KR20230117957A - Method for checking the abnormality of reflow devices - Google Patents

Method for checking the abnormality of reflow devices Download PDF

Info

Publication number
KR20230117957A
KR20230117957A KR1020220014348A KR20220014348A KR20230117957A KR 20230117957 A KR20230117957 A KR 20230117957A KR 1020220014348 A KR1020220014348 A KR 1020220014348A KR 20220014348 A KR20220014348 A KR 20220014348A KR 20230117957 A KR20230117957 A KR 20230117957A
Authority
KR
South Korea
Prior art keywords
dataset
module
voltage value
training
mapped
Prior art date
Application number
KR1020220014348A
Other languages
Korean (ko)
Inventor
구정인
남정수
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020220014348A priority Critical patent/KR20230117957A/en
Publication of KR20230117957A publication Critical patent/KR20230117957A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0038Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller (comparing pulses or pulse trains according to amplitude)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

본 발명은 리플로우 장비의 이상 여부 확인 방법에 관한 것이다.The present invention relates to a method for checking whether a reflow equipment is abnormal.

Description

리플로우 장비의 이상 여부 확인 방법{Method for checking the abnormality of reflow devices}Method for checking the abnormality of reflow devices {Method for checking the abnormality of reflow devices}

본 발명은 IT 기술분야에 관한 것으로, 보다 구체적으로 여러 단계로 구성된 리플로우 장비에서 서보모터의 전압값을 통해 기기의 이상 여부를 확인하는 방법에 관한 것이다. The present invention relates to the field of IT technology, and more particularly, to a method for checking whether a device is abnormal through a voltage value of a servo motor in a reflow device composed of several steps.

리플로우(reflow) 공정은 PCB(Printed Circuit Board)에 부품을 전기적으로 접합하기 위해 PCB와 부품에 고온의 열을 가하는 솔더링(soldering) 공정의 일종으로, 일반적으로 크림솔더를 인쇄하고 금속 사이의 접촉을 형성한 부품이 실장된 PCB가 리플로우 장비(reflow device)를 통과하는 과정에서 크림솔더를 녹임으로써 솔더링이 이루어지는 과정을 포함한다. The reflow process connects the printed circuit board (PCB) to the component in order to electrically bond the component to the printed circuit board (PCB). A type of soldering process in which high-temperature heat is applied. In general, cream solder is printed and the cream solder is melted while the printed circuit board (PCB) on which the metal-to-metal contact is mounted passes through a reflow device. This includes the process of soldering.

이를 위해 리플로우 장비는 양 옆이 개방된 수평 터널 방식으로 구성되고 PCB가 놓인 컨베이어가 이를 통과하게 한다. 리플로우 장비 내에서 고온의 열이 제공되어 컨베이어 상에 위치한 PCB는 컨베이어를 따라 이동하면서 솔더링이 이루어진다. To this end, the reflow equipment is configured as a horizontal tunnel with open sides, and a conveyor with PCBs passes through it. High-temperature heat is provided in the reflow equipment, and soldering is performed while the PCB placed on the conveyor moves along the conveyor.

리플로우 장비 내부는 솔더링이 이루어질 수 있도록 여러 단계(PV1 ~ PVn, n은 자연수)로 구분되어 있으며 각 단계마다 PCB를 붙잡는 그립퍼(gripper)가 구비되며 이는 서보모터(servo motor)에 의해 작동된다. 또한, 한 번에 다수의 프로덕트(주로, PCB)가 컨베이어를 따라 이동하며 솔더링될 수 있어서 생산성이 조절된다. 따라서, 각 단계의 그립퍼 또는 서보모터의 이상시 프로덕트의 솔더링에 문제가 발생할 수 있으며, 달리 말하면 특정 단계의 서보모터 전압값이 적정 수치 범위 밖인 것을 확인한다면(즉, 엔벨로프(envelope) 밖의 값을 갖는다면) 해당 단계의 그립퍼 또는 서보모터에 이상이 이미 발생하였거나 조만간 이상이 발생할 것임을 예측할 수 있다. The inside of the reflow equipment is divided into several steps (PV1 ~ PVn, where n is a natural number) so that soldering can be performed, and a gripper to hold the PCB is provided at each step, which is operated by a servo motor. In addition, productivity is controlled because a plurality of products (mainly, PCBs) can be soldered while moving along the conveyor at one time. Therefore, a problem may occur in the soldering of the product when the gripper or servomotor of each step is abnormal, and in other words, if it is confirmed that the servomotor voltage value of a specific step is outside the appropriate range (ie, a value outside the envelope) If so, it is possible to predict that the gripper or servomotor of the corresponding stage has already had a problem or that the problem will occur in the near future.

도 1a는 총 28개의 단계(PV1 ~ PV28)로 구성된 리플로우 장비가 수백 회 정상 가동하는 동안 총 28개의 서보모터에서 측정된 전압값을 도시한다. X축은 각 단계이며 Y축은 전압값으로 단위는 mA이다. 보다 많이 관측되는 전압값일수록(즉, 카운트(count)수가 높을 수록) 보다 넓은 회색으로 도시된다. 여기에 사용된 리플로우 장비의 개략도가 도 2를 참조할 수 있다. 도시된 예시적인 리플로우 장비(10)는 총 28개의 단계(PV1 ~ PV28)로 구성되며, 각 단계에는 그립퍼(20)와 이를 구동하는 서보모터(30)가 구비되며, 서보모터(30)에는 전압값을 측정하기 위한 센서(S)가 위치한다. 주로 PCB인 프로덕트(P)는 컨베이어를 따라 좌측에서 우측으로 이동하는 것으로 도시된다. 도면에 도시된 예시에서 총 4개의 프로덕트(P)가 한 번에 이송된다. 한편, 도 1b는 프로덕트(P)의 수에 따라 측정된 전압값을 구분하여 도시하며, 각각 프로덕트(P)가 4개인 경우, 8개인 경우, 12개인 경우로 구분한다. 도 1a 및 도 1b에서 청색은 평균이며 적색 점선은 엔벨로프(envelope)를 도시한다. 엔벨로프를 연산하는 방법은 기존에 알려져 있는바 상세한 설명은 생략한다.Figure 1a shows the voltage values measured by a total of 28 servomotors while the reflow equipment consisting of a total of 28 steps (PV1 to PV28) is operating hundreds of times. The X-axis is each step, and the Y-axis is the voltage value, and the unit is mA. The more observed voltage values (that is, the higher the number of counts) are shown in a wider gray color. See FIG. 2 for a schematic diagram of the reflow equipment used here. The illustrated exemplary reflow equipment 10 consists of a total of 28 steps (PV1 to PV28), each step is provided with a gripper 20 and a servo motor 30 that drives it, the servo motor 30 includes A sensor (S) for measuring the voltage value is located. Product P, primarily a PCB, is shown moving from left to right along a conveyor. In the example shown in the drawing, a total of four products P are transported at one time. On the other hand, FIG. 1B shows the voltage values measured according to the number of products P, and each product P is divided into four cases, eight cases, and twelve cases. In Figures 1A and 1B, the blue color is the average and the red dotted line shows the envelope. A method for calculating the envelope is known in the art, and thus a detailed description thereof will be omitted.

