KR20230128659A - Multi-stage compression type turbo chiller with multi-route throttle valve - Google Patents

Multi-stage compression type turbo chiller with multi-route throttle valve Download PDF

Info

Publication number
KR20230128659A
KR20230128659A KR1020220025766A KR20220025766A KR20230128659A KR 20230128659 A KR20230128659 A KR 20230128659A KR 1020220025766 A KR1020220025766 A KR 1020220025766A KR 20220025766 A KR20220025766 A KR 20220025766A KR 20230128659 A KR20230128659 A KR 20230128659A
Authority
KR
South Korea
Prior art keywords
refrigerant
condenser
evaporator
throttling valve
valve
Prior art date
Application number
KR1020220025766A
Other languages
Korean (ko)
Inventor
천영희
박종순
박영근
Original Assignee
주식회사 세원글로벌엔터프라이즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세원글로벌엔터프라이즈 filed Critical 주식회사 세원글로벌엔터프라이즈
Priority to KR1020220025766A priority Critical patent/KR20230128659A/en
Publication of KR20230128659A publication Critical patent/KR20230128659A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

본 발명은 다단 압축방식 터보냉동기에 관련한 것으로서, 다단 압축기, 응축기, 제1 교축밸브, 이코노마이저, 제2 교축밸브 및 증발기를 순차적으로 액관 및 가스관으로 되는 배관에 의해 연통 가능하게 라인연결되는 주 냉매회로와, 상기 주 냉매회로의 응축기로부터 교축밸브로 유동하는 액관 내의 냉매의 일부를 제1 교축밸브 및 이코노마이저를 경유하여 상기 다단 압축기로 토출시키는 주입로를 구비하는 다단 압축방식 터보냉동기에 있어서, 상기 주입로에는 상기 응축기와 증발기의 차압이 설정 압력 이하로 떨어질 경우, 폐쇄되어 상기 주 냉매회로로만 냉매를 유동토록 하여 액냉매의 압축기로의 유입을 차단하도록 폐쇄 작동되는 제1 전자밸브가 개재되도록 구성하며, 2단 이상의 압축방식을 적용하는 열교환기 및 이코노마이저(Economizer)에서 전부하 상태에 최적 설계된 고정형 오리피스가 설계온도 이하의 냉각수 온도 상태 또는 부분부하 상태에서 교축효율이 떨어지는 문제를 해결하기 위해, 2로형 순환 교축장치를 적용함으로써 냉동부하에 따라 상응하는 최적의 냉매 순환량을 증발기에 공급함으로써 냉동능력을 향상시킬 수 있도록 하였다.The present invention relates to a multi-stage compression turbo chiller, and relates to a main refrigerant circuit in which a multi-stage compressor, a condenser, a first throttling valve, an economizer, a second throttling valve, and an evaporator are sequentially connected in line to be able to communicate with each other through liquid and gas pipes. and an injection path for discharging part of the refrigerant in the liquid pipe flowing from the condenser of the main refrigerant circuit to the throttling valve to the multi-stage compressor via a first throttling valve and an economizer. In the furnace, when the differential pressure between the condenser and the evaporator falls below a set pressure, the first electromagnetic valve is closed to allow the refrigerant to flow only to the main refrigerant circuit and to block the inflow of liquid refrigerant into the compressor. , In order to solve the problem that the throttling efficiency is low in the coolant temperature below the design temperature or in the partial load state of the fixed orifice, which is optimally designed for the full load state in the heat exchanger and economizer applying the two-stage compression method, the two-furnace type By applying the circulation throttling device, the refrigerant capacity can be improved by supplying the corresponding optimal refrigerant circulation amount to the evaporator according to the refrigerating load.

Description

다로형 교축밸브-구비 다단 압축방식 터보냉동기{Multi-stage compression type turbo chiller with multi-route throttle valve}Multi-stage compression type turbo chiller with multi-route throttle valve}

본 발명은 터보 냉동기의 다로형 교축장치에 관한 것으로, 특히, 2단 이상의 압축방식을 적용하는 냉동사이클의 교축조절이 용이한 터보 냉동기의 다로형 교축밸브를 구비한 다단 압축방식 터보냉동기에 관한 것이다.The present invention relates to a multi-stage throttling system for a turbo chiller, and more particularly, to a multi-stage compression type turbo chiller equipped with a multi-stage throttling valve for a turbo chiller that can easily adjust the throttling of a refrigeration cycle applying two or more stages of compression system. .

