KR20230106778A - 수처리 플랜트에서 화학제 주입 최적화를 위한 장치 및 이를 위한 방법 - Google Patents

수처리 플랜트에서 화학제 주입 최적화를 위한 장치 및 이를 위한 방법 Download PDF

Info

Publication number
KR20230106778A
KR20230106778A KR1020220002175A KR20220002175A KR20230106778A KR 20230106778 A KR20230106778 A KR 20230106778A KR 1020220002175 A KR1020220002175 A KR 1020220002175A KR 20220002175 A KR20220002175 A KR 20220002175A KR 20230106778 A KR20230106778 A KR 20230106778A
Authority
KR
South Korea
Prior art keywords
water treatment
data
chemical injection
unit
control
Prior art date
Application number
KR1020220002175A
Other languages
English (en)
Inventor
나상건
곽재화
김영혁
박정원
이영근
김현식
유준우
Original Assignee
두산에너빌리티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산에너빌리티 주식회사 filed Critical 두산에너빌리티 주식회사
Priority to KR1020220002175A priority Critical patent/KR20230106778A/ko
Priority to EP23150110.7A priority patent/EP4209464A1/en
Priority to US18/149,704 priority patent/US20230213898A1/en
Publication of KR20230106778A publication Critical patent/KR20230106778A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/041Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a variable is automatically adjusted to optimise the performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/28Strainers not provided for elsewhere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • B03D1/028Control and monitoring of flotation processes; computer models therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/14Flotation machines
    • B03D1/1431Dissolved air flotation machines
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/685Devices for dosing the additives
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/008Processes using a programmable logic controller [PLC] comprising telecommunication features, e.g. modems or antennas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

화학제 주입 최적화를 위한 장치는 실시간 데이터가 입력되면, 수처리모델을 통해 상기 실시간 데이터를 분석하여 상기 수처리플랜트의 처리수의 상태를 예측하는 예측값을 도출하고, 제어기를 통해 상기 예측값을 기초로 상기 수처리플랜트의 처리수의 상태가 정상 범위를 유지하면서 최소의 화학제 주입량이 주입되도록 하는 제어값을 도출하는 화학제주입최적화부와, 상기 수처리제어장치에 상기 제어값을 제공하는 화학제주입출력제어부를 포함한다.