도 1a 및 도 1b에서 어느 하나의 단계에서의 카운트수만을 살펴보면 3시그마 규칙(three-sigma rule)을 따르지 않음을 알 수 있다. 도 4a를 참조하면 더욱 상세히 알 수 있는데, 이는 도 1b에서 프로덕트(P)가 4개인 경우로서 PV15 단계에서의 전압값을 X축으로 하고 카운트수를 Y축으로 한 결과를 도시한다. 도시된 바와 같이 PV15 단계에서의 측정값은 3시그마 규칙을 따르지 않음이 명백히 도시되며, 이는 다른 단계들에서도 동일하다.Looking only at the number of counts in any one step in FIGS. 1A and 1B , it can be seen that the three-sigma rule is not followed. Referring to FIG. 4A , this can be seen in more detail. In FIG. 1B , the case where the number of products P is four, the voltage value at the PV15 stage is the X-axis and the number of counts is the Y-axis. As shown, it is clearly shown that the measured values at step PV15 do not follow the 3 sigma rule, and the same is true for other steps.

리플로우 장비(10)의 서보모터(30)의 전압값이 3시그마 규칙을 따르지 않기에 통계학적 수치 해석에 어려움이 발생한다. 장비의 이상 여부는 엔벨로프를 넘어가는 값이 있는지 여부를 통해 확인하거나 예측할 수 있는데, 3시그마 규칙을 따르지 않기에 일반적인 방식으로 연산된 엔벨로프만으로 이상 여부를 확인할 수 없다. 예를 들어, 도 1a에서 PV23 단계인 경우를 살펴보면 엔벨로프의 상한값이 0.16mA보다 낮다. 0.16mA ~ 0.20mA 모두 정상 가동하였던 결과값임에도 엔벨로프를 벗어나기에 통계학적 방법으로는 이상이 있는 것으로 판단된다. 특히 0.16mA의 카운트수는 비교적 높은 편임에도 모든 횟수에서 이상이 있는 것으로 잘못 판단된다. Since the voltage value of the servomotor 30 of the reflow equipment 10 does not follow the 3 sigma rule, statistical numerical analysis is difficult. Whether or not the equipment is abnormal can be confirmed or predicted through whether there is a value that exceeds the envelope, but since it does not follow the 3 sigma rule, it is not possible to check the abnormality only with the envelope calculated in a general way. For example, looking at the case of step PV23 in FIG. 1A , the upper limit value of the envelope is lower than 0.16 mA. Even though all 0.16mA ~ 0.20mA are the result values that were normally operated, it is judged to be abnormal in the statistical method because it is out of the envelope. In particular, although the number of counts of 0.16mA is relatively high, it is mistakenly judged to be abnormal at all counts.

통계학적 수치 해석이 어렵다면 훈련을 통한 학습모델을 생성하여도 적용이 불가능하다. 따라서 현재 상태에서의 이상 여부 판단이 어려움은 물론, 당연하게도 이상 여부가 있을 것을 예측하는 모델 역시 부정확할 수밖에 없다. If statistical numerical interpretation is difficult, it is impossible to apply even if a learning model is created through training. Therefore, it is difficult to determine whether or not there is an abnormality in the current state, and of course, the model predicting that there will be an abnormality is also inaccurate.

(특허문헌 1) 일본등록특허 제6506219호 (Patent Document 1) Japanese Patent Registration No. 6506219

(특허문헌 2) 일본등록특허 제6734318호(Patent Document 2) Japanese Patent Registration No. 6734318

(특허문헌 3) 일본공개특허 제2020-137327호(Patent Document 3) Japanese Laid-open Patent No. 2020-137327

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것이다. The present invention has been made to solve the above problems.

리플로우 장비에서 서보모터의 전압값을 이용하여 기기의 이상 여부를 보다 높은 정확도로 예측할 수 있는 방법을 제안하고자 한다. 일반적인 통계학적 방법으로서 리플로우 장비의 서보모터 전압값이 3시그마 규칙을 따르지 않기에, 이를 보정하여 인공지능을 이용하여 이상 여부를 예측할 수 있는 방법을 제안하고자 한다. In reflow equipment, we would like to propose a method that can predict the failure of the equipment with higher accuracy by using the voltage value of the servo motor. As a general statistical method, since the voltage value of the servo motor of the reflow equipment does not follow the 3 sigma rule, we propose a method that can correct it and predict the abnormality using artificial intelligence.

상기와 같은 과제를 해결하기 위한 본 발명의 일 실시예는 a1) 훈련 데이터 수집 모듈(110)이 리플로우 장비(10)로부터 각 단계(PVn)의 서보모터(30)의 전압값과 프로덕트(P)의 수를 포함하는 다수의 훈련 데이터셋을 수집하는 단계; - 여기서 전압값은 미리 결정된 수치의 단위로 증가하는 값으로 표현되며, 리플로우 장비(10)의 각 단계(PVn)마다 상이한 기기가 위치함 (a2) 갭 확인 모듈(120)이, 상기 훈련 데이터셋이 다수의 훈련 데이터셋 모두에서 공통적으로 누락된 전압값 범위를 갭(gap)으로 확인하는 단계; (a3) 매핑 모듈(130)이, 상기 훈련 데이터셋에서 상기 갭으로 확인된 범위를 삭제한 후 각각의 전압값을 정수로 매핑하는 단계; (a4) 클러스터링 모듈(140)이, 상기 매핑된 훈련 데이터셋을 프로덕트(P)의 수를 기준으로 클러스터링하여 다수의 클러스터로 구분하는 단계; (a5) 훈련 모듈(150)이, 상기 클러스터마다 상기 매핑된 훈련 데이터셋을 이용하여 훈련을 수행하여 각 클러스터의 모델 및 엔벨로프(envelope)를 결정하는 단계; (b1) 데이터 수집 모듈(210)이 상기 리플로우 장비(10)로부터 각 단계(PVn)의 전압값을 포함하는 데이터셋을 수집하는 단계; (b2) 전처리 모듈(220)이, 상기 (a3) 단계와 동일한 방식으로 상기 수집된 데이터셋에서 상기 갭으로 확인된 범위를 삭제한 후 각각의 전압값을 정수로 매핑하는 단계; 및 (b3) 이상 여부 확인 모듈(230)이, 상기 매핑된 데이터셋의 클러스터를 결정하고, 해당 클러스터 모델의 엔벨로프를 확인한 후, 상기 매핑된 데이터셋에 엔벨로프 밖의 전압값이 있는지 여부를 확인함으로써 이상 여부를 확인하는 단계; 를 포함하는, 방법을 제공한다.An embodiment of the present invention for solving the above problems is a1) the training data collection module 110 calculates the voltage value of the servomotor 30 and the product (P) of each step (PVn) from the reflow equipment 10 ) Collecting a plurality of training datasets including the number of; - Here, the voltage value is expressed as a value that increases in units of a predetermined value, and different devices are located at each step (PVn) of the reflow equipment 10 (a2) The gap check module 120 determines the training data Identifying a range of voltage values commonly missing in all of a plurality of training datasets as a gap; (a3) mapping, by the mapping module 130, each voltage value to an integer after deleting the range identified as the gap from the training dataset; (a4) clustering, by the clustering module 140, the mapped training dataset based on the number of products (P), and classifying the mapped training dataset into a plurality of clusters; (a5) determining, by the training module 150, a model and an envelope of each cluster by performing training using the mapped training dataset for each cluster; (b1) collecting, by the data collection module 210, a data set including the voltage value of each step (PVn) from the reflow equipment 10; (b2) deleting, by the preprocessing module 220, the range identified as the gap from the collected dataset in the same manner as the step (a3) and then mapping each voltage value to an integer; and (b3) the anomaly checking module 230 determines the cluster of the mapped dataset, checks the envelope of the corresponding cluster model, and then checks whether or not there is a voltage value outside the envelope in the mapped dataset. checking whether or not; Including, it provides a method.

