KR20230121645A - Method for manufacturing high-entropy spinel oxide nanopowder for lithium batteries anode, and high-entropy spinel nanopowder thus obtained - Google Patents
Method for manufacturing high-entropy spinel oxide nanopowder for lithium batteries anode, and high-entropy spinel nanopowder thus obtained Download PDFInfo
- Publication number
- KR20230121645A KR20230121645A KR1020220018065A KR20220018065A KR20230121645A KR 20230121645 A KR20230121645 A KR 20230121645A KR 1020220018065 A KR1020220018065 A KR 1020220018065A KR 20220018065 A KR20220018065 A KR 20220018065A KR 20230121645 A KR20230121645 A KR 20230121645A
- Authority
- KR
- South Korea
- Prior art keywords
- nanopowder
- entropy
- spinel
- present
- deionized water
- Prior art date
Links
- 239000011858 nanopowder Substances 0.000 title claims abstract description 49
- 229910052596 spinel Inorganic materials 0.000 title claims abstract description 29
- 239000011029 spinel Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title abstract description 10
- 229910052744 lithium Inorganic materials 0.000 title abstract description 10
- 239000007773 negative electrode material Substances 0.000 claims abstract description 8
- 230000005855 radiation Effects 0.000 claims abstract description 8
- 238000003756 stirring Methods 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 238000001035 drying Methods 0.000 claims abstract description 4
- 238000005406 washing Methods 0.000 claims abstract description 4
- 239000011651 chromium Substances 0.000 claims description 25
- 239000011572 manganese Substances 0.000 claims description 24
- 239000011777 magnesium Substances 0.000 claims description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 16
- 239000008367 deionised water Substances 0.000 claims description 14
- 229910021641 deionized water Inorganic materials 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 12
- 229910001416 lithium ion Inorganic materials 0.000 claims description 11
- 239000002243 precursor Substances 0.000 claims description 11
- 238000001354 calcination Methods 0.000 claims description 10
- MFUVDXOKPBAHMC-UHFFFAOYSA-N magnesium;dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MFUVDXOKPBAHMC-UHFFFAOYSA-N 0.000 claims description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 9
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000002245 particle Substances 0.000 claims description 6
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 claims description 5
- 239000002105 nanoparticle Substances 0.000 claims description 5
- 239000003513 alkali Substances 0.000 claims description 4
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 3
- QZRHHEURPZONJU-UHFFFAOYSA-N iron(2+) dinitrate nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QZRHHEURPZONJU-UHFFFAOYSA-N 0.000 claims description 2
- 239000000243 solution Substances 0.000 abstract description 16
- 238000005119 centrifugation Methods 0.000 abstract description 2
- 239000012670 alkaline solution Substances 0.000 abstract 1
- 235000002639 sodium chloride Nutrition 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000010405 anode material Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000007144 microwave assisted synthesis reaction Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910016870 Fe(NO3)3-9H2O Inorganic materials 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- 229910021094 Co(NO3)2-6H2O Inorganic materials 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- GVHCUJZTWMCYJM-UHFFFAOYSA-N chromium(3+);trinitrate;nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GVHCUJZTWMCYJM-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 239000010442 halite Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000851 scanning transmission electron micrograph Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000011232 storage material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000001106 transmission high energy electron diffraction data Methods 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- 229910019427 Mg(NO3)2-6H2O Inorganic materials 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010407 anodic oxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 238000006138 lithiation reaction Methods 0.000 description 1
- ALIMWUQMDCBYFM-UHFFFAOYSA-N manganese(2+);dinitrate;tetrahydrate Chemical compound O.O.O.O.[Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ALIMWUQMDCBYFM-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000003836 solid-state method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- -1 transition metal cations Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
본 발명은 리튬 전지의 음극소재로 사용될 수 있는 고엔트로피 스피넬 산화물 나노분말 제조방법에 관한 것이다. 보다 상세하게는 마이크로 웨이브 방식을 통해 합성되고, 특히, 리튬 저장 용량, 안정성 향상 및 음극 소재의 배터리 성능 향상을 도모할 수 있는 스피넬 구조를 갖는 리튬 배터리 음극재용 고엔트로피 산화물 나노 분말 제조에 관한 것이다.The present invention relates to a method for preparing high entropy spinel oxide nanopowder that can be used as an anode material for a lithium battery. More specifically, it relates to the preparation of high-entropy oxide nanopowder for lithium battery anode materials having a spinel structure that is synthesized through a microwave method and, in particular, can improve lithium storage capacity, stability, and battery performance of the anode material.
최근 수십 년 동안 다양한 에너지 저장 분야의 확장과 향후 이러한 장치의 사용에 대한 비전이 커지면서 새로운 에너지 저장 재료에 대한 수요가 증가하고 있다. 빠르게 확장되는 시장에 대응하기 위해 차세대 리튬 이온 배터리(LIB)를 위한 긴 사이클 안정성과 높은 저장 용량을 가진 전극 재료가 개발되었으나, 안정성 문제로 인해 새로운 고엔트로피 산화물(HEO) 물질이 전극 후보로 연구되고 있다.The expansion of various energy storage fields in recent decades and the growing vision of future uses of these devices have increased the demand for new energy storage materials. In order to respond to the rapidly expanding market, electrode materials with long cycle stability and high storage capacity have been developed for next-generation lithium-ion batteries (LIBs), but due to stability issues, new high-entropy oxide (HEO) materials are being studied as electrode candidates. there is.
