KR20230125351A - 적응적인 순서로 결정되는 블록을 이용하여 영상을 부호화 또는 복호화하는 방법 및 장치 - Google Patents

적응적인 순서로 결정되는 블록을 이용하여 영상을 부호화 또는 복호화하는 방법 및 장치 Download PDF

Info

Publication number
KR20230125351A
KR20230125351A KR1020237028388A KR20237028388A KR20230125351A KR 20230125351 A KR20230125351 A KR 20230125351A KR 1020237028388 A KR1020237028388 A KR 1020237028388A KR 20237028388 A KR20237028388 A KR 20237028388A KR 20230125351 A KR20230125351 A KR 20230125351A
Authority
KR
South Korea
Prior art keywords
coding unit
unit
size
depth
information
Prior art date
Application number
KR1020237028388A
Other languages
English (en)
Other versions
KR102660094B1 (ko
Inventor
박민우
최기호
엘레나 알쉬나
김찬열
최인권
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20230125351A publication Critical patent/KR20230125351A/ko
Application granted granted Critical
Publication of KR102660094B1 publication Critical patent/KR102660094B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/129Scanning of coding units, e.g. zig-zag scan of transform coefficients or flexible macroblock ordering [FMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/96Tree coding, e.g. quad-tree coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process

Abstract

일 실시예에 따라, 영상을 복호화 하는 방법에 있어서, 영상을 분할하는 적어도 하나의 프로세싱 블록을 결정하는 단계, 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 최대부호화단위가 결정되는 순서를 결정하는 단계, 결정된 순서에 기초하여 적어도 하나의 최대부호화단위를 결정하는 단계 및 결정된 적어도 하나의 최대부호화단위를 복호화하는 단계를 포함하고, 순서는 복수개의 최대부호화단위 결정 순서들 중 하나인 것을 특징으로 하는, 영상 복호화 방법이 제공된다.

Description

적응적인 순서로 결정되는 블록을 이용하여 영상을 부호화 또는 복호화하는 방법 및 장치{method for encoding or decoding a picture by using block determined according to adaptive order and apparatus thereof}
일 실시예에 따른 방법 및 장치는 영상 내에서 최대부호화단위가 결정될 수 있는 복수개의 순서 중 하나의 순서로 최대부호화단위를 결정하여 영상을 부호화 또는 복호화 할 수 있다.
영상 데이터는 소정의 데이터 압축 표준, 예를 들면 MPEG(Moving Picture Expert Group) 표준에 따른 코덱에 의하여 부호화된 후 비트스트림의 형태로 기록매체에 저장되거나 통신 채널을 통해 전송된다.
고해상도 또는 고화질 영상 컨텐트를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 영상 컨텐트를 효과적으로 부호화 또는 복호화 하는 코덱(codec)의 필요성이 증대하고 있다. 부호화된 영상 컨텐트는 복호화됨으로써 재생될 수 있다. 최근에는 이러한 고해상도 또는 고화질 영상 컨텐트를 효과적으로 압축하기 위한 방법들이 실시되고 있다. 예를 들면, 부호화 하려는 영상을 임의적 방법으로 처리하는 과정을 통한 효율적 영상 압축 방법이 실시되고 있다.
영상을 압축하기 위하여 최대 부호화 단위라는 데이터 단위가 이용될 수 있으며, 이러한 최대 부호화 단위는 특정 순서(예를 들면, 래스터 스캔(raster scan)대로 결정되고, 부호화 하려는 영상 시퀀스와 관련된 정보에 기초하여 크기가 결정된다. 즉, 부호화 또는 복호화하려는 영상 시퀀스 전체에서 최대부호화단위의 크기는 일정하다.
종래의 압축 방식의 경우, 기결정된 순서대로 영상 전체의 최대부호화단위를 획일적으로 결정함에 따라 고해상도 영상을 압축함에 있어서 효율적인 방법으로 최대부호화단위를 결정할 수 없었다.
기술적 과제를 해결하기 위하여 일 실시예에 따라, 영상을 복호화 하는 방법에 있어서, 영상을 분할하는 적어도 하나의 프로세싱 블록을 결정하는 단계, 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 최대부호화단위가 결정되는 순서를 결정하는 단계, 결정된 순서에 기초하여 적어도 하나의 최대부호화단위를 결정하는 단계 및 결정된 적어도 하나의 최대부호화단위를 복호화하는 단계를 포함하고, 순서는 복수개의 최대부호화단위 결정 순서들 중 하나인 것을 특징으로 하는, 영상 복호화 방법이 제공된다.
일 실시예에 따라, 프로세싱 블록을 결정하는 단계는 프로세싱 블록의 크기에 대한 정보를 획득하는 단계 및 프로세싱 블록의 크기에 대한 정보에 기초하여 적어도 하나의 프로세싱 블록을 결정하는 단계를 포함하는 것을 특징으로 할 수 있다.
일 실시예에 따라, 최대부호화단위가 결정되는 순서를 결정하는 단계는 적어도 하나의 프로세싱 블록에 포함되는 적어도 하나의 최대부호화단위의 결정 순서에 대한 정보를 획득하는 단계, 및 결정 순서에 대한 정보에 기초하여 적어도 하나의 최대부호화단위가 결정되는 순서를 결정하는 단계를 포함하는 것을 특징으로 할 수 있다.
일 실시예에 따라, 적어도 하나의 최대부호화단위를 복호화하는 단계는 비트스트림으로부터 획득되는 부호화단위의 크기에 대한 정보에 기초하여, 결정된 최대부호화단위의 크기보다 작은 복수개의 크기들 중 하나를 부호화단위의 크기로 선택하는 단계, 및 선택된 부호화단위의 크기에 기초하여 적어도 하나의 부호화단위를 결정하는 단계를 포함하는 것을 특징으로 할 수 있다.
일 실시예에 따라, 적어도 하나의 최대부호화단위를 복호화하는 단계는 적어도 하나의 최대부호화단위 중 하나인 현재 최대부호화단위에 포함된 적어도 하나의 부호화 단위를 결정하는 단계, 비트스트림으로부터 획득한 부호화 단위에 대한 크기 제한 정보에 기초하여, 적어도 하나의 부호화 단위의 크기와 크기 제한 정보가 나타내는 크기를 비교하는 단계, 및 적어도 하나의 부호화 단위의 크기가 크기 제한 정보가 나타내는 크기보다 큰 경우, 비트스트림으로부터 적어도 하나의 부호화 단위에 대한 분할정보를 획득하는 단계를 더 포함하고, 크기 제한 정보가 나타내는 크기는 부호화 단위의 최소 크기보다 큰 것을 특징으로 하는 것을 특징으로 할 수 있다.
일 실시예에 따라, 분할정보를 획득하는 단계는 적어도 하나의 부호화 단위의 크기가 크기 제한 정보가 나타내는 크기 이하인 경우, 분할정보를 비트스트림으로부터 획득하지 않고 적어도 하나의 부호화 단위를 부호화 하는 단계를 포함하는 것을 특징으로 할 수 있다.
일 실시예에 따라, 적어도 하나의 최대부호화단위를 복호화하는 단계는 비트스트림으로부터 획득되는 부호화단위의 분할정보에 기초하여, 적어도 하나의 최대부호화단위 중 하나인 현재 최대부호화단위에 포함되는 적어도 하나의 부호화 단위를 결정하는 단계를 포함하고, 분할 정보는 심도 순서대로 현재 심도의 부호화 단위를 하위 심도의 부호화 단위로 분할할지를 나타내는 제1 분할 정보 및 하위 심도로의 분할은 생략하고 하위 심도보다 더 낮은 심도로 분할할지를 나타내는 제2 분할 정보 중 적어도 하나를 포함하는 것을 특징으로 할 수 있다.
일 실시예에 따라, 적어도 하나의 부호화 단위로 분할하는 단계는, 하위 심도가 최하위 심도인지 여부에 기초하여, 제2 분할정보를 비트스트림으로부터 획득하는 단계, 제2 분할정보가 하위 심도로의 분할은 생략하고 더 낮은 심도로 분할하는 것을 나타내는 경우, 현재 심도의 부호화 단위를 더 낮은 심도의 부호화단위들로 분할하는 단계, 및 제2 분할정보가 더 낮은 심도로 분할하는 것을 나타내지 않는 경우, 비트스트림으로부터 획득된 제1 분할정보에 기초하여 현재 심도의 부호화 단위를 하위 심도의 부호화단위들로 분할하는 단계를 포함하는 것을 특징으로 할 수 있다.
일 실시예에 따라, 적어도 하나의 최대부호화단위를 복호화 하는 단계는, 부호화 단위의 최대 심도에 대한 정보 및 최소 심도에 대한 정보 중 적어도 하나에 기초하여, 적어도 하나의 최대부호화단위 중 하나인 현재 최대 부호화단위에 포함되는 적어도 하나의 부호화 단위를 결정하는 단계를 포함하고, 최대 심도에 대한 정보 및 최소 심도에 대한 정보는 적어도 하나의 부호화 단위의 주변 블록으로부터 획득되는 것을 특징으로 할 수 있다.
일 실시예에 따라, 적어도 하나의 부호화 단위를 결정하는 단계는 부호화 단위의 현재 심도가 최대 심도보다 상위 심도이거나 최소 심도 이하의 심도인 경우에 한하여 현재 심도의 부호화 단위를 분할하는 단계를 포함하는 것을 특징으로 할 수 있다.
일 실시예에 따라, 적어도 하나의 최대부호화단위를 복호화 하는 단계는, 적어도 하나의 최대부호화단위 중 하나인 현재 최대부호화단위에 포함되는 적어도 하나의 부호화 단위를 결정하는 단계, 및 비트스트림으로부터 획득된 예측 방법을 나타내는 정보에 기초하여 적어도 하나의 부호화 단위 중 하나인 현재 부호화단위에 대한 적어도 하나의 예측 단위를 결정하는 단계를 포함하고, 예측 방법을 나타내는 정보는 기설정된 예측 방법을 이용하여 예측을 수행할지 여부를 나타내는 것을 특징으로 할 수 있다.
일 실시예에 따라, 적어도 하나의 예측 단위를 결정하는 단계는, 예측 방법을 나타내는 정보가 기설정된 예측 방법인 제1 방법을 이용하는 것을 나타내는 경우, 복수개의 타입의 파티션 중 하나를 나타내는 파티션 모드 정보를 비트스트림으로부터 획득하여 현재 부호화단위에 포함되는 적어도 하나의 예측 단위를 결정하는 단계, 및 예측 방법을 나타내는 정보가 기설정된 예측 방법이 아닌 제2 방법을 이용하는 것을 나타내는 경우, 비트스트림으로부터 파티션 모드 정보를 획득하지 않고 기설정된 파티션 타입에 기초하여 예측 단위를 결정하는 단계를 포함하는 것을 특징으로 할 수 있다.
일 실시예에 따라, 기설정된 파티션 타입에 기초하여 예측 단위를 결정하는 단계는, 예측 방법을 나타내는 정보가 현재 부호화단위의 크기가 현재 최대부호화단위의 크기와 동일한 경우, 현재 부호화단위의 심도보다 하위 심도의 부호화단위와 동일한 크기의 예측 단위를 결정하는 단계를 더 포함하는 것을 특징으로 할 수 있다.
기술적 과제를 해결하기 위하여 일 실시예에 따라, 영상을 복호화 하는 장치에 있어서, 영상을 분할하는 적어도 하나의 프로세싱 블록을 결정하는 프로세싱 블록 결정부, 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 최대부호화단위가 결정되는 순서를 결정하고, 결정된 순서에 기초하여 적어도 하나의 최대부호화단위를 결정하는 최대부호화단위 결정부, 결정된 적어도 하나의 최대부호화단위를 복호화하는 복호화부를 포함하고, 순서는 복수개의 최대부호화단위 결정 순서들 중 하나인 것을 특징으로 하는, 영상 복호화 장치가 제공될 수 있다.
기술적 과제를 해결하기 위하여 일 실시예에 따라 영상을 부호화 하는 장치에 있어서, 영상을 분할하는 적어도 하나의 프로세싱 블록을 결정하는 프로세싱 블록 결정부, 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 최대부호화단위가 결정되는 순서를 결정하고, 결정된 순서에 기초하여 적어도 하나의 최대부호화단위를 결정하는 최대부호화단위 결정부, 결정된 적어도 하나의 최대부호화단위를 부호화하는 복호화부를 포함하고, 순서는 복수개의 최대부호화단위 결정 순서들 중 하나인 것을 특징으로 하는, 영상 부호화 장치가 제공될 수 있다.
일 실시예에 따른 방법 및 장치는 영상 내에서 획일적인 순서에 따라 최대부호화단위를 결정하지 않고, 임의의 데이터 단위인 프로세싱 블록 단위로 복수의 결정 순서 중 하나를 최대부호화단위의 결정 순서로서 결정함으로써 적응적인 영상 부호화 또는 복호화 가능하다.
도 1a는 일 실시예에 따른 영상 복호화 장치의 블록도를 도시한다.
도 1b는 일 실시예에 따라 영상 복호화 장치가 프로세싱 블록을 이용하여 수행하는 영상 복호화 방법에 대한 흐름도를 도시한다.
도 2a는 일 실시예에 따른 영상 부호화 장치의 블록도를 도시한다.
도 2b는 일 실시예에 따라 영상 부호화 장치가 프로세싱 블록을 이용하여 수행하는 영상 부호화 방법에 대한 흐름도를 도시한다.
도 3은 일 실시예에 따라 픽쳐에 포함되는 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 최대부호화단위가 결정되는 순서를 도시한다.
도 4a는 일 실시예에 따라 최대부호화단위에 포함되는 적어도 하나의 부호화단위가 결정되는 과정에 대한 흐름도를 도시한다.
도 4b는 일 실시예에 따라 픽쳐에 포함되는 적어도 하나의 부호화단위의 크기가 결정되는 과정을 도시한다.
도 4c는 일 실시예에 따라 부호화단위의 크기에 대한 정보가 나타낼 수 있는 부호화단위의 크기들을 도시한다.
도 5a는 일 실시예에 따라 크기 제한 정보에 기초하여 부호화단위의 분할정보가 획득되는지 여부를 나타내는 흐름도를 도시한다.
도 5b는 일 실시예에 따라, 크기 제한 정보에 기초하여 적어도 하나의 부호화 단위가 결정되는 과정을 도시한 것이다.
도 6a는 일 실시예에 따라 특정 심도는 생략하고 더 낮은 심도로 분할할지 여부를 나타내는 제2 분할정보에 기초하여 부호화단위가 결정되는 과정에 대한 흐름도를 도시한다.
도 6b는 일 실시예에 따라 제1 분할정보 및 제2 분할정보 중 적어도 하나에 기초하여 현재 심도의 부호화단위가 분할되는 과정을 도시한다.
도 7a는 일 실시예에 따라 부호화단위의 최대 심도에 대한 정보 및 최소 심도에 대한 정보 중 적어도 하나에 기초하여 최대부호화단위에 포함되는 적어도 하나의 부호화단위가 결정되는 과정에 대한 흐름도를 도시한다.
도 7b는 일 실시예에 따라 최대 심도에 대한 정보 및 최소 심도에 대한 정보 중 적어도 하나에 기초하여 적어도 하나의 부호화단위가 결정되는 과정을 도시한다.
도 8a는 일 실시예에 따라 예측 방법을 나타내는 정보를 비트스트림으로부터 획득하여 적어도 하나의 부호화 단위에 포함되는 적어도 하나의 예측 단위가 결정되는 흐름도를 도시한다.
도 8b는 일 실시예에 따라 예측 방법에 대한 정보에 기초하여 제1 방법 또는 제2 방법에 따라 현재 부호화단위에 포함되는 적어도 하나의 예측 단위가 결정되는 과정을 도시한다.
도 9는 일 실시예에 따라 트리 구조에 따른 부호화단위에 기초한 비디오 부호화 장치의 블록도를 도시한다.
도 10은 일 실시예에 따라 트리 구조에 따른 부호화단위에 기초한 비디오 복호화 장치의 블록도를 도시한다.
도 11은 일 실시예에 따른 부호화단위의 개념을 도시한다.
도 12는 일 실시예에 따른 부호화단위에 기초한 영상 부호화부의 블록도를 도시한다.
도 13은 일 실시예에 따른 부호화단위에 기초한 영상 복호화부의 블록도를 도시한다.
도 14는 일 실시예에 따른 심도별 부호화단위 및 파티션을 도시한다.
도 15는 일 실시예에 따른, 부호화단위 및 변환단위의 관계를 도시한다.
도 16은 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
도 17은 일 실시예에 따른 심도별 부호화단위를 도시한다.
도 18, 19 및 20은 일 실시예에 따른, 부호화단위, 예측단위 및 변환단위의 관계를 도시한다.
도 21 는 표 1의 부호화 모드 정보에 따른 부호화단위, 예측단위 및 변환단위의 관계를 도시한다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 관련 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
본 명세서에서의 단수의 표현은 문맥상 명백하게 단수인 것으로 특정하지 않는 한, 복수의 표현을 포함한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에서 사용되는 "부"라는 용어는 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, "부"는 어떤 역할들을 수행한다. 그렇지만 "부"는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부"는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부"는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부"들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부"들로 결합되거나 추가적인 구성요소들과 "부"들로 더 분리될 수 있다.
이하, "영상"은 비디오의 정지영상와 같은 정적 이미지이거나 동영상, 즉 비디오 그 자체와 같은 동적 이미지를 나타낼 수 있다.
이하 "샘플"은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 픽셀값, 변환 영역 상의 변환 계수들이 샘플들일 수 있다. 이러한 적어도 하나의 샘플들을 포함하는 단위를 블록이라고 정의할 수 있다.
아래에서는 첨부한 도면을 참고하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.
도 1a는 일 실시예에 따른 영상 복호화 장치(10)의 블록도를 도시한다. 영상 복호화 장치(10)는 프로세싱 블록 결정부(11), 최대부호화단위 결정부(12) 및 복호화부(13)를 포함할 수 있다. 일 실시예에 따른 영상 복호화 장치(10)에 포함되는 구성들이 수행하는 동작은 각각 별개의 하드웨어 또는 소프트웨어 구성요소들을 이용하여 구현될 수 있고, 나아가 하나의 하드웨어(예를 들면, CPU)를 통해 구현될 수도 있다. 영상 복호화 장치(10)에 포함되는 각각의 구성들이 수행하는 동작들에 대하여는 이하의 구체적인 실시예들을 통하여 설명하도록 한다.
도 1b는 일 실시예에 따라 영상 복호화 장치(10)가 프로세싱 블록을 이용하여 수행하는 영상 복호화 방법에 대한 흐름도를 도시한다.
S210 단계에서 영상 복호화 장치(10)는 영상을 분할하는 적어도 하나의 프로세싱 블록을 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(10)의 프로세싱 블록 결정부(11)는 영상의 프레임을 분할하는 적어도 하나의 프로세싱 블록을 결정할 수 있다. 프로세싱 블록이란, 영상을 분할하는 적어도 하나의 최대부호화단위를 포함하는 임의의 데이터 단위로서, 프로세싱 블록에 포함되는 적어도 하나의 최대부호화단위는 특정 순서대로 결정될 수 있다. 즉, 각각의 프로세싱 블록에서 결정되는 적어도 하나의 최대부호화단위의 결정 순서는 최대부호화단위가 결정될 수 있는 다양한 순서의 종류 중 하나에 해당할 수 있으며, 각각의 프로세싱 블록에서 결정되는 최대부호화단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록에서 결정되는 최대부호화단위의 결정 순서는 래스터 스캔(raster scan), Z 스캔(Z-scan), N 스캔(N-scan), 우상향 대각 스캔(up-right diagonal scan), 수평적 스캔(horizontal scan), 수직적 스캔(vertical scan) 등 다양한 순서 중 하나일 수 있으나, 결정될 수 있는 순서는 상기 스캔 순서들에 한정하여 해석되어서는 안 된다.