일 실시예에 있어서, 상기 (b3) 단계는, (b31) 상기 이상 여부 확인 모듈이(230), 상기 매핑된 데이터셋에 엔벨로프 밖의 전압값이 있는 것으로 확인된 경우, 해당 전압값의 단계(PVn)를 확인하여, 상기 리플로우 장비(10)에서 상기 확인된 단계에 해당하는 기기에 이상이 있는 것으로 확인하는 단계를 더 포함할 수 있다.In one embodiment, in the step (b3), (b31) when the abnormality checking module 230 determines that there is a voltage value outside the envelope in the mapped dataset, the step (PVn) of the corresponding voltage value ), and confirming that there is an abnormality in the device corresponding to the identified step in the reflow equipment 10 may be further included.

일 실시예에 있어서, 상기 (b1) 단계에서, 상기 확인된 데이터셋은 프로덕트(P)의 수를 더 포함하고, 상기 (b3) 단계는, (b32) 상기 이상 여부 확인 모듈(230)이, 상기 매핑된 데이터셋에 포함된 프로덕트(P)의 수를 이용하여 클러스터를 결정하는 단계를 더 포함할 수 있다.In one embodiment, in the step (b1), the checked dataset further includes the number of products P, and in the step (b3), (b32) the abnormality checking module 230, The method may further include determining clusters using the number of products (P) included in the mapped dataset.

일 실시예에 있어서, 상기 (b3) 단계는, (b32) 상기 이상 여부 확인 모듈(230)이 상기 매핑된 데이터셋의 각 단계에 따른 변화 정도와 모든 클러스터의 각 단계에 따른 변화 정도를 비교하여, 변화 정도가 가장 유사한 클러스터를 상기 매핑된 데이터셋의 클러스터로 결정하는 단계를 더 포함할 수 있다.In one embodiment, in step (b3), (b32) the anomaly checking module 230 compares the degree of change according to each step of the mapped dataset with the degree of change according to each step of all clusters, , determining a cluster having the most similar degree of change as a cluster of the mapped dataset.

일 실시예에 있어서, 상기 리플로우 장비(10)의 서보모터(30)들은 미사용 전압값 범위가 미리 설정되어 있으며, 상기 (a2) 단계는, (a21) 상기 갭 확인 모듈(120)이, 상기 리플로우 장비(10)에서 미리 설정되어 있는 상기 미사용 전압값 범위를 갭으로 확인하는 단계를 더 포함할 수 있다.In one embodiment, the servo motors 30 of the reflow equipment 10 have preset unused voltage ranges, and in step (a2), (a21) the gap check module 120 A step of confirming the unused voltage value range preset in the reflow equipment 10 as a gap may be further included.

일 실시예 있어서, 상기 (b3) 단계 이후, (b4) 상기 (b3) 단계에서 이상이 없는 것으로 확인된 경우, 상기 훈련 모듈(150)이 이상이 없는 것으로 확인된 경우의 데이터셋을 이용하여 상기 클러스터를 더 훈련하여 엔벨로프를 업데이트하는 단계를 더 포함할 수 있다.In one embodiment, after the step (b3), when it is confirmed that there is no abnormality in the step (b4) and the (b3), the training module 150 uses a dataset when it is confirmed that there is no abnormality. Further training of the cluster may further include updating the envelope.

본 발명에 따른 방법이 적용됨으로써, 리플로우 장비에서 서보모터의 특징으로 인해 전압값이 측정되지 않는 갭이 있는 경우에도 3시그마 규칙을 충족하는 모델을 구축할 수 있으며, 이를 이용하여 보다 정확도 있게 이상이 있는 단계의 기기를 확인하거나 예측할 수 있다. By applying the method according to the present invention, it is possible to build a model that satisfies the 3 sigma rule even when there is a gap in which the voltage value is not measured due to the characteristics of the servomotor in the reflow equipment, and by using this, the abnormality can be more accurately Devices at this stage can be identified or predicted.

리플로우 장비 또는 서보모터의 제조사로부터 갭을 확인할 수 있는 경우에는 이를 직접 입력할 수 있으며, 갭을 확인할 수 없는 경우에도 자동으로 갭을 추정하여 반영함으로써 이상 여부 확인 정확도를 높일 수 있다. If the gap can be confirmed from the manufacturer of the reflow equipment or servo motor, it can be input directly, and even if the gap cannot be confirmed, the gap can be automatically estimated and reflected to increase the accuracy of checking whether there is anomaly.

정상으로 분류된 데이터셋은 다시 모델 학습에 사용되므로, 본 발명에 따른 방법이 지속적으로 사용될수록 결과 정확도는 상승한다. Since the dataset classified as normal is used for model learning again, the accuracy of the result increases as the method according to the present invention is continuously used.