새롭게 개발된 고엔트로피 합금(HEA)를 기반으로 최근 몇 년 동안 고엔트로피 산화물(HEO)이 다양한 분야에서 활발히 연구되고 있다. 일반적으로 5개의 양이온을 갖는 고엔트로피 산화물(HEO)은 높은 배열 엔트로피로 인해 열역학적으로 더 안정적이며, 에너지 저장 물질과 같은 다양한 응용 분야에서 매력적인 후보가 되는 탁월한 특성으로 인해 상당한 관심을 끌고 있다. 에너지 저장 분야의 응용들 중에서 리튬 이온 배터리(LIB)에서 고엔트로피 산화물(HEO)의 활용은 유리한 결정 구조와 높은 Li 이온 전도성으로 인해 매력적인 재료이다. 최근에 리튬 이온 배터리(LIB) 응용 프로그램과 관련하여 여러 고엔트로피 산화물(HEO)들이 활용되었다. 연구자들은 리튬 이온 배터리(LIB)의 음극 물질로서 스피넬 및 암염 구조 고엔트로피 산화물(HEO)의 전기화학적 반응을 조사했으며, 스피넬 구조는 암염 고엔트로피 산화물(HEO)과 비교하여 Li+의 수송을 향상시킨다. 이러한 고엔트로피 산화물(HEO) 합성에는 기존의 고체 상태 방법, 공침 합성, 제어 산화, 분무 및 화염 분무 열분해와 같은 여러 공정이 이용되고 있다. Based on the newly developed high entropy alloy (HEA), high entropy oxide (HEO) has been actively studied in various fields in recent years. In general, high-entropy oxides (HEOs) with five cations are thermodynamically more stable due to their high configuration entropy, and have attracted considerable attention due to their outstanding properties that make them attractive candidates for various applications such as energy storage materials. Among applications in energy storage, the utilization of high-entropy oxides (HEOs) in lithium-ion batteries (LIBs) is an attractive material due to their advantageous crystalline structure and high Li-ion conductivity. Recently, several high-entropy oxides (HEOs) have been utilized for lithium-ion battery (LIB) applications. Researchers investigated the electrochemical reactions of spinel and halite structured high entropy oxides (HEOs) as negative electrode materials for lithium ion batteries (LIBs), and spinel structures enhance the transport of Li+ compared to halite high entropy oxides (HEOs). Several processes such as conventional solid-state methods, co-precipitation synthesis, controlled oxidation, spray and flame spray pyrolysis have been used for the synthesis of these high entropy oxides (HEO).
한편 스피넬 상을 갖는 고엔트로피 산화물(HEO)에 대한 연구가 지속되고 있다. 스피넬 구조는 독특한 3차원 리튬 확산 경로로 인해 암염에 비해 장점이 있다고 알려져 있다. 동시에 고엔트로피 산화물(HEO)에서 높은(>1A/g) 충전/방전 속도로 Mg를 도입하면 안정성과 사이클링 성능이 향상된다. Mg 도핑된 고엔트로피 산화물(HEO)의 더 높은 커패시턴스는 리튬화 공정 동안 더 많은 양의 Li를 통합할 수 있는 Cr 및 Co와 같은 전이 금속 양이온의 더 높은 산화 상태에 기인한다. 반면에 특허문헌 1은 음극용 자성(Fe3O4) 나노분말의 제조방법에 관한 것이다. 이 조성물을 사용하는 경우 양극 산화물의 열역학적 안정성은 고엔트로피 산화물(HEO)과 비교하여 매우 낮다. Meanwhile, research on high entropy oxide (HEO) having a spinel phase is continuing. It is known that the spinel structure has advantages over rock salt due to its unique three-dimensional lithium diffusion pathway. At the same time, introduction of Mg at high (>1 A/g) charge/discharge rates in high-entropy oxides (HEO) improves stability and cycling performance. The higher capacitance of Mg-doped high-entropy oxides (HEOs) is due to the higher oxidation states of transition metal cations such as Cr and Co that can incorporate higher amounts of Li during the lithiation process. On the other hand, Patent Document 1 relates to a method for producing magnetic (Fe3O4) nanopowder for an anode. When using this composition, the thermodynamic stability of the anodic oxide is very low compared to high entropy oxide (HEO).
본 발명은 마이크로웨이브 방식으로 합성되어 안정성과 정전용량을 향상되고, 최적화된 화학 조성 및 결정 구조를 가지는 리튬전지 음극재용 (Co0.2Cr0.2Mn0.2Fe0.2Mg0.2)3O4 고엔트로피 산화물 나노분말 제조방법을 제공함을 목적으로 한다.The present invention is a (Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ) 3 O 4 high-entropy oxide nanopowder for lithium battery anode material having improved stability and capacitance synthesized by a microwave method and having an optimized chemical composition and crystal structure. It is an object of providing a manufacturing method.
또한 본 발명은 상기 제조방법에 의해 제조되는 리튬전지 음극재용 M3O4(M:Co0.2Cr0.2Mn0.2Fe0.2Mg0.2) 고엔트로피 산화물 나노분말을 제공함을 특징으로 한다. In addition, the present invention is characterized by providing an M 3 O 4 (M:Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ) high entropy oxide nanopowder for a negative electrode material for a lithium battery prepared by the above manufacturing method.
또한 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들에 한정되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.In addition, the technical problems to be achieved in the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned are clearly understood by those skilled in the art from the description below. It could be.
본 발명의 일 측면은, One aspect of the present invention,
질산마그네슘 6수화물(Mg(NO3)2˙6H2O), 질산코발트 6수화물(Co(NO3)2˙6H2O), 질산망간 4수화물(Mn(NO3)2˙4H2O), 질산크롬 9수화물(Cr(NO3)3˙9H2O), 질산철 9수화물(Fe(NO3)3˙9H2O) 금속전구체염 분말을 혼합하는 단계; Magnesium nitrate hexahydrate (Mg(NO 3 ) 2˙ 6H2O), cobalt nitrate hexahydrate (Co(NO 3 ) 2˙ 6H2O), manganese nitrate 4 hydrate (Mn(NO 3 ) 2˙ 4H2O), chromium nitrate 9hydrate ( Mixing Cr(NO 3 ) 3˙ 9H2O) and iron nitrate nonahydrate (Fe(NO 3 ) 3˙ 9H2O) metal precursor salt powder;
상기 혼합된 금속전구체염 분말을 탈이온수에 용해시킨 후, 이에 알카리 용액을 순차적으로 첨가하고 교반하는 단계; After dissolving the mixed metal precursor salt powder in deionized water, sequentially adding an alkali solution thereto and stirring;
상기 교반된 용액을 마이크로 웨이브 오븐을 사용하여 2~10분 동안 마이크로파 방사선에 노출시키는 단계; exposing the stirred solution to microwave radiation for 2-10 minutes using a microwave oven;
상기 방사선 노출 후, 침전된 생성물을 용액으로부터 원심분리하는 단계; After the radiation exposure, centrifuging the precipitated product from the solution;
상기 원심분리된 생성물을 에탄올과 탈이온수를 사용하여 세척한 후, 건조시키는 단계; 및After washing the centrifuged product with ethanol and deionized water, drying; and
상기 건조된 생성물을 가열로에서 하소함으로써 스피넬 구조를 갖는 M3O4(M:Co0.2Cr0.2Mn0.2Fe0.2Mg0.2) 조성의 나노분말을 제조하는 단계;를 포함하는 리튬전지 음극재 용 고엔트로피 산화물 나노 분말 제조방법에 관한 것이다. preparing a nanopowder having a composition of M 3 O 4 (M:Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ) having a spinel structure by calcining the dried product in a heating furnace; It relates to a method for producing entropic oxide nanopowder.
