KR20230130250A - Eco-friendly nano coating with excellent water repellency and manufacturing method thereof - Google Patents

Eco-friendly nano coating with excellent water repellency and manufacturing method thereof Download PDF

Info

Publication number
KR20230130250A
KR20230130250A KR1020220027171A KR20220027171A KR20230130250A KR 20230130250 A KR20230130250 A KR 20230130250A KR 1020220027171 A KR1020220027171 A KR 1020220027171A KR 20220027171 A KR20220027171 A KR 20220027171A KR 20230130250 A KR20230130250 A KR 20230130250A
Authority
KR
South Korea
Prior art keywords
comparative example
nano coating
nano
water repellency
coating agent
Prior art date
Application number
KR1020220027171A
Other languages
Korean (ko)
Inventor
권영삼
Original Assignee
주식회사 칼렛바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 칼렛바이오 filed Critical 주식회사 칼렛바이오
Priority to KR1020220027171A priority Critical patent/KR20230130250A/en
Publication of KR20230130250A publication Critical patent/KR20230130250A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1681Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents

Abstract

본 발명은 발수성이 우수한 친환경 나노 코팅제 및 이의 제조 방법에 관한 것으로, 표질에 변화를 주지않아 오염물을 방지하여 친환경적일 뿐만 아니라, 발수성이 우수하여 표면의 지속성을 증가시키기 위한 용도로 유용하게 활용될 수 있다.The present invention relates to an eco-friendly nano coating with excellent water repellency and a method for manufacturing the same. It is not only environmentally friendly by preventing contaminants without changing the surface quality, but also has excellent water repellency, so it can be usefully used to increase surface sustainability. there is.

Description

발수성이 우수한 친환경 나노 코팅제 및 이의 제조 방법{Eco-friendly nano coating with excellent water repellency and manufacturing method thereof}Eco-friendly nano coating with excellent water repellency and manufacturing method thereof {Eco-friendly nano coating with excellent water repellency and manufacturing method thereof}

본 발명은 발수성이 우수한 친환경 나노 코팅제 및 이의 제조 방법에 관한 것이다.The present invention relates to an eco-friendly nano coating with excellent water repellency and a method for manufacturing the same.

각종의 표시 장치, 광학 소자, 반도체 소자, 건축 재료, 자동차 부품, 나노임프린트 기술, 태양 전지 부재 등의 기재의 표면에 액적이 부착되어 더러워지거나 부식되어 이에 따른 성능이 저하되는 등의 문제가 발생하고 있다. 이를 해결하기 위해, 발수ㆍ발유 표면기술은 제지산업의 내유(oil repellent) 가공제, 화장품 산업의 기능성 무기 분제(lipid repellent cosmetics), 섬유 및 피혁산업의 발수ㆍ발유제 등과 같이 일상 생활용품의 제조기술로 활용될뿐만 아니라, 금속 소재의 부식 방지, 자동차 외장 코팅, 고분자 가공 분야의 정밀 이형 기술 등에 다양하게 응용되고 있다. Problems such as droplets attaching to the surface of substrates such as various display devices, optical devices, semiconductor devices, building materials, automobile parts, nanoimprint technology, and solar cell members cause contamination or corrosion, resulting in reduced performance. there is. To solve this problem, water-repellent and oil-repellent surface technologies are used in the manufacture of daily necessities, such as oil repellent processing agents in the paper industry, functional inorganic powders (lipid repellent cosmetics) in the cosmetics industry, and water-repellent and oil-repellent agents in the textile and leather industry. In addition to being used as a technology, it is also applied in a variety of ways, such as preventing corrosion of metal materials, automobile exterior coating, and precision mold release technology in the polymer processing field.

발수 표면이란 작은 기울임에도 물방울이 흘러내려 자기세정(Self-cleaning), 난불연(Flame retardant/non-flammable), 부식방지(Anti-corrosion), 결빙/흐림방지(Anti-icing/fogging) 등의 효과를 나타내고, 이런 표면을 나타내기 위한 초발수 표면 기술이 주요 산업에서 주목받고 있으며, 필요성이 증가하고 있다. A water-repellent surface means that water droplets flow down even when tilted slightly, providing self-cleaning, flame retardant/non-flammable, anti-corrosion, anti-icing/fogging, etc. Super-hydrophobic surface technology to achieve this effect and create such a surface is attracting attention in major industries, and the need is increasing.