도 1a 및 도 1b는 정상 작동하는 리플로우 장비의 각 단계별 전압값 측정 결과와 평균 및 엔벨로프를 도시한다.
도 2는 본 발명에 따른 방법을 수행하기 위한 시스템을 도시하는 개략도이다.
도 3은 본 발명에 따른 방법을 설명하기 위한 순서도이다.
도 4a 내지 도 4c는 본 발명에 따라 갭을 확인하고 삭제하고 매핑하는 방법을 설명하기 위한 도면이다.
도 5는 본 발명에 따른 방법에 사용된 훈련 데이터셋의 예시이다.
도 6은 본 발명에 따른 방법으로 갭이 삭제되고 매핑되어 다시 처리된 측정값을 나타내는 도면이다.
도 7은 본 발명에 따른 방법으로 클러스터링되고 훈련된 모델을 도시한다.
도 8은 본 발명에 따른 방법으로 훈련된 모델에 입력된 데이터셋을 도시한다.
1A and 1B show voltage value measurement results, averages, and envelopes for each step of the reflow equipment operating normally.
Figure 2 is a schematic diagram showing a system for carrying out the method according to the present invention.
3 is a flowchart for explaining a method according to the present invention.
4A to 4C are views for explaining a method of identifying, deleting, and mapping gaps according to the present invention.
5 is an example of a training dataset used in the method according to the present invention.
6 is a diagram showing measurement values processed again after gaps have been deleted and mapped by the method according to the present invention.
7 shows a model clustered and trained with a method according to the present invention.
8 shows a dataset input to a model trained with the method according to the present invention.

이하, 도면을 참조하여 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings.

시스템의 설명Description of the system

도 2를 참조하여 본 발명에 따른 시스템을 설명한다. Referring to Figure 2, a system according to the present invention is described.

본 발명에 따른 방법을 수행하기 위한 시스템은, 모델 생성부(100)와 장비 확인부(200)를 포함하며, 이들은 다수의 단계(PVn)을 포함하고 각 단계마다 그립퍼(20)와 이를 구동시키는 서보모터(30)가 위치하는 리플로우 장비(10)와 연동된다. 서보모터(30)에는 센서(S)가 구비되어 전압값이 측정되며, 각 단계(PVn)별로 측정된 전압값은 데이터셋이 되어 모델을 생성하기 위한 훈련 데이터셋이거나 또는 이상 여부를 확인하기 위한 실제 데이터셋일 수 있다. 도 2에서 리플로우 장비(10)는 총 28개의 단계가 있는 것으로 도시되나 그 개수에 제한되지 않는다. 각 단계는 PVn의 형태로 지칭하며 여기서 n은 1보다 큰 정수이다. A system for performing the method according to the present invention includes a model generating unit 100 and an equipment checking unit 200, which include a plurality of steps PVn, and each step includes a gripper 20 and driving it. It is interlocked with the reflow equipment 10 where the servo motor 30 is located. The servomotor 30 is provided with a sensor S to measure voltage values, and the voltage values measured for each step PVn become a dataset and are training datasets for generating a model or for checking abnormalities. It can be a real dataset. In FIG. 2, the reflow equipment 10 is shown as having a total of 28 steps, but is not limited to that number. Each step is denoted by the form PVn, where n is an integer greater than 1.

모델 생성부(100)는 훈련 데이터셋을 이용하여 후술하는 클러스터의 모델을 생성하고 엔벨로프를 확인한다. 훈련 데이터 수집 모듈(110), 갭 호가인 모듈(120), 매핑 모듈(130), 클러스터링 모듈(140) 및 훈련 모듈(150)을 포함한다. The model generation unit 100 generates a model of a cluster to be described later using a training dataset and checks an envelope. It includes a training data collection module 110 , a gap estimation module 120 , a mapping module 130 , a clustering module 140 and a training module 150 .

훈련 데이터 수집 모듈(110)은 리플로우 장비(10)의 센서(S)로부터 단계(PVn)별 서보모터(30)의 전압값을 다수 수신하여 훈련 데이터셋을 확인하는 기능을 수행한다.The training data collection module 110 receives a plurality of voltage values of the servomotor 30 for each step (PVn) from the sensor S of the reflow equipment 10 and performs a function of checking a training data set.

갭 확인 모듈(120)은 훈련 데이터셋에서 수동 또는 자동으로 갭을 확인하는 기능을 수행한다. The gap checking module 120 performs a function of manually or automatically checking gaps in the training dataset.

매핑 모듈(130)은 훈련 데이터셋에서 갭을 제거한 후 정수값으로 매핑하는 기능을 수행한다. The mapping module 130 performs a function of mapping to integer values after removing gaps from the training dataset.

클러스터링 모듈(140)은 기 설정된 기준에 의해 매핑까지 이루어진 훈련 데이터셋을 다수의 클러스터로 구분하는 기능을 수행한다. The clustering module 140 performs a function of classifying a training dataset that has been mapped according to a predetermined criterion into a plurality of clusters.

훈련 모듈(150)은 구분된 다수의 클러스터마다 훈련을 수행하여 모델을 형성하고 엔벨로프를 확인하는 기능을 수행한다.The training module 150 performs a function of forming a model by performing training for each of a plurality of divided clusters and checking an envelope.

장비 확인부(200)는 이상 여부를 확인하고자 하는 장비의 데이터셋을 획득하여 모델 생성부(100)에서 생성된 모델에 입력함으로써 리플로우 장비(10)의 이상 여부를 확인한다. 데이터 입력 모듈(210), 전처리 모듈(220)및 이상 여부 확인 모듈(230)을 포함한다. The equipment checking unit 200 checks whether the reflow equipment 10 has an abnormality by acquiring a data set of equipment to be checked for abnormality and inputting the data set into the model generated by the model generating unit 100 . It includes a data input module 210, a pre-processing module 220, and an abnormality checking module 230.

데이터 입력 모듈(210)은 이상 여부를 확인하고자 하는 리플로우 장비(10)의 센서(S)로부터 단계(PVn)별 서보모터(30)의 전압값을 수신하여 데이터셋을 수집한다. The data input module 210 receives the voltage value of the servomotor 30 for each step (PVn) from the sensor (S) of the reflow equipment 10 to check whether or not there is an abnormality, and collects a data set.

전처리 모듈(220)은 데이터 입력 모듈(210)에서 수집된 데이터셋에 대하여 갭을 제거하고 매핑을 수행한다. The pre-processing module 220 removes gaps from the dataset collected by the data input module 210 and performs mapping.

이상 여부 확인 모듈(230)은 매핑까지 이루어진 데이터셋의 클러스터를 수동 또는 자동으로 확인하고 모델 생성부(100)에서 생성된 클러스터 모델 중 적합한 모델을 확인하여 대입하고 그 결과값을 살펴봄으로써 리플로우 장비(10)의 이상 여부를 확인한다.The abnormality checking module 230 manually or automatically checks the clusters of the dataset that have been mapped, checks and substitutes a suitable model among the cluster models generated by the model generator 100, and looks at the result, thereby reflow equipment Check if (10) is abnormal.

본 발명의 개념의 설명DESCRIPTION OF THE CONCEPT OF THE INVENTION

본 발명은 리플로우 장비(10)의 서보모터(30)의 전압값이 갖는 한계를 해석하여 반영함으로써 3시그마 규칙을 만족하는 전압값 데이터로 보정하고, 이를 기반으로 이상 여부를 판단하는 모델을 생성한다. The present invention analyzes and reflects the limits of the voltage value of the servomotor 30 of the reflow equipment 10, corrects it with voltage value data that satisfies the 3 sigma rule, and creates a model that determines whether there is an abnormality based on this. do.

