KR20230123453A - Novel variant of transporter and method for preparing L-aromatic amino acid using the same - Google Patents

Novel variant of transporter and method for preparing L-aromatic amino acid using the same Download PDF

Info

Publication number
KR20230123453A
KR20230123453A KR1020230098040A KR20230098040A KR20230123453A KR 20230123453 A KR20230123453 A KR 20230123453A KR 1020230098040 A KR1020230098040 A KR 1020230098040A KR 20230098040 A KR20230098040 A KR 20230098040A KR 20230123453 A KR20230123453 A KR 20230123453A
Authority
KR
South Korea
Prior art keywords
leu
gly
ala
val
ile
Prior art date
Application number
KR1020230098040A
Other languages
Korean (ko)
Inventor
김현영
양철민
신원주
김용수
조영일
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Priority to KR1020230098040A priority Critical patent/KR20230123453A/en
Publication of KR20230123453A publication Critical patent/KR20230123453A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 수송단백질 신규 변이체 및 이를 이용한 L-방향족 아미노산 생산 방법에 관한 것으로, 상기 수송단백질 변이체는 암모늄 수송단백질, 아데닌 수송단백질 또는 FMN/FAD 수송단백질을 구성하는 아미노산 서열 중 하나 이상의 아미노산이 치환됨으로써 단백질 활성이 변화되어, 이를 포함하는 재조합 미생물은 L-방향족 아미노산을 효율적으로 생산할 수 있다.The present invention relates to a novel variant of transport protein and a method for producing L-aromatic amino acids using the same, wherein the transport protein variant is obtained by substituting at least one amino acid in the amino acid sequence constituting ammonium transport protein, adenine transport protein or FMN/FAD transport protein. As the protein activity is changed, recombinant microorganisms containing the same can efficiently produce L-aromatic amino acids.

Description

수송단백질 신규 변이체 및 이를 이용한 L-방향족 아미노산 생산 방법{Novel variant of transporter and method for preparing L-aromatic amino acid using the same}Novel variant of transporter and method for preparing L-aromatic amino acid using the same}

본 발명은 수송단백질 신규 변이체 및 이를 이용한 L-방향족 아미노산 생산 방법에 관한 것이다.The present invention relates to a novel variant of transport protein and a method for producing L-aromatic amino acids using the same.

아미노산은 곁사슬의 성질에 따라 소수성, 친수성, 염기성 및 산성 아미노산으로 구분되며, 이들 중 벤젠 고리를 갖는 아미노산을 방향족 아미노산이라 한다. 방향족 아미노산에는 페닐알라닌, 티로신 및 트립토판이 있으며, 페닐알라닌과 트립토판은 생체 내에서 합성되지 않는 필수 아미노산으로 전세계적으로 연간 3000억 달러 규모의 시장을 형성하고 있는 고부가가치 산업에 해당한다.Amino acids are classified into hydrophobic, hydrophilic, basic and acidic amino acids according to the nature of their side chains, and among them, amino acids having a benzene ring are called aromatic amino acids. Aromatic amino acids include phenylalanine, tyrosine, and tryptophan, and phenylalanine and tryptophan are essential amino acids that are not synthesized in vivo and correspond to high value-added industries that form a market worth $300 billion annually worldwide.

방향족 아미노산의 생산은 자연상태에서 수득된 야생형 균주나 이의 아미노산 생산능이 향상되도록 변형된 변이주를 이용할 수 있다. 최근에는 방향족 아미노산의 생산 효율을 개선시키기 위해 L-아미노산과 같은 유용물질 생산에 많이 이용되는 대장균, 코리네박테리움 등의 미생물을 대상으로 유전자 재조합 기술을 적용하여 우수한 L-방향족 아미노산 생산능을 갖는 다양한 재조합 균주 또는 변이주 및 이를 이용한 L-방향족 아미노산 생산 방법이 개발되고 있다. 특히 L-방향족 아미노산의 생합성 경로에 관여하는 효소, 전사인자, 수송 단백질 등의 유전자를 대상으로 하거나, 또는 이들의 발현을 조절하는 프로모터에 변이를 유도하여 해당 아미노산의 생산량을 증대시키려는 시도가 있었다. 그러나 L-방향족 아미노산 생산에 직간접적으로 연관된 효소, 전사인자, 수송 단백질 등 단백질의 종류가 수십여 종에 이르기 때문에 이러한 단백질의 활성 변화에 따른 L-방향족 아미노산 생산능 증가 여부에 관해 여전히 많은 연구가 필요한 실정이다.For the production of aromatic amino acids, a wild-type strain obtained in nature or a mutant strain modified to improve its amino acid production ability may be used. Recently, in order to improve the production efficiency of aromatic amino acids, genetic recombination technology is applied to microorganisms such as Escherichia coli and Corynebacterium, which are widely used in the production of useful substances such as L-amino acids, to produce excellent L-aromatic amino acids. Various recombinant strains or mutant strains and L-aromatic amino acid production methods using the same are being developed. In particular, attempts have been made to increase the production of the amino acid by targeting genes involved in the biosynthetic pathway of L-aromatic amino acids, such as enzymes, transcription factors, and transport proteins, or by inducing mutations in promoters that control their expression. However, since there are dozens of types of proteins such as enzymes, transcription factors, and transport proteins directly or indirectly related to L-aromatic amino acid production, there are still many studies on whether the L-aromatic amino acid production ability increases due to changes in the activity of these proteins. It is necessary.

한국 등록특허 제10-1830002호Korean Patent Registration No. 10-1830002

본 발명은 신규한 수송단백질 변이체를 제공하는 것을 목적으로 한다.The present invention aims to provide novel transport protein variants.

또한, 본 발명은 상기 변이체를 암호화하는 폴리뉴클레오티드를 제공한다.In addition, the present invention provides a polynucleotide encoding the variant.

또한, 본 발명은 상기 변이체 또는 폴리뉴클레오티드를 포함하는 형질전환체를 제공한다.In addition, the present invention provides a transformant comprising the variant or polynucleotide.

또한, 본 발명은 상기 형질전환체를 이용한 L-방향족 아미노산의 생산 방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method for producing L-aromatic amino acids using the transformant.

본 발명의 일 양상은 서열번호 3의 아미노산 서열에서 363번째 글리신이 아스파르트산으로 치환된, 서열번호 1의 아미노산 서열로 이루어진 암모늄 수송단백질 변이체; 서열번호 7의 아미노산 서열에서 136번째 트립토판이 종결 코돈으로 치환된, 서열번호 5의 아미노산 서열로 이루어진 아데닌 수송단백질 변이체; 및 서열번호 11의 아미노산 서열에서 272번째 글리신이 글루타민으로 치환된, 서열번호 9의 아미노산 서열로 이루어진 FMN/FAD 수송단백질 변이체로 이루어진 군에서 선택된 변이체를 제공한다.One aspect of the present invention is an ammonium transport protein variant consisting of the amino acid sequence of SEQ ID NO: 1, in which glycine at position 363 in the amino acid sequence of SEQ ID NO: 3 is substituted with aspartic acid; an adenine transport protein variant consisting of the amino acid sequence of SEQ ID NO: 5, in which tryptophan at position 136 in the amino acid sequence of SEQ ID NO: 7 is substituted with a stop codon; And it provides a variant selected from the group consisting of a FMN/FAD transport protein variant consisting of the amino acid sequence of SEQ ID NO: 9 in which glycine at position 272 in the amino acid sequence of SEQ ID NO: 11 is substituted with glutamine.

본 발명에서 사용된 ”수송단백질(transporter)”은 세포막을 통해 이온, 화학물질, 단백질 등 다양한 물질의 이동을 담당하는 단백질의 총칭으로, 수송단백질은 수송되는 물질에 대한 특이성을 가지고 있다. 이러한 수송단백질은 크게 막상에 내부와 외부를 관통하는 구멍을 형성하여 물질의 이동 통로가 되는 통로 단백질과 단백질의 구조적 변형을 통해 운반 물질의 결합부위를 막을 가로질러 이동시키는 수송체와 같은 운반체 단백질로 구분된다. As used in the present invention, "transporter" is a general term for proteins responsible for the movement of various substances such as ions, chemicals, and proteins through cell membranes, and transport proteins have specificity for transported substances. These transport proteins are broadly divided into a channel protein, which becomes a passage for substances by forming holes penetrating the inside and outside of the membrane, and a carrier protein, such as a transporter, which moves the binding site of a transport substance across a membrane through structural transformation of the protein. Separated.

본 발명에서 사용된 "암모ˆH 수송단백질”, "아데닌 수송단백질” 및 " FMN/FAD 수송단백질”은 모두 운반체 단백질에 해당되며, 각각 암모늄, 아데닌 및 FMN(flavin mononucleotide)/FAD(flavin adenine dinucleotide)만을 특이적으로 외부로 배출시키는 특성을 가진다."AmmoH transport protein", "adenine transport protein" and "FMN/FAD transport protein" used in the present invention all correspond to carrier proteins, and are respectively ammonium, adenine and FMN (flavin mononucleotide) / FAD (flavin adenine dinucleotide) ) has the characteristic of specifically discharging only to the outside.

상기 수송단백질은 각 수송단백질을 암호화하는 유전자 또는 이와 실질적 동일성을 가지는 서열일 수 있다. 여기서 “실질적 동일성”이란 각각의 유전자 서열, 즉 염기서열 또는 뉴클레오티드 서열과 임의의 다른 뉴클레오티드 서열을 최대한 대응되도록 정렬하여 분석하였을 때 상기 임의의 다른 뉴클레오티드 서열이 각각의 뉴클레오티드 서열과 70% 이상, 80% 이상, 90% 이상 또는 98% 이상의 서열 상동성을 가지는 것을 의미한다.The transport protein may be a gene encoding each transport protein or a sequence having substantial identity thereto. Here, "substantial identity" means that each gene sequence, that is, a nucleotide sequence or nucleotide sequence, and any other nucleotide sequence are aligned and analyzed to maximize correspondence, and any other nucleotide sequence is at least 70% or 80% of each nucleotide sequence It means having a sequence homology of at least 90% or more or 98% or more.

본 발명에서의 암모늄 수송단백질은 amtB 유전자에 의해 암호화된 것으로, 서열번호 3의 아미노산 서열을 포함한다. The ammonium transport protein in the present invention is encoded by the amtB gene and includes the amino acid sequence of SEQ ID NO: 3.

본 발명의 일 구체예에 따르면, 상기 서열번호 3의 아미노산 서열은 야생형 대장균에서 유래한 것일 수 있다.According to one embodiment of the present invention, the amino acid sequence of SEQ ID NO: 3 may be derived from wild-type E. coli.

본 발명에서의 아데닌 수송단백질은 yicO 유전자에 의해 암호화된 것으로, 서열번호 7의 아미노산 서열을 포함한다. The adenine transport protein in the present invention is encoded by the yicO gene and includes the amino acid sequence of SEQ ID NO: 7.

본 발명의 일 구체예에 따르면, 상기 서열번호 7의 아미노산 서열은 야생형 대장균에서 유래한 것일 수 있다.According to one embodiment of the present invention, the amino acid sequence of SEQ ID NO: 7 may be derived from wild-type E. coli.

본 발명에서의 FMN/FAD 수송단백질은 yeeO 유전자에 의해 암호화된 것으로, 서열번호 11의 아미노산 서열을 포함한다. The FMN/FAD transport protein in the present invention is encoded by the yeeO gene and includes the amino acid sequence of SEQ ID NO: 11.

본 발명의 일 구체예에 따르면, 상기 서열번호 11의 아미노산 서열은 야생형 대장균에서 유래한 것일 수 있다.According to one embodiment of the present invention, the amino acid sequence of SEQ ID NO: 11 may be derived from wild-type E. coli.

본 발명에서 사용된 “변이체”는 특정 유전자의 아미노산 서열 중 N-말단, C-말단 및/또는 내부에서 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)되어 상기 변이체의 변이 전 아미노산 서열과 상이하나 기능(functions) 또는 특성(properties)이 유지되는 폴리펩티드를 의미한다. 여기서 “보존적 치환”이란 하나의 아미노산을 구조적 및/또는 화학적 성질이 유사한 다른 아미노산으로 치환시키는 것을 의미하며, 단백질 또는 폴리펩티드의 활성에 거의 영향을 미치지 않거나, 또는 전혀 영향을 미치지 않을 수 있다. 또한, 변이체는 N-말단 리더 서열 또는 막전이 도메인(transmembrane domain)과 같은 하나 이상의 부분이 제거되거나, 또는 성숙 단백질(mature protein)의 N- 및/또는 C-말단으로부터 일부분이 제거된 것을 포함한다. 이러한 변이체는 그 능력이 변이 전 폴리펩티드에 비하여 증가되거나, 변하지 않거나, 또는 감소될 수 있다. 본 발명에서는 변이체가 변이형, 변형, 변이형 폴리펩티드, 변이된 단백질, 변이 등과 혼용될 수 있다.As used in the present invention, “variant” refers to a variation of the variant by conservative substitution and/or modification of one or more amino acids at the N-terminus, C-terminus, and/or within the amino acid sequence of a specific gene. A polypeptide that differs from the full amino acid sequence but retains functions or properties. As used herein, "conservative substitution" means substitution of one amino acid with another amino acid having similar structural and/or chemical properties, and may have little or no effect on the activity of a protein or polypeptide. Variants also include those in which one or more portions are removed, such as the N-terminal leader sequence or transmembrane domain, or portions are removed from the N- and/or C-terminus of the mature protein. . Such variants may have increased, unchanged, or reduced abilities relative to the polypeptide before the mutation. In the present invention, variants may be mixed with variants, variants, variant polypeptides, mutated proteins, and variants.

본 발명에서의 변이체는 서열번호 3의 아미노산 서열에서 363번째 위치한 아미노산인 글리신이 아스파르트산으로 치환된 암모늄 수송단백질 변이체로, 서열번호 1의 아미노산 서열로 이루어진 것일 수 있다.The variant in the present invention is an ammonium transport protein mutant in which glycine, the 363rd position amino acid in the amino acid sequence of SEQ ID NO: 3, is substituted with aspartic acid, and may be composed of the amino acid sequence of SEQ ID NO: 1.

또한, 본 발명에서의 변이체는 서열번호 7의 아미노산 서열에서 136번째 위치한 아미노산인 트립토판이 종결 코돈으로 치환된 아데닌 수송단백질 변이체로, 서열번호 5의 아미노산 서열로 이루어진 것일 수 있다.In addition, the variant in the present invention may be an adenine transport protein variant in which tryptophan, an amino acid located at position 136 in the amino acid sequence of SEQ ID NO: 7, is substituted with a stop codon, and may be composed of the amino acid sequence of SEQ ID NO: 5.

또한, 본 발명에서의 변이체는 서열번호 11의 아미노산 서열에서 272번째 위치한 아미노산인 글리신이 글루타민으로 치환된 FMN/FAD 수송단백질 변이체로, 서열번호 9의 아미노산 서열로 이루어진 것일 수 있다.In addition, the variant in the present invention may be an FMN/FAD transport protein variant in which glutamine is substituted for glycine, which is the 272nd amino acid in the amino acid sequence of SEQ ID NO: 11, and may consist of the amino acid sequence of SEQ ID NO: 9.

본 발명의 다른 양상은 상기 암모늄 수송단백질 변이체, 아데닌 수송단백질 변이체 또는 FMN/FAD 수송단백질 변이체를 암호화하는 폴리뉴클레오티드를 제공한다.Another aspect of the present invention provides a polynucleotide encoding the ammonium transport protein variant, adenine transport protein variant or FMN/FAD transport protein variant.

본 발명에서 사용된 “폴리뉴클레오티드(polynucleotide)”는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 변이체를 암호화하는 폴리뉴클레오티드 단편을 의미한다.As used in the present invention, "polynucleotide" is a polymer of nucleotides in which nucleotide monomers are connected in a long chain shape by covalent bonds, and is a DNA or RNA strand of a certain length or more, more specifically, the variant It means a polynucleotide fragment that encodes.

상기 폴리뉴클레오티드는 서열번호 1, 5 또는 9의 아미노산 서열을 암호화하는 염기서열을 포함할 수 있다.The polynucleotide may include a nucleotide sequence encoding the amino acid sequence of SEQ ID NO: 1, 5 or 9.

본 발명의 일 구체예에 따르면, 상기 폴리뉴클레오티드는 서열번호 2, 6 또는 10으로 표시되는 염기서열을 포함하는 것일 수 있다.According to one embodiment of the present invention, the polynucleotide may include a nucleotide sequence represented by SEQ ID NO: 2, 6 or 10.

보다 구체적으로, 상기 암모늄 수송단백질 변이체를 암호화하는 폴리뉴클레오티드는 서열번호 2로 표시되는 염기서열을 포함하고, 상기 아데닌 수송단백질 변이체를 암호화하는 폴리뉴클레오티드는 서열번호 6으로 표시되는 염기서열을 포함하고, 상기 FMN/FAD 수송단백질 변이체를 암호화하는 폴리뉴클레오티드는 서열번호 10으로 표시되는 염기서열을 포함한다.More specifically, the polynucleotide encoding the ammonium transport protein variant comprises the nucleotide sequence represented by SEQ ID NO: 2, and the polynucleotide encoding the adenine transport protein variant comprises the nucleotide sequence represented by SEQ ID NO: 6, The polynucleotide encoding the FMN/FAD transport protein variant includes the nucleotide sequence represented by SEQ ID NO: 10.

본 발명의 다른 양상은 상기 암모늄 수송단백질 변이체, 아데닌 수송단백질 변이체 또는 FMN/FAD 수송단백질 변이체를 암호화하는 폴리뉴클레오티드를 포함하는 벡터를 제공한다.Another aspect of the present invention provides a vector comprising a polynucleotide encoding the ammonium transport protein variant, adenine transport protein variant or FMN/FAD transport protein variant.

또한, 본 발명의 다른 양상은 상기 암모늄 수송단백질 변이체, 아데닌 수송단백질 변이체 또는 FMN/FAD 수송단백질 변이체, 또는 이의 폴리뉴클레오티드를 포함하는 형질전환체를 제공한다.In addition, another aspect of the present invention provides a transformant comprising the ammonium transport protein variant, adenine transport protein variant or FMN/FAD transport protein variant, or a polynucleotide thereof.

본 발명에서 사용된 “벡터(vector)”는 숙주세포에 목적 유전자를 전달하여 발현시키기 위한 수단으로 사용되는 모든 유형의 핵산 서열 운반 구조체를 의미한다. 상기 벡터는 특별한 언급이 없는 한, 담지된 핵산 서열이 숙주세포 유전체 내 삽입되어 발현되도록 하는 것 및/또는 독자적으로 발현되도록 하는 것을 의미할 수 있다. 이러한 벡터는 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절요소를 포함하며, “작동가능하게 연결된(operably linked)”이란 목적 유전자와 이의 조절 서열이 서로 기능적으로 결합되어 유전자 발현을 가능케 하는 방식으로 연결된 것을 의미하고, “조절요소”는 전사를 수행하기 위한 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 암호화하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함한다.The term "vector" used in the present invention refers to any type of nucleic acid sequence delivery structure used as a means for transferring and expressing a gene of interest in a host cell. Unless otherwise specified, the vector may refer to a carrier nucleic acid sequence inserted into the genome of a host cell to be expressed and/or independently expressed. Such a vector contains essential regulatory elements operably linked to express the gene insert, and "operably linked" means that a target gene and its regulatory sequence are linked in such a way as to enable gene expression by being functionally linked to each other. It means that, "regulatory element" includes a promoter for performing transcription, an arbitrary operator sequence for regulating transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence for regulating termination of transcription and translation.

본 발명에서 사용되는 벡터는 숙주세포 내에서 복제 가능한 것이라면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 상기 벡터의 일례로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들면, 파지 벡터 또는 코스미드 벡터로는 pWE15, M13, λMBL3, λMBL4, λIXII, λASHII, λAPII, λt10, λt11, Charon4A, Charon21A 등이 있으며, 플라스미드 벡터로는 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등이 있으나, 이에 한정되는 것은 않는다.The vector used in the present invention is not particularly limited as long as it can be replicated in a host cell, and any vector known in the art can be used. Examples of the vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages. For example, phage vectors or cosmid vectors include pWE15, M13, λMBL3, λMBL4, λIXII, λASHII, λAPII, λt10, λt11, Charon4A, Charon21A, etc., and plasmid vectors include pBR, pUC, pBluescriptII, There are pGEM-based, pTZ-based, pCL-based and pET-based, etc., but are not limited thereto.

상기 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 발현을 위한 벡터는 당업계에서 식물, 동물 또는 미생물에서 외래의 유전자 또는 단백질을 발현하는데 사용되는 통상의 것을 사용할 수 있으며, 당업계에 공지된 다양한 방법을 통해 구축될 수 있다.The vector may typically be constructed as a vector for cloning or as a vector for expression. Vectors for expression may be conventional ones used in the art to express foreign genes or proteins in plants, animals, or microorganisms, and may be constructed through various methods known in the art.

재조합 벡터는 원핵세포 또는 진핵세포를 숙주로 하여 구축될 수 있다. 예를 들어, 사용되는 벡터가 발현 벡터이고 원핵세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예컨대, pLλ프로모터, CMV 프로모터, trp 프로모터, lac 프로모터, tac 프로모터, T7 프로모터), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 진핵세포를 숙주로 하는 경우에는, 벡터에 포함되는 진핵세포에서 작동하는 복제원점은 f1 복제원점, SV40 복제원점, pMB1 복제원점, 아데노 복제원점, AAV 복제원점 및 BBV 복제원점 등을 포함하나, 이에 한정되는 것은 아니다. 또한, 포유동물 세포의 게놈으로부터 유래된 프로모터 (예컨대, 메탈로 티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터 (예컨대, 아데노 바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토 메갈로 바이러스 프로모터, HSV의 tk 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 가진다.Recombinant vectors can be constructed using prokaryotic or eukaryotic cells as hosts. For example, when the vector used is an expression vector and a prokaryotic cell is used as a host, a strong promoter capable of promoting transcription (e.g., pLλ promoter, CMV promoter, trp promoter, lac promoter, tac promoter, T7 promoter); It is common to include a ribosome binding site for initiation of translation and a transcription/translation termination sequence. In the case of using a eukaryotic cell as a host, the replication origins included in the vector include the f1 origin of replication, the SV40 origin of replication, the pMB1 origin of replication, the adeno origin of replication, the AAV origin of replication, and the BBV origin of replication. It is not limited. In addition, promoters derived from the genome of mammalian cells (eg, metallotionine promoter) or promoters derived from mammalian viruses (eg, adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, cytomegalovirus promoter) , the tk promoter of HSV) can be used, and usually has a polyadenylation sequence as a transcription termination sequence.

상기 재조합 벡터는 선택 마커(selection marker)를 포함할 수 있는데, 상기 선택 마커는 벡터로 형질전환된 형질전환체 (숙주세포)를 선별하기 위한 것으로 상기 선택 마커가 처리된 배지에서 선택 마커를 발현하는 세포만 생존할 수 있기 때문에, 형질전환된 세포의 선별이 가능하다. 상기 선택 마커는 대표적인 예로 카나마이신, 스트렙토마이신, 클로람페니콜 등이 있으나, 이에 한정되는 것은 아니다.The recombinant vector may include a selection marker. The selection marker is for selecting a transformant (host cell) transformed with the vector and expresses the selection marker in a medium treated with the selection marker. Since only cells are viable, selection of transformed cells is possible. Representative examples of the selectable marker include kanamycin, streptomycin, and chloramphenicol, but are not limited thereto.

재조합 벡터를 숙주세포에 삽입함으로써 형질전환체를 만들 수 있으며, 상기 형질전환체는 재조합 벡터를 적절한 숙주세포에 도입시킴으로써 얻어진 것일 수 있다. 숙주세포는 상기 발현벡터를 안정되면서 연속적으로 클로닝 또는 발현시킬 수 있는 세포로서 당업계에 공지된 어떠한 숙주세포도 이용할 수 있다.A transformant may be produced by inserting the recombinant vector into a host cell, and the transformant may be obtained by introducing the recombinant vector into an appropriate host cell. The host cell is a cell capable of stably and continuously cloning or expressing the expression vector, and any host cell known in the art may be used.

재조합 미생물을 제작하기 위하여 원핵세포에 형질전환시키는 경우에는 숙주세포로서 E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, E. coli XL1-Blue와 같은 대장균 속 균주, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 살모넬라 티피무리움, 세라티아 마르세슨스 및 슈도모나스 종과 같은 다양한 장내균과 균주 등이 이용되는 것일 수 있으나, 이에 한정되는 것은 아니다.When transforming prokaryotic cells to prepare recombinant microorganisms, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli X 1776, E. coli as host cells. Escherichia coli W3110, E. coli XL1-Blue, Bacillus subtilis, Bacillus thuringiensis, and various intestinal bacteria and strains, such as Salmonella typhimurium, Serratia marcessons, and Pseudomonas species. It may be used, but is not limited thereto.

재조합 미생물을 제작하기 위하여 진핵세포에 형질전환을 하는 경우에는 숙주세포로서 효모 (예컨대, 사카로마이세스 세레비지에), 곤충 세포, 식물 세포 및 동물 세포, 예를 들어, Sp2/0, CHO K1, CHO DG44, PER.C6, W138, BHK, COS7, 293, HepG2, Huh7, 3T3, RIN, MDCK 세포주 등이 이용될 수 있으나, 이에 한정되는 것은 아니다.When transforming eukaryotic cells to produce recombinant microorganisms, yeast (eg, Saccharomyces cerevisiae), insect cells, plant cells and animal cells, such as Sp2/0 and CHO K1 as host cells , CHO DG44, PER.C6, W138, BHK, COS7, 293, HepG2, Huh7, 3T3, RIN, MDCK cell lines, etc. may be used, but are not limited thereto.

본 발명에서 사용된 “형질전환(transformation)”은 외부 DNA를 숙주세포 내로 도입하여 인위적으로 유전적인 변화를 일으키는 현상을 의미하며, “형질전환체(transformat)”는 외부 DNA가 도입되어 목적 유전자의 발현을 안정적으로 유지하는 숙주세포를 의미한다.As used in the present invention, “transformation” refers to a phenomenon in which external DNA is introduced into a host cell to artificially cause genetic changes, and “transformat” refers to the introduction of external DNA into a target gene. It refers to a host cell that stably maintains expression.

상기 형질전환은 숙주세포에 따라 적합한 벡터 도입 기술이 선택되어 목적 유전자 또는 이를 포함하는 재조합 벡터를 숙주세포 내에서 발현시킬 수 있다. 예를 들면, 벡터 도입은 전기천공법(electroporation), 열 충격(heat-shock), 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 미세주입법(microinjection), 폴리에틸렌글리콜(PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 초산 리튬-DMSO법, 또는 이들의 조합에 의해 수행될 수 있으나, 이에 한정되는 것은 아니다. 형질전환된 유전자는 숙주세포 내에서 발현될 수 있으면 숙주세포의 염색체 내 삽입 또는 염색체 외에 위치하고 있는 것이든 제한하지 않고 포함될 수 있다.In the transformation, a suitable vector introduction technique is selected according to the host cell, and the target gene or a recombinant vector containing the same can be expressed in the host cell. For example, vector introduction can be performed by electroporation, heat-shock, calcium phosphate (CaPO4) precipitation, calcium chloride (CaCl2) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE- It may be performed by a dextran method, a cationic liposome method, a lithium acetate-DMSO method, or a combination thereof, but is not limited thereto. The transformed gene may be included without limitation, whether it is inserted into the chromosome of the host cell or located outside the chromosome, as long as it can be expressed in the host cell.

상기 형질전환체는 생체내 또는 시험관내에서 본 발명에 따른 재조합 벡터로 형질감염, 형질전환, 또는 감염된 세포를 포함하며, 재조합 숙주세포, 재조합 세포 또는 재조합 미생물과 동일한 용어로 사용될 수 있다.The transformant includes cells transfected, transformed, or infected with the recombinant vector according to the present invention in vivo or in vitro, and may be used as the same term as recombinant host cell, recombinant cell, or recombinant microorganism.

본 발명의 일 구체예에 따르면, 상기 형질전환체는 에스케리치아(Escherichia) 속 균주인 것일 수 있다.According to one embodiment of the present invention, the transformant may be an Escherichia genus strain.

상기 에스케리치아 속 균주로는 에스케리치아 콜라이(Escherichia coli), 에스케리치아 알베르티(Escherichia albertii), 에스케리치아 블라태(Escherichia blattae), 에스케리치아 퍼구소니(Escherichia fergusonii), 에스케리치아 헤르만니(Escherichia hermannii), 에스케리치아 불네리스(Escherichia vulneris) 등이 있으나, 이에 한정되는 것은 아니다.The Escherichia genus strains include Escherichia coli , Escherichia albertii, Escherichia blattae , Escherichia fergusonii , Escherichia hermann Ni ( Escherichia hermannii ), Escherichia vulneris ( Escherichia vulneris ), etc., but are not limited thereto.