발수성이란 물에 젖기 어려운 성질을 뜻하며 발수성은 표면에 놓여진 물방울의 접촉각 θ로 평가된다. 일반적으로 θ가 90°를 넘으면 발수성이라 하며, 150°를 넘으면 초발수성이라 정의된다. 기본적으로 소재표면의 발수성은 표면에너지에 의해서 결정되지만 초발수 성질, 즉 150°이상의 접촉각은 낮은 표면에너지를 갖는 것만으로는 나타나지 않고 반드시 표면이 마이크로-나노 구조의 이중거칠기(dual roughness)를 가져야 하는 것으로 알려져 있다.Water repellency refers to the property of being difficult to get wet with water, and water repellency is evaluated by the contact angle θ of water droplets placed on the surface. Generally, if θ exceeds 90°, it is called water-repellent, and if θ exceeds 150°, it is defined as super-hydrophobic. Basically, the water repellency of the material surface is determined by the surface energy, but the super water repellency property, that is, the contact angle of more than 150°, is not manifested simply by having a low surface energy, but the surface must have dual roughness of micro-nano structure. It is known that

초발수 성질은 자연계에서 이미 나타나고 있는 현상으로, 연꽃잎의 경우 표면에너지가 낮은 발수 성질을 갖는 왁스가 코팅되어 있고 수 많은 나노 크기의 돌기들이 울퉁불퉁한 마이크로 구조 위를 덮고 있기 때문에 초발수 성질을 나타낸다. 150°보다 높은 물 접촉각을 갖는 초발수 표면의 경우 물에 대한 반발력이 크기 때문에 물방울이 약간의 기울임에도 쉽게 굴러 떨어지며 표면의 오염물질을 씻어 내리는 자가 세정(self-cleaning) 효과가 나타난다.Super water-repellent properties are a phenomenon that has already appeared in the natural world. In the case of lotus petals, they are coated with wax that has water-repellent properties with low surface energy and numerous nano-sized protrusions cover the bumpy microstructure, showing super water-repellent properties. . In the case of a superhydrophobic surface with a water contact angle higher than 150°, the repulsive force against water is large, so water droplets easily roll off even with a slight tilt, resulting in a self-cleaning effect that washes away contaminants from the surface.

한편, 나노 기술(Nano Technology; NT)은 원자와 분자 수준에서 관리할 목적으로 원자나 분자 물질의 그 물성을 이용하여 10억분의 1미터인 나노미터 크기의 물질을 조작하는 기술로, 일반적으로는 크기가 1 내지 100나노미터 범위인 재료나 대상에 대한 기술이 나노기술로 분류한다. 나노 기술은 유기 화학(Organic Chemistry), 분자 생물학(Molecular Biology), 반도체 물리학(Semiconductor Physics), 미세 제조(Microfabrication) 등의 다양한 과학 분야에 포함되어 이용 범위가 매우 넓어 다양한 분야의 기술에 융합되어 사용되고 있는 추세이다. Meanwhile, Nano Technology (NT) is a technology that manipulates nanometer-sized materials, which is one billionth of a meter, using the physical properties of atomic or molecular materials for the purpose of managing them at the atomic and molecular level. In general, it is Technology for materials or objects with sizes ranging from 1 to 100 nanometers is classified as nanotechnology. Nanotechnology is included in various scientific fields such as Organic Chemistry, Molecular Biology, Semiconductor Physics, and Microfabrication, and has a very wide range of uses, so it is used and integrated into technologies in various fields. There is a trend.

이에, 본 발명자는 나노 입자를 사용하여 초발수성의 특성을 나타내는 표면 코팅제를 개발하기 위한 연구를 수행하여 본 발명을 완성하였다.Accordingly, the present inventor conducted research to develop a surface coating agent exhibiting superhydrophobic properties using nanoparticles and completed the present invention.

1. 대한민국 특허출원 제10-2013-0136526호1. Republic of Korea Patent Application No. 10-2013-0136526

본 발명의 하나의 목적은 SiO2 및 H2O를 유효성분으로 포함하는 나노 코팅제 제조방법을 제공하기 위한 것이다.One object of the present invention is to provide a method for producing a nano coating containing SiO 2 and H 2 O as active ingredients.