상기 침전된 생성물을 에탄올과 탈이온수로 세척하고, 오븐에서 70~90℃에서 1~3시간 동안 건조할 수 있다. The precipitated product may be washed with ethanol and deionized water, and dried in an oven at 70 to 90° C. for 1 to 3 hours.
상기 건조된 생성물을 오븐에서 850~950℃에서 1~3시간 동안 하소할 수 있다. The dried product may be calcined in an oven at 850 to 950° C. for 1 to 3 hours.
또한 본 발명의 다른 측면은, Another aspect of the present invention is
M3O4(M:Co0.2Cr0.2Mn0.2Fe0.2Mg0.2) 조성의 스피넬 구조를 갖는 고엔트로피 산화물 나노 분말로서, 상기 나노입자의 평균입경이 10내지 55nm를 가지며, 리튬이온 배터리에 적용시 1000 사이클의 충방전이 진행된 이후에도 700 mAh/g 이상의 전기용량을 가지는 리튬이온 배터리 음극 소재용 나노 분말에 관한 것이다. M 3 O 4 (M:Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ) A high-entropy oxide nanopowder having a spinel structure, wherein the nanoparticles have an average particle diameter of 10 to 55nm, and when applied to a lithium ion battery The present invention relates to a nanopowder for a negative electrode material of a lithium ion battery having an electric capacity of 700 mAh/g or more even after 1000 cycles of charging and discharging.
본 발명에 따르면, 마이크로 웨이브 보조 합성 방법으로 합성된 M3O4(M:Co0.2Cr0.2Mn0.2Fe0.2Mg0.2) 고엔트로피 산화물(HEO) 나노분말 음극재는 리튬 전지의 정전용량 및 사이클 안정성을 향상시킨다. 고엔트로피 산화물(HEO)은 각 각 0.1 및 1A/h의 사이클링 속도에서 1000 및 700mA/g 이상의 인상적인 비 정전용량 값을 나타낸다. 높은 엔트로피 효과는 산화물 재료의 총 자유 에너지를 감소시키고 결과적으로 재료의 기능적 특성을 향상시킨다. 고엔트로피 산화물(HEO)의 화학 조성 및 결정 구조의 최적화와 더불어 나노 입자의 크기 및 균일성을 제어함으로써 음극재의 전지 성능을 향상시킬 수 있다. According to the present invention, the M 3 O 4 (M:Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ) high-entropy oxide (HEO) nanopowder anode material synthesized by a microwave-assisted synthesis method improves the capacitance and cycle stability of a lithium battery. improve High entropy oxide (HEO) exhibits impressive specific capacitance values of over 1000 and 700 mA/g at cycling rates of 0.1 and 1 A/h, respectively. The high entropy effect reduces the total free energy of the oxide material and consequently enhances the functional properties of the material. Battery performance of negative electrode materials can be improved by controlling the size and uniformity of nanoparticles as well as optimizing the chemical composition and crystal structure of high entropy oxide (HEO).
본 명세서의 실시예는 도면을 참조한 다음 설명으로부터 더 잘 이해 될 것이다.
도 1은 본 발명의 일실시예에 따른 고엔트로피 산화물(HEO) 나노 분말의 XRD 패턴을 나타낸다.
도 2는 본 발명의 일실시예에 따른 고엔트로피 산화물(HEO) 나노 분말의 전자현미경 사진으로 (a 및 b) TEM 현미경 사진, (c) SAED 패턴, (d 및 e) 원자 규모 STEM, (f) [1 1 0] 평면의 개략적인 스피넬 구조, (g) 입자 크기의 히스토그램 및 (h) HEADF-STEM 이미지 및 HEO의 EDS 원소 분포을 나타낸다.
도 3은 본 발명의 일실시예에 따른, 고엔트로피 산화물(HEO) 나노 분말의 캐패시턴스 유지 및 콜럼빅 효율(columbic effciency)을 나타내는 사이클 그래프이다.
도 4은 본 발명의 일실시예에 따른 고엔트로피 산화물(HEO) 나노 분말의 스캔속도에 따른 정전용량 변화를 나타내는 사이클 그래프이다. Embodiments herein will be better understood from the following description with reference to the drawings.
1 shows an XRD pattern of a high entropy oxide (HEO) nanopowder according to an embodiment of the present invention.
Figure 2 is an electron micrograph of high entropy oxide (HEO) nanopowder according to an embodiment of the present invention (a and b) TEM micrograph, (c) SAED pattern, (d and e) atomic scale STEM, (f ) [1 1 0] plane schematic spinel structure, (g) histogram of grain size and (h) HEADF-STEM image and EDS elemental distribution of HEO.
3 is a cycle graph showing capacitance retention and columbic effciency of high entropy oxide (HEO) nanopowder according to an embodiment of the present invention.
4 is a cycle graph showing capacitance change according to scan rate of high entropy oxide (HEO) nanopowder according to an embodiment of the present invention.
이하, 본 발명을 설명한다. Hereinafter, the present invention will be described.
본 발명에서는 고엔트로피 산화물(HEO) 나노분말을 제조하기 위해 초고속 마이크로웨이브 공법을 이용하였다. 마이크로 웨이브 보조 기술은 잘 튜닝된 합성법으로 사용될 수 있으며, 분포 범위가 좁고 불순물이 없는 미세한 나노 크기의 분말이 생성될 수 있으므로, 에너지 소비, 반복성, 생산 시간, 비용, 효율성 측면에서 다른 합성 방법에 비해 중요한 기능을 갖는다.In the present invention, an ultra-high-speed microwave method was used to prepare high entropy oxide (HEO) nanopowder. Microwave-assisted technology can be used as a well-tuned synthesis method, and fine nano-sized powders with a narrow distribution range and no impurities can be produced, compared to other synthesis methods in terms of energy consumption, repeatability, production time, cost, and efficiency. has an important function.