Description

수처리 플랜트에서 화학제 주입 최적화를 위한 장치 및 이를 위한 방법 {Apparatus for optimizing chemical dosing in water treatment plants and method therefor}
본 발명은 화학제 주입 최적화 기술에 관한 것으로, 더욱 상세하게는, 수처리 플랜트에서 화학제 주입 최적화를 위한 장치 및 이를 위한 방법에 관한 것이다.
해수담수 플랜트의 전처리의 경우, 고형물질 같은 부유물질을 제거하기 위해 DAF(Dissolved Air Flotation) 공정 전단 pH 조절제 및 응집제와 같은 화학 약품을 사용하는데, 기존 방법에서는 적절한 화학 약품을 주입하기 위해 샘플링 실험 및 운전자의 노우하우(know-how)에 의지하였으나, 해수, 오폐수 등의 유입수의 실시간 상태 변화를 반영하여 제어하는 것이 어려운 실정이다.
한국공개특허 제2016-0027815호 (2016년03월10일 공개)
본 발명의 목적은 수처리 플랜트에서 화학제 주입 최적화를 위한 장치 및 이를 위한 방법을 제공함에 있다.
상술한 바와 같은 목적을 달성하기 위한 본 발명의 바람직한 실시예에 따른 화학제 주입 최적화를 위한 장치는 실시간 데이터가 입력되면, 수처리모델을 통해 상기 실시간 데이터를 분석하여 상기 수처리플랜트의 처리수의 상태를 예측하는 예측값을 도출하고, 제어기를 통해 상기 예측값을 기초로 상기 수처리플랜트의 처리수의 상태가 정상 범위를 유지하면서 최소의 화학제 주입량이 주입되도록 하는 제어값을 도출하는 화학제주입최적화부와, 상기 수처리제어장치에 상기 제어값을 제공하는 화학제주입출력제어부를 포함한다.
상기 화학제주입출력제어부는 상기 수처리제어장치의 제어 주기 및 각 제어 주기에서의 제어 범위에 맞춰 상기 제어값을 변환하고, 변환된 제어값을 상기 수처리제어장치에 제공하는 것을 특징으로 한다.
상기 장치는 후단 공정에 의한 공정의 운전 데이터 및 상태 데이터를 포함하는 후공정 데이터를 분석하여 후단 공정에 피해를 방지하기 위한 보정바이어스값을 도출하는 후공정보호부를 더 포함한다. 여기서, 상기 화학제주입출력제어부는 상기 화학제주입출력제어부가 상기 보정바이어스값에 따라 상기 제어값을 보정하는 것을 특징으로 한다.
상기 장치는 수처리플랜트 및 수처리제어장치 중 적어도 하나로부터 운전 데이터 및 상태 데이터를 포함하는 실시간 데이터를 입력 받고, 입력된 실시간 데이터를 분석하여 화학제 주입량을 최적화하기 위한 화학제주입최적화 프로세스의 수행 여부를 결정하는 화학제주입관리부를 더 포함한다.
상기 장치는 상기 실시간 데이터를 전처리한 후, 상기 화학제주입최적화부에 전처리된 실시간 데이터를 제공하는 데이터전처리부를 더 포함한다.
상기 장치는 수처리모델을 설계하는 자동모델링처리부와, 원시 데이터로부터 추출된 학습 데이터를 이용하여 학습을 통해 상기 수처리플랜트를 모사하여 상기 수처리플랜트에 대한 유입수의 상태에 따라 처리수의 상태를 예측하는 수처리모델을 생성하는 모델생성부를 더 포함한다.
상기 장치는 수처리플랜트로부터 수집된 평가 데이터를 이용하여 상기 생성된 수처리모델 중 상기 수처리플랜트와의 유사도가 가장 높은 수처리모델을 선정하고, 선정된 수처리모델을 상기 화학제주입최적화부에 제공하는 모델선정부를 더 포함한다.
상기 수처리모델은 상기 유입수의 상태를 나타내는 데이터 및 제어기가 도출하는 화학제 주입량을 입력 받고, 상기 처리수의 상태를 예측하는 예측값을 산출하는 것을 특징으로 한다.
상기 제어기는 상기 수처리모델이 예측한 예측값을 입력 받고, 상기 예측값에 따라 처리수의 상태의 범위를 한정하는 제약조건 및 화학제 주입 비용을 최소로 하기 위한 목적함수를 고려하여 화학제 주입량을 산출하는 것을 특징으로 한다.
상술한 바와 같은 목적을 달성하기 위한 본 발명의 바람직한 실시예에 따른 화학제 주입 최적화를 위한 장치는 원시 데이터로부터 추출된 학습 데이터를 이용하여 학습을 통해 상기 수처리플랜트를 모사하여 상기 수처리플랜트에 대한 유입수의 상태에 따라 처리수의 상태를 예측하는 수처리모델을 생성하는 모델생성부와, 상기 수처리모델을 통해 상기 수처리플랜트의 처리수의 상태를 예측하는 예측값을 도출하고, 제어기를 통해 상기 예측값을 기초로 상기 수처리플랜트의 처리수의 상태가 정상 범위를 유지하면서 최소의 화학제 주입량이 주입되도록 하는 제어값을 도출하는 화학제주입최적화부를 포함한다.
상기 장치는 상기 수처리제어장치의 제어 주기 및 각 제어 주기에서의 제어 범위에 맞춰 상기 제어값을 변환하고, 변환된 제어값을 상기 수처리제어장치에 제공하는 화학제주입출력제어부를 더 포함한다.
상기 장치는 후단 공정에 의한 공정의 운전 데이터 및 상태 데이터를 포함하는 후공정 데이터를 분석하여 후단 공정에 피해를 방지하기 위한 보정바이어스값을 도출하는 후공정보호부를 더 포함한다. 여기서, 상기 화학제주입출력제어부는 상기 화학제주입출력제어부가 상기 보정바이어스값에 따라 상기 제어값을 보정하는 것을 특징으로 한다.
상기 장치는 수처리플랜트 및 수처리제어장치 중 적어도 하나로부터 운전 데이터 및 상태 데이터를 포함하는 실시간 데이터를 입력 받고, 입력된 실시간 데이터를 분석하여 화학제 주입량을 최적화하기 위한 화학제주입최적화 프로세스의 수행 여부를 결정하는 화학제주입관리부를 더 포함한다.
상기 수처리모델은 상기 유입수의 상태를 나타내는 데이터 및 제어기가 도출하는 화학제 주입량을 입력 받고, 상기 처리수의 상태를 예측하는 예측값을 산출하는 것을 특징으로 한다.
상기 제어기는 상기 수처리모델이 예측한 예측값을 입력 받고, 상기 예측값에 따라 처리수의 상태의 범위를 한정하는 제약조건 및 화학제 주입 비용을 최소로 하기 위한 목적함수를 고려하여 화학제 주입량을 산출하는 것을 특징으로 한다.
상술한 바와 같은 목적을 달성하기 위한 본 발명의 바람직한 실시예에 따른 화학제 주입 최적화를 위한 방법은 화학제주입최적화부가 실시간 데이터를 입력 받는 단계와, 상기 화학제주입최적화부가 하나 이상의 수처리모델을 통해 상기 실시간 데이터를 분석하여 상기 수처리플랜트의 처리수의 상태를 예측하는 예측값을 도출하고, 제어기를 통해 상기 예측값을 기초로 상기 수처리플랜트의 처리수의 상태가 정상 범위를 유지하면서 최소의 화학제 주입량이 주입되도록 하는 제어값을 도출하는 단계와, 화학제주입출력제어부가 상기 수처리제어장치에 상기 제어값을 제공하는 단계를 포함한다.
상기 수처리제어장치에 상기 제어값을 제공하는 단계는 상기 화학제주입출력제어부가 상기 수처리제어장치의 제어 주기 및 각 제어 주기에서의 제어 범위에 맞춰 상기 제어값을 변환하고, 변환된 제어값을 상기 수처리제어장치에 제공하는 것을 특징으로 한다.
상기 수처리제어장치에 상기 제어값을 제공하는 단계는 후공정보호부가 후단 공정에 의한 공정의 운전 데이터 및 상태 데이터를 포함하는 후공정 데이터를 분석하여 후단 공정에 피해를 방지하기 위한 보정바이어스값을 도출하면, 상기 화학제주입출력제어부가 상기 보정바이어스값에 따라 상기 제어값을 보정하는 것을 특징으로 한다.
상기 방법은 상기 실시간 데이터를 입력 받는 단계 전, 화학제주입관리부가 수처리플랜트 및 수처리제어장치 중 적어도 하나로부터 운전 데이터 및 상태 데이터를 포함하는 실시간 데이터를 입력 받고, 입력된 실시간 데이터를 분석하여 화학제 주입량을 최적화하기 위한 화학제주입최적화 프로세스의 수행 여부를 결정하는 단계를 더 포함한다.
상기 방법은 상기 화학제주입최적화 프로세스의 시작 여부를 결정하는 단계 후, 상기 실시간 데이터를 입력 받는 단계 전, 데이터전처리부가 상기 실시간 데이터를 전처리하는 단계와, 상기 데이터전처리부가 상기 화학제주입최적화부에 전처리된 실시간 데이터를 제공하는 단계를 더 포함한다.
상기 방법은 상기 실시간 데이터를 입력 받는 단계 전, 자동모델링처리부가 누적되어 저장된 복수의 원시 데이터로부터 학습용 데이터 및 검증용 데이터를 포함하는 학습 데이터를 추출하는 단계와, 모델생성부가 상기 학습 데이터를 이용하여 학습을 통해 상기 수처리플랜트를 모사하여 상기 수처리플랜트에 대한 유입수의 상태에 따라 처리수의 상태를 예측하는 수처리모델을 생성하는 단계를 더 포함한다.
상기 방법은 상기 수처리모델을 생성하는 단계 후, 모델선정부가 수처리플랜트로부터 수집된 평가 데이터를 이용하여 상기 생성된 수처리모델 중 상기 수처리플랜트와의 유사도가 가장 높은 수처리모델을 선정하는 단계와, 상기 모델선정부가 상기 선정된 수처리모델을 상기 화학제주입최적화부에 제공하는 단계를 더 포함한다.
상기 제어값을 도출하는 단계는 상기 수처리모델이 상기 유입수의 상태를 나타내는 데이터 및 제어기가 도출하는 화학제 주입량을 입력 받고, 상기 처리수의 상태를 예측하는 예측값을 산출하는 것을 특징으로 한다.
상기 제어값을 도출하는 단계는 상기 제어기가 상기 수처리모델이 예측한 예측값을 입력 받고, 상기 예측값에 따라 처리수의 상태의 범위를 한정하는 제약조건 및 화학제 주입 비용을 최소로 하기 위한 목적함수를 고려하여 화학제 주입량을 산출하는 것을 특징으로 한다.
본 발명에 따르면, 수처리플랜트를 모사하는 수처리모델 및 최적화 알고리즘인 제어기를 통해 화학제 주입 최적화를 수행함으로써 정상 상태의 수질을 제공하면서 수처리플랜트에 주입하는 화학제 주입 비용을 최소화할 수 있다.
도 1은 본 발명의 실시예에 따른 수처리 시스템의 구성을 설명하기 위한 도면이다.
도 2는 본 발명의 실시예에 따른 화학제주입최적화장치의 구성을 설명하기 위한 블록도이다.
도 3은 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 화학제주입관리부의 구성을 설명하기 위한 도면이다.
도 4는 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 데이터전처리부의 구성을 설명하기 위한 도면이다.
도 5는 본 발명의 실시예에 따른 화학제주입최적화부의 구성을 설명하기 위한 도면이다.
도 6은 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 화학제주입출력제어부의 구성을 설명하기 위한 도면이다.
도 7은 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 자동모델링처리부의 구성을 설명하기 위한 도면이다.
도 8은 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 모델생성부의 구성을 설명하기 위한 도면이다.
도 9는 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 모델선정부의 구성을 설명하기 위한 도면이다.
도 10은 본 발명의 실시예에 따른 수처리 플랜트에서 화학제 주입 최적화를 위한 방법을 설명하기 위한 흐름도이다.
도 11은 본 발명의 추가적인 실시예에 따른 수처리 플랜트에서 화학제 주입 최적화를 위한 방법을 설명하기 위한 흐름도이다.
도 12는 본 발명의 실시예에 따른 컴퓨팅 장치를 나타내는 도면이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 '가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 이 때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의한다. 또한, 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다.
먼저, 본 발명의 실시예에 따른 수처리 시스템에 대해서 설명하기로 한다. 도 1은 본 발명의 실시예에 따른 수처리 시스템의 구성을 설명하기 위한 도면이다. 도 1을 참조하면, 본 발명의 실시예에 따른 수처리 시스템은 수처리플랜트(1), 수처리제어장치(2) 및 화학제주입최적화장치(3)를 포함한다.
수처리플랜트(1)는 수처리플랜트(1)로 유입되는 유입수 ①를 목적에 적합하도록 처리하여 처리수 ④를 방류하는 수처리를 위한 것이다. 이러한 수처리는 용수 처리, 폐수 처리, 해수담수화 처리 등을 예시할 수 있다. 수처리플랜트(1)는 용존공기부상장치(DAF: dissolved air flotation), 자동여과장치(AS: Auto Strainer), 한외여과장치(UF: Ultrafiltration) 및 역삼투압장치(RO: Reverse Osmosis)를 포함한다.
용존공기부상장치(DAF)는 용존공기부상법(dissolved air flotation)에 따라 유입수 ②를 처리한다. 자동여과장치(AS)는 용존공기부상장치(DAF)에 의해 처리된 유입수 ③에 잔류하는 고형물을 제거하여 이물질이 유입하는 것을 방지한다. 한외여과장치(UF)는 각각이 한외여과막(Ultrafiltration Membrane)을 가지는 복수의 한외여과유닛을 포함한다. 한외여과장치(UF)는 복수의 한외여과유닛의 한외여과막을 이용하여 유입수 ③에 잔류하는 불순물을 필터링하기 한외여과(Ultrafiltration) 공정을 수행한다. 한외여과장치(UF)는 복수의 한외여과유닛의 한외여과막(Ultrafiltration Membrane)에 처리수를 통과시켜 처리수에 잔류하는 불순물을 필터링할 수 있다. 역삼투압장치(RO)는 각각이 역삼투막(Reverse Osmosis Membrane)을 가지는 복수의 트레인을 포함한다. 역삼투압장치(RO)는 복수의 트레인의 역삼투막을 이용하여 유입수 ③에 잔류하는 불순물을 필터링하는 역삼투압(Reverse Osmosis) 공정을 수행한다. 역삼투압장치(RO)는 복수의 트레인의 역삼투막(Reverse Osmosis Membrane)에 처리수를 통과시켜 역삼투 원리에 따라 유입수 ③에 잔류하는 불순물을 필터링한 후, 처리수 ④를 방류한다.
수처리제어장치(2)는 기본적으로, 수처리플랜트(1)를 제어하기 위한 것이다. 특히, 수처리플랜트(1)의 전단 공정에서 화학제를 주입하며(⑤), 수처리제어장치(2)는 화학제의 주입량을 제어할 수 있다. 보다 구체적으로 설명하면, 수처리플랜트(1)의 전단 공정 시, 예컨대, 수소이온농도(pH) 조절제(예컨대, H2SO4 및 응집제(예컨대, FeCl3)와 같은 화학제를 주입한다. 수처리제어장치(2)는 이러한 화학제의 주입 및 주입량을 제어할 수 있다.