본 발명의 일 양상은 SiO2 및 H2O를 유효성분으로 포함하는 나노 코팅제 제조방법을 제공한다.One aspect of the present invention provides a method for producing a nano coating containing SiO 2 and H 2 O as active ingredients.

상기 SiO2는 "Si"와 "O"의 공유결합과 이온결합으로 구성되며, 화학식은 SiO2 +H2O, 색깔은 무색에 가까운 연노랑, 냄새는 무취, 녹는점은 66℃, 끓는점은 97℃, 발화온도는 N/A(Not Applicable: 해당없음), 밀도는 10g/㎤(20℃), PH (500g/I)는 3 내지 5 pH(20 ℃)로 한다.The SiO 2 is composed of a covalent bond and an ionic bond of “Si” and “O”, the chemical formula is SiO 2 +H 2 O, the color is light yellow close to colorless, the odor is odorless, the melting point is 66°C, and the boiling point is 97°C. ℃, ignition temperature is N/A (Not Applicable), density is 10g/cm3 (20℃), and PH (500g/I) is 3 to 5 pH (20℃).

상기 나노 코팅제는 금, 은, 구리 등 금속, 거울, 안경 등 유리, 세라믹, 콘크리트, 플라스틱, 섬유, 가죽, 타일 등의 표면을 보호하기 위하여 도포될 수 있으나, 이에 한정되는 것은 아니다.The nano coating agent may be applied to protect the surface of metals such as gold, silver, and copper, glass such as mirrors and glasses, ceramics, concrete, plastic, fiber, leather, and tile, but is not limited thereto.

상기 나노 코팅제는 겔, 스프레이, 액상, 고체, 에멀젼 등의 제형으로 제조될 수 있으나, 이에 한정되는 것은 아니다.The nano coating agent may be manufactured in a gel, spray, liquid, solid, or emulsion form, but is not limited thereto.

상기 나노 코팅제는 도포되는 표면 또는 나노 코팅제의 액상에 따라 충분히 코팅할 수 있도록 일반적으로 사용되는 양이 도포될 수 있고, 예를 들어, 거울의 표면에 빈 곳이 없도록 2 내지 3회 반복하여 분산하거나, 기재를 500rpm 내지 4000rpm 으로 회전하며 1초 내지 5분 동안 도포할 수 있으나, 이에 한정되는 것은 아니다.The nano-coating agent may be applied in a generally used amount to sufficiently coat the surface to be applied or depending on the liquid phase of the nano-coating agent. For example, the nano-coating agent may be dispersed repeatedly 2 to 3 times to ensure that there are no empty spots on the surface of the mirror. , the substrate can be rotated at 500 rpm to 4000 rpm and applied for 1 second to 5 minutes, but is not limited to this.

상기 스프레이 제형은 발수 코팅액을 기재에 도포하는 단계는 담지법, 함침법, 기재의 표면에 상기 코팅액을 스피닝, 슬롯다이, 마이크로 그라비아, 그라비아 또는 스프레이를 통하여 분사될 수 있으나, 이에 한정되는 것은 아니다.For the spray formulation, the step of applying the water-repellent coating solution to the substrate may be a dipping method, an impregnation method, or the coating solution may be sprayed on the surface of the substrate through spinning, slot die, micro gravure, gravure, or spray, but is not limited thereto.

본 발명의 일 구체예에 있어서, 상기 SiO2 및 상기 H2O의 중량비는 1:3 내지 1:6일 수 있다.In one embodiment of the present invention, the weight ratio of SiO 2 and H 2 O may be 1:3 to 1:6.

본 발명의 일 구체예에 있어서, 상기 SiO2는 40 내지 60㎚ 이하일 수 있다.In one embodiment of the present invention, the SiO 2 may be 40 to 60 nm or less.

본 발명의 일 구체예에 있어서, 상기 나노 코팅제는 40 내지 50℃의 온도에서 4 내지 6시간 동안 가열하여 제조될 수 있다.In one embodiment of the present invention, the nano coating agent can be prepared by heating at a temperature of 40 to 50 ° C. for 4 to 6 hours.

