performed under the same conditions as Example 1, but the porosity was very high at 8.5% and the specific stiffness was 113.5×10 6 m 2 s -2 , which was much lower than that of Examples 1 to 5. showed stiffness.

따라서 비교예 1 및 비교예 2는 탄화규소 소결체에서 기공율이 8.5% 이상으로 너무 높고, 비강성이 106.2×106 m2s-2 내지 113.5×106 m2s-2 범위로 매우 낮아서, 실시예 1 내지 실시예 9와 같은 기공율이 0.3% 이하이고, 141×106 m2s-2 내지 155×106 m2s-2 범위의 비강성을 갖는 탄화규소 소결체와는 물성이 명확히 구분된다.Therefore, in Comparative Example 1 and Comparative Example 2, the porosity of the silicon carbide sintered body was too high at 8.5% or more, and the specific stiffness was very low in the range of 106.2 × 10 6 m 2 s -2 to 113.5 × 10 6 m 2 s -2 . The physical properties are clearly distinguished from the silicon carbide sintered body such as Examples 1 to 9, which has a porosity of 0.3% or less and a specific stiffness in the range of 141 × 10 6 m 2 s -2 to 155 × 10 6 m 2 s -2. .

일반적으로 탄화규소(SiC) 의 이론밀도는 3.21 g/cm3 이고 치밀한 탄화규소(SiC) 소재의 영율은 450 GPa 정도이며, 탄화붕소(B4C)의 이론밀도는 2.52 g/cm3이고 치밀한 탄화붕소(B4C) 소재의 영율은 362 GPa 내지 472 GPa 범위이다.In general, the theoretical density of silicon carbide (SiC) is 3.21 g/cm 3 and the Young's modulus of dense silicon carbide (SiC) material is about 450 GPa, and the theoretical density of boron carbide (B 4 C) is 2.52 g/cm 3 and the dense material has a Young's modulus of about 450 GPa. The Young's modulus of boron carbide (B 4 C) material ranges from 362 GPa to 472 GPa.

이에 본 발명은 전술된 바와 같이 탄화규소(SiC)의 원료조합에서 탄화규소(SiC) 입자의 일부를 탄화붕소(B4C) 입자로 대체하여 탄성율은 탄화규소(SiC) 소재와 비슷하지만 밀도를 낮춰 비강성이 141×106 m2s-2 내지 155×106 m2s-2 으로 향상시키고, 입계 및 삼중점에 편석된 복수의 탄화붕소(B4C) 입자가 있는 미세구조적 특징이 있으며, 기공율이 0.3% 이하인 탄화규소 소결체를 제조한다.Accordingly, as described above, the present invention replaces some of the silicon carbide (SiC) particles with boron carbide (B 4 C) particles in the raw material combination of silicon carbide (SiC), so that the elastic modulus is similar to that of the silicon carbide (SiC) material, but the density is increased. By lowering it, the specific stiffness is improved from 141×10 6 m 2 s -2 to 155×10 6 m 2 s -2 , and it has a microstructural feature with a plurality of boron carbide (B 4 C) particles segregated at grain boundaries and triple points. , to manufacture a silicon carbide sintered body with a porosity of 0.3% or less.

Claims (17)