화학제주입최적화장치(3)는 화학제주입최적화를 위한 것이다. 전술한 바와 같이, 수처리제어장치(2)는 수처리플랜트(1)의 화학제 주입 및 그 주입량을 제어한다. 이때, 수처리에 의한 처리수의 상태가 정상 범위를 유지하면서 유입수에 최소의 화학제 주입량을 사용할 수 있도록 하는 화학제주입최적화가 요구된다. 다만, 화학제의 주입량은 후단 공정을 수행하는 자동여과장치(AS), 한외여과장치(UF) 및 역삼투압장치(RO)의 차압(DP: Differential Pressure)에도 영향을 미치기 때문에 이러한 차압을 고려하여 화학제주입최적화가 이루어져야 한다. 화학제주입최적화장치(3)는 수처리제어장치(2)를 제어 혹은 가이드함으로써 이러한 화학제주입최적화를 수행하기 위한 것이다.
다음으로, 본 발명의 실시예에 따른 화학제주입최적화장치(3)의 구성에 대해서 설명하기로 한다. 도 2는 본 발명의 실시예에 따른 화학제주입최적화장치의 구성을 설명하기 위한 블록도이다. 도 2를 참조하면, 본 발명의 실시예에 따른 화학제주입최적화장치(3)는 화학제주입관리부(100, DAF Chemical Dosing Management), 데이터전처리부(200, Data Pre-Processing), 최적화부(10, Chemical Dosing Optimization), 모델생성관리부(20, DAF Model Generation and Management) 및 후공정보호부(800, Post Process Protection Logic)를 포함한다. 또한, 최적화부(10)는 화학제주입최적화부(300, Chemical Dosing Optimization Algorithm) 및 화학제주입출력제어부(400, Chemical Dosing Output Controller)를 포함한다. 그리고 모델생성관리부(20)는 자동모델링처리부(500, Auto Modeling Processor for DAF Model), 모델생성부(600, DAF Model Candidate Generator) 및 모델선정부(700, DAF Model Selection & Management Processor)를 포함한다.
화학제주입관리부(100)는 화학제주입최적화 프로세스를 관리하기 위한 것이다. 화학제주입관리부(100)는 수처리플랜트(1) 및 수처리제어장치(2) 중 적어도 하나로부터 운전 데이터 및 상태 데이터를 포함하는 실시간 데이터를 수신하고, 이를 분석하여 화학제주입최적화 프로세스의 수행 여부를 결정한다. 실시간 데이터는 실시간으로 측정되거나 도출된 운전 데이터 및 상태 데이터를 의미한다. 본 발명의 실시예에서, 운전데이터는 용존공기부상장치(DAF), 자동여과장치(AS), 한외여과장치(UF) 및 역삼투압장치(RO)에 의한 공정을 제어하기 위해 입력하거나, 그 공정에 대해 측정한 값, 즉, 설정치(SV: Set Value, 또는 목표치 SP: Set Point), 측정치(PV: Process Variable, 또는 CV: Current Value), 조작치(MV: Manipulate Variable)를 포함하는 모든 데이터를 운전데이터라고 한다. 여기서, 설정치(SV 또는 SP)는 제어 대상의 제어 목표를 설정하는 값이며, 측정치(PV 또는 CV)는 제어 대상을 측정한 센싱값이고, 조작치(MV)는 제어 대상이 측정치에서 설정치가 되도록 조작하는 제어값을 의미한다. 설정치 및 측정치는 유량, 압력, 수위, 온도 등을 예시할 수 있다. 조작치는 개도량, 모터의 RPM 속도, 전압, 전류 등을 예시할 수 있다. 운전 데이터는 각각의 목적에 따라 가공을 하여 분석에 활용 할 수 있다. 본 발명의 실시예에서 운전데이터를 분석을 위해 도출되거나 가공된 데이터를 상태 데이터라고 칭하기로 한다. 예컨대, 한외여과장치(UF) 및 역삼투압장치(RO)의 입력 및 출력 단의 차압(differential pressure)을 측정한 데이터를 운전 노하우(know-how)를 통해 도출한 로직을 통해 가공한 값들을 예시할 수 있다.
데이터전처리부(200)는 원시 데이터를 입력 받는다. 이때, 원시 데이터는 수처리플랜트(1) 및 수처리제어장치(2) 중 적어도 하나로부터 수신되는 운전 데이터 및 상태 데이터를 포함한다. 즉, 원시 데이터는 수처리플랜트(1) 및 수처리제어장치(2)로부터 수집되는 운전 데이터 및 상태 데이터가 누적되어 저장된 것이다. 따라서, 이러한 원시 데이터는 실시간으로 수집되는 운전 데이터 및 상태 데이터를 포함하는 실시간 데이터가 포함될 수 있다. 또한, 원시 데이터는 서로 다른 속성을 가지는 복수의 종류의 데이터를 포함한다. 이러한 원시 데이터는 수처리플랜트(1) 혹은 수처리제어장치(2)로부터 시간 상 지속적으로 수신된다. 특히, 원시 데이터는 입력 속성을 가지는 입력 속성 데이터와, 출력 속성을 가지는 출력 속성 데이터를 포함한다. 입력 속성 데이터는 수처리플랜트(1), 특히, 용존공기부상장치(DAF)로 유입되는 유입수와 관련된 운전 데이터 및 상태 데이터를 포함한다. 이러한 입력 속성 데이터는 예컨대, 유입수의 유량, 온도, 전도도, 산성도(혹은 수소이온농도), 탁도, 유량, 유입수에 대한 처리량(단위 시간 당), 유입수에 대한 화학제 주입량, 화학제 주입 농도 등을 예시할 수 있다. 출력 속성 데이터는 용존공기부상장치(DAF)에 의해 수처리된 처리수와 관련된 운전 데이터 및 상태 데이터를 포함한다. 출력 속성 데이터는 처리수의 산성도(혹은 수소이온농도, pH) 혹은 산성도 변화량, 탁도 혹은 탁도 변화량, 잔류철 등을 예시할 수 있다. 원시 데이터가 수집되면, 전처리부(200)는 전처리부가 원시 데이터를 전처리하여 학습 데이터를 생성한다. 학습 데이터는 용도에 따른 구분으로, 학습용 데이터 및 검증용 데이터를 포함한다. 또한, 학습 데이터는 속성에 따른 구분으로 입력 데이터 및 출력 데이터를 포함한다. 학습 데이터는 모델생성관리부(20)에 제공된다. 또한, 데이터전처리부(200)는 실시간 데이터를 전처리하여 전처리된 실시간 데이터를 최적화부(10)에 제공할 수 있다. 데이터전처리부(200)는 데이터의 속성을 나타내는 태그를 이용하여 실시간 데이터를 포함하는 원시 데이터를 분석하여 전처리를 수행한다. 이러한 전처리는 신호 처리, 정상 데이터 처리(기반 지식 기반/데이터 기반), 이상치(Outlier) 제거 등을 통해, 노이즈를 제거하거나, 수행하여 데이터 내의 노이즈를 제거하거나 DAF 모델 생성이나 제어기를 설계를 함에 있어 악영향을 미칠 수 있는 데이터 등을 제거할 수 있도록 한다.
최적화부(10)는 실시간 데이터를 분석하여 화학제 주입량을 최적화하기 위한 제어값을 도출하는 역할을 수행한다. 이러한 최적화부(10)는 전술한 바와 같이, 화학제주입최적화부(300) 및 화학제주입출력제어부(400)를 포함한다.
화학제주입최적화부(300)는 현재 데이터에 대하여 분석하고, 이 결과를 바탕으로 기존에 만들어진 복수의 제어기 중에서 최적의 제어기를 선정하고, 최적의 케미컬 주입 제어 값을 탐색하는 역할을 한다. 최적 제어값 탐색에는 최적화 설계 정보, 즉, 목적 함수(objective function), 제약 조건(constraint), 조절 변수(Moderator Variable), 탐색 영역(searching range) 등이 필요하다. 이때, 화학제주입최적화부(300)는 하나 이상의 수처리모델을 통해 실시간 데이터를 분석하여 수처리플랜트(1)의 처리수의 상태(예컨대, 탁도, PH 등)를 예측하는 예측값을 도출한다. 그리고 화학제주입최적화부(300)는 하나 이상의 제어기를 통해 예측값을 기초로 수처리플랜트(1)의 처리수의 상태가 정상 범위를 유지하면서 최소의 화학제 주입량이 주입되도록 하는 제어값을 도출한다.
화학제주입출력제어부(400)는 기본적으로, 화학제주입관리부(100)의 관리 명령 및 현재 상태 중 적어도 하나에 따라 화학제주입최적화부(300)가 도출한 제어값을 제공하거나, 제공하지 않도록 최종적으로 결정하기 위한 것이다. 화학제주입출력제어부(400)가 화학제주입최적화부(300)로부터 제공받은 제어값은 화학제주입최적화부(300)가 실시간 데이터를 이용하여 도출하였지만, 화학제주입출력제어부(400)가 처리하는 시간을 현재라고 했을 때, 화학제주입최적화부(300)가 그 제어값을 탐색하는 시간, 예컨대, 1분 또는 5분 이전의 과거의 데이터이다. 따라서 화학제주입출력제어부(400)는 해당 제어값을 산출의 기초가 되는 운전 데이터 및 상태 데이터와, 현재의 운전 데이터 및 상태 데이터와 비교하여 차이가 기준치 이상인 경우, 제어값을 보정하거나, 제어값의 출력을 정지(HOLD)시키거나, 중단(STOP)시킬 수 있다. 화학제주입출력제어부(400)는 제어값을 제공하는 경우, 화학제주입관리부(100)의 관리 명령에 따라 수처리제어장치(2)가 자동으로 제어값을 적용하도록 하거나, 제어값을 가이드 형식으로 제공하여 제어값의 적용 여부는 수처리제어장치(2)에 의해 결정되도록 하는 가이드 방식으로 제공할 수 있다. 또한, 화학제주입출력제어부(400)는 후공정보호부(800)로부터 후공정 보호 로직에 따라 도출된 보정바이어스(Bias)값을 이용하여 제어값을 보정할 수 있다. 특히, 화학제주입출력제어부(400)는 제어값을 수처리제어장치(2)가 안정적으로 동작할 수 있도록 수처리제어장치(2)의 제어 주기 및 제어 범위에 따라 변환하여, 변환된 제어값을 수처리제어장치(2)에 제공하는 역할을 수행한다. 본 발명의 실시예에 따르면, 화학제주입출력제어부(400)는 제어값을 수처리제어장치(2)에 적용 가능한 범위로 분할하여 적용제어값을 산출한다. 즉, 화학제주입출력제어부(400)는 화학제주입최적화부(300)에 의한 제어값의 도출 주기 대비 수처리제어장치(2)의 제어 주기 및 제어 범위에 맞춰 제어값을 분할하여 적용제어값을 산출한다. 예를 들면, 화학제주입최적화부(300)의 최적의 제어값을 탐색하는 시간 주기, 즉, 제어값의 도출 주기가 1분이고, 수처리제어장치(2)의 제어 주기가 10초이고, 제어 범위가 ±4라면, 제어값을 제어값의 도출 주기가 1분인 제어값을 수처리제어장치(2)의 제어 주기인 10초 간격 그리고 제어 범위인 ±4으로 분할하여 적용제어값을 산출한다. 구체적으로, 제어값이 기존값에서 20 증가하도록 하는 한 경우, 적용제어값은 매 10초마다 4씩 증가하여 +4, +8, +12, +16, +20, +20이 되도록 하는 값을 제공한다.
모델생성관리부(20)는 학습을 통해 하나 이상의 수처리모델을 자동으로 생성하기 위한 것이다. 수처리모델은 적어도 하나의 인공신경망(Artificial Neural Network)을 포함하는 알고리즘이며, 유입수에 대한 수처리(예컨대, DAF)를 통해 처리수를 생성하는 수처리플랜트(1)를 모사한다. 이에 따라, 수처리모델은 유입수의 상태를 나타내는 각 종 정보를 입력 받고, 학습된 바에 따라 유입수의 상태에 대해 연산을 수행하여 처리수의 상태를 예측하는 예측값을 산출한다. 여기서, 유입수의 상태는 예컨대, 유입수의 유량, 온도, 전도도, 산성도(혹은 수소이온농도), 탁도, 유량, 유입수에 대한 처리량(단위 시간 당), 유입수에 대한 화학제 주입량, 화학제 주입 농도 등을 예시할 수 있다. 또한, 처리수의 상태는 처리수의 산성도 혹은 산성도 변화량, 탁도 혹은 탁도 변화량, 잔류철 등을 예시할 수 있다.
전술한 바와 같이, 모델생성관리부(20)는 자동모델링처리부(500), 모델생성부(600) 및 모델선정부(700)를 포함한다.
자동모델링처리부(500)는 새로 생성될 수처리모델을 설계하여 모델설계정보를 생성한다. 자동모델링처리부(500)는 수처리모델의 형식, 구조, 입출력, 변수 등을 설계한다. 일 실시예에 따르면, 자동모델링처리부(500)는 수처리모델의 형식, 구조, 입출력, 변수 등의 모델설계정보를 입력 받아 결정할 수 있다. 다른 실시예에 따르면, 자동모델링처리부(500)는 기 저장된 복수의 시드모델 중 어느 하나로부터 모델설계정보를 추출하여, 추출된 모델설계정보에 따라 수처리모델을 설계할 수 있다. 시드모델은 수처리모델 중 전문가에 의해 생성된 모델이다. 자동모델링처리부(500)는 새로 생성될 수처리모델에 적용하기 위해 시드모델의 형식, 구조, 입출력, 변수 중 적어도 하나를 포함하는 모델설계정보를 추출한다. 추출된 모델설계정보는 새로 생성될 수처리모델에 적용된다.
모델생성부(600)는 자동모델링처리부(500)로부터 모델설계정보를 제공받고, 모델설계정보를 기초로 학습 데이터를 이용하여 학습을 통해 수처리모델을 생성한다. 즉, 모델생성부(600)는 학습용 데이터 및 검증용 데이터를 포함하는 학습 데이터를 이용하여 학습을 통해 수처리플랜트를 모사하여 수처리플랜트에 대한 유입수의 상태에 따라 처리수의 상태를 예측하는 복수의 수처리모델을 생성한다. 학습용 데이터 및 검증용 데이터를 포함하는 학습 데이터는 입력 데이터와 그 입력 데이터에 대응하는 출력 데이터를 포함한다. 예컨대, 입력 데이터는 유입수의 유량, 온도, 전도도, 산성도(혹은 수소이온농도), 탁도, 유량, 유입수에 대한 처리량(단위 시간 당), 유입수에 대한 주입제 주입 농도 등을 예시할 수 있다. 또한, 출력 데이터는 처리수의 산성도 혹은 산성도 변화량, 탁도 혹은 탁도 변화량 등을 예시할 수 있다. 여기서, 학습 시, 출력 데이터는 입력 데이터에 대응하는 목표값(Target)으로 사용된다.
모델선정부(700)는 모델생성부(600)가 생성한 수처리모델과, 기 저장된 수처리모델을 비교 평가하여 최적의 수처리모델을 선정하기 위한 것이다. 이를 위하여, 평가 시점의 수처리플랜트(1)를 나타내는 평가 데이터를 이용하여 복수의 수처리모델에 대한 평가를 수행한다. 평가 데이터는 학습 데이터 및 검증 데이터와 마찬가지로, 입력 데이터와 그 입력 데이터에 대응하는 출력 데이터를 포함한다. 즉, 모델선정부(700)는 평가 시점에 수처리플랜트(1)로부터 수집된 데이터를 이용하여 평가 데이터를 생성하고, 생성된 평가 데이터를 이용하여 평가를 수행한다. 즉, 모델선정부(700)는 평가 시점의 수처리플랜트로부터 수집된 평가 데이터를 이용하여 복수의 수처리모델에 대한 평가를 수행한다. 그리고 모델선정부(700)는 평가 결과, 복수의 수처리모델 중 평가 시점의 수처리플랜트(1)와의 유사도가 가장 높은 수처리모델을 선정한다. 그리고 모델선정부(700)는 선정된 수처리모델을 화학제주입최적화부(300)에 제공한다. 또한, 모델선정부(700)는 평가가 종료될 때마다, 생성된 순서에 따라 수처리모델을 정렬하고, 수처리모델을 저장하는 저장공간의 저장용량이 부족한 경우, 선정되지 않은 수처리모델 중 생성된 시기가 빠른 순서에 따라 해당하는 수처리모델을 순차로 삭제할 수 있다.