본 발명의 일 구체예에 있어서, 상기 나노 코팅제는 벽돌, 기와, 타일, 콘크리트, 드라이비트, 스티로폼, 화산석, 대리석, 나무, 유리, 세라믹, 플라스틱, 금속, 알루미늄, 가죽, 울, 폴리에스터, 실크, 나일론(nylon), 합성 섬유, 아크릴(acryl), 레이온(rayon) 및 면류로 이루어진 군으로부터 선택되는 어느 하나의 재료에 적용될 수 있다.In one embodiment of the present invention, the nano coating agent is used on bricks, roof tiles, tiles, concrete, dryvit, Styrofoam, volcanic stone, marble, wood, glass, ceramic, plastic, metal, aluminum, leather, wool, polyester, and silk. , can be applied to any one material selected from the group consisting of nylon, synthetic fiber, acryl, rayon, and cotton.

상기 나노 코팅제는 효과를 증가시킬 수 있는 첨가제를 더 포함할 수 있다.The nano coating agent may further include additives that can increase the effect.

상기 첨가제는 접착력 향상 첨가제, 윤활제, 발수 내구성을 위한 첨가제, 발유성 첨가제 등으로 이루어진 군으로부터 선택되는 어느 하나 이상의 첨가제일 수 있으나, 이에 한정되는 것은 아니다.The additive may be one or more additives selected from the group consisting of adhesion-enhancing additives, lubricants, additives for water-repellent durability, oil-repellent additives, etc., but is not limited thereto.

발수성이 우수한 친환경 나노 코팅제 및 이의 제조 방법에 따르면, 표질에 변화를 주지않아 오염물을 방지하여 친환경적일 뿐만 아니라, 발수성이 우수하여 표면의 지속성을 증가시키기 위한 용도로 유용하게 활용될 수 있다.According to the eco-friendly nano coating with excellent water repellency and its manufacturing method, it is not only environmentally friendly by preventing contaminants without changing the surface quality, but also has excellent water repellency, so it can be usefully used to increase surface sustainability.

이하 본 발명을 하나 이상의 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through one or more examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.

비교예 1 내지 18. 가열 조건을 달리한 나노 코팅제의 제조Comparative Examples 1 to 18. Preparation of nano coatings under different heating conditions

SiO2 및 H2O를 1:4 중량비로 혼합하고, 가열 온도 및 가열 시간을 달리한 표 1의 조건에 따라 실시예 1 및 비교예 1 내지 18를 제조하였다.SiO 2 and H 2 O were mixed at a weight ratio of 1:4, and Example 1 and Comparative Examples 1 to 18 were prepared according to the conditions in Table 1 with different heating temperatures and heating times.

구분division 가열 온도(℃)Heating temperature (℃) 가열 시간(시간)Heating time (hours) 비교예 1Comparative Example 1 20-3020-30 2-42-4 비교예 2Comparative Example 2 4-64-6 비교예 3Comparative Example 3 6-86-8 비교예 4Comparative Example 4 30-4030-40 2-42-4 비교예 5Comparative Example 5 4-64-6 비교예 6Comparative Example 6 6-86-8 비교예 7Comparative Example 7 40-5040-50 2-42-4 비교예 8Comparative Example 8 4-64-6 비교예 9Comparative Example 9 6-86-8 비교예 10Comparative Example 10 50-6050-60 2-42-4 비교예 11Comparative Example 11 4-64-6 비교예 12Comparative Example 12 6-86-8 비교예 13Comparative Example 13 60-7060-70 2-42-4 비교예 14Comparative Example 14 4-64-6 비교예 15Comparative Example 15 6-86-8 비교예 16Comparative Example 16 70-8070-80 2-42-4 비교예 17Comparative Example 17 4-64-6 비교예 18Comparative Example 18 6-86-8

실시예 1 및 비교예 19 내지 37. 혼합 비율 및 입자 크기를 달리한 나노 코팅제의 제조Example 1 and Comparative Examples 19 to 37. Preparation of nano coatings with different mixing ratios and particle sizes

나노 코팅제의 최적의 혼합 비율 및 최적 입자 크기를 확인하기 위하여, 40 내지 50℃의 온도에서 4 내지 6시간 가열 조건으로 실시예 1 및 비교예 19 내지 37을 제조하였다(표 2). In order to confirm the optimal mixing ratio and optimal particle size of the nano coating agent, Example 1 and Comparative Examples 19 to 37 were prepared under heating conditions of 40 to 50 ° C. for 4 to 6 hours (Table 2).