도 4a에 도시된 바와 같이, 일반적인 리플로우 장비(10)의 서보모터(30)의 전압값은 일정 단위로 증가하는 값으로 표현된다. 도시된 예시에서는 0.01mA 단위로 증가하는 것으로 확인되는데, 이러한 단위는 장비 또는 모터에 따라 변화할 수 있다. As shown in FIG. 4A , the voltage value of the servomotor 30 of the general reflow equipment 10 is expressed as a value that increases by a certain unit. In the illustrated example, it is confirmed that the increase is in units of 0.01 mA, and this unit may vary depending on the equipment or motor.

리플로우 장비(10)의 서보모터(30)의 전압값은 측정되지 않는 영역이 존재한다. 도 4a에 도시된 장비에서는 0.10mA, 0.11mA, 0.12mA, 0.13mA, 0.14mA, 0.15mA의 전압값이 측정되지 않는다. 이는, 서보모터(30) 제조사에 따른 자체 특성일 수 있다. 서보모터(30)의 안전한 구동을 위해 특정 범위의 전압값에서 구동되지 않도록 설정된 것이다. 또는 리플로우 장비(10) 제조사에 따른 자체 특성일 수 있다. 리플로우 장비(10)의 그립퍼(20)의 안전한 구동을 위해 설정된 것이다. 이와 같이 전압값이 측정되지 않는 영역이 존재함은 대부분의 리플로우 장비(10)의 서보모터(30)에서 공통적으로 확인된다. 또한, 하나의 리플로우 장비(10)에 구비된 모든 서보모터(30)는 이러한 측정 불가 영역이 공통된다는 특성을 갖는다. The voltage value of the servomotor 30 of the reflow equipment 10 exists in a region where the voltage value is not measured. In the equipment shown in FIG. 4A, voltage values of 0.10 mA, 0.11 mA, 0.12 mA, 0.13 mA, 0.14 mA, and 0.15 mA are not measured. This may be a self-property according to the manufacturer of the servo motor 30 . For safe driving of the servomotor 30, it is set not to be driven in a voltage value within a specific range. Alternatively, it may be its own characteristics according to the manufacturer of the reflow equipment 10 . It is set for safe driving of the gripper 20 of the reflow equipment 10. It is commonly confirmed in the servomotor 30 of most of the reflow equipment 10 that there is a region where the voltage value is not measured. In addition, all servomotors 30 provided in one reflow equipment 10 have a characteristic that this non-measurable region is common.

본 발명은, 이러한 측정 불가 영역인 갭(gap)으로 인해 3시그마 규칙이 적용되지 않지만 갭을 삭제할 경우 3시그마 규칙이 적용됨을 확인하였다. 따라서, 이를 이용하여 데이터셋을 보정한다. In the present invention, it was confirmed that the 3 sigma rule is not applied due to the gap, which is an unmeasurable area, but the 3 sigma rule is applied when the gap is deleted. Therefore, the dataset is calibrated using this.

본 발명에서 제안하는 개념은, 갭을 제거한 후 각 전압값을 특정 정수에 매핑하는 것이다. 이는, 리플로우 장비(10)의 서보모터(30)의 전압값에 측정 불가 영역이 존재한다는 특성과 전압값이 일정 단위로 증가한다는 특성과 하나의 리플로우 장비(10)의 모든 서보모터(30)에서 갭의 범위가 동일하다는 특성에 기인한다. The concept proposed by the present invention is to map each voltage value to a specific integer after removing the gap. This is because of the characteristics that an unmeasurable region exists in the voltage value of the servomotor 30 of the reflow equipment 10 and the characteristic that the voltage value increases by a certain unit, and all the servomotors 30 of one reflow equipment 10 ) due to the property that the range of the gap is the same.

도 4b에 도시된 바와 같이, 측정되는 모든 전압값에서 갭을 제거한 후 각각의 전압값을 1 이상의 정수에 매핑하여 데이터셋을 보정한다. 0.10mA부터 0.15mA까지의 범위가 갭으로 확인되어 제거되었다. 동시에, 0.01mA는 1에 매핑되고, 0.02mA는 2에 매핑되며, 이러한 방식으로 진행하다가 갭을 제거하고 0.16mA는 10에 매핑되고, 0.17mA는 11에 매핑되고, 0.18mA는 12에 매핑되었다. As shown in FIG. 4B, after removing gaps from all measured voltage values, each voltage value is mapped to an integer of 1 or more to correct the dataset. The range from 0.10mA to 0.15mA was identified as a gap and eliminated. At the same time, 0.01mA is mapped to 1, 0.02mA is mapped to 2, and so on, removing the gap and 0.16mA is mapped to 10, 0.17mA is mapped to 11, and 0.18mA is mapped to 12. .

이러한 처리 후 도 4a에서 도시된 데이터셋은 도 4c의 그래프와 같이 변경된다. 3시그마 규칙에 합치함을 알 수 있다. 이러한 방식으로 도 1a에 도시된 바와 같은 모든 데이터셋을 처리할 경우 3시그마 규칙을 만족하였다. 이렇게 처리된 데이터셋을 이용하여 모델이 훈련될 것이며, 이상 여부를 확인하고자 하는 리플로우 장비(10)에서 측정되는 데이터셋 역시 동일한 방식으로 처리된다. After this process, the dataset shown in FIG. 4a is changed to the graph of FIG. 4c. It can be seen that it conforms to the 3 sigma rule. When processing all datasets as shown in Fig. 1a in this way, the 3 sigma rule was satisfied. A model will be trained using the processed dataset, and the dataset measured in the reflow equipment 10 to be checked for anomaly is also processed in the same way.

방법의 설명description of the method

도 3을 이용하고 도 5 내지 도 8을 함께 참조하여, 본 발명에 따른 방법을 설명한다. Using Fig. 3 and referring together to Figs. 5 to 8, the method according to the present invention will be described.

먼저, 훈련 데이터 수집 모듈(110)이 리플로우 장비(10)로부터 각 단계(PVn)의 서보모터(30)의 전압값과 프로덕트(P)의 수를 포함하는 다수의 훈련 데이터셋을 수집한다(S110). 수집되는 훈련 데이터셋의 예시가 도 5에 도시된다. 도시된 예시에서는 총 912회 측정됨을 알 수 있다. 훈련 데이터셋은 프로덕트(P)의 수를 더 포함한다. 이는 후술하는 클러스터링에서 사용된다. First, the training data collection module 110 collects a plurality of training data sets including the voltage value of the servomotor 30 and the number of products P at each step PVn from the reflow equipment 10 ( S110). An example of the collected training dataset is shown in FIG. 5 . In the illustrated example, it can be seen that a total of 912 measurements are performed. The training dataset further contains the number of products (P). This is used in clustering described later.