즉, 본 발명에서 단일 스피넬 상을 갖는 (Co0.2Cr0.2Mn0.2Fe0.2Mg0.2)Ox 조성을 갖는 고엔트로피 산화물(HEO) 나노분말은 열역학적 안정성이 우수하며, 또한, 다른 합성법 대비 나노분말의 크기도 작은 장점이 있다. That is, in the present invention, the high-entropy oxide (HEO) nanopowder having a (Co0.2Cr0.2Mn0.2Fe0.2Mg0.2)Ox composition with a single spinel phase has excellent thermodynamic stability, and also, compared to other synthesis methods, the size of the nanopowder There are also small advantages.
이러한 본 발명의 리튬전지 음극재용 고엔트로피 산화물 나노 분말 제조방법은, 질산마그네슘 6수화물(Mg(NO3)2˙6H2O), 질산코발트 6수화물(Co(NO3)2˙6H2O), 질산망간 4수화물(Mn(NO3)2˙4H2O), 질산크롬 9수화물(Cr(NO3)3˙9H2O), 질산철 9수화물(Fe(NO3)3˙9H2O) 금속전구체염 분말을 혼합하는 단계; 상기 혼합된 금속전구체염 분말을 탈이온수에 용해시킨 후, 이에 알카리 용액을 순차적으로 첨가하고 교반하는 단계; 상기 교반된 용액을 마이크로 웨이브 오븐을 사용하여 2~10분 동안 마이크로파 방사선에 노출시키는 단계; 상기 방사선 노출 후, 침전된 생성물을 용액으로부터 원심분리하는 단계; 상기 원심분리된 생성물을 에탄올과 탈이온수를 사용하여 세척한 후, 건조시키는 단계; 및 상기 건조된 생성물을 가열로에서 하소함으로써 스피넬 구조를 갖는 M3O4(M:Co0.2Cr0.2Mn0.2Fe0.2Mg0.2) 조성의 나노분말을 제조하는 단계를 포함한다. The method for producing high-entropy oxide nanopowder for lithium battery negative electrode material of the present invention is magnesium nitrate hexahydrate (Mg(NO 3 ) 2 3 6H 2 O), cobalt nitrate hexahydrate (Co (NO 3 ) 2 6 H 2 O), manganese nitrate 4 Mixing hydrate (Mn(NO 3 ) 2 3 4H2O), chromium nitrate 9H2O (Cr(NO 3 ) 3 9H2O), and iron nitrate 9H2O (Fe(NO 3 ) 3 9H2O) metal precursor salt powder; After dissolving the mixed metal precursor salt powder in deionized water, sequentially adding an alkali solution thereto and stirring; exposing the stirred solution to microwave radiation for 2-10 minutes using a microwave oven; After the radiation exposure, centrifuging the precipitated product from the solution; After washing the centrifuged product with ethanol and deionized water, drying; and preparing a nanopowder having a composition of M 3 O 4 (M:Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ) having a spinel structure by calcining the dried product in a heating furnace.
먼저, 본 발명에서는, 질산마그네슘 6수화물(Mg(NO3)2˙6H2O), 질산코발트 6수화물(Co(NO3)2˙6H2O), 질산망간 4수화물(Mn(NO3)2˙4H2O), 질산크롬 9수화물(Cr(NO3)3˙9H2O), 질산철 9수화물(Fe(NO3)3˙9H2O) 금속전구체염 분말을 혼합한다. 그리고 상기 혼합된 금속전구체염 분말을 탈이온수에 용해시킨 후, 이에 알카리 용액을 순차적으로 첨가하고 교반한다. First, in the present invention, magnesium nitrate hexahydrate (Mg(NO 3 ) 2 6H 2 O), cobalt nitrate hexahydrate (Co(NO 3 ) 2 6 H 2 O), manganese nitrate 4 hydrate (Mn(NO 3 ) 2 4 H 2 O) , chromium nitrate nonahydrate (Cr(NO 3 ) 3 9H2O), and iron nitrate 9 hydrate (Fe(NO 3 ) 3 9H2O) metal precursor salt powder. After dissolving the mixed metal precursor salt powder in deionized water, an alkali solution is sequentially added thereto and stirred.
예컨대, 모든 전구체(0.02M)를 40ml의 탈이온수에 별도로 용해시키고 염기 용액(pH 12)에 순차적으로 첨가하고 계속 교반할 수 있다. For example, all the precursors (0.02M) can be separately dissolved in 40 ml of deionized water and sequentially added to the base solution (pH 12) with continuous stirring.
이어, 본 발명에서는 상기 교반된 용액을 마이크로 웨이브 오븐을 사용하여 2~10분 동안 마이크로파 방사선에 노출시키고, 이어, 상기 방사선 노출 후, 침전된 생성물을 용액으로부터 원심분리한다. Next, in the present invention, the stirred solution is exposed to microwave radiation for 2 to 10 minutes using a microwave oven, and then, after exposure to the radiation, the precipitated product is centrifuged from the solution.
예컨데, 상기 교반된 용액을 마이크로파 오븐(850W 및 2.45GHz에서 작동)을 사용하여 3분 동안 마이크로파 방사선에 노출시킨 후, 침전된 분말을 용액으로부터 원심분리기를 이용하여 570rpm으로 5분 동안 분리할 수 있다. For example, after exposing the stirred solution to microwave radiation for 3 minutes using a microwave oven (operating at 850 W and 2.45 GHz), the precipitated powder can be separated from the solution using a centrifuge at 570 rpm for 5 minutes. .