본 발명에서의 형질전환체는 전술한 수송단백질 변이체 또는 이를 암호화하는 폴리뉴클레오티드를 포함하거나, 또는 이를 포함하는 벡터를 포함하는 균주, 상기 수송단백질 변이체 또는 폴리뉴클레오티드를 발현하는 균주, 또는 상기 수송단백질 변이체에 대한 활성을 가지는 균주일 수 있으나, 이에 한정되는 것은 아니다.The transformant in the present invention includes the above-described transport protein variant or a polynucleotide encoding the same, or a strain containing a vector containing the same, a strain expressing the transport protein variant or polynucleotide, or the transport protein variant It may be a strain having activity against, but is not limited thereto.

본 발명의 일 구체예에 따르면, 상기 형질전환체는 L-방향족 아미노산 생산능을 가지는 것일 수 있다.According to one embodiment of the present invention, the transformant may have the ability to produce L-aromatic amino acids.

상기 형질전환체는 자연적으로 L-방향족 아미노산 생산능을 가지고 있거나, 또는 인위적으로 L-방향족 아미노산 생산능이 부여된 것일 수 있다.The transformant may naturally have the ability to produce L-aromatic amino acids or may be artificially endowed with the ability to produce L-aromatic amino acids.

본 발명의 일 구체예에 따르면, 상기 형질전환체는 암모늄 수송단백질 변이체, 아데닌 수송단백질 변이체 또는 FMN/FAD 수송단백질의 활성이 변화되어 L-방향족 아미노산 생산능이 향상된 것일 수 있다.According to one embodiment of the present invention, the transformant may be an ammonium transport protein variant, an adenine transport protein variant, or an L-aromatic amino acid production ability improved by changing the activity of FMN/FAD transport protein.

본 발명에서 사용된 “생산능이 향상된”은 모균주에 비해 L-방향족 아미노산의 생산성이 증가된 것을 의미한다. 상기 모균주는 변이의 대상이 되는 야생형 또는 변이주를 의미하며, 직접 변이의 대상이 되거나 재조합된 벡터 등으로 형질전환되는 대상을 포함한다. 본 발명에 있어서, 모균주는 야생형 에스케리치아 속 균주 또는 야생형으로부터 변이된 에스케리치아 속 균주일 수 있다.“Improved productivity” used in the present invention means increased productivity of L-aromatic amino acids compared to the parent strain. The parent strain refers to a wild-type or mutant strain subject to mutation, and includes a subject subject to direct mutation or transformed into a recombinant vector. In the present invention, the parent strain may be a wild-type strain of Escherichia genus or a strain of the genus Escherichia mutated from the wild-type strain.

본 발명에 따른 형질전환체는 암모늄 수송단백질 변이체, 아데닌 수송단백질 변이체 또는 FMN/FAD 수송단백질 변이체가 도입됨으로써 각 수송단백질의 활성이 변화하여 모균주에 비해 증가된 L-방향족 아미노산 생산능을 나타내며, 특히 모균주에 비해 L-방향족 아미노산 생산량이 10% 이상, 구체적으로는 10 내지 80% (바람직하게는 15 내지 60%) 증가되어 균주 배양액 1 ℓ 당 3.5 ~ 20 g의 L-방향족 아미노산을 생산할 수 있다.In the transformant according to the present invention, the activity of each transport protein is changed by introducing an ammonium transport protein variant, an adenine transport protein variant, or an FMN / FAD transport protein variant, thereby increasing L-aromatic amino acid production ability compared to the parent strain. In particular, the production of L-aromatic amino acids is increased by 10% or more, specifically 10 to 80% (preferably 15 to 60%) compared to the parent strain, so that 3.5 to 20 g of L-aromatic amino acids per liter of strain culture can be produced. there is.

본 발명의 다른 양상은 상기 형질전환체를 배지에서 배양하는 단계; 및 상기 형질전환체 또는 형질전환체가 배양된 배지로부터 L-방향족 아미노산을 회수하는 단계를 포함하는 L-방향족 아미노산의 생산 방법을 제공한다.Another aspect of the present invention is culturing the transformant in a medium; and recovering L-aromatic amino acids from the transformants or the medium in which the transformants are cultured.

상기 배양은 당업계에 알려진 적절한 배지와 배양 조건에 따라 이루어질 수 있으며, 통상의 기술자라면 배지 및 배양 조건을 용이하게 조정하여 사용할 수 있다. 구체적으로, 상기 배지는 액체 배지일 수 있으나, 이에 한정되는 것은 아니다. 배양 방법은 예를 들면, 회분식 배양(batch culture), 연속식 배양(continuous culture), 유가식 배양(fed-batch culture) 또는 이들의 조합 배양을 포함할 수 있으나, 이에 한정되는 것은 아니다.The culture may be performed according to appropriate media and culture conditions known in the art, and those skilled in the art can easily adjust and use the media and culture conditions. Specifically, the medium may be a liquid medium, but is not limited thereto. The culture method may include, for example, batch culture, continuous culture, fed-batch culture, or a combination culture thereof, but is not limited thereto.

본 발명의 일 구체예에 따르면, 상기 배지는 적절한 방식으로 특정 균주의 요건을 충족해야 하며, 통상의 기술자에 의해 적절하게 변형될 수 있다. 에스케리치아 속 균주에 대한 배양 배지는 공지된 문헌 (Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981)을 참조할 수 있으나, 이에 한정되는 것은 아니다.According to one embodiment of the present invention, the medium must meet the requirements of a particular strain in an appropriate way, and can be appropriately modified by a person skilled in the art. Culture medium for strains of the genus Escherichia may refer to known literature (Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981), but is not limited thereto.

본 발명의 일 구체예에 따르면, 배지에 다양한 탄소원, 질소원 및 미량원소 성분을 포함할 수 있다. 사용될 수 있는 탄소원으로는 글루코스, 수크로스, 락토스, 프락토스, 말토스, 전분, 셀룰로스와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있으나, 이에 한정되는 것은 아니다. 사용될 수 있는 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산 암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄이 포함될 수 있다. 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있으나 이에 한정되는 것은 아니다. 사용될 수 있는 인의 공급원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함될 수 있으며, 이에 한정되는 것은 아니다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 함유할 수 있으며, 이에 한정되는 것은 아니다. 그 외에, 아미노산 및 비타민과 같은 필수 성장 물질이 포함될 수 있다. 또한 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기 배지 또는 개별 성분은 배양과정에서 배양액에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있으나, 이에 한정되는 것은 아니다.According to one embodiment of the present invention, various carbon sources, nitrogen sources, and trace element components may be included in the medium. Carbon sources that can be used include sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, starch and cellulose, oils and fats such as soybean oil, sunflower oil, castor oil, coconut oil, palmitic acid, stearic acid, These include fatty acids such as linoleic acid, alcohols such as glycerol and ethanol, and organic acids such as acetic acid. These materials may be used individually or as a mixture, but are not limited thereto. Nitrogen sources that can be used include peptone, yeast extract, broth, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate. Nitrogen sources may also be used individually or as a mixture, but are not limited thereto. Sources of phosphorus that may be used include, but are not limited to, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts. In addition, the culture medium may contain metal salts such as magnesium sulfate or iron sulfate necessary for growth, but is not limited thereto. In addition, essential growth substances such as amino acids and vitamins may be included. Precursors suitable for the culture medium may also be used. The medium or individual components may be added in a batchwise or continuous manner by a method suitable for the culture medium during the culture process, but is not limited thereto.

본 발명의 일 구체예에 따르면, 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 미생물 배양액에 적절한 방식으로 첨가하여 배양액의 pH를 조정할 수 있다. 또한, 배양 중에 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 추가적으로, 배양액의 호기 상태를 유지하기 위하여, 배양액 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있다. 배양액의 온도는 통상 20℃ 내지 45℃, 예를 들면 25℃ 내지 40℃일 수 있다. 배양기간은 유용물질이 원하는 생산량으로 수득될 때까지 계속될 수 있으며, 예를 들면 10 내지 160 시간일 수 있다.According to one embodiment of the present invention, the pH of the culture medium can be adjusted by adding compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid to the microbial culture medium in an appropriate manner during cultivation. In addition, the formation of bubbles can be suppressed by using an antifoaming agent such as a fatty acid polyglycol ester during cultivation. Additionally, in order to maintain the aerobic state of the culture medium, oxygen or oxygen-containing gas (eg, air) may be injected into the culture medium. The temperature of the culture medium may be usually 20 ° C to 45 ° C, for example, 25 ° C to 40 ° C. The culturing period may be continued until useful substances are obtained in a desired yield, and may be, for example, 10 to 160 hours.

본 발명의 일 구체예에 따르면, 상기 배양된 형질전환체 또는 형질전환체가 배양된 배지에서 L-방향족 아미노산을 회수하는 단계는 배양 방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배지로부터 생산된 L-방향족 아미노산을 수집 또는 회수할 수 있다. 예를 들면 원심분리, 여과, 추출, 분무, 건조, 증발, 침전, 결정화, 전기영동, 분별용해 (예를 들면, 암모늄 설페이트 침전), 크로마토그래피 (예를 들면, 이온 교환, 친화성, 소수성 및 크기배제) 등의 방법을 사용할 수 있으나, 이에 한정되는 것은 않는다.According to one embodiment of the present invention, the step of recovering L-aromatic amino acids from the cultured transformants or the medium in which the transformants are cultured is produced from the medium using a suitable method known in the art according to the culture method. L-aromatic amino acids can be collected or recovered. For example, centrifugation, filtration, extraction, spraying, drying, evaporation, precipitation, crystallization, electrophoresis, fractionation (eg ammonium sulfate precipitation), chromatography (eg ion exchange, affinity, hydrophobicity and Size exclusion) may be used, but is not limited thereto.

본 발명의 일 구체예에 따르면, 상기 L-방향족 아미노산을 회수하는 단계는 배양 배지를 저속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을 이온교환 크로마토그래피를 통하여 분리할 수 있다.According to one embodiment of the present invention, in the step of recovering the L-aromatic amino acid, the culture medium is centrifuged at low speed to remove biomass, and the obtained supernatant may be separated through ion exchange chromatography.

본 발명의 일 구체예에 따르면, 상기 L-방향족 아미노산을 회수하는 단계는 L-방향족 아미노산을 정제하는 공정을 포함할 수 있다.According to one embodiment of the present invention, the step of recovering the L-aromatic amino acid may include a step of purifying the L-aromatic amino acid.

본 발명의 일 구체예에 따르면, 상기 L-방향족 아미노산은 L-트립토판, L-페닐알라닌 및 L-티로신으로 이루어진 군에서 선택된 1종 이상인 것일 수 있다.According to one embodiment of the present invention, the L- aromatic amino acid may be at least one selected from the group consisting of L-tryptophan, L-phenylalanine and L-tyrosine.

본 발명에 따른 수송단백질 변이체는 암모늄 수송단백질, 아데닌 수송단백질 또는 FMN/FAD 수송단백질을 구성하는 아미노산 서열 중 하나 이상의 아미노산이 치환됨으로써 단백질 활성이 변화되어, 이를 포함하는 재조합 미생물은 L-방향족 아미노산을 효율적으로 생산할 수 있다.In the transport protein variant according to the present invention, the protein activity is changed by substituting one or more amino acids in the amino acid sequence constituting the ammonium transport protein, adenine transport protein, or FMN/FAD transport protein, and the recombinant microorganisms containing the same have L-aromatic amino acids. can be produced efficiently.

도 1은 본 발명의 일 실시예에 따른 플라스미드 pDSG의 구조를 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 플라스미드 pDS9의 구조를 나타낸 것이다.
1 shows the structure of a plasmid pDSG according to an embodiment of the present invention.
Figure 2 shows the structure of plasmid pDS9 according to an embodiment of the present invention.

이하, 본 발명을 보다 상세하게 설명한다. 그러나, 이러한 설명은 본 발명의 이해를 돕기 위하여 예시적으로 제시된 것일 뿐, 본 발명의 범위가 이러한 예시적인 설명에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail. However, these descriptions are merely presented as examples to aid understanding of the present invention, and the scope of the present invention is not limited by these exemplary descriptions.

실시예 1. 암모늄 수송단백질 변이체를 발현하는 균주 제작Example 1. Construction of strains expressing ammonium transport protein variants

암모늄 수송단백질의 아미노산 서열 (서열번호 3) 중 363번째 위치한 글리신이 아스파르트산으로 치환된 변이체가 L-방향족 아미노산의 생산에 미치는 영향을 확인하기 위해 상기 암모늄 수송단백질 변이체를 발현하는 벡터 및 상기 벡터가 도입된 균주를 제작하였다. 균주 내 암모늄 수송단백질 변이체의 유전자 삽입을 위해 플라스미드 pDSG 및 pDS9를 사용하여 다음과 같이 제작하였다.In order to confirm the effect of a variant in which glycine at position 363 of the amino acid sequence (SEQ ID NO: 3) of the ammonium transport protein is substituted with aspartic acid on the production of L-aromatic amino acids, a vector expressing the ammonium transport protein variant and the vector The introduced strain was prepared. For gene insertion of the ammonium transport protein variant in the strain, it was constructed as follows using plasmids pDSG and pDS9.

여기서 플라스미드 pDSG는 대장균에서만 작용하는 복제원점을 가지며, 암피실린 내성 유전자 및 가이드 RNA(gRNA) 발현 기전을 가진다. 플라스미드 pDS9는 대장균에서만 작용하는 복제원점을 가지며, 카나마이신 내성 유전자, λ Red 유전자 (exo, bet 및 gam) 및 Streptococcus pyogenes 유래 CAS9 발현 기전을 가진다.Here, the plasmid pDSG has an origin of replication that works only in E. coli, and has an ampicillin resistance gene and a guide RNA (gRNA) expression mechanism. Plasmid pDS9 has an origin of replication that works only in E. coli, and has kanamycin resistance genes, λ Red genes (exo, bet, and gam), and a mechanism for expressing CAS9 derived from Streptococcus pyogenes .

1-1. 형질전환용 벡터 pDSG-amtB(Gly363Asp) 제작1-1. Construction of vector pDSG-amtB (Gly363Asp) for transformation

대장균(Escherichia coli) MG1655 (KCTC14419BP) gDNA를 주형으로 프라이머 7 및 프라이머 9의 프라이머 쌍과 프라이머 8 및 프라이머 10의 프라이머 쌍을 이용하여 암모늄 수송단백질을 암호화하는 대장균 amtB 유전자의 363번 아미노산 변이의 upstream 단편과, 프라이머 11 및 프라이머 13의 프라이머 쌍과 프라이머 12 및 프라이머 14의 프라이머 쌍을 이용하여 대장균 amtB 유전자의 363번 아미노산 변이의 downstream 단편을 각각 PCR 수행을 통해 수득하였다. 이때 각 upstream과 downstream 단편에는 amtB 유전자의 363번째 아미노산 잔기인 글리신(Gly)을 아스파르트산(Asp)으로 변경하는 서열을 포함시켰다. 여기서 중합효소는 Takara PrimeSTAR Max DNA polymerase를 사용하였으며, PCR 증폭 조건은 95℃에서 10초 변성, 57℃ 15초 어닐링 및 72℃ 10초 중합을 30회 반복하여 수행하였다. Using Escherichia coli MG1655 (KCTC14419BP) gDNA as a template, a primer pair of primers 7 and 9, and a primer pair of primers 8 and 10, an upstream fragment of amino acid mutation 363 of the amtB gene of E. coli encoding an ammonium transport protein And, using a primer pair of primers 11 and 13 and a primer pair of primers 12 and 14, the downstream fragment of the amino acid mutation at position 363 of the E. coli amtB gene was obtained through PCR, respectively. At this time, each upstream and downstream fragment contained a sequence that changes glycine (Gly), the 363rd amino acid residue of the amtB gene, to aspartic acid (Asp). Here, Takara PrimeSTAR Max DNA polymerase was used as the polymerase, and PCR amplification conditions were repeated 30 times: denaturation at 95 ° C for 10 seconds, annealing at 57 ° C for 15 seconds, and polymerization for 10 seconds at 72 ° C.

플라스미드 pDSG를 주형으로 프라이머 3 및 프라이머 5의 프라이머 쌍, 프라이머 4 및 프라이머 6의 프라이머 쌍, 프라이머 15 및 프라이머 1, 및 프라이머 16 및 프라이머 2의 프라이머 쌍을 각각 이용하여 4개의 pDSG 유전자 단편을 PCR 수행을 통해 수득하였다. 이때 각 유전자 단편에는 amtB 유전자의 363번째 Gly을 타겟하는 gRNA 서열을 포함시켰다. gRNA는 변이를 유발하고자 하는 서열의 NGG 앞 20 mer로 선택하였다. 여기서 중합효소는 Takara PrimeSTAR Max DNA polymerase를 사용하였으며, PCR 증폭 조건은 95℃에서 10초 변성, 57℃ 15초 어닐링 및 72℃ 15초 중합을 30회 반복하여 수행하였다. PCR was performed on four pDSG gene fragments using the plasmid pDSG as a template, using primer pairs of primers 3 and 5, primer pairs of primers 4 and 6, primers 15 and 1, and primers 16 and 2, respectively. was obtained through At this time, each gene fragment contained a gRNA sequence targeting the 363rd Gly of the amtB gene. The gRNA was selected as 20 mer in front of NGG of the sequence to induce mutation. Here, Takara PrimeSTAR Max DNA polymerase was used as the polymerase, and PCR amplification conditions were performed by repeating 30 times of denaturation at 95 ° C for 10 seconds, annealing at 57 ° C for 15 seconds, and polymerization at 72 ° C for 15 seconds.

수득된 amtB 유전자의 363번 아미노산의 upstream과 downstream, 그리고 4개의 pDSG 유전자 단편들을 self-assembly cloning 방법 (BioTechniques 51:55-56 (July 2011))을 이용하여 클로닝하여 재조합 플라스미드를 획득하였으며, 이를 pDSG-amtB(Gly363Asp)로 명명하였다.The obtained recombinant plasmid was obtained by cloning upstream and downstream of amino acid 363 of the amtB gene and four pDSG gene fragments using a self-assembly cloning method (BioTechniques 51:55-56 (July 2011)), -amtB (Gly363Asp) was named.

1-2. 암모늄 수송단백질 변이체 amtB(Gly363Asp)가 도입된 L-트립토판 또는 L-페닐알라닌 생산 균주 제작1-2. Production of L-tryptophan or L-phenylalanine-producing strain introduced with amtB (Gly363Asp), an ammonium transport protein variant

L-트립토판 생산 균주 및 L-페닐알라닌 생산 균주를 제작하기 위해 모균주로서 대장균 KFCC11660P 및 KCCM10016을 이용하였다.E. coli KFCC11660P and KCCM10016 were used as parent strains to prepare L-tryptophan-producing strains and L-phenylalanine-producing strains.

KFCC11660P 균주 또는 KCCM10016 균주에 플라스미드 pDS9을 1차 형질전환하여 LB-Km (LB 액체배지 25 g/L 및 카나마이신 50 mg/L 함유) 고체배지에서 배양한 후 카나마이신 내성을 가지는 콜로니를 선별하였다. 선별된 콜로니에 pDSG-amtB(Gly363Asp) 플라스미드를 2차 형질전환하여 LB-Amp&Km (LB 액체배지 25 g/L, 암피실린 100 mg/L 및 카나마이신 50 mg/L 함유) 고체배지에서 배양하여 암피실린 및 카나마이신 내성을 가지는 콜로니를 선별한 후 프라이머 17 및 프라이머 18의 프라이머 쌍을 이용하여 PCR 수행을 통해 유전자 단편을 수득하였다. 중합효소는 Takara PrimeSTAR Max DNA polymerase를 사용하였으며, PCR 증폭 조건은 95℃에서 10초 변성, 57℃ 10초 어닐링 및 72℃ 15초 중합을 30회 반복하여 수행하였다. 마크로젠에 위탁하여 프라이머 17 및 프라이머 18의 프라이머 쌍을 이용하여 수득된 유전자 단편의 서열을 확인하였다.KFCC11660P strain or KCCM10016 strain was first transformed with plasmid pDS9, cultured in LB-Km (LB liquid medium containing 25 g/L and kanamycin 50 mg/L) solid medium, and then colonies having kanamycin resistance were selected. Secondary transformation of the pDSG-amtB (Gly363Asp) plasmid was performed on the selected colonies, followed by culturing in LB-Amp&Km (LB liquid medium containing 25 g/L, ampicillin 100 mg/L and kanamycin 50 mg/L) solid medium, followed by ampicillin and kanamycin After selecting resistant colonies, a gene fragment was obtained through PCR using a primer pair of primers 17 and 18. Takara PrimeSTAR Max DNA polymerase was used as the polymerase, and PCR amplification conditions were performed by repeating 30 cycles of denaturation at 95°C for 10 seconds, annealing at 57°C for 10 seconds, and polymerization at 72°C for 15 seconds. Macrogen was entrusted with confirming the sequence of the obtained gene fragment using the primer pair of primer 17 and primer 18.

선별된 2차 형질전환체는 LB 액체배지에서 7번 계대배양하여 LB 고체배지에서 콜로니를 선별하였다. 각 콜로니를 LB, LB-Amp 및 LB-Km 고체배지에서 각각 선별적으로 배양하였다. LB 고체배지에서 생장하면서 LB-Amp 및 LB-Km 고체배지에서 생육하지 않는 콜로니를 선별하였다. 이와 같은 방법으로 제작된 균주를 각각 KFCC11660P_pDSG-amtB(Gly363Asp) 및 KCCM10016_pDSG-amtB(Gly363Asp)로 명명하였다The selected secondary transformants were subcultured 7 times in LB liquid medium, and colonies were selected in LB solid medium. Each colony was selectively cultured on LB, LB-Amp and LB-Km solid media, respectively. Colonies that did not grow on LB-Amp and LB-Km solid media were selected while growing on LB solid medium. The strains prepared in this way were named KFCC11660P_pDSG-amtB (Gly363Asp) and KCCM10016_pDSG-amtB (Gly363Asp), respectively.

실시예 1에서 사용된 프라이머 서열은 하기 표 1과 같다.Primer sequences used in Example 1 are shown in Table 1 below.

프라이머 명칭Primer name 서열번호sequence number 프라이머 서열 (5’-3’)Primer sequence (5'-3') 프라이머 1primer 1 1313 CAATTTTATTATAGTAATTGACTATTATACCAATTTTATTATAGTAATTGACTATTATAC 프라이머 2Primer 2 1414 CCACGCCGCCCAATTTTATTATAGTAATTGACTATTATACCCACGCCGCCCAATTTTATTATAGTAATTGACTATTATAC 프라이머 3Primer 3 1515 GGCGGCGTGGGCTTCGCTGAGTTTTAGAGCTAGAAATAGCGGCGGCGTGGGCTTCGCTGAGTTTTAGAGCTAGAAATAGC 프라이머 4primer 4 1616 GCTTCGCTGAGTTTTAGAGCTAGAAATAGCGCTTCGCTGAGTTTTAGAGCTAGAAATAGC 프라이머 5Primer 5 1717 GAGCCTGTCGGCCTACCTGCTGAGCCTGTCGGCCTACCTGCT 프라이머 6primer 6 1818 CGGCCGGCATGAGCCTGTCGCGGCCGGCATGAGCCTGTCG 프라이머 7primer 7 1919 ATGCCGGCCGTCGGTTGGTTTGGCTTTAACATGCCGGCCGTCGGTTGGTTTGGCTTTAAC 프라이머 8Primer 8 2020 TCGGTTGGTTTGGCTTTAACTCGGTTGGTTTGGCTTTAAC 프라이머 9Primer 9 2121 CAGCGAGCTGGCGGCAAAAACAGCGAGCTGGCGGCAAAAA 프라이머 10Primer 10 2222 CCACGCCGCCCAGCGAGCTGGCGGCAAAAACCACGCCGCCCAGCGAGCTGGCGGCAAAAA 프라이머 11Primer 11 2323 GGCGGCGTGGACTTCGCTGAAGGTGTGACGGGCGGCGTGGACTTCGCTGAAGGTGTGACG 프라이머 12Primer 12 2424 ACTTCGCTGAAGGTGTGACGACTTCGCTGAAGGTGTGACG 프라이머 13Primer 13 2525 GTGAGTTTTATACCCAAGACGTGAGTTTTATACCCAAGAC 프라이머 14Primer 14 2626 TTTGTGCGCGGTGAGTTTTATTTGTGCGCGGTGAGTTTTTA 프라이머 15Primer 15 2727 CGCGCACAAAGAGCTCCTGAAAATCTCGATAACCGCGCACAAAGAGCTCCTGAAAATCTCGATAAC 프라이머 16Primer 16 2828 GAGCTCCTGAAAATCTCGATAACGAGCTCTGAAAATCTCGATAAC 프라이머 17Primer 17 2929 TGGCACCGTGGTGCACATTATGGCACCGTGGTGCACATTA 프라이머 18Primer 18 3030 AGCCGCACGGCATCGGTTTTAGCCGCACGGCATCGGTTTT

실험예 1. 암모늄 수송단백질 변이체가 도입된 변이주의 L-방향족 아미노산 생산능 평가Experimental Example 1. Evaluation of L-aromatic amino acid production ability of mutants introduced with ammonium transport protein variants

모균주 (KFCC11660P 및 KCCM10016)와 암모늄 수송단백질 변이체가 도입된 변이주 (KFCC11660P_amtB(Gly363Asp) 및 KCCM10016_amtB(Gly363Asp))의 L-트립토판 또는 L-페닐알라닌 생산능을 비교하였다.The L-tryptophan or L-phenylalanine production abilities of the parent strains (KFCC11660P and KCCM10016) and mutant strains introduced with ammonium transport protein variants (KFCC11660P_amtB (Gly363Asp) and KCCM10016_amtB (Gly363Asp)) were compared.

하기 표 2의 트립토판 생산용 배지 또는 페닐알라닌 생산용 배지 10 mL가 담긴 100 mL 플라스크에 각 균주 (모균주 또는 변이주)를 부피 기준으로 1%씩 접종하여 37℃, 200 rpm의 조건으로 72시간 진탕 배양하였다. 배양 종료 후 HPLC (Agilent)를 사용하여 배지 내 L-트립토판 또는 L-페닐알라닌의 농도를 측정하였고, 그 결과를 각각 하기 표 3 및 4에 나타내었다.Each strain (parent strain or mutant strain) was inoculated by 1% by volume in a 100 mL flask containing 10 mL of the medium for the production of tryptophan or the medium for the production of phenylalanine in Table 2 below, and cultured with shaking for 72 hours at 37 ° C. and 200 rpm. did After completion of the culture, the concentration of L-tryptophan or L-phenylalanine in the medium was measured using HPLC (Agilent), and the results are shown in Tables 3 and 4, respectively.

