KR20230108534A - Metal powder manufacturing apparatus and metal powder manufacturing method using same - Google Patents

Metal powder manufacturing apparatus and metal powder manufacturing method using same Download PDF

Info

Publication number
KR20230108534A
KR20230108534A KR1020220004065A KR20220004065A KR20230108534A KR 20230108534 A KR20230108534 A KR 20230108534A KR 1020220004065 A KR1020220004065 A KR 1020220004065A KR 20220004065 A KR20220004065 A KR 20220004065A KR 20230108534 A KR20230108534 A KR 20230108534A
Authority
KR
South Korea
Prior art keywords
metal powder
powder manufacturing
metal
cooling pipe
present
Prior art date
Application number
KR1020220004065A
Other languages
Korean (ko)
Inventor
양승민
권오형
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020220004065A priority Critical patent/KR20230108534A/en
Publication of KR20230108534A publication Critical patent/KR20230108534A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

본 발명의 일 실시예 의하면 냉각관이 중력 방향으로 평행하게 연장되는 수직형태로 형성되는 기상응축법에 의한 금속분말 제조장치가 제공된다. 본 발명의 일 실시예에 의하면, 냉각관 내에서 석출개시온도와 소결온도 사이의 영역은 모두 수직으로 연장되도록 형성된다. 본 발명에 의하면 냉각관 내 유동을 균일하게 하여 와류 형성에 의한 문제를 해결하여 균일한 입도를 가지는 우수한 특성의 금속분말을 얻을 수 있다. According to one embodiment of the present invention, there is provided a metal powder manufacturing apparatus by a vapor condensation method in which a cooling pipe is formed in a vertical shape extending parallel to the direction of gravity. According to one embodiment of the present invention, all regions between the precipitation start temperature and the sintering temperature in the cooling pipe are formed to extend vertically. According to the present invention, it is possible to obtain a metal powder with excellent characteristics having a uniform particle size by solving the problem caused by vortex formation by uniformizing the flow in the cooling pipe.

Description

금속분말 제조장치 및 이를 이용한 금속분말 제조방법{Metal powder manufacturing apparatus and metal powder manufacturing method using same} Metal powder manufacturing apparatus and metal powder manufacturing method using the same {Metal powder manufacturing apparatus and metal powder manufacturing method using same}

본 발명은 금속분말 제조장치 및 이를 이용한 금속분말 제조방법에 대한 것으로, 상세하게는 금속원료의 기화 및 응축을 통해 금속분말을 제조하는 장치 및 이를 이용한 금속분말의 제조방법에 대한 것이다. The present invention relates to a metal powder manufacturing apparatus and a metal powder manufacturing method using the same, and more particularly, to a metal powder manufacturing apparatus through vaporization and condensation of a metal raw material and a metal powder manufacturing method using the same.

금속분말을 제조하는 방법은 습식법과 건식법으로 구분된다. 습식법은 액상 중에서의 화학반응을 이용하는 방법으로 침전법, 졸-겔법, 수열합성법 등이 있다. 건식법은 기상의 원료를 이용하는 방법으로 화학기상합성, 기상응축법 등이 있다. 건식법은 순도가 높고 결정성이 우수한 장점이 있다. 그러나 고온공정이므로 생성된 금속분말들이 서로 충돌한 후 충돌부분에서 국부적으로 소결되어 금속분말들이 서로 붙어 있는 형태의 연결입자가 형성되는 문제점이 있다. 이러한 연결입자는 후속되는 분급공정에 선택적으로 제거되어야 하므로 이러한 분급으로 인하여 분말제조시 낮은 수율을 유발하는 문제가 있다. The method for producing metal powder is divided into a wet method and a dry method. The wet method is a method using a chemical reaction in a liquid phase, and includes a precipitation method, a sol-gel method, and a hydrothermal synthesis method. The dry method is a method using gaseous raw materials, and includes chemical vapor synthesis and gaseous condensation methods. The dry method has the advantage of high purity and excellent crystallinity. However, since it is a high-temperature process, there is a problem in that the generated metal powders collide with each other and are locally sintered at the collision portion to form connected particles in which the metal powders are attached to each other. Since these connected particles must be selectively removed in a subsequent classification process, there is a problem of causing a low yield when producing powder due to such classification.