그리고 본 발명에서는 상기 원심분리된 생성물을 에탄올과 탈이온수를 사용하여 세척한 후, 건조시킨다. 마지막으로, 상기 건조된 생성물을 가열로에서 하소함으로써 스피넬 구조를 갖는 M3O4(M:Co0.2Cr0.2Mn0.2Fe0.2Mg0.2) 조성의 고엔트로피 산화물 나노분말을 제조할 수 있다. In the present invention, the centrifuged product is washed with ethanol and deionized water, and then dried. Finally, a high entropy oxide nanopowder having a spinel structure and a composition of M 3 O 4 (M:Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ) may be prepared by calcining the dried product in a heating furnace.
즉, 최종 단계에서 에탄올과 탈이온수를 사용하여 합성된 생성물을 세척한 후 70~90℃에서 1~3시간 동안 건조시킬 수 있으며, 그 후, 생성물을 850~950℃에서 1~3시간 가열하는 하소처리를 하여 고엔트로피 M3O4(M:Co0.2Cr0.2Mn0.2Fe0.2Mg0.2) 나노분말을 합성하였다. 더욱 구체적으로는 최적의 스피넬 구조를 만들기 위하여 850~900℃에서 1~3시간 하소 처리를 수행하였다. 하소 공정에서 합성되는 고엔트로피 M3O4(M:Co0.2Cr0.2Mn0.2Fe0.2Mg0.2) 나노분말에서 하소 시간이 짧거나 길면 스피넬 구조를 형성하는데 어려움이 따르며, 하소 온도가 낮거나 너무 높으면 스피넬 구조를 형성하는데 있어서 방해를 받는다. That is, in the final step, the synthesized product can be washed with ethanol and deionized water, dried at 70 to 90 ° C for 1 to 3 hours, and then heated at 850 to 950 ° C for 1 to 3 hours. A high-entropy M 3 O 4 (M:Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ) nanopowder was synthesized by calcination. More specifically, calcination was performed at 850 to 900 ° C for 1 to 3 hours in order to create an optimal spinel structure. In the high-entropy M 3 O 4 (M:Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ) nanopowder synthesized in the calcination process, it is difficult to form a spinel structure if the calcination time is short or long, and if the calcination temperature is low or too high, It is hindered in forming the spinel structure.
본 발명의 스피넬 구조를 갖는 고엔트로피 M3O4(M:Co0.2Cr0.2Mn0.2Fe0.2Mg0.2) 나노분말에서 조성은, vol.%로, Co: 15% 초과 25% 이하, Cr: 15% 초과 25% 이하, Mn: 15% 초과 25% 이하, Fe: 15% 초과 25% 이하 및 Mg: 15% 초과 25% 이하로 이루어진 합금원소을 포함하고, 하소 공정에서 M3O4(M:Co0.2Cr0.2Mn0.2Fe0.2Mg0.2) 조성의 나노분말이 생성된다. The composition of the high-entropy M 3 O 4 (M:Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ) nanopowder having the spinel structure of the present invention, in vol.%, Co: more than 15% and less than 25%, Cr: 15 % more than 25%, Mn: more than 15% and less than 25%, Fe: more than 15% and less than 25%, and Mg: more than 15% and less than 25%, and in the calcination process M 3 O 4 (M: Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ) nanopowder is produced.
본 발명에서 M3O4 나노분말을 구성하는 Co, Cr, Mn, Fe 및 Mg는 4주기 천이원소 그룹이며, 원자반경의 차이 등이 작아 고용체 등을 이루기 적합한 원소들이다. 상기 Mn와 Fe는 면심입방(FCC) 고용체를 촉진시키는 원소이며, Co는 조직의 미세화, Cr은 내식성을 향상시킨다. 상기 원소들의 함량이 15% 초과 25% 이하인 이유는 가능한 한 엔트로피를 극대화시킬 수 있는 균등 조성에서 일부 엔트로피의 변화를 유도하되 고용체 형성을 위한 엔트로피 범위를 벗어나지 않게 하기 위함이다In the present invention, Co, Cr, Mn, Fe, and Mg constituting the M 3 O 4 nanopowder are a group of 4-period transition elements, and are suitable for forming a solid solution with a small difference in atomic radius. The Mn and Fe are elements that promote face centered cubic (FCC) solid solution, Co improves microstructure, and Cr improves corrosion resistance. The reason why the content of the above elements is greater than 15% and less than 25% is to induce a change in some entropy in a uniform composition that can maximize entropy as much as possible, but not to deviate from the entropy range for solid solution formation
상기와 같은 본 발명의 제조공정을 이용하여 제조된 나노분말은, M3O4(M:Co0.2Cr0.2Mn0.2Fe0.2Mg0.2) 조성의 스피넬 구조를 갖는 고엔트로피 산화물 나노 분말로서, 상기 나노입자의 평균입경이 10내지 55nm를 가지며, 리튬이온 배터리에 적용시 1000 사이클의 충방전이 진행된 이후에도 700 mAh/g 이상의 전기용량을 가질 수 있다. The nanopowder prepared using the manufacturing process of the present invention as described above is a high entropy oxide nanopowder having a spinel structure with a composition of M 3 O 4 (M:Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ). The particles have an average particle diameter of 10 to 55 nm, and when applied to a lithium ion battery, they can have an electric capacity of 700 mAh/g or more even after 1000 cycles of charging and discharging.
한편, 본 발명에서 제안하는 상기 마이크로파 보조 방법은 간단한 제조설비, 초단시간 반응시간, 매우 좁은 분포 크기의 나노 스케일 제품을 제조할 수 있는 이점을 제공할 수 있다. On the other hand, the microwave-assisted method proposed in the present invention can provide advantages of simple manufacturing equipment, ultra-short reaction time, and the ability to manufacture nanoscale products with a very narrow distribution size.