트립토판 생산용 배지Medium for tryptophan production 페닐알라닌 생산용 배지Medium for the production of phenylalanine 조성Furtherance 함량content 조성Furtherance 함량content GlucoseGlucose 80.0 g/L80.0 g/L GlucoseGlucose 80.0 g/L80.0 g/L (NH4)2SO4 (NH 4 ) 2 SO 4 20.0 g/L20.0 g/L (NH4)2SO4 (NH 4 ) 2 SO 4 20.0 g/L20.0 g/L K2HPO4 K 2 HPO 4 0.8 g/L0.8 g/L K2HPO4 K 2 HPO 4 1.0 g/L1.0 g/L K2SO4 K 2 SO 4 0.4 g/L0.4g/L KH2PO4 KH 2 PO 4 1.0 g/L1.0 g/L MgCl2 MgCl 2 0.8 g/L0.8g/L K2SO4 K 2 SO 4 0.4 g/L0.4g/L Fumaric acidFumaric acid 1.0 g/L1.0 g/L MgCl2 MgCl 2 1.0 g/L1.0 g/L Yeast extractYeast extract 1.0 g/L1.0 g/L Fumaric acidFumaric acid 0.5 g/L0.5 g/L (NH4)6Mo7O24 (NH 4 ) 6 Mo 7 O 24 0.12 ppm0.12 ppm Yeast extractYeast extract 1.0 g/L1.0 g/L H3BO3 H 3 B O 3 0.01 ppm0.01ppm Glutamic acidGlutamic acid 0.5 g/L0.5 g/L CuSO4 CuSO4 0.01 ppm0.01ppm CaCl2 CaCl 2 5.00 ppm5.00 ppm MnCl2 MnCl 2 2.00 ppm2.00 ppm MnCl2 MnCl 2 2.00 ppm2.00 ppm ZnSO4 ZnSO 4 0.01 ppm0.01ppm ZnSO4 ZnSO 4 1.00 ppm1.00 ppm CoCl2 CoCl 2 0.10 ppm0.10 ppm CoCl2 CoCl 2 0.10 ppm0.10 ppm FeCl2 FeCl 2 10.00 ppm10.00 ppm FeCl2 FeCl 2 10.00 ppm10.00 ppm Thiamine_HClThiamine_HCl 20.00 ppm20.00 ppm Thiamine_HClThiamine_HCl 20.00 ppm20.00 ppm L-TyrosineL-Tyrosine 200.00 ppm200.00 ppm L-TyrosineL-Tyrosine 200.00 ppm200.00 ppm L-phenylalanineL-phenylalanine 300.00 ppm300.00 ppm CaCO3 CaCO 3 3%3% CaCO3 CaCO 3 3%3% -- -- pH 7.0 with NaOH (33%)pH 7.0 with NaOH (33%) pH 7.0 with NaOH (33%)pH 7.0 with NaOH (33%)

균주strain L-트립토판 농도
(g/L)
L-tryptophan concentration
(g/L)
L-트립토판 농도 증가율
(%)
L-tryptophan concentration increase rate
(%)
KFCC11660PKFCC11660P 4.124.12 -- KFCC11660P_amtB(Gly363Asp)KFCC11660P_amtB(Gly363Asp) 4.894.89 18.718.7

균주strain L-페닐알라닌 농도
(g/L)
L-phenylalanine concentration
(g/L)
L- 페닐알라닌 농도 증가율
(%)
Increase rate of L-phenylalanine concentration
(%)
KCCM10016KCCM10016 3.403.40 -- KCCM10016_amtB(Gly363Asp)KCCM10016_amtB(Gly363Asp) 4.524.52 32.932.9

상기 표 3 및 4에 나타낸 바와 같이, 암모늄 수송단백질 변이체가 도입된 변이주 KFCC11660P_amtB(Gly363Asp) 및 KCCM10016_amtB(Gly363Asp)는 모균주 KFCC11660P 및 KCCM10016에 비해 L-트립토판 및 L-페닐알라닌 생산량이 각각 약 19% 및 33% 향상된 것으로 확인되었다.As shown in Tables 3 and 4, the mutant strains KFCC11660P_amtB (Gly363Asp) and KCCM10016_amtB (Gly363Asp) into which ammonium transport protein variants were introduced produced L-tryptophan and L-phenylalanine production of about 19% and 33, respectively, compared to the parent strains KFCC11660P and KCCM10016 % improvement was found.

실시예 2. 아데닌 수송단백질 변이체를 발현하는 균주 제작Example 2. Construction of strains expressing variants of adenine transport protein

아데닌 수송단백질의 아미노산 서열 (서열번호 7) 중 136번째 위치한 트립토판이 종결 코돈으로 치환된 변이체가 L-방향족 아미노산의 생산에 미치는 영향을 확인하기 위해 상기 아데닌 수송단백질 변이체를 발현하는 벡터 및 상기 벡터가 도입된 균주를 제작하였다. 균주 내 아데닌 수송단백질 변이체의 유전자 삽입을 위해 실시예 1의 플라스미드 pDSG 및 pDS9를 사용하여 다음과 같이 제작하였다.A vector expressing the adenine transport protein variant and the vector in order to confirm the effect of a variant in which tryptophan at position 136 in the amino acid sequence (SEQ ID NO: 7) of the adenine transport protein is substituted with a stop codon affects the production of L-aromatic amino acids. The introduced strain was prepared. For genetic insertion of adenine transport protein mutants into strains, the plasmids pDSG and pDS9 of Example 1 were used and constructed as follows.

2-1. 형질전환용 벡터 pDSG-yicO(Trp136Stop) 제작2-1. Construction of vector pDSG-yicO (Trp136Stop) for transformation

대장균(Escherichia coli) MG1655 (KCTC14419BP) gDNA를 주형으로 프라이머 7 및 프라이머 9의 프라이머 쌍과 프라이머 8 및 프라이머 10의 프라이머 쌍을 이용하여 아데닌 수송단백질을 암호화하는 대장균 yicO 유전자의 136번 아미노산 변이의 upstream 단편과, 프라이머 11 및 프라이머 13의 프라이머 쌍과 프라이머 12 및 프라이머 14의 프라이머 쌍을 이용하여 대장균 yicO 유전자의 136번 아미노산 변이의 downstream 단편을 각각 PCR 수행을 통해 수득하였다. 이때 각 upstream과 downstream 단편에는 yicO 유전자의 136번째 아미노산 잔기인 트립토판(Trp)을 종결 코돈(Stop)으로 변경하는 서열을 포함시켰다. 여기서 중합효소는 Takara PrimeSTAR Max DNA polymerase를 사용하였으며, PCR 증폭 조건은 95℃에서 10초 변성, 57℃ 15초 어닐링 및 72℃ 10초 중합을 30회 반복하여 수행하였다. Using Escherichia coli MG1655 (KCTC14419BP) gDNA as a template, a primer pair of primers 7 and 9, and a primer pair of primers 8 and 10, an upstream fragment of amino acid mutation 136 of E. coli yicO gene encoding an adenine transport protein And, using a primer pair of primers 11 and 13 and a primer pair of primers 12 and 14, the downstream fragment of the amino acid mutation at position 136 of the E. coli yicO gene was obtained through PCR, respectively. At this time, each upstream and downstream fragment contained a sequence that changes the 136th amino acid residue of the yicO gene, tryptophan (Trp), to a stop codon (Stop). Here, Takara PrimeSTAR Max DNA polymerase was used as the polymerase, and PCR amplification conditions were performed by repeating 30 cycles of denaturation at 95°C for 10 seconds, annealing at 57°C for 15 seconds, and polymerization at 72°C for 10 seconds.

플라스미드 pDSG를 주형으로 프라이머 3 및 프라이머 5의 프라이머 쌍, 프라이머 4 및 프라이머 6의 프라이머 쌍, 프라이머 15 및 프라이머 1, 및 프라이머 16 및 프라이머 2의 프라이머 쌍을 각각 이용하여 4개의 pDSG 유전자 단편을 PCR 수행을 통해 수득하였다. 이때 각 유전자 단편에는 yicO 유전자의 136번째 Trp을 타겟하는 gRNA 서열을 포함시켰다. gRNA는 변이를 유발하고자 하는 서열의 NGG 앞 20 mer로 선택하였다. 여기서 중합효소는 Takara PrimeSTAR Max DNA polymerase를 사용하였으며, PCR 증폭 조건은 95℃에서 10초 변성, 57℃ 15초 어닐링 및 72℃ 15초 중합을 30회 반복하여 수행하였다. PCR was performed on four pDSG gene fragments using the plasmid pDSG as a template, using primer pairs of primers 3 and 5, primer pairs of primers 4 and 6, primers 15 and 1, and primers 16 and 2, respectively. was obtained through At this time, each gene fragment contained a gRNA sequence targeting the 136th Trp of the yicO gene. The gRNA was selected as 20 mer in front of NGG of the sequence to induce mutation. Here, Takara PrimeSTAR Max DNA polymerase was used as the polymerase, and PCR amplification conditions were performed by repeating 30 times of denaturation at 95 ° C for 10 seconds, annealing at 57 ° C for 15 seconds, and polymerization at 72 ° C for 15 seconds.

수득된 yicO 유전자의 136번 아미노산의 upstream과 downstream, 그리고 4개의 pDSG 유전자 단편들을 self-assembly cloning 방법 (BioTechniques 51:55-56 (July 2011))을 이용하여 클로닝하여 재조합 플라스미드를 획득하였으며, 이를 pDSG-yicO(Trp136Stop)로 명명하였다.Recombinant plasmids were obtained by cloning upstream and downstream of amino acid 136 of the obtained yicO gene and four pDSG gene fragments using the self-assembly cloning method (BioTechniques 51:55-56 (July 2011)), which was -yicO (Trp136Stop) was named.

2-2. 아데닌 수송단백질 변이체 yicO(Trp136Stop)가 도입된 L-트립토판 또는 L-페닐알라닌 생산 균주 제작2-2. Production of strains producing L-tryptophan or L-phenylalanine into which adenine transport protein variant yicO (Trp136Stop) was introduced

L-트립토판 생산 균주 및 L-페닐알라닌 생산 균주를 제작하기 위해 모균주로서 대장균 KFCC11660P 및 KCCM10016을 이용하였다.E. coli KFCC11660P and KCCM10016 were used as parent strains to prepare L-tryptophan-producing strains and L-phenylalanine-producing strains.

KFCC11660P 균주 또는 KCCM10016 균주에 플라스미드 pDS9을 1차 형질전환하여 LB-Km (LB 액체배지 25 g/L 및 카나마이신 50 mg/L 함유) 고체배지에서 배양한 후 카나마이신 내성을 가지는 콜로니를 선별하였다. 선별된 콜로니에 pDSG-yicO(Trp136Stop) 플라스미드를 2차 형질전환하여 LB-Amp&Km (LB 액체배지 25 g/L, 암피실린 100 mg/L 및 카나마이신 50 mg/L 함유) 고체배지에서 배양하여 암피실린 및 카나마이신 내성을 가지는 콜로니를 선별한 후 프라이머 17 및 프라이머 18의 프라이머 쌍을 이용하여 PCR 수행을 통해 유전자 단편을 수득하였다. 중합효소는 Takara PrimeSTAR Max DNA polymerase를 사용하였으며, PCR 증폭 조건은 95℃에서 10초 변성, 57℃ 10초 어닐링 및 72℃ 15초 중합을 30회 반복하여 수행하였다. 마크로젠에 위탁하여 프라이머 17 및 프라이머 18의 프라이머 쌍을 이용하여 수득된 유전자 단편의 서열을 확인하였다.KFCC11660P strain or KCCM10016 strain was first transformed with plasmid pDS9, cultured in LB-Km (LB liquid medium containing 25 g/L and kanamycin 50 mg/L) solid medium, and then colonies having kanamycin resistance were selected. Secondary transformation of the pDSG-yicO (Trp136Stop) plasmid was performed on the selected colonies, followed by culturing in LB-Amp&Km (LB liquid medium 25 g/L, ampicillin 100 mg/L and kanamycin 50 mg/L) solid medium, followed by ampicillin and kanamycin After selecting resistant colonies, a gene fragment was obtained through PCR using a primer pair of primers 17 and 18. Takara PrimeSTAR Max DNA polymerase was used as the polymerase, and PCR amplification conditions were performed by repeating 30 cycles of denaturation at 95°C for 10 seconds, annealing at 57°C for 10 seconds, and polymerization at 72°C for 15 seconds. Macrogen was entrusted with confirming the sequence of the obtained gene fragment using the primer pair of primer 17 and primer 18.

선별된 2차 형질전환체는 LB 액체배지에서 7번 계대배양하여 LB 고체배지에서 콜로니를 선별하였다. 각 콜로니를 LB, LB-Amp 및 LB-Km 고체배지에서 각각 선별적으로 배양하였다. LB 고체배지에서 생장하면서 LB-Amp 및 LB-Km 고체배지에서 생육하지 않는 콜로니를 선별하였다. 이와 같은 방법으로 제작된 균주를 각각 KFCC11660P_yicO(Trp136Stop) 및 KCCM10016_yicO(Trp136Stop)로 명명하였다The selected secondary transformants were subcultured 7 times in LB liquid medium, and colonies were selected in LB solid medium. Each colony was selectively cultured on LB, LB-Amp and LB-Km solid media, respectively. Colonies that did not grow on LB-Amp and LB-Km solid media were selected while growing on LB solid medium. The strains prepared in this way were named KFCC11660P_yicO (Trp136Stop) and KCCM10016_yicO (Trp136Stop), respectively.

실시예 2에서 사용된 프라이머 서열은 하기 표 5와 같다.Primer sequences used in Example 2 are shown in Table 5 below.

프라이머 명칭Primer name 서열번호sequence number 프라이머 서열 (5’-3’)Primer sequence (5'-3') 프라이머 1primer 1 1313 CAATTTTATTATAGTAATTGACTATTATACCAATTTTATTATAGTAATTGACTATTATAC 프라이머 2Primer 2 3131 CGTGACGTTCCAATTTTATTATAGTAATTGACTATTATACCGTGACGTTCCAATTTTATTATAGTAATTGACTATTATAC 프라이머 3Primer 3 3232 GAACGTCACGACCTTCGTCAGTTTTAGAGCTAGAAATAGCGAACGTCACGACCTTCGTCAGTTTTAGAGCTAGAAATAGC 프라이머 4primer 4 3333 ACCTTCGTCAGTTTTAGAGCTAGAAATAGCACCTTCGTCAGTTTTAGAGCTAGAAATAGC 프라이머 5Primer 5 1717 GAGCCTGTCGGCCTACCTGCTGAGCCTGTCGGCCTACCTGCT 프라이머 6primer 6 1818 CGGCCGGCATGAGCCTGTCGCGGCCGGCATGAGCCTGTCG 프라이머 7primer 7 3434 ATGCCGGCCGCGGCCGGGTAGATACCCAGAGATGCCGGCCGCGGCCGGGTAGATACCCAGAG 프라이머 8Primer 8 3535 CGGCCGGGTAGATACCCAGAGCGGCCGGGTAGATACCCAGAG 프라이머 9Primer 9 3636 TCTGCTGTTCGTTGACAACATCTGCTGTTCGTTGACAACA 프라이머 10Primer 10 3737 GTCGTGACGTTCTGCTGTTCGTCGTGACGTTCTGCTGTTC 프라이머 11Primer 11 3838 ACGTCACGACTTTCGTCACGGAATTTCTCAACGTCACGACTTTCGTCACGGAATTTCTCA 프라이머 12Primer 12 3939 TTTCGTCACGGAATTTCTCATTTCGTCACGGAATTTCTCA 프라이머 13Primer 13 4040 TCCGTTCGCTAAGGGCGGTATCCGTTCGCTAAGGGCGGTA 프라이머 14Primer 14 4141 ACCTGATGTGTCCGTTCGCTACCTGATGTGTCCGTTCGCT 프라이머 15Primer 15 4242 CACATCAGGTGAGCTCCTGAAAATCTCGATAACCACATCAGGTGAGCTCCTGAAAATCTCGATAAC 프라이머 16Primer 16 2828 GAGCTCCTGAAAATCTCGATAACGAGCTCTGAAAATCTCGATAAC 프라이머 17Primer 17 4343 TCCGTTCGCTAAGGGCGGTATCCGTTCGCTAAGGGCGGTA 프라이머 18Primer 18 4444 ACCTGATGTGTCCGTTCGCTACCTGATGTGTCCGTTCGCT

실험예 2. 아데닌 수송단백질 변이체가 도입된 변이주의 L-방향족 아미노산 생산능 평가Experimental Example 2. Evaluation of L-aromatic amino acid production ability of a mutant strain into which an adenine transport protein variant was introduced

모균주 (KFCC11660P 및 KCCM10016)와 아데닌 수송단백질 변이체가 도입된 변이주 (KFCC11660P_yicO(Trp136Stop) 및 KCCM10016_yicO(Trp136Stop))의 L-트립토판 또는 L-페닐알라닌 생산능을 비교하였다. 실험예 1과 동일한 방법으로 L-트립토판 및 L-페닐알라닌의 농도를 측정하였고, 그 결과를 각각 하기 표 6 및 7에 나타내었다.The L-tryptophan or L-phenylalanine production abilities of the parent strains (KFCC11660P and KCCM10016) and mutants introduced with adenine transport protein variants (KFCC11660P_yicO(Trp136Stop) and KCCM10016_yicO(Trp136Stop)) were compared. The concentrations of L-tryptophan and L-phenylalanine were measured in the same manner as in Experimental Example 1, and the results are shown in Tables 6 and 7, respectively.

균주strain L-트립토판 농도
(g/L)
L-tryptophan concentration
(g/L)
L-트립토판 농도 증가율
(%)
L-tryptophan concentration increase rate
(%)
KFCC11660PKFCC11660P 4.154.15 -- KFCC11660P_yicO(Trp136Stop)KFCC11660P_yicO(Trp136Stop) 5.225.22 25.725.7

균주strain L-페닐알라닌 농도
(g/L)
L-phenylalanine concentration
(g/L)
L- 페닐알라닌 농도 증가율
(%)
Increase rate of L-phenylalanine concentration
(%)
KCCM10016KCCM10016 3.233.23 -- KCCM10016_yicO(Trp136Stop)KCCM10016_yicO(Trp136Stop) 3.853.85 19.119.1

상기 표 6 및 7에 나타낸 바와 같이, 아데닌 수송단백질 변이체가 도입된 변이주 KFCC11660P_yicO(Trp136Stop) 및 KCCM10016_yicO(Trp136Stop)는 모균주 KFCC11660P 및 KCCM10016에 비해 L-트립토판 및 L-페닐알라닌 생산량이 각각 약 26% 및 19% 향상된 것으로 확인되었다.As shown in Tables 6 and 7, the mutant strains KFCC11660P_yicO (Trp136Stop) and KCCM10016_yicO (Trp136Stop) into which adenine transport protein variants were introduced showed L-tryptophan and L-phenylalanine production of about 26% and 19%, respectively, compared to the parent strains KFCC11660P and KCCM10016. % improvement was found.

실시예 3. FMN/FAD 수송단백질 변이체를 발현하는 균주 제작Example 3. Construction of strains expressing FMN/FAD transport protein variants

FMN/FAD 수송단백질의 아미노산 서열 (서열번호 11) 중 272번째 위치한 글리신이 글루타민으로 치환된 변이체가 L-방향족 아미노산의 생산에 미치는 영향을 확인하기 위해 상기 FMN/FAD 수송단백질 변이체를 발현하는 벡터 및 상기 벡터가 도입된 균주를 제작하였다. 균주 내 FMN/FAD 수송단백질 변이체의 유전자 삽입을 위해 실시예 1과 동일한 방법으로 플라스미드 pDSG 및 pDS9를 사용하여 다음과 같이 제작하였다.A vector expressing the FMN/FAD transport protein variant in order to determine the effect of a variant in which glutamine is substituted for glycine at position 272 of the amino acid sequence (SEQ ID NO: 11) of the FMN/FAD transport protein on the production of L-aromatic amino acids, and A strain into which the vector was introduced was constructed. For gene insertion of the FMN/FAD transport protein variant in the strain, it was prepared as follows using plasmids pDSG and pDS9 in the same manner as in Example 1.

3-1. 형질전환용 벡터 pDSG-yeeO(Gly272Glu) 제작3-1. Construction of vector pDSG-yeeO (Gly272Glu) for transformation

대장균(Escherichia coli) MG1655 (KCTC14419BP) gDNA를 주형으로 프라이머 7 및 프라이머 9의 프라이머 쌍과 프라이머 8 및 프라이머 10의 프라이머 쌍을 이용하여 FMN/FAD 수송단백질을 암호화하는 대장균 yeeO 유전자의 272번 아미노산 변이의 upstream 단편과, 프라이머 11 및 프라이머 13의 프라이머 쌍과 프라이머 12 및 프라이머 14의 프라이머 쌍을 이용하여 대장균 yeeO 유전자의 272번 아미노산 변이의 downstream 단편을 각각 PCR 수행을 통해 수득하였다. 이때 각 upstream과 downstream 단편에는 yeeO 유전자의 272번째 아미노산 잔기인 글리신(Gly)을 글루타민(Glu)으로 변경하는 서열을 포함시켰다. 여기서 중합효소는 Takara PrimeSTAR Max DNA polymerase를 사용하였으며, PCR 증폭 조건은 95℃에서 10초 변성, 57℃ 15초 어닐링 및 72℃ 10초 중합을 30회 반복하여 수행하였다. Using Escherichia coli MG1655 (KCTC14419BP) gDNA as a template, primer pairs of primers 7 and 9, and primer pairs of primers 8 and 10, the mutation of amino acid 272 of the E. coli yeeO gene encoding the FMN/FAD transport protein Using the upstream fragment, the primer pair of primers 11 and 13, and the primer pair of primers 12 and 14, the downstream fragment of the 272 amino acid mutation of the E. coli yeeO gene was obtained through PCR, respectively. At this time, each upstream and downstream fragment contained a sequence that changes glycine (Gly), the 272nd amino acid residue of the yeeO gene, to glutamine (Glu). Here, Takara PrimeSTAR Max DNA polymerase was used as the polymerase, and PCR amplification conditions were repeated 30 times: denaturation at 95 ° C for 10 seconds, annealing at 57 ° C for 15 seconds, and polymerization for 10 seconds at 72 ° C.

플라스미드 pDSG를 주형으로 프라이머 3 및 프라이머 5의 프라이머 쌍, 프라이머 4 및 프라이머 6의 프라이머 쌍, 프라이머 15 및 프라이머 1, 및 프라이머 16 및 프라이머 2의 프라이머 쌍을 각각 이용하여 4개의 pDSG 유전자 단편을 PCR 수행을 통해 수득하였다. 이때 각 유전자 단편에는 yeeO 유전자의 272번째 Gly을 타겟하는 gRNA 서열을 포함시켰다. gRNA는 변이를 유발하고자 하는 서열의 NGG 앞 20 mer로 선택하였다. 여기서 중합효소는 Takara PrimeSTAR Max DNA polymerase를 사용하였으며, PCR 증폭 조건은 95℃에서 10초 변성, 57℃ 15초 어닐링 및 72℃ 15초 중합을 30회 반복하여 수행하였다. PCR was performed on four pDSG gene fragments using the plasmid pDSG as a template, using primer pairs of primers 3 and 5, primer pairs of primers 4 and 6, primers 15 and 1, and primers 16 and 2, respectively. was obtained through At this time, each gene fragment contained a gRNA sequence targeting the 272nd Gly of the yeeO gene. The gRNA was selected as 20 mer in front of NGG of the sequence to induce mutation. Here, Takara PrimeSTAR Max DNA polymerase was used as the polymerase, and PCR amplification conditions were performed by repeating 30 times of denaturation at 95 ° C for 10 seconds, annealing at 57 ° C for 15 seconds, and polymerization at 72 ° C for 15 seconds.

수득된 yeeO 유전자의 272번 아미노산의 upstream과 downstream, 그리고 4개의 pDSG 유전자 단편들을 self-assembly cloning 방법 (BioTechniques 51:55-56 (July 2011))을 이용하여 클로닝하여 재조합 플라스미드를 획득하였으며, 이를 pDSG-yeeO(Gly272Glu)로 명명하였다.A recombinant plasmid was obtained by cloning upstream and downstream of amino acid 272 of the obtained yeeO gene and four pDSG gene fragments using the self-assembly cloning method (BioTechniques 51:55-56 (July 2011)), which was -yeeO (Gly272Glu) was named.

3-2. FMN/FAD 수송단백질 변이체 yeeO(Gly272Glu)가 도입된 L-트립토판 또는 L-페닐알라닌 생산 균주 제작3-2. Production of L-tryptophan or L-phenylalanine-producing strain introduced with FMN/FAD transport protein variant yeeO (Gly272Glu)

L-트립토판 생산 균주 및 L-페닐알라닌 생산 균주를 제작하기 위해 모균주로서 대장균 KFCC11660P 및 KCCM10016을 이용하였다.E. coli KFCC11660P and KCCM10016 were used as parent strains to prepare L-tryptophan-producing strains and L-phenylalanine-producing strains.

KFCC11660P 균주 또는 KCCM10016 균주에 플라스미드 pDS9을 1차 형질전환하여 LB-Km (LB 액체배지 25 g/L 및 카나마이신 50 mg/L 함유) 고체배지에서 배양한 후 카나마이신 내성을 가지는 콜로니를 선별하였다. 선별된 콜로니에 pDSG-yeeO(Gly272Glu) 플라스미드를 2차 형질전환하여 LB-Amp&Km (LB 액체배지 25 g/L, 암피실린 100 mg/L 및 카나마이신 50 mg/L 함유) 고체배지에서 배양하여 암피실린 및 카나마이신 내성을 가지는 콜로니를 선별한 후 프라이머 17 및 프라이머 18의 프라이머 쌍을 이용하여 PCR 수행을 통해 유전자 단편을 수득하였다. 중합효소는 Takara PrimeSTAR Max DNA polymerase를 사용하였으며, PCR 증폭 조건은 95℃에서 10초 변성, 57℃ 10초 어닐링 및 72℃ 15초 중합을 30회 반복하여 수행하였다. 마크로젠에 위탁하여 프라이머 17 및 프라이머 18의 프라이머 쌍을 이용하여 수득된 유전자 단편의 서열을 확인하였다.KFCC11660P strain or KCCM10016 strain was first transformed with plasmid pDS9, cultured in LB-Km (LB liquid medium containing 25 g/L and kanamycin 50 mg/L) solid medium, and then colonies having kanamycin resistance were selected. Secondary transformation of the pDSG-yeeO (Gly272Glu) plasmid was performed on the selected colonies, followed by culturing in LB-Amp&Km (LB liquid medium 25 g/L, ampicillin 100 mg/L and kanamycin 50 mg/L) solid medium, followed by ampicillin and kanamycin After selecting resistant colonies, a gene fragment was obtained through PCR using a primer pair of primers 17 and 18. Takara PrimeSTAR Max DNA polymerase was used as the polymerase, and PCR amplification conditions were performed by repeating 30 cycles of denaturation at 95°C for 10 seconds, annealing at 57°C for 10 seconds, and polymerization at 72°C for 15 seconds. Macrogen was entrusted with confirming the sequence of the obtained gene fragment using the primer pair of primer 17 and primer 18.

선별된 2차 형질전환체는 LB 액체배지에서 7번 계대배양하여 LB 고체배지에서 콜로니를 선별하였다. 각 콜로니를 LB, LB-Amp 및 LB-Km 고체배지에서 각각 선별적으로 배양하였다. LB 고체배지에서 생장하면서 LB-Amp 및 LB-Km 고체배지에서 생육하지 않는 콜로니를 선별하였다. 이와 같은 방법으로 제작된 균주를 각각 KFCC11660P_yeeO(Gly272Glu) 및 KCCM10016_yeeO(Gly272Glu)로 명명하였다The selected secondary transformants were subcultured 7 times in LB liquid medium, and colonies were selected in LB solid medium. Each colony was selectively cultured on LB, LB-Amp and LB-Km solid media, respectively. Colonies that did not grow on LB-Amp and LB-Km solid media were selected while growing on LB solid medium. The strains prepared in this way were named KFCC11660P_yeeO (Gly272Glu) and KCCM10016_yeeO (Gly272Glu), respectively.

실시예 3에서 사용된 프라이머 서열은 하기 표 8과 같다.Primer sequences used in Example 3 are shown in Table 8 below.

프라이머 명칭Primer name 서열번호sequence number 프라이머 서열 (5’-3’)Primer sequence (5'-3') 프라이머 1primer 1 1313 CAATTTTATTATAGTAATTGACTATTATACCAATTTTATTATAGTAATTGACTATTATAC 프라이머 2Primer 2 4545 AGGAGAAAAGCAATTTTATTATAGTAATTGACTATTATACAGGAGAAAAGCAATTTTATTATAGTAATTGACTATTATAC 프라이머 3Primer 3 4646 CTTTTCTCCTGGCCGGGACTGTTTTAGAGCTAGAAATAGCCTTTTCTCCTGGCCGGGACTGTTTTAGAGCTAGAAATAGC 프라이머 4primer 4 4747 GGCCGGGACTGTTTTAGAGCTAGAAATAGCGGCCGGGACTGTTTTAGAGCTAGAAATAGC 프라이머 5Primer 5 1717 GAGCCTGTCGGCCTACCTGCTGAGCCTGTCGGCCTACCTGCT 프라이머 6primer 6 1818 CGGCCGGCATGAGCCTGTCGCGGCCGGCATGAGCCTGTCG 프라이머 7primer 7 4848 ATGCCGGCCGTTTAGTCTCGGTAAGCGGGAATGCCGGCCGTTTAGTCTCGGTAAGCGGGA 프라이머 8Primer 8 4949 TTTAGTCTCGGTAAGCGGGATTTAGTCTCGGTAAGCGGGA 프라이머 9Primer 9 5050 GAAAAGGCCGTAAATCAATATGCCGGAAAAGGCCGTAAATCAATATGCCG 프라이머 10Primer 10 5151 CCGGCCAGGAGAAAAGGCCGTAAATCCGGCCAGGAGAAAAGGCCGTAAAT 프라이머 11Primer 11 5252 TCCTGGCCGGAACTGGGATTTGTCGGGGCATCCTGGCCGGAACTGGGATTTGTCGGGGCA 프라이머 12Primer 12 5353 AACTGGGATTTGTCGGGGCAAACTGGGATTTGTCGGGGCA 프라이머 13Primer 13 5454 GCAGAGCCGAGCGCACTTCCGCAGAGCCGAGCGCACTTCC 프라이머 14Primer 14 5555 GATCGTAGAAGCAGAGCCGAGATCGTAGAAGCAGAGCCGA 프라이머 15Primer 15 5656 TTCTACGATCGAGCTCCTGAAAATCTCGATAACTTCTACGATCGAGCTCCTGAAAATCTCGATAAC 프라이머 16Primer 16 2828 GAGCTCCTGAAAATCTCGATAACGAGCTCTGAAAATCTCGATAAC 프라이머 17Primer 17 5757 CTTTTCTGGTCAGCTGGCTGCTTTTCTGGTCAGCTGGCTG 프라이머 18Primer 18 5858 TTAGCCAGGCGATGGCCGTTTTAGCCAGGCGATGGCCGTT

실험예 3. FMN/FAD 수송단백질 변이체가 도입된 변이주의 L-방향족 아미노산 생산능 평가Experimental Example 3. Evaluation of L-aromatic amino acid production ability of the mutant strain into which the FMN / FAD transport protein variant was introduced

모균주 (KFCC11660P 및 KCCM10016)와 FMN/FAD 수송단백질 변이체가 도입된 변이주 (KFCC11660P_yeeO(Gly272Glu) 및 KCCM10016_yeeO(Gly272Glu))의 L-트립토판 또는 L-페닐알라닌 생산능을 비교하였다. 실험예 1과 동일한 방법으로 L-트립토판 및 L-페닐알라닌의 농도를 측정하였고, 그 결과를 각각 하기 표 9 및 10에 나타내었다.The L-tryptophan or L-phenylalanine production abilities of the parent strains (KFCC11660P and KCCM10016) and the mutant strains introduced with FMN/FAD transport protein variants (KFCC11660P_yeeO(Gly272Glu) and KCCM10016_yeeO(Gly272Glu)) were compared. The concentrations of L-tryptophan and L-phenylalanine were measured in the same manner as in Experimental Example 1, and the results are shown in Tables 9 and 10, respectively.