일 실시예에 따라 영상 복호화 장치(10)는 프로세싱 블록의 크기에 대한 정보를 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 영상 복호화 장치(10)는 프로세싱 블록의 크기에 대한 정보를 비트스트림으로부터 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 이러한 프로세싱 블록의 크기는 프로세싱 블록의 크기에 대한 정보가 나타내는 데이터 단위의 특정 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(10)는 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 특정의 데이터 단위마다 획득할 수 있다. 예를 들면 프로세싱 블록의 크기에 대한 정보는 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트 등의 데이터 단위로 비트스트림으로부터 획득될 수 있다. 즉 영상 복호화 장치(10)의 프로세싱 블록 졀정부(11)는 상기 여러 데이터 단위마다 비트스트림으로부터 획득되는 프로세싱 블록의 크기에 대한 정보를 이용하여 픽쳐를 분할하는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있으며, 이러한 프로세싱 블록의 크기는 최대부호화단위의 정수배의 크기일 수 있다.
도 3은 일 실시예에 따라 영상 복호화 장치(10)가 픽쳐(30)에 포함되는 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 최대부호화단위가 결정되는 순서를 도시한다.
일 실시예에 따라 영상 복호화 장치(10)의 프로세싱 블록 결정부(11)는 픽쳐(30)에 포함되는 프로세싱 블록(31, 33)의 크기를 결정할 수 있다. 예를 들면, 영상 복호화 장치(10)는 비트스트림으로부터 획득된 프로세싱 블록의 크기에 대한 정보에 기초하여 프로세싱 블록의 크기를 결정할 수 있다. 도 3을 참조하면, 영상 복호화 장치(10)는 일 실시예에 따라 프로세싱 블록(31, 33)의 가로크기를 최대부호화단위 가로크기의 4배, 세로크기를 최대부호화단위의 세로크기의 4배로 결정할 수 있다. S211 단계에서 영상 복호화 장치(10)는 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 최대부호화단위가 결정되는 순서를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(10)는 S210 단계에서 프로세싱 블록 결정부(11)에 의해 결정된 프로세싱 블록의 크기에 기초하여 픽쳐(30)에 포함되는 각각의 프로세싱 블록(31, 33)을 결정할 수 있고, 최대부호화단위 결정부(12)는 결정된 크기를 갖는 프로세싱 블록(31,33)에 포함되는 적어도 하나의 최대부호화단위의 결정 순서를 결정할 수 있다. 일 실시예에 따라 최대부호화단위의 결정은 최대부호화단위의 크기의 결정을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(10)는 비트스트림으로부터 적어도 하나의 프로세싱 블록에 포함되는 적어도 하나의 최대부호화단위의 결정 순서에 대한 정보를 획득할 수 있고, 획득한 결정 순서에 대한 정보에 기초하여 적어도 하나의 최대부호화단위가 결정되는 순서를 결정할 수 있다. 결정 순서에 대한 정보는 프로세싱 블록 내에서 최대부호화단위들이 결정되는 순서 또는 방향으로 정의될 수 있다. 즉, 최대부호화단위들이 결정되는 순서는 각각의 프로세싱 블록마다 독립적으로 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(10)는 특정 데이터 단위마다 최대부호화단위의 결정 순서에 대한 정보를 비트스트림으로부터 획득할 수 있다. 예를 들면, 최대부호화단위의 결정 순서에 대한 정보는 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 프로세싱 블록 등의 데이터 단위로 비트스트림으로부터 획득될 수 있다. 최대부호화단위의 결정 순서에 대한 정보는 프로세싱 블록 내에서의 최대부호화단위 결정 순서를 나타내므로, 결정 순서에 대한 정보는 정수개의 프로세싱 블록을 포함하는 특정 데이터 단위 마다 획득될 수 있다.
S212 단계에서 영상 복호화 장치(10)는 일 실시예에 따라 결정된 순서에 기초하여 적어도 하나의 최대부호화단위를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(10)의 최대부호화단위 결정부(12)는 비트스트림으로부터 프로세싱 블록(31, 33)과 관련된 정보로서, 최대부호화단위 결정 순서에 대한 정보를 획득하여 상기 프로세싱 블록(31, 33)에 포함된 적어도 하나의 최대부호화단위를 결정하는 순서를 결정하여 픽쳐(30)에 포함되는 적어도 하나의 최대부호화단위를 결정할 수 있다. 도 3을 참조하면, 영상 복호화 장치(10)의 최대부호화단위 결정부(12)는 각각의 프로세싱 블록(31, 33)과 관련된 적어도 하나의 최대부호화단위의 결정 순서(32, 34)를 결정할 수 있다. 예를 들면, 최대부호화단위의 결정 순서에 대한 정보가 프로세싱 블록마다획득되는 경우, 각각의 프로세싱 블록(31, 33)과 관련된 최대부호화단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록(31)과 관련된 최대부호화단위 결정 순서(32)가 래스터 스캔(raster scan)순서인 경우, 프로세싱 블록(31)에 포함되는 최대부호화단위는 래스터 스캔 순서에 따라 결정될 수 있다. 이에 반해 다른 프로세싱 블록(33)과 관련된 최대부호화단위 결정 순서(34)가 래스터 스캔 순서의 역순인 경우, 프로세싱 블록(33)에 포함되는 최대부호화단위는 래스터 스캔 순서의 역순에 따라 결정될 수 있다.
S213 단계에서 영상 복호화 장치(10)는 일 실시예에 따라, 결정된 적어도 하나의 최대부호화단위를 복호화할 수 있다. 영상 복호화 장치(10)의 복호화부(13)는 S212단계에서 결정된 최대부호화단위에 기초하여영상을 복호화 할 수 있다. 최대부호화단위를 복호화 하는 방법은 영상을 복호화 하는 다양한 방법들을 포함할 수 있다.
도 4a는 일 실시예에 따라 영상 복호화 장치(10)가 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정하는 과정에 대한 흐름도를 도시한다.
일 실시예에 따라 S410 단계 내지 S412 단계에서 영상 복호화 장치(10)가 수행하는 동작은 도 1b에 관련하여 상술한 S210 단계 내지 S212 단계에서 영상 복호화 장치(10)가 수행하는 동작에 대응하는 것일 수 있으므로, 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(10)의 복호화부(13)는 프로세싱 블록과 관련하여 결정된 순서에 따라 프로세싱 블록에 포함된 최대부호화단위를 결정할 수 있고, 결정된 최대부호화단위에 기초하여 적어도 하나의 부호화단위를 결정할 수 있다. 일 실시예에 따라 부호화단위의 결정은 최대부호화단위 크기 이하의 적어도 하나의 부호화단위의 크기를 결정을 포함하는 것일 수 있다.
S413 단계에서 영상 복호화 장치(10)는 일 실시예에 따라 비트스트림으로부터 획득되는 부호화단위의 크기에 대한 정보에 기초하여, 결정된 최대부호화단위의 크기 이하의 크기를 갖는 복수개의 크기들 중 하나를 부호화단위의 크기로 선택할 수 있다.
일 실시예에 따라 영상 복호화 장치(10)는 비트스트림으로부터 부호화단위의 크기에 대한 정보를 획득할 수 있다. 부호화단위의 크기에 대한 정보는 최대부호화단위에 포함되는 적어도 하나의 부호화단위의 형태 또는 크기에 대한 정보를 포함할 수 있다. 예를 들면, 최대부호화단위의 크기 이하의 부호화단위의 크기 중 하나를 선택하기 위하여, 최대부호화단위의 가로 크기를 또는 세로 크기를 분할하는 것을 나타내는 부호화단위의 크기에 대한 정보가 이용될 수 있다. 만일 최대부호화단위의 크기가 64x64인 경우, 최대부호화단위의 크기 이하의 크기를 갖는 부호화 단위들은 64x64, 32x32, 16x16, 8x8 등의 크기를 가질 수 있다. 따라서 이 경우, 부호화단위의 크기에 대한 정보는 최대부호화단위의 크기인 64x64 이하의 크기인 64x64, 32x32, 16x16, 8x8 등 복수개의 크기들 중 하나를 나타낼 수 있고, 영상 복호화 장치(10)는 부호화단위의 크기에 대한 정보가 나타내는 부호화단위의 크기를 선택하여 최대부호화단위 내에서 적어도 하나의 부호화단위를 결정할 수 있다.
도 4b는 일 실시예에 따라 영상 복호화 장치(10)가 픽쳐(40)에 포함되는 적어도 하나의 부호화단위의 크기를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(10)의 최대부호화단위 결정부(12)는 픽쳐(40)에 포함되는 적어도 하나의 최대부호화단위를 결정할 수 있다. 각각의 최대부호화단위는 적어도 하나의 부호화단위로 분할될 수 있다. 영상 복호화 장치(10)의 복호화부(13)는 비트스트림으로부터 획득된 부호화단위의 크기에 대한 정보에 기초하여 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정할 수 있다. 영상 복호화 장치(10)는 비트스트림으로부터 획득되는 부호화단위의 크기에 대한 정보에 기초하여 각각의 최대부호화단위를 적어도 하나의 부호화단위로 분할할 수 있으며, 이러한 부호화단위들의 크기는 최대부호화단위마다 독립적으로 결정될 수 있다. 일 실시예에 따라 부호화단위의 크기에 대한 정보는 특정 데이터 단위(예를 들면, 픽쳐, 프로세싱 블록, 슬라이스, 슬라이스 세그먼트, 최대부호화단위)마다 비트스트림을 통해 획득될 수 있다. 이하에서는 설명상의 편의를 위하여, 영상 복호화 장치(10)가 최대부호화단위마다 부호화단위의 크기에 대한 정보를 비트스트림으로부터 획득할 수 있는 것을 전제로 설명하도록 한다.
도 4b를 참조하면, 일 실시예에 따라 영상 복호화 장치(10)의 복호화부(13)는 최대부호화단위와 동일한 크기를 가지는 부호화단위(41)를 결정하거나, 최대부호화단위를 최대부호화단위보다 작은 크기의 부호화단위들(42 또는 43)로 분할할 수 있다. 영상 복호화 장치(10)는 부호화단위의 크기에 대한 정보를 최대부호화단위마다 비트스트림으로부터 획득할 수 있다. 도 4b를 참조하면, 영상 복호화 장치(10)는 비트스트림으로부터 획득한 부호화단위의 크기에 대한 정보를 이용하여, 각각의 최대부호화단위에서 결정될 수 있는 부호화단위의 크기들 중 하나를 선택할 수 있고, 선택된 부호화단위의 크기에 따라 최대부호화단위마다 적어도 하나의 부호화단위를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(10)가 비트스트림으로부터 획득한 부호화단위의 크기에 대한 정보가 나타내는 부호화단위의 크기는 최대부호화단위의 크기 이하의 크기를 나타낼 수 있으며, 이러한 부호화단위의 크기는 최대부호화단위의 크기와 동일하거나, 최대부호화단위의 가로크기 및 세로크기의 1/2n (n은 정수)배의 크기에 해당할 수 있다. 나아가 획득된 부호화단위의 크기에 대한 정보가 나타낼 수 있는 부호화단위의 크기는 최대부호화단위의 크기를 심도 순으로 순차적으로 분할한 크기들을 모두 포함할 수 있을 뿐만 아니라, 특정 심도에 대한 크기는 포함하지 않을 수도 있다. 이에 대한 자세한 설명은 후술하기로 한다.
도 4c는 일 실시예에 따라 영상 복호화 장치(10)가 부호화단위의 크기에 대한 정보가 나타낼 수 있는 부호화단위의 크기들을 도시한다.
일 실시예에 따라 영상 복호화 장치(10)가 부호화단위의 크기에 대한 정보를 이용하는 경우, 분할정보에 기초하여 최대부호화단위로부터 재귀적으로 분할하여 부호화단위를 결정하는 과정이 필요가 없고 최대부호화단위를 부호화단위의 크기에 대한 정보가 나타내는 크기의 부호화단위로 바로 분할할 수 있다. 따라서 부호화단위의 크기에 대한 정보가 나타낼 수 있는 크기는 최상위심도의 크기에 해당하는 최대부호화단위의 크기부터 최하위 심도의 크기까지 순차적으로 하위 심도로 분할된 모든 크기들을 포함할 수도 있고, 최상위심도에 해당하는 크기 및 최하위 심도에 해당하는 크기 사이의 크기들 중 적어도 하나의 크기를 생략할 수도 있다. 최상위심도란 부호화단위의 크기가 최대크기인 것으로서 최대부호화단위의 크기와 동일한 크기를 가지는 부호화단위의 심도를 나타내는 것일 수 있고, 최하위심도란 부호화 단위의 크기가 최소크기인 심도를 나타내는 것일 수 있다.
도 4c를 참조하면, 영상 복호화 장치(10)의 복호화부(13)는 최대부호화단위 결정부(12)가 결정한 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정할 수 있고, 부호화단위의 결정 과정에서 부호화단위의 크기에 대한 정보를 이용할 수 있다. 예를 들면, 최대부호화단위의 크기가 64x64인 경우, 부호화단위의 크기에 대한 정보는 최대부호화단위의 크기와 동일한 크기로서 최상위심도의 부호화단위 크기인 64x64(45a, 46a)를 나타내거나, 최대부호화단위의 1/4크기인 32x32(45b, 46b)를 나타내거나, 최대부호화단위의 1/16크기인 16x16(45c, 46c)을 나타내거나, 최대부호화단위의 1/64크기로서 최하위 심도의 부호화단위 크기인 8x8(45d, 46d)를 나타낼 수 있다.
일 실시예에 따라, 부호화단위의 크기에 대한 정보는 최상위심도의 크기부터 최하위 심도의 크기 모두(64x64, 32x32, 16x16 및 8x8)를 고려하여 상기 크기들 중 하나를 나타낼 수 있는 것뿐만 아니라, 일부 크기들 중 하나를 나타낼 수도 있다. 도 4c를 참조하면, 영상 복호화 장치(10)는 최상위심도에 대한 크기내지 최하위 심도에 대한 크기들(46a, 46b, 46c, 46d) 중 일부를 제외한 크기들 중 하나를 나타내는 부호화단위의 크기에 대한 정보를 비트스트림으로부터 획득할 수 있다. 예를 들면, 영상 복호화 장치(10)는 최대부호화단위의 크기가 64x64인 경우, 중 일부 크기들(64x64 및 16x16) 중 하나를 나타내는 부호화단위의 크기에 대한 정보를 비트스트림으로부터 획득할 수 있고, 복호화부(13)는 부호화단위의 크기에 대한 정보에 기초하여 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정할 수 있다.
종래에 이용되어 왔던 영상 부호화 또는 복호화 방법은, 최대부호화단위마다 재귀적인 방법(예를 들면, 쿼드트리를 이용하여 하위 심도의 부호화단위로 분할하는 방법)을 이용하여 부호화단위의 크기를 결정하기 때문에, 각각의 현재 심도의 부호화단위마다 하위 심도의 부호화단위로 분할할지 여부를 결정하기 위해 분할정보를 비트스트림으로부터 획득한다. 하지만 이러한 분할정보를 각각의 부호화단위마다 비트스트림으로부터 획득하여 분할여부를 확인하는 것이 영상 특성에 따라 비효율적인 결과를 초래할 수 있다. 따라서 일 실시예들에서는 최대부호화단위와 관련된 부호화단위의 크기를 재귀적인 방법으로 분할하기 위하여 각각의 부호화단위마다 분할정보 등을 획득하여 이용하기 보다는, 최대부호화단위마다 획득될 수 있는 부호화단위의 크기에 대한 정보를 이용하여 최대부호화단위에 포함되는 부호화단위의 크기를 결정할 수 있다. 도 4c를 참조하면, 분할정보를 이용하는 부호화단위(45a, 45b, 45c, 45d)에서는 현재 심도에서 하위 심도로 부호화단위를 분할할지 여부를 결정하기 위하여 분할정보를 비트스트림으로부터 획득하여야만 하고, 이 경우 부호화단위의 개수에 비례하여 비트스트림으로부터 획득되어야 하는 데이터 량이 증가하게 된다. 예를 들면, 64x64의 크기를 갖는 최상위심도의 부호화단위(45a)로부터 16x16크기를 갖는 하위 심도의 부호화단위(45c)로의 분할을 위해서는, 최상위심도(예를 들면, depth 0)의 하나의 부호화단위(45a)에 대한 분할정보, 하위 심도(depth 1)의 4개의 부호화단위(45b)에 대한 분할정보 및 하위 심도(depth 2)의 16개의 부호화단위(45c)에 대한 분할정보를 비트스트림으로부터 획득하여 분할여부를 확인하여야 하므로 최소한 21bit의 데이터량이 비트스트림으로부터 획득되어야 한다. 하지만, 영상의 특성상 분할여부의 확인이 불필요한 심도에 대한 부호화단위의 분할정보(예를 들면, 45b, 45d의 분할정보)는 비트스트림으로부터 획득하지 않는 것이 효율적이다.
일 실시예에 따라, 최대부호화단위와 관련하여 비트스트림으로부터 획득되는 부호화단위의 크기에 대한 분할정보를 이용하는 경우, 분할정보는 최대부호화단위에 포함될 수 있는 미리 결정된 부호화단위의 크기들의 표현이 가능한 비트량만 이용하면 되기 때문에, 불필요한 비트량을 줄일 수 있다. 예를 들면, 부호화단위의 크기에 대한 정보가 64x64, 16x16 중 하나의 크기만을 나타내는 것으로 설정되는 경우, 두 가지의 크기만을 구분하면 되기 때문에 1bit만이 필요하다. 예를 들면, 영상 복호화 장치(10)의 복호화부(13)는 특정 최대부호화단위와 관련하여 획득된 부호화단위의 크기에 대한 정보가 0b인 경우 64x64, 1b인 경우 16x16의 크기를 갖는 부호화단위를 결정할 수 있다. 여기서 0b 또는 1b는 일 실시예에 따라 이진수로 표현된 0 bit 또는 1 bit일 수 있다. 상술한 부호화단위의 크기에 대한 정보가 나타내는 부호화단위의 크기의 개수 및 종류는 단지 일 실시예에 불과하고 상술한 크기의 개수 및 종류에 한정하여 해석되어서는 안된다.
일 실시예에 따라 영상 복호화 장치(10)가 획득하는 부호화단위의 크기에 대한 정보가 나타낼 수 있는 부호화단위의 크기의 종류 또는 개수는 임의의 데이터 단위마다 독립적으로 결정될 수 있다. 예를 들면, 부호화단위의 크기에 대한 정보가 나타낼 수 있는 부호화단위의 크기의 종류 또는 개수가 픽쳐, 슬라이스, 슬라이스 세그먼트, 타일, 또는 프로세싱 블록 마다 독립적으로 결정될 수 있다. 부호화단위의 크기에 대한 정보가 나타낼 수 있는 크기의 종류 또는 개수가 데이터 단위마다 다르게 설정될 수 있으나, 이러한 데이터 단위가 상술한 데이터 단위에 한정하여 해석되어서는 안되고 그 외의 다양한 데이터 단위가 이용될 수 있다.
도 5a는 일 실시예에 따라 영상 복호화 장치(10)가 비트스트림으로부터 획득되는 부호화단위의 크기 제한 정보에 기초하여 부호화단위의 분할정보를 비트스트림으로부터 획득할지 여부를 나타내는 흐름도를 도시한다.