후공정보호부(800)는 수처리플랜트(1)의 후단 공정, 즉, 자동여과장치(AS), 한외여과장치(UF) 및 역삼투압장치(RO)에 의한 공정의 운전 데이터 및 상태 데이터를 포함하는 후공정 데이터를 수신하고, 수신된 후공정 데이터를 분석하여 후단 공정에 피해, 예컨대, 파울링(Fouling)이 발생하는 상황을 방지하기 위한 후공정 보호 로직에 따라 후공정을 보호하기 위한 보정바이어스값을 도출한다. 여기서, 파울링은 유입수 속의 오염물질에 의해 막이 막히는 현상을 의미한다. 보정바이어스값은 화학제주입출력제어부(400)에 제공된다.
다음으로, 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 화학제주입관리부(100)의 구성에 대해서 설명하기로 한다. 도 3은 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 화학제주입관리부의 구성을 설명하기 위한 도면이다.
도 3을 참조하면, 본 발명의 실시예에 따른 화학제주입관리부(100)는 데이터분석기반처리부(110), 상태인식기반처리부(120) 및 지식기반처리부(130) 및 최적화결정부(140)를 포함한다.
화학제주입관리부(100)는 운전 데이터 및 상태 데이터를 포함하는 실시간 데이터를 입력 받고, 수처리플랜트(1)의 전단 공정에서 주입되는 화학제의 주입량을 최적화하기 위한 화학제주입최적화 프로세스의 수행 여부 및 수행 태양을 결정한다. 여기서, 최적화는 수처리플랜트(1)의 처리수의 상태가 정상 범위를 유지하면서 화학제 주입량이 최소가 되는 상태인 최적화된 상태가 되도록 하는 것이다. 이를 위하여, 실시간 데이터는 데이터분석기반처리부(110), 상태인식기반처리부(120) 및 지식기반처리부(130)에 입력되며, 데이터분석기반처리부(110), 상태인식기반처리부(120) 및 지식기반처리부(130) 각각이 수행 여부를 결정하기 위한 조건을 판단한다. 그리고 최적화결정부(140)는 조건을 조합하여 수행 여부 및 수행 태양을 결정한다. 이에 대해 자세히 설명하면 다음과 같다.
데이터분석기반처리부(110)는 학습모델을 통해 수처리플랜트(1)의 운전 데이터를 분석하여 수처리플랜트의 최적화된 상태 여부를 판별함으로써, 화학제주입최적화 프로세스의 시작을 결정하는 제1 조건을 판별한다. 여기서, 학습모델은 최적화 상태인지 혹은 최적화 상태가 아닌지 여부를 판별하는 패턴 인식 모델 혹은 기계 학습 모델이 될 수 있다. 이에 따라, 학습모델은 운전 데이터를 분석하여 수처리플랜트가 최적화 상태인지 여부를 판별하고, 최적화 상태가 아니면 제1 조건을 만족하는 것으로 판단한다.
상태인식기반처리부(120)는 수처리플랜트(1)의 상태 데이터를 분석하여 수처리플랜트의 이상 상태를 검출함으로써 화학제주입최적화 프로세스의 수행 여부를 결정하는 제2 조건을 판별한다. 여기서, 이상 상태는 예컨대, 녹조 유입, 수처리플랜트로의 처리 용량 이상의 오버플로우 유입, 수처리플랜트(1)의 시스템 이상, 센서 이상 등을 예시할 수 있다. 상태인식기반처리부(120)는 상태 데이터를 분석하여 이상 상태가 검출되면, 제2 조건을 만족하는 것으로 판단한다.
지식기반처리부(130)는 기 저장된 지식 기반 데이터를 기초로 실시간 데이터 중 수처리플랜트(1)의 후단 공정, 즉, 자동여과장치(AS), 한외여과장치(UF) 및 역삼투압장치(RO)에 의한 공정의 운전 데이터 및 상태 데이터를 분석하여 기 저장된 지식 기반 데이터에 부합하는지 여부를 검출함으로써, 화학제주입최적화 프로세스의 수행 여부를 결정하는 제3 조건을 판별한다. 즉, 지식 기반 데이터는 기존의 경험칙에 근거하여 화학제주입최적화 프로세스가 필요한 상황을 나타내는 데이터를 저장하며, 지식기반처리부(130)는 이러한 지식 기반 데이터에 부합하는 경우, 제3 조건을 만족하는 것으로 판단한다.
최적화결정부(140)는 제1, 제2 및 제3 조건에 대한 만족 여부에 따라 화학제주입최적화 프로세스의 수행 여부 및 수행 태양을 결정한다. 즉, 최적화결정부(140)는 제1 조건, 상기 제2 조건 및 상기 제3 조건을 모두 만족하면, 최적화부(10)가 화학제주입최적화 프로세스를 수행하여 최적화된 상태가 되도록 하는 제어값을 도출하고, 도출된 제어값을 수처리제어장치에 제공하도록 제어 한다. 또한, 최적화결정부(140)는 제1 조건을 만족하고 상기 제2 조건 및 상기 제3 조건 중 적어도 하나를 만족하지 않으면, 최적화부(10)가 제어값을 가이드 형식으로 제공하도록 제어한다. 이러한 경우, 화학제주입최적화 프로세스를 수행하는 것이 수처리플랜트(1) 혹은 수처리제어장치(2)의 상태를 악화시킬 가능성도 있기 때문에 가이드 형식으로 제어값을 제공하고, 화학제주입최적화 프로세스를 강제하지 않는다. 가이드 형식으로 제공하는 제어값은 플랜트의 운전자가 열람할 수 있도록 운전 화면 등을 통해 제공된다. 반면, 최적화결정부(140)는 제1 조건을 만족하지 않으면, 제2 조건 및 제3 조건을 만족하더라도 화학제주입최적화 프로세스가 수행되지 않도록 제어한다. 이러한 경우, 화학제주입최적화 프로세스를 수행함으로써 수처리플랜트(1) 혹은 수처리제어장치(2)의 상태를 더욱 악화시킬 수 있기 때문에 화학제주입최적화 프로세스를 수행하지 않는다.
다음으로, 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 데이터전처리부(200)의 구성에 대해서 설명하기로 한다. 도 4는 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 데이터전처리부의 구성을 설명하기 위한 도면이다.
도 4를 참조하면, 데이터전처리부(200)는 전처리부(210) 및 데이터생성부(220)를 포함한다. 여기서, 데이터생성부(220)는 클러스터부(211) 및 샘플링부(222)를 포함한다.
전처리부(210)는 원시 데이터를 수신하여 전처리를 수행한다. 이러한 원시 데이터는 수처리플랜트(1) 혹은 수처리제어장치(2)로부터 시간 상 지속적으로 수신된다. 원시 데이터는 서로 다른 속성을 가지는 복수의 종류의 데이터를 포함한다. 특히, 원시 데이터는 입력 속성을 가지는 입력 속성 데이터와, 출력 속성을 가지는 출력 속성 데이터를 포함한다. 입력 속성 데이터는 수처리플랜트(1), 특히, 용존공기부상장치(DAF)로 유입되는 유입수와 관련된 운전 데이터 및 상태 데이터를 포함한다. 이러한 입력 속성 데이터는 예컨대, 유입수의 유량, 온도, 전도도, 산성도(혹은 수소이온농도), 탁도, 유량, 유입수에 대한 처리량(단위 시간 당), 유입수에 대한 화학제 주입량, 화학제 주입 농도 등을 예시할 수 있다. 출력 속성 데이터는 용존공기부상장치(DAF)에 의해 수처리된 처리수와 관련된 운전 데이터 및 상태 데이터를 포함한다. 출력 속성 데이터는 처리수의 산성도(혹은 수소이온농도, pH) 혹은 산성도 변화량, 탁도 혹은 탁도 변화량, 잔류철 등을 예시할 수 있다.
전처리부(210)는 원시 데이터의 결측값을 복원할 수 있다. 이때, 전처리부(210)는 입력되는 결측값을 가지는 원시 데이터의 시간 상의 이웃하는 주변의 복수의 원시 데이터의 평균값, 중앙값 및 최빈값 중 어느 하나로 결측값을 대체함으로써 결측값을 복원할 수 있다.
또한, 전처리부(210)는 소정 주기 마다 시간 상 연속된 원시 데이터의 평균값을 산출하여 산출된 평균값을 가지는 하나의 원시 데이터로 병합할 수 있다. 예를 들면, 소정 주기가 1분이라면, 입력되는 원시 데이터의 1분 동안의 평균값을 가지는 1개의 원시 데이터로 병합한다. 이러한 주기는 화학제주입최적화장치(3)의 제어 주기와 일치할 수 있다.
특히, 전처리부(210)는 원시 데이터 중 입력 속성을 가지는 입력 속성 데이터와 입력 속성 데이터에 대응하는 출력 속성을 가지는 출력 속성 데이터를 동기에 맞춰 정렬한다. 전술한 바와 같이, 입력 속성 데이터는 용존공기부상장치(DAF)로 유입되는 유입수와 관련된 데이터이며, 출력 속성 데이터는 용존공기부상장치(DAF)의 수처리를 거친 후, 방출되는 처리와 관련된 데이터이다. 유입수는 용존공기부상장치(DAF)의 처리조 및 배관을 거쳐 처리수로 유출되기 때문에 유입수에 대한 화학제 주입에 따른 효과를 확인할 수 있는 처리수는 수리학적체류시간(HRT, Hydraulic Retention Time) 만큼의 차이가 발생한다. 따라서 본 발명은 수리학적체류시간(HRT)을 고려하여 입력 속성 데이터와 출력 속성 데이터의 동기를 맞춰 정렬한다. 즉, 전처리부(210)는 용존공기부상장치(DAF)로 유입되는 유입수의 유량, 용존공기부상장치(DAF)의 처리조의 크기, 배관의 길이 및 직경을 고려하여 용존공기부상장치(DAF)에 의한 수리학적체류시간(HRT)을 산출하고, 산출된 수리학적체류시간(HRT)에 따라 입력 속성 데이터와 출력 속성 데이터의 동기를 맞춰 정렬한다.
또한, 전처리부(210)는 수질 이상이 발생한 시간 구간의 원시 데이터를 소거한다. 전처리부(210)는 수질 이상이 있는 시간 구간은 수질이상감시시스템(ADS, 미도시)을 통해 수질 정보를 수신하고, 이를 분석하여 수질 이상 여부를 판별할 수 있다. 수질 정보는 예컨대, 용존산소량, 질소, 수은, 인, 탁도, 이산화탄소, 수소 농도 등이 될 수 있다. 또한, 수질 이상이 있는 시간 구간은 수질을 관리하는 관리자가 직접 수질을 검사하고, 그 검사 결과에 따라 관리자가 수질 이상이 발생한 시간 기간을 입력함으로써 결정될 수 있다. 즉, 전처리부(210)는 관리자의 입력을 수신하여 수질 이상이 발생한 시간 기간을 인식할 수 있다.
전처리부(210)는 원시 데이터에서 기 설정된 최소 및 최대 범위(MAX, MIN)를 벗어나는 이상값(outlier)을 소거한다. 즉, 전처리부(210)는 원시 데이터에서 기 설정된 최소값(MIN) 및 최대값(MAX)을 벗어나는 범위의 이상값(outlier)을 소거하여 최소값(MIN) 및 최대값(MAX) 범위 내에 있는 정상값만을 추출한다.
전처리부(210)는 대역필터를 이용한 필터링을 통해 원시 데이터 중 수질 속성을 가지는 원시 데이터의 노이즈를 제거한다. 여기서, 대역 필터는 저역통과필터(low-pass filter), 대역통과필터(band-pass filter), 노치필터(notch filter) 등을 예시할 수 있다.
전처리부(210)는 하나 또는 2 이상의 속성의 원시 데이터를 이용하여 새로운 속성의 원시 데이터를 생성할 수 있다. 이때, 속성의 변화에 따라 원시 데이터의 값의 단위를 변환할 수 있다. 일례로, 원시 데이터 중 유입수의 탁도 및 처리수의 탁도를 이용하여 유입수의 탁도 및 처리수의 탁도의 차이를 나타내는 탁도의 변화율을 속성으로 하는 원시 데이터를 생성할 수 있다. 다른 예로, 원시 데이터 중 화학제의 농도를 기초로 화학제가 주입된 처리수의 유량으로 변환할 수 있다. 처리수의 유량의 단위는 농도(ppm)를 기초로 시간당 처리용량(L/h)으로 변환할 수 있다.
전술한 바와 같이, 데이터생성부(220)는 클러스터부(211) 및 샘플링부(222)를 포함한다.
클러스터부(221)는 원시 데이터의 속성의 상관관계에 따라 원시 데이터를 클러스터링한다. 이때, 속성의 상관도가 소정 수치 이상인 정규 데이터를 그룹화할 수 있다. 추가적인 실시예에 따르면, 유사도가 소정 수치 이상인 패턴을 가지는 원시 데이터를 그룹화할 수 있다. 특히, 원시 데이터는 입력 속성을 가지는 입력 속성 데이터와, 출력 속성을 가지는 출력 속성 데이터를 포함한다. 입력 속성 데이터는 수처리플랜트(1), 특히, 용존공기부상장치(DAF)로 유입되는 유입수와 관련된 운전 데이터 및 상태 데이터를 포함한다. 이러한 입력 속성 데이터는 예컨대, 유입수의 유량, 온도, 전도도, 산성도(혹은 수소이온농도), 탁도, 유량, 유입수에 대한 처리량(단위 시간 당), 유입수에 대한 화학제 주입량, 화학제 주입 농도 등을 예시할 수 있다. 출력 속성 데이터는 용존공기부상장치(DAF)에 의해 수처리된 처리수와 관련된 운전 데이터 및 상태 데이터를 포함한다. 출력 속성 데이터는 처리수의 산성도(혹은 수소이온농도, pH) 혹은 산성도 변화량, 탁도 혹은 탁도 변화량, 잔류철 등을 예시할 수 있다. 클러스터부(221)는 원시 데이터의 속성의 상관관계에 따라 원시 데이터를 클러스터링하되, 입력 속성 데이터와, 입력 속성 데이터와 상관도가 소정 수치 이상인 출력 속성 데이터를 클러스터링할 수 있다. 이러한 속성의 상관관계에 따라 클러스터링이 이루어지고, 학습 데이터가 생성되어, 후속 절차에서, 이를 이용하여 학습을 수행함으로써, 수처리모델의 생성 시, 그 성능이 향상될 수 있다.
샘플링부(222)는 클러스터링된 원시 데이터의 속성에 따라, 원시 데이터를 샘플링하여 학습 데이터를 생성한다. 클러스터링된 원시 데이터는 입력 속성 데이터 및 출력 속성 데이터를 포함한다. 수처리모델은 수처리플랜트를 모사하여 유입수의 상태 및 유입수에 주입되는 화학제에 따라 수치러플랜트(1)의 수처리를 통해 유출되는 처리수의 상태를 예측한다. 따라서 수처리모델의 학습 데이터로 사용되는 입력 데이터는 유입수 및 화학제와 관련된 속성, 즉, 전술한 입력 속성을 가지는 입력 속성 데이터가 될 수 있다. 출력 데이터는 처리수의 상태와 관련된 속성, 즉, 출력 속성을 가지는 출력 속성 데이터가 될 수 있다. 이에 따라, 샘플링부(222)는 수처리모델에 입력되는 입력 데이터를 추출하고, 그 입력 데이터가 수처리모델에 입력되었을 때 출력되는 출력 데이터를 추출하고, 추출된 입력 데이터 및 추출된 출력 데이터를 매핑하여 학습 데이터를 생성할 수 있다. 다른 말로, 샘플링부(222)는 입력 속성 데이터를 샘플링하여 입력 데이터로 추출하고, 출력 속성 데이터를 샘플링하여 출력 데이터로 추출할 수 있다.