균주strain L-트립토판 농도
(g/L)
L-tryptophan concentration
(g/L)
L-트립토판 농도 증가율
(%)
L-tryptophan concentration increase rate
(%)
KFCC11660PKFCC11660P 4.154.15 -- KFCC11660P_yeeO(Gly272Glu)KFCC11660P_yeeO(Gly272Glu) 5.045.04 21.421.4

균주strain L-페닐알라닌 농도
(g/L)
L-phenylalanine concentration
(g/L)
L- 페닐알라닌 농도 증가율
(%)
Increase rate of L-phenylalanine concentration
(%)
KCCM10016KCCM10016 3.413.41 -- KCCM10016_yeeO(Gly272Glu)KCCM10016_yeeO(Gly272Glu) 4.874.87 42.842.8

상기 표 9 및 10에 나타낸 바와 같이, FMN/FAD 수송단백질 변이체가 도입된 변이주 KFCC11660P_yeeO(Gly272Glu) 및 KCCM10016_yeeO(Gly272Glu)는 모균주 KFCC11660P 및 KCCM10016에 비해 L-트립토판 및 L-페닐알라닌 생산량이 각각 약 21% 및 43% 향상된 것으로 확인되었다.As shown in Tables 9 and 10, the mutant strains KFCC11660P_yeeO (Gly272Glu) and KCCM10016_yeeO (Gly272Glu) into which the FMN/FAD transport protein variants were introduced showed about 21% L-tryptophan and L-phenylalanine production, respectively, compared to the parent strains KFCC11660P and KCCM10016. and 43% improvement.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been looked at with respect to its preferred embodiments. Those skilled in the art to which the present invention pertains will be able to understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a limiting point of view. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the equivalent scope will be construed as being included in the present invention.

한국생명공학연구원 생물자원센터(KCTC)Korea Research Institute of Bioscience and Biotechnology Biological Resources Center (KCTC) KCTC14419BPKCTC14419BP 2020122820201228 한국미생물보존센터(KCCM)Korea Center for Microbial Conservation (KCCM) KFCC11660PKFCC11660P 2016051220160512 한국미생물보존센터(KCCM)Korea Center for Microbial Conservation (KCCM) KCCM10016KCCM10016 1992102219921022

