KR20230099414A - Recombinant Yarrowia lipolytica for producing isopropanol and method for preparing isopropanol using thereof - Google Patents

Recombinant Yarrowia lipolytica for producing isopropanol and method for preparing isopropanol using thereof Download PDF

Info

Publication number
KR20230099414A
KR20230099414A KR1020210188731A KR20210188731A KR20230099414A KR 20230099414 A KR20230099414 A KR 20230099414A KR 1020210188731 A KR1020210188731 A KR 1020210188731A KR 20210188731 A KR20210188731 A KR 20210188731A KR 20230099414 A KR20230099414 A KR 20230099414A
Authority
KR
South Korea
Prior art keywords
gene
isopropanol
yarrowia lipolytica
recombinant
strain
Prior art date
Application number
KR1020210188731A
Other languages
Korean (ko)
Inventor
한성옥
시효우
박현민
이명은
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020210188731A priority Critical patent/KR20230099414A/en
Publication of KR20230099414A publication Critical patent/KR20230099414A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01004Acetoacetate decarboxylase (4.1.1.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/01Acid-ammonia (or amine)ligases (amide synthases)(6.3.1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 이소프로판올 생산용 재조합 야로위아 리포리티카 균주 및 이를 이용한 이소프로판올의 대량생산방법에 관한 것으로, 구체적으로 본 발명은 thl(thiolase) 또는 nphT7(acetoacetyl CoA synthase) 유전자; atoDA(acetoacetyl-CoA transferase) 유전자; adh(alcohol dehydrogenases) 유전자; 및 adc(acetoacetate decarboxylase) 유전자가 순차적으로 연결되어 포함된 재조합 발현벡터로 형질전환된 이소프로판올 생산용 재조합 야로위아 리포리티카 균주 및 상기 재조합 야로위아 리포리티카 균주로부터 이소프로판올을 대량생산하는 방법에 관한 것이다.The present invention relates to a recombinant Yarrowia lipolytica strain for producing isopropanol and a method for mass-producing isopropanol using the same, and specifically, the present invention relates to a thl (thiolase) or nphT7 (acetoacetyl CoA synthase) gene; atoDA (acetoacetyl-CoA transferase) gene; adh (alcohol dehydrogenases) gene; And adc (acetoacetate decarboxylase) gene is sequentially linked to a recombinant Yarrowia lipolytica strain for producing isopropanol transformed with a recombinant expression vector and a method for mass-producing isopropanol from the recombinant Yarrowia lipolytica strain. .

Description

이소프로판올 생산용 재조합 야로위아 리포리티카 균주 및 이를 이용한 이소프로판올의 대량생산방법{Recombinant Yarrowia lipolytica for producing isopropanol and method for preparing isopropanol using thereof}Recombinant Yarrowia lipolytica strain for producing isopropanol and method for mass production of isopropanol using the same

본 발명은 이소프로판올 생산용 재조합 야로위아 리포리티카 균주 및 이를 이용한 이소프로판올의 대량생산방법에 관한 것이다.The present invention relates to a recombinant Yarrowia lipolytica strain for isopropanol production and a method for mass production of isopropanol using the same.

구조적으로 간단한 이차 알콜(secondary alcohol)인 이소프로판올은 산업적으로 연료와 바이오 플라스틱의 전구체로서 중요한 역할을 담당하고 있다. 또한, 여러 종류의 유기 용제에 강력하게 용해되는 특성이 있어 가솔린 연료와 혼합하여 얼음 제거제, 외용 알코올 및 세정제, 소독제, 손 세정제, 약품 등 다양한 분야에서 활용이 증가하고 있고 이로 인해 수요량도 증가하는 추세이다.Isopropanol, a structurally simple secondary alcohol, plays an important role industrially as a fuel and a precursor for bioplastics. In addition, since it is strongly soluble in various types of organic solvents, it is mixed with gasoline fuel and used in various fields such as ice removers, external alcohol and detergents, disinfectants, hand sanitizers, and pharmaceuticals. am.