다음으로, 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 화학제주입최적화부(300)의 구성에 대해서 설명하기로 한다. 도 5는 본 발명의 실시예에 따른 화학제주입최적화부의 구성을 설명하기 위한 도면이다.
도 5를 참조하면, 화학제주입최적화부(300)는 제어기선택관리부(310) 및 제어값도출부(320)를 포함한다.
제어기선택관리부(310)는 데이터를 이용하여 시뮬레이션을 통해 복수의 제어기의 성능을 평가하고, 평가 결과에 따라 화학제 주입 최적화를 위해 사용될 제어기를 선정한다. 이러한 성능 평가 시, 앞서 선정된 수처리모델을 이용할 수 있다. 제어기는 최적화 알고리즘 모델이며, PSO(particle swarm optimization), ARX(Auto-Regressive eXogeneous), ZN(Ziegler-Nichols) 등을 예시할 수 있다. 제어기선택관리부(310)는 전술한 바와 같은 복수의 제어기 중 수처리플랜트(1)의 처리수의 상태가 정상 범위를 유지하면서 최소의 화학제 주입량을 도출하는 제어기를 선정한다. 선정된 제어기는 화학제주입최적화부(300)에 제공된다.
제어값도출부(320)는 수처리모델 및 제어기를 이용하여 실시간 데이터를 분석하여 화학제 주입 최적화를 위한 제어값을 산출한다. 여기서, 실시간 데이터는 수처리플랜트(1) 및 수처리제어장치(2) 중 적어도 하나로부터 수신되는 운전 데이터 및 상태 데이터를 포함한다. 특히, 실시간 데이터는 유입수의 상태, 처리수의 상태 및 수처리플랜트(1)의 성능 정보 등을 포함한다. 여기서, 유입수의 상태는 예컨대, 유입수의 유량, 온도, 전도도, 산성도(혹은 수소이온농도), 탁도, 유량, 유입수에 대한 처리량(단위 시간 당), 유입수에 대한 주입제 주입 농도 등을 예시할 수 있다. 또한, 처리수의 상태는 처리수의 산성도 혹은 산성도 변화량, 탁도 혹은 탁도 변화량 등을 예시할 수 있다. 제어값도출부(320)는 수처리모델 및 제어기를 이용하여 실시간 데이터를 분석하여 수처리플랜트(1)의 처리수의 상태가 정상 범위를 유지하면서 최소의 화학제 주입량이 주입되도록 하는 제어값을 산출한다. 이러한 제어값의 산출은 화학제주입최적화장치(3)의 제어 주기(예컨대, 1분) 별로 이루어진다. 또한, 제어값은 그룹 단위, 파트 단위 및 유닛 단위로 순차로 산출될 수 있다.
여기서, 수처리모델은 유입수의 상태를 나타내는 데이터 및 제어기가 도출하는 화학제 주입량을 입력 받고, 처리수의 상태를 예측하는 예측값을 산출한다. 또한, 제어기는 수처리모델이 예측한 예측값을 입력 받고, 예측값에 따라 처리수의 상태의 범위를 한정하는 제약조건 및 화학제 주입 비용을 최소로 하기 위한 목적함수를 고려하여 화학제 주입량을 산출한다. 이와 같이, 수처리모델은 제어기가 산출한 화학제 주입량을 입력 받아 예측값을 산출하고, 제어기는 수처리모델이 산출한 예측값을 입력 받아 화학제 주입량을 산출하는 상호작용을 종료 조건이 만족할 때까지 반복하여 처리수의 상태가 정상 범위를 유지하면서 최소의 화학제 주입량이 주입되도록 하는 제어값을 도출한다.
다음으로, 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 화학제주입출력제어부(400)의 구성에 대해서 설명하기로 한다. 도 6은 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 화학제주입출력제어부의 구성을 설명하기 위한 도면이다.
도 6을 참조하면, 화학제주입출력제어부(400)는 제어값보정부(410), 제어모드관리부(420) 및 출력처리부(430)를 포함한다.
제어값보정부(410)는 소정 제어 주기(예컨대, 1분)에 따라 화학제주입최적화부(300)로부터 수신되는 제어값을 후공정보호부(800)로부터 수신되는 보정바이어스값을 이용하여 보정할 수 있다.
화학제주입최적화부(300)는 하나 이상의 수처리모델을 통해 제어 주기(예컨대, 1분) 동안 수신되는 실시간 데이터를 분석하여 수처리플랜트(1)의 처리수의 상태(즉, 도 1의 ③에서의 상태)를 예측하는 예측값을 도출하고, 제어기를 통해 예측값을 기초로 수처리플랜트의 처리수의 상태가 정상 범위를 유지하면서 최소의 화학제 주입량이 주입되도록 하는 제어값을 도출하고, 도출된 제어값을 화학제주입출력제어부(400)에 제공한다. 또한, 후공정보호부(800)는 제어 주기(예컨대, 1분) 동안 수신되는 후단 공정에 의한 공정의 운전 데이터 및 상태 데이터를 포함하는 후공정 데이터를 분석하여 후단 공정에 피해(즉, 도 1의 ③과 ④사이에서 발생하는 피해)를 방지하기 위한 보정바이어스값을 도출하고, 도출된 보정바이어스값을 화학제주입출력제어부(400)에 제공한다. 이에 따라, 제어값보정부(410)는 제어값을 보정바이어스값을 이용하여 보정할 수 있다. 예컨대, 제어값이 황산 및 염화철의 주입량의 목표치인 경우, 다음의 수학식 1과 같이, 제어값을 보정할 수 있다.
<수학식 1>
Sulfuric Acid Target = Sulfuric Acid Target + AFCS × Sulfuric Acid Bias
Ferric Chloride Target=Ferric Chloride Target + AFCS × Ferric Chloride Bias
여기서, Sulfuric Acid Target 및 Ferric Chloride Target는 황산 및 염화철의 주입량의 목표치고, AFCS(Anti-Fouling Controller Switch)는 0 또는 1이며, Sulfuric Acid Bias 및 Ferric Chloride Bias는 황산 및 염화철의 주입량의 보정바이어스값이다.
제어모드관리부(420)는 제어모드를 재설정하기 위한 것이다. 제어모드는 자동(AUTO)모드, 가이드(GUIDE)모드, 대기(HOLD)모드 및 중단(STOP)모드를 포함한다. 자동모드는 출력처리부(430)가 수처리제어장치(2)에 제어값을 제공하여, 제어값이 수처리제어장치(2)에 자동으로 적용되도록 하는 것을 의미한다. 자동모드에서 수처리제어장치(2)는 자동으로 제어값을 반영하여 수처리플랜트(1)를 제어한다. 가이드모드는 출력처리부(430)가 수처리제어장치(2)에 제어값을 제공하되, 제어값의 적용이 상기 수처리제어장치(2)에 의해 결정되도록 제어값을 열람 가능한 상태로 제공하는 모드이다. 대기모드는 출력처리부(430)가 수처리제어장치의 제어 주기 및 각 제어 주기에서의 제어 범위에 맞춰 제어값을 변환하지만, 변환된 제어값을 수처리제어장치에 제공하지 않는 모드이다. 제어모드관리부(420)는 중단모드에서 출력처리부(430)에 제어값을 제공하지 않는다. 따라서 출력처리부(430)는 중단모드에서 제어값을 수처리제어장치(2)에 제공할 수 없다.
도 3에서 설명된 바와 같이, 화학제주입관리부(100)는 실시간 데이터를 분석하여 화학제주입최적화의 제어모드를 결정하고, 결정된 제어모드를 관리명령으로 전달한다. 그러면, 제어모드관리부(420)는 소정의 제어 주기(예컨대, 1분)에서 이전 주기의 제어모드를 고려하고, 소정의 제어 주기(예컨대, 1분)에 따라 각 주기 별로 제어값이 정상적으로 갱신되는지 여부를 확인하여, 제어모드를 재설정할 수 있다. 만약, 제어 주기 별로 제어값의 입력이 갱신되어 이루어져야 하지만(동일한 갑인 경우에도 지속적으로 입력), 제어값이 입력이 이루어지지 않는 제어 주기가 소정 주기 이상 지속되는 경우, 이상 상황이 발생한 것으로 판단하고, 이전 주기의 제어모드를 고려하여 대기(HOLD)모드 혹은 정지(STOP)모드로 전환될 수 있다.
또한, 제어모드관리부(420)는 소정의 제어 주기에 따라 이전 제어 주기와 현 제어 주기의 실시간 데이터를 비교하여 기 설정된 임계치 이상의 차이가 발생하면, 제어모드를 대기모드로 재설정할 수 있다. 화학제주입최적화부(300)가 산출한 제어값은 제어 주기 상 이전 주기의 실시간 데이터를 이용하여 도출한 것이지만, 현 제어 주기의 실시간 데이터와 이전 주기의 실시간 데이터의 차이가 현저한 경우, 해당 제어값의 신뢰도가 없는 것으로 판단하여 대기모드로 전환한다.
출력처리부(430)는 제어모드관리부(420)의 제어, 즉, 제어모드관리부(420)가 재설정한 제어모드에 따라 제어값을 수처리제어장치(2)에 제공한다. 특히, 출력처리부(430)는 제어모드관리부(420)로부터 제어 주기 별로 제어값을 수신하면, 수처리제어장치(2)의 제어 주기 및 각 제어 주기에서의 수처리제어장치(2)의 제어 범위에 맞춰 상기 제어값을 변환하고, 변환된 제어값을 수처리제어장치(2)에 제공할 수 있다. 화학제주입최적화장치(3)의 제어 주기는 1분이고, 수처리제어장치(2)의 제어 주기는 10초라고 가정한다. 또한, 수처리제어장치(2)의 각 제어 주기에서의 제어 범위는 ±4라고 가정한다. 그러면, 화학제주입최적화부(300)는 1분 주기로 제어값을 산출하며, 화학제주입출력제어부(400)의 제어값보정부(410)는 1분 주기로 제어값을 보정하고, 제어모드관리부(420)는 1분 주기로 출력처리부(430)에 제어값을 전달할 것이다. 이때, 전달되는 제어값은 목표치며, +20이라고 가정한다. 그러면, 출력처리부(430)는 제어값을 변경하여, 수처리제어장치(2)의 제어 주기 및 제어 범위에 맞춰 10초 단위로 +4, +8, +12, +16, +20, +20의 제어값(목표치)을 수처리제어장치(2)에 제공한다.
다음으로, 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 자동모델링처리부(500)의 구성에 대해서 설명하기로 한다. 도 7은 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 자동모델링처리부의 구성을 설명하기 위한 도면이다.
도 7을 참조하면, 자동모델링처리부(500)는 모델 형식, 모델 구조, 모델의 입력 및 출력, 그리고, 모델의 변수를 포함하는 설계정보를 생성하고, 생성된 설계정보를 모델생성부(600)에 제공하기 위한 것이다. 이러한 자동모델링처리부(500)는 형식설계부(510), 구조설계부(520), 입출력설계부(530) 및 변수설계부(540)를 포함한다.
형식설계부(510)는 수처리모델의 모델 형식을 설정한다. 이러한 모델의 형식은 ARX(Auto-regressive Exogenous), FIR(Finite Impulse Response), NN(neural network), SS(State space) 등을 예시할 수 있다. 일 실시예에 따르면, 형식설계부(510)는 최적화된 화학제 주입량을 도출하기 위한 제어기가 결정되면, 결정된 제어기의 형식에 적합한 모델 형식을 설정할 수 있다. 다른 실시예에 따르면, 형식설계부(510)는 기 저장된 복수의 시드모델 중 어느 하나의 시드모델의 모델 형식을 수처리모델의 모델 형식으로 채택할 수 있다. 여기서, 시드모델은 수처리모델 중 전문가에 의해 생성된 모델이다. 또 다른 실시예에 따르면, 사용자의 입력에 따라 모델 형식을 채택할 수 있다.
구조설계부(520)는 모델 구조를 설정한다. 모델 구조는 수처리모델의 출력당 서브모델의 수를 나타낸다. 예컨대, 하나의 입력과, 하나의 출력을 가지는 하나의 모델을 가지는 구조로 설정하거나, 하나의 입력이 제1 서브모델에 입력되고, 제1 서브모델의 출력이 제2 서브모델에 입력되며, 제2 서브모델의 출력이 최종 출력이 되는 구조로 설정할 수 있다. 일 실시예에 따르면, 구조설계부(520)는 기 저장된 복수의 시드모델 중 어느 하나의 시드모델의 모델 구조를 수처리모델의 모델 구조로 채택할 수 있다. 다른 실시예에 따르면, 구조설계부(520)는 사용자의 입력에 따라 모델 구조를 채택할 수 있다.
입출력설계부(530)는 수처리모델의 입력 및 출력을 설정한다. 예컨대, 입력은 유입수의 유량, 온도, 전도도, 산성도(혹은 수소이온농도), 탁도, 유량, 유입수에 대한 처리량(단위 시간 당), 유입수에 대한 주입제 주입 농도 등을 예시할 수 있다. 또한, 출력은 처리수의 산성도 혹은 산성도 변화량, 탁도 혹은 탁도 변화량, 잔류철 혹은 잔류철 변화량 등을 예시할 수 있다. 일 실시예에 따르면, 입출력설계부(530)는 기 저장된 복수의 시드모델 중 어느 하나의 시드모델에 적용된 입력 및 출력을 동일하게 수처리모델의 입력 및 출력으로 채택할 수 있다. 다른 실시예에 따르면, 구조설계부(520)는 사용자의 입력에 따라 수처리모델의 입력 및 출력을 설정할 수 있다.
변수설계부(540)는 수처리모델의 변수를 설정한다. 이러한 변수는 선형성, 지수 및 지연 시간을 결정하는 변수가 될 수 있다. 일 실시예에 따르면, 입출력설계부(530)는 기 저장된 복수의 시드모델 중 어느 하나의 시드모델에 적용된 변수를 수처리모델의 변수로 채택할 수 있다. 다른 실시예에 따르면, 구조설계부(520)는 사용자의 입력에 따라 수처리모델의 변수를 설정할 수 있다.
다음으로, 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 모델생성부(600)의 구성에 대해서 설명하기로 한다. 도 8은 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 모델생성부의 구성을 설명하기 위한 도면이다.
도 8을 참조하면, 모델생성부(600)는 본 발명의 실시예에 따른 수처리모델을 학습시키기 위한 것이다. 모델생성부(600)는 학습데이터수집부(610) 및 학습부(620)를 포함한다.
학습데이터수집부(610)는 데이터전처리부(200)가 전처리를 통해 생성한 학습 데이터를 지속적으로 수신하고, 수신된 학습 데이터를 지속적으로 저장한다. 학습 데이터는 학습용 데이터 및 검증용 데이터를 포함한다. 학습용 데이터는 수처리모델을 학습시키기 위한 것이며, 검증용 데이터는 수처리모델이 목표하는 성능에 도달하였는지 여부를 검증하기 위한 것이다. 본 발명의 실시예에서 학습용 데이터와 검증용 데이터의 구분은 수처리모델을 생성(학습)하는 시점 및 학습 데이터를 저장한 시점을 기준으로 구분된다. 수처리모델의 생성을 위한 학습이 시작되면, 학습데이터수집부(610)는 학습 데이터가 저장된 시점에 따라, 저장된 학습 데이터 중 현재(학습을 수행하는 시점)를 기준으로 과거의 제1 시점으로부터 현재까지 저장된 학습 데이터를 검증용 데이터로 추출한다. 또한, 학습데이터수집부(610)는 저장된 학습 데이터 중 제1 시점 보다 과거인 제2 시점으로부터 제1 시점까지 저장된 학습 데이터를 학습용 데이터로 추출한다. 추출된 학습용 데이터 및 검증용 데이터를 포함하는 학습 데이터는 학습부(620)에 제공된다.