현재 나노 규모의 고엔트로피 산화물(HEO) 합성을 위한 쉽고 빠르며 효율적인 방법을 개발하는 것은 다양한 분야의 적용을 위하여 필수적인데, 본 발명의 마이크로 웨이브 보조 방법이 이러한 문제를 극복하기 위한 우수한 후보로 사용될 수 있다. 기존 제조공법에서 반응시간은 수일에서 수 시간 걸리는 것에 반하여 본 발명의 마이크로 웨이브 보조 합성 방법의 반응 시간은 수 분에서 수초로 크게 단축된다. 실제로 마이크로파 보조 합성 방법은 필요한 곳에 정확하게 에너지를 전달하여 고효율 내부 가열을 제공한다. 또한, 마이크로 웨이브 보조 합성 방법은 매개변수를 조절하여 나노 크기의 제품 입자 크기를 정밀하게 제어할 수 있는 장점을 가질 수 있다. Currently, developing an easy, fast, and efficient method for synthesizing high-entropy oxide (HEO) on a nanoscale is essential for applications in various fields, and the microwave-assisted method of the present invention can be used as an excellent candidate to overcome these problems. . The reaction time of the microwave-assisted synthesis method of the present invention is greatly reduced from several minutes to several seconds, whereas the reaction time in the conventional manufacturing method takes several days to several hours. Indeed, microwave-assisted synthesis methods provide highly efficient internal heating by delivering energy exactly where it is needed. In addition, the microwave-assisted synthesis method may have the advantage of being able to precisely control the size of nano-sized product particles by adjusting parameters.
이하, 실시예를 통하여 본 발명을 상세히 설명하다. Hereinafter, the present invention will be described in detail through examples.
(실시예)(Example)
질산마그네슘 6수화물(Mg(NO3)2˙6H2O) 3.01g, 질산코발트 6수화물(Co(NO3)2˙6H2O) 3.4g, 질산망간 4수화물(Mn(NO3)2˙4H2O) 3.01g, 질산크롬 9수화물(Cr(NO3)3˙9H2O) 3.49g, 질산철 9수화물(Fe(NO3)3˙9H2O) 4.84g의 금속전구체염 분말을 혼합한 후, 모든 전구체(0.02M)를 40ml의 탈이온수에 별도로 용해시키고 염기 용액(pH 12)에 순차적으로 첨가하고 계속 교반하였다. Magnesium Nitrate Hexahydrate (Mg(NO 3 ) 2˙ 6H2O) 3.01g, Cobalt Nitrate Hexahydrate (Co(NO 3 ) 2˙ 6H2O) 3.4g, Manganese Nitrate Tetrahydrate (Mn(NO 3 ) 2˙ 4H2O) 3.01g After mixing 3.49 g of chromium nitrate nonahydrate (Cr(NO 3 ) 3 9H2O) and 4.84 g of iron nitrate 9 hydrate (Fe(NO 3 ) 3 9H2O) metal precursor salt powder, all precursors (0.02M) were separately dissolved in 40 ml of deionized water and sequentially added to the base solution (pH 12), with continuous stirring.
이어, 상기 교반된 용액을 마이크로파 오븐(850W 및 2.45GHz에서 작동)을 사용하여 3분 동안 마이크로파 방사선에 노출시킨 후, 침전된 분말을 용액으로부터 원심분리로 분리하였다. The stirred solution was then exposed to microwave radiation for 3 minutes using a microwave oven (operating at 850 W and 2.45 GHz) before the precipitated powder was separated from the solution by centrifugation.
그리고 최종 단계에서 에탄올과 탈이온수를 사용하여 합성된 생성물을 세척한 후 80℃에서 1시간 동안 건조하였다. 후속하여, 상기 건조된 생성물을 900℃에서 1시간 가열하는 하소처리를 실시하여 M3O4(M:Co0.2Cr0.2Mn0.2Fe0.2Mg0.2) 조성의 스피넬 구조를 갖는 고엔트로피 산화물 나노분말을 제조하였다. 이때, 제조된 고엔트로피 산화물(HEO) 나노분말의 크기는 10~55nm 범위이며 평균 크기는 26nm로 측정되었다.In the final step, the synthesized product was washed with ethanol and deionized water and dried at 80 °C for 1 hour. Subsequently, the dried product is calcined by heating at 900° C. for 1 hour to obtain a high-entropy oxide nanopowder having a spinel structure with a composition of M 3 O 4 (M:Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ). manufactured. At this time, the size of the prepared high-entropy oxide (HEO) nanopowder ranged from 10 to 55 nm, and the average size was measured to be 26 nm.
이후, 상기 제조된 나노분말을 냉각한 후 XRD 분석을 실시하여 그 결과를 도 1에 나타내었다. Thereafter, after cooling the prepared nanopowder, XRD analysis was performed, and the results are shown in FIG. 1 .
도 1은 본 발명의 일실시예에 따른 고엔트로피 산화물(HEO) 나노 분말의 XRD 패턴을 나타낸다. 도 1에서 보는 바와 같이, 고엔트로피 산화물(HEO)의 Rietveld-refined 패턴은 단일 입방 스피넬 상을 나타냄을 알 수 있으며, 모든 샘플의 모든 XRD 패턴에서 뾰족하고 좁은 피크는 높은 수준의 결정성을 나타냄을 알 수 있다. 1 shows an XRD pattern of a high entropy oxide (HEO) nanopowder according to an embodiment of the present invention. As shown in Figure 1, it can be seen that the Rietveld-refined pattern of high entropy oxide (HEO) represents a single cubic spinel phase, and the sharp and narrow peaks in all XRD patterns of all samples indicate a high level of crystallinity. Able to know.
도 2는 상기 고엔트로피 산화물(HEO) 나노 분말의 전자현미경 사진으로 (a 및 b) TEM 현미경 사진, (c) SAED 패턴, (d 및 e) 원자 규모 STEM, (f) [1 1 0] 평면의 개략적인 스피넬 구조, (g) 입자 크기의 히스토그램 및 (h) HEADF-STEM 이미지 및 HEO의 EDS 원소 분포을 나타낸다.2 shows electron micrographs of the high-entropy oxide (HEO) nanopowder: (a and b) TEM micrographs, (c) SAED patterns, (d and e) atomic-scale STEM, and (f) [1 1 0] planes. shows the schematic spinel structure of (g) histogram of grain size and (h) HEADF-STEM image and EDS elemental distribution of HEO.