<110> DAESANG CORPORATION <120> Novel variant of transporter and method for preparing L-aromatic amino acid using the same <130> BPN221015D2 <160> 60 <170> KoPatentIn 3.0 <210> 1 <211> 428 <212> PRT <213> Artificial Sequence <220> <223> amtB (G363D) variant <400> 1 Met Lys Ile Ala Thr Ile Lys Thr Gly Leu Ala Ser Leu Ala Met Leu 1 5 10 15 Pro Gly Leu Val Met Ala Ala Pro Ala Val Ala Asp Lys Ala Asp Asn 20 25 30 Ala Phe Met Met Ile Cys Thr Ala Leu Val Leu Phe Met Thr Ile Pro 35 40 45 Gly Ile Ala Leu Phe Tyr Gly Gly Leu Ile Arg Gly Lys Asn Val Leu 50 55 60 Ser Met Leu Thr Gln Val Thr Val Thr Phe Ala Leu Val Cys Ile Leu 65 70 75 80 Trp Val Val Tyr Gly Tyr Ser Leu Ala Phe Gly Glu Gly Asn Asn Phe 85 90 95 Phe Gly Asn Ile Asn Trp Leu Met Leu Lys Asn Ile Glu Leu Thr Ala 100 105 110 Val Met Gly Ser Ile Tyr Gln Tyr Ile His Val Ala Phe Gln Gly Ser 115 120 125 Phe Ala Cys Ile Thr Val Gly Leu Ile Val Gly Ala Leu Ala Glu Arg 130 135 140 Ile Arg Phe Ser Ala Val Leu Ile Phe Val Val Val Trp Leu Thr Leu 145 150 155 160 Ser Tyr Ile Pro Ile Ala His Met Val Trp Gly Gly Gly Leu Leu Ala 165 170 175 Ser His Gly Ala Leu Asp Phe Ala Gly Gly Thr Val Val His Ile Asn 180 185 190 Ala Ala Ile Ala Gly Leu Val Gly Ala Tyr Leu Ile Gly Lys Arg Val 195 200 205 Gly Phe Gly Lys Glu Ala Phe Lys Pro His Asn Leu Pro Met Val Phe 210 215 220 Thr Gly Thr Ala Ile Leu Tyr Ile Gly Trp Phe Gly Phe Asn Ala Gly 225 230 235 240 Ser Ala Gly Thr Ala Asn Glu Ile Ala Ala Leu Ala Phe Val Asn Thr 245 250 255 Val Val Ala Thr Ala Ala Ala Ile Leu Gly Trp Ile Phe Gly Glu Trp 260 265 270 Ala Leu Arg Gly Lys Pro Ser Leu Leu Gly Ala Cys Ser Gly Ala Ile 275 280 285 Ala Gly Leu Val Gly Val Thr Pro Ala Cys Gly Tyr Ile Gly Val Gly 290 295 300 Gly Ala Leu Ile Ile Gly Val Val Ala Gly Leu Ala Gly Leu Trp Gly 305 310 315 320 Val Thr Met Leu Lys Arg Leu Leu Arg Val Asp Asp Pro Cys Asp Val 325 330 335 Phe Gly Val His Gly Val Cys Gly Ile Val Gly Cys Ile Met Thr Gly 340 345 350 Ile Phe Ala Ala Ser Ser Leu Gly Gly Val Asp Phe Ala Glu Gly Val 355 360 365 Thr Met Gly His Gln Leu Leu Val Gln Leu Glu Ser Ile Ala Ile Thr 370 375 380 Ile Val Trp Ser Gly Val Val Ala Phe Ile Gly Tyr Lys Leu Ala Asp 385 390 395 400 Leu Thr Val Gly Leu Arg Val Pro Glu Glu Gln Glu Arg Glu Gly Leu 405 410 415 Asp Val Asn Ser His Gly Glu Asn Ala Tyr Asn Ala 420 425 <210> 2 <211> 1287 <212> DNA <213> Artificial Sequence <220> <223> amtB (G363D) variant <400> 2 atgaagatag cgacgataaa aactgggctt gcttcactgg cgatgcttcc gggactggta 60 atggctgcac ctgcggtggc cgataaagcc gacaatgcgt ttatgatgat ttgtactgcg 120 ctggtgctgt ttatgactat tccggggatt gccctgtttt acggtgggtt gattcgcggc 180 aaaaacgtgc tgtcgatgct gacgcaggtg acggtgacat ttgcactggt ctgtattctc 240 tgggtggttt acggttactc gctggcgttt ggtgagggca acaacttctt cggcaacatt 300 aactggttga tgctgaaaaa catcgaactg acggcggtga tgggcagcat ttatcagtat 360 atccacgtgg cgtttcaggg atcgtttgcc tgcattaccg tcggcttgat agttggggcg 420 ctggcggaac gaatccgctt ctcagctgtg ttgattttcg tggtggtatg gctgacgctc 480 tcttacattc cgattgcgca tatggtgtgg ggcggtggtt tgctggcttc tcacggtgcg 540 ctggatttcg cgggtggcac cgtggtgcac attaacgccg caatcgccgg tctggtgggc 600 gcgtatctga taggaaaacg cgtgggcttc ggtaaagagg cgtttaaacc gcacaacctg 660 ccgatggtct tcaccgggac tgccattctc tatatcggtt ggtttggctt taacgccggg 720 tcagcgggca cggcgaatga aatcgcggca ctggcatttg tgaatactgt ggtcgcaacg 780 gcggcggcaa ttcttggctg gatcttcggt gaatgggcgc tgcgtggtaa gccttcactg 840 ctgggggcgt gttctggcgc gattgccggt ctggtcggcg tgacgccagc ctgcggctac 900 attggggttg gcggcgcgtt gattatcggc gtggtagctg gtctggcggg cttgtggggc 960 gttaccatgc tcaaacgctt gctgcgggtg gatgatccct gcgatgtctt cggtgtgcac 1020 ggcgtttgtg gcattgtcgg ctgtatcatg accgggattt ttgccgccag ctcgctgggc 1080 ggcgtggact tcgctgaagg tgtgacgatg ggccatcagt tgctggtaca gctggaaagc 1140 atcgccatta cgatcgtctg gtccggtgtt gtggcattta tcggctacaa attggcggat 1200 ctgacggttg gtctgcgtgt accggaagag caggagcgag aagggctgga tgtcaacagc 1260 cacggcgaga atgcctataa cgcgtaa 1287 <210> 3 <211> 428 <212> PRT <213> Artificial Sequence <220> <223> amtB <400> 3 Met Lys Ile Ala Thr Ile Lys Thr Gly Leu Ala Ser Leu Ala Met Leu 1 5 10 15 Pro Gly Leu Val Met Ala Ala Pro Ala Val Ala Asp Lys Ala Asp Asn 20 25 30 Ala Phe Met Met Ile Cys Thr Ala Leu Val Leu Phe Met Thr Ile Pro 35 40 45 Gly Ile Ala Leu Phe Tyr Gly Gly Leu Ile Arg Gly Lys Asn Val Leu 50 55 60 Ser Met Leu Thr Gln Val Thr Val Thr Phe Ala Leu Val Cys Ile Leu 65 70 75 80 Trp Val Val Tyr Gly Tyr Ser Leu Ala Phe Gly Glu Gly Asn Asn Phe 85 90 95 Phe Gly Asn Ile Asn Trp Leu Met Leu Lys Asn Ile Glu Leu Thr Ala 100 105 110 Val Met Gly Ser Ile Tyr Gln Tyr Ile His Val Ala Phe Gln Gly Ser 115 120 125 Phe Ala Cys Ile Thr Val Gly Leu Ile Val Gly Ala Leu Ala Glu Arg 130 135 140 Ile Arg Phe Ser Ala Val Leu Ile Phe Val Val Val Trp Leu Thr Leu 145 150 155 160 Ser Tyr Ile Pro Ile Ala His Met Val Trp Gly Gly Gly Leu Leu Ala 165 170 175 Ser His Gly Ala Leu Asp Phe Ala Gly Gly Thr Val Val His Ile Asn 180 185 190 Ala Ala Ile Ala Gly Leu Val Gly Ala Tyr Leu Ile Gly Lys Arg Val 195 200 205 Gly Phe Gly Lys Glu Ala Phe Lys Pro His Asn Leu Pro Met Val Phe 210 215 220 Thr Gly Thr Ala Ile Leu Tyr Ile Gly Trp Phe Gly Phe Asn Ala Gly 225 230 235 240 Ser Ala Gly Thr Ala Asn Glu Ile Ala Ala Leu Ala Phe Val Asn Thr 245 250 255 Val Val Ala Thr Ala Ala Ala Ile Leu Gly Trp Ile Phe Gly Glu Trp 260 265 270 Ala Leu Arg Gly Lys Pro Ser Leu Leu Gly Ala Cys Ser Gly Ala Ile 275 280 285 Ala Gly Leu Val Gly Val Thr Pro Ala Cys Gly Tyr Ile Gly Val Gly 290 295 300 Gly Ala Leu Ile Ile Gly Val Val Ala Gly Leu Ala Gly Leu Trp Gly 305 310 315 320 Val Thr Met Leu Lys Arg Leu Leu Arg Val Asp Asp Pro Cys Asp Val 325 330 335 Phe Gly Val His Gly Val Cys Gly Ile Val Gly Cys Ile Met Thr Gly 340 345 350 Ile Phe Ala Ala Ser Ser Leu Gly Gly Val Gly Phe Ala Glu Gly Val 355 360 365 Thr Met Gly His Gln Leu Leu Val Gln Leu Glu Ser Ile Ala Ile Thr 370 375 380 Ile Val Trp Ser Gly Val Val Ala Phe Ile Gly Tyr Lys Leu Ala Asp 385 390 395 400 Leu Thr Val Gly Leu Arg Val Pro Glu Glu Gln Glu Arg Glu Gly Leu 405 410 415 Asp Val Asn Ser His Gly Glu Asn Ala Tyr Asn Ala 420 425 <210> 4 <211> 1287 <212> DNA <213> Artificial Sequence <220> <223> amtB <400> 4 atgaagatag cgacgataaa aactgggctt gcttcactgg cgatgcttcc gggactggta 60 atggctgcac ctgcggtggc cgataaagcc gacaatgcgt ttatgatgat ttgtactgcg 120 ctggtgctgt ttatgactat tccggggatt gccctgtttt acggtgggtt gattcgcggc 180 aaaaacgtgc tgtcgatgct gacgcaggtg acggtgacat ttgcactggt ctgtattctc 240 tgggtggttt acggttactc gctggcgttt ggtgagggca acaacttctt cggcaacatt 300 aactggttga tgctgaaaaa catcgaactg acggcggtga tgggcagcat ttatcagtat 360 atccacgtgg cgtttcaggg atcgtttgcc tgcattaccg tcggcttgat agttggggcg 420 ctggcggaac gaatccgctt ctcagctgtg ttgattttcg tggtggtatg gctgacgctc 480 tcttacattc cgattgcgca tatggtgtgg ggcggtggtt tgctggcttc tcacggtgcg 540 ctggatttcg cgggtggcac cgtggtgcac attaacgccg caatcgccgg tctggtgggc 600 gcgtatctga taggaaaacg cgtgggcttc ggtaaagagg cgtttaaacc gcacaacctg 660 ccgatggtct tcaccgggac tgccattctc tatatcggtt ggtttggctt taacgccggg 720 tcagcgggca cggcgaatga aatcgcggca ctggcatttg tgaatactgt ggtcgcaacg 780 gcggcggcaa ttcttggctg gatcttcggt gaatgggcgc tgcgtggtaa gccttcactg 840 ctgggggcgt gttctggcgc gattgccggt ctggtcggcg tgacgccagc ctgcggctac 900 attggggttg gcggcgcgtt gattatcggc gtggtagctg gtctggcggg cttgtggggc 960 gttaccatgc tcaaacgctt gctgcgggtg gatgatccct gcgatgtctt cggtgtgcac 1020 ggcgtttgtg gcattgtcgg ctgtatcatg accgggattt ttgccgccag ctcgctgggc 1080 ggcgtgggct tcgctgaagg tgtgacgatg ggccatcagt tgctggtaca gctggaaagc 1140 atcgccatta cgatcgtctg gtccggtgtt gtggcattta tcggctacaa attggcggat 1200 ctgacggttg gtctgcgtgt accggaagag caggagcgag aagggctgga tgtcaacagc 1260 cacggcgaga atgcctataa cgcgtaa 1287 <210> 5 <211> 444 <212> PRT <213> Artificial Sequence <220> <223> yicO (TRP136Stop) variant <400> 5 Met Asn Asn Asp Asn Thr Asp Tyr Val Ser Asn Glu Ser Gly Thr Leu 1 5 10 15 Ser Arg Leu Phe Lys Leu Pro Gln His Gly Thr Thr Val Arg Thr Glu 20 25 30 Leu Ile Ala Gly Met Thr Thr Phe Leu Thr Met Val Tyr Ile Val Phe 35 40 45 Val Asn Pro Gln Ile Leu Gly Ala Ala Gln Met Asp Pro Lys Val Val 50 55 60 Phe Val Thr Thr Cys Leu Ile Ala Gly Ile Gly Ser Ile Ala Met Gly 65 70 75 80 Ile Phe Ala Asn Leu Pro Val Ala Leu Ala Pro Ala Met Gly Leu Asn 85 90 95 Ala Phe Phe Ala Phe Val Val Val Gly Ala Met Gly Ile Ser Trp Gln 100 105 110 Thr Gly Met Gly Ala Ile Phe Trp Gly Ala Val Gly Leu Phe Leu Leu 115 120 125 Thr Leu Phe Arg Ile Arg Tyr *** Met Ile Ser Asn Ile Pro Leu Ser 130 135 140 Leu Arg Ile Gly Ile Thr Ser Gly Ile Gly Leu Phe Ile Ala Leu Met 145 150 155 160 Gly Leu Lys Asn Thr Gly Val Ile Val Ala Asn Lys Asp Thr Leu Val 165 170 175 Met Ile Gly Asp Leu Ser Ser His Gly Val Leu Leu Gly Ile Leu Gly 180 185 190 Phe Phe Ile Ile Thr Val Leu Ser Ser Arg His Phe His Ala Ala Val 195 200 205 Leu Val Ser Ile Val Val Thr Ser Cys Cys Gly Leu Phe Phe Gly Asp 210 215 220 Val His Phe Ser Gly Val Tyr Ser Ile Pro Pro Asp Ile Ser Gly Val 225 230 235 240 Ile Gly Glu Val Asp Leu Ser Gly Ala Leu Thr Leu Glu Leu Ala Gly 245 250 255 Ile Ile Phe Ser Phe Met Leu Ile Asn Leu Phe Asp Ser Ser Gly Thr 260 265 270 Leu Ile Gly Val Thr Asp Lys Ala Gly Leu Ile Asp Gly Asn Gly Lys 275 280 285 Phe Pro Asn Met Asn Lys Ala Leu Tyr Val Asp Ser Val Ser Ser Val 290 295 300 Ala Gly Ala Phe Ile Gly Thr Ser Ser Val Thr Ala Tyr Ile Glu Ser 305 310 315 320 Thr Ser Gly Val Ala Val Gly Gly Arg Thr Gly Leu Thr Ala Val Val 325 330 335 Val Gly Val Met Phe Leu Leu Val Met Phe Phe Ser Pro Leu Val Ala 340 345 350 Ile Val Pro Pro Tyr Ala Thr Ala Gly Ala Leu Ile Phe Val Gly Val 355 360 365 Leu Met Thr Ser Ser Leu Ala Arg Val Asn Trp Asp Asp Phe Thr Glu 370 375 380 Ser Val Pro Ala Phe Ile Thr Thr Val Met Met Pro Phe Thr Phe Ser 385 390 395 400 Ile Thr Glu Gly Ile Ala Leu Gly Phe Met Ser Tyr Cys Ile Met Lys 405 410 415 Val Cys Thr Gly Arg Trp Arg Asp Leu Asn Leu Cys Val Val Val Val 420 425 430 Ala Ala Leu Phe Ala Leu Lys Ile Ile Leu Val Asp 435 440 <210> 6 <211> 1335 <212> DNA <213> Artificial Sequence <220> <223> yicO (TRP136Stop) variant <400> 6 atgaataatg acaataccga ttacgtgagt aatgaatcag ggacgctttc gcgattattt 60 aaactacctc agcatgggac caccgtccgc acagaattga ttgcggggat gaccactttt 120 ttaaccatgg tgtacatcgt ttttgtgaac ccgcaaatcc tcggcgcggc acaaatggac 180 ccgaaagtgg tgtttgttac cacctgtttg attgccggta tcggcagtat tgcgatgggg 240 atatttgcta acttacccgt ggcgctggct ccggcaatgg ggctgaacgc cttctttgcc 300 ttcgtggtcg tgggggcgat gggcatctcc tggcagaccg ggatgggcgc aatattctgg 360 ggcgcagttg gactattttt gctcacgctg tttcgtatcc ggtactgaat gatctccaac 420 attcccttaa gtttacgtat tggtatcacc agcggaattg gattatttat cgccttaatg 480 ggattaaaaa atactggcgt tattgtcgcc aataaagaca cgctggtgat gattggcgat 540 ttaagttctc acggcgtgtt gttaggtatt ttagggtttt ttattataac cgtgttgtca 600 tcacgtcatt ttcatgccgc ggtgctggtt tctattgtgg tgacgtcttg ctgtggatta 660 tttttcggtg atgttcattt tagcggcgtc tattccattc cgcctgatat tagcggcgtc 720 attggtgaag tagatttgag cggcgcgtta acacttgaac tcgccggtat cattttctcc 780 tttatgctga tcaacctatt tgattcatca ggaacattaa ttggtgtaac tgataaagcg 840 ggcttaatag atggtaacgg taaattcccc aatatgaata aggcgctgta tgttgatagc 900 gtcagttcgg tggcgggtgc gtttatcggc acctcgtctg ttactgccta tattgaaagt 960 acttctggtg tggcagtcgg tggccgcacg gggctgactg cggttgtggt tggcgttatg 1020 ttcctgttgg ttatgttctt ctcaccgctg gtggcgatag ttcctcctta cgcaaccgcc 1080 ggagcgttaa tctttgttgg cgtgctgatg acttcgagcc tggcgcgcgt taactgggat 1140 gattttaccg aatcggtgcc tgcgtttatt accacggtga tgatgccctt tactttctcg 1200 atcaccgaag ggattgcact cggctttatg tcgtactgca tcatgaaagt atgcaccggg 1260 cgctggcgcg atctgaacct gtgtgtggtg gtggtcgcag ctctgtttgc actgaagatt 1320 attctggtgg attag 1335 <210> 7 <211> 444 <212> PRT <213> Artificial Sequence <220> <223> yicO <400> 7 Met Asn Asn Asp Asn Thr Asp Tyr Val Ser Asn Glu Ser Gly Thr Leu 1 5 10 15 Ser Arg Leu Phe Lys Leu Pro Gln His Gly Thr Thr Val Arg Thr Glu 20 25 30 Leu Ile Ala Gly Met Thr Thr Phe Leu Thr Met Val Tyr Ile Val Phe 35 40 45 Val Asn Pro Gln Ile Leu Gly Ala Ala Gln Met Asp Pro Lys Val Val 50 55 60 Phe Val Thr Thr Cys Leu Ile Ala Gly Ile Gly Ser Ile Ala Met Gly 65 70 75 80 Ile Phe Ala Asn Leu Pro Val Ala Leu Ala Pro Ala Met Gly Leu Asn 85 90 95 Ala Phe Phe Ala Phe Val Val Val Gly Ala Met Gly Ile Ser Trp Gln 100 105 110 Thr Gly Met Gly Ala Ile Phe Trp Gly Ala Val Gly Leu Phe Leu Leu 115 120 125 Thr Leu Phe Arg Ile Arg Tyr Trp Met Ile Ser Asn Ile Pro Leu Ser 130 135 140 Leu Arg Ile Gly Ile Thr Ser Gly Ile Gly Leu Phe Ile Ala Leu Met 145 150 155 160 Gly Leu Lys Asn Thr Gly Val Ile Val Ala Asn Lys Asp Thr Leu Val 165 170 175 Met Ile Gly Asp Leu Ser Ser His Gly Val Leu Leu Gly Ile Leu Gly 180 185 190 Phe Phe Ile Ile Thr Val Leu Ser Ser Arg His Phe His Ala Ala Val 195 200 205 Leu Val Ser Ile Val Val Thr Ser Cys Cys Gly Leu Phe Phe Gly Asp 210 215 220 Val His Phe Ser Gly Val Tyr Ser Ile Pro Pro Asp Ile Ser Gly Val 225 230 235 240 Ile Gly Glu Val Asp Leu Ser Gly Ala Leu Thr Leu Glu Leu Ala Gly 245 250 255 Ile Ile Phe Ser Phe Met Leu Ile Asn Leu Phe Asp Ser Ser Gly Thr 260 265 270 Leu Ile Gly Val Thr Asp Lys Ala Gly Leu Ile Asp Gly Asn Gly Lys 275 280 285 Phe Pro Asn Met Asn Lys Ala Leu Tyr Val Asp Ser Val Ser Ser Val 290 295 300 Ala Gly Ala Phe Ile Gly Thr Ser Ser Val Thr Ala Tyr Ile Glu Ser 305 310 315 320 Thr Ser Gly Val Ala Val Gly Gly Arg Thr Gly Leu Thr Ala Val Val 325 330 335 Val Gly Val Met Phe Leu Leu Val Met Phe Phe Ser Pro Leu Val Ala 340 345 350 Ile Val Pro Pro Tyr Ala Thr Ala Gly Ala Leu Ile Phe Val Gly Val 355 360 365 Leu Met Thr Ser Ser Leu Ala Arg Val Asn Trp Asp Asp Phe Thr Glu 370 375 380 Ser Val Pro Ala Phe Ile Thr Thr Val Met Met Pro Phe Thr Phe Ser 385 390 395 400 Ile Thr Glu Gly Ile Ala Leu Gly Phe Met Ser Tyr Cys Ile Met Lys 405 410 415 Val Cys Thr Gly Arg Trp Arg Asp Leu Asn Leu Cys Val Val Val Val 420 425 430 Ala Ala Leu Phe Ala Leu Lys Ile Ile Leu Val Asp 435 440 <210> 8 <211> 1335 <212> DNA <213> Artificial Sequence <220> <223> yicO <400> 8 atgaataatg acaataccga ttacgtgagt aatgaatcag ggacgctttc gcgattattt 60 aaactacctc agcatgggac caccgtccgc acagaattga ttgcggggat gaccactttt 120 ttaaccatgg tgtacatcgt ttttgtgaac ccgcaaatcc tcggcgcggc acaaatggac 180 ccgaaagtgg tgtttgttac cacctgtttg attgccggta tcggcagtat tgcgatgggg 240 atatttgcta acttacccgt ggcgctggct ccggcaatgg ggctgaacgc cttctttgcc 300 ttcgtggtcg tgggggcgat gggcatctcc tggcagaccg ggatgggcgc aatattctgg 360 ggcgcagttg gactattttt gctcacgctg tttcgtatcc ggtactggat gatctccaac 420 attcccttaa gtttacgtat tggtatcacc agcggaattg gattatttat cgccttaatg 480 ggattaaaaa atactggcgt tattgtcgcc aataaagaca cgctggtgat gattggcgat 540 ttaagttctc acggcgtgtt gttaggtatt ttagggtttt ttattataac cgtgttgtca 600 tcacgtcatt ttcatgccgc ggtgctggtt tctattgtgg tgacgtcttg ctgtggatta 660 tttttcggtg atgttcattt tagcggcgtc tattccattc cgcctgatat tagcggcgtc 720 attggtgaag tagatttgag cggcgcgtta acacttgaac tcgccggtat cattttctcc 780 tttatgctga tcaacctatt tgattcatca ggaacattaa ttggtgtaac tgataaagcg 840 ggcttaatag atggtaacgg taaattcccc aatatgaata aggcgctgta tgttgatagc 900 gtcagttcgg tggcgggtgc gtttatcggc acctcgtctg ttactgccta tattgaaagt 960 acttctggtg tggcagtcgg tggccgcacg gggctgactg cggttgtggt tggcgttatg 1020 ttcctgttgg ttatgttctt ctcaccgctg gtggcgatag ttcctcctta cgcaaccgcc 1080 ggagcgttaa tctttgttgg cgtgctgatg acttcgagcc tggcgcgcgt taactgggat 1140 gattttaccg aatcggtgcc tgcgtttatt accacggtga tgatgccctt tactttctcg 1200 atcaccgaag ggattgcact cggctttatg tcgtactgca tcatgaaagt atgcaccggg 1260 cgctggcgcg atctgaacct gtgtgtggtg gtggtcgcag ctctgtttgc actgaagatt 1320 attctggtgg attag 1335 <210> 9 <211> 547 <212> PRT <213> Artificial Sequence <220> <223> yeeO (G272E) variant <400> 9 Met Leu Arg His Ile Leu Thr Ala Lys Asn Leu Leu Ser Asn Pro Ile 1 5 10 15 Phe Lys Phe Pro Asn Cys Leu Pro Phe Leu Ser Thr Val Cys Cys Ile 20 25 30 Cys Arg Gln Phe Val Gly Glu Asn Leu Cys Ser Phe Ala Asp Ser Pro 35 40 45 Ser Leu Phe Glu Met Trp Phe His Phe Leu Gln Leu Arg Ser Ala Leu 50 55 60 Asn Ile Ser Ser Ala Leu Arg Gln Val Val His Gly Thr Arg Trp His 65 70 75 80 Ala Lys Arg Lys Ser Tyr Lys Val Leu Phe Trp Arg Glu Ile Thr Pro 85 90 95 Leu Ala Val Pro Ile Phe Met Glu Asn Ala Cys Val Leu Leu Met Gly 100 105 110 Val Leu Ser Thr Phe Leu Val Ser Trp Leu Gly Lys Asp Ala Met Ala 115 120 125 Gly Val Gly Leu Ala Asp Ser Phe Asn Met Val Ile Met Ala Phe Phe 130 135 140 Ala Ala Ile Asp Leu Gly Thr Thr Val Val Val Ala Phe Ser Leu Gly 145 150 155 160 Lys Arg Asp Arg Arg Arg Ala Arg Val Ala Thr Arg Gln Ser Leu Val 165 170 175 Ile Met Thr Leu Phe Ala Val Leu Leu Ala Thr Leu Ile His His Phe 180 185 190 Gly Glu Gln Ile Ile Asp Phe Val Ala Gly Asp Ala Thr Thr Glu Val 195 200 205 Lys Ala Leu Ala Leu Thr Tyr Leu Glu Leu Thr Val Leu Ser Tyr Pro 210 215 220 Ala Ala Ala Ile Thr Leu Ile Gly Ser Gly Ala Leu Arg Gly Ala Gly 225 230 235 240 Asn Thr Lys Ile Pro Leu Leu Ile Asn Gly Ser Leu Asn Ile Leu Asn 245 250 255 Ile Ile Ile Ser Gly Ile Leu Ile Tyr Gly Leu Phe Ser Trp Pro Glu 260 265 270 Leu Gly Phe Val Gly Ala Gly Leu Gly Leu Thr Ile Ser Arg Tyr Ile 275 280 285 Gly Ala Val Ala Ile Leu Trp Val Leu Ala Ile Gly Phe Asn Pro Ala 290 295 300 Leu Arg Ile Ser Leu Lys Ser Tyr Phe Lys Pro Leu Asn Phe Ser Ile 305 310 315 320 Ile Trp Glu Val Met Gly Ile Gly Ile Pro Ala Ser Val Glu Ser Val 325 330 335 Leu Phe Thr Ser Gly Arg Leu Leu Thr Gln Met Phe Val Ala Gly Met 340 345 350 Gly Thr Ser Val Ile Ala Gly Asn Phe Ile Ala Phe Ser Ile Ala Ala 355 360 365 Leu Ile Asn Leu Pro Gly Ser Ala Leu Gly Ser Ala Ser Thr Ile Ile 370 375 380 Thr Gly Arg Arg Leu Gly Val Gly Gln Ile Ala Gln Ala Glu Ile Gln 385 390 395 400 Leu Arg His Val Phe Trp Leu Ser Thr Leu Gly Leu Thr Ala Ile Ala 405 410 415 Trp Leu Thr Ala Pro Phe Ala Gly Val Met Ala Ser Phe Tyr Thr Gln 420 425 430 Asp Pro Gln Val Lys His Val Val Val Ile Leu Ile Trp Leu Asn Ala 435 440 445 Leu Phe Met Pro Ile Trp Ser Ala Ser Trp Val Leu Pro Ala Gly Phe 450 455 460 Lys Gly Ala Arg Asp Ala Arg Tyr Ala Met Trp Val Ser Met Leu Ser 465 470 475 480 Met Trp Gly Cys Arg Val Val Val Gly Tyr Val Leu Gly Ile Met Leu 485 490 495 Gly Trp Gly Val Val Gly Val Trp Met Gly Met Phe Ala Asp Trp Ala 500 505 510 Val Arg Ala Val Leu Phe Tyr Trp Arg Met Val Thr Gly Arg Trp Leu 515 520 525 Trp Lys Tyr Pro Arg Pro Glu Pro Gln Lys Cys Glu Lys Lys Pro Val 530 535 540 Val Ser Glu 545 <210> 10 <211> 1644 <212> DNA <213> Artificial Sequence <220> <223> yeeO (G272E) variant <400> 10 ttgttgaggc acatcttaac ggcgaaaaat cttttgtcaa acccgatttt taaattcccc 60 aactgtttgc cgtttctatc aacagtttgt tgcatttgca gacaatttgt tggcgaaaat 120 ctttgcagct ttgctgattc tccctcatta tttgaaatgt ggtttcactt tctgcaatta 180 aggtcggctt tgaatatctc ctctgcttta cgccaggttg ttcacggcac tcgctggcac 240 gctaaacgca agagctacaa agtgttgttc tggcgcgaga taaccccgct tgctgttcct 300 atcttcatgg agaatgcctg tgtcctgttg atgggggttc tgagcacttt tctggtcagc 360 tggctgggaa aagatgcgat ggccggcgtg ggattggcgg acagcttcaa tatggtcatt 420 atggcttttt ttgctgctat cgatcttggt actactgtcg ttgtggcatt tagtctcggt 480 aagcgggatc gacgacgagc gagggtggcg acgcggcagt cattggtgat catgacgttg 540 tttgccgtac tgttggcaac gcttattcat cattttggcg aacaaattat tgatttcgtc 600 gcgggtgatg ccacgacaga agttaaagca ctggcgttga cttatctgga gctgacggta 660 ctcagttatc cagcagctgc catcactctt attggtagcg gggcacttcg tggtgcaggg 720 aatacgaaaa taccgctatt gattaacggt agcctgaata ttcttaatat tattattagc 780 ggcatattga tttacggcct tttctcctgg ccggaactgg gatttgtcgg ggcagggctg 840 ggtttaacca tttctcgtta tattggcgca gttgcaattt tgtgggtgct ggcgattggt 900 tttaatcctg cgctaaggat ttcgttaaag agctatttta aaccgctgaa ttttagcatt 960 atctgggaag tcatggggat tggtattccc gcgagtgtcg aatcagtgtt atttaccagt 1020 ggtcggttat taacccaaat gttcgttgcc gggatgggga ccagtgttat tgccggaaat 1080 tttatcgcgt tttcaattgc ggctcttatc aacttacccg gaagtgcgct cggctctgct 1140 tctacgatca ttacaggccg aaggttgggg gtagggcaga tagcgcaagc agagattcag 1200 ttgcggcatg tgttctggct ttccactctt ggattaacgg ccatcgcctg gctaacggct 1260 ccctttgccg gggttatggc atcgttttac acccaggatc cacaggttaa acatgtcgtt 1320 gtgattctga tttggctaaa tgctttattt atgcctattt ggtccgcctc atgggtgcta 1380 cccgctggat ttaaaggtgc tcgtgatgcc cgttacgcca tgtgggtttc gatgttgagc 1440 atgtggggtt gtcgggttgt agtcggttat gtgctgggaa tcatgcttgg ctggggtgtg 1500 gttggtgtct ggatgggaat gtttgccgac tgggctgtgc gggccgtgct gttttactgg 1560 cgaatggtta ctggacgttg gctatggaaa taccctcgac ccgagccgca aaagtgtgaa 1620 aaaaagccag ttgtgtcgga ataa 1644 <210> 11 <211> 547 <212> PRT <213> Artificial Sequence <220> <223> yeeO <400> 11 Met Leu Arg His Ile Leu Thr Ala Lys Asn Leu Leu Ser Asn Pro Ile 1 5 10 15 Phe Lys Phe Pro Asn Cys Leu Pro Phe Leu Ser Thr Val Cys Cys Ile 20 25 30 Cys Arg Gln Phe Val Gly Glu Asn Leu Cys Ser Phe Ala Asp Ser Pro 35 40 45 Ser Leu Phe Glu Met Trp Phe His Phe Leu Gln Leu Arg Ser Ala Leu 50 55 60 Asn Ile Ser Ser Ala Leu Arg Gln Val Val His Gly Thr Arg Trp His 65 70 75 80 Ala Lys Arg Lys Ser Tyr Lys Val Leu Phe Trp Arg Glu Ile Thr Pro 85 90 95 Leu Ala Val Pro Ile Phe Met Glu Asn Ala Cys Val Leu Leu Met Gly 100 105 110 Val Leu Ser Thr Phe Leu Val Ser Trp Leu Gly Lys Asp Ala Met Ala 115 120 125 Gly Val Gly Leu Ala Asp Ser Phe Asn Met Val Ile Met Ala Phe Phe 130 135 140 Ala Ala Ile Asp Leu Gly Thr Thr Val Val Val Ala Phe Ser Leu Gly 145 150 155 160 Lys Arg Asp Arg Arg Arg Ala Arg Val Ala Thr Arg Gln Ser Leu Val 165 170 175 Ile Met Thr Leu Phe Ala Val Leu Leu Ala Thr Leu Ile His His Phe 180 185 190 Gly Glu Gln Ile Ile Asp Phe Val Ala Gly Asp Ala Thr Thr Glu Val 195 200 205 Lys Ala Leu Ala Leu Thr Tyr Leu Glu Leu Thr Val Leu Ser Tyr Pro 210 215 220 Ala Ala Ala Ile Thr Leu Ile Gly Ser Gly Ala Leu Arg Gly Ala Gly 225 230 235 240 Asn Thr Lys Ile Pro Leu Leu Ile Asn Gly Ser Leu Asn Ile Leu Asn 245 250 255 Ile Ile Ile Ser Gly Ile Leu Ile Tyr Gly Leu Phe Ser Trp Pro Gly 260 265 270 Leu Gly Phe Val Gly Ala Gly Leu Gly Leu Thr Ile Ser Arg Tyr Ile 275 280 285 Gly Ala Val Ala Ile Leu Trp Val Leu Ala Ile Gly Phe Asn Pro Ala 290 295 300 Leu Arg Ile Ser Leu Lys Ser Tyr Phe Lys Pro Leu Asn Phe Ser Ile 305 310 315 320 Ile Trp Glu Val Met Gly Ile Gly Ile Pro Ala Ser Val Glu Ser Val 325 330 335 Leu Phe Thr Ser Gly Arg Leu Leu Thr Gln Met Phe Val Ala Gly Met 340 345 350 Gly Thr Ser Val Ile Ala Gly Asn Phe Ile Ala Phe Ser Ile Ala Ala 355 360 365 Leu Ile Asn Leu Pro Gly Ser Ala Leu Gly Ser Ala Ser Thr Ile Ile 370 375 380 Thr Gly Arg Arg Leu Gly Val Gly Gln Ile Ala Gln Ala Glu Ile Gln 385 390 395 400 Leu Arg His Val Phe Trp Leu Ser Thr Leu Gly Leu Thr Ala Ile Ala 405 410 415 Trp Leu Thr Ala Pro Phe Ala Gly Val Met Ala Ser Phe Tyr Thr Gln 420 425 430 Asp Pro Gln Val Lys His Val Val Val Ile Leu Ile Trp Leu Asn Ala 435 440 445 Leu Phe Met Pro Ile Trp Ser Ala Ser Trp Val Leu Pro Ala Gly Phe 450 455 460 Lys Gly Ala Arg Asp Ala Arg Tyr Ala Met Trp Val Ser Met Leu Ser 465 470 475 480 Met Trp Gly Cys Arg Val Val Val Gly Tyr Val Leu Gly Ile Met Leu 485 490 495 Gly Trp Gly Val Val Gly Val Trp Met Gly Met Phe Ala Asp Trp Ala 500 505 510 Val Arg Ala Val Leu Phe Tyr Trp Arg Met Val Thr Gly Arg Trp Leu 515 520 525 Trp Lys Tyr Pro Arg Pro Glu Pro Gln Lys Cys Glu Lys Lys Pro Val 530 535 540 Val Ser Glu 545 <210> 12 <211> 1644 <212> DNA <213> Artificial Sequence <220> <223> yeeO <400> 12 ttgttgaggc acatcttaac ggcgaaaaat cttttgtcaa acccgatttt taaattcccc 60 aactgtttgc cgtttctatc aacagtttgt tgcatttgca gacaatttgt tggcgaaaat 120 ctttgcagct ttgctgattc tccctcatta tttgaaatgt ggtttcactt tctgcaatta 180 aggtcggctt tgaatatctc ctctgcttta cgccaggttg ttcacggcac tcgctggcac 240 gctaaacgca agagctacaa agtgttgttc tggcgcgaga taaccccgct tgctgttcct 300 atcttcatgg agaatgcctg tgtcctgttg atgggggttc tgagcacttt tctggtcagc 360 tggctgggaa aagatgcgat ggccggcgtg ggattggcgg acagcttcaa tatggtcatt 420 atggcttttt ttgctgctat cgatcttggt actactgtcg ttgtggcatt tagtctcggt 480 aagcgggatc gacgacgagc gagggtggcg acgcggcagt cattggtgat catgacgttg 540 tttgccgtac tgttggcaac gcttattcat cattttggcg aacaaattat tgatttcgtc 600 gcgggtgatg ccacgacaga agttaaagca ctggcgttga cttatctgga gctgacggta 660 ctcagttatc cagcagctgc catcactctt attggtagcg gggcacttcg tggtgcaggg 720 aatacgaaaa taccgctatt gattaacggt agcctgaata ttcttaatat tattattagc 780 ggcatattga tttacggcct tttctcctgg ccgggactgg gatttgtcgg ggcagggctg 840 ggtttaacca tttctcgtta tattggcgca gttgcaattt tgtgggtgct ggcgattggt 900 tttaatcctg cgctaaggat ttcgttaaag agctatttta aaccgctgaa ttttagcatt 960 atctgggaag tcatggggat tggtattccc gcgagtgtcg aatcagtgtt atttaccagt 1020 ggtcggttat taacccaaat gttcgttgcc gggatgggga ccagtgttat tgccggaaat 1080 tttatcgcgt tttcaattgc ggctcttatc aacttacccg gaagtgcgct cggctctgct 1140 tctacgatca ttacaggccg aaggttgggg gtagggcaga tagcgcaagc agagattcag 1200 ttgcggcatg tgttctggct ttccactctt ggattaacgg ccatcgcctg gctaacggct 1260 ccctttgccg gggttatggc atcgttttac acccaggatc cacaggttaa acatgtcgtt 1320 gtgattctga tttggctaaa tgctttattt atgcctattt ggtccgcctc atgggtgcta 1380 cccgctggat ttaaaggtgc tcgtgatgcc cgttacgcca tgtgggtttc gatgttgagc 1440 atgtggggtt gtcgggttgt agtcggttat gtgctgggaa tcatgcttgg ctggggtgtg 1500 gttggtgtct ggatgggaat gtttgccgac tgggctgtgc gggccgtgct gttttactgg 1560 cgaatggtta ctggacgttg gctatggaaa taccctcgac ccgagccgca aaagtgtgaa 1620 aaaaagccag ttgtgtcgga ataa 1644 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 1 <400> 13 caattttatt atagtaattg actattatac 30 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer 2 <400> 14 ccacgccgcc caattttatt atagtaattg actattatac 40 <210> 15 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer 3 <400> 15 ggcggcgtgg gcttcgctga gttttagagc tagaaatagc 40 <210> 16 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 4 <400> 16 gcttcgctga gttttagagc tagaaatagc 30 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer 5 <400> 17 gagcctgtcg gcctacctgc t 21 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 6 <400> 18 cggccggcat gagcctgtcg 20 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 7 <400> 19 atgccggccg tcggttggtt tggctttaac 30 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 8 <400> 20 tcggttggtt tggctttaac 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 9 <400> 21 cagcgagctg gcggcaaaaa 20 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 10 <400> 22 ccacgccgcc cagcgagctg gcggcaaaaa 30 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 11 <400> 23 ggcggcgtgg acttcgctga aggtgtgacg 30 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 12 <400> 24 acttcgctga aggtgtgacg 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 13 <400> 25 gtgagtttta tacccaagac 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 14 <400> 26 tttgtgcgcg gtgagtttta 20 <210> 27 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer 15 <400> 27 cgcgcacaaa gagctcctga aaatctcgat aac 33 <210> 28 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer 16 <400> 28 gagctcctga aaatctcgat aac 23 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 17 <400> 29 tggcaccgtg gtgcacatta 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 18 <400> 30 agccgcacgg catcggtttt 20 <210> 31 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer 2 <400> 31 cgtgacgttc caattttatt atagtaattg actattatac 40 <210> 32 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer 3 <400> 32 gaacgtcacg accttcgtca gttttagagc tagaaatagc 40 <210> 33 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 4 <400> 33 accttcgtca gttttagagc tagaaatagc 30 <210> 34 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Primer 7 <400> 34 atgccggccg cggccgggta gatacccaga g 31 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer 8 <400> 35 cggccgggta gatacccaga g 21 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 9 <400> 36 tctgctgttc gttgacaaca 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 10 <400> 37 gtcgtgacgt tctgctgttc 20 <210> 38 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 11 <400> 38 acgtcacgac tttcgtcacg gaatttctca 30 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 12 <400> 39 tttcgtcacg gaatttctca 20 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 13 <400> 40 tccgttcgct aagggcggta 20 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 14 <400> 41 acctgatgtg tccgttcgct 20 <210> 42 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer 15 <400> 42 cacatcaggt gagctcctga aaatctcgat aac 33 <210> 43 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 17 <400> 43 tccgttcgct aagggcggta 20 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 18 <400> 44 acctgatgtg tccgttcgct 20 <210> 45 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer 2 <400> 45 aggagaaaag caattttatt atagtaattg actattatac 40 <210> 46 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer 3 <400> 46 cttttctcct ggccgggact gttttagagc tagaaatagc 40 <210> 47 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 4 <400> 47 ggccgggact gttttagagc tagaaatagc 30 <210> 48 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 7 <400> 48 atgccggccg tttagtctcg gtaagcggga 30 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 8 <400> 49 tttagtctcg gtaagcggga 20 <210> 50 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer 9 <400> 50 gaaaaggccg taaatcaata tgccg 25 <210> 51 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer 10 <400> 51 ccggccagga gaaaaggccg taaat 25 <210> 52 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 11 <400> 52 tcctggccgg aactgggatt tgtcggggca 30 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 12 <400> 53 aactgggatt tgtcggggca 20 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 13 <400> 54 gcagagccga gcgcacttcc 20 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 14 <400> 55 gatcgtagaa gcagagccga 20 <210> 56 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer 15 <400> 56 ttctacgatc gagctcctga aaatctcgat aac 33 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 17 <400> 57 cttttctggt cagctggctg 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 18 <400> 58 ttagccaggc gatggccgtt 20 <210> 59 <211> 3234 <212> DNA <213> Artificial Sequence <220> <223> pDSG <400> 59 tttccatagg ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg 60 gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg 120 ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag 180 cgtggcgctt tctcatagct cacgctgtag gtatctcagt tcggtgtagg tcgttcgctc 240 caagctgggc tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct tatccggtaa 300 ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg 360 taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc 420 taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac 480 cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggtgg 540 tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag aagatccttt 600 gatcttttct acggggtctg acgctcagtg gaacgaaaac tcacgttaag ggattttggt 660 catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat gaagttttaa 720 atcaatctaa agtatatatg agtaaacttg gtctgacagt taaaagattg acagtataat 780 agtcaattac tataataaaa ttgatgcgca ggtgaaacac ctgctgcagt tttagagcta 840 gaaatagcaa gttaaaataa ggctagtccg ttatcaactt gaaaaagtgg caccgagtcg 900 gtgctttttt tcgttttccg ggacgccctc gcggacgtgc tcatagtcca cgacgcccgt 960 gattttgtag ccctggccga cggccagcag gtaggccgac aggctcatgc cggccggagc 1020 tcctgaaaat ctcgataact caaaaaatac gcccggtagt gatcttattt cattatggtg 1080 aaagttggaa cctcttagga tcctctagat ttaagaagga gatatacata aaactccttc 1140 tgagctagtt ctctagcatt ctattatttt gattcgacac cttaataata gcagaaggag 1200 tttttacctg tcaaagaacc atcaaaccct tgatacacaa ggctttgacc taattttgaa 1260 aaatgatgtt gtttctatat agtatcaaga taagaaagaa aaggattttt cgctacgctc 1320 aaatcctttc ccgtcacggg cttctcaggg cgttttatgg cgggtctgct atgtggtgct 1380 atctgacttt ttgctgttca gcagttcctg ccctctgatt ttccagtctg accacttcgg 1440 attatcccgt gacaggtcat tcagactggc taatgcaccc agtaaggcag cggtatcatc 1500 aacggggtct gacgctcagt ggaacgaaaa ctcacgttaa gggattttgg tcatgagatt 1560 atcaaaaagg atcttcacct agatcctttt aaattaaaaa tgaagtttta aatcaatcta 1620 aagtatatat gagtaaactt ggtctgacag ttaccaatgc ttaatcagtg aggcacctat 1680 ctcagcgatc tgtctatttc gttcatccat agttgcctga ctccccgtcg tgtagataac 1740 tacgatacgg gagggcttac catctggccc cagtgctgca atgataccgc gagacccacg 1800 ctcaccggct ccagatttat cagcaataaa ccagccagcc ggaagggccg agcgcagaag 1860 tggtcctgca actttatccg cctccatcca gtctattaat tgttgccggg aagctagagt 1920 aagtagttcg ccagttaata gtttgcgcaa cgttgttgcc attgctacag gcatcgtggt 1980 gtcacgctcg tcgtttggta tggcttcatt cagctccggt tcccaacgat caaggcgagt 2040 tacatgatcc cccatgttgt gcaaaaaagc ggttagctcc ttcggtcctc cgatcgttgt 2100 cagaagtaag ttggccgcag tgttatcact catggttatg gcagcactgc ataattctct 2160 tactgtcatg ccatccgtaa gatgcttttc tgtgactggt gagtactcaa ccaagtcatt 2220 ctgagaatag tgtatgcggc gaccgagttg ctcttgcccg gcgtcaatac gggataatac 2280 cgcgccacat agcagaactt taaaagtgct catcattgga aaacgttctt cggggcgaaa 2340 actctcaagg atcttaccgc tgttgagatc cagttcgatg taacccactc gtgcacccaa 2400 ctgatcttca gcatctttta ctttcaccag cgtttctggg tgagcaaaaa caggaaggca 2460 aaatgccgca aaaaagggaa taagggcgac acggaaatgt tgaatactca tactcttcct 2520 ttttcaatat tattgaagca tttatcaggg ttattgtctc atgagcggat acatatttga 2580 atgtatttag aaaaataaac aaataggggt tccgcgcaca tttccccgaa aagtgccacc 2640 aaaaaaacac aaaagaccac attttttaat gtggtcttta ttcttcaact aaagcaccca 2700 ttagttcaac aaacgaaaat tggataaagt gggatatttt taaaatatat atttatgtta 2760 cagtaagctg cctcgcgcgt ttcggtgatg acggtgaaaa cctctgacac atgcagctcc 2820 cggagacggt cacagcttgt ctgtaagcgg atgccgggag cagacaagcc cgtcagggcg 2880 cgtcagcggg tgttggcggg tgtcggggcg cagccatgac ccagtcacgt agcgatagcg 2940 gagtgtatac tggcttaact atgcggcatc agagcagatt gtactgagag tgcaccatat 3000 gcggtgtgaa ataccgcaca gatgcgtaag gagaaaatac cgcatcaggc gctcttccgc 3060 ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatcagctca 3120 ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgtg 3180 agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc gcgttgctgg cgtt 3234 <210> 60 <211> 9656 <212> DNA <213> Artificial Sequence <220> <223> pDS9 <400> 60 aaagccatga caaaaacgcg taacaaaagt gtctataatc acggcagaaa agtccacatt 60 gattatttgc acggcgtcac actttgctat gccatagcat ttttatccat aagattagcg 120 gatcctacct gacgcttttt atcgcaactc tctactgttt ctccataccc gtttttttgg 180 gaattcgagc tctaaggagg ttataaaaaa tggatattaa tactgaaact gagatcaagc 240 aaaagcattc actaaccccc tttcctgttt tcctaatcag cccggcattt cgcgggcgat 300 attttcacag ctatttcagg agttcagcca tgaacgctta ttacattcag gatcgtcttg 360 aggctcagag ctgggcgcgt cactaccagc agctcgcccg tgaagagaaa gaggcagaac 420 tggcagacga catggaaaaa ggcctgcccc agcacctgtt tgaatcgcta tgcatcgatc 480 atttgcaacg ccacggggcc agcaaaaaat ccattacccg tgcgtttgat gacgatgttg 540 agtttcagga gcgcatggca gaacacatcc ggtacatggt tgaaaccatt gctcaccacc 600 aggttgatat tgattcagag gtataaaacg aatgagtact gcactcgcaa cgctggctgg 660 gaagctggct gaacgtgtcg gcatggattc tgtcgaccca caggaactga tcaccactct 720 tcgccagacg gcatttaaag gtgatgccag cgatgcgcag ttcatcgcat tactgatcgt 780 tgccaaccag tacggcctta atccgtggac gaaagaaatt tacgcctttc ctgataagca 840 gaatggcatc gttccggtgg tgggcgttga tggctggtcc cgcatcatca atgaaaacca 900 gcagtttgat ggcatggact ttgagcagga caatgaatcc tgtacatgcc ggatttaccg 960 caaggaccgt aatcatccga tctgcgttac cgaatggatg gatgaatgcc gccgcgaacc 1020 attcaaaact cgcgaaggca gagaaatcac ggggccgtgg cagtcgcatc ccaaacggat 1080 gttacgtcat aaagccatga ttcagtgtgc ccgtctggcc ttcggatttg ctggtatcta 1140 tgacaaggat gaagccgagc gcattgtcga aaatactgca tacactgcag aacgtcagcc 1200 ggaacgcgac atcactccgg ttaacgatga aaccatgcag gagattaaca ctctgctgat 1260 cgccctggat aaaacatggg atgacgactt attgccgctc tgttcccaga tatttcgccg 1320 cgacattcgt gcatcgtcag aactgacaca ggccgaagca gtaaaagctc ttggattcct 1380 gaaacagaaa gccgcagagc agaaggtggc agcatgacac cggacattat cctgcagcgt 1440 accgggatcg atgtgagagc tgtcgaacag ggggatgatg cgtggcacaa attacggctc 1500 ggcgtcatca ccgcttcaga agttcacaac gtgatagcaa aaccccgctc cggaaagaag 1560 tggcctgaca tgaaaatgtc ctacttccac accctgcttg ctgaggtttg caccggtgtg 1620 gctccggaag ttaacgctaa agcactggcc tggggaaaac agtacgagaa cgacgccaga 1680 accctgtttg aattcacttc cggcgtgaat gttactgaat ccccgatcat ctatcgcgac 1740 gaaagtatgc gtaccgcctg ctctcccgat ggtttatgca gtgacggcaa cggccttgaa 1800 ctgaaatgcc cgtttacctc ccgggatttc atgaagttcc ggctcggtgg tttcgaggcc 1860 ataaagtcag cttacatggc ccaggtgcag tacagcatgt gggtgacgcg aaaaaatgcc 1920 tggtactttg ccaactatga cccgcgtatg aagcgtgaag gcctgcatta tgtcgtgatt 1980 gagcgggatg aaaagtacat ggcgagtttt gacgagatcg tgccggagtt catcgaaaaa 2040 atggacgagg cactggctga aattggtttt gtatttgggg agcaatggcg atgagatcta 2100 aagaggagaa aggatctatg gataagaaat actcaatagg cttagatatc ggcacaaata 2160 gcgtcggatg ggcggtgatc actgatgaat ataaggttcc gtctaaaaag ttcaaggttc 2220 tgggaaatac agaccgccac agtatcaaaa aaaatcttat aggggctctt ttatttgaca 2280 gtggagagac agcggaagcg actcgtctca aacggacagc tcgtagaagg tatacacgtc 2340 ggaagaatcg tatttgttat ctacaggaga ttttttcaaa tgagatggcg aaagtagatg 2400 atagtttctt tcatcgactt gaagagtctt ttttggtgga agaagacaag aagcatgaac 2460 gtcatcctat ttttggaaat atagtagatg aagttgctta tcatgagaaa tatccaacta 2520 tctatcatct gcgaaaaaaa ttggtagatt ctactgataa agcggatttg cgcttaatct 2580 atttggcctt agcgcatatg attaagtttc gtggtcattt tttgattgag ggagatttaa 2640 atcctgataa tagtgatgtg gacaaactat ttatccagtt ggtacaaacc tacaatcaat 2700 tatttgaaga aaaccctatt aacgcaagtg gagtagatgc taaagcgatt ctttctgcac 2760 gattgagtaa atcaagacga ttagaaaatc tcattgctca gctccccggt gagaagaaaa 2820 atggcttatt tgggaatctc attgctttgt cattgggttt gacccctaat tttaaatcaa 2880 attttgattt ggcagaagat gctaaattac agctttcaaa agatacttac gatgatgatt 2940 tagataattt attggcgcaa attggagatc aatatgctga tttgtttttg gcagctaaga 3000 atttatcaga tgctatttta ctttcagata tcctaagagt aaatactgaa ataactaagg 3060 ctcccctatc agcttcaatg attaaacgct acgatgaaca tcatcaagac ttgactcttt 3120 taaaagcttt agttcgacaa caacttccag aaaagtataa agaaatcttt tttgatcaat 3180 caaaaaacgg atatgcaggt tatattgatg ggggagctag ccaagaagaa ttttataaat 3240 ttatcaaacc aattttagaa aaaatggatg gtactgagga attattggtg aaactaaatc 3300 gtgaagattt gctgcgcaag caacggacct ttgacaacgg ctctattccc catcaaattc 3360 acttgggtga gctgcatgct attttgagaa gacaagaaga cttttatcca tttttaaaag 3420 acaatcgtga gaagattgaa aaaatcttga cttttcgaat tccttattat gttggtccat 3480 tggcgcgtgg caatagtcgt tttgcatgga tgactcggaa gtctgaagaa acaattaccc 3540 catggaattt tgaagaagtt gtcgataaag gtgcttcagc tcaatcattt attgaacgca 3600 tgacaaactt tgataaaaat cttccaaatg aaaaagtact accaaaacat agtttgcttt 3660 atgagtattt tacggtttat aacgaattga caaaggtcaa atatgttact gaaggaatgc 3720 gaaaaccagc atttctttca ggtgaacaga agaaagccat tgttgattta ctcttcaaaa 3780 caaatcgaaa agtaaccgtt aagcaattaa aagaagatta tttcaaaaaa atagaatgtt 3840 ttgatagtgt tgaaatttca ggagttgaag atagatttaa tgcttcatta ggtacctacc 3900 atgatttgct aaaaattatt aaagataaag attttttgga taatgaagaa aatgaagata 3960 tcttagagga tattgtttta acattgacct tatttgaaga tagggagatg attgaggaaa 4020 gacttaaaac atatgctcac ctctttgatg ataaggtgat gaaacagctt aaacgtcgcc 4080 gttatactgg ttggggacgt ttgtctcgaa aattgattaa tggtattagg gataagcaat 4140 ctggcaaaac aatattagat tttttgaaat cagatggttt tgccaatcgc aattttatgc 4200 agctgatcca tgatgatagt ttgacattta aagaagacat tcaaaaagca caagtgtctg 4260 gacaaggcga tagtttacat gaacatattg caaatttagc tggtagccct gctattaaaa 4320 aaggtatttt acagactgta aaagttgttg atgaattggt caaagtaatg gggcggcata 4380 agccagaaaa tatcgttatt gaaatggcac gtgaaaatca gacaactcaa aagggccaga 4440 aaaattcgcg agagcgtatg aaacgaatcg aagaaggtat caaagaatta ggaagtcaga 4500 ttcttaaaga gcatcctgtt gaaaatactc aattgcaaaa tgaaaagctc tatctctatt 4560 atctccaaaa tggaagagac atgtatgtgg accaagaatt agatattaat cgtttaagtg 4620 attatgatgt cgatcacatt gttccacaaa gtttccttaa agacgattca atagacaata 4680 aggtcttaac gcgttctgat aaaaatcgtg gtaaatcgga taacgttcca agtgaagaag 4740 tagtcaaaaa gatgaaaaac tattggagac aacttctaaa cgccaagtta atcactcaac 4800 gtaagtttga taatttaacg aaagctgaac gtggaggttt gagtgaactt gataaagctg 4860 gttttatcaa acgccaattg gttgaaactc gccaaatcac taagcatgtg gcacaaattt 4920 tggatagtcg catgaatact aaatacgatg aaaatgataa acttattcga gaggttaaag 4980 tgattacctt aaaatctaaa ttagtttctg acttccgaaa agatttccaa ttctataaag 5040 tacgtgagat taacaattac catcatgccc atgatgcgta tctaaatgcc gtcgttggaa 5100 ctgctttgat taagaaatat ccaaaacttg aatcggagtt tgtctatggt gattataaag 5160 tttatgatgt tcgtaaaatg attgctaagt ctgagcaaga aataggcaaa gcaaccgcaa 5220 aatatttctt ttactctaat atcatgaact tcttcaaaac agaaattaca cttgcaaatg 5280 gagagattcg caaacgccct ctaatcgaaa ctaatgggga aactggagaa attgtctggg 5340 ataaagggcg agattttgcc acagtgcgca aagtattgtc catgccccaa gtcaatattg 5400 tcaagaaaac agaagtacag acaggcggat tctccaagga gtcaatttta ccaaaaagaa 5460 attcggacaa gcttattgct cgtaaaaaag actgggatcc aaaaaaatat ggtggttttg 5520 atagtccaac ggtagcttat tcagtcctag tggttgctaa ggtggaaaaa gggaaatcga 5580 agaagttaaa atccgttaaa gagttactag ggatcacaat tatggaaaga agttcctttg 5640 aaaaaaatcc gattgacttt ttagaagcta aaggatataa ggaagttaaa aaagacttaa 5700 tcattaaact acctaaatat agtctttttg agttagaaaa cggtcgtaaa cggatgctgg 5760 ctagtgccgg agaattacaa aaaggaaatg agctggctct gccaagcaaa tatgtgaatt 5820 ttttatattt agctagtcat tatgaaaagt tgaagggtag tccagaagat aacgaacaaa 5880 aacaattgtt tgtggagcag cataagcatt atttagatga gattattgag caaatcagtg 5940 aattttctaa gcgtgttatt ttagcagatg ccaatttaga taaagttctt agtgcatata 6000 acaaacatag agacaaacca atacgtgaac aagcagaaaa tattattcat ttatttacgt 6060 tgacgaatct tggagctccc gctgctttta aatattttga tacaacaatt gatcgtaaac 6120 gatatacgtc tacaaaagaa gttttagatg ccactcttat ccatcaatcc atcactggtc 6180 tttatgaaac acgcattgat ttgagtcagc taggaggtga ctaacgcatc ctcacgataa 6240 tatccgggta ggcgcaatca ctttcgtcta ctccgttaca aagcgaggct gggtatttcc 6300 cggcctttct gttatccgaa atccactgaa agcacagcgg ctggctgagg agataaataa 6360 taaacgaggg gctgtatgca caaagcatct tctgttgagt taagaacgag tatcgagatg 6420 gcacatagcc ttgctcaaat tggaatcagg tttgtgccaa taccagtaga aacagacgaa 6480 gaatccatgg gtatggacag ttttcccttt gatatgtaac ggtgaacagt tgttctactt 6540 ttgtttgtta gtcttgatgc ttcactgata gatacaagag ccaaatctag taatatttta 6600 tctgattaat aagatgatct tcttgagatc gttttggtct gcgcgtaatc tcttgctctg 6660 aaaacgaaaa aaccgccttg cagggcggtt tttcgaaggt tctctgagct accaactctt 6720 tgaaccgagg taactggctt ggaggagcgc agtcaccaaa acttgtcctt tcagtttagc 6780 cttaaccggc gcatgacttc aagactaact cctctaaatc aattaccagt ggctgctgcc 6840 agtggtgctt ttgcatgtct ttccgggttg gactcaagac gatagttacc ggataaggcg 6900 cagcggtcgg actgaacggg gggttcgtgc atacagtcca gcttggagcg aactgcctac 6960 ccggaactga gtgtcaggcg tggaatgaga caaacgcggc cataacagcg gaatgacacc 7020 ggtaaaccga aaggcaggaa caggagagcg cacgagggag ccgccagggg gaaacgcctg 7080 gtatctttat agtcctgtcg ggtttcgcca ccactgattt gagcgtcaga tttcgtgatg 7140 cttgtcaggg gggcggagcc tatggaaaaa cggctttgcc gcggccccgc tgaatattcc 7200 ttttgtctcc gaccatcagg cacctgagtc gctgtctttt tcgtgacatt cagttcgctg 7260 cgctcacggc tctggcagtg aatgggggta aatggcacta caggcgcctt ttatggattc 7320 atgcaaggaa actacccata atacaagaaa agatgtggtc tttattcttc aactaaagca 7380 cccattagtt caacaaacga aaattggata aagtgggata tttttaaaat atatatttat 7440 gttacctggc agagcctgta ctttttacag tcggttttct aatgtcacta acctgccccg 7500 ttagtcgcca tttgcatcga tttattatga caacttgacg gctacatcat tcactttttc 7560 ttcacaaccg gcacggaact cgctcgggct ggccccggtg cattttttaa atacccgcga 7620 gaaatagagt tgatcgtcaa aaccaacatt gcgaccgacg gtggcgatag gcatccgggt 7680 ggtgctcaaa agcagcttcg cctggctgat acgttggtcc tcgcgccagc ttaagacgct 7740 aatccctaac tgctggcgga aaagatgtga cagacgcgac ggcgacaagc aaacatgctg 7800 tgcgacgctg gcgatatcaa aattgctgtc tgccaggtga tcgctgatgt actgacaagc 7860 ctcgcgtacc cgattatcca tcggtggatg gagcgactcg ttaatcgctt ccatgcgccg 7920 cagtaacaat tgctcaagca gatttatcgc cagcagctcc gaatagcgcc cttccccttg 7980 cccggcgtta atgatttgcc caaacaggtc gctgaaatgc ggctggtgcg cttcatccgg 8040 gcgaaagaac cccgtattgg caaatattga cggccagtta agccattcat gccagtaggc 8100 gcgcggacga aagtaaaccc actggtgata ccattcgcga gcctccggat gacgaccgta 8160 gtgatgaatc tctcctggcg ggaacagcaa aatatcaccc ggtcggcaaa caaattctcg 8220 tccctgattt ttcaccaccc cctgaccgcg aatggtgaga ttgagaatat aacctttcat 8280 tcccagcggt cggtcgataa aaaaatcgag ataaccgttg gcctcaatcg gcgttaaacc 8340 cgccaccaga tgggcattaa acgagtatcc cggcagcagg ggatcatttt gcgcttcagc 8400 catacttttc atactcccgc cattcagaga agaaaccaat tgtccatatt gcatcagaca 8460 ttgccgtcac tgcgtctttt actggctctt ctcgctaacc aaaccggtaa ccccgcttat 8520 taaaagcatt ctgtaacaaa gcgggaccag taatagaaag tgagggagcc acggttgatg 8580 agagctttgt tgtaggtgga ccagttggtg attttgaact tttgctttgc cacggaacgg 8640 tctgcgttgt cgggaagatg cgtgatctga tccttcaact cagcaaaagt tcgatttatt 8700 caacaaagcc acgttgtgtc tcaaaatctc tgatgttaca ttgcacaaga taaaaatata 8760 tcatcatgaa caataaaact gtctgcttac ataaacagta atacaagggg tgttatgagc 8820 catattcaac gggaaacgtc ttgctcgagg ccgcgattaa attccaacat ggatgctgat 8880 ttatatgggt ataaatgggc tcgcgataat gtcgggcaat caggtgcgac aatctatcga 8940 ttgtatggga agcccgatgc gccagagttg tttctgaaac atggcaaagg tagcgttgcc 9000 aatgatgtta cagatgagat ggtcagacta aactggctga cggaatttat gcctcttccg 9060 accatcaagc attttatccg tactcctgat gatgcatggt tactcaccac tgcgatcccc 9120 gggaaaacag cattccaggt attagaagaa tatcctgatt caggtgaaaa tattgttgat 9180 gcgctggcag tgttcctgcg ccggttgcat tcgattcctg tttgtaattg tccttttaac 9240 agcgatcgcg tatttcgtct cgctcaggcg caatcacgaa