일반적으로, 대규모의 공기 조절용으로 사용하는 터보 냉동기의 경우에는 임펠러를 회전시켜 생기는 기체의 원심력을 이용하여 기체를 압송하는 방식의 터보 압축기를 사용하여 냉매를 압축하는 것으로서, 효율 향상을 위하여 다단 압축방식을 적용하는데 도 1에 도시한 바와 같은 감압장치를 사용하여 냉매의 압력을 조절하게 된다.In general, in the case of a turbo chiller used for large-scale air conditioning, the refrigerant is compressed using a turbo compressor that pressurizes gas using centrifugal force of gas generated by rotating an impeller, and a multi-stage compression method is used to improve efficiency. In applying, the pressure of the refrigerant is adjusted using a pressure reducing device as shown in FIG.

도 1은 종래의 2단 압축 터보 냉동기의 구성을 나타낸 개략도로서, 인렛가이드 베인(1a)을 통하여 흡입되는 저온저압의 냉매를 고온 고압의 기체로 압축시키는 압축기(1)와, 냉각탑에서 유입되는 냉각수에 의해 압축기(1)로부터 토출되는 고온 고압의 냉매가스를 응축시키는 응축기(2)와, 응축된 냉매를 감압하여 팽창시키는 제1 교축밸브(5)가 내장된 교축장치와, 냉매파이프를 통해서 제1 교축밸브(5)를 지난 냉매에서 발생한 냉매 가스를 분리하는 이코노마이저(Economizer)(4), 이코노마이저(4)를 통과한 냉매를 다시 감압하여 팽창시키는 제2 교축밸브(6)와 냉매파이프를 통해 제2 교축밸브(6)로부터 보내진 냉매를 증발시키는 증발기(3)로 이루어져 있다.Figure 1 is a schematic diagram showing the configuration of a conventional two-stage compression turbo chiller, a compressor (1) for compressing a low-temperature, low-pressure refrigerant sucked through an inlet guide vane (1a) into a high-temperature, high-pressure gas, and cooling water flowing in from a cooling tower. The condenser 2 for condensing the high-temperature and high-pressure refrigerant gas discharged from the compressor 1 by the condenser 2, the throttling device having a built-in throttling valve 5 for decompressing and expanding the condensed refrigerant, and the refrigerant through the refrigerant pipe 1 through an economizer (4) that separates the refrigerant gas generated from the refrigerant that has passed through the throttle valve (5), the second throttle valve (6) that depressurizes and expands the refrigerant that has passed through the economizer (4), and the refrigerant pipe It consists of an evaporator (3) for evaporating the refrigerant sent from the second throttling valve (6).

상기 증발기(3)로 유입된 냉매는 냉수와 열교환되는 과정에서 냉수를 냉각시키도록 되어 있는데, 증발기(3) 내에는 습증기를 제거하기 위한 엘리미네이터(7, eliminator)가 설치되어 있다. 이에 따라, 증발기(3)내에서 증발된 냉매가 지니고 있는 습증기는 냉매가 엘리미네이터(7)를 통과하는 과정에서 제거된다.The refrigerant introduced into the evaporator 3 cools the cold water in the process of heat exchange with the cold water. An eliminator 7 for removing wet steam is installed in the evaporator 3. Accordingly, wet steam of the refrigerant evaporated in the evaporator 3 is removed while the refrigerant passes through the eliminator 7 .

상기 증발기(3)에서 저압의 냉매액이 냉수와 열교환후 증발한 냉매가스는 증발기(3) 상단에 설치된 엘리미네이터(7)와 인렛가이드 베인(1a, Inlet Guide Vane)을 통해 압축기(1)로 흡입되어 1단 임펠러와 1단 디퓨져에서 1차로 압축이 된 후 이코노마이져(4)에서 이코노마이저 상단에 설치된 엘리미네이터(8)를 통과한 냉매가스와 혼합하여 과열도가 낮추어진 냉매가 2단 임펠러와 2단 디퓨져를 통과하면서 고온 고압의 과열냉매가스로 압축되어 응축기(2)로 보내진다.In the evaporator (3), the low-pressure refrigerant liquid evaporates after heat exchange with cold water, and the refrigerant gas evaporates from the compressor (1) through the eliminator (7) installed on the top of the evaporator (3) and the inlet guide vane (1a). After being sucked into the 1st stage impeller and 1st stage diffuser, it is first compressed, and then mixed with the refrigerant gas that has passed through the eliminator (8) installed at the top of the economizer (4), and the refrigerant with a reduced superheat It is compressed into high-temperature and high-pressure superheated refrigerant gas while passing through a single-stage impeller and a second-stage diffuser, and is sent to the condenser (2).