다음, 갭 확인 모듈(120)이 갭을 확인한다(S120). 이는 수동 또는 자동으로 이루어질 수 있다. 예컨대, 리플로우 장비(10) 또는 서보모터(30)마다 장비 규격으로서 미사용 전압값이 미리 설정되어 있을 수 있어서, 사용자가 갭 확인 모듈(120)에 이를 수동으로 입력할 수 있다. 또는, 갭 확인 모듈(120)이 훈련 데이터셋이 다수의 훈련 데이터셋 모두에서 공통적으로 누락된 전압값 범위를 갭으로 자동 확인할 수 있다. 도 4b에 도시된 예시에서는 0.10mA부터 0.15mA까지의 범위가 갭으로 확인되었다. Next, the gap checking module 120 checks the gap (S120). This can be done manually or automatically. For example, since an unused voltage value may be preset as an equipment standard for each reflow equipment 10 or servomotor 30 , a user may manually input it to the gap checking module 120 . Alternatively, the gap check module 120 may automatically check a voltage value range in which a training dataset is commonly missing in all of a plurality of training datasets as a gap. In the example shown in FIG. 4B, the range from 0.10 mA to 0.15 mA was confirmed as a gap.

다음, 매핑 모듈(130)이, 훈련 데이터셋에서 갭으로 확인된 범위를 삭제한 후 각각의 전압값을 정수로 매핑한다(S130). 도 4b에 도시된 예시에서는 0.10mA부터 0.15mA까지의 범위가 갭으로 확인되어 제거되었으며, 그 외의 범위로서 0.01mA부터 0.18mA까지 0.01mA 단위의 전압값이 1부터 12까지의 정수로 매핑되었다. Next, the mapping module 130 maps each voltage value to an integer after deleting the range identified as a gap in the training dataset (S130). In the example shown in FIG. 4B, the range from 0.10 mA to 0.15 mA was identified and removed as a gap, and the voltage values in units of 0.01 mA from 0.01 mA to 0.18 mA were mapped to integers from 1 to 12 as other ranges.

이와 같은 방식으로 전처리된 훈련 데이터셋을 프로덕트(P)별로 다시 정리하여 통계적 처리하면 도 6과 같다. X축은 각 단계(PV1 ~ PV28)로 동일하나 Y축은 매핑된 정수값(Mapped Value)로 변경되었다. 청색은 평균을 나타내고 적색은 엔벨로프를 나타낸다. 프로덕트(P)가 0개인 경우, 즉 PCB가 컨베이어로 이송되지 않는 경우를 제외하면, 리플로우 장비(10)의 정상 가동시의 대부분의 값들은 엔벨로프 내에 포함되는 것을 볼 수 있다. 수백 회의 테스트이기에 몇몇 값에서 측정 오차가 발견되었는데 이들 값이 엔벨로프 밖에 위치함은 자연스럽다. The training dataset preprocessed in this way is rearranged by product (P) and statistically processed, as shown in FIG. 6 . The X-axis is the same for each stage (PV1 ~ PV28), but the Y-axis has been changed to a mapped value. Blue represents the mean and red represents the envelope. It can be seen that most of the values during normal operation of the reflow equipment 10 are included in the envelope, except when the product P is 0, that is, when the PCB is not transferred to the conveyor. Because of hundreds of tests, measurement errors were found in some values, and it is natural that these values lie outside the envelope.

다음, 클러스터링 모듈(140)이, 매핑된 훈련 데이터셋을 프로덕트(P)의 수를 기준으로 클러스터링하여 다수의 클러스터로 구분한다(S140). 프로덕트(P)의 수에 따라 그립퍼(20)의 하중이 달라져 서보모터(30)의 전압값이 달라지기 때문이다. Next, the clustering module 140 clusters the mapped training dataset based on the number of products (P) and divides them into a plurality of clusters (S140). This is because the load of the gripper 20 varies according to the number of products P, and thus the voltage value of the servomotor 30 varies.

이후, 훈련 모듈(150)이, 구분된 클러스터마다 매핑된 훈련 데이터셋을 이용하여 훈련을 수행하여 각 클러스터의 모델 및 엔벨로프(envelope)를 결정한다(S150). Thereafter, the training module 150 determines a model and an envelope of each cluster by performing training using the training dataset mapped to each cluster (S150).

도 7은 구분된 클러스터의 모델을 도시한다. 여기에서는 프로덕트(P)의 개수가 1~4개인 경우를 클러스터0(Cluster 0), 5~8개인 경우를 클러스터1(Cluster 1), 9~12개인 경우를 클러스터2(Cluster 2)로 구분되었다. 물론, 다른 방식으로의 구분도 가능하다. 다만, 프로덕트(P)가 0개인 아이들(idle) 경우는 적용하지 않음이 바람직하다. 적색은 평균이며 진한 흑색이 외곽의 엔벨로프이다. 7 shows a model of the segmented clusters. Here, the case where the number of products (P) is 1 to 4 is Cluster 0 (Cluster 0), the case of 5 to 8 is Cluster 1 (Cluster 1), and the case of 9 to 12 is classified as Cluster 2 (Cluster 2). . Of course, other methods of classification are also possible. However, it is preferable not to apply in the case of idle where the product P is zero. Red is the average and dark black is the outer envelope.

모델이 생성되었는바, 이제 이상 여부를 확인하고자 하는 리플로우 장비(10)에서 데이터셋을 확인한 후 훈련된 모델을 이용하여 이상 여부를 확인한다. Since the model has been created, the data set is checked in the reflow equipment 10 to check for abnormalities, and then the abnormalities are checked using the trained model.

데이터 수집 모듈(210)이 리플로우 장비(10)로부터 각 단계(PVn)의 전압값을 포함하는 데이터셋을 수집한다(S210). 도 8은 데이터셋의 예시를 도시한다. The data collection module 210 collects a data set including the voltage value of each step (PVn) from the reflow equipment 10 (S210). 8 shows an example of a dataset.

다음, 전처리 모듈(220)은 전술한 것과 동일한 방식으로 수집된 데이터셋에서 갭으로 확인된 범위를 삭제한 후 각각의 전압값을 정수로 매핑한다(S220). Next, the preprocessing module 220 deletes the range identified as a gap from the collected dataset in the same manner as described above, and then maps each voltage value to an integer (S220).