tgaataacgg tttggttgat 9300 gcgagtgatt ttgatgacga gcgtaatggc tggcctgttg aacaagtctg gaaagaaatg 9360 cataagcttt tgccattctc accggattca gtcgtcactc atggtgattt ctcacttgat 9420 aaccttattt ttgacgaggg gaaattaata ggttgtattg atgttggacg agtcggaatc 9480 gcagaccgat accaggatct tgccatccta tggaactgcc tcggtgagtt ttctccttca 9540 ttacagaaac ggctttttca aaaatatggt attgataatc ctgatatgaa taaattgcag 9600 tttcatttga tgctcgatga gtttttctaa tcagaattgg ttaattggtt gtaaca 9656 <110> DAESANG CORPORATION <120> Novel variant of transporter and method for preparing L-aromatic amino acid using the same <130> BPN221015D2 <160> 60 <170> KoPatentIn 3.0 <210> 1 <211> 428 <212> PRT < 213> Artificial Sequence <220> <223> amtB (G363D) variant <400> 1 Met Lys Ile Ala Thr Ile Lys Thr Gly Leu Ala Ser Leu Ala Met Leu 1 5 10 15 Pro Gly Leu Val Met Ala Ala Pro Ala Val Ala Asp Lys Ala Asp Asn 20 25 30 Ala Phe Met Met Ile Cys Thr Ala Leu Val Leu Phe Met Thr Ile Pro 35 40 45 Gly Ile Ala Leu Phe Tyr Gly Gly Leu Ile Arg Gly Lys Asn Val Leu 50 55 60 Ser Met Leu Thr Gln Val Thr Val Thr Phe Ala Leu Val Cys Ile Leu 65 70 75 80 Trp Val Val Tyr Gly Tyr Ser Leu Ala Phe Gly Glu Gly Asn Asn Phe 85 90 95 Phe Gly Asn Ile Asn Trp Leu Met Leu Lys Asn Ile Glu Leu Thr Ala 100 105 110 Val Met Gly Ser Ile Tyr Gln Tyr Ile His Val Ala Phe Gln Gly Ser 115 120 125 Phe Ala Cys Ile Thr Val Gly Leu Ile Val Gly Ala Leu Ala Glu Arg 130 135 140 Ile Arg Phe Ser Ala Val Leu Ile Phe Val Val Val Trp Leu Thr Leu 145 150 155 160 Ser Tyr Ile Pro Ile Ala His Met Val Trp Gly Gly Gly Leu Leu Ala 165 170 175 Ser His Gly Ala Leu Asp Phe Ala Gly Gly Thr Val Val His Ile Asn 180 185 190 Ala Ala Ile Ala Gly Leu Val Gly Ala Tyr Leu Ile Gly Lys Arg Val 195 200 205 Gly Phe Gly Lys Glu Ala Phe Lys Pro His Asn Leu Pro Met Val Phe 210 215 220 Thr Gly Thr Ala Ile Leu Tyr Ile Gly Trp Phe Gly Phe Asn Ala Gly 225 230 235 240 Ser Ala Gly Thr Ala Asn Glu Ile Ala Ala Leu Ala Phe Val Asn Thr 245 250 255 Val Val Ala Thr Ala Ala Ala Ile Leu Gly Trp Ile Phe Gly Glu Trp 260 265 270 Ala Leu Arg Gly Lys Pro Ser Leu Leu Gly Ala Cys Ser Gly Ala Ile 275 280 285 Ala Gly Leu Val Gly Val Thr Pro Ala Cys Gly Tyr Ile Gly Val Gly 290 295 300 Gly Ala Leu Ile Ile Gly Val Val Ala Gly Leu Ala Gly Leu Trp Gly 305 310 315 320 Val Thr Met Leu Lys Arg Leu Leu Arg Val Asp Asp Pro Cys Asp Val 325 330 335 Phe Gly Val His Gly Val Cys Gly Ile Val Gly Cys Ile Met Thr Gly 340 345 350 Ile Phe Ala Ala Ser Ser Ser Leu Gly Gly Val Asp Phe Ala Glu Gly Val 355 360 365 Thr Met Gly His Gln Leu Leu Val Gln Leu Glu Ser Ile Ala Ile Thr 370 375 380 Ile Val Trp Ser Gly Val Val Ala Phe Ile Gly Tyr Lys Leu Ala Asp 385 390 395 400 Leu Thr Val Gly Leu Arg Val Pro Glu Glu Gln Glu Arg Glu Gly Leu 405 410 415 Asp Val Asn Ser His Gly Glu Asn Ala Tyr Asn Ala 420 425 <210> 2 <211> 1287 <212> DNA <213> Artificial Sequence <220> <223> amtB (G363D) variant <400> 2 atgaagatag cgacgataaa aactgggctt gcttcactgg cgatgcttcc gggactggta 60 atggctgcac ctgcggtggc cgataaagcc gacaatgcgt ttatgatgat ttgtactgcg 120 ctggtgctgt ttatg actat tccggggatt gccctgtttt acggtgggtt gattcgcggc 180 aaaaacgtgc tgtcgatgct gacgcaggtg acggtgacat ttgcactggt ctgtattctc 240 tgggtggttt acggttactc gctggcgttt ggtgagggca acaacttctt cggcaacatt 300 aactggttga tgctgaaaaa catcgaactg acggcggtga tgggcagcat ttatcagtat 360 atccacgtgg cgtttcaggg atcgtttgcc tgcattaccg tcggcttgat agttggggcg 420 ctggcggaac gaatccgctt ctcagctgtg ttgattttcg tggt ggtatg gctgacgctc 480 tcttacattc cgattgcgca tatggtgtgg ggcggtggtt tgctggcttc tcacggtgcg 540 ctggatttcg cgggtggcac cgtggtgcac attaacgccg caatcgccgg tctggtgggc 600 gcgtatctga taggaaaacg cgt gggcttc ggtaaagagg cgtttaaacc gcacaacctg 660 ccgatggtct tcaccgggac tgccattctc tatatcggtt ggtttggctt taacgccggg 720 tcagcgggca cggcgaatga aatcgcggca ctggcatttg tgaatactgt ggtcgcaacg 780 gcggcggcaa ttcttggctg gatcttcggt gaatgggcgc tgcgtggtaa gccttcactg 840 ctgggggcgt gttctggcgc gattgccggt ctggtcggcg tgacgcc ctgtatcat g accgggattt ttgccgccag ctcgctgggc 1080 ggcgtggact tcgctgaagg tgtgacgatg ggccatcagt tgctggtaca gctggaaagc 1140 atcgccatta cgatcgtctg gtccggtgtt gtggcattta tcggctacaa attggcggat 1200 ctgacggttg gtctgcgtgt accggaagag caggagcgag aagggctgga tgtcaacagc 1260 cacggcgaga atgcctataa cgcgtaa 1287 <210> 3 <211> 428 <212> 213> Artificial Sequence <220> <223> amtB <400> 3 Met Lys Ile Ala Thr Ile Lys Thr Gly Leu Ala Ser Leu Ala Met Leu 1 5 10 15 Pro Gly Leu Val Met Ala Ala Pro Ala Val Ala Asp Lys Ala Asp Asn 20 25 30 Ala Phe Met Met Ile Cys Thr Ala Leu Val Leu Phe Met Thr Ile Pro 35 40 45 Gly Ile Ala Leu Phe Tyr Gly Gly Leu Ile Arg Gly Lys Asn Val Leu 50 55 60 Ser Met Leu Thr Gln Val Thr Val Thr Phe Ala Leu Val Cys Ile Leu 65 70 75 80 Trp Val Val Tyr Gly Tyr Ser Leu Ala Phe Gly Glu Gly Asn Asn Phe 85 90 95 Phe Gly Asn Ile Asn Trp Leu Met Leu Lys Asn Ile Glu Leu Thr Ala 100 105 110 Val Met Gly Ser Ile Tyr Gln Tyr Ile His Val Ala Phe Gln Gly Ser 115 120 125 Phe Ala Cys Ile Thr Val Gly Leu Ile Val Gly Ala Leu Ala Glu Arg 130 135 140 Ile Arg Phe Ser Ala Val Leu Ile Phe Val Val Val Trp Leu Thr Leu 145 150 155 160 Ser Tyr Ile Pro Ile Ala His Met Val Trp Gly Gly Gly Leu Leu Ala 165 170 175 Ser His Gly Ala Leu Asp Phe Ala Gly Gly Thr Val Val His Ile Asn 180 185 190 Ala Ala Ile Ala Gly Leu Val Gly Ala Tyr Leu Ile Gly Lys Arg Val 195 200 205 Gly Phe Gly Lys Glu Ala Phe Lys Pro His Asn Leu Pro Met Val Phe 210 215 220 Thr Gly Thr Ala Ile Leu Tyr Ile Gly Trp Phe Gly Phe Asn Ala Gly 225 230 235 240 Ser Ala Gly Thr Ala Asn Glu Ile Ala Ala Leu Ala Phe Val Asn Thr 245 250 255 Val Val Ala Thr Ala Ala Ala Ile Leu Gly Trp Ile Phe Gly Glu Trp 260 265 270 Ala Leu Arg Gly Lys Pro Ser Leu Leu Gly Ala Cys Ser Gly Ala Ile 275 280 285 Ala Gly Leu Val Gly Val Thr Pro Ala Cys Gly Tyr Ile Gly Val Gly 290 295 300 Gly Ala Leu Ile Ile Gly Val Val Ala Gly Leu Ala Gly Leu Trp Gly 305 310 315 320 Val Thr Met Leu Lys Arg Leu Leu Arg Val Asp Asp Pro Cys Asp Val 325 330 335 Phe Gly Val His Gly Val Cys Gly Ile Val Gly Cys Ile Met Thr Gly 340 345 350 Ile Phe Ala Ala Ser Ser Leu Gly Gly Val Gly Phe Ala Glu Gly Val 355 360 365 Thr Met Gly His Gln Leu Leu Val Gln Leu Glu Ser Ile Ala Ile Thr 370 375 380 Ile Val Trp Ser Gly Val Val Ala Phe Ile Gly Tyr Lys Leu Ala Asp 385 390 395 400 Leu Thr Val Gly Leu Arg Val Pro Glu Glu Gln Glu Arg Glu Gly Leu 405 410 415 Asp Val Asn Ser His Gly Glu Asn Ala Tyr Asn Ala 420 425 <210> 4 <211> 1287 <212> DNA <213> Artificial Sequence <220> <223> amtB <400> 4 atgaagatag cgacgataaa aactgggctt gcttcactgg cgatgcttcc gggactggta 60 atggctgcac ctgcggtggc cgataaagcc gacaatgcgt ttatgatgat ttgtactgcg 120 ctggtgctgt ttatgactat tccggggatt gccctgtttt acggtgggtt gattcgcggc 180 aaaaacgtgc tgtcgatgct gacgcaggtg acggtgacat ttgcactggt ctgtattctc 240 tgggtggttt acggttactc gctggcgttt ggtgagggca acaacttctt ttgatt ttcg tggtggtatg gctgacgctc 480 tcttacattc cgattgcgca tatggtgtgg ggcggtggtt tgctggcttc tcacggtgcg 540 ctggatttcg cgggtggcac cgtggtgcac attaacgccg caatcgccgg tctggtgggc 600 gcgtatctga taggaaaacg cgtgggcttc ggtaaagagg cgtttaaacc gcacaacctg 660 ccgatggtct tcaccgggac tgccattctc tatatcggtt ggtttggctt taacgccggg 720 tcagcgggca cggcgaatga aatcgcggca ctggcatttg tgaatactgt ggtcgcaacg 780 gcggcggcaa ttcttggctg gatcttcggt gaatgggcgc tgcgtggtaa gccttcactg 840 ctgggggcgt gttctggcgc gattgccggt ctggt cggcg tgacgccagc ctgcggctac 900 attggggttg gcggcgcgtt gattatcggc gtggtagctg gtctggcggg cttgtggggc 960 gttaccatgc tcaaacgctt gctgcgggtg gatgatccct gcgatgtctt cggtgtgcac 1020 ggcgtttgtg gcattgtcgg ctgtatcatg accgggattt ttgccgccag ctcgctgggc 1080 ggcgtgggct tcgctgaagg tgtgacgatg ggccatcagt tgctggtaca gctggaaagc 5 < 211> 444 <212> PRT < 213> Artificial Sequence <220> <223> yicO (TRP136Stop) variant <400> 5 Met Asn Asn Asp Asn Thr Asp Tyr Val Ser Asn Glu Ser Gly Thr Leu 1 5 10 15 Ser Arg Leu Phe Lys Leu Pro Gln His Gly Thr Thr Val Arg Thr Glu 20 25 30 Leu Ile Ala Gly Met Thr Thr Phe Leu Thr Met Val Tyr Ile Val Phe 35 40 45 Val Asn Pro Gln Ile Leu Gly Ala Ala Gln Met Asp Pro Lys Val Val 50 55 60 Phe Val Thr Thr Thr Cys Leu Ile Ala Gly Ile Gly Ser Ile Ala Met Gly 65 70 75 80 Ile Phe Ala Asn Leu Pro Val Ala Leu Ala Pro Ala Met Gly Leu Asn 85 90 95 Ala Phe Phe Ala Phe Val Val Val Gly Ala Met Gly Ile Ser Trp Gln 100 105 110 Thr Gly Met Gly Ala Ile Phe Trp Gly Ala Val Gly Leu Phe Leu Leu 115 120 125 Thr Leu Phe Arg Ile Arg Tyr *** Met Ile Ser Asn Ile Pro Leu Ser 130 135 140 Leu Arg Ile Gly Ile Thr Ser Gly Ile Gly Leu Phe Ile Ala Leu Met 145 150 155 160 Gly Leu Lys Asn Thr Gly Val Ile Val Ala Asn Lys Asp Thr Leu Val 165 170 175 Met Ile Gly Asp Leu Ser Ser His Gly Val Leu Leu Gly Ile Leu Gly 180 185 190 Phe Phe Ile Ile Thr Val Leu Ser Ser Arg His Phe His Ala Ala Val 195 200 205 Leu Val Ser Ile Val Val Thr Ser Cys Cys Gly Leu Phe Phe Gly Asp 210 215 220 Val His Phe Ser Gly Val Tyr Ser Ile Pro Pro Asp Ile Ser Gly Val 225 230 235 240 Ile Gly Glu Val Asp Leu Ser Gly Ala Leu Thr Leu Glu Leu Ala Gly 245 250 255 Ile Ile Phe Ser Phe Met Leu Ile Asn Leu Phe Asp Ser Ser Gly Thr 260 265 270 Leu Ile Gly Val Thr Asp Lys Ala Gly Leu Ile Asp Gly Asn Gly Lys 275 280 285 Phe Pro Asn Met Asn Lys Ala Leu Tyr Val Asp Ser Val Ser Ser Val 290 295 300 Ala Gly Ala Phe Ile Gly Thr Ser Ser Val Thr Ala Tyr Ile Glu Ser 305 310 315 320 Thr Ser Gly Val Ala Val Gly Gly Arg Thr Gly Leu Thr Ala Val Val 325 330 335 Val Gly Val Met Phe Leu Leu Val Met Phe Phe Ser Pro Leu Val Ala 340 345 350 Ile Val Pro Pro Tyr Ala Thr Ala Gly Ala Leu Ile Phe Val Gly Val 355 360 365 Leu Met Thr Ser Ser Leu Ala Arg Val Asn Trp Asp Asp Phe Thr Glu 370 375 380 Ser Val Pro Ala Phe Ile Thr Thr Thr Val Met Met Pro Phe Thr Phe Ser 385 390 395 400 Ile Thr Glu Gly Ile Ala Leu Gly Phe Met Ser Tyr Cys Ile Met Lys 405 410 415 Val Cys Thr Gly Arg Trp Arg Asp Leu Asn Leu Cys Val Val Val Val 420 425 430 Ala Ala Leu Phe Ala Leu Lys Ile Ile Leu Val Asp 435 440 <210> 6 <211> 1335 <212> DNA <213> Artificial Sequence <220> <223> yicO (TRP136Stop) variant <400> 6 atgaataatg acaataccga ttacgtgagt aatgaatcag ggacgctttc gcgattattt 60 aaactacctc agcat gggac caccgtccgc acagaattga ttgcggggat gaccactttt 120 ttaaccatgg tgtacatcgt ttttgtgaac ccgcaaatcc tcggcgcggc acaaatggac 180 ccgaaagtgg tgtttgttac cacctgtttg attgccggta tcggcagtat tgcgatgggg 240 atatttgcta acttacccgt ggcgctggct ccggcaatgg ggctgaac gc cttctttgcc 300 ttcgtggtcg tgggggcgat gggcatctcc tggcagaccg ggatgggcgc aatattctgg 360 ggcgcagttg gactattttt gctcacgctg tttcgtatcc ggtactgaat gatctccaac 420 attcccttaa gtttacgtat tggtatca cc agcggaattg gattatttat cgccttaatg 480 ggattaaaaa atactggcgt tattgtcgcc aataaagaca cgctggtgat gattggcgat 540 ttaagttctc acggcgtgtt gttaggtatt ttagggtttt ttattataac cgtgttgtca 600 tcacgtcatt ttcatgccgc ggtgctggtt tctattgtgg tgacgtcttg ctgtggatta 660 tttttcggtg atgttcattt tagcggcgtc tattccattc cgcctgatat tagcggcgtc 720 attggtgaag tagatttgag cggcgcgtta acacttgaac tcgccggtat cattttctcc 780 tttatgctga tcaacctatt tgattcatca ggaacattaa ttggtgtaac tgataaagcg 840 ggcttaatag atggtaacgg taaattcccc aatatgaata aggcgctgta tgttgatagc 900 gtcagttcgg tggcgggtgc gtttatcggc acctcgtctg ttactgccta tattgaaagt 960 acttctggtg tggcagtcgg tggccgcacg gggctgactg cggttgtggt tggcgttatg 1020 ttcctgttgg ttatgttctt ctcaccgctg gtggcgatag ttcctcctta cgcaaccgcc 1080 ggagcgttaa tctttgttgg cgtgctgatg acttcgagcc tggcgcgcgt taactggga t 1140 gattttaccg aatcggtgcc tgcgtttatt accacggtga tgatgccctt tactttctcg 1200 atcaccgaag ggattgcact cggctttatg tcgtactgca tcatgaaagt atgcaccggg 1260 cgctggcgcg atctgaacct gtgtgtggtg gtggtcgcag ctctgtttgc actgaagatt 1320 attctggtgg attag 1335 <210> 7 <211> 444 <212> PRT <213> Artificial Sequence <220> <223> yicO <400> 7 Met Asn Asn Asp Asn Thr Asp Tyr Val Ser Asn Glu Ser Gly Thr Leu 1 5 10 15 Ser Arg Leu Phe Lys Leu Pro Gln His Gly Thr Thr Val Arg Thr Glu 20 25 30 Leu Ile Ala Gly Met Thr Thr Phe Leu Thr Met Val Tyr Ile Val Phe 35 40 45 Val Asn Pro Gln Ile Leu Gly Ala Ala Gln Met Asp Pro Lys Val Val 50 55 60 Phe Val Thr Thr Cys Leu Ile Ala Gly Ile Gly Ser Ile Ala Met Gly 65 70 75 80 Ile Phe Ala Asn Leu Pro Val Ala Leu Ala Pro Ala Met Gly Leu Asn 85 90 95 Ala Phe Phe Ala Phe Val Val Val Gly Ala Met Gly Ile Ser Trp Gln 100 105 110 Thr Gly Met Gly Ala Ile Phe Trp Gly Ala Val Gly Leu Phe Leu Leu 115 120 125 Thr Leu Phe Arg Ile Arg Tyr Trp Met Ile Ser Asn Ile Pro Leu Ser 130 135 140 Leu Arg Ile Gly Ile Thr Ser Gly Ile Gly Leu Phe Ile Ala Leu Met 145 150 155 160 Gly Leu Lys Asn Thr Gly Val Ile Val Ala Asn Lys Asp Thr Leu Val 165 170 175 Met Ile Gly Asp Leu Ser Ser His Gly Val Leu Leu Gly Ile Leu Gly 180 185 190 Phe Phe Ile Ile Thr Val Leu Ser Ser Arg His Phe His Ala Ala Val 195 200 205 Leu Val Ser Ile Val Val Thr Ser Cys Cys Gly Leu Phe Phe Gly Asp 210 215 220 Val His Phe Ser Gly Val Tyr Ser Ile Pro Pro Asp Ile Ser Gly Val 225 230 235 240 Ile Gly Glu Val Asp Leu Ser Gly Ala Leu Thr Leu Glu Leu Ala Gly 245 250 255 Ile Ile Phe Ser Phe Met Leu Ile Asn Leu Phe Asp Ser Ser Gly Thr 260 265 270 Leu Ile Gly Val Thr Asp Lys Ala Gly Leu Ile Asp Gly Asn Gly Lys 275 280 285 Phe Pro Asn Met Asn Lys Ala Leu Tyr Val Asp Ser Val Ser Ser Val 290 295 300 Ala Gly Ala Phe Ile Gly Thr Ser Ser Val Thr Ala Tyr Ile Glu Ser 305 310 315 320 Thr Ser Gly Val Ala Val Gly Gly Arg Thr Gly Leu Thr Ala Val Val 325 330 335 Val Gly Val Met Phe Leu Leu Val Met Phe Phe Ser Pro Leu Val Ala 340 345 350 Ile Val Pro Pro Tyr Ala Thr Ala Gly Ala Leu Ile Phe Val Gly Val 355 360 365 Leu Met Thr Ser Ser Leu Ala Arg Val Asn Trp Asp Asp Phe Thr Glu 370 375 380 Ser Val Pro Ala Phe Ile Thr Thr Val Met Met Pro Phe Thr Phe Ser 385 390 395 400 Ile Thr Glu Gly Ile Ala Leu Gly Phe Met Ser Tyr Cys Ile Met Lys 405 410 415 Val Cys Thr Gly Arg Trp Arg Asp Leu Asn Leu Cys Val Val Val Val 420 425 430 Ala Ala Leu Phe Ala Leu Lys Ile Ile Leu Val Asp 435 440 <210> 8 <211> 1335 <212> DNA <213> Artificial Sequence <220> <223> yicO <400> 8 atgaataatg acaataccga ttacgtgagt aatgaatcag ggacgctttc gcgattattt 60 aaactacctc agcatgggac caccgtccgc acagaattga ttgcggggat gaccactttt 120 ttaaccatgg tgtacatcgt ttttgtgaac ccgcaaatcc tcggcgcggc acaaatgg ac 180 ccgaaagtgg tgtttgttac cacctgtttg attgccggta tcggcagtat tgcgatgggg 240 atatttgcta acttacccgt ggcgctggct ccggcaatgg ggctgaacgc cttctttgcc 300 ttcgtggtcg tgggggcgat gggcatctcc tggcagacc g ggatgggcgc aatattctgg 360 ggcgcagttg gactattttt gctcacgctg tttcgtatcc ggtactggat gatctccaac 420 attcccttaa gtttacgtat tggtatcacc agcggaattg gattatttat cgccttaatg 480 ggattaaaaa atactggcgt tattgtcgcc aataaagaca cgctggtgat gattggcgat 540 ttaagttctc acggcgtgtt gttaggtatt ttagggtttt ttattataac cgtgttgtca 600 tcacgtcat t ttcatgccgc ggtgctggtt tctattgtgg tgacgtcttg ctgtggatta 660 tttttcggtg atgttcattt tagcggcgtc tattccattc cgcctgatat tagcggcgtc 720 attggtgaag tagatttgag cggcgcgtta acacttgaac tcgccggtat cattttctcc 780 tttatgctga tcaacctatt tgattcatca ggaacattaa ttggtgtaac tgataaagcg 840 ggcttaatag atggtaacgg taaattcccc aatatgaata aggcgctgta tgttgatagc 900 gtcagttcgg tggcgggtgc gtttatcggc acctcgtctg ttaactgccta tattgaaagt 960 acttctggtg tggcagtcgg tggccgcacg gggctgactg cggttgtggt tggcgttatg 1020 t tcctgttgg ttatgttctt ctcaccgctg gtggcgatag ttcctcctta cgcaaccgcc 1080 ggagcgttaa tctttgttgg cgtgctgatg acttcgagcc tggcgcgcgt taactgggat 1140 gattttaccg aatcggtgcc tgcgtttatt accacggtga tgatgcc ctt tactttctcg 1200 atcaccgaag ggattgcact cggctttatg tcgtactgca tcatgaaagt atgcaccggg 1260 cgctggcgcg atctgaacct gtgtgtggtg gtggtcgcag ctctgtttgc actgaagatt 1320 attctggtgg attag 1335 <210> 9 <211> 547 <212> PRT <213> Artificial Sequence <220> <223> yeeO (G272E) variant <400> 9 Met Leu Arg His Ile Leu Thr Ala Lys Asn Leu Leu Ser Asn Pro Ile 1 5 10 15 Phe Lys Phe Pro Asn Cys Leu Pro Phe Leu Ser Thr Val Cys Cys Ile 20 25 30 Cys Arg Gln Phe Val Gly Glu Asn Leu Cys Ser Phe Ala Asp Ser Pro 35 40 45 Ser Leu Phe Glu Met Trp Phe His Phe Leu Gln Leu Arg Ser Ala Leu 50 55 60 Asn Ile Ser Ser Ala Leu Arg Gln Val Val His Gly Thr Arg Trp His 65 70 75 80 Ala Lys Arg Lys Ser Tyr Lys Val Leu Phe Trp Arg Glu Ile Thr Pro 85 90 95 Leu Ala Val Pro Ile Phe Met Glu Asn Ala Cys Val Leu Leu Met Gly 100 105 110 Val Leu Ser Thr Phe Leu Val Ser Trp Leu Gly Lys Asp Ala Met Ala 115 120 125 Gly Val Gly Leu Ala Asp Ser Phe Asn Met Val Ile Met Ala Phe Phe 130 135 140 Ala Ala Ile Asp Leu Gly Thr Thr Val Val Val Ala Phe Ser Leu Gly 145 150 155 160 Lys Arg Asp Arg Arg Arg Ala Arg Val Ala Thr Arg Gln Ser Leu Val 165 170 175 Ile Met Thr Leu Phe Ala Val Leu Leu Ala Thr Leu Ile His His Phe 180 185 190 Gly Glu Gln Ile Ile Asp Phe Val Ala Gly Asp Ala Thr Thr Glu Val 195 200 205 Lys Ala Leu Ala Leu Thr Tyr Leu Glu Leu Thr Val Leu Ser Tyr Pro 210 215 220 Ala Ala Ala Ile Thr Leu Ile Gly Ser Gly Ala Leu Arg Gly Ala Gly 225 230 235 240 Asn Thr Lys Ile Pro Leu Leu Ile Asn Gly Ser Leu Asn Ile Leu Asn 245 250 255 Ile Ile Ile Ser Gly Ile Leu Ile Tyr Gly Leu Phe Ser Trp Pro Glu 260 265 270 Leu Gly Phe Val Gly Ala Gly Leu Gly Leu Thr Ile Ser Arg Tyr Ile 275 280 285 Gly Ala Val Ala Ile Leu Trp Val Leu Ala Ile Gly Phe Asn Pro Ala 290 295 300 Leu Arg Ile Ser Leu Lys Ser Tyr Phe Lys Pro Leu Asn Phe Ser Ile 305 310 315 320 Ile Trp Glu Val Met Gly Ile Gly Ile Pro Ala Ser Val Glu Ser Val 325 330 335 Leu Phe Thr Ser Gly Arg Leu Leu Thr Gln Met Phe Val Ala Gly Met 340 345 350 Gly Thr Ser Val Ile Ala Gly Asn Phe Ile Ala Phe Ser Ile Ala Ala 355 360 365 Leu Ile Asn Leu Pro Gly Ser Ala Leu Gly Ser Ala Ser Thr Ile Ile 370 375 380 Thr Gly Arg Arg Leu Gly Val Gly Gln Ile Ala Gln Ala Glu Ile Gln 385 390 395 400 Leu Arg His Val Phe Trp Leu Ser Thr Leu Gly Leu Thr Ala Ile Ala 405 410 415 Trp Leu Thr Ala Pro Phe Ala Gly Val Met Ala Ser Phe Tyr Thr Gln 420 425 430 Asp Pro Gln Val Lys His Val Val Val Ile Leu Ile Trp Leu Asn Ala 435 440 445 Leu Phe Met Pro Ile Trp Ser Ala Ser Trp Val Leu Pro Ala Gly Phe 450 455 460 Lys Gly Ala Arg Asp Ala Arg Tyr Ala Met Trp Val Ser Met Leu Ser 465 470 475 480 Met Trp Gly Cys Arg Val Val Val Gly Tyr Val Leu Gly Ile Met Leu 485 490 495 Gly Trp Gly Val Val Gly Val Trp Met Gly Met Phe Ala Asp Trp Ala 500 505 510 Val Arg Ala Val Leu Phe Tyr Trp Arg Met Val Thr Gly Arg Trp Leu 515 520 525 Trp Lys Tyr Pro Arg Pro Glu Pro Gln Lys Cys Glu Lys Lys Pro Val 530 535 540 Val Ser Glu 545 <210> 10 <211> 1644 <212> DNA <213> Artificial Sequence <220> <223> yeeO (G272E) variant <400> 10 ttgttgaggc acatcttaac ggcgaaaaat cttttgtcaa acccgatttt taaattcccc 60 aactgtttgc cgtttctatc aacagtttgt tgcat ttgca gacaatttgt tggcgaaaat 120 ctttgcagct ttgctgattc tccctcatta tttgaaatgt ggtttcactt tctgcaatta 180 aggtcggctt tgaatatctc ctctgcttta cgccaggttg ttcacggcac tcgctggcac 240 gctaaacgca agagctacaa agtgttgttc tggcgcgaga taaccccgct tgctgttcct 300 atcttcatgg agaatgcctg tgtcctgttg atgggggttc tgagcacttt t ctggtcagc 360 tggctgggaa aagatgcgat ggccggcgtg ggattggcgg acagcttcaa tatggtcatt 420 atggcttttt ttgctgctat cgatcttggt actactgtcg ttgtggcatt tagtctcggt 480 aagcgggatc gacgacgagc gagggtggcg acgcggca gt cattggtgat catgacgttg 540 tttgccgtac tgttggcaac gcttattcat cattttggcg aacaaattat tgatttcgtc 600 gcgggtgatg ccacgacaga agttaaagca ctggcgttga cttatctgga gctgacggta 660 ctcagttatc cagcagctgc catcactctt attggtagcg gggcacttcg tggtgcaggg 720 aatacgaaaa taccgctatt gattaacggt agcctgaata ttcttaatat tattattagc 780 ggcatattga tttac ggcct tttctcctgg ccggaactgg gatttgtcgg ggcagggctg 840 ggtttaacca tttctcgtta tattggcgca gttgcaattt tgtgggtgct ggcgattggt 900 tttaatcctg cgctaaggat ttcgttaaag agctatttta aaccgctgaa ttttagcatt 9 60 atctgggaag tcatggggat tggtattccc gcgagtgtcg aatcagtgtt atttaccagt 1020 ggtcggttat taacccaaat gttcgttgcc gggatgggga ccagtgttat tgccggaaat 1080 tttatcgcgt tttcaattgc ggctcttatc aacttacccg gaagtgcgct cggctctgct 1140 tctacgatca ttacaggccg aaggttgggg gtagggcaga tagcgcaagc agagattcag 1200 ttgcggcatg tgttctggct ttccactctt ggattaacgg ccatcgcctg gctaacggct 1260 ccctttgccg gggttatggc atcgttttac acccaggatc cacaggttaa acatgtcgtt 1320 gtgattctga tttggctaaa tgctttattt atgcctattt ggtccgcctc atgggtgcta 1 380 cccgctggat ttaaaggtgc tcgtgatgcc cgttacgcca tgtgggtttc gatgttgagc 1440 atgtggggtt gtcgggttgt agtcggttat gtgctgggaa tcatgcttgg ctggggtgtg 1500 gttggtgtct ggatgggaat gtttgccgac tgggctgtgc gggccgtgct gttttactgg 1560 cgaatggtta ctggacgttg gctatggaaa taccctcgac ccgagccgca aaagtgtgaa 1620 aaaaagccag ttgtgtc gga ataa 1644 <210> 11 <211> 547 <212> PRT <213> Artificial Sequence <220> <223> yeeO <400> 11 Met Leu Arg His Ile Leu Thr Ala Lys Asn Leu Leu Ser Asn Pro Ile 1 5 10 15 Phe Lys Phe Pro Asn Cys Leu Pro Phe Leu Ser Thr Val Cys Cys Ile 20 25 30 Cys Arg Gln Phe Val Gly Glu Asn Leu Cys Ser Phe Ala Asp Ser Pro 35 40 45 Ser Leu Phe Glu Met Trp Phe His Phe Leu Gln Leu Arg Ser Ala Leu 50 55 60 Asn Ile Ser Ser Ala Leu Arg Gln Val Val His Gly Thr Arg Trp His 65 70 75 80 Ala Lys Arg Lys Ser Tyr Lys Val Leu Phe Trp Arg Glu Ile Thr Pro 85 90 95 Leu Ala Val Pro Ile Phe Met Glu Asn Ala Cys Val Leu Leu Met Gly 100 105 110 Val Leu Ser Thr Phe Leu Val Ser Trp Leu Gly Lys Asp Ala Met Ala 115 120 125 Gly Val Gly Leu Ala Asp Ser Phe Asn Met Val Ile Met Ala Phe Phe 130 135 140 Ala Ala Ile Asp Leu Gly Thr Thr Val Val Val Ala Phe Ser Leu Gly 145 150 155 160 Lys Arg Asp Arg Arg Arg Arg Ala Arg Val Ala Thr Arg Gln Ser Leu Val 165 170 175 Ile Met Thr Leu Phe Ala Val Leu Leu Ala Thr Leu Ile His His Phe 180 185 190 Gly Glu Gln Ile Ile Asp Phe Val Ala Gly Asp Ala Thr Thr Glu Val 195 200 205 Lys Ala Leu Ala Leu Thr Tyr Leu Glu Leu Thr Val Leu Ser Tyr Pro 210 215 220 Ala Ala Ala Ile Thr Leu Ile Gly Ser Gly Ala Leu Arg Gly Ala Gly 225 230 235 240 Asn Thr Lys Ile Pro Leu Leu Ile Asn Gly Ser Leu Asn Ile Leu Asn 245 250 255 Ile Ile Ile Ser Gly Ile Leu Ile Tyr Gly Leu Phe Ser Trp Pro Gly 260 265 270 Leu Gly Phe Val Gly Ala Gly Leu Gly Leu Gly Leu Thr Ile Ser Arg Tyr Ile 275 280 285 Gly Ala Val Ala Ile Leu Trp Val Leu Ala Ile Gly Phe Asn Pro Ala 290 295 300 Leu Arg Ile Ser Leu Lys Ser Tyr Phe Lys Pro Leu Asn Phe Ser Ile 305 310 315 320 Ile Trp Glu Val Met Gly Ile Gly Ile Pro Ala Ser Val Glu Ser Val 325 330 335 Leu Phe Thr Ser Gly Arg Leu Leu Thr Gln Met Phe Val Ala Gly Met 340 345 350 Gly Thr Ser Val Ile Ala Gly Asn Phe Ile Ala Phe Ser Ile Ala Ala 355 360 365 Leu Ile Asn Leu Pro Gly Ser Ala Leu Gly Ser Ala Ser Thr Ile Ile 370 375 380 Thr Gly Arg Arg Leu Gly Val Gly Gln Ile Ala Gln Ala Glu Ile Gln 385 390 395 400 Leu Arg His Val Phe Trp Leu Ser Thr Leu Gly Leu Thr Ala Ile Ala 405 410 415 Trp Leu Thr Ala Pro Phe Ala Gly Val Met Ala Ser Phe Tyr Thr Gln 420 425 430 Asp Pro Gln Val Lys His Val Val Val Ile Leu Ile Trp Leu Asn Ala 435 440 445 Leu Phe Met Pro Ile Trp Ser Ala Ser Trp Val Leu Pro Ala Gly Phe 450 455 460 Lys Gly Ala Arg Asp Ala Arg Tyr Ala Met Trp Val Ser Met Leu Ser 465 470 475 480 Met Trp Gly Cys Arg Val Val Val Val Gly Tyr Val Leu Gly Ile Met Leu 485 490 495 Gly Trp Gly Val Val Gly Val Trp Met Gly Met Phe Ala Asp Trp Ala 500 505 510 Val Arg Ala Val Leu Phe Tyr Trp Arg Met Val Thr Gly Arg Trp Leu 515 520 525 Trp Lys Tyr Pro Arg Pro Glu Pro Gln Lys Cys Glu Lys Lys Pro Val 530 535 540 Val Ser Glu 545 <210> 12 <211> 1644 <212> DNA <213> Artificial Sequence <220> <223> yeeO <400> 12 ttgttgaggc acatcttaac ggcgaaaaat cttttgtcaa acccgatttt taaattcccc 60 aactgtttgc cgt ttctatc aacagtttgt tgcatttgca gacaatttgt tggcgaaaat 120 ctttgcagct ttgctgattc tccctcatta tttgaaatgt ggtttcactt tctgcaatta 180 aggtcggctt tgaatatctc ctctgcttta cgccaggttg ttcacggcac tcgctggcac 240 gctaaacgca agagctacaa agtgttgttc tggcgcgaga taaccccgct tgctgttcct 300 atcttcatgg agaatgcctg tgtcctgttg atgggggttc tgagcacttt tctggtcagc 360 tggctgggaa aagatgcgat ggccggcgtg ggattggcgg acagcttcaa tatggtcatt 420 atggcttttt ttgctgctat cgatcttggt actactgtcg tt gtggcatt tagtctcggt 480 aagcgggatc gacgacgagc gagggtggcg acgcggcagt cattggtgat catgacgttg 540 tttgccgtac tgttggcaac gcttattcat cattttggcg aacaaattat tgatttcgtc 600 gcgggtgatg ccacgacaga agttaaagca ctggcgttga cttatctgga gctgacggta 660 ctcagttatc cagcagctgc catcactctt attggtagcg gggcacttcg tggtgcaggg 720 aatacgaaaa taccgctatt gattaacggt agcctgaata ttcttaatat tattattagc 780 ggcatattga tttacggcct tttctcctgg ccgggactgg gatttgtcgg ggcagggctg 840 ggtttaacca tttctcgtta tattggcgca gttgcaattt tgtgggtgct ggcgattggt 900 tttaatcct g cgctaaggat ttcgttaaag agctatttta aaccgctgaa ttttagcatt 960 atctgggaag tcatggggat tggtattccc gcgagtgtcg aatcagtgtt atttaccagt 1020 ggtcggttat taacccaaat gttcgttgcc gggatgggga ccagtgttat tgccggaaat 1080 tttatcgcgt tttcaattgc ggctcttatc aacttacccg gaagtgcgct cggctctgct 1140 tctacgatca ttacaggcc g aaggttgggg gtagggcaga tagcgcaagc agagattcag 1200 ttgcggcatg tgttctggct ttccactctt ggattaacgg ccatcgcctg gctaacggct 1260 ccctttgccg gggttatggc atcgttttac acccaggatc cacaggttaa acatgtcgtt 1320 gtgattctga t ttggctaaa tgctttattt atgcctattt ggtccgcctc atgggtgcta 1380 cccgctggat ttaaaggtgc tcgtgatgcc cgttacgcca tgtgggtttc gatgttgagc 1440 atgtggggtt gtcgggttgt agtcggttat gtgctgggaa tcatgcttgg ctggggtgtg 1500 gttggtgtct ggatgggaat gtttgccgac tgggctgtgc gggccgtgct gttttactgg 1560 cgaatggtta ctggacgttg gctatggaaa taccctcgac ccgagccgca aaagtgtgaa 1620 aaaaagccag ttgtgtcgga ataa 1644 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 1 <400> 13 caattattatt atagtaattg actattatac 30 <210> 14 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer 2 <400> 14 ccacgccgcc caattattatt atagtaattg actattatac 40 <210> 15 <211 > 40 <212> DNA <213> Artificial Sequence <220> <223> Primer 3 <400> 15 ggcggcgtgg gcttcgctga gttttagagc tagaaatagc 40 <210> 16 <211> 30 <212> DNA <213> Artificial Sequence <220> <223 > Primer 4 <400> 16 gcttcgctga gttttagagc tagaaatagc 30 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer 5 <400> 17 gagcctgtcg gcctacctgc t 21 <210> 18 <211 > 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 6 <400> 18 cggccggcat gagcctgtcg 20 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 7 <400> 19 ATGCGCGCGTGTTTTTAAC 30 <210> 20 <211> 20 <212> DNA <213> Artificial sequence 1 <211> 20 < 212> DNA <213> Artificial Sequence <220> <223> Primer 9 <400> 21 cagcgagctg gcggcaaaaa 20 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 10 <400 > 22 ccacgccgcc cagcgagctg gcggcaaaaa 30 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 11 <400> 23 ggcggcgtgg acttcgctga aggtgtgacg 30 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 12 <400> 24 acttcgctga aggtgtgacg 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 13 <400> 25 gtgagtttta tacccaagac 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 14 <400> 26 tttgtgcgcg gtgagtttta 20 <210> 27 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer 15 <400> 27 cgcgcacaaa gagctcctga aaatctcgat aac 33 <210> 28 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer 16 <400> 28 gagctcctga aaatctcgat aac 23 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 17 <400> 29 tggcaccgtg gtgcacatta 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 18 <400> 30 agccgcacgg catcggtttt 20 <210> 31 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer 2 <400> 31 cgtgacgttc caattttatt atagtaattg actattatac 40 <210> 32 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer 3 <400> 32 gaacgtcacg accttcgtca gttttagagc tagaaatagc 40 <210> 33 <211> 30 <212> DNA Artificial Sequence <220> <223> Primer 4 <400> 33 accttcgtca gttttagagc tagaaatagc 30 <210> 34 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Primer 7 <400> 34 atgccggccg cggccgggta gatacccaga g 31 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Primer 8 <400> 35 cggccgggta gatacccaga g 21 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 9 <400> 36 tctgctgttc gttgacaaca 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 10 <400> 37 gtcgtgacgt tctgctgttc 20 <210> 38 <211> 30 <212> DNA <213> Artificial Sequence < 220> <223> Primer 11 <400> 38 acgtcacgac tttcgtcacg gaatttctca 30 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 12 <400> 39 tttcgtcacg gaatttctca 20 <21 0> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 13 <400> 40 tccgttcgct aagggcggta 20 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> < 223> PRIMER 14 <400> 41 Acctgtg TCCGTTCGCT 20 <210> 42 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Primer 15 <400> 42 TCGAT AAC 33 <210> 43 < 211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 17 <400> 43 tccgttcgct aagggcggta 20 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 18 <400> 44 acctgatgtg tccgttcgct 20 <210> 45 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer 2 <400> 45 aggagaaaag caattttatt atagtaattg actattatac 40 <210> 46 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Primer 3 <400> 46 cttttctcct ggccgggact gttttagagc tagaaatagc 40 <210> 47 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Primer 4 <400> 47 GGCCGGACT GTTTTAGAGC 30 <210> 48 <211> 30 <212> DNA <213> Artificial sequence GTAAGCGGA 30 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 8 <400> 49 tttagtctcg gtaagcggga 20 <210> 50 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer 9 <400> 50 gaaaaggccg taaatcaata tgccg 25 <210> 51 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Primer 10 <400> 51 ccggccagga gaaaaggccg taaat 25 <210> 52 <211> 30 < 212> DNA <213> Artificial Sequence <220> <223> Primer 11 <400> 52 tcctggccgg aactgggatt tgtcggggca 30 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 12 < 400> 53 aactgggatt tgtcggggca 20 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 13 <400> 54 gcagagccga gcgcacttcc 20 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 14 <400> 55 gatcgtagaa gcagagccga 20 <210> 56 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Primer 15 <400> 56 ttctacgatc gagctcctga aaatctcgat aac 33 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer 17 <400> 57 cttttctggt cagctggctg 20 <210> 58 <211> 20 <212> DNA <213 > Artificial Sequence <220> <223> Primer 18 <400> 58 ttagccaggc gatggccgtt 20 <210> 59 <211> 3234 <212> DNA <213> Artificial Sequence <220> <223> pDSG <400> 59 tttccatagg ctccgccccc ctgacgagca tca caaaaat cgacgctcaa gtcagaggtg 60 gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct ccctcgtgcg 120 ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc cttcgggaag 180 cgtggcgctt tctcatagct cacgctg tag gtatctcagt tcggtgtagg tcgttcgctc 240 caagctgggc tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct tatccggtaa 300 ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag cagccactgg 360 taggacat agca gagcga ggtatgtagg cggtgctaca gagttcttga agtggtggcc 420 taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga agccagttac 480 cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg gtagcggtgg 540 tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag aagatccttt 600 gatcttttct acggggtctg acgctcagt g gaacgaaaac tcacgttaag ggattttggt 660 catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat gaagttttaa 720 atcaatctaa agtatatatg agtaaacttg gtctgacagt taaaagatg acagtataat 780 agtcaattac tataataaaa tt gatgcgca ggtgaaacac ctgctgcagt tttagagcta 840 gaaatagcaa gttaaaataa ggctagtccg ttatcaactt gaaaaagtgg caccgagtcg 900 gtgctttttt tcgtttttccg ggacgccctc gcggacgtgc tcatagtcca cgacgcccgt 960 gattttgtag ccctggccga cggccagcag gtaggccgac aggctcatgc cggccggagc 1020 tcctgaaaat ctcgataact caaaaaatac gcccggtagt gatcttattt cattatggtg 1080 aaagttggaa cctcttagga tcctctagat ttaagaagga gatatacata aaactccttc 1140 tgagctagtt ctctagcatt ctattatttt gattcgacac cttaataata gcagaaggag 1200 tttttacctg tcaaagaacc atcaaaccct tga tacacaa ggctttgacc taattttgaa 1260 aaatgatgtt gtttctatat agtatcaaga taagaaagaa aaggattttt cgctacgctc 1320 aaatcctttc ccgtcacggg cttctcaggg cgttttatgg cgggtctgct atgtggtgct 1380 atctgacttt ttgctgttca gcagttcctg ccctctgatt ttccagtctg accacttcgg 1440 attatcccgt gacaggtcat tcagactggc taatgcaccc agtaaggcag c ggtatcatc 1500 aacggggtct gacgctcagt ggaacgaaaa ctcacgttaa gggattttgg tcatgagatt 1560 atcaaaaagg atcttcacct agatcctttt aaattaaaaa tgaagtttta aatcaatcta 1620 aagtatatat gagtaaactt ggtctgacag ttacca atgc ttaatcagtg aggcacctat 1680 ctcagcgatc tgtctatttc gttcatccat agttgcctga ctccccgtcg tgtagataac 1740 tacgatacgg gagggcttac catctggccc cagtgctgca atgataccgc gagacccacg 1800 ctcaccggct ccagatttat cagcaataaa ccagccagcc ggaagggccg agcgcagaag 1860 tggtcctgca actttatccg cctccatcca gtctattaat tgttgccggg aagctagagt 1920 aag tagttcg ccagttaata gtttgcgcaa cgttgttgcc attgctacag gcatcgtggt 1980 gtcacgctcg tcgtttggta tggcttcatt cagctccggt tcccaacgat caaggcgagt 2040 tacatgatcc cccatgttgt gcaaaaaagc ggttagctcc ttcggtcc tc cgatcgttgt 2100 cagaagtaag ttggccgcag tgttatcact catggttatg gcagcactgc ataattctct 2160 tactgtcatg ccatccgtaa gatgcttttc tgtgactggt gagtactcaa ccaagtcatt 2220 ctgagaatag tgtatgcggc gaccgagttg ctcttgcccg gcgtcaatac gggataatac 2280 cgcgccacat agcagaactt taaaagtgct catcattgga aaacgttctt cggggcgaaa 2340 act ctcaagg atcttaccgc tgttgagatc cagttcgatg taacccactc gtgcacccaa 2400 ctgatcttca gcatctttta ctttcaccag cgtttctggg tgagcaaaaa caggaaggca 2460 aaatgccgca aaaaagggaa taagggcgac acggaaatgt tgaatactca tactcttcct 2520 ttttcaatat tattgaagca tttatcaggg ttattgtctc atgagcggat acatatttga 2580 atgtatttag aaaaataaac aaataggggt tccgcgcaca tttccccgaa aagtgccacc 2640 aaaaaaacac aaaagaccac attttttaat gtggtcttta ttcttcaact aaagcaccca 2700 ttagttcaac aaacgaaaat tggataaagt gggatatttt taaaatatat atttatgtta 2760 cagtaagctg cct cgcgcgt ttcggtgatg acggtgaaaa cctctgacac atgcagctcc 2820 cggagacggt cacagcttgt ctgtaagcgg atgccgggag cagacaagcc cgtcagggcg 2880 cgtcagcggg tgttggcggg tgtcggggcg cagccatgac ccagtcacgt agcgatagcg 2940 gagtgtatac tggcttaact atgcggcatc agagcagatt gtactgagag tgcaccatat 3000 gcggtgtgaa ataccgcaca gatgcgtaag gagaaaatac cgcatcaggc gctcttccgc 3060 ttcctcgctc actgactcgc tgcgctcggt cgttcggctg cggcgagcgg tatcagctca 3120 ctcaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgtg 3180 agcaaaaggc cagcaaa agg ccaggaaccg taaaaaggcc gcgttgctgg cgtt 3234 <210> 60 <211> 9656 <212> DNA <213> Artificial Sequence <220> <223> pDS9 <400 > 60 aaagccatga caaaaacgcg taacaaaagt gtctataatc acggcagaaa agtccacatt 60 gattatttgc acggcgtcac actttgctat gccatagcat ttttatccat aagattagcg 120 gatcctacct gacgcttttt atcgcaactc tctactgttt ctccataccc gttt ttttgg 180 gaattcgagc tctaaggagg ttataaaaaa tggatattaa tactgaaact gagatcaagc 240 aaaagcattc actaaccccc tttcctgttt tcctaatcag cccggcattt cgcgggcgat 300 attttcacag ctatttcagg agttcagcca tgaac gctta ttacattcag gatcgtcttg 360 aggctcagag ctgggcgcgt cactaccagc agctcgcccg tgaagagaaa gaggcagaac 540 agtttcagga gcgcatggca gaacacatcc ggtacatgg cga tgcgcag ttcatcgcat tactgatcgt 780 tgccaaccag tacggcctta atccgtggac gaaagaaatt tacgcctttc ctgataagca 840 gaatggcatc gttccggtgg tgggcgttga tggctggtcc cgcatcatca atgaaaacca 900 gcagtttgat ggcatggact ttgagcagga caatgaatcc tgtacatgcc ggatttaccg 960 caaggaccgt aatcatccga tctgcgttac cgaatggatg gatgaatgcc gccgcga acc 1020 attcaaaact cgcgaaggca gagaaatcac ggggccgtgg cagtcgcatc ccaaacggat 1080 gttacgtcat aaagccatga ttcagtgtgc ccgtctggcc ttcggatttg ctggtatcta 1140 tgacaaggat gaagccgagc gcattgtcga aaatactgca tac actgcag aacgtcagcc 1200 ggaacgcgac atcactccgg ttaacgatga aaccatgcag gagattaaca ctctgctgat 1260 cgccctggat aaaacatggg atgacgactt attgccgctc tgttcccaga tatttcgccg 1320 cgacattcgt gcatcgtcag aactgacca ggccgaagca gtaaaagctc ttggattcct 1380 gaaacagaaa gccgcagagc agaaggtggc agcatgacac cggacattat cctgcagcgt 1 440 accgggatcg atgtgagagc tgtcgaacag ggggatgatg cgtggcacaa attacggctc 1500 ggcgtcatca ccgcttcaga agttcacaac gtgatagcaa aaccccgctc cggaaagaag 1560 tggcctgaca tgaaaatgtc ctacttccac accctgcttg ctgaggttt g caccggtgtg 1620 gctccggaag ttaacgctaa agcactggcc tggggaaaac agtacgagaa cgacgccaga 1680 accctgtttg aattcacttc cggcgtgaat gttactgaat ccccgatcat ctatcgcgac 1740 gaaagtatgc gtaccgcctg ctctcccgat ggtttatgca gtgacggcaa cggccttgaa 1800 ctgaaatgcc cgtttacctc ccgggatttc atgaagttcc ggctcggtgg tttcgaggcc 18 60 ataaagtcag cttacatggc ccaggtgcag tacagcatgt gggtgacgcg aaaaaatgcc 1920 tggtactttg ccaactatga cccgcgtatg aagcgtgaag gcctgcatta tgtcgtgatt 1980 gagcgggatg aaaagtacat ggcgagtttt gacgagatcg tgcc ggagtt catcgaaaaa 2040 atggacgagg cactggctga aattggtttt gtatttgggg agcaatggcg atgagatcta 2100 aagaggagaa aggatctatg gataagaaat actcaatagg cttagatatc ggcacaaata 2160 gcgtcggatg ggcggtgatc actgatgaat ataaggttcc gtctaaaaag ttcaaggttc 2220 tgggaaatac agaccgccac agtatcaaaa aaaatcttat aggggctctt ttatttgaca 2280 gtggagagac agc ggaagcg actcgtctca aacggacagc tcgtagaagg tatacacgtc 2340 ggaagaatcg tatttgttat ctacaggaga ttttttcaaa tgagatggcg aaagtagatg 2400 atagtttctt tcatcgactt gaagagtctt ttttggtgga agaagacaag aagcatgaac 24 60 gtcatcctat ttttggaaat atagtagatg aagttgctta tcatgagaaa tatccaacta 2520 tctatcatct gcgaaaaaaa ttggtagatt ctactgataa agcggatttg cgcttaatct 2580 atttggcctt agcgcatatg attaagtttc gtggtcattt tttgattgag ggagatttaa 2640 atcctgataa tagtgatgtg gacaaactat ttatccagtt ggtacaaacc tacaatcaat 2700 tatttgaaga aaaccctatt aacgca agtg gagtagatgc taaagcgatt ctttctgcac 2760 gattgagtaa atcaagacga ttagaaaatc tcattgctca gctccccggt gagaagaaaa 2820 atggcttatt tgggaatctc attgctttgt cattgggttt gacccctaat tttaaatcaa 2880 attttgattt ggca gaagat gctaaattac agctttcaaa agatacttac gatgatgatt 2940 tagataattt attggcgcaa attggagatc aatatgctga tttgtttttg gcagctaaga 3000 atttatcaga tgctatttta ctttcagata tcctaagagt aaatactgaa ataactaagg 3060 ctcccctatc agcttcaatg attaaacgct acgatgaaca tcatcaagac ttgactcttt 3120 taaaagcttt agttcgacaa caacttccag aaaagtata a agaaatcttt tttgatcaat 3180 caaaaaacgg atatgcaggt tatattgatg ggggagctag ccaagaagaa ttttataaat 3240 ttatcaaacc aattttagaa aaaatggatg gtactgagga attattggtg aaactaaatc 3300 gtgaagattt gctgcgcaag caac ggacct ttgacaacgg ctctattccc catcaaattc 3360 acttgggtga gctgcatgct attttgagaa gacaagaaga cttttatcca tttttaaaag 3420 acaatcgtga gaagattgaa aaaatcttga cttttcgaat tccttattat gttggtccat 3480 tggcgcgtgg caatagtcgt tttgcatgga tgactcggaa gtctgaagaa acaattaccc 3540 catggaattt tgaagaagtt gtcgataaag gtgcttcag c tcaatcattt attgaacgca 3600 tgacaaactt tgataaaaat cttccaaatg aaaaagtact accaaaacat agtttgcttt 3660 atgagtattt tacggtttat aacgaattga caaaggtcaa atatgttact gaaggaatgc 3720 gaaaaccagc atttctttca ggtgaacaga agaaagccat tgttgattta ctcttcaaaa 3780 caaatcgaaa agtaaccgtt aagcaattaa aagaagatta tttcaaaaaa atagaatgtt 3840 ttgatagtgt tgaaatttca ggagttgaag atagatttaa tgcttcatta ggtacctacc 3900 atgatttgct aaaaattatt aaagataaag attttttgga taatgaagaa aatgaagata 3960 tcttagagga tattgtttta acattgacct tatttgaaga tagggagatg attgaggaaa 40 20 gacttaaaac atatgctcac ctctttgatg ataaggtgat gaaacagctt aaacgtcgcc 4080 gttatactgg ttggggacgt ttgtctcgaa aattgattaa tggtattagg gataagcaat 4140 ctggcaaaac aatattagat tttttgaaat cagatggttt tgccaatc gc aattttatgc 4200 agctgatcca tgatgatagt ttgacattta aagaagacat tcaaaaagca caagtgtctg 4260 gacaaggcga tagtttacat gaacatattg caaatttagc tggtagccct gctattaaaa 4320 aaggtatttt acagactgta aaagttgttg atgaattggt caaagtaatg gggcggcata 4380 agccagaaaa tatcgttatt gaaatggcac gtgaaaatca gacaactcaa aagggccaga 4440 aaaattc gcg agagcgtatg aaacgaatcg aagaaggtat caaagaatta ggaagtcaga 4500 ttcttaaaga gcatcctgtt gaaaatactc aattgcaaaa tgaaaagctc tatctctatt 4560 atctccaaaa tggaagagac atgtatgtgg accaagaatt agatattaat cgtttaagtg 4620 attatgatgt cgatcacatt gttccacaaa gtttccttaa agacgattca atagacaata 4680 aggtcttaac gcgttctgat aaaaatcgtg gtaaatcgga taacgttcca agtgaagaag 4740 tagtcaaaaa gatgaaaaac tattggagac aacttctaaa cgccaagtta atcactcaac 4800 gtaagtttga taatttaacg aaagctgaac gtggaggttt gagtgaactt gataaagctg 4860 gttttatca a acgccaattg gttgaaactc gccaaatcac taagcatgtg gcacaaattt 4920 tggatagtcg catgaatact aaatacgatg aaaatgataa acttattcga gaggttaaag 4980 tgattacctt aaaatctaaa ttagtttctg acttccgaaa agatttccaa ttctataaag 50 40 tacgtgagat taacaattac catcatgccc atgatgcgta tctaaatgcc gtcgttggaa 5100 ctgctttgat taagaaatat ccaaaacttg aatcggagtt tgtctatggt gattataaag 5160 tttatgatgt tcgtaaaatg attgctaagt ctgagcaaga aataggcaaa gcaaccgcaa 5220 aatatttctt ttactctaat atcatgaact tcttcaaaac agaaattaca cttgcaaatg 5280 gagagattcg caa acgccct ctaatcgaaa ctaatgggga aactggagaa attgtctggg 5340 ataaagggcg agattttgcc acagtgcgca aagtattgtc catgccccaa gtcaatattg 5400 tcaagaaaac agaagtacag acaggcggat tctccaagga gtcaatttta ccaaaaagaa 5460 attc ggacaa gcttattgct cgtaaaaaag actgggatcc aaaaaaatat ggtggttttg 5520 atagtccaac ggtagcttat tcagtcctag tggttgctaa ggtggaaaaa gggaaatcga 5580 agaagttaaa atccgttaaa gagttactag ggatcacaat tatggaaaga agttcctttg 5640 aaaaaaatcc gattgacttt ttagaagcta aaggatataa ggaagttaaa aaagacttaa 5700 tcattaaact acctaaatat agtcttt ttg agttagaaaa cggtcgtaaa cggatgctgg 5760 ctagtgccgg agaattacaa aaaggaaatg agctggctct gccaagcaaa tatgtgaatt 5820 ttttatattt agctagtcat tatgaaaagt tgaagggtag tccagaagat aacgaacaaa 5880 aacaattgtt tgtggag cag cataagcatt atttagatga gattattgag caaatcagtg 5940 aattttctaa gcgtgttatt ttagcagatg ccaatttaga taaagttctt agtgcatata 6000 acaaacatag agacaaacca atacgtgaac aagcagaaaa tattattcat ttatttacgt 6060 tgacgaatct tggagctccc gctgctttta aatattttga tacaacaatt gatcgtaaac 6120 gatatacgtc tacaaaagaa gttttagatg ccactcttat ccatcaatcc at cactggtc 6180 tttatgaaac acgcattgat ttgagtcagc taggaggtga ctaacgcatc ctcacgataa 6240 tatccgggta ggcgcaatca ctttcgtcta ctccgttaca aagcgaggct gggtatttcc 6300 cggcctttct gttatccgaa atccactgaa agcacagcgg ctggctgagg agataaataa 6360 taaacgaggg gctgtatgca caaagcatct tctgttgagt taagaacgag tatcgagatg 6420 gcacatagcc ttgctcaaat tggaatcagg tttgtgccaa taccagtaga aacagacgaa 6480 gaatccatgg gtatggacag ttttcccttt gatatgtaac ggtgaacagt tgttctactt 6540 ttgtttgtta gtcttgatgc ttcactgata gatacaaga g ccaaatctag taatatttta 6600 tctgattaat aagatgatct tcttgagatc gtttggtct gcgcgtaatc tcttgctctg 6660 aaaacgaaaa aaccgccttg cagggcggtt tttcgaaggt tctctgagct accaactctt 6720 tgaaccgagg taactgg ctt ggaggagcgc agtcaccaaa acttgtcctt tcagtttagc 6780 cttaaccggc gcatgacttc aagactaact cctctaaatc aattaccagt ggctgctgcc 6840 agtggtgctt ttgcatgtct ttccgggttg gactcaagac gatagttacc ggataaggcg 6900 cagcggtcgg actgaacggg gggttcgtgc atacagtcca gcttggagcg aactgcctac 6960 ccggaactga gtgtcaggcg tggaatgaga caaacgcggc cataacagcg gaatgacacc 7020 ggtaaaccga aaggcaggaa caggagagcg cacgagggag ccgccagggg gaaacgcctg 7080 gtatctttat agtcctgtcg ggtttcgcca ccactgattt gagcgtcaga tttcgtgatg 7140 cttgtcaggg gggcggagcc tatggaa aaa cggctttgcc gcggccccgc tgaatattcc 7200 ttttgtctcc gaccatcagg cacctgagtc gctgtctttt tcgtgacatt cagttcgctg 7260 cgctcacggc tctggcagtg aatgggggta aatggcacta caggcgcctt ttatggattc 7320 atgcaaggaa actacccata atacaagaaa agatgtggtc tttattcttc aactaaagca 7380 cccattagtt caacaaacga aaattggata aagtgggata tttttaaaat atatatttat 7440 gtta cctggc agagcctgta ctttttacag tcggttttct aatgtcacta acctgccccg 7500 ttagtcgcca tttgcatcga tttattatga caacttgacg gctacatcat tcactttttc 7560 ttcacaaccg gcacggaact cgctcgggct ggccccggtg catttt ttaa atacccgcga 7620 gaaatagagt tgatcgtcaa aaccaacatt gcgaccgacg gtggcgatag gcatccgggt 7680 ggtgctcaaa agcagcttcg cctggctgat acgttggtcc tcgcgccagc ttaagacgct 7740 aatccctaac tgctggcgga aaagatgtga cagacgcgac ggcgacaagc aaacatgctg 7800 tgcgacgctg gcgatatcaa aattgctgtc tgccaggtga tcgctgatgt actgacaagc 7 860 ctcgcgtacc cgattatcca tcggtggatg gagcgactcg ttaatcgctt ccatgcgccg 7920 cagtaacaat tgctcaagca gatttatcgc cagcagctcc gaatagcgcc cttccccttg 7980 cccggcgtta atgatttgcc caaacaggtc gctgaaatgc ggctggtgcg cttcatccgg 8040 gcgaaagaac cccgtattgg caaatattga cggccagtta agccattcat gccagtaggc 8100 gcgcggacga aagtaaaccc actggtgata ccattcgcga gcctccggat gacgaccgta 8160 gtgatgaatc tctcctggcg ggaacagcaa aatatcaccc ggtcggcaaa caaattctcg 8220 tccctgattt ttcaccaccc cctgaccgcg aatggtgaga ttgagaatat aacctttcat 8280 tcccagcggt cggtcgataa aaaaatcgag ataaccgttg gcctcaatcg gcgttaaacc 8340 cgccaccaga tgggcattaa acgagtatcc cggcagcagg ggatcatttt gcgcttcagc 8400 catacttttc atactcccgc cattcagaga agaaaccaat tgtccatatt gcatcagaca 8460 ttgccgtcac tgcgtctttt actggctctt ctcgctaacc aaaccggtaa ccccgcttat 8520 taaaagcatt ctgtaacaaa gcgggaccag taatagaaag tgagggagcc acggttgatg 8580 agagctttgt tgtaggtgga ccagttggtg attttgaact tttgctttgc cacggaacgg 8640 tctgcgttgt cgggaagatg cgtgatctga tccttcaact cagcaaaagt tcgatttatt 8700 caacaaagcc acgttgtgtc tcaaaatctc tgatgttaca ttgcacaaga taaaaatata 8760 tcatcatgaa caataaaact gtctgcttac ataaacagta atacaagggg tgttatgagc 8820 catattcaac gggaaacgtc ttgctcgagg ccgcgattaa attccaacat ggatgctgat cg gaatttat gcctcttccg 9060 accatcaagc attttatccg tactcctgat gatgcatggt tactcaccac tgcgatcccc 9120 gggaaaacag cattccaggt attagaagaa tatcctgatt caggtgaaaa tattgttgat 9180 gcgctggcag tgttcctgcg ccggttgcat tcgattcctg tttgtaattg tccttttaac 9240 agcgatcgcg tatttcgtct cgctcaggcg caatcacgaa tgaataacgg ttt ggttgat 9300 gcgagtgatt ttgatgacga gcgtaatggc tggcctgttg aacaagtctg gaaagaaatg 9360 cataagcttt tgccattctc accggattca gtcgtcactc atggtgattt ctcacttgat 9420 aaccttattt ttgacgaggg gaaattaata ggtt gtattg atgttggacg agtcggaatc 9480 gcagaccgat accaggatct tgccatccta tggaactgcc tcggtgagtt ttctccttca 9540 ttacagaaac ggctttttca aaaatatggt attgataatc ctgatatgaa taaattgcag 9600tttcatttga tgctcgatga gtttttctaa tcagaattgg ttaattggtt gtaaca 9656