학습부(620)는 기 설정된 모델 생성 조건이 만족되면, 학습을 통해 수처리모델을 생성한다. 여기서, 모델 생성 조건은 기 설정된 모델 생성 주기가 도래한 경우를 포함한다. 기 설정된 모델 생성 주기는 학습부(620)의 연산 가용 자원(예컨대, CPU 리소스)에 따라 결정된다. 즉, 기 설정된 모델 생성 주기는 학습부(620)의 연산 가용 자원의 용량이 클수록 짧아지고, 학습부(620)의 연산 가용 자원의 용량이 작을수록 길어진다. 또한, 모델 생성 조건은 기 설정된 이벤트가 발생한 경우를 포함한다. 여기서 기 설정된 이벤트는 전체 수리 혹은 점검(overhaul)으로 인한 발전소 재기동, 데이터베이스의 변경, 수처리플랜트의 특성 변경 등을 예시할 수 있다.
학습부(620)는 모델 생성 조건이 만족되면, 학습데이터수집부(610)로부터 학습 데이터를 제공받고, 제공 받은 학습 데이터를 이용하여 수처리플랜트(1)를 모사하여 수처리플랜트에 대한 유입수의 상태에 따라 처리수의 상태를 예측하는 수처리모델을 생성한다. 학습부(620)는 학습 데이터 중 입력 데이터(IN)를 수처리모델에 입력하고, 수처리모델이 연산을 통해 예측값을 산출하면, 손실함수(LOSS FUNCTION)을 통해 목표값(Target)으로 사용되는 출력 데이터와의 차이인 손실(LOSS)을 산출하고, 산출된 손실(LOSS)이 최소가되도록 예컨대, 역전파(backpropagation) 알고리즘을 통해 수처리모델의 파라미터를 갱신하는 최적화를 수행한다. 이러한 최적화의 반복을 통해 수처리모델이 생성될 수 있다.
다음으로, 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 모델선정부(700)의 구성에 대해서 설명하기로 한다. 도 9는 본 발명의 실시예에 따른 화학제 주입 최적화를 위한 모델선정부의 구성을 설명하기 위한 도면이다.
도 9를 참조하면, 모델선정부(700)는 모델생성부(600)에 의해 생성된 수처리모델의 성능을 평가하고, 평가에 따라 적합한 수처리모델을 저장하고, 화학제주입최적화부(300)에 제공할 수 있다. 이러한 모델선정부(700)는 성능평가부(710) 및 모델저장관리부(720)를 포함한다.
성능평가부(710)는 모델생성부(600)에 의해 생성된 수처리모델의 성능을 평가하기 위한 것이다. 성능평가부(710)는 평가 데이터를 수집하고, 수집된 평가 데이터를 이용하여 수처리모델의 성능을 평가한다. 평가 데이터는 입력 데이터와 그 입력 데이터에 대응하는 출력 데이터를 포함한다. 성능평가부(710)는 수처리플랜트로부터 수집된 평가 데이터를 이용하여 생성된 수처리모델 중 수처리플랜트와의 유사도가 가장 높은 수처리모델을 선정할 수 있다.
모델저장관리부(720)는 성능평가부(710)의 평가 결과, 최적의 수처리모델이 선정되면, 선정된 수처리모델을 소정의 저장공간에 저장한다. 모델저장관리부(720)는 생성된 순서에 따라 수처리모델을 정렬하고, 수처리모델을 저장하는 저장공간의 저장용량이 부족한 경우, 선정되지 않은 수처리모델 중 생성된 시기가 빠른 순서에 따라 해당하는 수처리모델을 순차로 삭제할 수 있다.
다음으로, 본 발명의 실시예에 따른 수처리 플랜트에서 화학제 주입 최적화를 위한 방법에 대해서 설명하기로 한다. 도 10은 본 발명의 실시예에 따른 수처리 플랜트에서 화학제 주입 최적화를 위한 방법을 설명하기 위한 흐름도이다.
도 10을 참조하면, 데이터전처리부(200)는 S110 단계에서 원시 데이터를 입력 받는다. 원시 데이터는 수처리플랜트(1) 및 수처리제어장치(2) 중 적어도 하나로부터 수집된 운전 데이터 및 상태 데이터를 포함한다. 즉, 원시 데이터는 시간 상 수처리플랜트(1) 및 수처리제어장치(2)로부터 수집되는 운전 데이터 및 상태 데이터가 누적되어 저장된 것이다. 따라서, 이러한 원시 데이터는 실시간으로 수집되는 운전 데이터 및 상태 데이터를 포함하는 실시간 데이터가 포함될 수 있다. 특히, 또한, 원시 데이터는 서로 다른 속성을 가지는 복수의 종류의 데이터를 포함한다. 이러한 원시 데이터는 수처리플랜트(1) 혹은 수처리제어장치(2)로부터 시간 상 지속적으로 수신된다. 특히, 원시 데이터는 입력 속성을 가지는 입력 속성 데이터와, 출력 속성을 가지는 출력 속성 데이터를 포함한다. 입력 속성 데이터는 수처리플랜트(1), 특히, 용존공기부상장치(DAF)로 유입되는 유입수와 관련된 운전 데이터 및 상태 데이터를 포함한다. 이러한 입력 속성 데이터는 예컨대, 유입수의 유량, 온도, 전도도, 산성도(혹은 수소이온농도), 탁도, 유량, 유입수에 대한 처리량(단위 시간 당), 유입수에 대한 화학제 주입량, 화학제 주입 농도 등을 예시할 수 있다. 출력 속성 데이터는 용존공기부상장치(DAF)에 의해 수처리된 처리수와 관련된 운전 데이터 및 상태 데이터를 포함한다. 출력 속성 데이터는 처리수의 산성도(혹은 수소이온농도, pH) 혹은 산성도 변화량, 탁도 혹은 탁도 변화량, 잔류철 등을 예시할 수 있다.
원시 데이터가 수집되면, 데이터전처리부(200)는 S120 단계에서 원시 데이터를 전처리하여 학습 데이터를 생성한다. 학습 데이터는 그 용도에 따른 구분으로, 학습용 데이터 및 검증용 데이터를 포함한다. 또한, 학습 데이터는 그 속성에 따른 구분으로, 입력 데이터 및 출력 데이터를 포함한다. 입력 데이터는 입력 속성 데이터를 전처리하여 도출되며, 출력 데이터는 출력 속성 데이터를 전처리하여 도출된다. 입력 데이터는 유입수의 유량, 온도, 전도도, 산성도(혹은 수소이온농도), 탁도, 유량, 유입수에 대한 처리량(단위 시간 당), 유입수에 대한 화학제 주입량, 화학제 주입 농도 등을 예시할 수 있다. 출력 데이터는 처리수의 산성도(혹은 수소이온농도, pH) 혹은 산성도 변화량, 탁도 혹은 탁도 변화량, 잔류철 등을 예시할 수 있다. 특히, 데이터전처리부(200)는 전처리 시, 원시 데이터의 속성의 상관관계에 따라 원시 데이터를 클러스터링하되, 입력 속성 데이터와, 입력 속성 데이터와 상관도가 소정 수치 이상인 출력 속성 데이터를 클러스터링하여 학습 데이터를 생성한다. 학습 데이터는 용도에 따른 구분으로, 학습용 데이터 및 검증용 데이터를 포함한다. 또한, 학습 데이터는 속성에 따른 구분으로 입력 데이터 및 출력 데이터를 포함한다. 이러한 속성의 상관관계에 따라 학습 데이터를 생성하고, 후속 절차에서, 이를 이용하여 학습을 수행함으로써, 수처리모델의 생성 시, 그 성능이 향상될 수 있다.
그러면, 자동모델링처리부(500), 모델생성부(600) 및 모델선정부(700)를 포함하는 모델생성관리부(20)는 학습 데이터를 제공 받고, S130 단계에서 학습 데이터를 이용하여 수처리모델을 생성한다. 이러한 S130 단계에서, 자동모델링처리부(500)는 수처리모델을 설계한다. 수처리모델의 설계는 모델의 형식, 하나의 모델에 속하는 서브 모델의 수, 입력, 출력 및 변수를 지정하는 것을 의미한다. 그러면, 모델생성부(600)는 설계된 수처리모델에 대해 학습용 데이터 중 학습용 데이터를 이용하여 학습을 수행함으로써, 수처리플랜트(1)를 모사하여 수처리플랜트(1)에 대한 유입수의 상태에 따라 처리수의 상태를 예측하는 수처리모델을 생성한다. 그런 다음, 모델선정부(700)는 학습용 데이터 중 검증용 데이터를 이용하여 복수의 수처리모델 중 수처리플랜트(1)와의 유사도가 가장 높은 수처리모델을 선정한다. 이와 같이, 선정된 수처리모델을 최적화부(10)의 화학제주입최적화부(300)에 제공된다.
다음으로, 본 발명의 추가적인 실시예에 따른 수처리 플랜트에서 화학제 주입 최적화를 위한 방법에 대해서 설명하기로 한다. 도 11은 본 발명의 추가적인 실시예에 따른 수처리 플랜트에서 화학제 주입 최적화를 위한 방법을 설명하기 위한 흐름도이다.
도 11을 참조하면, 화학제주입관리부(100)는 S210 단계에서 운전 데이터 및 상태 데이터를 포함하는 실시간 데이터를 입력 받는다. 그러면, 화학제주입관리부(100)는 S220 단계에서 실시간 데이터를 분석하여 수처리플랜트(1)에 이상이 있는지 여부를 판별하여, 화학제 주입량을 최적화하기 위한 화학제주입최적화 수행 여부를 결정한다. 수처리플랜트(1)에 이상이 없어 화학제주입최적화 수행이 결정되면, 전처리부(200)는 S230 단계에서 실시간 데이터에 대한 전처리를 수행하여 전처리된 실시간 데이터를 화학제주입최적화부(300) 및 화학제주입출력제어부(400)를 포함하는 최적화부(10)에 제공한다.
한편, 앞서 설명된 바와 같이, 최적화부(10)는 모델생성관리부(20)로부터 수처리모델을 제공 받을 수 있다. 이에 따라, 최적화부(10)의 화학제주입최적화부(300)는 S240 단계에서 하나 이상의 수처리모델 및 하나 이상의 제어기를 통해 실시간 데이터를 분석하여 수처리플랜트의 처리수의 상태가 정상 범위를 유지하면서 최소의 화학제 주입량이 주입되도록 하는 제어값을 도출한다. 여기서, 제어기는 탐색 알고리즘이다. 또한, 처리수의 상태는 탁도, 산성도, 잔류철 등을 예시할 수 있다. 이러한 S240 단계에서, 하나 이상의 수처리모델은 제어기로부터 입력에 따라 실시간 데이터를 분석하여 수처리플랜트의 처리수의 상태를 예측하는 예측값을 도출하며, 하나 이상의 제어기는 수처리모델의 예측값이 처리수의 상태가 정상 범위를 유지하면서 최소의 화학제 주입량이 주입되도록 하는 제어값을 탐색하여 도출한다. 즉, 제어기는 수처리플랜트를 모사하는 수처리모델을 통해 수처리플랜트의 처리수의 상태를 예측하는 시뮬레이션을 수행함으로써, 최적의 제어값을 도출할 수 있다.
한편, 후공정보호부(800)는 S250 단계에서 수처리플랜트(1)의 후단 공정, 즉, 자동여과장치(AS), 한외여과장치(UF) 및 역삼투압장치(RO)에 의한 공정의 운전 데이터 및 상태 데이터를 포함하는 후공정 데이터를 수신하고, S260 단계에서 수신된 후공정 데이터를 분석하여 후단 공정에 피해, 예컨대, 파울링(Fouling)이 발생하는 상황을 방지하기 위한 후공정 보호 로직에 따라 후공정을 보호하기 위한 보정바이어스값을 도출하여, 화학제주입출력제어부(400)에 제공한다.
화학제주입출력제어부(400)는 S270 단계에서 보정바이어스값, 수처리제어장치(2)의 제어 주기 및 제어 범위에 따라 제어값을 수정할 수 있다. 그런 다음, 화학제주입출력제어부(400)는 S280 단계에서 화학제주입관리부(100)의 관리 명령 및 현재 상태 중 적어도 하나에 따라 화학제주입최적화부(300)가 도출한 제어값을 수처리제어장치(2)에 제공한다. 이때, 화학제주입출력제어부(400)는 관리 명령 및 현재 상태 중 적어도 하나에 따라 제어값을 수처리제어장치(2)에 제공하지 않을 수 있다.
도 12는 본 발명의 실시예에 따른 컴퓨팅 장치를 나타내는 도면이다. 컴퓨팅 장치(TN100)는 본 명세서에서 기술된 장치(예컨대, 수처리제어장치(2) 및 화학제주입최적화장치(3) 등) 일 수 있다.
도 12의 실시예에서, 컴퓨팅 장치(TN100)는 적어도 하나의 프로세서(TN110), 송수신 장치(TN120), 및 메모리(TN130)를 포함할 수 있다. 또한, 컴퓨팅 장치(TN100)는 저장 장치(TN140), 입력 인터페이스 장치(TN150), 출력 인터페이스 장치(TN160) 등을 더 포함할 수 있다. 컴퓨팅 장치(TN100)에 포함된 구성 요소들은 버스(bus)(TN170)에 의해 연결되어 서로 통신을 수행할 수 있다.
프로세서(TN110)는 메모리(TN130) 및 저장 장치(TN140) 중에서 적어도 하나에 저장된 프로그램 명령(program command)을 실행할 수 있다. 프로세서(TN110)는 중앙 처리 장치(CPU: central processing unit), 그래픽 처리 장치(GPU: graphics processing unit), 또는 본 발명의 실시예에 따른 방법들이 수행되는 전용의 프로세서를 의미할 수 있다. 프로세서(TN110)는 본 발명의 실시예와 관련하여 기술된 절차, 기능, 및 방법 등을 구현하도록 구성될 수 있다. 프로세서(TN110)는 컴퓨팅 장치(TN100)의 각 구성 요소를 제어할 수 있다.
메모리(TN130) 및 저장 장치(TN140) 각각은 프로세서(TN110)의 동작과 관련된 다양한 정보를 저장할 수 있다. 메모리(TN130) 및 저장 장치(TN140) 각각은 휘발성 저장 매체 및 비휘발성 저장 매체 중에서 적어도 하나로 구성될 수 있다. 예를 들어, 메모리(TN130)는 읽기 전용 메모리(ROM: read only memory) 및 랜덤 액세스 메모리(RAM: random access memory) 중에서 적어도 하나로 구성될 수 있다.
송수신 장치(TN120)는 유선 신호 또는 무선 신호를 송신 또는 수신할 수 있다. 송수신 장치(TN120)는 네트워크에 연결되어 통신을 수행할 수 있다.
한편, 전술한 본 발명의 실시예에 따른 다양한 방법은 다양한 컴퓨터수단을 통하여 판독 가능한 프로그램 형태로 구현되어 컴퓨터로 판독 가능한 기록매체에 기록될 수 있다. 여기서, 기록매체는 프로그램 명령, 데이터 파일, 데이터구조 등을 단독으로 또는 조합하여 포함할 수 있다. 기록매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 예컨대 기록매체는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광 기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치를 포함한다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어를 포함할 수 있다. 이러한 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상, 본 발명의 일 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.