구분division 혼합 비율(중량비)Mixing ratio (weight ratio) 입자 크기(㎚)Particle size (㎚) 비교예 19Comparative Example 19 1:21:2 20-4020-40 비교예 20Comparative Example 20 40-6040-60 비교예 21Comparative Example 21 60-8060-80 비교예 22Comparative Example 22 80-10080-100 비교예 23Comparative Example 23 1:31:3 20-4020-40 비교예 24Comparative Example 24 40-6040-60 비교예 25Comparative Example 25 60-8060-80 비교예 26Comparative Example 26 80-10080-100 비교예 27Comparative Example 27 1:41:4 20-4020-40 실시예 1Example 1 40-6040-60 비교예 28Comparative Example 28 60-8060-80 비교예 29Comparative Example 29 80-10080-100 비교예 30Comparative Example 30 1:61:6 20-4020-40 비교예 31Comparative Example 31 40-6040-60 비교예 32Comparative Example 32 60-8060-80 비교예 33Comparative Example 33 80-10080-100 비교예 34Comparative Example 34 1:81:8 20-4020-40 비교예 35Comparative Example 35 40-6040-60 비교예 36Comparative Example 36 60-8060-80 비교예 37Comparative Example 37 80-10080-100

실험예 1. 최적의 나노 코팅제 제조 조건 확인Experimental Example 1. Confirmation of optimal nano coating manufacturing conditions

나노 코팅제의 가열 온도 및 시간에 따른 최적의 제조 조건을 확인하기 위하여, 비교예 1 내지 18을 유리 기재 상에 코팅하고 접촉각을 측정하였다. 구체적으로, 유리 기재로 1㎜ 두께의 글라스 슬라이드(glass slide, 독일 Paul Marienfeld GmbH사)를 과산화수소와 황산을 1:3의 부피비로 혼합한 용액에 12시간 이상 담가 표면에 있는 불순물을 제거하고, 증류수로 용액을 세척하였다. 그 후, 105℃에서 1시간 동안 건조시키고, 비교예 1 내지 18로 코팅하였으며, 유리 기재 상에 형성된 코팅의 발수성을 확인하기 위해서, 접촉각 측정기(KRUSS, DSA100)로 접촉각을 측정하였다(표 3 및 표 4).In order to confirm the optimal manufacturing conditions according to the heating temperature and time of the nano coating agent, Comparative Examples 1 to 18 were coated on a glass substrate and the contact angle was measured. Specifically, a 1 mm thick glass slide (Paul Marienfeld GmbH, Germany) with a glass substrate was soaked in a solution of hydrogen peroxide and sulfuric acid mixed at a volume ratio of 1:3 for more than 12 hours to remove impurities on the surface, and then diluted with distilled water. The solution was washed with . Afterwards, it was dried at 105°C for 1 hour and coated with Comparative Examples 1 to 18. In order to confirm the water repellency of the coating formed on the glass substrate, the contact angle was measured using a contact angle meter (KRUSS, DSA100) (Table 3 and Table 4).

구분division 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 비교예 4Comparative Example 4 비교예 5Comparative Example 5 비교예 6Comparative Example 6 비교예 7Comparative Example 7 비교예 8Comparative Example 8 비교예 9Comparative Example 9 접촉각
(°)
contact angle
(°)
7575 9191 8282 8181 102102 9292 9595 110110 101101

구분division 비교예 10Comparative Example 10 비교예 11Comparative Example 11 비교예 12Comparative Example 12 비교예 13Comparative Example 13 비교예 14Comparative Example 14 비교예 15Comparative Example 15 비교예 16Comparative Example 16 비교예 17Comparative Example 17 비교예 18Comparative Example 18 접촉각
(°)
contact angle
(°)
118118 140140 126126 6161 8080 7272 4040 6565 5353