건식법 중 하나인 기상응축법은 금속원료를 높은 온도로 가열하여 기화시킨 후 이를 냉각관에서 냉각 및 응축시켜 금속분말을 제조하는 방법이다. 기상응축법에 의한 금속분말 형성장치는 플라즈마로 금속원료를 용융 및 기화시킨 후, 기화된 금속증기를 캐리어가스를 이용하여 중공관 형태의 냉각관으로 이송하여 금속증기를 냉각시켜 금속분말로 응고시킨다. The gas phase condensation method, which is one of the dry methods, is a method of producing metal powder by heating and vaporizing a metal raw material at a high temperature and then cooling and condensing it in a cooling pipe. The metal powder forming apparatus by the gas phase condensation method melts and vaporizes metal raw materials with plasma, and then transports the vaporized metal vapor to a hollow tube-shaped cooling tube using a carrier gas to cool the metal vapor and solidify it into metal powder. .

기상응축법의 경우, 냉각관으로 투입된 가스(즉, 캐리어 가스와 금속증기의 혼합 가스)는 냉각관 벽면에 의한 냉각 혹은 냉각관로 유입된 냉각가스에 의한 냉각이 일어날 수 있다. 이러한 냉각 과정에서 가스 밀도의 상승 혹은 냉각가스의 유동에 의해 냉각관 내에서 와류가 발생할 수 있다. 도 2에는 이러한 와류 형성을 예시적으로 전산모사한 결과가 나타나 있다. 이러한 와류는 냉각관에서 형성되는 금속분말의 충돌을 유도하여 분말간 소결 혹은 융합을 초래할 수 있다. 이러한 분말간의 소결 혹은 융합으로 인해 분말 입도의 균일도가 떨어지고 연결입자의 생성율이 떨어짐에 따라 분말제조 수율을 악화시키게 된다.In the case of the vapor phase condensation method, the gas introduced into the cooling pipe (ie, the mixed gas of the carrier gas and the metal vapor) may be cooled by the cooling pipe wall surface or by the cooling gas introduced into the cooling pipe. During this cooling process, a vortex may be generated in the cooling pipe due to an increase in gas density or a flow of the cooling gas. 2 shows the results of illustrative computational simulation of such vortex formation. These vortices may induce collisions of metal powders formed in the cooling tube, resulting in sintering or fusion between powders. Due to the sintering or fusion between the powders, the uniformity of the powder particle size decreases and the production rate of the connected particles decreases, thereby deteriorating the powder production yield.

본 발명은 기상응축법에 의한 금속분말 제조시 냉각관에서의 와류에 의한 문제를 해결하는 것으로 목적으로 한다. An object of the present invention is to solve the problem of eddy current in a cooling pipe when manufacturing metal powder by a gas phase condensation method.

본 발명의 일 실시예 의하면 냉각관이 중력 방향으로 평행하게 연장되는 수직형태로 형성되는 기상응축법에 의한 금속분말 제조장치가 제공된다. According to one embodiment of the present invention, there is provided a metal powder manufacturing apparatus by a vapor condensation method in which a cooling pipe is formed in a vertical shape extending parallel to the direction of gravity.

본 발명의 일 실시예에 의하면, 냉각관 내에서 석출개시온도와 소결온도 사이의 영역은 모두 수직으로 연장되도록 형성된다. According to one embodiment of the present invention, all regions between the precipitation start temperature and the sintering temperature in the cooling pipe are formed to extend vertically.

본 발명에 의하면 냉각관 내 유동을 균일하게 하여 와류 형성에 의한 문제를 해결하여 균일한 입도를 가지는 우수한 특성의 금속분말을 얻을 수 있다. According to the present invention, it is possible to obtain a metal powder with excellent characteristics having a uniform particle size by solving the problem caused by vortex formation by uniformizing the flow in the cooling pipe.

도 1에는 본 발명의 기술사상을 따르는 기상응축법에 의한 금속분말 제조장치가 도시되어 있다. 1 shows an apparatus for manufacturing metal powder by a gas phase condensation method according to the technical idea of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 기술적 사상을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술적 사상의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 기술적 사상을 완전하게 전달하기 위하여 제공되는 것이다. 본 명세서에서 동일한 부호는 시종 동일한 요소를 의미한다. 나아가, 도면에서의 다양한 요소와 영역은 개략적으로 그려진 것이다. 따라서, 본 발명의 기술적 사상은 첨부한 도면에 그려진 상대적인 크기나 간격에 의해 제한되지 않는다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments of the present invention are provided to more completely explain the technical idea of the present invention to those skilled in the art, and the following examples may be modified in many different forms, The scope of the technical idea is not limited to the following examples. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the spirit of the invention to those skilled in the art. Like reference numerals throughout this specification mean like elements. Further, various elements and areas in the drawings are schematically drawn. Therefore, the technical spirit of the present invention is not limited by the relative size or spacing drawn in the accompanying drawings.