도 2로부터 알 수 있는 바와 같이, 고엔트로피 산화물(HEO)은 분말 형상이 반구 모양임을 나타내며(도 2a 및 도 2b), 회절 패턴(도 2c)은 단일 스피넬 상의 형성을 나타낸다. 또한, 원자 규모 STEM(도 2d 및 도 2e) 분석에서도 스피넬 상 형성을 나타내며, 양이온은 개략적인 스피넬 구조(도 2f)에서 (111) 평면의 원자 위치와 유사한 마름모 모양으로 배열됨을 보여준다. 고엔트로피 산화물(HEO) 나노 분말의 입자 크기 분포는 도 2g에 나타내었으며, 나노 분말 평균 크기는 26nm이며, 10~55nm 범위에서 대략 균일한 크기 분포를 나타내었다. 또한 도 2h는 5개의 다른 양이온(Cr, Mn, Fe, Co 및 Mg)이 스피넬 구조에 무작위로 분포되어 있음을 나타내고 있다. As can be seen from Fig. 2, the high entropy oxide (HEO) exhibits a hemispherical powder shape (Figs. 2a and 2b), and the diffraction pattern (Fig. 2c) indicates the formation of a single spinel phase. In addition, atomic-scale STEM (Fig. 2d and Fig. 2e) analysis also shows the spinel phase formation, showing that the cations are arranged in a rhombic shape similar to the atomic position of the (111) plane in the schematic spinel structure (Fig. 2f). The particle size distribution of high entropy oxide (HEO) nanopowder is shown in FIG. 2h also shows that five different cations (Cr, Mn, Fe, Co and Mg) are randomly distributed in the spinel structure.
한편 마이크로 웨이브 보조 합성 방법을 이용하여 제조한 고엔트로피 산화물(HEO) 나노 분말의 안정성 시험은 1A/g에서 수행하였다.Meanwhile, the stability test of the high-entropy oxide (HEO) nanopowder prepared using the microwave-assisted synthesis method was performed at 1 A/g.
도 3은 본 발명의 일실시예에 따른, 고엔트로피 산화물(HEO) 나노 분말의 캐패시턴스 유지 및 콜럼빅 효율(columbic effciency)을 나타내는 사이클 그래프이다. 도 3에서 보는 바와 같이, 고엔트로피 산화물(HEO) 나노 분말의 경우 1000 사이클 동안 13% 분해가 관찰되었으며, 커패시턴스의 초기 상승은 SEI(Solid Electrolyte Interphase) 층 형성 후 시료 표면 균질화 과정에 기인함을 알 수 있다. 3 is a cycle graph showing capacitance retention and columbic effciency of high entropy oxide (HEO) nanopowder according to an embodiment of the present invention. As shown in FIG. 3, in the case of high entropy oxide (HEO) nanopowder, 13% degradation was observed for 1000 cycles, and the initial increase in capacitance was due to the sample surface homogenization process after the formation of the SEI (Solid Electrolyte Interphase) layer. can
그리고 고엔트로피 산화물(HEO) 나노 분말의 전기 화학적 성능을 액체 전해질이 있는 코인 전지에서 측정하고 그 결과를 도 4에 나타내었다. In addition, the electrochemical performance of the high entropy oxide (HEO) nanopowder was measured in a coin cell with a liquid electrolyte, and the results are shown in FIG. 4 .
도 4은 본 발명의 일실시예에 따른 고엔트로피 산화물(HEO0 나노 분말의 스캔속도에 따른 정전용량 변화를 나타내는 사이클 그래프이다. 4 is a cycle graph showing the capacitance change according to the scan rate of the high entropy oxide (HEO0 nanopowder) according to an embodiment of the present invention.
도 4에서 보는 바와 같이, 낮은 스캔 속도(100)에서 고엔트로피 산화물(HEO) 나노 분말은 매우 높은 정전 용량을 나타내었지만 스캔 속도가 증가할수록 정전용량은 감소하였으며, 스캔속도(5000)에서 최소값을 나타내지만, 여전히 충분히 높음을 알 수 있다. As shown in FIG. 4, the high entropy oxide (HEO) nanopowder exhibited very high capacitance at a low scan rate (100), but the capacitance decreased as the scan rate increased, and did not show a minimum value at the scan rate (5000). However, it can be seen that it is still high enough.
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다. As described above, the detailed description of the present invention has been described with respect to the preferred embodiments of the present invention, but those skilled in the art to which the present invention belongs can make various modifications without departing from the scope of the present invention. Of course this is possible. Therefore, the scope of the present invention should not be limited to the described embodiments and should not be defined, but should be defined by not only the claims to be described later, but also those equivalent thereto.
Claims (4)
상기 혼합된 금속전구체염 분말을 탈이온수에 용해시킨 후, 이에 알카리 용액을 순차적으로 첨가하고 교반하는 단계;
상기 교반된 용액을 마이크로 웨이브 오븐을 사용하여 2~10분 동안 마이크로파 방사선에 노출시키는 단계;
상기 방사선 노출 후, 침전된 생성물을 용액으로부터 원심분리하는 단계;
상기 원심분리된 생성물을 에탄올과 탈이온수를 사용하여 세척한 후, 건조시키는 단계; 및
상기 건조된 생성물을 가열로에서 하소함으로써 스피넬 구조를 갖는 M3O4(M:Co0.2Cr0.2Mn0.2Fe0.2Mg0.2) 조성의 나노분말을 제조하는 단계;를 포함하는 리튬전지 음극재 용 고엔트로피 산화물 나노 분말 제조방법.
Magnesium nitrate hexahydrate (Mg(NO 3 ) 2˙ 6H2O), cobalt nitrate hexahydrate (Co(NO 3 ) 2˙ 6H2O), manganese nitrate 4 hydrate (Mn(NO 3 ) 2˙ 4H2O), chromium nitrate 9hydrate ( Mixing Cr(NO 3 ) 3˙ 9H2O) and iron nitrate nonahydrate (Fe(NO 3 ) 3˙ 9H2O) metal precursor salt powder;
After dissolving the mixed metal precursor salt powder in deionized water, sequentially adding an alkali solution thereto and stirring;
exposing the stirred solution to microwave radiation for 2-10 minutes using a microwave oven;
After the radiation exposure, centrifuging the precipitated product from the solution;
After washing the centrifuged product with ethanol and deionized water, drying; and
preparing a nanopowder having a composition of M 3 O 4 (M:Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ) having a spinel structure by calcining the dried product in a heating furnace; Method for producing entropic oxide nanopowder.
The method of claim 1, wherein the precipitated product is washed with ethanol and deionized water and dried in an oven at 70 to 90° C. for 1 to 3 hours.