여기에서, 상기 응축기(2)로 보내진 과열 냉매가스는 냉각수와의 열교환을 통해 포화냉매가스 상태에서 포화 냉매액 상태로 응축된다. 응축된 냉매액은 제1 교축밸브(5)를 지나 이코노마이저(4)로 들어가는데 제1교축밸브(5)를 지나면서 발생한 냉매가스는 압축기측의 2단 임펠러 쪽으로 가게되고 나머지 냉매액은 제2교축밸브(6)를 지나 다시 증발기(3)로 돌아가 증발하는 과정의 순환을 계속하게 된다. Here, the superheated refrigerant gas sent to the condenser 2 is condensed from a saturated refrigerant gas state to a saturated refrigerant liquid state through heat exchange with cooling water. The condensed refrigerant liquid passes through the first throttling valve (5) and enters the economizer (4). It passes through valve 6 and returns to evaporator 3 to continue the cycle of evaporation.

그러나, 실외온도의 변화, 부하의 변동 등의 영향으로 냉각수 온도가 과도히 낮아지거나, 부분부하 운전이 과하게 진행될 경우 증발기(3)와 응축기(2)의 압력차이가 설계 상태를 벗어나 줄어들게 되고 이코노마이저(4)로 들어가는 냉매의 2상 상태 또한 설계영역을 벗어나게 되는데 이 경우 이코노마이저(4) 상부에 엘리미네이터(8)가 있음에도 불구하고 냉매액이 압축기(1)로 흡입되면서 액압축현상이 발생하게 된다. 아울러 증발기(3)와 응축기(2)의 압력차가 줄어들게 되면서 응축기(2) 증발기로(3) 흐르는 냉매의 양 또한 급격히 줄면서 증발기 저압상태가 발생함으로써, 냉동능력이 저하되거나 운전 불능상태가 될 수 있는 단점을 내포하고 있었다.However, when the cooling water temperature is excessively lowered due to changes in outdoor temperature or load fluctuations, or when partial load operation is excessively performed, the pressure difference between the evaporator (3) and the condenser (2) deviates from the design state and decreases, and the economizer ( The two-phase state of the refrigerant entering 4) is also out of the design range. In this case, despite the presence of the eliminator (8) on the top of the economizer (4), the refrigerant liquid is sucked into the compressor (1), resulting in liquid compression. . In addition, as the pressure difference between the evaporator (3) and the condenser (2) decreases, the amount of refrigerant flowing through the condenser (2) and the evaporator (3) also rapidly decreases, resulting in a low-pressure condition in the evaporator, resulting in a decrease in refrigerating capacity or inoperability. It contained some drawbacks.

본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 증발기와 응축기의 차압이 과도하게 줄었을 때, 이코노마이저와 압축기 사이의 액냉매가 압축기로 흡입되는 것을 차단하여, 액압축을 방지하고, 아울러 냉매의 순환량 변화에 따른 증발기 저압상태를 방지할 수 있는 다로형 교축밸브-구비 다단 압축방식 터보냉동기를 제공하는 데 있다.The present invention is to solve the above problems, and an object of the present invention is to block liquid refrigerant between an economizer and a compressor from being sucked into a compressor when the differential pressure between an evaporator and a condenser is excessively reduced, thereby preventing liquid compression. It is an object of the present invention to provide a multi-stage compression turbo chiller equipped with a multi-stage throttling valve capable of preventing an evaporator low pressure state due to a change in circulating amount of refrigerant.