도 1에는 본 발명의 기술사상을 따르는 기상응축법에 의한 금속분말 제조장치(100)가 도시되어 있다. 도 1을 참조하면, 금속분말 제조장치(100)은 금속원료(110)를 내부에 수용하는 챔버(112)와, 상기 챔버(112) 내에서 플라즈마를 이용하여 상기 금속원료(110)를 기화시켜 금속증기를 생성하는 플라즈마 토치(116)를 포함한다. 또한 캐리어 가스(118)에 의해 각각 이송되는 금속증기가 수용되고, ??칭가스(122)에 의해 상기 금속증기가 냉각되어 금속분말이 형성되는 냉각관(120)를 포함한다. 1 shows a metal powder manufacturing apparatus 100 according to the vapor phase condensation method according to the technical idea of the present invention. Referring to FIG. 1, a metal powder manufacturing apparatus 100 includes a chamber 112 accommodating a metal raw material 110 therein, and vaporizing the metal raw material 110 using plasma in the chamber 112. It includes a plasma torch 116 that generates metal vapor. It also includes a cooling pipe 120 in which metal vapor transported by the carrier gas 118 is accommodated and the metal vapor is cooled by the quenching gas 122 to form metal powder.

금속원료(110)은 고체상태로 챔버(112) 내에 장입된다. 챔버(112) 내에서 플라즈마에 의해 고온으로 가열되어 용융된 후 금속증기로 기화된다. 금속원료(110)은 분말(powder)이나 펠렛(pellet) 형태로 투입될 수 있다. 금속원료(110)로는 니켈(nickel), 구리(copper), 은(silver), 철(iron), 알루미늄(Aluminum), 코발트(cobalt), 백금(platinum), 금(gold), 주석(tin) 및 이를 포함하는 합금(alloy) 중 어느 하나를 포함할 수 있다. 기화된 금속증기는 챔버(112) 내부로 공급되는 캐리어 가스(118)에 의해 냉각관(120)으로 이송된다. 캐리어 가스(118)은 불활성 가스 혹은 질소 가스를 포함한다. 예를 들어 불활성 가스로 Ar이 사용될 수 있다. The metal raw material 110 is loaded into the chamber 112 in a solid state. In the chamber 112, it is heated to a high temperature by plasma, melted, and then vaporized into metal vapor. The metal raw material 110 may be introduced in the form of powder or pellets. The metal raw material 110 includes nickel, copper, silver, iron, aluminum, cobalt, platinum, gold, tin And it may include any one of an alloy (alloy) including the same. The vaporized metal vapor is transported to the cooling pipe 120 by the carrier gas 118 supplied into the chamber 112 . The carrier gas 118 includes an inert gas or nitrogen gas. For example, Ar may be used as an inert gas.

플라즈마 토치(116)는 금속원료(110) 사이에 열 플라즈마를 발생시켜 금속원료(110)을 가열하여 기화시킨다. 플라즈마 토치(116)는 아크 방전을 발생시키고 불활성 가스를 고속으로 통과시켜 고온의 열 플라즈마를 형성한다. 이러한 열 플라즈마의 열에너지가 금속원료(110)가 투입됨에 따라 금속원료(110)의 용융 및 기화가 일어나게 된다. The plasma torch 116 generates thermal plasma between the metal raw materials 110 to heat and vaporize the metal raw materials 110 . The plasma torch 116 generates an arc discharge and passes an inert gas at high speed to form a high-temperature thermal plasma. As the thermal energy of the thermal plasma is input to the metal raw material 110, melting and vaporization of the metal raw material 110 occurs.

캐리어 가스(118)에 의해 이송된 금속증기는 냉각관(120)로 투입된 후 ??칭가스에 냉각되어 분말 형태로 고상화된다.The metal vapor transported by the carrier gas 118 is introduced into the cooling pipe 120 and then cooled by the quenching gas to be solidified in a powder form.

본 발명에 의할 경우, 냉각관(120)는 중공관 형태로서 도 1과 같이 중력방향으로 길이가 연장되는 수직관 형태를 가진다. 냉각관는 ??칭가스에 의해 냉각되는 직접 냉각 영역(DC)와 냉각관 벽면에 의해 냉각되는 간접 냉각 영역(IC)를 포함한다. 냉각관내 온도가 석출개시온도와 소결온도 사이인 영역은 모두 수직으로 만들어야 이상적인 유동 형성 가능하다. 단열관이나 DC 이후 관은 수평이나 사선으로 꺾어도 무방하다.According to the present invention, the cooling tube 120 has a hollow tube shape and has a vertical tube shape extending in the direction of gravity as shown in FIG. 1 . The cooling pipe includes a direct cooling region (DC) cooled by the quenching gas and an indirect cooling region (IC) cooled by the wall surface of the cooling pipe. The region where the temperature in the cooling pipe is between the precipitation start temperature and the sintering temperature must be all vertical to form an ideal flow. Insulated pipe or post-DC pipe may be bent horizontally or obliquely.