S510 단계 내지 S512 단계에서 일 실시예에 따라 영상 복호화 장치(10)가 수행하는 동작의 특징은 도 1b와 관련하여 상술한 동작의 특징에 대응되는 것으로 볼 수 있으므로, 자세한 설명은 생략하도록 한다.
S513단계에서 영상 복호화 장치(10)는 일 실시예에 따라 S512 단계에서 결정된 최대부호화단위 중 하나인 현재 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정할 수 있다. 최대부호화단위에 포함되는 적어도 하나의 부호화단위의 결정은, 일 실시예에 따라 도 4a에서 S413단계 내지 S414단계에서 영상 복호화 장치(10)의 복호화부(13)가 수행하는 동작에 의해 구현될 수도 있고, 그 외의 기술분야의 다양한 방법들을 이용하여 구현될 수도 있다. 일 실시예에 따라 복호화부(13)의 복호화 과정은 후술하는 영상의 복호화 방법을 포함하는 것일 수 있다.
S514 단계에서 영상 복호화 장치(10)는 일 실시예에 따라 비트스트림으로부터 획득한 부호화단위에 대한 크기 제한 정보에 기초하여, 적어도 하나의 부호화단위의 크기와 크기 제한 정보가 나타내는 크기를 비교할 수 있다. 일 실시예에 따라 크기 제한 정보는 부호화단위가 하위 심도로 분할될 수 있는지 여부를 판단하기 위한 정보를 포함할 수 있다. 예를 들면, 현재 부호화단위에 대한 크기 제한 정보가 나타내는 크기와 현재 부호화단위의 크기를 비교하였을 경우, 크기 제한 정보가 나타내는 크기와의 비교 결과에 따라 현재 부호화단위를 하위 심도로 분할할지 여부를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(10)가 비트스트림으로부터 획득한 크기 제한 정보가 나타내는 정보는 하위 심도로 분할될 수 있는지 여부를 판단하기 위한 정보로서 부호화단위의 최소크기보다 큰 크기를 나타내는 정보를 나타낼 수 있다. 즉, 현재 부호화단위의 크기가 부호화단위가 가질 수 있는 최소크기인 경우 현재 부호화단위를 하위 심도의 부호화단위들로 분할할지 여부는 판단할 필요가 없지만, 현재 부호화단위의 크기가 최소크기가 아니더라도 영상의 특성에 따라 현재 부호화단위를 하위 심도로 분할할지 여부를 판단하는 것이 불필요한 경우가 있을 수 있으며, 이러한 경우 현재 부호화단위와 관련된 분할정보를 비트스트림으로부터 획득하는 것은 비효율적일 수 있다. 따라서 일 실시예에 따라, 영상 복호화 장치(10)의 복호화부(13)는 각각의 현재 심도의 부호화단위들에 대한 분할정보가 모두 비트스트림으로부터 획득되어 이용되지 않더라도, 비트스트림으로부터 획득하는 크기 제한 정보와 현재 심도의 부호화단위의 크기를 비교함으로써 하위 심도로의 분할여부를 결정할 수 있다.
도 5b는 일 실시예에 따라, 영상 복호화 장치(10)가 크기 제한 정보에 기초하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한 것이다.
일 실시예에 따라 영상 복호화 장치(10)의 복호화부(13)는 비트스트림으로부터 획득한 크기 제한 정보에 기초하여 적어도 하나의 부호화단위를 결정할 수 있다. 크기 제한 정보가 나타내는 부호화단위의 크기와 현재 심도의 부호화단위의 크기를 비교하여, 크기 제한 정보가 나타내는 부호화단위의 크기보다 현재 심도의 부호화단위의 크기가 더 큰 경우, 복호화부(13)는 현재 심도의 부호화단위를 하위 심도의 부호화단위들로 분할할 수 있다. 도 5b를 참조하면, 일 실시예에 따라 영상 복호화 장치(10)는 16x16의 크기를 부호화단위의 하위 심도로의 분할여부를 확인하는 최소 크기임을 나타내는 크기 제한 정보를 획득할 수 있다. 최상위심도(Depth n)의 부호화단위(51a)의 크기가 64x64인 경우, 부호화단위는 그 하위 심도(예를 들면, depth n+1, depth n+2, depth n+3…)로 분할될 수 있으나, 크기 제한 정보가 나타내는 크기인 16x16의 크기를 가지는 부호화단위에서는 하위 심도로의 분할여부를 확인하게 위한 분할정보를 비트스트림으로부터 획득하지 않는다. 예를 들면, 64x64의 크기를 갖는 최상위심도(Depth n)의 부호화단위(51a)가 재귀적으로 분할되면서 하위 심도(depth n+1, depth n+2)의 부호화단위(50b, 50c)로 분할되는 경우 각각의 심도(depth n, depth n+1, depth n+2)의 부호화단위들에 대한 분할정보가 비트스트림으로부터 획득될 수 있으며, 하위 심도로의 분할 여부는 해당 부호화단위와 관련된 분할정보에 기초하여 결정될 수 있다. 영상의 특성에 따라서는 8x8의 크기를 갖는 부호화단위로 분할할 필요가 없을 수 있으며, 이 경우 16x16크기의 부호화단위마다 하위 심도로 분할하지 않는다는 정보를 나타내는 분할정보를 비트스트림으로부터 획득할 수 있다. 다만 영상의 특성 상 최하위 심도까지 분할여부가 판단될 필요가 없는 경우와 같이, 최상위심도 및 최하위 심도 중간에 해당하는 심도에서 하위 심도로의 분할이 중단되는 경우가 많은 경우에는 특정 크기의 부호화단위 이하에서는 분할정보를 비트스트림으로부터 획득하지 않도록 제한하는 것이 효율적일 수 있다. 일 실시예에서는 분할정보를 획득하지 않도록 설정하는 부호화단위의 크기를 나타내는 크기 제한 정보를 비트스트림으로부터 획득하여 이용함으로써 효율적으로 비트스트림 이용이 가능하도록 한다.
일 실시예에 따라 도 5b를 참조하면, 영상 복호화 장치(10)는 depth n의 부호화단위(51a)로부터 하위 심도(depth n+1 또는 depth n+2)의 부호화단위(51b 또는 51c)들로 부호화단위를 분할할 수 있다. 하위 심도의 부호화단위들로 분할하는 방법은 각각의 부호화 단위마다 분할정보를 획득하는 종래기술에 따른 방법을 이용하거나, 하위 심도의 부호화단위의 결정을 위해 상술한 다양한 실시예들을 이용할 수도 있다. 일 실시예에 따라 영상 복호화 장치(10)가 비트스트림으로부터 획득한 크기 제한 정보가 depth n+2의 부호화단위의 크기 이하에서는 분할정보를 획득하지 않는 것을 나타내는 경우, 영상 복호화 장치(10)의 복호화부(13)는 depth n의 부호화단위로부터 depth n+2의 부호화단위까지 분할하고, depth n+2의 부호화단위에서는 하위 심도(depth n+3)의 부호화단위로의 분할 여부를 확인하기위한 분할정보를 비트스트림으로부터 획득하지 않고 depth n+2의 심도의 부호화단위(51c)를 현재 부호화단위로 확정함으로써 depth n+2의 심도의 부호화단위(51c)에서 예측 단위 또는 변환 단위를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(10)가 비트스트림으로부터 획득하는 크기 제한 정보가 나타내는 정보는 특정 데이터 단위마다 획득될 수 있다. 일 실시예에 따라 영상 복호화 장치(10)는 크기 제한 정보는 픽쳐, 슬라이스, 슬라이스 세그먼트, 타일, 프로세싱 블록 또는 최대부호화단위마다 비트스트림으로부터 획득될 수 있다.
S515단계에서 영상 복호화 장치(10)는 일 실시예에 따라 적어도 하나의 부호화단위의 크기가 크기 제한 정보가 나타내는 크기보다 큰 경우, 현재 심도의 적어도 하나의 부호화 단위에 대한 분할 정보를 비트스트림으로부터 획득할 수 있다. 획득된 분할정보에 기초하여 영상 복호화 장치(10)의 복호화부(13)는 현재 심도의 부호화단위를 하위 심도의 부호화단위들로 분할할지 여부를 결정할 수 있다.
S516단계에서 영상 복호화 장치(10)는 일 실시예에 따라 적어도 하나의 부호화단위의 크기가 크기 제한 정보가 나타내는 크기 이하인 경우, 현재 심도의 적어도 하나의 부호화단위를 복호화할 수 있다. 현재 심도의 부호화단위의 크기가 크기 제한 정보가 나타내는 크기 이하인 것으로 결정되는 경우, 하위 심도로 분할 여부를 나타내는 분할정보를 현재 심도의 부호화단위에 관련하여 비트스트림으로부터 획득할 필요도 없으므로, 현재 심도의 부호화단위에서 분할을 멈추고 복호화 과정을 수행할 수 있다.
일 실시예에 따라 영상 복호화 장치(10)는 비트스트림으로부터 획득되는 크기 제한 정보가 나타내는 크기와 현재 심도의 부호화단위의 크기를 비교하여 비트스트림으로부터 분할정보를 획득할지 여부를 결정할 수 있다. 나아가 일 실시예에 따라 비트스트림으로부터 획득되는 크기 제한 정보가 직접적으로 특정 크기를 나타내는 것뿐만 아니라, 분할정보를 비트스트림으로부터 획득할지 여부를 결정하기 위하여 기결정된 크기와 현재 심도의 부호화단위의 크기를 비교할 것인지 여부를 나타내는 것일 수도 있다. 즉, 크기 제한 정보가 직접적으로 특정 크기를 나타내는 정보일 경우에는 비트스트림으로 전송되는 정보량이 늘어날 수 있으므로, 부호화단위의 최소크기보다 큰 특정 크기를 미리 결정하고, 이러한 미리 결정된 크기와 현재 심도의 부호화단위 크기를 비교할 것인지 여부를 나타내는 정보인 크기 제한 정보를 비트스트림으로부터 획득할 수도 있다. 크기 제한 정보가 나타내는 크기가 커서 크기 제한 정보를 전송함에 큰 데이터 량이 요구되는 경우, 영상 복호화 장치(10)는 미리 결정된 크기와 현재 심도의 부호화단위의 크기를 비교할지 여부만을 나타내는 크기 제한 정보를 이용함으로써 상대적으로 데이터량을 줄일 수 있다.
도 6a는 일 실시예에 따라 영상 복호화 장치(10)가 특정 심도는 생략하고 더 낮은 심도로 분할할지 여부를 나타내는 제2 분할정보에 기초하여 부호화단위를 결정하는 과정에 대한 흐름도를 도시한다.
일 실시예에 따라 영상 복호화 장치(10)는 현재 심도의 부호화단위를 하위 심도의 부호화단위로 심도 순서에 따라 순차적으로 분할하는 대신, 특정 심도는 생략하고 더 낮은 심도로 분할할지 여부를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(10)가 S610 단계 내지 S612 단계를 통해 수행할 수 있는 특징은, 이는 도 1b에서 상술한 S210단계 내지 S212단계의 특징에 대응하는 것일 수 있으므로 자세한 설명은 생략하도록 한다.
S613단계에서 영상 복호화 장치(10)의 복호화부(13)는 일 실시예에 따라최대부호화단위의 포함되는 현재 심도의 부호화단위를 결정할 수 있다. 결정된 현재 심도의 부호화단위는 이후의 단계를 거쳐서 하위 심도의 부호화단위들로 분할될 수 있다.
S614단계에서 영상 복호화 장치(10)의 복호화부(13)는 일 실시예에 따라 S613단계에서 하위 심도가 최하위 심도인지 여부를 결정할 수 있다. 즉, 영상 복호화 장치(10)의 복호화부(13)는 일 실시예에 따라 결정되는 부호화단위의 현재 심도의 한 심도 아래의 심도인 하위 심도가 최하위심도인지 여부에 따라, 하위 심도로의 분할은 생략하고 상기 하위 심도보다 더 낮은 심도로 분할할지를 나타내는 제2 분할 정보를 비트스트림으로부터 획득할지 여부를 결정할 수 있다.
S615단계에서 영상 복호화 장치(10)는 S614단계에서의 판단 결과에 기초하여, 하위 심도가 최하위심도가 아닌 경우 제2 분할정보를 비트스트림으로부터 획득할 수 있다.
S616단계에서 영상 복호화 장치(10)의 복호화부(13)는 제2 분할정보가 현재 심도의 부호화단위를 하위 심도의 부호화단위로 분할하지 않고 하위 심도보다 더 낮은 심도로 분할할 것을 나타내는지 여부를 판단할 수 있다. 일 실시예에 따라 영상 복호화 장치(10)의 복호화부(13)는 제1 분할정보 및 제2 분할정보 중 적어도 하나를 포함하는 분할정보에 기초하여, 현재 심도의 부호화단위를 분할할 수 있다.
S617단계에서 영상 복호화 장치(10)의 복호화부(13)는 일 실시예에 따라 제2 분할정보가 현재 심도의 부호화단위를 하위 심도의 부호화단위로 분할하지 않고 하위 심도보다 더 낮은 심도로 분할하는 것을 나타내지 않는 경우, 비트스트림으로부터 획득한 제1 분할정보에 기초하여 현재 심도의 부호화단위를 하위 심도의 부호화단위로 분할할 수 있다. 하위 심도란 현재 심도보다 한 심도 아래의 심도를 나타내는 것일 수 있다. 하위 심도로 분할할지 여부를 나타내는 제1 분할정보에 기초하여 현재 심도의 부호화단위에 포함되는 하위 심도의 부호화단위들을 결정하는 과정은 해당 기술분야의 다양한 방법에 따라 수행될 수 있으며, 이러한 방법들에는 후술하는 부호화단위의 재귀적인 분할방법이 포함될 수 있다.
S618 단계에서 영상 복호화 장치(10)의 복호화부(13)는 일 실시예에 따라 제2 분할정보가 현재 심도의 부호화단위를 하위 심도의 부호화단위로 분할하지 않고 하위 심도보다 더 낮은 심도로 분할하는 것을 나타내는 경우, 현재 심도의 부호화단위를 최하위심도가 아닌 하위 심도보다 더 낮은 심도의 부호화단위들로 분할할 수 있다.
도 6b는 일 실시예에 따라 영상 복호화 장치(10)가 제1 분할정보 및 제2 분할정보 중 적어도 하나에 기초하여 현재 심도의 부호화단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(10)의 복호화부(13)는 제1 분할정보에 기초하여 현재 심도(예를 들면, depth n)의 부호화 단위(60a)를 하위 심도(예를 들면, depth n+1, depth n+2)의 부호화단위(60b, 60c)로 분할할 수 있다. 즉, 제1 분할정보는 심도 순서대로 현재 심도(depth n)의 부호화단위(60a)를 현재 심도(depth n)보다 하나 아래 심도인 하위 심도(depth n+1)의 부호화단위들(60b)로 분할할 수 있다. 나아가 영상 복호화 장치(10)의 복호화부(13)는 분할된 하위 심도(depth n+1)의 부호화단위들(60b) 각각에 대하여 획득된 제1 분할정보에 기초하여, 부호화단위들(60b) 각각을 하위 심도(depth n+1)보다 아래 심도(depth n+2, depth n+3…)의 부호화단위들(60c)로 분할할 수 있다. 다만 이러한 제1 분할정보만을 이용하여 부호화단위를 결정하는 경우, 부호화단위의 재귀적 분할을 위해 부호화단위들 각각에 대한 제1 분할정보를 모두 비트스트림으로부터 획득하여야 하므로, 중간 심도(예를 들면, depth n과 depth n+2 사이의 depth n+1 심도)에 대한 분할 여부를 결정하기 위하여 중간 심도의 모든 부호화단위들의 분할정보를 비트스트림으로부터 획득하는 것은 비효율적일 수 있다.
일 실시예에 따라 영상 복호화 장치(10)의 복호화부(13)는 일 실시예에 따라 특정 심도는 생략하고 더 낮은 심도로 분할할지 여부를 나타내는 제2 분할정보를 비트스트림으로부터 획득하여 이용함으로써, 특정 심도의 부호화단위들에 대한 분할여부를 나타내는 제1 분할정보의 획득을 생략할 수 있다. 도 6b를 참조하면, 영상 복호화 장치(10)의 복호화부(13)는 현재 심도(depth n)의 부호화단위(61a)를 분할하기 위하여, 제2 분할정보를 이용할 수 있다. 부호화단위(61a)에 대한 제2 분할정보는 특정 심도(예를 들면, 현재 심도(depth n)보다 하나 아래 심도인 하위 심도(depth n+1))의 부호화단위로의 분할은 생략하고, 하위 심도(depth n+1)보다 아래 심도(depth n+2, depth n+3…)의 부호화단위들(61c)로 바로 분할하는 것을 나타낼 수 있다. 따라서 복호화부(13)는 부호화단위(61a)에 대한 제2 분할정보를 이용함에 따라, 하위 심도(depth n+1)의 부호화단위들에 대한 제1 분할정보를 비트스트림으로부터 획득하지 않아도 되므로 전송되는 정보량을 줄일 수 있다.
일 실시예에 따라, 영상 복호화 장치(10)의 복호화부(13)는 제2 분할정보에 기초하여 현재 심도(depth)의 부호화단위를 하위 심도(depth n+1)보다 더 낮은 심도(depth n+2, depth n+3…)의 부호화단위들로 바로 분할할 수 있다. 나아가 복호화부(13)는 제2 분할정보에 따라 바로 분할된 더 낮은 심도(depth n+2, depth n+3…)의 부호화단위들에 대한 제1 분할정보는 비트스트림으로부터 획득하지 않고, 제2 분할정보에 따라 분할되어 크기가 결정된 부호화단위들 각각에 대하여 복호화를 수행할 수 있다.
도 7a는 일 실시예에 따라 영상 복호화 장치(10)가 부호화단위의 최대 심도에 대한 정보 및 최소 심도에 대한 정보 중 적어도 하나에 기초하여 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정하는 과정에 대한 흐름도를 도시한다.
S710단계 내지 S712단계에서 일 실시예에 따라 영상 복호화 장치(10)가 수행하는 동작의 특징은 도 1b와 관련하여 상술한 동작의 특징에 대응되는 것으로 볼 수 있으므로, 자세한 설명은 생략하도록 한다.
S713단계에서 영상 복호화 장치(10)는 일 실시예에 따라 부호화단위의 최대 심도에 대한 정보 및 최소 심도에 대한 정보 중 적어도 하나에 기초하여 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(10)의 복호화부(13)는 획득한 정보에 기초하여, 최대부호화단위 내에서 재귀적인 분할이 수행되는 과정에서 이용될 수 있는 최대 심도 및 최소 심도를 결정할 수 있다. 예를 들면, 복호화부(13)는 최대 심도에 대한 정보가 나타내는 심도에 대한 부호화단위부터 재귀적으로 분할을 수행하여 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정할 수 있다. 종래기술에 따르면 최대부호화단위부터 심도 순서대로 재귀적으로 분할이 수행되어 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정하였으나, 반드시 최대부호화단위로부터 분할여부를 확인하여야 한다는 점에서 영상의 특성(예를 들면, 영상에 고주파 성분이 많음에 따라 최대부호화단위와 같이 큰 크기의 부호화단위에 따라 부호화 또는 복호화를 수행하지 않는 영역이 많은 경우)에 따라서는 비효율적일 수 있었다. 하지만 일 실시예에 따라, 영상 복호화 장치(10)는 최대 심도에 대한 정보를 주변 블록으로부터 획득하여 이용함으로써, 최대부호화단위와 동일한 크기의 부호화단위부터 재귀적 분할을 시작하는 것이 아니라 최대 심도에 대한 정보가 나타내는 심도의 부호화단위부터 재귀적으로 분할을 시작할 수 있다.