따라서, 본 발명은 상기한 바와 같은 목적을 해결하기 위하여 안출된 것으로서, 다단 압축기, 응축기, 제1 교축밸브, 이코노마이저, 제2교축밸브 및 증발기를 순차적으로 액관 및 가스관으로 되는 배관에 의해 연통가능하게 라인연결되는 주 냉매회로와, 상기 주 냉매회로의 응축기로부터 주 교축밸브로 유동하는 액관 내의 냉매의 일부를 제1 교축밸브 및 이코노마이저를 경유하여 상기 다단 압축기로 토출시키는 주입로를 구비하는 다단 압축방식 터보냉동기에 있어서, 상기 주입로에는 상기 응축기와 증발기의 차압이 설정 압력 이하로 떨어질 경우, 폐쇄되어 상기 주 냉매회로로만 냉매를 유동토록 하여 액냉매의 압축기로의 유입을 차단하도록 폐쇄 작동되는 제1 전자밸브가 개재되도록 구성된 것을 특징으로 한다.Therefore, the present invention has been made to solve the above object, and enables communication between a multi-stage compressor, a condenser, a first throttling valve, an economizer, a second throttling valve, and an evaporator sequentially through a liquid pipe and a gas pipe. A multi-stage compression method having a main refrigerant circuit connected in line and an injection path for discharging part of the refrigerant in a liquid pipe flowing from a condenser of the main refrigerant circuit to a main throttling valve to the multi-stage compressor via a first throttling valve and an economizer. In the turbo chiller, the injection path is closed when the differential pressure between the condenser and the evaporator falls below a set pressure, allowing the refrigerant to flow only through the main refrigerant circuit and blocking liquid refrigerant from entering the compressor. It is characterized in that the solenoid valve is configured to be interposed.

또한, 본 발명에 의한 다로형 교축밸브-구비 다단 압축방식 터보냉동기는, 기존의 응축기(2)-이코노마이저(4)-증발기(3)로 이어지는 주 냉매회로(10) 이외에 별도로 응축기(2)와 증발기(3)를 직접 연결하는 직결로(30)를 설비하고 여기에 제3 교축밸브(9)를 설치하여, 응축기(2)와 증발기(3)의 차압에 따라 응동 개폐되는 제2 전자개폐밸브(33)를 설치하는 것을 특징으로 한다. In addition, the multi-stage throttling valve-equipped multi-stage compression turbo chiller according to the present invention has a condenser (2) and a separate condenser (2) in addition to the main refrigerant circuit (10) leading to the existing condenser (2) - economizer (4) - evaporator (3). A direct connection path 30 directly connecting the evaporator 3 is installed, and a third throttling valve 9 is installed therein, so that the second electromagnetic on-off valve opens and closes in response to the differential pressure between the condenser 2 and the evaporator 3. It is characterized by installing (33).

또, 다음으로 본 발명에 의한 터보냉동기의 액압축 방지를 위해, 이코노마이저(4)와 압축기(1) 사이의 주입로(20)에 응축기(2)와 증발기(3)의 차압(P1-P2)에 따라 개폐되는 제1 전자개폐밸브(21)를 설치하는 것을 특징으로 한다.Next, in order to prevent liquid compression of the turbo chiller according to the present invention, the differential pressure (P1-P2) between the condenser 2 and the evaporator 3 in the injection path 20 between the economizer 4 and the compressor 1 It is characterized by installing a first electromagnetic on-off valve 21 that is opened and closed according to.

상기한 바와 같은 본 발명의 다로형 교축밸브-구비 다단 압축방식 터보냉동기에 의하면, 냉각수의 저온운전이나, 저부하 운전시에 발생할 수 증발기 저압현상과 압축기에서의 액압축 현상을 원천 차단할 수 있도록 구성함으로써 저부하, 저온운전시에도 최적의 냉동사이클을 형성할 수 있는 효과가 있다.As described above, according to the multi-stage compression type turbo chiller equipped with a multi-way throttle valve of the present invention, the low-pressure phenomenon of the evaporator and the liquid compression phenomenon in the compressor, which may occur during low-temperature operation of the cooling water or low-load operation, are configured to block the source. By doing so, there is an effect of forming an optimal refrigeration cycle even at low load and low temperature operation.

또, 상기 응축기(2)에서 증발기(3)로 가기 위해 응축기(2)를 빠져나오는 냉매는 포화액 또는 과냉액 상태이다. In addition, the refrigerant exiting the condenser 2 to go from the condenser 2 to the evaporator 3 is in a saturated liquid or supercooled liquid state.