다음, 이상 여부 확인 모듈(230)이, 매핑된 데이터셋의 클러스터를 결정하고, 해당 클러스터 모델의 엔벨로프를 확인한 후(S230), 매핑된 데이터셋에 엔벨로프 밖의 전압값이 있는지 여부를 확인함으로써 이상 여부를 확인한다(S140). 클러스터 결정을 위해 두 가지 방식이 사용될 수 있다. 첫째, 도 8에 도시된 바와 같이 데이터셋은 프로덕트(P)의 수를 포함할 수 있어서, 이를 이용하여 클러스터가 결정된다. 도 8의 예시에서 프로덕트(P)가 9개여서 클러스터2의 모델이 사용될 것이다. 둘째, 매핑된 데이터셋의 각 단계에 따른 변화 정도와 모든 클러스터의 각 단계에 따른 변화 정도를 비교하여, 변화 정도가 가장 유사한 클러스터를 매핑된 데이터셋의 클러스터로 결정할 수 있다. 예컨대, 도 8의 데이터셋에서 전압값의 변화를 살펴보고 도 7의 클러스터0, 클러스터1, 클러스터2 중 전압값 변화가 가장 유사한 클러스터를 매핑된 데이터셋의 클러스터로 결정하는 방식이다. Next, the anomaly checking module 230 determines the cluster of the mapped dataset, checks the envelope of the corresponding cluster model (S230), and then checks whether there is a voltage value outside the envelope in the mapped dataset to determine whether there is anomaly. Check (S140). Two methods can be used for cluster determination. First, as shown in FIG. 8, a dataset may include the number of products P, and clusters are determined using this. In the example of FIG. 8, since there are 9 products (P), the cluster 2 model will be used. Second, by comparing the degree of change according to each stage of the mapped dataset and the degree of change according to each stage of all clusters, a cluster having the most similar degree of change may be determined as a cluster of the mapped dataset. For example, a method of examining changes in voltage values in the dataset of FIG. 8 and determining a cluster having the most similar voltage change among Cluster 0, Cluster 1, and Cluster 2 in FIG. 7 as the cluster of the mapped dataset.

이상 여부 확인 모듈(230)에 의해 매핑된 데이터셋에 엔벨로프 밖의 전압값이 있는 것으로 확인된 경우, 해당 전압값의 단계(PVn)를 확인하여 리플로우 장비(10)에서 확인된 단계에 해당하는 기기(그립퍼(20) 또는 서보모터(30))에 이상이 있거나 장래에 발생할 수 있는 것으로 확인할 수 있다(S252). When it is confirmed that there is a voltage value outside the envelope in the mapped dataset by the abnormality checking module 230, the step (PVn) of the voltage value is checked and the device corresponding to the step confirmed by the reflow equipment 10 It can be confirmed that there is something wrong with (the gripper 20 or the servo motor 30) or that it may occur in the future (S252).

이상 여부 확인 모듈(230)에 의해 매핑된 데이터셋에 엔벨로프 밖의 전압값이 있는 것으로 확인되었다면 리플로우 장비(10)는 정상인 것으로 확인된다. 이 경우, 본 발명의 일 실시예에서, 이상이 없는 것으로 확인된 경우, 훈련 모듈(150)이 해당 데이터셋을 이용하여 클러스터를 더 훈련하여 엔벨로프를 업데이트함으로써 정확도를 높일 수도 있다(S251). If it is confirmed by the abnormality checking module 230 that there is a voltage value outside the envelope in the mapped dataset, it is confirmed that the reflow equipment 10 is normal. In this case, in one embodiment of the present invention, when it is confirmed that there is no abnormality, the training module 150 may further train the cluster using the corresponding dataset to update the envelope to increase accuracy (S251).

10: 리플로우 장비
20: 그립퍼
30: 서보모터
100: 모델 생성부
110: 훈련 데이터 수집 모듈
120: 갭 확인 모듈
130: 매핑 모듈
140: 클러스터링 모듈
150: 훈련 모듈
200: 장비 확인부
210: 데이터 입력 모듈
220: 전처리 모듈
230: 이상 여부 확인 모듈
S: 센서
10: reflow equipment
20: gripper
30: servo motor
100: model generation unit
110: training data collection module
120: gap check module
130: mapping module
140: clustering module
150: training module
200: equipment confirmation unit
210: data input module
220: preprocessing module
230: abnormality check module
S: sensor

Claims (6)