The method of claim 1, wherein the dried product is calcined in an oven at 850 to 950° C. for 1 to 3 hours.
M 3 O 4 (M:Co 0.2 Cr 0.2 Mn 0.2 Fe 0.2 Mg 0.2 ) A high-entropy oxide nanopowder having a spinel structure, wherein the nanoparticles have an average particle diameter of 10 to 55nm, and when applied to a lithium ion battery Nanopowder for lithium ion battery negative electrode material having an electric capacity of 700 mAh/g or more even after 1000 cycles of charging and discharging.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220018065A KR20230121645A (en) | 2022-02-11 | 2022-02-11 | Method for manufacturing high-entropy spinel oxide nanopowder for lithium batteries anode, and high-entropy spinel nanopowder thus obtained |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220018065A KR20230121645A (en) | 2022-02-11 | 2022-02-11 | Method for manufacturing high-entropy spinel oxide nanopowder for lithium batteries anode, and high-entropy spinel nanopowder thus obtained |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230121645A true KR20230121645A (en) | 2023-08-21 |
Family
ID=87846033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220018065A KR20230121645A (en) | 2022-02-11 | 2022-02-11 | Method for manufacturing high-entropy spinel oxide nanopowder for lithium batteries anode, and high-entropy spinel nanopowder thus obtained |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20230121645A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116855813A (en) * | 2023-08-22 | 2023-10-10 | 吉林省宝利科贸有限公司 | Polyhedral nano high-entropy material and preparation method and application thereof |
CN117466649A (en) * | 2023-11-13 | 2024-01-30 | 中国科学院兰州化学物理研究所 | Preparation method of multifunctional high-entropy boride |
CN118206124A (en) * | 2024-05-14 | 2024-06-18 | 山东海化集团有限公司 | High-entropy alloy oxide lithium ion battery negative electrode material and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102268432B1 (en) | 2019-06-28 | 2021-06-24 | 충남대학교산학협력단 | Magnetic nano particle for lithium ion battery anode and lithium ion battery anode containing thereof |
-
2022
- 2022-02-11 KR KR1020220018065A patent/KR20230121645A/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102268432B1 (en) | 2019-06-28 | 2021-06-24 | 충남대학교산학협력단 | Magnetic nano particle for lithium ion battery anode and lithium ion battery anode containing thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116855813A (en) * | 2023-08-22 | 2023-10-10 | 吉林省宝利科贸有限公司 | Polyhedral nano high-entropy material and preparation method and application thereof |
CN116855813B (en) * | 2023-08-22 | 2024-02-09 | 吉林省宝利科贸有限公司 | Polyhedral nano high-entropy material and preparation method and application thereof |
CN117466649A (en) * | 2023-11-13 | 2024-01-30 | 中国科学院兰州化学物理研究所 | Preparation method of multifunctional high-entropy boride |
CN117466649B (en) * | 2023-11-13 | 2024-04-09 | 中国科学院兰州化学物理研究所 | Preparation method of multifunctional high-entropy boride |
CN118206124A (en) * | 2024-05-14 | 2024-06-18 | 山东海化集团有限公司 | High-entropy alloy oxide lithium ion battery negative electrode material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations | |
Cheralathan et al. | Preparation of spherical LiNi0. 80Co0. 15Mn0. 05O2 lithium-ion cathode material by continuous co-precipitation | |
KR20230121645A (en) | Method for manufacturing high-entropy spinel oxide nanopowder for lithium batteries anode, and high-entropy spinel nanopowder thus obtained | |
CN109311696B (en) | Scalable precipitation synthesis method for battery materials with adjustable particle size distribution | |
CN108987708A (en) | A kind of sodium-ion battery positive material, preparation method and sodium-ion battery | |
US20060083989A1 (en) | Lithium-nickel-cobalt-maganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these | |
KR20000029333A (en) | Manganese oxide, lithium manganese complex oxide and cobalt-coated lithium manganese complex oxide, and preparation processes thereof | |
Ju et al. | Surfactant-assisted synthesis of high energy {010} facets beneficial to Li-ion transport kinetics with layered LiNi0. 6Co0. 2Mn0. 2O2 | |
CN108899480A (en) | A kind of long circulation life height ratio capacity nickel cobalt aluminium positive electrode and preparation method thereof | |
KR20060130964A (en) | Core-shell spinel cathode active materials for lithium secondary batteries, lithium secondary batteries using the same and method for preparing thereof | |
KR100578447B1 (en) | Process for manufacturing nano-crystalline cathode material for high rate lithum rechargeable battery by self-mixing method | |
CN109879333B (en) | Method for preparing lithium battery anode material with core-shell structure by secondary molten salt method | |
CN103311513A (en) | High-performance layered solid-solution lithium-battery positive material and preparation method thereof | |
CN108767216A (en) | Anode material for lithium-ion batteries and its synthetic method with the full concentration gradient of variable slope | |
CN111816866B (en) | Method for preparing lithium-rich manganese-based positive electrode material by co-precipitation-hydrothermal combination | |
CN106384813A (en) | Fast synthesis method of positive electrode material for lithium ion battery | |
CN107565126B (en) | Method for preparing bivalent cation-doped nickel-cobalt-manganese ternary material by direct precipitation | |
CN107634197B (en) | Method for preparing nickel-cobalt-manganese ternary material by two-time sintering | |
CN115650318A (en) | Doped P2 type layered sodium nickel manganese oxide cathode material and preparation method thereof | |
CN109786703B (en) | Conductive ceramic oxide coated lithium ion battery anode material and preparation method thereof | |
Malik et al. | Effect of Synthesis Method on the Electrochemical Performance of LiNi x MnCo 1-xy O 2 (NMC) Cathode for Li-Ion Batteries: A Review | |
Heo et al. | Synthesis and electrochemical performance analysis of LiNiO2 cathode material using Taylor-Couette flow-type Co-precipitation method | |
JP2011219354A (en) | Crystalline manganese complex oxide, lithium manganese complex oxide for lithium secondary battery and method for producing the same | |
JP4242079B2 (en) | Positive electrode active material for lithium secondary battery and method for producing the same | |
Saravanan et al. | Scope and significance of transition metal oxide nanomaterials for next-generation Li-ion batteries |