탄화규소 소결체에 있어서,
상기 탄화규소 소결체의 입계 및 상기 탄화규소 소결체를 이루는 결정립 계면과 결정립 계면이 서로 만나며 형성되는 상중점에 편석된 복수의 탄화붕소(B4C) 입자를 포함하는 것을 특징으로 하는 탄화규소 소결체.
In the silicon carbide sintered body,
A silicon carbide sintered body comprising a plurality of boron carbide (B 4 C) particles segregated at the grain boundaries of the silicon carbide sintered body and at the midpoint of the image where the grain interfaces forming the silicon carbide sintered body meet each other.
제1항에 있어서,
상기 탄화규소 소결체는 비강성이 141×106 m2s-2 내지 155×106 m2s-2인 것을 특징으로 하는 탄화규소 소결체.
According to paragraph 1,
The silicon carbide sintered body is characterized in that the specific rigidity is 141 × 10 6 m 2 s -2 to 155 × 10 6 m 2 s -2 .
제1항에 있어서,
상기 탄화규소 소결체는 기공률이 0.3% 이하인 것을 특징으로 하는 탄화규소 소결체.
According to paragraph 1,
The silicon carbide sintered body is characterized in that the silicon carbide sintered body has a porosity of 0.3% or less.
제1항에 있어서,
상기 탄화규소 소결체는,
알파상 탄화규소(α-SiC), 탄화붕소(B4C) 및 나노 탄소로 이루어진 세라믹 분말 및 유기 바인더를 포함하는 조성물을 사용하여 소결 공정으로 제조되며,
전체 세라믹 분말 100 중량부를 기준으로,
상기 알파상 탄화규소(α-SiC)가 67.5 중량부 내지 92.0 중량부;
상기 탄화붕소(B4C)가 7.0 중량부 내지 30.0 중량부; 및
상기 나노 탄소가 1.0 중량부 내지 2.5 중량부;를 포함하는 것을 특징으로 하는 탄화규소 소결체.
According to paragraph 1,
The silicon carbide sintered body,
It is manufactured through a sintering process using a composition containing ceramic powder made of alpha-phase silicon carbide (α-SiC), boron carbide (B 4 C) and nano carbon and an organic binder,
Based on 100 parts by weight of total ceramic powder,
67.5 to 92.0 parts by weight of alpha-phase silicon carbide (α-SiC);
7.0 to 30.0 parts by weight of boron carbide (B 4 C); and
A silicon carbide sintered body comprising 1.0 to 2.5 parts by weight of the nanocarbon.
제4항에 있어서,
상기 알파상 탄화규소(α-SiC)는 입도가 0.1 ㎛ 이상 1 ㎛ 미만인 것을 특징으로 하는 탄화규소 소결체.
According to paragraph 4,
The alpha-phase silicon carbide (α-SiC) is a silicon carbide sintered body, characterized in that the particle size is 0.1 ㎛ or more and less than 1 ㎛.
제4항에 있어서,
상기 탄화붕소(B4C)는 입도가 0.1 ㎛ 이상 1 ㎛ 미만인 것을 특징으로 하는 탄화규소 소결체.
According to paragraph 4,
The boron carbide (B 4 C) is a silicon carbide sintered body, characterized in that the particle size is 0.1 ㎛ or more and less than 1 ㎛.
제4항에 있어서,
상기 나노 탄소는 입도가 0.1 ㎚ 내지 70 ㎚인 것을 특징으로 하는 탄화규소 소결체.
According to paragraph 4,
The nano-carbon is a silicon carbide sintered body, characterized in that the particle size is 0.1 ㎚ to 70 ㎚.
제4항에 있어서,
상기 나노 탄소는 페놀 수지(phenol resin), 퍼퓨릴알콜 수지(furfuryl alcohol resin), 자이렌 수지(xylene resin) 및 이들의 조합으로 이루어진 군에서 선택된 어느 1종의 탄소 전구체로부터 변환된 것을 특징으로 하는 탄화규소 소결체.
According to paragraph 4,
The nano-carbon is characterized in that it is converted from any one type of carbon precursor selected from the group consisting of phenol resin, furfuryl alcohol resin, xylene resin, and combinations thereof. Silicon carbide sintered body.
제4항에 있어서,
상기 유기 바인더는 폴리비닐부틸알(polyvinyl butyral), 폴리에틸렌글리콜(polyethylene glycol) 및 폴리메틸메스아크릴레이트(polymethyl methacrylate) 중에서 선택되는 어느 하나 이상인 것을 특징으로 하는 탄화규소 소결체.
According to paragraph 4,
The organic binder is a silicon carbide sintered body, characterized in that at least one selected from polyvinyl butyral, polyethylene glycol, and polymethyl methacrylate.
제4항에 있어서,
조성물 전체 100 중량부를 기준으로,
상기 유기 바인더는 0.2 내지 3.5 중량부;를 포함하는 것을 특징으로 하는 탄화규소 소결체.
According to paragraph 4,
Based on 100 parts by weight of the total composition,