도 1을 참조하면, 냉각관(120)로 투입된 가스(즉, 캐리어 가스와 금속증기의 혼합가스)는 ??칭가스에 의해 냉각되어 금속분말로 고상화된다. 이러한 수직관 형태의 냉각관로 인하여 종래의 사선 구조를 가지는 냉각관에 비해 유동이 개선되어 와류 발생이 억제된다. 뿐만 아니라 빠른 고상화를 유도하는 장점이 있다. 종래의 사선 구조는 와류 문제로 급냉이 어려운 문제점 있었으나 본 발명의 수직형 냉각관 구조는 와류 문제가 해결되어 급냉이 가능하므로 빠른 고상화가 가능하다. Referring to FIG. 1 , the gas introduced into the cooling pipe 120 (ie, the mixed gas of carrier gas and metal vapor) is cooled by the quenching gas and solidified into metal powder. Due to the vertical tube-type cooling tube, the flow is improved compared to the conventional cooling tube having an oblique structure, and generation of vortices is suppressed. In addition, there is an advantage of inducing rapid solidification. The conventional oblique structure had a problem that rapid cooling was difficult due to the eddy current problem, but the vertical cooling tube structure of the present invention solves the vortex problem and enables rapid cooling, so rapid solidification is possible.

도 2 및 도 3에는 본 발명의 다른 실시예를 따르는 수직형 냉각관이 예시되어 있다. 2 and 3 illustrate a vertical cooling pipe according to another embodiment of the present invention.

100 : 금속분말 형성장치100: metal powder forming device

Claims (1)

금속분말 제조장치를 이용한 금속분말 제조 방법. Metal powder manufacturing method using a metal powder manufacturing device.
KR1020220004065A 2022-01-11 2022-01-11 Metal powder manufacturing apparatus and metal powder manufacturing method using same KR20230108534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220004065A KR20230108534A (en) 2022-01-11 2022-01-11 Metal powder manufacturing apparatus and metal powder manufacturing method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220004065A KR20230108534A (en) 2022-01-11 2022-01-11 Metal powder manufacturing apparatus and metal powder manufacturing method using same

Publications (1)

Publication Number Publication Date
KR20230108534A true KR20230108534A (en) 2023-07-18

Family

ID=87423628

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220004065A KR20230108534A (en) 2022-01-11 2022-01-11 Metal powder manufacturing apparatus and metal powder manufacturing method using same

Country Status (1)

Country Link
KR (1) KR20230108534A (en)

Similar Documents

Publication Publication Date Title
US7374598B2 (en) Methods and apparatus for spray forming, atomization and heat transfer
TWI619672B (en) Device and method for making particles
EP0128361B1 (en) Device and method for making and collecting fine alloy powder
JP7386839B2 (en) Plasma arc atomization ultrafine powder manufacturing equipment
US3461943A (en) Process for making filamentary materials
EP0127795B1 (en) Device and method for making and collecting fine metallic powder
JP2002346377A (en) Method for preparing ceramics or metallic spherical powder by hot plasma and apparatus therefor
US4071588A (en) Process for production of magnetite spheres with an arc heater
TWI220873B (en) Process for production of metallic powder and producing device thereof
CN107470642A (en) A kind of powder preparation method
KR20230108534A (en) Metal powder manufacturing apparatus and metal powder manufacturing method using same
JP3270118B2 (en) Method and apparatus for producing spheroidized particles by high-frequency plasma
JP2013510243A (en) Nanoparticle production method and nanoparticle production apparatus
KR101724359B1 (en) Method of manufacturing of silicon nanopowder and Apparatus of manufacturing of silicon nanopowder
US3989511A (en) Metal powder production by direct reduction in an arc heater
KR100943453B1 (en) Device and method for manufacturing ultra-fine metal powders and metal vaporizing apparatus used to them
WO2009153865A1 (en) Micropowder producing apparatus and process
KR20230108535A (en) Metal powder manufacturing apparatus and metal powder manufacturing method using same
KR102572728B1 (en) Metal powder manufacturing apparatus and metal powder manufacturing method using same
KR102178435B1 (en) METHOD FOR MANUFACTURING Ti64 POWDER HAVING HIGH PURITY BY USING RF PLASMA APPARATUS
KR101395578B1 (en) Thermal plasma apparatus for manufacturing aluminum nitride powder
TWI798989B (en) Device for preparing ultrafine powder by plasma arc atomization method
KR20230108533A (en) Metal powder manufacturing apparatus and metal powder manufacturing method using same
RU2743474C2 (en) Method of plasma synthesis of powders of inorganic materials and apparatus for implementation thereof
JP2006009113A (en) Method for producing fine metal ball