또 다른 예를 들면, 복호화부(13)는 최대부호화단위와 동일한 크기를 갖는 부호화단위부터 최소 심도에 대한 정보가 나타내는 심도의 부호화단위까지 재귀적으로 분할을 수행할 수 있다. 종래기술에 따르면, 현재 심도의 부호화단위의 분할정보가 하위 심도로 분할되지 않음을 나타낼 때까지 재귀적으로 부호화단위가 분할되어 최대부호화단위에 포함되는 적어도 하나의 부호화단위가 결정되었다. 하지만, 모든 부호화단위 마다 분할정보를 비트스트림으로부터 획득하여 분할여부가 결정되어야 한다는 점에서 영상의 특성(예를 들면, 영상에 저주파 성분이 많음에 따라 작은 크기의 부호화단위에 따라 부호화 또는 복호화를 수행하지 않는 영역이 많은 경우)에 따라서는 비효율적일 수 있었다. 하지만 일 실시예에 따라, 영상 복호화 장치(10)는 최소 심도에 대한 정보를 주변 블록으로부터 획득하여 이용함으로써, 부호화단위마다 분할정보를 획득하여 재귀적 분할을 중단하는 것이 아니라 최소 심도에 대한 정보가 나타내는 심도의 부호화단위까지 재귀적으로 분할을 시작할 수 있다. 일 실시예에 따라 최소 심도에 대한 정보가 나타내는 심도의 부호화단위에 대한 분할정보는 비트스트림으로부터 획득하지 않을 수 있다.
일 실시예에 따라 영상 복호화 장치(10)는 최대 심도에 대한 정보 및 최소 심도에 대한 정보 중 적어도 하나를 주변블록으로부터 획득하거나, 또는 특정 데이터 단위마다 비트스트림으로부터 획득할 수 있다. 예를 들면, 영상 복호화 장치(10)는 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 타일, 프로세싱 블록, 최대부호화단위 또는 부호화단위마다 최대 심도에 대한 정보 및 최소 심도에 대한 정보 중 적어도 하나를 비트스트림으로부터 획득할 수 있다. 영상 복호화 장치(10)는 비트스트림으로부터 특정 데이터 단위마다 획득된 최대 심도에 대한 정보 및 최소 심도에 대한 정보 중 적어도 하나에 기초하여, 특정 데이터 단위에 포함되는 적어도 하나의 부호화단위를 결정할 수 있다.
도 7b는 일 실시예에 따라 영상 복호화 장치(10)가 최대 심도에 대한 정보 및 최소 심도에 대한 정보 중 적어도 하나에 기초하여 적어도 하나의 부호화단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(10)의 복호화부(13)는 최대 심도에 대한 정보에 기초하여 최대부호화단위 내에서 재귀적인 분할이 시작되는 부호화단위의 심도를 결정할 수 있다. 도 7b를 참조하면, 일 실시예에 따라 최대 심도에 대한 정보가 나타내는 심도가 depth n+1을 나타내는 경우, 복호화부(13)는 최대 심도에 대한 정보가 나타내는 심도(depth n+1)의 부호화단위(70b)부터 재귀적으로 분할을 시작할 수 있다. 즉, 최대부호화단위와 동일한 크기를 갖는 부호화단위(70a)에 대한 분할정보를 획득하여 분할을 시작하는 것이 아니라, 최대부호화단위보다 작은 크기의 부호화단위(70b)에서부터 재귀적 분할하여 더 낮은 심도(depth n+2, depth n+3…)의 부호화단위들(70c, 70d…)이 시작될 수 있고, 분할이 시작되는 심도는 최대 심도에 대한 정보가 나타내는 심도(depth n+1)일 수 있다.
일 실시예에 따라 영상 복호화 장치(10)의 복호화부(13)는 최소 심도에 대한 정보에 기초하여 최대부호화단위 내에서 재귀적인 분할이 중단되는 최소 심도의 부호화단위를 결정할 수 있다. 도 7b를 참조하면, 일 실시예에 따라 최소 심도에 대한 정보가 나타내는 심도가 depth n+2을 나타내는 경우, 복호화부(13)는 최소 심도에 대한 정보가 나타내는 심도(depth n+2)의 부호화단위(71c)까지 재귀적으로 분할을 수행할 수 있다. 즉, 최대부호화단위와 동일한 크기를 갖는 부호화단위(71a)부터 분할을 시작하여 최소 크기에 대한 정보가 나타내는 심도(depth n+2)의 부호화단위(depth n+2)까지 재귀적 분할이 수행될 수 있고, 그 이하의 심도(depth n+3)의 부호화단위로는 분할될 수 없다.
일 실시예에 따라 영상 복호화 장치(10)는 최대 심도에 대한 정보 및 최소 심도에 대한 정보에 기초하여, 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정할 수 있다. 예를 들면, 영상 복호화 장치(10)의 복호화부(13)는 최대 심도에 대한 정보가 나타내는 심도부터 최소 심도에 대한 정보가 나타내는 심도까지 부호화단위를 재귀적으로 분할할 수 있다.
도 8a는 일 실시예에 따라 영상 복호화 장치(10)가 예측 방법을 나타내는 정보를 비트스트림으로부터 획득하여 적어도 하나의 부호화 단위에 포함되는 적어도 하나의 예측 단위를 결정하는 흐름도를 도시한다.
S810단계 내지 S812단계에서 영상 복호화 장치(10)가 수행하는 동작은 도 1b에서 S210단계 내지 S212단계의 동작에 대응하는 것일 수 있으므로 자세한 설명은 생략하도록 한다.
S813단계에서 영상 복호화 장치(10)는 일 실시예에 따라 적어도 하나의 최대부호화단위 중 하나인 현재 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정할 수 있다. 영상 복호화 장치(10)의 복호화부(13)는 상술한 다양한 실시예들을 이용하거나 또는 최대부호화단위로부터 재귀적 분할을 수행하는 종래기술을 이용하여 현재 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정할 수 있다.
S814단계에서 영상 복호화 장치(10)의 복호화부(13)는 일 실시예에 따라 예측 방법을 나타내는 정보가 기설정된 예측 방법인 제1 방법을 이용하는 것을 나타내는지 여부를 결정할 수 있다. 예측 방법을 나타내는 정보는 비트스트림으로부터 획득될 수 있다. 영상 복호화 장치(10)의 복호화부(13)는 예측 방법을 나타내는 정보에 기초하여 기설정된 예측 방법을 이용하여 예측 단위를 결정할 것인지 아니면 기설정된 예측 방법과 다른 방법을 이용할 것인지 여부를 결정할 수 있다.
예측 방법을 나타내는 정보가 기설정된 예측 방법인 제1 방법을 이용하는 것을 나타내는 경우, 영상 복호화 장치(10)의 복호화부(13)는 S815단계에서 제1 방법을 이용하여 복수개의 파티션 타입 중 하나를 나타내는 파티션 모드 정보를 비트스트림으로부터 획득하여 현재 부호화단위에 포함되는 적어도 하나의 예측 단위를 결정할 수 있다.
예측 방법을 나타내는 정보가 기설정된 예측 방법인 제1 방법을 이용하는 것을 나타내지 않는 경우, 영상 복호화 장치(10)의 복호화부(13)는 S816단계에서 기설정된 방법인 제1 방법과 다른 방법인 제2 방법을 이용하여 현재 부호화단위에 포함되는 예측 단위를 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(10)의 복호화부(13)는 제2 방법으로서, 비트스트림으로부터 파티션 모드 정보를 획득하지 않고 기설정된 파티션 타입에 기초하여 예측 단위를 결정할 수 있다. 파티션 모드 정보는 일 실시예에 따라 복수개의 파티션 타입 중 하나를 나타내는 정보일 수 있으며, 영상 복호화 장치(10)의 복호화부(13)는 제1 방법을 이용하여 예측 단위를 결정하는 경우 파티션 모드 정보를 비트스트림으로부터 획득하여 파티션 모드 정보가 나타내는 파티션 타입에 따라 예측 단위를 결정할 수 있으나, 이러한 파티션 모드 정보가 나타낼 수 있는 파티션 타입이 다양할수록 파티션 모드 정보가 필요로 하는 비트량이 커질 수 있다. 따라서 영상 복호화 장치(10)의 복호화부(13)는 일 실시예에 따라 영상 특성에 따라서는 이런 다양한 파티션 모드 중 하나를 선택하기 위해 파티션 모드 정보를 비트스트림으로부터 획득할 필요 없이, 제2 방법에 기초하여 기설정된 파티션 타입에 따라 현재 부호화단위에 포함되는 적어도 하나의 예측 단위를 결정할 수 있다.
도 8b는 일 실시예에 따라 영상 복호화 장치(10)의 복호화부(13)가 예측 방법에 대한 정보에 기초하여 제1 방법 또는 제2 방법에 따라 현재 부호화단위에 포함되는 적어도 하나의 예측 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(10)의 복호화부(13)는 비트스트림으로부터 획득한 예측 방법에 대한 정보에 기초하여, 기설정된 예측 방법인 제1 방법에 따라 파티션 모드 정보를 획득하여 파티션 모드 정보가 나타내는 파티션 타입으로 적어도 하나의 예측 단위를 결정할 수 있다. 도 8b를 참조하면 제1 방법에 따라 예측 단위를 결정하는 경우, 각 부호화 단위마다 다양한 예측 단위의 형태 중 하나를 나타내는 파티션 모드 정보를 이용할 수 있다. 파티션 모드 정보가 나타나는 다양한 파티션의 형태에 대한 설명은 후술하기로 한다. 제1 방법에 따라 현재 부호화단위에서는 가로 및 세로 중 적어도 하나를 반으로 분할하거나 1/4, 3/4 비율로 분할하는 예측 단위들이 결정되거나 부호화단위와 동일한 크기의 예측단위가 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(10)의 복호화부(13)는 비트스트림으로부터 획득한 예측 방법에 대한 정보에 기초하여, 기설정된 예측 방법인 제2 방법에 따라 파티션 모드 정보를 비트스트림으로부터 획득하지 않고 기설정된 파티션 타입(예를 들면, 현재 부호화단위와 동일한 크기의 파티션)에 따라 예측 단위를 결정할 수 있다. 도 8b를 참조하면, 영상 복호화 장치(10)의 복호화부(13)는 제2 방법에 따라 현재 부호화단위와 동일한 크기를 갖는 예측 단위를 결정할 수 있다. 이에 따라 영상 특성에 따라 현재 부호화단위에서 세부적인 예측 단위로의 분할이 필요 없는 경우라면 제2 방법에 따라 파티션 모드 정보의 획득없이 획일적으로 기설정된 파티션 타입에 따라 예측 단위를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(10)의 복호화부(13)는 제2 방법에 기초하여 현재 부호화단위에 대한 예측 단위를 결정할 수 있으며, 최대부호화단위와 동일한 크기로 현재 부호화단위의 크기가 결정되는 경우, 현재 부호화단위의 하위 심도의 부호화단위의 크기와 동일한 크기의 예측 단위가 결정될 수 있다. 도 8b를 참조하면, 영상 복호화 장치(10)의 복호화부(13)는 일 실시예에 따라 최대부호화단위와 동일한 크기인 64x64의 크기로 현재 부호화단위를 결정할 수 있다. 예측 방법에 대한 정보가 제2 방법을 이용하여 예측 단위를 결정하는 것을 나타내는 경우, 현재 부호화단위의 크기가 최대부호화단위와 동일한 크기인 64x64인 경우, 복호화부(13)는 기설정된 파티션 타입에 기초하여 현재 부호화단위의 하위 심도의 부호화단위의 크기인 32x32 크기를 갖는 예측 단위를 결정할 수 있다.
이하에서는 다른 실시예들에 통한 영상 부호화 방법에 대하여 설명하도록 한다. 후술할 영상 부호화 방법들은 기술분야의 통상의 기술자로서 용이하게 실시할 수 있는 범위 내에서 영상 복호화 방법의 반대되는 동작을 통해 구현될 수 있다.
도 2a는 일 실시예에 따른 영상 부호화 장치(15)의 블록도를 도시한다. 영상 부호화 장치(15)는 프로세싱 블록 결정부(16), 최대부호화단위 결정부(17) 및 부호화부(18)를 포함할 수 있다. 일 실시예에 따른 영상 부호화 장치(15)에 포함되는 구성들이 수행하는 동작은 각각 별개의 하드웨어 또는 소프트웨어 구성요소들을 이용하여 구현될 수 있고, 나아가 하나의 하드웨어(예를 들면, CPU)를 통해 구현될 수도 있다. 영상 부호화 장치(15)에 포함되는 각각의 구성들이 수행하는 동작들에 대하여는 이하의 구체적인 실시예들을 통하여 설명하도록 한다.
도 2b는 일 실시예에 따라 영상 부호화 장치(15)가 프로세싱 블록을 이용하여 수행하는 영상 부호화 방법에 대한 흐름도를 도시한다.
S220 단계에서 영상 부호화 장치(15)는 영상을 분할하는 적어도 하나의 프로세싱 블록을 결정할 수 있다.
일 실시예에 따라, 영상 부호화 장치(15)의 프로세싱 블록 결정부(16)는 영상의 프레임을 분할하는 적어도 하나의 프로세싱 블록을 결정할 수 있다. 프로세싱 블록이란, 영상을 분할하는 적어도 하나의 최대부호화단위를 포함하는 임의의 데이터 단위로서, 프로세싱 블록에 포함되는 적어도 하나의 최대부호화단위는 특정 순서대로 결정될 수 있다. 즉, 각각의 프로세싱 블록에서 결정되는 적어도 하나의 최대부호화단위의 결정 순서는 최대부호화단위가 결정될 수 있는 다양한 순서의 종류 중 하나에 해당할 수 있으며, 각각의 프로세싱 블록에서 결정되는 최대부호화단위 결정 순서는 프로세싱 블록마다 상이할 수 있다.
일 실시예에 따라 영상 부호화 장치(15)는 프로세싱 블록의 크기에 대한 정보를 포함하는 비트스트림으로 생성할 수 있고, 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 획득한 복호화단에서는 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 이러한 프로세싱 블록의 크기는 프로세싱 블록의 크기에 대한 정보가 나타내는 데이터 단위의 특정 크기일 수 있다.
도 3은 일 실시예에 따라 영상 부호화 장치(15)가 픽쳐(30)에 포함되는 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 최대부호화단위가 결정되는 순서를 도시한다. 도 3과 관련하여 영상 부호화 장치(15)가 수행하는 결정 동작은 영상 복호화 장치(10)가 수행하는 동작과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다.
S222 단계에서 영상 부호화 장치(15)는 일 실시예에 따라 결정된 순서에 기초하여 적어도 하나의 최대부호화단위를 결정할 수 있다.
일 실시예에 따라 영상 부호화 장치(15)의 최대부호화단위 결정부(17)는 비트스트림으로부터 프로세싱 블록(31, 33)과 관련된 정보로서, 최대부호화단위 결정 순서에 대한 정보를 획득하여 상기 프로세싱 블록(31, 33)에 포함된 적어도 하나의 최대부호화단위를 결정하는 순서를 결정하여 픽쳐(30)에 포함되는 적어도 하나의 최대부호화단위를 결정할 수 있다.
S223 단계에서 영상 부호화 장치(15)는 일 실시예에 따라, 결정된 적어도 하나의 최대부호화단위를 부호화할 수 있다. 영상 부호화 장치(15)의 부호화부(18)는 S222단계에서 결정된 최대부호화단위에 따라 영상을 부호화할 수 있다. 최대부호화단위를 부호화하는 방법은 영상을 부호화하는 다양한 방법들을 포함할 수 있다.
도 4a는 일 실시예에 따라 영상 부호화 장치(15)가 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정하는 과정에 대한 흐름도를 도시한다.
일 실시예에 따라 S410 단계 내지 S412 단계에서 영상 부호화 장치(15)가 수행하는 동작은 도 2b에 관련하여 상술한 S220 단계 내지 S222 단계에서 영상 부호화 장치(15)가 수행하는 동작에 대응하는 것일 수 있으므로, 자세한 설명은 생략하도록 한다.
S413 단계에서 영상 부호화 장치(15)는 일 실시예에 따라 비트스트림으로부터 획득되는 부호화단위의 크기에 대한 정보에 기초하여, 결정된 최대부호화단위의 크기 이하의 크기를 갖는 복수개의 크기들 중 하나를 부호화단위의 크기로 선택할 수 있다.
도 4b는 일 실시예에 따라 영상 부호화 장치(15)가 픽쳐(40)에 포함되는 적어도 하나의 부호화단위의 크기를 결정하는 과정을 도시한다.
영상 부호화 장치(15)의 부호화부(18)는 비트스트림으로부터 획득된 부호화단위의 크기에 대한 정보에 기초하여 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정할 수 있다. 영상 부호화 장치(15)는 부호화단위의 크기에 대한 정보를 포함하는 비트스트림을 생성할 수 있고, 복호화단에서는 비트스트림을 획득하여 각각의 최대부호화단위를 적어도 하나의 부호화단위로 분할할 수 있으며, 이러한 부호화단위들의 크기는 최대부호화단위마다 독립적으로 결정될 수 있다. 일 실시예에 따라 특정 데이터 단위(예를 들면, 픽쳐, 프로세싱 블록, 슬라이스, 슬라이스 세그먼트, 최대부호화단위)마다 부호화단위의 크기에 대한 정보를 포함하는 비트스트림을 생성할 수 있다. 이하에서는 설명상의 편의를 위하여, 영상 부호화 장치(15)는 최대부호화단위마다 부호화단위의 크기에 대한 정보를 포함하는 비트스트림을 생성하는 것을 전제로 설명하도록 한다.
도 4c는 일 실시예에 따라 영상 부호화 장치(15)가 부호화단위의 크기에 대한 정보가 나타낼 수 있는 부호화단위의 크기들을 도시한다.
일 실시예에 따라 영상 부호화 장치(15)가 부호화단위의 크기에 대한 정보를 이용하는 경우, 분할정보에 기초하여 최대부호화단위로부터 재귀적으로 분할하여 부호화단위를 결정하는 과정이 필요가 없고 최대부호화단위를 부호화단위의 크기에 대한 정보가 나타내는 크기의 부호화단위로 바로 분할할 수 있다. 따라서 부호화단위의 크기에 대한 정보가 나타낼 수 있는 크기는 최상위심도의 크기에 해당하는 최대부호화단위의 크기부터 최하위 심도의 크기까지 순차적으로 하위 심도로 분할된 모든 크기들을 포함할 수도 있고, 최상위심도에 해당하는 크기 및 최하위 심도에 해당하는 크기 사이의 크기들 중 적어도 하나의 크기를 생략할 수도 있다.
도 5a는 일 실시예에 따라 영상 부호화 장치(15)가 부호화단위의 크기 제한 정보를 포함하는 비트스트림을 생성하고, 크기 제한 정보에 기초하여 부호화단위의 분할정보를 포함하는 비트스트림을 생성할지 여부를 나타내는 흐름도를 도시한다.
S510 단계 내지 S512 단계에서 일 실시예에 따라 영상 부호화 장치(15)가 수행하는 동작의 특징은 도 2b와 관련하여 상술한 동작의 특징에 대응되는 것으로 볼 수 있으므로, 자세한 설명은 생략하도록 한다.
S513단계에서 영상 부호화 장치(15)는 일 실시예에 따라 S512 단계에서 결정된 최대부호화단위 중 하나인 현재 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정할 수 있다. 최대부호화단위에 포함되는 적어도 하나의 부호화단위의 결정은, 일 실시예에 따라 도 4a에서 S413단계 내지 S414단계에서 영상 부호화 장치(15)의 부호화부(18)가 수행하는 동작에 의해 구현될 수도 있고, 그 외의 기술분야의 다양한 방법들을 이용하여 구현될 수도 있다. 일 실시예에 따라 부호화부(18)의 복호화 과정은 후술하는 영상의 부호화 방법을 포함하는 것일 수 있다.