(a1) 훈련 데이터 수집 모듈(110)이 리플로우 장비(10)로부터 각 단계(PVn)의 서보모터(30)의 전압값과 프로덕트(P)의 수를 포함하는 다수의 훈련 데이터셋을 수집하는 단계; - 여기서 전압값은 미리 결정된 수치의 단위로 증가하는 값으로 표현되며, 리플로우 장비(10)의 각 단계(PVn)마다 상이한 기기가 위치함
(a2) 갭 확인 모듈(120)이, 상기 훈련 데이터셋이 다수의 훈련 데이터셋 모두에서 공통적으로 누락된 전압값 범위를 갭(gap)으로 확인하는 단계;
(a3) 매핑 모듈(130)이, 상기 훈련 데이터셋에서 상기 갭으로 확인된 범위를 삭제한 후 각각의 전압값을 정수로 매핑하는 단계;
(a4) 클러스터링 모듈(140)이, 상기 매핑된 훈련 데이터셋을 프로덕트(P)의 수를 기준으로 클러스터링하여 다수의 클러스터로 구분하는 단계;
(a5) 훈련 모듈(150)이, 상기 클러스터마다 상기 매핑된 훈련 데이터셋을 이용하여 훈련을 수행하여 각 클러스터의 모델 및 엔벨로프(envelope)를 결정하는 단계;
(b1) 데이터 수집 모듈(210)이 상기 리플로우 장비(10)로부터 각 단계(PVn)의 전압값을 포함하는 데이터셋을 수집하는 단계;
(b2) 전처리 모듈(220)이, 상기 (a3) 단계와 동일한 방식으로 상기 수집된 데이터셋에서 상기 갭으로 확인된 범위를 삭제한 후 각각의 전압값을 정수로 매핑하는 단계; 및
(b3) 이상 여부 확인 모듈(230)이, 상기 매핑된 데이터셋의 클러스터를 결정하고, 해당 클러스터 모델의 엔벨로프를 확인한 후, 상기 매핑된 데이터셋에 엔벨로프 밖의 전압값이 있는지 여부를 확인함으로써 이상 여부를 확인하는 단계; 를 포함하는,
방법.
(a1) The training data collection module 110 collects a plurality of training data sets including the voltage value of the servomotor 30 and the number of products P at each step PVn from the reflow equipment 10 step; - Here, the voltage value is expressed as a value that increases in units of a predetermined value, and different devices are located at each stage (PVn) of the reflow equipment 10
(a2) identifying, by the gap checking module 120, a range of voltage values in which the training dataset is commonly missing in all of a plurality of training datasets as a gap;
(a3) mapping, by the mapping module 130, each voltage value to an integer after deleting the range identified as the gap from the training dataset;
(a4) clustering, by the clustering module 140, the mapped training dataset based on the number of products (P), and classifying the mapped training dataset into a plurality of clusters;
(a5) determining, by the training module 150, a model and an envelope of each cluster by performing training using the mapped training dataset for each cluster;
(b1) collecting, by the data collection module 210, a data set including the voltage value of each step (PVn) from the reflow equipment 10;
(b2) deleting, by the preprocessing module 220, the range identified as the gap from the collected dataset in the same manner as the step (a3) and then mapping each voltage value to an integer; and
(b3) The abnormality checking module 230 determines the cluster of the mapped dataset, checks the envelope of the corresponding cluster model, and checks whether there is a voltage value outside the envelope in the mapped dataset, thereby determining whether there is anomaly. Checking; including,
method.
제 1 항에 있어서,
상기 (b3) 단계는,
(b31) 상기 이상 여부 확인 모듈이(230), 상기 매핑된 데이터셋에 엔벨로프 밖의 전압값이 있는 것으로 확인된 경우, 해당 전압값의 단계(PVn)를 확인하여, 상기 리플로우 장비(10)에서 상기 확인된 단계에 해당하는 기기에 이상이 있는 것으로 확인하는 단계를 더 포함하는,
방법.
According to claim 1,
In step (b3),
(b31) When it is confirmed that the abnormality checking module 230 has a voltage value outside the envelope in the mapped dataset, it checks the step (PVn) of the voltage value, and the reflow equipment 10 Further comprising the step of confirming that the device corresponding to the identified step has an abnormality,
method.
제 1 항에 있어서,
상기 (b1) 단계에서, 상기 확인된 데이터셋은 프로덕트(P)의 수를 더 포함하고,
상기 (b3) 단계는,
(b32) 상기 이상 여부 확인 모듈(230)이, 상기 매핑된 데이터셋에 포함된 프로덕트(P)의 수를 이용하여 클러스터를 결정하는 단계를 더 포함하는,
방법.
According to claim 1,
In step (b1), the identified dataset further includes the number of products P,
In step (b3),
(b32) Further comprising the step of determining, by the abnormality checking module 230, a cluster using the number of products (P) included in the mapped dataset,
method.
제 1 항에 있어서,
상기 (b3) 단계는,
(b32) 상기 이상 여부 확인 모듈(230)이 상기 매핑된 데이터셋의 각 단계에 따른 변화 정도와 모든 클러스터의 각 단계에 따른 변화 정도를 비교하여, 변화 정도가 가장 유사한 클러스터를 상기 매핑된 데이터셋의 클러스터로 결정하는 단계를 더 포함하는,
방법.
According to claim 1,
In step (b3),
(b32) The abnormality checking module 230 compares the degree of change according to each step of the mapped dataset with the degree of change according to each step of all clusters, and selects a cluster having the most similar degree of change as the mapped dataset. Further comprising determining as a cluster of
method.
제 1 항에 있어서,
상기 리플로우 장비(10)의 서보모터(30)들은 미사용 전압값 범위가 미리 설정되어 있으며,
상기 (a2) 단계는,
(a21) 상기 갭 확인 모듈(120)이, 상기 리플로우 장비(10)에서 미리 설정되어 있는 상기 미사용 전압값 범위를 갭으로 확인하는 단계를 더 포함하는,
방법.
According to claim 1,
The servomotors 30 of the reflow equipment 10 have preset unused voltage ranges,
In step (a2),
(a21) further comprising, by the gap checking module 120, checking the unused voltage value range preset in the reflow equipment 10 as a gap,
method.
제 1 항에 있어서,
상기 (b3) 단계 이후,
(b4) 상기 (b3) 단계에서 이상이 없는 것으로 확인된 경우, 상기 훈련 모듈(150)이 이상이 없는 것으로 확인된 경우의 데이터셋을 이용하여 상기 클러스터를 더 훈련하여 엔벨로프를 업데이트하는 단계를 더 포함하는,
방법.
According to claim 1,
After the step (b3),
(b4) When it is confirmed that there is no abnormality in step (b3), the training module 150 further trains the cluster using the dataset when it is confirmed that there is no abnormality and updates the envelope. including,
method.
KR1020220014348A 2022-02-03 2022-02-03 Method for checking the abnormality of reflow devices KR20230117957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220014348A KR20230117957A (en) 2022-02-03 2022-02-03 Method for checking the abnormality of reflow devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220014348A KR20230117957A (en) 2022-02-03 2022-02-03 Method for checking the abnormality of reflow devices

Publications (1)

Publication Number Publication Date
KR20230117957A true KR20230117957A (en) 2023-08-10

Family

ID=87560732

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220014348A KR20230117957A (en) 2022-02-03 2022-02-03 Method for checking the abnormality of reflow devices

Country Status (1)

Country Link
KR (1) KR20230117957A (en)

Similar Documents

Publication Publication Date Title
EP3502966B1 (en) Data generation apparatus, data generation method, and data generation program
US10674651B2 (en) Printed circuit board inspecting apparatus, method for determining fault type of screen printer and computer readable recording medium
CN111047225B (en) SMT surface mounting component welding spot quality evaluation method based on edge side model processing
EP3800588A1 (en) System and method using knowledge distillation for training a machine learning classifier
US10393788B2 (en) Apparatus and method for diagnosing state of power cable and measuring remaining life thereof using VLF TD measurement data
US5751910A (en) Neural network solder paste inspection system
EP3501828A1 (en) Printed circuit board inspecting apparatus, method for detecting anomaly in solder paste and computer readable recording medium
Thielen et al. A machine learning based approach to detect false calls in SMT manufacturing
CN110825798A (en) Electric power application data maintenance method and device
CN110856437B (en) SMT production process control chart pattern recognition method
CN116152244A (en) SMT defect detection method and system
US20220026889A1 (en) Method and device for producing a product and computer program product
CN114077919A (en) System for predicting machining anomalies
Meiners et al. Towards an inline quality monitoring for crimping processes utilizing machine learning techniques
KR20230117957A (en) Method for checking the abnormality of reflow devices
KR102228957B1 (en) Printed circuit board inspecting apparatus, method for determining fault type of screen printer and computer readable recording medium
CN112907562A (en) MobileNet-based SMT defect classification algorithm
Filz et al. Data-driven analysis of product property propagation to support process-integrated quality management in manufacturing systems
CN113016023B (en) Information processing method and computer-readable non-transitory recording medium
CN115280334A (en) Error cause estimation device and estimation method
CN115562191B (en) Industrial digital twin-based intelligent presumption analysis method for productivity center
KR102602167B1 (en) Deep learning-based MLCC stacked alignment inspection system and method
KR102112809B1 (en) Automotive connector automated production system and method
WO2022059135A1 (en) Error cause estimation device and estimation method
Vater et al. Development of a Cloud-and Edge-Architecture for adaptive model weight optimization of a CNN exemplified by optical detection of hairpin welding