일반적인 이소프로판올의 생산은 대부분 화학적 방법으로 생산되고 있어 환경오염을 발생한다는 문제점이 있다. 반면, 미생물을 통한 이소프로판올의 생산은 친환경적이라는 잇점이 있으나 주로 클로스트리디움(Clostridium sp.) 균주를 통해 생산되고 있으며, 이 경우 이소프로판올 이외에 부탄올 등 다른 종류의 알콜이 혼합되어 생산되므로 이소프로판올을 분리하는데 어려운 문제가 있다.The production of general isopropanol has a problem in that it causes environmental pollution because it is mostly produced by chemical methods. On the other hand, the production of isopropanol through microorganisms has the advantage of being environmentally friendly, but it is mainly produced through Clostridium sp. there is a problem.

따라서 이를 해결하기 위한 연구들이 지속되고 있으나 아직까지 미생물을 이용하여 이소프로판올만을 효과적으로 생산할 수 있는 기술이 부재한 실정이다.Therefore, studies to solve this problem are being continued, but there is still no technology capable of effectively producing only isopropanol using microorganisms.

한국등록특허 10-1466223Korea Patent Registration 10-1466223 한국등록특허 10-1346615Korea Patent No. 10-1346615

이에 본 발명자들은 효모의 한 종류인 야로위아 리포리티카(Yarrowia lipolytica) 균주를 이용하여 상기 균주 내에 지질대사 아세토아세틸 코에이 합성, 지질 생산경로의 강화 및 아이소프로판올 생산경로의 도입을 통해 외래 유전자들이 도입된 재조합 야로위아 리포리티카 균주를 제조하였고, 상기 균주를 이용할 경우, 이소프로판올을 효과적으로 대량 생산할 수 있음을 확인함으로써 본 발명을 완성하였다.Accordingly, the present inventors use a Yarrowia lipolytica strain, which is a type of yeast, to synthesize acetoacetyl-CoA in lipid metabolism, enhance lipid production pathways, and introduce foreign genes into isopropanol production pathways in the strains. An introduced recombinant Yarrowia lipolytica strain was prepared, and the present invention was completed by confirming that isopropanol could be effectively mass-produced when the strain was used.

그러므로 본 발명의 목적은 thl(thiolase) 또는 nphT7(acetoacetyl CoA synthase) 유전자; atoDA(acetoacetyl-CoA transferase) 유전자; adh(alcohol dehydrogenases) 유전자; 및 adc(acetoacetate decarboxylase) 유전자가 순차적으로 연결되어 포함된 재조합 발현벡터로 형질전환된, 이소프로판올 생산용 재조합 야로위아 리포리티카 균주를 제공하는 것이다.Therefore, an object of the present invention is thl (thiolase) or nphT7 (acetoacetyl CoA synthase) gene; atoDA (acetoacetyl-CoA transferase) gene; adh (alcohol dehydrogenases) gene; and adc (acetoacetate decarboxylase) genes are sequentially linked to provide a recombinant Yarrowia lipolytica strain transformed with a recombinant expression vector for producing isopropanol.

본 발명의 다른 목적은 본 발명의 재조합 야로위아 리포리티카 균주를 이용하여 이소프로판올을 대량생산하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for mass-producing isopropanol using the recombinant Yarrowia lipolytica strain of the present invention.

그러므로 본 발명은 thl(thiolase) 또는 nphT7(acetoacetyl CoA synthase) 유전자; atoDA(acetoacetyl-CoA transferase) 유전자; adh(alcohol dehydrogenases) 유전자; 및 adc(acetoacetate decarboxylase) 유전자가가 순차적으로 연결되어 포함된 재조합 발현벡터로 형질전환된, 이소프로판올 생산용 재조합 야로위아 리포리티카 균주를 제공한다.Therefore, the present invention is a thl (thiolase) or nphT7 (acetoacetyl CoA synthase) gene; atoDA (acetoacetyl-CoA transferase) gene; adh (alcohol dehydrogenases) gene; and adc (acetoacetate decarboxylase) gene valency is sequentially linked to provide a recombinant Yarrowia lipolytica strain transformed with a recombinant expression vector for isopropanol production.

본 발명의 일실시예에 있어서, 상기 thl 유전자는 서열번호 13의 염기서열로 이루어진 것일 수 있다.In one embodiment of the present invention, the thl gene may consist of the nucleotide sequence of SEQ ID NO: 13.

본 발명의 일실시예에 있어서, 상기 nphT7 유전자는 서열번호 14의 염기서열로 이루어진 것일 수 있다.In one embodiment of the present invention, the nphT7 gene may consist of the nucleotide sequence of SEQ ID NO: 14.