The organic binder is a silicon carbide sintered body, characterized in that it contains 0.2 to 3.5 parts by weight.
알파상 탄화규소(α-SiC), 탄화붕소(B4C), 및 나노 탄소로 이루어진 세라믹 분말 및 유기 바인더를 포함하며,
상기 유기 바인더를 제외한 전체 세라믹 분말 100 중량부를 기준으로,
상기 알파상 탄화규소(α-SiC)는 67.5 중량부 내지 92.0 중량부;
상기 탄화붕소(B4C)는 7.0 중량부 내지 30.0 중량부; 및
상기 탄소는 1.0 중량부 내지 2.5 중량부;를 포함하는 것을 특징으로 하는 탄화규소 소결체 제조용 조성물.
Contains ceramic powder and an organic binder made of alpha-phase silicon carbide (α-SiC), boron carbide (B 4 C), and nano carbon,
Based on 100 parts by weight of total ceramic powder excluding the organic binder,
The alpha phase silicon carbide (α-SiC) is 67.5 parts by weight to 92.0 parts by weight;
The boron carbide (B 4 C) is 7.0 parts by weight to 30.0 parts by weight; and
A composition for producing a silicon carbide sintered body, characterized in that it contains 1.0 to 2.5 parts by weight of carbon.
제11항에 있어서,
상기 알파상 탄화규소(α-SiC) 입자의 입도는 0.1 ㎛ 이상 1 ㎛ 미만인 것을 특징으로 하는 탄화규소 소결체 제조용 조성물.
According to clause 11,
A composition for producing a silicon carbide sintered body, wherein the alpha-phase silicon carbide (α-SiC) particles have a particle size of 0.1 ㎛ or more and less than 1 ㎛.
제11항에 있어서,
상기 탄화붕소(B4C) 입자의 입도는 0.1 ㎛ 이상 1 ㎛ 미만인 것을 특징으로 하는 탄화규소 소결체 제조용 조성물.
According to clause 11,
A composition for producing a silicon carbide sintered body, wherein the boron carbide (B 4 C) particles have a particle size of 0.1 ㎛ or more and less than 1 ㎛.
제11항에 있어서,
상기 나노 탄소는 입도가 0.1 ㎚ 내지 70 ㎚인 것을 특징으로 하는 탄화규소 소결체 제조용 조성물.
According to clause 11,
A composition for producing a silicon carbide sintered body, characterized in that the nano-carbon has a particle size of 0.1 nm to 70 nm.
제11항에 있어서,
상기 나노 탄소는 페놀 수지(phenol resin), 퍼퓨릴알콜 수지(furfuryl alcohol resin), 자이렌 수지(xylene resin) 및 이들의 조합으로 이루어진 군에서 선택된 어느 1종의 탄소 전구체로부터 변환된 것을 특징으로 하는 탄화규소 소결체 제조용 조성물.
According to clause 11,
The nano-carbon is characterized in that it is converted from any one type of carbon precursor selected from the group consisting of phenol resin, furfuryl alcohol resin, xylene resin, and combinations thereof. Composition for producing silicon carbide sintered body.
제11항에 있어서,
상기 유기 바인더는 폴리비닐부틸알(polyvinyl butyral), 폴리에틸렌글리콜(polyethylene glycol) 및 폴리메틸메스아크릴레이트(polymethyl methacrylate) 중에서 선택되는 어느 하나 이상인 것을 특징으로 하는 탄화규소 소결체 제조용 조성물.
According to clause 11,
A composition for producing a silicon carbide sintered body, wherein the organic binder is at least one selected from polyvinyl butyral, polyethylene glycol, and polymethyl methacrylate.
제11항에 있어서,
조성물 전체 100 중량부를 기준으로,
상기 유기 바인더는 0.2 내지 3.5 중량부;를 포함하는 것을 특징으로 하는 탄화규소 소결체 제조용 조성물.
According to clause 11,
Based on 100 parts by weight of the total composition,
A composition for producing a silicon carbide sintered body, characterized in that it contains 0.2 to 3.5 parts by weight of the organic binder.
KR1020220027981A 2022-03-04 2022-03-04 Sintered SiC ceramics with high specific stiffness and composition for producing the same KR20230130862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220027981A KR20230130862A (en) 2022-03-04 2022-03-04 Sintered SiC ceramics with high specific stiffness and composition for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220027981A KR20230130862A (en) 2022-03-04 2022-03-04 Sintered SiC ceramics with high specific stiffness and composition for producing the same