이러한 냉매액이 응축기(2)에서 증발기(3)로 가는 사이의 배관에 제3 교축밸브(33)를 설치하고, 제3 교축밸브(33) 입구 냉매상태가 응축된 포화액 냉매 또는 과냉 냉매액인 경우 목 면적비(제3 교축밸브(33)를 통과하는 유효 유동면적/배관유동면적)만 잘 정해주어 요망하는 압력강하(R134a 냉매용 터보냉동기의 경우 팽창부 압력강하는 약 7Mpa)를 얻을 수 있다.A third throttling valve (33) is installed in the pipe between the refrigerant liquid going from the condenser (2) to the evaporator (3), and the refrigerant state at the inlet of the third throttling valve (33) is condensed saturated liquid refrigerant or supercooled refrigerant liquid In this case, the desired pressure drop (in the case of a turbo chiller for R134a refrigerant, the pressure drop at the expansion part is about 7Mpa) can be obtained by carefully determining only the neck area ratio (effective flow area passing through the third throttling valve 33 / pipe flow area). there is.

도1은 일반적인 2단 압축 터보 냉동기의 회로 계통도,
도2는 본 발명에 따른 2단 압축 터보냉동기의 회로 계통도.
1 is a circuit diagram of a typical two-stage compression turbo chiller;
Figure 2 is a circuit diagram of a two-stage compression turbo chiller according to the present invention.

이하, 본 발명의 실시예를 첨부한 도면을 참조하면서 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 2단 압축터보 냉동기의 회로도이다.2 is a circuit diagram of a two-stage compression turbo refrigerator according to the present invention.

도 2에 도시된 바와 같이, 본 발명에 의한 다로형 교축밸브-구비 다단 압축방식 터보냉동기는, 다단 압축기(1), 응축기(2), 제1 교축밸브(5), 이코노마이저(4), 제2교축밸브(6) 및 증발기(3)를 순차적으로 액관 및 가스관으로 되는 배관에 의해 연통가능하게 라인연결되는 주 냉매회로(10)와, 상기 주 냉매회로(10)의 응축기(2)로부터 제1교축밸브(5)로 유동하는 액관 내의 냉매의 일부를 제1 교축밸브(5) 및 이코노마이저(4)를 경유하여 상기 다단 압축기(1)의 중간압이 되는 지점으로 토출시키는 주입로(20)를 구비하고 있다.As shown in FIG. 2, the multi-stage throttling valve-equipped multi-stage compression type turbo chiller according to the present invention includes a multi-stage compressor (1), a condenser (2), a first throttling valve (5), an economizer (4), 2. The main refrigerant circuit 10 in which the throttle valve 6 and the evaporator 3 are connected in line so as to be able to communicate with each other sequentially through liquid and gas pipes, and the condenser 2 of the main refrigerant circuit 10 An injection path (20) for discharging part of the refrigerant in the liquid pipe flowing through the first throttling valve (5) to a point where the intermediate pressure of the multi-stage compressor (1) is reached via the first throttling valve (5) and the economizer (4) is provided.

또, 상기 주입로(20)에는 상기 응축기(2)와 증발기(3)의 차압(P1-P2)이 설정 압력 이하로 떨어질 경우, 폐쇄되어 상기 주 냉매회로(10)로만 냉매를 유동토록 하여 액냉매의 압축기(1)로의 유입을 차단하도록 폐쇄 작동되는 제1 전자개폐밸브(21)가 연통 가능하게 개재되어 있다.In addition, when the differential pressure (P1-P2) between the condenser (2) and the evaporator (3) falls below the set pressure, the injection path (20) is closed so that the refrigerant flows only through the main refrigerant circuit (10), A first electromagnetic opening/closing valve 21 operated to close to block the inflow of refrigerant into the compressor 1 is communicatively interposed.

또, 상기 응축기(2)와 증발기(3)의 사이에는, 상기 응축기(3)와 증발기(4)의 차압(P1-P2)이 과도하게 설정 압력 이하로 떨어질 경우, 개방되어 상기 제1 교축밸브(5)와 제2 교축밸브(6)를 경유하지 않고, 상기 주 냉매회로(10) 상의 증발기(4)로 직결되어 냉매가 유동하도록 하여 증발기 저압현상을 규제하도록 개방 작동되는 제2 전자개폐밸브(31)가 개재되는 직결로(30)가 마련되어 있다.In addition, between the condenser 2 and the evaporator 3, when the differential pressure P1-P2 between the condenser 3 and the evaporator 4 falls excessively below a set pressure, the first throttling valve is opened and the first throttling valve is opened. (5) and the second throttling valve (6), directly connected to the evaporator (4) on the main refrigerant circuit (10), allowing the refrigerant to flow and controlling the low pressure phenomenon in the evaporator. A direct connection path 30 through which 31 is interposed is provided.