S514 단계에서 영상 부호화 장치(15)는 일 실시예에 따라 부호화단위에 대한 크기 제한 정보를 포함하는 비트스트림을 생성할 수 있고, 크기 제한 정보에 기초하여 적어도 하나의 부호화단위의 크기와 크기 제한 정보가 나타내는 크기를 비교할 수 있다. 일 실시예에 따라 크기 제한 정보는 부호화단위가 하위 심도로 분할될 수 있는지 여부를 판단하기 위한 정보를 포함할 수 있다. 예를 들면, 현재 부호화단위에 대한 크기 제한 정보가 나타내는 크기와 현재 부호화단위의 크기를 비교하였을 경우, 크기 제한 정보가 나타내는 크기와의 비교 결과에 따라 현재 부호화단위를 하위 심도로 분할할지 여부를 결정할 수 있다.
일 실시예에 따라 영상 부호화 장치(15)가 크기 제한 정보가 나타내는 정보는 하위 심도로 분할될 수 있는지 여부를 판단하기 위한 정보로서 부호화단위의 최소크기보다 큰 크기를 나타내는 정보를 나타낼 수 있다.
S515단계에서 영상 부호화 장치(15)는 일 실시예에 따라 적어도 하나의 부호화단위의 크기가 크기 제한 정보가 나타내는 크기보다 큰 경우, 현재 심도의 적어도 하나의 부호화 단위에 대한 분할 정보를 포함하는 비트스트림을 생성할 수 있다. 획득된 분할정보에 기초하여 영상 부호화 장치(15)의 부호화부(18)는 현재 심도의 부호화단위를 하위 심도의 부호화단위들로 분할할지 여부를 결정할 수 있다.
S516단계에서 영상 부호화 장치(15)는 일 실시예에 따라 적어도 하나의 부호화단위의 크기가 크기 제한 정보가 나타내는 크기 이하인 경우, 현재 심도의 적어도 하나의 부호화단위를 부호화할 수 있다. 현재 심도의 부호화단위의 크기가 크기 제한 정보가 나타내는 크기 이하인 것으로 결정되는 경우, 현재 심도의 부호화단위에 관련하여 하위 심도로 분할 여부를 나타내는 분할정보를 부호화 할 필요가 없으므로, 현재 심도의 부호화단위에서 분할을 멈추고 부호화 과정을 수행할 수 있다.
도 6a는 일 실시예에 따라 영상 부호화 장치(15)가 특정 심도는 생략하고 더 낮은 심도로 분할할지 여부를 나타내는 제2 분할정보에 기초하여 부호화단위를 결정하는 과정에 대한 흐름도를 도시한다.
일 실시예에 따라 영상 부호화 장치(15)는 현재 심도의 부호화단위를 하위 심도의 부호화단위로 심도 순서에 따라 순차적으로 분할하는 대신, 특정 심도는 생략하고 더 낮은 심도로 분할할지 여부를 결정할 수 있다.
일 실시예에 따라 영상 부호화 장치(15)가 S610 단계 내지 S612 단계를 통해 수행할 수 있는 특징은, 이는 도 2b에서 상술한 S220단계 내지 S222단계의 특징에 대응하는 것일 수 있으므로 자세한 설명은 생략하도록 한다.
S613단계에서 영상 부호화 장치(15)의 부호화부(18)는 일 실시예에 따라 최대부호화단위의 포함되는 현재 심도의 부호화단위를 결정할 수 있다. 결정된 현재 심도의 부호화단위는 이후의 단계를 거쳐서 하위 심도의 부호화단위들로 분할될 수 있다.
S614단계에서 영상 부호화 장치(15)의 부호화부(18)는 일 실시예에 따라 S613단계에서 하위 심도가 최하위 심도인지 여부를 결정할 수 있다. 즉, 영상 부호화 장치(15)의 부호화부(18)는 일 실시예에 따라 결정되는 부호화단위의 현재 심도의 한 심도 아래의 심도인 하위 심도가 최하위심도인지 여부에 따라, 하위 심도로의 분할은 생략하고 상기 하위 심도보다 더 낮은 심도로 분할할지를 나타내는 제2 분할 정보를 부호화 할지 여부를 결정할 수 있다.
S615단계에서 영상 부호화 장치(15)는 S614단계에서의 판단 결과에 기초하여, 하위 심도가 최하위심도가 아닌 경우 제2 분할정보를 비트스트림으로부터 획득할 수 있다.
S616단계에서 영상 부호화 장치(15)의 부호화부(18)는 제2 분할정보가 현재 심도의 부호화단위를 하위 심도의 부호화단위로 분할하지 않고 하위 심도보다 더 낮은 심도로 분할할 것을 나타내는지 여부를 판단할 수 있다. 일 실시예에 따라 영상 부호화 장치(15)의 부호화부(18)는 제1 분할정보 및 제2 분할정보 중 적어도 하나를 포함하는 분할정보에 기초하여, 현재 심도의 부호화단위를 분할할 수 있다.
S617단계에서 영상 부호화 장치(15)의 부호화부(18)는 일 실시예에 따라 제2 분할정보가 현재 심도의 부호화단위를 하위 심도의 부호화단위로 분할하지 않고 하위 심도보다 더 낮은 심도로 분할하는 것을 나타내지 않는 경우, 제1 분할정보에 기초하여 현재 심도의 부호화단위를 하위 심도의 부호화단위로 분할할 수 있다.
S618 단계에서 영상 부호화 장치(15)의 부호화부(18)는 일 실시예에 따라 제2 분할정보가 현재 심도의 부호화단위를 하위 심도의 부호화단위로 분할하지 않고 하위 심도보다 더 낮은 심도로 분할하는 것을 나타내는 경우, 현재 심도의 부호화단위를 최하위심도가 아닌 하위 심도보다 더 낮은 심도의 부호화단위들로 분할할 수 있다.
도 6b는 일 실시예에 따라 영상 부호화 장치(15)가 제1 분할정보 및 제2 분할정보 중 적어도 하나에 기초하여 현재 심도의 부호화단위를 분할하는 과정을 도시한다. 영상 부호화 장치(15)가 부호화단위를 분할하는 과정은, 상술한 영상 복호화 장치(10)가 도 6b와 관련하여 수행하는 동작에 대응하는 동작일 수 있으므로 자세한 설명은 생략하도록 한다.
도 7a는 일 실시예에 따라 영상 부호화 장치(15)가 부호화단위의 최대 심도에 대한 정보 및 최소 심도에 대한 정보 중 적어도 하나에 기초하여 최대부호화단위에 포함되는 적어도 하나의 부호화단위를 결정하는 과정에 대한 흐름도를 도시한다. 도 7b는 일 실시예에 따라 영상 부호화 장치(15)가 최대 심도에 대한 정보 및 최소 심도에 대한 정보 중 적어도 하나에 기초하여 적어도 하나의 부호화단위를 결정하는 과정을 도시한다.
도 7a 및 도 7b에서 영상 부호화 장치(15)가 적어도 하나의 부호화단위를 결정하는 과정은, 상술한 영상 복호화 장치(10)가 도 7a 및 도 7b와 관련하여 수행하는 동작에 대응하는 동작일 수 있으므로 자세한 설명은 생략하도록 한다.
도 8a는 일 실시예에 따라 영상 부호화 장치(15)가 예측 방법을 나타내는 정보를 비트스트림으로부터 획득하여 적어도 하나의 부호화 단위에 포함되는 적어도 하나의 예측 단위를 결정하는 흐름도를 도시한다.
도 8b는 일 실시예에 따라 영상 부호화 장치(15)의 부호화부(18)가 예측 방법에 대한 정보에 기초하여 제1 방법 또는 제2 방법에 따라 현재 부호화단위에 포함되는 적어도 하나의 예측 단위를 결정하는 과정을 도시한다.
도 8a 및 도 8b에서 영상 부호화 장치(15)가 적어도 하나의 예측 단위를 결정하는 과정은, 상술한 영상 복호화 장치(10)가 도 8a 및 도 8b와 관련하여 수행하는 동작에 대응하는 동작일 수 있으므로 자세한 설명은 생략하도록 한다.
도 9는 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 부호화 장치(100)의 블록도를 도시한다.
도 9에서의 비디오 부호화 장치(100)는 도 2a에서의 영상 부호화 장치(15)에 대응하는 것일 수 있다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 부호화 단위 결정부(120) 및 출력부(130)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 '비디오 부호화 장치(100)'로 축약하여 지칭한다.
부호화 단위 결정부(120)는 영상의 현재 픽쳐를 위한 최대 크기의 부호화 단위인 최대 부호화 단위에 기반하여 현재 픽쳐를 구획할 수 있다. 현재 픽쳐가 최대 부호화 단위보다 크다면, 현재 픽쳐의 영상 데이터는 적어도 하나의 최대 부호화 단위로 분할될 수 있다. 일 실시예에 따른 최대 부호화 단위는 크기 32x32, 64x64, 128x128, 256x256 등의 데이터 단위로, 가로 및 세로 크기가 2의 자승인 정사각형의 데이터 단위일 수 있다.
일 실시예에 따른 부호화 단위는 최대 크기 및 심도로 특징지어질 수 있다. 심도란 최대 부호화 단위로부터 부호화 단위가 공간적으로 분할한 횟수를 나타내며, 심도가 깊어질수록 심도별 부호화 단위는 최대 부호화 단위로부터 최소 부호화 단위까지 분할될 수 있다. 최대 부호화 단위의 심도가 최상위 심도이며 최소 부호화 단위가 최하위 부호화 단위로 정의될 수 있다. 최대 부호화 단위는 심도가 깊어짐에 따라 심도별 부호화 단위의 크기는 감소하므로, 상위 심도의 부호화 단위는 복수 개의 하위 심도의 부호화 단위를 포함할 수 있다.
전술한 바와 같이 부호화 단위의 최대 크기에 따라, 현재 픽쳐의 영상 데이터를 최대 부호화 단위로 분할하며, 각각의 최대 부호화 단위는 심도별로 분할되는 부호화 단위들을 포함할 수 있다. 일 실시예에 따른 최대 부호화 단위는 심도별로 분할되므로, 최대 부호화 단위에 포함된 공간 영역(spatial domain)의 영상 데이터가 심도에 따라 계층적으로 분류될 수 있다.
최대 부호화 단위의 높이 및 너비를 계층적으로 분할할 수 있는 총 횟수를 제한하는 최대 심도 및 부호화 단위의 최대 크기가 미리 설정되어 있을 수 있다.
부호화 단위 결정부(120)는, 심도마다 최대 부호화 단위의 영역이 분할된 적어도 하나의 분할 영역을 부호화하여, 적어도 하나의 분할 영역 별로 최종 부호화 결과가 출력될 심도를 결정한다. 즉 부호화 단위 결정부(120)는, 현재 픽쳐의 최대 부호화 단위마다 심도별 부호화 단위로 영상 데이터를 부호화하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여 최종 심도로 결정한다. 결정된 최종 심도 및 최대 부호화 단위별 영상 데이터는 출력부(130)로 출력된다.
최대 부호화 단위 내의 영상 데이터는 최대 심도 이하의 적어도 하나의 심도에 따라 심도별 부호화 단위에 기반하여 부호화되고, 각각의 심도별 부호화 단위에 기반한 부호화 결과가 비교된다. 심도별 부호화 단위의 부호화 오차의 비교 결과 부호화 오차가 가장 작은 심도가 선택될 수 있다. 각각의 최대화 부호화 단위마다 적어도 하나의 최종 심도가 결정될 수 있다.
최대 부호화 단위의 크기는 심도가 깊어짐에 따라 부호화 단위가 계층적으로 분할되어 분할되며 부호화 단위의 개수는 증가한다. 또한, 하나의 최대 부호화 단위에 포함되는 동일한 심도의 부호화 단위들이라 하더라도, 각각의 데이터에 대한 부호화 오차를 측정하고 하위 심도로의 분할 여부가 결정된다. 따라서, 하나의 최대 부호화 단위에 포함되는 데이터라 하더라도 위치에 따라 심도별 부호화 오차가 다르므로 위치에 따라 최종 심도가 달리 결정될 수 있다. 따라서, 하나의 최대 부호화 단위에 대해 최종 심도가 하나 이상 설정될 수 있으며, 최대 부호화 단위의 데이터는 하나 이상의 최종 심도의 부호화 단위에 따라 구획될 수 있다.
따라서, 일 실시예에 따른 부호화 단위 결정부(120)는, 현재 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들이 결정될 수 있다. 일 실시예에 따른 '트리 구조에 따른 부호화 단위들'은, 현재 최대 부호화 단위에 포함되는 모든 심도별 부호화 단위들 중, 최종 심도로 결정된 심도의 부호화 단위들을 포함한다. 최종 심도의 부호화 단위는, 최대 부호화 단위 내에서 동일 영역에서는 심도에 따라 계층적으로 결정되고, 다른 영역들에 대해서는 독립적으로 결정될 수 있다. 마찬가지로, 현재 영역에 대한 최종 심도는, 다른 영역에 대한 최종 심도와 독립적으로 결정될 수 있다.
일 실시예에 따른 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 분할 횟수와 관련된 지표이다. 일 실시예에 따른 제 1 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낼 수 있다. 일 실시예에 따른 제 2 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 심도 레벨의 총 개수를 나타낼 수 있다. 예를 들어, 최대 부호화 단위의 심도가 0이라고 할 때, 최대 부호화 단위가 1회 분할된 부호화 단위의 심도는 1로 설정되고, 2회 분할된 부호화 단위의 심도가 2로 설정될 수 있다. 이 경우, 최대 부호화 단위로부터 4회 분할된 부호화 단위가 최소 부호화 단위라면, 심도 0, 1, 2, 3 및 4의 심도 레벨이 존재하므로 제 1 최대 심도는 4, 제 2 최대 심도는 5로 설정될 수 있다.
최대 부호화 단위의 예측 부호화 및 변환이 수행될 수 있다. 예측 부호화 및 변환도 마찬가지로, 최대 부호화 단위마다, 최대 심도 이하의 심도마다 심도별 부호화 단위를 기반으로 수행된다.
최대 부호화 단위가 심도별로 분할될 때마다 심도별 부호화 단위의 개수가 증가하므로, 심도가 깊어짐에 따라 생성되는 모든 심도별 부호화 단위에 대해 예측 부호화 및 변환을 포함한 부호화가 수행되어야 한다. 이하 설명의 편의를 위해 적어도 하나의 최대 부호화 단위 중 현재 심도의 부호화 단위를 기반으로 예측 부호화 및 변환을 설명하겠다.
일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 데이터 단위의 크기 또는 형태를 다양하게 선택할 수 있다. 영상 데이터의 부호화를 위해서는 예측 부호화, 변환, 엔트로피 부호화 등의 단계를 거치는데, 모든 단계에 걸쳐서 동일한 데이터 단위가 사용될 수도 있으며, 단계별로 데이터 단위가 변경될 수도 있다.
예를 들어 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위뿐만 아니라, 부호화 단위의 영상 데이터의 예측 부호화를 수행하기 위해, 부호화 단위와 다른 데이터 단위를 선택할 수 있다.
최대 부호화 단위의 예측 부호화를 위해서는, 일 실시예에 따른 최종 심도의 부호화 단위, 즉 더 이상 분할되지 않는 부호화 단위를 기반으로 예측 부호화가 수행될 수 있다. 부호화 단위가 분할된 파티션은, 부호화 단위 및 부호화 단위의 높이 및 너비 중 적어도 하나가 분할된 데이터 단위를 포함할 수 있다. 파티션은 부호화 단위가 분할된 형태의 데이터 단위 및 부호화 단위와 동일한 크기의 데이터 단위를 포함할 수 있다. 예측의 기반이 되는 파티션은 ‘예측 단위’라 지칭될 수 있다.
예를 들어, 크기 2Nx2N(단, N은 양의 정수)의 부호화 단위가 더 이상 분할되지 않는 경우, 크기 2Nx2N의 예측 단위가 되며, 파티션의 크기는 2Nx2N, 2NxN, Nx2N, NxN 등일 수 있다. 일 실시예에 따른 파티션 모드는 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션들뿐만 아니라, 1:n 또는 n:1과 같이 비대칭적 비율로 분할된 파티션들, 기하학적인 형태로 분할된 파티션들, 임의적 형태의 파티션들 등을 선택적으로 포함할 수도 있다.
예측 단위의 예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있다. 예를 들어 인트라 모드 및 인터 모드는, 2Nx2N, 2NxN, Nx2N, NxN 크기의 파티션에 대해서 수행될 수 있다. 또한, 스킵 모드는 2Nx2N 크기의 파티션에 대해서만 수행될 수 있다. 부호화 단위 이내의 하나의 예측 단위마다 독립적으로 부호화가 수행되어 부호화 오차가 가장 작은 예측 모드가 선택될 수 있다.
또한, 일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위뿐만 아니라, 부호화 단위와 다른 데이터 단위를 기반으로 부호화 단위의 영상 데이터의 변환을 수행할 수 있다. 부호화 단위의 변환을 위해서는, 부호화 단위보다 작거나 같은 크기의 변환 단위를 기반으로 변환이 수행될 수 있다. 예를 들어 변환 단위는, 인트라 모드를 위한 데이터 단위 및 인터 모드를 위한 변환 단위를 포함할 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위와 유사한 방식으로, 부호화 단위 내의 변환 단위도 재귀적으로 더 작은 크기의 변환 단위로 분할되면서, 부호화 단위의 레지듀얼 데이터가 변환 심도에 따라 트리 구조에 따른 변환 단위에 따라 구획될 수 있다.
일 실시예에 따른 변환 단위에 대해서도, 부호화 단위의 높이 및 너비가 분할하여 변환 단위에 이르기까지의 분할 횟수를 나타내는 변환 심도가 설정될 수 있다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위의 변환 단위의 크기가 2Nx2N이라면 변환 심도 0, 변환 단위의 크기가 NxN이라면 변환 심도 1, 변환 단위의 크기가 N/2xN/2이라면 변환 심도 2로 설정될 수 있다. 즉, 변환 단위에 대해서도 변환 심도에 따라 트리 구조에 따른 변환 단위가 설정될 수 있다.
심도별 분할 정보는, 심도뿐만 아니라 예측 관련 정보 및 변환 관련 정보가 필요하다. 따라서, 부호화 단위 결정부(120)는 최소 부호화 오차를 발생시킨 심도뿐만 아니라, 예측 단위를 파티션으로 분할한 파티션 모드, 예측 단위별 예측 모드, 변환을 위한 변환 단위의 크기 등을 결정할 수 있다.
일 실시예에 따른 최대 부호화 단위의 트리 구조에 따른 부호화 단위 및 예측단위/파티션, 및 변환 단위의 결정 방식에 대해서는, 도 9 내지 19를 참조하여 상세히 후술한다.
부호화 단위 결정부(120)는 심도별 부호화 단위의 부호화 오차를 라그랑지 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용하여 측정할 수 있다.
출력부(130)는, 부호화 단위 결정부(120)에서 결정된 적어도 하나의 심도에 기초하여 부호화된 최대 부호화 단위의 영상 데이터 및 심도별 분할정보를 비트스트림 형태로 출력한다.
부호화된 영상 데이터는 영상의 레지듀얼 데이터의 부호화 결과일 수 있다.
심도별 분할정보는, 심도 정보, 예측 단위의 파티션 모드 정보, 예측 모드 정보, 변환 단위의 분할 정보 등을 포함할 수 있다.