Claims (24)

  1. 실시간 데이터가 입력되면, 수처리모델을 통해 상기 실시간 데이터를 분석하여 상기 수처리플랜트의 처리수의 상태를 예측하는 예측값을 도출하고, 제어기를 통해 상기 예측값을 기초로 상기 수처리플랜트의 처리수의 상태가 정상 범위를 유지하면서 최소의 화학제 주입량이 주입되도록 하는 제어값을 도출하는 화학제주입최적화부; 및
    상기 수처리제어장치에 상기 제어값을 제공하는 화학제주입출력제어부;
    를 포함하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  2. 제1항에 있어서,
    상기 화학제주입출력제어부는
    상기 수처리제어장치의 제어 주기 및 각 제어 주기에서의 제어 범위에 맞춰 상기 제어값을 변환하고, 변환된 제어값을 상기 수처리제어장치에 제공하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  3. 제1항에 있어서,
    상기 장치는
    후단 공정에 의한 공정의 운전 데이터 및 상태 데이터를 포함하는 후공정 데이터를 분석하여 후단 공정에 피해를 방지하기 위한 보정바이어스값을 도출하는 후공정보호부;
    를 더 포함하며,
    상기 화학제주입출력제어부는
    상기 화학제주입출력제어부가 상기 보정바이어스값에 따라 상기 제어값을 보정하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  4. 제1항에 있어서,
    상기 장치는
    수처리플랜트 및 수처리제어장치 중 적어도 하나로부터 운전 데이터 및 상태 데이터를 포함하는 실시간 데이터를 입력 받고, 입력된 실시간 데이터를 분석하여 화학제 주입량을 최적화하기 위한 화학제주입최적화 프로세스의 수행 여부를 결정하는 화학제주입관리부;
    를 더 포함하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  5. 제4항에 있어서,
    상기 장치는
    상기 실시간 데이터를 전처리한 후, 상기 화학제주입최적화부에 전처리된 실시간 데이터를 제공하는 데이터전처리부;
    를 더 포함하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  6. 제1항에 있어서,
    상기 장치는
    수처리모델을 설계하는 자동모델링처리부; 및
    원시 데이터로부터 추출된 학습 데이터를 이용하여 학습을 통해 상기 수처리플랜트를 모사하여 상기 수처리플랜트에 대한 유입수의 상태에 따라 처리수의 상태를 예측하는 수처리모델을 생성하는 모델생성부;
    를 더 포함하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  7. 제6항에 있어서,
    상기 장치는
    수처리플랜트로부터 수집된 평가 데이터를 이용하여 상기 생성된 수처리모델 중 상기 수처리플랜트와의 유사도가 가장 높은 수처리모델을 선정하고, 선정된 수처리모델을 상기 화학제주입최적화부에 제공하는 모델선정부;
    를 더 포함하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  8. 제1항에 있어서,
    상기 수처리모델은
    상기 유입수의 상태를 나타내는 데이터 및 제어기가 도출하는 화학제 주입량을 입력 받고, 상기 처리수의 상태를 예측하는 예측값을 산출하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  9. 제8항에 있어서,
    상기 제어기는
    상기 수처리모델이 예측한 예측값을 입력 받고, 상기 예측값에 따라 처리수의 상태의 범위를 한정하는 제약조건 및 화학제 주입 비용을 최소로 하기 위한 목적함수를 고려하여 화학제 주입량을 산출하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  10. 원시 데이터로부터 추출된 학습 데이터를 이용하여 학습을 통해 상기 수처리플랜트를 모사하여 상기 수처리플랜트에 대한 유입수의 상태에 따라 처리수의 상태를 예측하는 수처리모델을 생성하는 모델생성부; 및
    상기 수처리모델을 통해 상기 수처리플랜트의 처리수의 상태를 예측하는 예측값을 도출하고, 제어기를 통해 상기 예측값을 기초로 상기 수처리플랜트의 처리수의 상태가 정상 범위를 유지하면서 최소의 화학제 주입량이 주입되도록 하는 제어값을 도출하는 화학제주입최적화부;
    를 포함하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  11. 제10항에 있어서,
    상기 장치는
    상기 수처리제어장치의 제어 주기 및 각 제어 주기에서의 제어 범위에 맞춰 상기 제어값을 변환하고, 변환된 제어값을 상기 수처리제어장치에 제공하는 화학제주입출력제어부;
    를 더 포함하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  12. 제11항에 있어서,
    상기 장치는
    후단 공정에 의한 공정의 운전 데이터 및 상태 데이터를 포함하는 후공정 데이터를 분석하여 후단 공정에 피해를 방지하기 위한 보정바이어스값을 도출하는 후공정보호부;
    를 더 포함하며,
    상기 화학제주입출력제어부는
    상기 화학제주입출력제어부가 상기 보정바이어스값에 따라 상기 제어값을 보정하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  13. 제10항에 있어서,
    상기 장치는
    수처리플랜트 및 수처리제어장치 중 적어도 하나로부터 운전 데이터 및 상태 데이터를 포함하는 실시간 데이터를 입력 받고, 입력된 실시간 데이터를 분석하여 화학제 주입량을 최적화하기 위한 화학제주입최적화 프로세스의 수행 여부를 결정하는 화학제주입관리부;
    를 더 포함하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  14. 제10항에 있어서,
    상기 수처리모델은
    상기 유입수의 상태를 나타내는 데이터 및 제어기가 도출하는 화학제 주입량을 입력 받고, 상기 처리수의 상태를 예측하는 예측값을 산출하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  15. 제14항에 있어서,
    상기 제어기는
    상기 수처리모델이 예측한 예측값을 입력 받고, 상기 예측값에 따라 처리수의 상태의 범위를 한정하는 제약조건 및 화학제 주입 비용을 최소로 하기 위한 목적함수를 고려하여 화학제 주입량을 산출하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 장치.
  16. 화학제주입최적화부가 실시간 데이터를 입력 받는 단계;
    상기 화학제주입최적화부가 하나 이상의 수처리모델을 통해 상기 실시간 데이터를 분석하여 상기 수처리플랜트의 처리수의 상태를 예측하는 예측값을 도출하고,
    제어기를 통해 상기 예측값을 기초로 상기 수처리플랜트의 처리수의 상태가 정상 범위를 유지하면서 최소의 화학제 주입량이 주입되도록 하는 제어값을 도출하는 단계; 및
    화학제주입출력제어부가 상기 수처리제어장치에 상기 제어값을 제공하는 단계;
    를 포함하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 방법.
  17. 제16항에 있어서,
    상기 수처리제어장치에 상기 제어값을 제공하는 단계는
    상기 화학제주입출력제어부가 상기 수처리제어장치의 제어 주기 및 각 제어 주기에서의 제어 범위에 맞춰 상기 제어값을 변환하고, 변환된 제어값을 상기 수처리제어장치에 제공하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 방법.
  18. 제16항에 있어서,
    상기 수처리제어장치에 상기 제어값을 제공하는 단계는
    후공정보호부가 후단 공정에 의한 공정의 운전 데이터 및 상태 데이터를 포함하는 후공정 데이터를 분석하여 후단 공정에 피해를 방지하기 위한 보정바이어스값을 도출하면,
    상기 화학제주입출력제어부가 상기 보정바이어스값에 따라 상기 제어값을 보정하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 방법.
  19. 제16항에 있어서,
    상기 실시간 데이터를 입력 받는 단계 전,
    화학제주입관리부가 수처리플랜트 및 수처리제어장치 중 적어도 하나로부터 운전 데이터 및 상태 데이터를 포함하는 실시간 데이터를 입력 받고, 입력된 실시간 데이터를 분석하여 화학제 주입량을 최적화하기 위한 화학제주입최적화 프로세스의 수행 여부를 결정하는 단계;
    를 더 포함하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 방법.
  20. 제19항에 있어서,
    상기 화학제주입최적화 프로세스의 시작 여부를 결정하는 단계 후,
    상기 실시간 데이터를 입력 받는 단계 전,
    데이터전처리부가 상기 실시간 데이터를 전처리하는 단계; 및
    상기 데이터전처리부가 상기 화학제주입최적화부에 전처리된 실시간 데이터를 제공하는 단계;
    를 더 포함하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 방법.
  21. 제16항에 있어서,
    상기 실시간 데이터를 입력 받는 단계 전,
    자동모델링처리부가 누적되어 저장된 복수의 원시 데이터로부터 학습용 데이터 및 검증용 데이터를 포함하는 학습 데이터를 추출하는 단계; 및
    모델생성부가 상기 학습 데이터를 이용하여 학습을 통해 상기 수처리플랜트를 모사하여 상기 수처리플랜트에 대한 유입수의 상태에 따라 처리수의 상태를 예측하는 수처리모델을 생성하는 단계;
    를 더 포함하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 방법.
  22. 제21항에 있어서,
    상기 수처리모델을 생성하는 단계 후,
    모델선정부가 수처리플랜트로부터 수집된 평가 데이터를 이용하여 상기 생성된 수처리모델 중 상기 수처리플랜트와의 유사도가 가장 높은 수처리모델을 선정하는 단계; 및
    상기 모델선정부가 상기 선정된 수처리모델을 상기 화학제주입최적화부에 제공하는 단계;
    를 더 포함하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 방법.
  23. 제16항에 있어서,
    상기 제어값을 도출하는 단계는
    상기 수처리모델이 상기 유입수의 상태를 나타내는 데이터 및 제어기가 도출하는 화학제 주입량을 입력 받고, 상기 처리수의 상태를 예측하는 예측값을 산출하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 방법.
  24. 제23항에 있어서,
    상기 제어값을 도출하는 단계는
    상기 제어기가 상기 수처리모델이 예측한 예측값을 입력 받고, 상기 예측값에 따라 처리수의 상태의 범위를 한정하는 제약조건 및 화학제 주입 비용을 최소로 하기 위한 목적함수를 고려하여 화학제 주입량을 산출하는 것을 특징으로 하는
    화학제 주입 최적화를 위한 방법.
KR1020220002175A 2022-01-06 2022-01-06 수처리 플랜트에서 화학제 주입 최적화를 위한 장치 및 이를 위한 방법 KR20230106778A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020220002175A KR20230106778A (ko) 2022-01-06 2022-01-06 수처리 플랜트에서 화학제 주입 최적화를 위한 장치 및 이를 위한 방법
EP23150110.7A EP4209464A1 (en) 2022-01-06 2023-01-03 Chemical dosing optimization apparatus and method for water treatment plant
US18/149,704 US20230213898A1 (en) 2022-01-06 2023-01-04 Chemical dosing optimization apparatus and method for water treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220002175A KR20230106778A (ko) 2022-01-06 2022-01-06 수처리 플랜트에서 화학제 주입 최적화를 위한 장치 및 이를 위한 방법