여기에서, 상기 제2 전자개폐밸브(31)는 응축기측 순환 파이프(2a)와 증발기측 순환 파이프(3a)를 설치하고 그 사이에 제3 교축밸브(33)와 조건에 따라 냉매유동라인을 폐쇄할 수 있는 전자제어밸브로 구성된다.Here, the second electromagnetic opening/closing valve 31 installs the condenser-side circulation pipe 2a and the evaporator-side circulation pipe 3a, and closes the refrigerant flow line according to conditions with the third throttling valve 33 therebetween. It consists of an electronic control valve that can

또, 액압축 방지를 위한 구성으로서의 상기 주입로(20) 상에 제1 전자개폐밸브(21)로 연동 가능하게 개재되어 있다.In addition, the first electromagnetic on-off valve 21 is interposed so as to be interlocked on the injection path 20 as a structure for preventing liquid compression.

또, 상기 제3 교축밸브(33)는 냉각수 저온 또는 저부하 운전에 맞는 냉매 순환량에 해당하도록 설계하고, 제2 전자개폐밸브(31) 및 제1 전자개폐밸브(11)는 각각 해당 부하조건 또는 냉각수 온도에 따라 작동되도록 기계식 혹은 전자식으로 작동되도록 콘트롤러에 의해 제어되도록 구성되어 있다.In addition, the third throttling valve 33 is designed to correspond to the refrigerant circulation amount suitable for low-temperature coolant or low-load operation, and the second electromagnetic on-off valve 31 and the first electromagnetic on-off valve 11 are respectively designed to correspond to the corresponding load condition or It is configured to be controlled by a controller to operate mechanically or electronically according to the temperature of the cooling water.

다음에, 이와 같이 구성된 본 발명의 작용 및 효과를 설명한다.Next, the actions and effects of the present invention thus constituted will be described.

먼저, 상기 직결로(30)에서의 냉매 차단 기능을 수행하도록 작동할 조건(냉각수 저온 또는 저부하운전)이되어 상기 제2 전자개폐밸브(31)가 개방되면 기존의 응축기(2)-이코노마이저(4)-증발기(3)로 통과하는 냉매흐름에 부가적으로 작동하는 상기 직결로(30)를 통해 제3 교축밸브(33)를 경유하여 증발기(3)로 흐르게 되는 냉매흐름을 직접적으로 형성하여 증발기 저압현상을 방지하게 된다. First, when the condition to operate to perform the refrigerant blocking function in the direct connection furnace 30 (cooling water low temperature or low load operation) and the second electromagnetic opening/closing valve 31 is opened, the existing condenser 2 - economizer ( 4) - Directly forms the refrigerant flow flowing to the evaporator 3 via the third throttling valve 33 through the direct connection 30 that acts in addition to the refrigerant flow passing through the evaporator 3 This will prevent evaporator low pressure.

또, 제1 전자개폐밸브(21)가 작동할 조건(냉각수 저온 또는 저부하운전)이 되어 상기 제1 전자개폐밸브(21)가 폐쇄 작동되면, 상기 이코노마이저(4)에서 주입로(30)를 통과하여 제1 전자개폐밸브(11)를 지나 압축기(1)로 흐르게 되는 냉매순환이 차단되게 되므로 저부하, 냉각수 저온상태에서 발생할 수 있는 액압축현상을 방지하게 되는 것이다.In addition, when the first electromagnetic opening/closing valve 21 is closed under conditions for operation (cooling water temperature or low load operation), the economizer 4 operates the injection path 30. The circulation of the refrigerant passing through the first electromagnetic opening/closing valve 11 and flowing into the compressor 1 is blocked, thereby preventing liquid compression that may occur at a low load and at a low temperature of the cooling water.