그 결과, 가열 온도가 40 내지 50℃인 경우(비교예 10 내지 12)의 접촉각이 높은 것으로 측정되었고, 그 중에서도, 가열 시간이 4 내지 6시간인 경우(비교예 11)가 접촉각이 가장 우수한 것으로 나타나, 반응 온도가 달라지면 반응 시간에 따른 접촉각이 달라지는 것으로 확인되었다. 이는 나노사이즈의 입자크기를 가지는 SiO2은 가수분해 및 축합반응을 통해 실록산 결합(-Si-O-Si-)을 형성하는데, 40 내지 50℃에서 상기 실록산 결합이 효과적으로 이루어지기 때문인 것으로 확인되었다. 구체적으로, 40℃ 미만의 온도에서는 실록산 결합이 충분히 형성되지 않을 수 있고, 50℃를 초과하는 온도에서는 과한 결합이 생성되어 코팅제의 액상이 겔화되는 것으로 확인되었다.As a result, the contact angle was measured to be high when the heating temperature was 40 to 50°C (Comparative Examples 10 to 12), and among them, the contact angle was found to be the best when the heating time was 4 to 6 hours (Comparative Example 11). It was confirmed that when the reaction temperature changes, the contact angle changes depending on the reaction time. This was confirmed to be because SiO 2 , which has a nano-sized particle size, forms a siloxane bond (-Si-O-Si-) through hydrolysis and condensation reactions, and the siloxane bond is effectively formed at 40 to 50°C. Specifically, it was confirmed that at temperatures below 40°C, siloxane bonds may not be sufficiently formed, and at temperatures exceeding 50°C, excessive bonds were created and the liquid phase of the coating agent gelled.

또한, 4시간 미만의 시간 동안 반응시킬 경우, 반응이 완전히 이루어지지 않아 다량의 미반응 물질이 발생할 수 있고, 6시간을 초과하여 가열하는 경우, 실리칸 결합이 생성된 이후에도 반응 단계를 지속하게 되어 반응효율성 및 생산 효율성이 저하된다는 점에서, 40 내지 50℃의 온도에서 4 내지 6시간 동안 가열하였을 때 접촉각이 가장 높은 것으로 확인되었고, 특히, 47℃에서 5시간 동안 가열 조건이 가장 우수한 효과를 나타내는 것으로 확인되었다.In addition, if the reaction is performed for less than 4 hours, the reaction may not be completed completely and a large amount of unreacted materials may be generated, and if the reaction is performed for more than 6 hours, the reaction step continues even after the silicane bond is formed. In view of the decrease in reaction efficiency and production efficiency, it was confirmed that the contact angle was highest when heated at a temperature of 40 to 50 ℃ for 4 to 6 hours. In particular, the heating condition at 47 ℃ for 5 hours showed the best effect. It was confirmed that

실험예 2. 나노 코팅제의 최적의 혼합 비율 및 입자 크기 확인Experimental Example 2. Confirmation of optimal mixing ratio and particle size of nano coating agent

나노 코팅제의 가열 온도 및 시간에 따른 최적의 제조 조건을 확인하기 위하여, 실시예 1 및 비교예 19 내지 37을 유리 기재 상에 코팅하고, 실험예 1과 동일한 방법으로 접촉각을 측정하였다(표 5 및 표 6). In order to confirm the optimal manufacturing conditions according to the heating temperature and time of the nano coating agent, Example 1 and Comparative Examples 19 to 37 were coated on a glass substrate, and the contact angle was measured in the same manner as Experiment 1 (Table 5 and Table 6).

구분division 비교예 19Comparative Example 19 비교예 20Comparative Example 20 비교예 21Comparative Example 21 비교예 22Comparative Example 22 비교예 23Comparative Example 23 비교예 24Comparative Example 24 비교예 25Comparative Example 25 비교예 26Comparative Example 26 비교예 27Comparative Example 27 실시예 1Example 1 접촉각
(°)
contact angle
(°)
9090 109109 103103 100100 112112 129129 121121 113113 140140 156156

구분division 비교예 28Comparative Example 28 비교예 29Comparative Example 29 비교예 30Comparative Example 30 비교예 31Comparative Example 31 비교예 32Comparative Example 32 비교예 33Comparative Example 33 비교예 34Comparative Example 34 비교예 35Comparative Example 35 실시예 36Example 36 비교예 37Comparative Example 37 접촉각
(°)
contact angle
(°)
142142 139139 109109 118118 106106 107107 8787 9797 9292 7979