Claims (7)

서열번호 11의 아미노산 서열에서 272번째 글리신이 글루타민으로 치환된, 서열번호 9의 아미노산 서열로 이루어진 FMN/FAD 수송단백질 변이체.An FMN/FAD transport protein variant consisting of the amino acid sequence of SEQ ID NO: 9 in which glycine at position 272 in the amino acid sequence of SEQ ID NO: 11 is substituted with glutamine. 청구항 1의 변이체를 암호화하는 폴리뉴클레오티드.A polynucleotide encoding the variant of claim 1. 청구항 1의 변이체 또는 청구항 2의 폴리뉴클레오티드를 포함하는 형질전환체.A transformant comprising the variant of claim 1 or the polynucleotide of claim 2. 청구항 3에 있어서,
상기 형질전환체는 에스케리치아(Escherichia) 속 균주인 것인 형질전환체.
The method of claim 3,
The transformant is Escherichia ( Escherichia ) A transformant of the genus strain.
청구항 3에 있어서,
상기 형질전환체는 L-방향족 아미노산 생산능을 가지는 것인 형질전환체.
The method of claim 3,
The transformant is a transformant having the ability to produce L- aromatic amino acids.
청구항 3의 형질전환체를 배지에서 배양하는 단계; 및
상기 형질전환체 또는 형질전환체가 배양된 배지로부터 L-방향족 아미노산을 회수하는 단계를 포함하는 L-방향족 아미노산의 생산 방법.
Culturing the transformant of claim 3 in a medium; and
A method for producing L-aromatic amino acids comprising the step of recovering L-aromatic amino acids from the transformants or the medium in which the transformants are cultured.
청구항 6에 있어서,
상기 L-방향족 아미노산은 L-트립토판, L-페닐알라닌 및 L-티로신으로 이루어진 군에서 선택된 1종 이상인 것인 방법.
The method of claim 6,
Wherein the L- aromatic amino acid is at least one selected from the group consisting of L- tryptophan, L- phenylalanine and L- tyrosine.
KR1020230098040A 2022-02-16 2023-07-27 Novel variant of transporter and method for preparing L-aromatic amino acid using the same KR20230123453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230098040A KR20230123453A (en) 2022-02-16 2023-07-27 Novel variant of transporter and method for preparing L-aromatic amino acid using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220020012A KR20230123544A (en) 2022-02-16 2022-02-16 Novel variant of transporter and method for preparing L-aromatic amino acid using the same
KR1020230098040A KR20230123453A (en) 2022-02-16 2023-07-27 Novel variant of transporter and method for preparing L-aromatic amino acid using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020220020012A Division KR20230123544A (en) 2022-02-16 2022-02-16 Novel variant of transporter and method for preparing L-aromatic amino acid using the same