최종 심도 정보는, 현재 심도로 부호화하지 않고 하위 심도의 부호화 단위로 부호화할지 여부를 나타내는 심도별 분할 정보를 이용하여 정의될 수 있다. 현재 부호화 단위의 현재 심도가 심도라면, 현재 부호화 단위는 현재 심도의 부호화 단위로 부호화되므로 현재 심도의 분할 정보는 더 이상 하위 심도로 분할되지 않도록 정의될 수 있다. 반대로, 현재 부호화 단위의 현재 심도가 심도가 아니라면 하위 심도의 부호화 단위를 이용한 부호화를 시도해보아야 하므로, 현재 심도의 분할 정보는 하위 심도의 부호화 단위로 분할되도록 정의될 수 있다.
현재 심도가 심도가 아니라면, 하위 심도의 부호화 단위로 분할된 부호화 단위에 대해 부호화가 수행된다. 현재 심도의 부호화 단위 내에 하위 심도의 부호화 단위가 하나 이상 존재하므로, 각각의 하위 심도의 부호화 단위마다 반복적으로 부호화가 수행되어, 동일한 심도의 부호화 단위마다 재귀적(recursive) 부호화가 수행될 수 있다.
하나의 최대 부호화 단위 안에 트리 구조의 부호화 단위들이 결정되며 심도의 부호화 단위마다 적어도 하나의 분할정보가 결정되어야 하므로, 하나의 최대 부호화 단위에 대해서는 적어도 하나의 분할정보가 결정될 수 있다. 또한, 최대 부호화 단위의 데이터는 심도에 따라 계층적으로 구획되어 위치 별로 심도가 다를 수 있으므로, 데이터에 대해 심도 및 분할정보가 설정될 수 있다.
따라서, 일 실시예에 따른 출력부(130)는, 최대 부호화 단위에 포함되어 있는 부호화 단위, 예측 단위 및 최소 단위 중 적어도 하나에 대해, 해당 심도 및 부호화 모드에 대한 부호화 정보를 할당될 수 있다.
일 실시예에 따른 최소 단위는, 최하위 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위이다. 일 실시예에 따른 최소 단위는, 최대 부호화 단위에 포함되는 모든 부호화 단위, 예측 단위, 파티션 단위 및 변환 단위 내에 포함될 수 있는 최대 크기의 정사각 데이터 단위일 수 있다.
예를 들어 출력부(130)를 통해 출력되는 부호화 정보는, 심도별 부호화 단위별 부호화 정보와 예측 단위별 부호화 정보로 분류될 수 있다. 심도별 부호화 단위별 부호화 정보는, 예측 모드 정보, 파티션 크기 정보를 포함할 수 있다. 예측 단위별로 전송되는 부호화 정보는 인터 모드의 추정 방향에 관한 정보, 인터 모드의 참조 영상 인덱스에 관한 정보, 움직임 벡터에 관한 정보, 인트라 모드의 크로마 성분에 관한 정보, 인트라 모드의 보간 방식에 관한 정보 등을 포함할 수 있다.
픽쳐, 슬라이스 또는 GOP별로 정의되는 부호화 단위의 최대 크기에 관한 정보 및 최대 심도에 관한 정보는 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽쳐 파라미터 세트 등에 삽입될 수 있다.
또한 현재 비디오에 대해 허용되는 변환 단위의 최대 크기에 관한 정보 및 변환 단위의 최소 크기에 관한 정보도, 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽쳐 파라미터 세트 등을 통해 출력될 수 있다. 출력부(130)는, 예측과 관련된 참조정보, 예측정보, 슬라이스 타입 정보 등을 부호화하여 출력할 수 있다.
비디오 부호화 장치(100)의 가장 간단한 형태의 실시예에 따르면, 심도별 부호화 단위는 한 계층 상위 심도의 부호화 단위의 높이 및 너비를 반분한 크기의 부호화 단위이다. 즉, 현재 심도의 부호화 단위의 크기가 2Nx2N이라면, 하위 심도의 부호화 단위의 크기는 NxN 이다. 또한, 2Nx2N 크기의 현재 부호화 단위는 NxN 크기의 하위 심도 부호화 단위를 최대 4개 포함할 수 있다.
따라서, 비디오 부호화 장치(100)는 현재 픽쳐의 특성을 고려하여 결정된 최대 부호화 단위의 크기 및 최대 심도를 기반으로, 각각의 최대 부호화 단위마다 최적의 형태 및 크기의 부호화 단위를 결정하여 트리 구조에 따른 부호화 단위들을 구성할 수 있다. 또한, 각각의 최대 부호화 단위마다 다양한 예측 모드, 변환 방식 등으로 부호화할 수 있으므로, 다양한 영상 크기의 부호화 단위의 영상 특성을 고려하여 최적의 부호화 모드가 결정될 수 있다.
따라서, 영상의 해상도가 매우 높거나 데이터량이 매우 큰 영상을 기존 매크로블록 단위로 부호화한다면, 픽쳐당 매크로블록의 수가 과도하게 많아진다. 이에 따라, 매크로블록마다 생성되는 압축 정보도 많아지므로 압축 정보의 전송 부담이 커지고 데이터 압축 효율이 감소하는 경향이 있다. 따라서, 일 실시예에 따른 비디오 부호화 장치는, 영상의 크기를 고려하여 부호화 단위의 최대 크기를 증가시키면서, 영상 특성을 고려하여 부호화 단위를 조절할 수 있으므로, 영상 압축 효율이 증대될 수 있다.
도 10은 다양한 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 복호화 장치(200)의 블록도를 도시한다. 도 10에서의 비디오 복호화 장치(200)는 도 1a에서의 영상 복호화 장치(10)에 대응하는 것일 수 있다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 수신부(210), 영상 데이터 및 부호화 정보 추출부(220) 및 영상 데이터 복호화부(230)를 포함한다. 영상 데이터 복호화부(230)는 도 1a의 복호화부(13)에 대응하는 것일 수 있다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 '비디오 복호화 장치(200)'로 축약하여 지칭한다.
일 실시예에 따른 비디오 복호화 장치(200)의 복호화 동작을 위한 부호화 단위, 심도, 예측 단위, 변환 단위, 각종 분할정보 등 각종 용어의 정의는, 도 9 및 비디오 부호화 장치(100)를 참조하여 전술한 바와 동일하다.
수신부(210)는 부호화된 비디오에 대한 비트스트림을 수신하여 파싱한다. 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 따라 부호화 단위마다 부호화된 영상 데이터를 추출하여 영상 데이터 복호화부(230)로 출력한다. 영상 데이터 및 부호화 정보 추출부(220)는 현재 픽쳐에 대한 헤더, 시퀀스 파라미터 세트 또는 픽쳐 파라미터 세트로부터 현재 픽쳐의 부호화 단위의 최대 크기에 관한 정보를 추출할 수 있다.
또한, 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 대한 최종 심도 및 분할정보를 추출한다. 추출된 최종 심도 및 분할정보는 영상 데이터 복호화부(230)로 출력된다. 즉, 비트열의 영상 데이터를 최대 부호화 단위로 분할하여, 영상 데이터 복호화부(230)가 최대 부호화 단위마다 영상 데이터를 복호화하도록 할 수 있다.
최대 부호화 단위별 심도 및 분할정보는, 하나 이상의 심도 정보에 대해 설정될 수 있으며, 심도별 분할정보는, 해당 부호화 단위의 파티션 모드 정보, 예측 모드 정보 및 변환 단위의 분할 정보 등을 포함할 수 있다. 또한, 심도 정보로서, 심도별 분할 정보가 추출될 수도 있다.
영상 데이터 및 부호화 정보 추출부(220)가 추출한 최대 부호화 단위별 심도 및 분할정보는, 일 실시예에 따른 비디오 부호화 장치(100)와 같이 부호화단에서, 최대 부호화 단위별 심도별 부호화 단위마다 반복적으로 부호화를 수행하여 최소 부호화 오차를 발생시키는 것으로 결정된 심도 및 분할정보다. 따라서, 비디오 복호화 장치(200)는 최소 부호화 오차를 발생시키는 부호화 방식에 따라 데이터를 복호화하여 영상을 복원할 수 있다.
일 실시예에 따른 심도 및 부호화 모드에 대한 부호화 정보는, 해당 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 할당되어 있을 수 있으므로, 영상 데이터 및 부호화 정보 추출부(220)는 소정 데이터 단위별로 심도 및 분할정보를 추출할 수 있다. 소정 데이터 단위별로, 해당 최대 부호화 단위의 심도 및 분할정보가 기록되어 있다면, 동일한 심도 및 분할정보를 갖고 있는 소정 데이터 단위들은 동일한 최대 부호화 단위에 포함되는 데이터 단위로 유추될 수 있다.
영상 데이터 복호화부(230)는 최대 부호화 단위별 심도 및 분할정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터를 복호화하여 현재 픽쳐를 복원한다. 즉 영상 데이터 복호화부(230)는, 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들 가운데 각각의 부호화 단위마다, 판독된 파티션 모드, 예측 모드, 변환 단위에 기초하여 부호화된 영상 데이터를 복호화 할 수 있다. 복호화 과정은 인트라 예측 및 움직임 보상을 포함하는 예측 과정, 및 역변환 과정을 포함할 수 있다.
영상 데이터 복호화부(230)는, 심도별 부호화 단위의 예측 단위의 파티션 모드 정보 및 예측 모드 정보에 기초하여, 부호화 단위마다 각각의 파티션 및 예측 모드에 따라 인트라 예측 또는 움직임 보상을 수행할 수 있다.
또한, 영상 데이터 복호화부(230)는, 최대 부호화 단위별 역변환을 위해, 부호화 단위별로 트리 구조에 따른 변환 단위 정보를 판독하여, 부호화 단위마다 변환 단위에 기초한 역변환을 수행할 수 있다. 역변환을 통해, 부호화 단위의 공간 영역의 화소값이 복원할 수 있다.
영상 데이터 복호화부(230)는 심도별 분할 정보를 이용하여 현재 최대 부호화 단위의 심도를 결정할 수 있다. 만약, 분할 정보가 현재 심도에서 더 이상 분할되지 않음을 나타내고 있다면 현재 심도가 심도다. 따라서, 영상 데이터 복호화부(230)는 현재 최대 부호화 단위의 영상 데이터에 대해 현재 심도의 부호화 단위를 예측 단위의 파티션 모드, 예측 모드 및 변환 단위 크기 정보를 이용하여 복호화 할 수 있다.
즉, 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 설정되어 있는 부호화 정보를 관찰하여, 동일한 분할 정보를 포함한 부호화 정보를 보유하고 있는 데이터 단위가 모여, 영상 데이터 복호화부(230)에 의해 동일한 부호화 모드로 복호화 할 하나의 데이터 단위로 간주될 수 있다. 이런 식으로 결정된 부호화 단위마다 부호화 모드에 대한 정보를 획득하여 현재 부호화 단위의 복호화가 수행될 수 있다.
수신된 제1 레이어 영상스트림 및 제2 레이어 영상스트림을 복호화하여 제1 레이어 영상들 및 제2 레이어 영상들을 복원하기 위해, 비디오 복호화 장치(200)가 시점 개수만큼 포함될 수 있다.
제1 레이어 영상스트림이 수신된 경우에는, 비디오 복호화 장치(200)의 영상데이터 복호화부(230)는, 추출부(220)에 의해 제1 레이어 영상스트림으로부터 추출된 제1 레이어 영상들의 샘플들을 최대 부호화 단위의 트리 구조에 따른 부호화 단위들로 나눌 수 있다. 영상데이터 복호화부(230)는 제1 레이어 영상들의 샘플들의 트리 구조에 따른 부호화 단위들마다, 영상간 예측을 위한 예측단위별로 움직임 보상을 수행하여 제1 레이어 영상들을 복원할 수 있다.
제2 레이어 영상스트림이 수신된 경우에는, 비디오 복호화 장치(200)의 영상데이터 복호화부(230)는, 추출부(220)에 의해 제2 레이어 영상스트림으로부터 추출된 제2 레이어 영상들의 샘플들을 최대 부호화 단위의 트리 구조에 따른 부호화 단위들로 나눌 수 있다. 영상데이터 복호화부(230)는, 제2 레이어 영상들의 샘플들의 부호화 단위들마다 영상간 예측을 위한 예측단위별로 움직임 보상을 수행하여 제2 레이어 영상들을 복원할 수 있다.
추출부(220)는, 제1 레이어 영상과 제2 레이어 영상 간의 휘도 차를 보상하기 위해 휘도 오차와 관련된 정보를 비트스트림으로부터 획득할 수 있다. 다만, 부호화 단위의 부호화 모드에 따라 휘도 수행 여부가 결정될 수 있다. 예를 들어, 크기 2Nx2N의 예측 단위에 대해서만 휘도보상이 수행될 수 있다.
결국, 비디오 복호화 장치(200)는, 부호화 과정에서 최대 부호화 단위마다 재귀적으로 부호화를 수행하여 최소 부호화 오차를 발생시킨 부호화 단위에 대한 정보를 획득하여, 현재 픽쳐에 대한 복호화에 이용할 수 있다. 즉, 최대 부호화 단위마다 최적 부호화 단위로 결정된 트리 구조에 따른 부호화 단위들의 부호화된 영상 데이터의 복호화가 가능해진다.
따라서, 높은 해상도의 영상 또는 데이터량이 과도하게 많은 영상이라도 부호화단으로부터 전송된 최적 분할정보를 이용하여, 영상의 특성에 적응적으로 결정된 부호화 단위의 크기 및 부호화 모드에 따라 효율적으로 영상 데이터를 복호화하여 복원할 수 있다.
도 11은 다양한 실시예에 따른 부호화 단위의 개념을 도시한다. 도 11에서 심도에 따라 부호화 단위가 분할되는 과정은 일 실시예에 따라 영상 복호화 장치(10) 또는 영상 부호화 장치(15)가 부호화 단위의 재귀적 분할을 위한 분할정보인 제1 분할정보에 기초하여 심도 순서대로 부호화 단위가 분할되는 과정일 수 있다. 즉, 현재 심도(depth n)의 부호화 단위가 하위 심도(depth n+1)의 부호화 단위가 아닌 더 낮은 심도(depth n+2, depth n+3…)의 부호화 단위로 바로 분할되는지 여부를 나타내는 제2 분할정보가 이용되는 경우에는 도 11에서 도시하는 과정과 다른 과정을 통해 부호화 단위가 결정될 수 있다.
부호화 단위의 예는, 부호화 단위의 크기는 너비x높이로 표현되며, 크기 64x64인 부호화 단위부터, 32x32, 16x16, 8x8를 포함할 수 있다. 크기 64x64의 부호화 단위는 크기 64x64, 64x32, 32x64, 32x32의 파티션들로 분할될 수 있고, 크기 32x32의 부호화 단위는 크기 32x32, 32x16, 16x32, 16x16의 파티션들로, 크기 16x16의 부호화 단위는 크기 16x16, 16x8, 8x16, 8x8의 파티션들로, 크기 8x8의 부호화 단위는 크기 8x8, 8x4, 4x8, 4x4의 파티션들로 분할될 수 있다.
비디오 데이터(310)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 2로 설정되어 있다. 비디오 데이터(320)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 3로 설정되어 있다. 비디오 데이터(330)에 대해서는, 해상도는 352x288, 부호화 단위의 최대 크기는 16, 최대 심도가 1로 설정되어 있다. 도 10에 도시된 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다.
해상도가 높거나 데이터량이 많은 경우 부호화 효율의 향상뿐만 아니라 영상 특성을 정확히 반형하기 위해 부호화 사이즈의 최대 크기가 상대적으로 큰 것이 바람직하다. 따라서, 비디오 데이터(330)에 비해, 해상도가 높은 비디오 데이터(310, 320)는 부호화 사이즈의 최대 크기가 64로 선택될 수 있다.
비디오 데이터(310)의 최대 심도는 2이므로, 비디오 데이터(310)의 부호화 단위(315)는 장축 크기가 64인 최대 부호화 단위로부터, 2회 분할하며 심도가 두 계층 깊어져서 장축 크기가 32, 16인 부호화 단위들까지 포함할 수 있다. 반면, 비디오 데이터(330)의 최대 심도는 1이므로, 비디오 데이터(330)의 부호화 단위(335)는 장축 크기가 16인 부호화 단위들로부터, 1회 분할하며 심도가 한 계층 깊어져서 장축 크기가 8인 부호화 단위들까지 포함할 수 있다.
비디오 데이터(320)의 최대 심도는 3이므로, 비디오 데이터(320)의 부호화 단위(325)는 장축 크기가 64인 최대 부호화 단위로부터, 3회 분할하며 심도가 세 계층 깊어져서 장축 크기가 32, 16, 8인 부호화 단위들까지 포함할 수 있다. 심도가 깊어질수록 세부 정보의 표현능력이 향상될 수 있다.
도 12는 다양한 실시예에 따른 부호화 단위에 기초한 영상 부호화부(400)의 블록도를 도시한다.
일 실시예에 따른 영상 부호화부(400)는, 비디오 부호화 장치(100)의 픽쳐 부호화부(120)에서 영상 데이터를 부호화하는데 거치는 작업들을 수행한다. 즉, 인트라 예측부(420)는 현재 영상(405) 중 인트라 모드의 부호화 단위에 대해 예측 단위별로 인트라 예측을 수행하고, 인터 예측부(415)는 인터 모드의 부호화 단위에 대해 예측단위별로 현재 영상(405) 및 복원 픽쳐 버퍼(410)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다. 현재 영상(405)은 최대부호화 단위로 분할된 후 순차적으로 인코딩이 수행될 수 있다. 이때, 최대 부호화 단위가 트리 구조로 분할될 부호화 단위에 대해 인코딩을 수행될 수 있다.
인트라 예측부(420) 또는 인터 예측부(415)로부터 출력된 각 모드의 부호화 단위에 대한 예측 데이터를 현재 영상(405)의 인코딩되는 부호화 단위에 대한 데이터로부터 빼줌으로써 레지듀 데이터를 생성하고, 레지듀 데이터는 변환부(425) 및 양자화부(430)를 거쳐 변환 단위별로 양자화된 변환 계수로 출력된다. 양자화된 변환 계수는 역양자화부(445), 역변환부(450)을 통해 공간 영역의 레지듀 데이터로 복원된다. 복원된 공간 영역의 레지듀 데이터는 인트라 예측부(420) 또는 인터 예측부(415)로부터 출력된 각 모드의 부호화 단위에 대한 예측 데이터와 더해짐으로써 현재 영상(405)의 부호화 단위에 대한 공간 영역의 데이터로 복원된다. 복원된 공간 영역의 데이터는 디블로킹부(455) 및 SAO 수행부(460)를 거쳐 복원 영상으로 생성된다. 생성된 복원 영상은 복원 픽쳐 버퍼(410)에 저장된다. 복원 픽쳐 버퍼(410)에 저장된 복원 영상들은 다른 영상의 인터예측을 위한 참조 영상으로 이용될 수 있다. 변환부(425) 및 양자화부(430)에서 양자화된 변환 계수는 엔트로피 부호화부(435)를 거쳐 비트스트림(440)으로 출력될 수 있다.
일 실시예에 따른 영상 부호화부(400)가 비디오 부호화 장치(100)에 적용되기 위해서, 영상 부호화부(400)의 구성 요소들인 인터 예측부(415), 인트라 예측부(420), 변환부(425), 양자화부(430), 엔트로피 부호화부(435), 역양자화부(445), 역변환부(450), 디블로킹부(455) 및 SAO 수행부(460)가 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반한 작업을 수행할 수 있다.