Publications (1)

Publication Number Publication Date
KR20230130862A true KR20230130862A (en) 2023-09-12

Family

ID=88019791

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220027981A KR20230130862A (en) 2022-03-04 2022-03-04 Sintered SiC ceramics with high specific stiffness and composition for producing the same

Country Status (1)

Country Link
KR (1) KR20230130862A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101620510B1 (en) 2014-08-22 2016-05-13 서울시립대학교 산학협력단 Pressureless sintered silicon carbide ceramics with high fracture toughness and high hardness, compositions thereof and Process for producing the Same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101620510B1 (en) 2014-08-22 2016-05-13 서울시립대학교 산학협력단 Pressureless sintered silicon carbide ceramics with high fracture toughness and high hardness, compositions thereof and Process for producing the Same

Similar Documents

Publication Publication Date Title
US4692418A (en) Sintered silicon carbide/carbon composite ceramic body having fine microstructure
US4004934A (en) Sintered dense silicon carbide
US4525461A (en) Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
US7166550B2 (en) Ceramic composite body of silicon carbide/boron nitride/carbon
IE43834B1 (en) Sintered silicon carbide ceramic body
US8097548B2 (en) High-density pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
CN101456737A (en) Boron carbide base composite ceramic and preparation method thereof
WO2011011606A2 (en) Methods of forming sintered boron carbide
CN104591738A (en) High-toughness boron carbide ceramic and preparation method thereof
KR20190048811A (en) Method for manufacturing silicon carbide dense bodies having excellent thermal conductivity and thermal durability
KR101620510B1 (en) Pressureless sintered silicon carbide ceramics with high fracture toughness and high hardness, compositions thereof and Process for producing the Same
EP0178753B1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
KR20230130862A (en) Sintered SiC ceramics with high specific stiffness and composition for producing the same
KR100395685B1 (en) Silicon Carbide Ceramic Materials with Improved High-Temperature-Strength and Process of Making the Same
JPH0228539B2 (en)
KR102603574B1 (en) Pressureless sintered SiC ceramics with 1~30 Ωcm electrical resistivity, its composition, and method for producing the same
KR20230045356A (en) Pressureless solid state sintered SiC ceramics with low electrical resistivity, its composition and method for producing the same
JP2008074667A (en) Silicon carbide sintered compact sheet and method of manufacturing the same
KR20060063667A (en) Ceramics for a glass mold
JP4599344B2 (en) Method for producing non-oxide porous ceramic material
JP4758617B2 (en) High-density silicon carbide ceramics and method for producing the same
JPS632913B2 (en)
JPS61143686A (en) Silicon carbide sintered body for heat-resistant jig having excellent dimensional accuracy
KR100426804B1 (en) Silicon Carbide Ceramics with Improved Oxidation Resistance and Process Therefor
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body

Legal Events

Date Code Title Description
E902 Notification of reason for refusal