1 : 압축기 2 : 응축기
3 : 증발기 4 : 이코노마이저
5 : 제1 교축밸브 6 : 제2 교축밸브
7 : 증발기측 엘리미네이터 8 : 이코노마이저측 엘리미네이터
10 : 주 냉매회로 20 : 주입로
21 : 제1 전자개폐밸브 30 : 직결로
31 : 제2 전자개폐밸브 33 : 제3 교축밸브
1: Compressor 2: Condenser
3: evaporator 4: economizer
5: first throttling valve 6: second throttling valve
7: evaporator-side eliminator 8: economizer-side eliminator
10: main refrigerant circuit 20: injection furnace
21: first electromagnetic on-off valve 30: direct connection
31: 2nd electronic on/off valve 33: 3rd throttling valve

Claims (1)

다단 압축기, 응축기, 제1 교축밸브, 이코노마이저, 제2 교축밸브 및 증발기를 순차적으로 액관 및 가스관으로 되는 배관에 의해 연통가능하게 라인연결되는 주 냉매회로와, 상기 주 냉매회로의 응축기로부터 주 교축밸브로 유동하는 액관 내의 냉매의 일부를 제1 교축밸브 및 이코노마이저를 경유하여 상기 다단 압축기로 토출시키는 주입로를 구비하는 다단 압축방식 터보냉동기에 있어서,
상기 주입로에는 상기 응축기와 증발기의 차압이 설정 압력 이하로 떨어질 경우, 패쇄되어 상기 주 냉매회로로만 냉매를 유동토록 하여 액냉매의 압축기로의 유입을 차단하도록 폐쇄 작동되는 제1 전자밸브가 개재된 것을 특징으로 하는 다단 압축방식 터보냉동기.
A main refrigerant circuit in which a multi-stage compressor, a condenser, a first throttling valve, an economizer, a second throttling valve, and an evaporator are sequentially connected in line to be communicatively connected by a liquid pipe and a gas pipe, and a main throttling valve from the condenser of the main refrigerant circuit In the multi-stage compression type turbo chiller having an injection path for discharging part of the refrigerant in the liquid pipe flowing into the multi-stage compressor via a first throttling valve and an economizer,
In the injection passage, when the differential pressure between the condenser and the evaporator falls below a set pressure, the first electromagnetic valve is closed to allow the refrigerant to flow only to the main refrigerant circuit and to block the inflow of liquid refrigerant into the compressor. A first solenoid valve is interposed therebetween Multi-stage compression method turbo chiller, characterized in that.
KR1020220025766A 2022-02-28 2022-02-28 Multi-stage compression type turbo chiller with multi-route throttle valve KR20230128659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220025766A KR20230128659A (en) 2022-02-28 2022-02-28 Multi-stage compression type turbo chiller with multi-route throttle valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220025766A KR20230128659A (en) 2022-02-28 2022-02-28 Multi-stage compression type turbo chiller with multi-route throttle valve

Publications (1)

Publication Number Publication Date
KR20230128659A true KR20230128659A (en) 2023-09-05

Family

ID=87973677

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220025766A KR20230128659A (en) 2022-02-28 2022-02-28 Multi-stage compression type turbo chiller with multi-route throttle valve

Country Status (1)

Country Link
KR (1) KR20230128659A (en)

Similar Documents

Publication Publication Date Title
US9612047B2 (en) Refrigeration cycle apparatus and refrigerant circulation method
EP2596303B1 (en) High efficiency ejector cycle
US7360372B2 (en) Refrigeration system
US9347697B2 (en) Air conditioner and control method thereof
KR20150109749A (en) Air Conditioner and Controlling method for the same
US11821668B2 (en) Systems and methods for implementing ejector refrigeration cycles with cascaded evaporation stages
KR20140123824A (en) Air Conditioner and Controlling method for the same
KR101288681B1 (en) Air conditioner
EP3144606B1 (en) Air conditioner
JP2010085051A (en) Refrigeration apparatus and heat source machine
CN102538298B (en) Heat pump and method of controlling the same
JP4082435B2 (en) Refrigeration equipment
KR20120053381A (en) Refrigerant cycle apparatus
JP2016205729A (en) Refrigeration cycle device
US11041667B2 (en) Refrigeration cycle apparatus
JP5213986B2 (en) Refrigeration cycle equipment
KR101639514B1 (en) An air conditioner
JP4767340B2 (en) Heat pump control device
CN112113364A (en) Water chilling unit and control method
KR20090069694A (en) Centrifugal chiller having multi way throttle apparatus
KR20230128659A (en) Multi-stage compression type turbo chiller with multi-route throttle valve
CN110173934B (en) Control method of gas heat pump multi-split air conditioner supercooling structure
JP2013217602A (en) Heat source device, refrigeration air conditioner, and control device
KR100395026B1 (en) An evaporative temperature compensation device and process of heat pump
WO2024023993A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
E902 Notification of reason for refusal