특히, 인트라 예측부(420)및 인터예측부(415) 는 현재 최대 부호화 단위의 최대 크기 및 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위의 파티션 모드 및 예측 모드를 결정하며, 변환부(425)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위 내의 쿼드 트리에 따른 변환 단위의 분할 여부를 결정할 수 있다.
도 13은 다양한 실시예에 따른 부호화 단위에 기초한 영상 복호화부(500)의 블록도를 도시한다.
엔트로피 복호화부(515)는 비트스트림(505)으로부터 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화 정보를 파싱한다. 부호화된 영상 데이터는 양자화된 변환계수로서, 역양자화부(520) 및 역변환부(525)는 양자화된 변환 계수로부터 레지듀 데이터를 복원한다.
인트라 예측부(540)는 인트라 모드의 부호화 단위에 대해 예측 단위 별로 인트라 예측을 수행한다. 인터 예측부(535)는 현재 영상 중 인터 모드의 부호화 단위에 대해 예측 단위 별로 복원 픽쳐 버퍼(530)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다.
인트라 예측부(540) 또는 인터 예측부(535)를 거친 각 모드의 부호화 단위에 대한 예측 데이터와 레지듀 데이터가 더해짐으로써 현재 영상(405)의 부호화 단위에 대한 공간 영역의 데이터가 복원되고, 복원된 공간 영역의 데이터는 디블로킹부(545) 및 SAO 수행부(550)를 거쳐 복원 영상(560)으로 출력될 수 있다. 또한, 복원 픽쳐 버퍼(530)에 저장된 복원 영상들은 참조 영상으로서 출력될 수 있다.
비디오 복호화 장치(200)의 영상 데이터 복호화부(230)에서 영상 데이터를 복호화하기 위해, 일 실시예에 따른 영상 복호화부(500)의 엔트로피 복호화부(515) 이후의 단계별 작업들이 수행될 수 있다.
영상 복호화부(500)가 일 실시예에 따른 비디오 복호화 장치(200)에 적용되기 위해서, 영상 복호화부(500)의 구성 요소들인 엔트로피 복호화부(515), 역양자화부(520), 역변환부(525), 인트라 예측부(540), 인터 예측부(535), 디블로킹부(545) 및 SAO 수행부(550)가 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반하여 작업을 수행할 수 있다.
특히, 인트라 예측부(540)및 인터 예측부(535)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위마다 파티션 모드 및 예측 모드를 결정하며, 역변환부(525)는 부호화 단위마다 쿼드 트리구조에 따른 변환단위의 분할 여부를 결정할 수 있다.
도 12의 부호화 동작 및 도 13의 복호화 동작은 각각 단일 레이어에서의 비디오스트림 부호화 동작 및 복호화 동작을 상술한 것이다. 따라서, 도 2a의 영상 부호화 장치(15)가 둘 이상의 레이어의 비디오스트림을 부호화한다면, 레이어별로 영상 부호화 장치(15)가 포함될 수 있다.
도 14 는 다양한 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)는 영상 특성을 고려하기 위해 계층적인 부호화 단위를 사용한다. 부호화 단위의 최대 높이 및 너비, 최대 심도는 영상의 특성에 따라 적응적으로 결정될 수도 있으며, 사용자의 요구에 따라 다양하게 설정될 수도 있다. 미리 설정된 부호화 단위의 최대 크기에 따라, 심도별 부호화 단위의 크기가 결정될 수 있다.
일 실시예에 따른 부호화 단위의 계층 구조(600)는 부호화 단위의 최대 높이 및 너비가 64이며, 최대 심도가 3인 경우를 도시하고 있다. 이 때, 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다. 일 실시예에 따른 부호화 단위의 계층 구조(600)의 세로축을 따라서 심도가 깊어지므로 심도별 부호화 단위의 높이 및 너비가 각각 분할한다. 또한, 부호화 단위의 계층 구조(600)의 가로축을 따라, 각각의 심도별 부호화 단위의 예측 부호화의 기반이 되는 예측 단위 및 파티션이 도시되어 있다.
즉, 부호화 단위(610)는 부호화 단위의 계층 구조(600) 중 최대 부호화 단위로서 심도가 0이며, 부호화 단위의 크기, 즉 높이 및 너비가 64x64이다. 세로축을 따라 심도가 깊어지며, 크기 32x32인 심도 1의 부호화 단위(620), 크기 16x16인 심도 2의 부호화 단위(630), 크기 8x8인 심도 3의 부호화 단위(640)가 존재한다. 크기 8x8인 심도 3의 부호화 단위(640)는 최소 부호화 단위이다.
각각의 심도별로 가로축을 따라, 부호화 단위의 예측 단위 및 파티션들이 배열된다. 즉, 심도 0의 크기 64x64의 부호화 단위(610)가 예측 단위라면, 예측 단위는 크기 64x64의 부호화 단위(610)에 포함되는 크기 64x64의 파티션(610), 크기 64x32의 파티션들(612), 크기 32x64의 파티션들(614), 크기 32x32의 파티션들(616)로 분할될 수 있다.
마찬가지로, 심도 1의 크기 32x32의 부호화 단위(620)의 예측 단위는, 크기 32x32의 부호화 단위(620)에 포함되는 크기 32x32의 파티션(620), 크기 32x16의 파티션들(622), 크기 16x32의 파티션들(624), 크기 16x16의 파티션들(626)로 분할될 수 있다.
마찬가지로, 심도 2의 크기 16x16의 부호화 단위(630)의 예측 단위는, 크기 16x16의 부호화 단위(630)에 포함되는 크기 16x16의 파티션(630), 크기 16x8의 파티션들(632), 크기 8x16의 파티션들(634), 크기 8x8의 파티션들(636)로 분할될 수 있다.
마찬가지로, 심도 3의 크기 8x8의 부호화 단위(640)의 예측 단위는, 크기 8x8의 부호화 단위(640)에 포함되는 크기 8x8의 파티션(640), 크기 8x4의 파티션들(642), 크기 4x8의 파티션들(644), 크기 4x4의 파티션들(646)로 분할될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)의 부호화 단위 결정부(120)는, 최대 부호화 단위(610)의 심도를 결정하기 위해, 최대 부호화 단위(610)에 포함되는 각각의 심도의 부호화 단위마다 부호화를 수행하여야 한다.
동일한 범위 및 크기의 데이터를 포함하기 위한 심도별 부호화 단위의 개수는, 심도가 깊어질수록 심도별 부호화 단위의 개수도 증가한다. 예를 들어, 심도 1의 부호화 단위 한 개가 포함하는 데이터에 대해서, 심도 2의 부호화 단위는 네 개가 필요하다. 따라서, 동일한 데이터의 부호화 결과를 심도별로 비교하기 위해서, 한 개의 심도 1의 부호화 단위 및 네 개의 심도 2의 부호화 단위를 이용하여 각각 부호화되어야 한다.
각각의 심도별 부호화를 위해서는, 부호화 단위의 계층 구조(600)의 가로축을 따라, 심도별 부호화 단위의 예측 단위들마다 부호화를 수행하여, 해당 심도에서 가장 작은 부호화 오차인 대표 부호화 오차가 선택될 수다. 또한, 부호화 단위의 계층 구조(600)의 세로축을 따라 심도가 깊어지며, 각각의 심도마다 부호화를 수행하여, 심도별 대표 부호화 오차를 비교하여 최소 부호화 오차가 검색될 수 있다. 최대 부호화 단위(610) 중 최소 부호화 오차가 발생하는 심도 및 파티션이 최대 부호화 단위(610)의 심도 및 파티션 모드로 선택될 수 있다.
도 15는 다양한 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)는, 최대 부호화 단위마다 최대 부호화 단위보다 작거나 같은 크기의 부호화 단위로 영상을 부호화하거나 복호화한다. 부호화 과정 중 변환을 위한 변환 단위의 크기는 각각의 부호화 단위보다 크지 않은 데이터 단위를 기반으로 선택될 수 있다.
예를 들어, 일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)에서, 현재 부호화 단위(710)가 64x64 크기일 때, 32x32 크기의 변환 단위(720)를 이용하여 변환이 수행될 수 있다.
또한, 64x64 크기의 부호화 단위(710)의 데이터를 64x64 크기 이하의 32x32, 16x16, 8x8, 4x4 크기의 변환 단위들로 각각 변환을 수행하여 부호화한 후, 원본과의 오차가 가장 적은 변환 단위가 선택될 수 있다.
도 16은 다양한 실시예에 따라, 심도별 부호화 정보들을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 분할정보로서, 각각의 심도의 부호화 단위마다 파티션 모드에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 부호화하여 전송할 수 있다.
파티션 모드에 대한 정보(800)는, 현재 부호화 단위의 예측 부호화를 위한 데이터 단위로서, 현재 부호화 단위의 예측 단위가 분할된 파티션의 형태에 대한 정보를 나타낸다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위 CU_0는, 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806), 크기 NxN의 파티션(808) 중 어느 하나의 타입으로 분할되어 이용될 수 있다. 이 경우 현재 부호화 단위의 파티션 모드에 관한 정보(800)는 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806) 및 크기 NxN의 파티션(808) 중 하나를 나타내도록 설정된다.
예측 모드에 관한 정보(810)는, 각각의 파티션의 예측 모드를 나타낸다. 예를 들어 예측 모드에 관한 정보(810)를 통해, 파티션 모드에 관한 정보(800)가 가리키는 파티션이 인트라 모드(812), 인터 모드(814) 및 스킵 모드(816) 중 하나로 예측 부호화가 수행되는지 여부가 설정될 수 있다.
또한, 변환 단위 크기에 관한 정보(820)는 현재 부호화 단위를 어떠한 변환 단위를 기반으로 변환을 수행할지 여부를 나타낸다. 예를 들어, 변환 단위는 제 1 인트라 변환 단위 크기(822), 제 2 인트라 변환 단위 크기(824), 제 1 인터 변환 단위 크기(826), 제 2 인터 변환 단위 크기(828) 중 하나일 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(210)는, 각각의 심도별 부호화 단위마다 파티션 모드에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 추출하여 복호화에 이용할 수 있다.
도 17은 다양한 실시예에 따른 심도별 부호화 단위를 도시한다.
심도의 변화를 나타내기 위해 분할 정보가 이용될 수 있다. 분할 정보는 현재 심도의 부호화 단위가 하위 심도의 부호화 단위로 분할될지 여부를 나타낸다.
심도 0 및 2N_0x2N_0 크기의 부호화 단위(900)의 예측 부호화를 위한 예측 단위(910)는 2N_0x2N_0 크기의 파티션 모드(912), 2N_0xN_0 크기의 파티션 모드(914), N_0x2N_0 크기의 파티션 모드(916), N_0xN_0 크기의 파티션 모드(918)을 포함할 수 있다. 예측 단위가 대칭적 비율로 분할된 파티션들(912, 914, 916, 918)만이 예시되어 있지만, 전술한 바와 같이 파티션 모드는 이에 한정되지 않고 비대칭적 파티션, 임의적 형태의 파티션, 기하학적 형태의 파티션 등을 포함할 수 있다.
파티션 모드마다, 한 개의 2N_0x2N_0 크기의 파티션, 두 개의 2N_0xN_0 크기의 파티션, 두 개의 N_0x2N_0 크기의 파티션, 네 개의 N_0xN_0 크기의 파티션마다 반복적으로 예측 부호화가 수행되어야 한다. 크기 2N_0x2N_0, 크기 N_0x2N_0 및 크기 2N_0xN_0 및 크기 N_0xN_0의 파티션에 대해서는, 인트라 모드 및 인터 모드로 예측 부호화가 수행될 수 있다. 스킵 모드는 크기 2N_0x2N_0의 파티션에 예측 부호화가 대해서만 수행될 수 있다.
크기 2N_0x2N_0, 2N_0xN_0 및 N_0x2N_0의 파티션 모드(912, 914, 916) 중 하나에 의한 부호화 오차가 가장 작다면, 더 이상 하위 심도로 분할할 필요 없다.
크기 N_0xN_0의 파티션 모드(918)에 의한 부호화 오차가 가장 작다면, 심도 0를 1로 변경하며 분할하고(920), 심도 2 및 크기 N_0xN_0의 파티션 모드의 부호화 단위들(930)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
심도 1 및 크기 2N_1x2N_1 (=N_0xN_0)의 부호화 단위(930)의 예측 부호화를 위한 예측 단위(940)는, 크기 2N_1x2N_1의 파티션 모드(942), 크기 2N_1xN_1의 파티션 모드(944), 크기 N_1x2N_1의 파티션 모드(946), 크기 N_1xN_1의 파티션 모드(948)을 포함할 수 있다.
또한, 크기 N_1xN_1 크기의 파티션 모드(948)에 의한 부호화 오차가 가장 작다면, 심도 1을 심도 2로 변경하며 분할하고(950), 심도 2 및 크기 N_2xN_2의 부호화 단위들(960)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
최대 심도가 d인 경우, 심도별 부호화 단위는 심도 d-1일 때까지 설정되고, 분할 정보는 심도 d-2까지 설정될 수 있다. 즉, 심도 d-2로부터 분할(970)되어 심도 d-1까지 부호화가 수행될 경우, 심도 d-1 및 크기 2N_(d-1)x2N_(d-1)의 부호화 단위(980)의 예측 부호화를 위한 예측 단위(990)는, 크기 2N_(d-1)x2N_(d-1)의 파티션 모드(992), 크기 2N_(d-1)xN_(d-1)의 파티션 모드(994), 크기 N_(d-1)x2N_(d-1)의 파티션 모드(996), 크기 N_(d-1)xN_(d-1)의 파티션 모드(998)을 포함할 수 있다.
파티션 모드 가운데, 한 개의 크기 2N_(d-1)x2N_(d-1)의 파티션, 두 개의 크기 2N_(d-1)xN_(d-1)의 파티션, 두 개의 크기 N_(d-1)x2N_(d-1)의 파티션, 네 개의 크기 N_(d-1)xN_(d-1)의 파티션마다 반복적으로 예측 부호화를 통한 부호화가 수행되어, 최소 부호화 오차가 발생하는 파티션 모드가 검색될 수 있다.
크기 N_(d-1)xN_(d-1)의 파티션 모드(998)에 의한 부호화 오차가 가장 작더라도, 최대 심도가 d이므로, 심도 d-1의 부호화 단위 CU_(d-1)는 더 이상 하위 심도로의 분할 과정을 거치지 않으며, 현재 최대 부호화 단위(900)에 대한 심도가 심도 d-1로 결정되고, 파티션 모드는 N_(d-1)xN_(d-1)로 결정될 수 있다. 또한 최대 심도가 d이므로, 심도 d-1의 부호화 단위(952)에 대해 분할 정보는 설정되지 않는다.
데이터 단위(999)은, 현재 최대 부호화 단위에 대한 '최소 단위'라 지칭될 수 있다. 일 실시예에 따른 최소 단위는, 최하위 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위일 수 있다. 이러한 반복적 부호화 과정을 통해, 일 실시예에 따른 비디오 부호화 장치(100)는 부호화 단위(900)의 심도별 부호화 오차를 비교하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여, 심도를 결정하고, 해당 파티션 모드 및 예측 모드가 심도의 부호화 모드로 설정될 수 있다.
이런 식으로 심도 0, 1, ..., d-1, d의 모든 심도별 최소 부호화 오차를 비교하여 오차가 가장 작은 심도가 선택되어 심도로 결정될 수 있다. 심도, 및 예측 단위의 파티션 모드 및 예측 모드는 분할정보로써 부호화되어 전송될 수 있다. 또한, 심도 0으로부터 심도에 이르기까지 부호화 단위가 분할되어야 하므로, 심도의 분할 정보만이 '0'으로 설정되고, 심도를 제외한 심도별 분할 정보는 '1'로 설정되어야 한다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(220)는 부호화 단위(900)에 대한 심도 및 예측 단위에 관한 정보를 추출하여 부호화 단위(912)를 복호화하는데 이용할 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 심도별 분할 정보를 이용하여 분할 정보가 '0'인 심도를 심도로 파악하고, 해당 심도에 대한 분할정보를 이용하여 복호화에 이용할 수 있다.
도 18, 19 및 20은 다양한 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
부호화 단위(1010)는, 최대 부호화 단위에 대해 일 실시예에 따른 비디오 부호화 장치(100)가 결정한 심도별 부호화 단위들이다. 예측 단위(1060)는 부호화 단위(1010) 중 각각의 심도별 부호화 단위의 예측 단위들의 파티션들이며, 변환 단위(1070)는 각각의 심도별 부호화 단위의 변환 단위들이다.
심도별 부호화 단위들(1010)은 최대 부호화 단위의 심도가 0이라고 하면, 부호화 단위들(1012, 1054)은 심도가 1, 부호화 단위들(1014, 1016, 1018, 1028, 1050, 1052)은 심도가 2, 부호화 단위들(1020, 1022, 1024, 1026, 1030, 1032, 1048)은 심도가 3, 부호화 단위들(1040, 1042, 1044, 1046)은 심도가 4이다.
예측 단위들(1060) 중 일부 파티션(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 부호화 단위가 분할된 형태이다. 즉, 파티션(1014, 1022, 1050, 1054)은 2NxN의 파티션 모드며, 파티션(1016, 1048, 1052)은 Nx2N의 파티션 모드, 파티션(1032)은 NxN의 파티션 모드다. 심도별 부호화 단위들(1010)의 예측 단위 및 파티션들은 각각의 부호화 단위보다 작거나 같다.
변환 단위들(1070) 중 일부(1052)의 영상 데이터에 대해서는 부호화 단위에 비해 작은 크기의 데이터 단위로 변환 또는 역변환이 수행된다. 또한, 변환 단위(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 예측 단위들(1060) 중 해당 예측 단위 및 파티션와 비교해보면, 서로 다른 크기 또는 형태의 데이터 단위이다. 즉, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 다른 비디오 복호화 장치(200)는 동일한 부호화 단위에 대한 인트라 예측/움직임 추정/움직임 보상 작업, 및 변환/역변환 작업이라 할지라도, 각각 별개의 데이터 단위를 기반으로 수행할 수 있다.
이에 따라, 최대 부호화 단위마다, 영역별로 계층적인 구조의 부호화 단위들마다 재귀적으로 부호화가 수행되어 최적 부호화 단위가 결정됨으로써, 재귀적 트리 구조에 따른 부호화 단위들이 구성될 수 있다. 부호화 정보는 부호화 단위에 대한 분할 정보, 파티션 모드 정보, 예측 모드 정보, 변환 단위 크기 정보를 포함할 수 있다. 이하 표 1은, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)에서 설정할 수 있는 일례를 나타낸다.
Figure pat00001
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 출력하고, 일 실시예에 따른 비디오 복호화 장치(200)의 부호화 정보 추출부(220)는 수신된 비트스트림으로부터 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 추출할 수 있다.
분할 정보는 현재 부호화 단위가 하위 심도의 부호화 단위들로 분할되는지 여부를 나타낸다. 현재 심도 d의 분할 정보가 0이라면, 현재 부호화 단위가 현재 부호화 단위가 하위 부호화 단위로 더 이상 분할되지 않는 심도가 심도이므로, 심도에 대해서 파티션 모드 정보, 예측 모드, 변환 단위 크기 정보가 정의될 수 있다. 분할 정보에 따라 한 단계 더 분할되어야 하는 경우에는, 분할된 4개의 하위 심도의 부호화 단위마다 독립적으로 부호화가 수행되어야 한다.
예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 하나로 나타낼 수 있다. 인트라 모드 및 인터 모드는 모든 파티션 모드에서 정의될 수 있으며, 스킵 모드는 파티션 모드 2Nx2N에서만 정의될 수 있다.