Publications (1)

Publication Number Publication Date
KR20230123453A true KR20230123453A (en) 2023-08-23

Family

ID=87578518

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020220020012A KR20230123544A (en) 2022-02-16 2022-02-16 Novel variant of transporter and method for preparing L-aromatic amino acid using the same
KR1020230098039A KR20230123452A (en) 2022-02-16 2023-07-27 Novel variant of transporter and method for preparing L-aromatic amino acid using the same
KR1020230098040A KR20230123453A (en) 2022-02-16 2023-07-27 Novel variant of transporter and method for preparing L-aromatic amino acid using the same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020220020012A KR20230123544A (en) 2022-02-16 2022-02-16 Novel variant of transporter and method for preparing L-aromatic amino acid using the same
KR1020230098039A KR20230123452A (en) 2022-02-16 2023-07-27 Novel variant of transporter and method for preparing L-aromatic amino acid using the same

Country Status (3)

Country Link
KR (3) KR20230123544A (en)
CN (3) CN117043178A (en)
WO (1) WO2023158175A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102251946B1 (en) * 2019-10-31 2021-05-17 대상 주식회사 Strain with Improved Aromatic Amino Acid Production Capacity by yeeO Gene Inactivation
CN117486984A (en) * 2023-11-07 2024-02-02 苏州华赛生物工程技术有限公司 Application of transporter KefG in improving yield of L-carnosine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101830002B1 (en) 2016-10-11 2018-02-19 대상 주식회사 Strain overexpressing l-tryptophan by enhancing sub substrates supply and process for producing l-tryptophan using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090330A1 (en) * 2009-02-09 2010-08-12 協和発酵バイオ株式会社 Process for producing l-amino acid
CN108949647B (en) * 2018-04-19 2020-12-29 江南大学 Engineering bacterium and application thereof in production of L-tyrosine
KR102251946B1 (en) * 2019-10-31 2021-05-17 대상 주식회사 Strain with Improved Aromatic Amino Acid Production Capacity by yeeO Gene Inactivation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101830002B1 (en) 2016-10-11 2018-02-19 대상 주식회사 Strain overexpressing l-tryptophan by enhancing sub substrates supply and process for producing l-tryptophan using the same

Also Published As

Publication number Publication date
WO2023158175A9 (en) 2023-09-21
WO2023158175A1 (en) 2023-08-24
CN117843736A (en) 2024-04-09
CN117043178A (en) 2023-11-10
KR20230123452A (en) 2023-08-23
CN117964724A (en) 2024-05-03
KR20230123544A (en) 2023-08-24

Similar Documents

Publication Publication Date Title
KR20230123453A (en) Novel variant of transporter and method for preparing L-aromatic amino acid using the same
KR102421920B1 (en) Novel variant of ATP synthase and method for preparing L-aromatic amino acid using the same
AU2012267271B2 (en) dsRNA endoribonucleases
AU2017358264A1 (en) A method for base editing in plants
DK3027733T3 (en) Preparation of 3-Hydroxypropionic Acid in Recombinant Yeast Expressing an Insect Aspartate-1 Decarboxylase
KR102096604B1 (en) Novel crispr associated protein and use thereof
KR20200023455A (en) T7 RNA Polymerase Variants
CN110540989A (en) Primer and method for cloning unknown DNA sequence adjacent to known region based on PCR technology
JP4663631B2 (en) AMP deaminase derived from actinomycetes and use thereof
KR102421911B1 (en) Novel variant of zinc-binding dehydrogenase and method for preparing L-aromatic amino acid using the same
CN101302531A (en) Bacillus coli-streptomycete-pseudomonas shuttling expressing BAC vector and construction method thereof
KR20230123454A (en) Novel variant of stress protein and method for preparing L-aromatic amino acid using the same
KR20230127949A (en) Novel variant of sigma 38 and method for preparing L-aromatic amino acid using the same
KR20230134060A (en) Novel variant of acetohydroxy acid synthase and method for preparing L-valin using the same
CN109593695B (en) Method for displaying glucose oxidase on surface of bacillus subtilis spore and application
PT698106E (en) GENETIC MARKER
AU2017329752B2 (en) Method for selective carbon source-independent expression of protein-encoding sequences in a filamentous fungus cell
KR101683302B1 (en) Method for amplifying locus in bacterial cell
US20100304461A1 (en) Portable, Temperature and Chemically Inducible Expression Vector for High Cell Density Expression of Heterologous Genes in Escherichia Coli
CN110777156B (en) Construction method and application of IAPV (infectious IAPV) infectious clone
CN116904484A (en) DNA fragment, strain and production method capable of improving nucleoside yield
CN116144564A (en) Construction method of glutamic acid production strain and application of glutamic acid production strain in production of glutamic acid
PL180091B1 (en) Expression of heterological proteins in attenuated bacteria with use of htra promoters

Legal Events

Date Code Title Description
A107 Divisional application of patent