Publications (1)

Publication Number Publication Date
KR20230106778A true KR20230106778A (ko) 2023-07-14

Family

ID=84799651

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220002175A KR20230106778A (ko) 2022-01-06 2022-01-06 수처리 플랜트에서 화학제 주입 최적화를 위한 장치 및 이를 위한 방법

Country Status (3)

Country Link
US (1) US20230213898A1 (ko)
EP (1) EP4209464A1 (ko)
KR (1) KR20230106778A (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117930687B (zh) * 2024-01-24 2024-08-27 日照港集装箱发展有限公司动力分公司 一种用于港口的智慧能源优化控制系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160027815A (ko) 2014-09-02 2016-03-10 창원대학교 산학협력단 수처리 시스템의 퍼지추정모델링을 이용한 제어방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017181222A1 (en) * 2016-04-18 2017-10-26 Waterwerx Technology Pty Ltd Water treatment system and method
KR102332597B1 (ko) 2019-12-31 2021-12-29 에스티비인터네셔널 주식회사 화장 도구
WO2021214755A1 (en) * 2020-04-21 2021-10-28 Elad Technologies (L.S.) Ltd System, and method for continuous process control of water contaminant separation process
CN111994970B (zh) * 2020-07-31 2022-06-21 上海上实龙创智能科技股份有限公司 一种基于lstm的污水高效沉淀池加药预测方法和加药系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160027815A (ko) 2014-09-02 2016-03-10 창원대학교 산학협력단 수처리 시스템의 퍼지추정모델링을 이용한 제어방법

Also Published As

Publication number Publication date
US20230213898A1 (en) 2023-07-06
EP4209464A1 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
KR101889510B1 (ko) 심층 신경망을 이용한 정수 처리에서의 응집제 주입률 예측 방법
US11526687B2 (en) Apparatus for generating learning data for combustion optimization and method therefor
US11761623B2 (en) Apparatus for combustion optimization and method therefor
CN112292642A (zh) 用于控制技术系统的控制装置和用于配置控制装置的方法
US20230213898A1 (en) Chemical dosing optimization apparatus and method for water treatment plant
CN115659263B (zh) 一种基于大数据的船舶操控行为风险评估系统及评估方法
CN117591857A (zh) 一种基于深度学习的电机检测方法
CN111241629B (zh) 基于数据驱动的飞机液压泵性能变化趋势智能预测方法
CN114266286A (zh) 一种焊接过程信息的在线检测方法及装置
KR20220150037A (ko) 수처리 시설의 공정별 수질 예측 시스템 및 방법
CN116882292B (zh) 一种基于LightGBM与异常检测算法的井漏溢流预警方法
US11629856B2 (en) Apparatus for managing combustion optimization and method therefor
KR20230106367A (ko) 화학제 주입 최적화를 위한 학습 데이터를 생성하기 위한 장치 및 이를 위한 방법
KR20230106776A (ko) 수처리플랜트의 화학제 주입 최적화를 위한 출력을 제어하기 위한 장치 및 이를 위한 방법
KR20230106777A (ko) 수처리플랜트의 화학제 주입 최적화를 관리하기 위한 장치 및 이를 위한 방법
US20140052425A1 (en) Method and apparatus for evaluating a model of an industrial plant process
KR20230106366A (ko) 수처리플랜트를 모사하는 수처리모델을 생성하기 위한 장치 및 이를 위한 방법
KR20230106775A (ko) 화학제 주입 최적화를 위한 최적의 수처리모델을 선정하기 위한 장치 및 이를 위한 방법
KR20230106780A (ko) 화학제 주입 최적화를 위한 수처리모델을 생성하기 위한 장치 및 이를 위한 방법
KR20230106779A (ko) 인공신경망 기반의 수처리플랜트를 모사하는 수처리모델을 생성하기 위한 장치 및 이를 위한 방법
EP4209462A1 (en) Apparatus and method for controlling chemical dosing optimization for water treatment plant
KR20230106368A (ko) 화학제 주입 최적화를 위한 최적의 제어값을 산출하기 위한 장치 및 이를 위한 방법
CN113139332A (zh) 一种自动化模型构建方法、装置及设备
CN111126694A (zh) 一种时间序列数据预测方法、系统、介质及设备
Pu et al. Intelligent real-time scheduling of water supply network based on deep learning

Legal Events

Date Code Title Description
E902 Notification of reason for refusal