파티션 모드 정보는, 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션 모드 2Nx2N, 2NxN, Nx2N 및 NxN 과, 비대칭적 비율로 분할된 비대칭적 파티션 모드 2NxnU, 2NxnD, nLx2N, nRx2N를 나타낼 수 있다. 비대칭적 파티션 모드 2NxnU 및 2NxnD는 각각 높이가 1:3 및 3:1로 분할된 형태이며, 비대칭적 파티션 모드 nLx2N 및 nRx2N은 각각 너비가 1:3 및 3:1로 분할된 형태를 나타낸다.
변환 단위 크기는 인트라 모드에서 두 종류의 크기, 인터 모드에서 두 종류의 크기로 설정될 수 있다. 즉, 변환 단위 분할 정보가 0 이라면, 변환 단위의 크기가 현재 부호화 단위의 크기 2Nx2N로 설정된다. 변환 단위 분할 정보가 1이라면, 현재 부호화 단위가 분할된 크기의 변환 단위가 설정될 수 있다. 또한 크기 2Nx2N인 현재 부호화 단위에 대한 파티션 모드가 대칭형 파티션 모드이라면 변환 단위의 크기는 NxN, 비대칭형 파티션 모드이라면 N/2xN/2로 설정될 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위들의 부호화 정보는, 심도의 부호화 단위, 예측 단위 및 최소 단위 단위 중 적어도 하나에 대해 할당될 수 있다. 심도의 부호화 단위는 동일한 부호화 정보를 보유하고 있는 예측 단위 및 최소 단위를 하나 이상 포함할 수 있다.
따라서, 인접한 데이터 단위들끼리 각각 보유하고 있는 부호화 정보들을 확인하면, 동일한 심도의 부호화 단위에 포함되는지 여부가 확인될 수 있다. 또한, 데이터 단위가 보유하고 있는 부호화 정보를 이용하면 해당 심도의 부호화 단위를 확인할 수 있으므로, 최대 부호화 단위 내의 심도들의 분포가 유추될 수 있다.
따라서 이 경우 현재 부호화 단위가 주변 데이터 단위를 참조하여 예측하기 경우, 현재 부호화 단위에 인접하는 심도별 부호화 단위 내의 데이터 단위의 부호화 정보가 직접 참조되어 이용될 수 있다.
또 다른 실시예로, 현재 부호화 단위가 주변 부호화 단위를 참조하여 예측 부호화가 수행되는 경우, 인접하는 심도별 부호화 단위의 부호화 정보를 이용하여, 심도별 부호화 단위 내에서 현재 부호화 단위에 인접하는 데이터가 검색됨으로써 주변 부호화 단위가 참조될 수도 있다.
도 21은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
최대 부호화 단위(1300)는 심도의 부호화 단위들(1302, 1304, 1306, 1312, 1314, 1316, 1318)을 포함한다. 이 중 하나의 부호화 단위(1318)는 심도의 부호화 단위이므로 분할 정보가 0으로 설정될 수 있다. 크기 2Nx2N의 부호화 단위(1318)의 파티션 모드 정보는, 파티션 모드 2Nx2N(1322), 2NxN(1324), Nx2N(1326), NxN(1328), 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정될 수 있다.
변환 단위 분할 정보(TU size flag)는 변환 인덱스의 일종으로서, 변환 인덱스에 대응하는 변환 단위의 크기는 부호화 단위의 예측 단위 타입 또는 파티션 모드에 따라 변경될 수 있다.
예를 들어, 파티션 모드 정보가 대칭형 파티션 모드 2Nx2N(1322), 2NxN(1324), Nx2N(1326) 및 NxN(1328) 중 하나로 설정되어 있는 경우, 변환 단위 분할 정보가 0이면 크기 2Nx2N의 변환 단위(1342)가 설정되고, 변환 단위 분할 정보가 1이면 크기 NxN의 변환 단위(1344)가 설정될 수 있다.
파티션 모드 정보가 비대칭형 파티션 모드 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정된 경우, 변환 단위 분할 정보(TU size flag)가 0이면 크기 2Nx2N의 변환 단위(1352)가 설정되고, 변환 단위 분할 정보가 1이면 크기 N/2xN/2의 변환 단위(1354)가 설정될 수 있다.
도 21을 참조하여 전술된 변환 단위 분할 정보(TU size flag)는 0 또는 1의 값을 갖는 플래그이지만, 일 실시예에 따른 변환 단위 분할 정보가 1비트의 플래그로 한정되는 것은 아니며 설정에 따라 0, 1, 2, 3.. 등으로 증가하며 변환 단위가 계층적으로 분할될 수도 있다. 변환 단위 분할 정보는 변환 인덱스의 한 실시예로써 이용될 수 있다.
이 경우, 일 실시예에 따른 변환 단위 분할 정보를 변환 단위의 최대 크기, 변환 단위의 최소 크기와 함께 이용하면, 실제로 이용된 변환 단위의 크기가 표현될 수 있다. 일 실시예에 따른 비디오 부호화 장치(100)는, 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 부호화할 수 있다. 부호화된 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보는 SPS에 삽입될 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 이용하여, 비디오 복호화에 이용할 수 있다.
예를 들어, (a) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 크기는 32x32이라면, (a-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32, (a-2) 변환 단위 분할 정보가 1일 때 변환 단위의 크기가 16x16, (a-3) 변환 단위 분할 정보가 2일 때 변환 단위의 크기가 8x8로 설정될 수 있다.
다른 예로, (b) 현재 부호화 단위가 크기 32x32이고, 최소 변환 단위 크기는 32x32이라면, (b-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32로 설정될 수 있으며, 변환 단위의 크기가 32x32보다 작을 수는 없으므로 더 이상의 변환 단위 분할 정보가 설정될 수 없다.
또 다른 예로, (c) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 분할 정보가 1이라면, 변환 단위 분할 정보는 0 또는 1일 수 있으며, 다른 변환 단위 분할 정보가 설정될 수 없다.
따라서, 최대 변환 단위 분할 정보를 'MaxTransformSizeIndex', 최소 변환 단위 크기를 'MinTransformSize', 변환 단위 분할 정보가 0인 경우의 변환 단위 크기를 'RootTuSize'라고 정의할 때, 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'는 아래 관계식 (1) 과 같이 정의될 수 있다.
CurrMinTuSize
= max (MinTransformSize, RootTuSize/(2^MaxTransformSizeIndex)) ... (1)
현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'와 비교하여, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 시스템상 채택 가능한 최대 변환 단위 크기를 나타낼 수 있다. 즉, 관계식 (1)에 따르면, 'RootTuSize/(2^MaxTransformSizeIndex)'는, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'를 최대 변환 단위 분할 정보에 상응하는 횟수만큼 분할한 변환 단위 크기이며, 'MinTransformSize'는 최소 변환 단위 크기이므로, 이들 중 작은 값이 현재 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'일 수 있다.
일 실시예에 따른 최대 변환 단위 크기 RootTuSize는 예측 모드에 따라 달라질 수도 있다.
예를 들어, 현재 예측 모드가 인터 모드라면 RootTuSize는 아래 관계식 (2)에 따라 결정될 수 있다. 관계식 (2)에서 'MaxTransformSize'는 최대 변환 단위 크기, 'PUSize'는 현재 예측 단위 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PUSize) ......... (2)
즉 현재 예측 모드가 인터 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 예측 단위 크기 중 작은 값으로 설정될 수 있다.
현재 파티션 단위의 예측 모드가 예측 모드가 인트라 모드라면 모드라면 'RootTuSize'는 아래 관계식 (3)에 따라 결정될 수 있다. 'PartitionSize'는 현재 파티션 단위의 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PartitionSize) ...........(3)
즉 현재 예측 모드가 인트라 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 파티션 단위 크기 중 작은 값으로 설정될 수 있다.
다만, 파티션 단위의 예측 모드에 따라 변동하는 일 실시예에 따른 현재 최대 변환 단위 크기 'RootTuSize'는 일 실시예일 뿐이며, 현재 최대 변환 단위 크기를 결정하는 요인이 이에 한정되는 것은 아님을 유의하여야 한다.
도 9 내지 도 21을 참조하여 전술된 트리 구조의 부호화 단위들에 기초한 비디오 부호화 기법에 따라, 트리 구조의 부호화 단위들마다 공간영역의 영상 데이터가 부호화되며, 트리 구조의 부호화 단위들에 기초한 비디오 복호화 기법에 따라 최대 부호화 단위마다 복호화가 수행되면서 공간 영역의 영상 데이터가 복원되어, 픽쳐 및 픽쳐 시퀀스인 비디오가 복원될 수 있다. 복원된 비디오는 재생 장치에 의해 재생되거나, 저장 매체에 저장되거나, 네트워크를 통해 전송될 수 있다.
한편, 상술한 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
이제까지 개시된 다양한 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 명세서에서 개시된 실시예들의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 명세서의 개시 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 명세서의 개시범위에 포함된 것으로 해석되어야 할 것이다.

Claims (5)

  1. 최대 부호화단위에 기반하여 영상을 복호화하는 방법에 있어서,
    최대 부호화단위의 크기를 나타내는 정보를 이용하여 현재 영상 단위 내에서 복수의 최대 부호화단위를 결정하는 단계;
    상기 복수의 최대 부호화단위 중 하나인 현재 최대 부호화단위에 포함된 현재 부호화단위를 결정하는 단계; 및
    상기 현재 부호화단위의 크기가 크기 제한 정보를 이용하여 획득되는 크기보다 크면, 비트스트림으로부터 상기 현재 부호화단위를 위한 분할 정보를 획득하는 단계를 포함하되,
    상기 현재 부호화단위의 크기가 상기 크기 제한 정보를 이용하여 획득되는 크기와 동일하거나 작으면, 상기 현재 부호화단위를 위한 분할 정보는 상기 비트스트림으로부터 획득되지 않고,
    상기 크기 제한 정보를 이용하여 획득되는 크기는, 상기 현재 부호화단위에 대해 허용된 최소 크기와 동일하거나 상기 최소 크기보다 크며,
    상기 크기 제한 정보는 상기 현재 영상 단위에 포함된 복수의 부호화단위를 위해 사용되고, 상기 현재 부호화단위에 대해 허용된 최소 크기에 대한 정보는 상기 현재 영상 단위를 포함하는 현재 시퀀스 단위에 포함된 복수의 부호화단위를 위해 사용되는, 영상 복호화 방법.
  2. 최대 부호화단위에 기반하여 영상을 복호화하는 장치에 있어서,
    최대 부호화단위의 크기를 나타내는 정보를 이용하여 현재 영상 단위 내에서 복수의 최대 부호화단위를 결정하는 최대 부호화단위 결정부; 및
    상기 복수의 최대 부호화단위를 복호화하는 복호화부를 포함하되,
    상기 복호화부는,
    상기 복수의 최대 부호화단위 중 하나인 현재 최대 부호화단위에 포함된 현재 부호화단위를 결정하고, 상기 현재 부호화단위의 크기가 크기 제한 정보를 이용하여 획득되는 크기보다 크면, 비트스트림으로부터 상기 현재 부호화단위를 위한 분할 정보를 획득하며,
    상기 현재 부호화단위의 크기가 상기 크기 제한 정보를 이용하여 획득되는 크기와 동일하거나 작으면, 상기 현재 부호화단위를 위한 분할 정보는 상기 비트스트림으로부터 획득되지 않고,
    상기 크기 제한 정보를 이용하여 획득되는 크기는, 상기 현재 부호화단위에 대해 허용된 최소 크기와 동일하거나 상기 최소 크기보다 크며,
    상기 크기 제한 정보는 상기 현재 영상 단위에 포함된 복수의 부호화단위를 위해 사용되고, 상기 현재 부호화단위에 대해 허용된 최소 크기에 대한 정보는 상기 현재 영상 단위를 포함하는 현재 시퀀스 단위에 포함된 복수의 부호화단위를 위해 사용되는, 영상 복호화 장치.
  3. 최대 부호화단위에 기반하여 영상을 부호화하는 방법에 있어서,
    현재 영상 단위 내에서 복수의 최대 부호화단위를 결정하는 단계;
    상기 복수의 최대 부호화단위 중 하나인 현재 최대 부호화단위에 포함된 현재 부호화단위를 결정하는 단계; 및
    상기 현재 부호화단위의 크기가 미리 결정된 크기보다 크면, 상기 현재 부호화단위를 위한 분할 정보를 포함하는 비트스트림을 생성하는 단계를 포함하되,
    상기 현재 부호화단위의 크기가 상기 미리 결정된 크기와 동일하거나 작으면, 상기 현재 부호화단위를 위한 분할 정보는 상기 비트스트림에 포함되지 않고,
    상기 미리 결정된 크기는 상기 현재 부호화단위에 대해 허용된 최소 크기와 동일하거나 상기 최소 크기보다 크며,
    상기 미리 결정된 크기에 대한 크기 제한 정보는 상기 현재 영상 단위에 포함된 복수의 부호화단위를 위해 사용되고, 상기 현재 부호화단위에 대해 허용된 최소 크기에 대한 정보는 상기 현재 영상 단위를 포함하는 현재 시퀀스 단위에 포함된 복수의 부호화단위를 위해 사용되고,
    최대 부호화단위의 크기를 나타내는 정보가 상기 비트스트림에 포함되는, 영상 부호화 방법.
  4. 최대 부호화단위에 기반하여 영상을 부호화하는 장치에 있어서,
    현재 영상 단위 내에서 복수의 최대 부호화단위를 결정하는 최대 부호화단위 결정부; 및
    상기 복수의 최대 부호화단위를 부호화하는 부호화부를 포함하되,
    상기 부호화부는,
    상기 복수의 최대 부호화단위 중 하나인 현재 최대 부호화단위에 포함된 현재 부호화단위를 결정하고, 상기 현재 부호화단위의 크기가 미리 결정된 크기보다 크면, 상기 현재 부호화단위를 위한 분할 정보를 포함하는 비트스트림을 생성하며,
    상기 현재 부호화단위의 크기가 상기 미리 결정된 크기와 동일하거나 작으면, 상기 현재 부호화단위를 위한 분할 정보는 상기 비트스트림에 포함되지 않고,
    상기 미리 결정된 크기는 상기 현재 부호화단위에 대해 허용된 최소 크기와 동일하거나 상기 최소 크기보다 크며,
    상기 미리 결정된 크기에 대한 크기 제한 정보는 상기 현재 영상 단위에 포함된 복수의 부호화단위를 위해 사용되고, 상기 현재 부호화단위에 대해 허용된 최소 크기에 대한 정보는 상기 현재 영상 단위를 포함하는 현재 시퀀스 단위에 포함된 복수의 부호화단위를 위해 사용되고,
    최대 부호화단위의 크기를 나타내는 정보가 상기 비트스트림에 포함되는, 영상 부호화 장치.
  5. 비트스트림을 기록한 컴퓨터로 읽을 수 있는 기록매체에 있어서, 상기 비트스트림은,
    최대 부호화단위의 크기를 나타내는 정보;
    부호화단위에 대해 허용되는 최소 크기에 대한 정보;
    미리 결정된 크기에 대한 크기 제한 정보; 및
    현재 부호화단위를 위한 분할 정보를 포함하되,
    상기 최대 부호화단위의 크기에 따라 현재 영상 단위 내에서 결정되는 복수의 최대 부호화단위 중 하나인 현재 최대 부호화단위 내에서 결정되는 상기 현재 부호화단위의 크기가 상기 미리 결정된 크기보다 크면, 상기 현재 부호화단위를 위한 분할 정보가 상기 비트스트림에 포함되고,
    상기 현재 부호화단위의 크기가 상기 미리 결정된 크기와 동일하거나 작으면, 상기 현재 부호화단위를 위한 분할 정보는 상기 비트스트림에 포함되지 않고,
    상기 미리 결정된 크기는 상기 최소 크기와 동일하거나 상기 최소 크기보다 크며,
    상기 크기 제한 정보는 상기 현재 영상 단위에 포함된 복수의 부호화단위를 위해 사용되고, 상기 최소 크기에 대한 정보는 상기 현재 영상 단위를 포함하는 현재 시퀀스 단위에 포함된 복수의 부호화단위를 위해 사용되는, 기록매체.
KR1020237028388A 2015-05-12 2016-05-10 적응적인 순서로 결정되는 블록을 이용하여 영상을 부호화 또는 복호화하는 방법 및 장치 KR102660094B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562160247P 2015-05-12 2015-05-12
US62/160,247 2015-05-12
PCT/KR2016/004839 WO2016182298A1 (ko) 2015-05-12 2016-05-10 적응적인 순서로 결정되는 블록을 이용하여 영상을 부호화 또는 복호화하는 방법 및 장치
KR1020227041936A KR102570564B1 (ko) 2015-05-12 2016-05-10 적응적인 순서로 결정되는 블록을 이용하여 영상을 부호화 또는 복호화하는 방법 및 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020227041936A Division KR102570564B1 (ko) 2015-05-12 2016-05-10 적응적인 순서로 결정되는 블록을 이용하여 영상을 부호화 또는 복호화하는 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20230125351A true KR20230125351A (ko) 2023-08-29
KR102660094B1 KR102660094B1 (ko) 2024-04-23

Family

ID=

Also Published As

Publication number Publication date
CN107637077B (zh) 2021-11-12
KR102370375B1 (ko) 2022-03-04
CN113891073B (zh) 2023-04-18
CN113794880A (zh) 2021-12-14
KR102474249B1 (ko) 2022-12-05
KR20180006908A (ko) 2018-01-19
US11956419B2 (en) 2024-04-09
US11962752B2 (en) 2024-04-16
CN113891073A (zh) 2022-01-04
CN113794879B (zh) 2023-04-18
CN113794879A (zh) 2021-12-14
US20220210405A1 (en) 2022-06-30
KR20220029785A (ko) 2022-03-08
CN107637077A (zh) 2018-01-26
CN113794880B (zh) 2023-04-14
KR20220162889A (ko) 2022-12-08
EP3270590A4 (en) 2018-02-21
US20200359013A1 (en) 2020-11-12
US20200359012A1 (en) 2020-11-12
US20180139441A1 (en) 2018-05-17
US11956422B2 (en) 2024-04-09
US10785476B2 (en) 2020-09-22
US20220279164A1 (en) 2022-09-01
CN113810688A (zh) 2021-12-17
WO2016182298A1 (ko) 2016-11-17
CN113810688B (zh) 2023-07-18
EP3270590A1 (en) 2018-01-17
KR102570564B1 (ko) 2023-08-24
EP3661202A1 (en) 2020-06-03
US20220210406A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
KR102072733B1 (ko) 트리 구조에 따른 부호화 단위에 기초한 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR102570564B1 (ko) 적응적인 순서로 결정되는 블록을 이용하여 영상을 부호화 또는 복호화하는 방법 및 장치
JP5832680B2 (ja) ビデオデータを復号化する方法及び装置
JP5945026B2 (ja) 任意的なパーティションを利用した動き補償によるビデオ復号化方法及びその装置
JP5997317B2 (ja) ビデオ復号化方法及びビデオ復号化装置
JP5718941B2 (ja) スキップ及び分割順序を考慮したビデオ符号化方法とその装置、及びビデオ復号化方法とその装置
KR102317682B1 (ko) 인트라 예측을 수반한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20110083369A (ko) 디블로킹 필터링을 이용한 비디오 부호화 방법과 그 장치, 및 디블로킹 필터링을 이용한 비디오 복호화 방법 및 그 장치
KR20110112178A (ko) 변환 인덱스를 이용하는 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법 및 그 장치
KR20130088087A (ko) 계층적 데이터 단위의 양자화 파라메터 예측을 포함하는 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치
KR102660094B1 (ko) 적응적인 순서로 결정되는 블록을 이용하여 영상을 부호화 또는 복호화하는 방법 및 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right