그 결과, SiO2 및 H2O의 혼합 비율이 1:4인 경우(실시예 1 및 비교예 27 내지 29)의 접촉각이 156으로 측정되어, 다른 혼합 비율 대비 발수성이 우수한 것으로 나타났다. H2O의 혼합 비율이 4 중량부 미만일 경우, 최종적으로 제조된 코팅제 자체의 점도가 높고, H2O의 혼합 비율이 8 중량부를 초과하는 경우, 코팅제 자체가 과도하게 묽어져 접촉각이 낮은 것으로 확인되었다. As a result, when the mixing ratio of SiO 2 and H 2 O was 1:4 (Example 1 and Comparative Examples 27 to 29), the contact angle was measured to be 156, showing excellent water repellency compared to other mixing ratios. When the mixing ratio of H 2 O was less than 4 parts by weight, the viscosity of the finally manufactured coating agent itself was high, and when the mixing ratio of H 2 O exceeded 8 parts by weight, the coating agent itself was confirmed to be excessively diluted and the contact angle was low. It has been done.

또한, 입자의 크기가 40 내지 60㎚인 경우가 접촉각의 크기가 가장 우수한 것으로 측정되었고, 이는 입자가 40㎚ 미만의 크기일 경우 최종적으로 제조된 코팅제에 포함된 나노 입자들이 불안정하기 때문에 물에 용이하게 분산되지 못해 입자들이 뭉쳐지는 겔링 현상이 발생하고, 60㎚를 초과하는 경우 코팅제의 내구성을 감소시키기 때문인 것으로 확인되었다.In addition, it was measured that the size of the contact angle was the best when the particle size was 40 to 60 nm. This is because the nanoparticles included in the final coating agent were unstable when the particle size was less than 40 nm, so it was easy to dissolve in water. It was confirmed that this was because the gelling phenomenon in which particles agglomerate occurred due to inability to disperse properly, and when it exceeded 60 nm, the durability of the coating agent was reduced.

종합적으로, SiO2 및 H2O를 1:4 중량비로 혼합하고, 40 내지 60㎚ 크기의 나노 입자로 제조한 후, 40 내지 50℃의 온도에서 4 내지 6시간 동안 가열하였을 때 접촉각이 가장 높은 것으로 확인되었고, 특히, 47℃에서 5시간 동안 가열한 경우 접촉각이 150 이상으로 측정되어 초발수성을 가지는 것으로 확인되었다는 점에서, 본 발명의 나노 코팅제 제조 방법은 표질에 변화를 주지않아 오염물을 방지하여 친환경적일 뿐만 아니라, 발수성이 우수하여 표면의 지속성을 증가시키기 위한 용도로 유용하게 활용가능함이 확인되었다. Overall, the contact angle was highest when SiO 2 and H 2 O were mixed at a 1:4 weight ratio, prepared into nanoparticles with a size of 40 to 60 nm, and then heated at a temperature of 40 to 50 ° C. for 4 to 6 hours. In particular, when heated at 47°C for 5 hours, the contact angle was measured to be more than 150, confirming that it has superhydrophobicity. Therefore, the nano coating manufacturing method of the present invention prevents contaminants without changing the surface quality. It was confirmed that it is not only environmentally friendly, but also has excellent water repellency, making it useful for increasing surface sustainability.

이제까지 본 발명에 대하여 그 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been examined focusing on its embodiments. A person skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims, not the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.

Claims (5)

SiO2 및 H2O를 유효성분으로 포함하는 나노 코팅제 제조방법.
Method for producing a nano coating containing SiO 2 and H 2 O as active ingredients.
제 1 항에 있어서, 상기 SiO2 및 상기 H2O의 중량비는 1:3 내지 1:6인 것인 나노 코팅제 제조방법.
The method of claim 1, wherein the weight ratio of SiO 2 and H 2 O is 1:3 to 1:6.
제 1 항에 있어서, 상기 SiO2는 40 내지 60㎚ 이하인 것인 나노 코팅제 제조방법.
The method of claim 1, wherein the SiO 2 is 40 to 60 nm or less.
제 1 항에 있어서, 상기 나노 코팅제는 40 내지 50℃의 온도에서 4 내지 6시간 동안 가열하여 제조되는 것인 나노 코팅제 제조방법.
The method of claim 1, wherein the nano coating agent is prepared by heating at a temperature of 40 to 50° C. for 4 to 6 hours.
제 1 항에 있어서, 상기 나노 코팅제는 벽돌, 기와, 타일, 콘크리트, 드라이비트, 스티로폼, 화산석, 대리석, 나무, 유리, 세라믹, 플라스틱, 금속, 알루미늄, 가죽, 울, 폴리에스터, 실크, 나일론(nylon), 합성 섬유, 아크릴(acryl), 레이온(rayon) 및 면류로 이루어진 군으로부터 선택되는 어느 하나의 재료에 적용될 수 있는 것인 나노 코팅제 제조방법.

The method of claim 1, wherein the nano coating agent is suitable for use on bricks, roof tiles, tiles, concrete, dryvit, Styrofoam, volcanic stone, marble, wood, glass, ceramic, plastic, metal, aluminum, leather, wool, polyester, silk, nylon ( A nano-coating manufacturing method that can be applied to any one material selected from the group consisting of nylon, synthetic fiber, acryl, rayon, and cotton.

KR1020220027171A 2022-03-03 2022-03-03 Eco-friendly nano coating with excellent water repellency and manufacturing method thereof KR20230130250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220027171A KR20230130250A (en) 2022-03-03 2022-03-03 Eco-friendly nano coating with excellent water repellency and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220027171A KR20230130250A (en) 2022-03-03 2022-03-03 Eco-friendly nano coating with excellent water repellency and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20230130250A true KR20230130250A (en) 2023-09-12

Family

ID=88019675

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220027171A KR20230130250A (en) 2022-03-03 2022-03-03 Eco-friendly nano coating with excellent water repellency and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR20230130250A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130136526A (en) 2011-03-09 2013-12-12 에프엠 에네르기 게엠베하 운트 코.카게 Bushing which can be pretensioned by material displacement and bearing equipped with said bushing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130136526A (en) 2011-03-09 2013-12-12 에프엠 에네르기 게엠베하 운트 코.카게 Bushing which can be pretensioned by material displacement and bearing equipped with said bushing

Similar Documents

Publication Publication Date Title
EP2720808B1 (en) Hydrophobic hydrocarbon coatings
EP2294152B1 (en) A superhydrophobic aerogel that does not require per-fluoro compounds or contain any fluorine
Ragesh et al. A review on ‘self-cleaning and multifunctional materials’
KR101399260B1 (en) Polymeric composition comprising metal alkoxide condensation product, organic silane compound and boron compound
JP5680900B2 (en) Oil-repellent coated article and method for producing the same
KR20080106510A (en) Coating system
WO2010018744A1 (en) Ultrahydrophobic powder, structure with ultrahydrophobic surface, and processes for producing these
Janowicz et al. Fluorine-free transparent superhydrophobic nanocomposite coatings from mesoporous silica
KR20030076665A (en) Self-Cleaning Paint Coating And A Method And Agent For Producing The Same
JPWO2004052639A1 (en) Film-coated article, method for producing the same, and coating material for film formation
KR19990081881A (en) Substrates with improved hydrophilic or hydrophobic properties including irregularities
WO2010062436A1 (en) Transparent inorganic-organic hybrid materials via aqueous sol-gel processing
CN109415588A (en) Self-curing mixed-metal oxides
US9587142B2 (en) Process for preparing an optically clear superhydrophobic coating solution
KR20230130250A (en) Eco-friendly nano coating with excellent water repellency and manufacturing method thereof
KR101445437B1 (en) Anti-Reflection Film and Method of Producing The Same
CN110564187A (en) Anti-reflection fluorine-free super-hydrophobic self-cleaning nano film and preparation method thereof
ES2389349B1 (en) PROCEDURE FOR OBTAINING A SOL-GEL COATING ON SURFACES WITH VITRIFIED CERAMIC Enamels AND COATING OBTAINED
Yumei et al. Nanosized ZnO/SiO2-Based Amphiphobic Coatings for Stone Heritage Protection
JP2007099828A (en) Coating material composition and coated product
JP2001253006A (en) Base material with antistatic film
KR100425913B1 (en) Multifunctional transparent coating agent which comprises photocatalyst
KR102254760B1 (en) Silane type water repellent coating composition and water repellent coating film using the same
JP7359999B2 (en) Method for producing hydrophilic coating agent and method for forming coating film
CN110546117B (en) Transparent substrate with low-reflection film, photoelectric conversion device, coating liquid for forming low-reflection film of transparent substrate with low-reflection film, and method for producing transparent substrate with low-reflection film

Legal Events

Date Code Title Description
E902 Notification of reason for refusal