본 발명의 일실시예에 있어서, 상기 atoDA 유전자는 서열번호 2의 염기서열로 이루어진 것일 수 있다.In one embodiment of the present invention, the atoDA gene may consist of the nucleotide sequence of SEQ ID NO: 2.

본 발명의 일실시예에 있어서, 상기 adc 유전자는 서열번호 1의 염기서열로 이루어진 것일 수 있다.In one embodiment of the present invention, the adc gene may consist of the nucleotide sequence of SEQ ID NO: 1.

본 발명의 일실시예에 있어서, 상기 adh 유전자는 서열번호 3의 염기서열로 이루어진 것일 수 있다.In one embodiment of the present invention, the adh gene may consist of the nucleotide sequence of SEQ ID NO: 3.

본 발명의 일실시예에 있어서, 상기 재조합 발현벡터는 thl(thiolase) 유전자; atoDA(acetoacetyl-CoA transferase) 유전자; adh(alcohol dehydrogenases) 유전자; 및 adc(acetoacetate decarboxylase) 유전자가 순차적으로 연결되어 포함된 pYLEX1THLIPA 발현벡터일 수 있다.In one embodiment of the present invention, the recombinant expression vector thl (thiolase) gene; atoDA (acetoacetyl-CoA transferase) gene; adh (alcohol dehydrogenases) gene; and adc (acetoacetate decarboxylase) gene may be sequentially linked to each other and include a pYLEX1THLIPA expression vector.

본 발명의 일실시예에 있어서, 상기 재조합 발현벡터는 nphT7(acetoacetyl CoA synthase) 유전자; atoDA(acetoacetyl-CoA transferase) 유전자; adh(alcohol dehydrogenases) 유전자; 및 adc(acetoacetate decarboxylase) 유전자가 순차적으로 연결되어 포함된 pYLEX1NphT7IPA 발현벡터일 수 있다.In one embodiment of the present invention, the recombinant expression vector nphT7 (acetoacetyl CoA synthase) gene; atoDA (acetoacetyl-CoA transferase) gene; adh (alcohol dehydrogenases) gene; and adc (acetoacetate decarboxylase) gene may be sequentially connected and included in the pYLEX1NphT7IPA expression vector.

또한 본 발명은 본 발명의 이소프로판올 생산용 재조합 야로위아 리포리티카 균주를 배양하는 단계; 및 상기 재조합 야로위아 리포리티카 균주로부터 생산된 이소프로판올을 수득하는 단계를 포함하는, 이소프로판올의 대량 생산방법을 제공한다.In addition, the present invention comprises the steps of culturing the recombinant Yarrowia lipolytica strain for isopropanol production of the present invention; And it provides a method for mass production of isopropanol, comprising the step of obtaining isopropanol produced from the recombinant Yarrowia lipolytica strain.

본 발명의 일실시예에 있어서, 상기 이소프로판올을 수득하는 것은 상기 균주 자체, 균주의 배양물 또는 균주의 배양배지로부터 수득하는 것일 수 있다.In one embodiment of the present invention, obtaining the isopropanol may be obtained from the strain itself, a culture of the strain, or a culture medium of the strain.

본 발명의 일실시예에 있어서, 상기 배양은 탄소원으로 글리세롤 또는 글루코오스를 이용하는 것일 수 있다.In one embodiment of the present invention, the culture may be to use glycerol or glucose as a carbon source.

본 발명의 일실시예에 있어서, 상기 글리세롤 또는 글루코오스는 배양배지에 2~10 중량%로 함유되어 있는 것일 수 있다.In one embodiment of the present invention, the glycerol or glucose may be contained in 2 to 10% by weight in the culture medium.

본 발명에 따른 이소프로판올 생산용 재조합 야로위아 리포리티카 균주는 thl(thiolase) 또는 nphT7(acetoacetyl CoA synthase) 유전자; atoDA(acetoacetyl-CoA transferase) 유전자; adh(alcohol dehydrogenases) 유전자; 및 adc(acetoacetate decarboxylase) 유전자를 도입시킨 재조합 균주로서, 상기 재조합 균주 내에서 아세틸코에이 발현을 지속가능하게 유지할 수 있고 이소프로판올 생산 경로의 유전자들을 과발현시킬 수 있어, 야생형 야로위아 리포리티카 균주는 아이소프로판올을 생산하지 못하는 것에 반해, 재조합 야로위아 리포리티카 균주는 이소프로판올을 친환경적으로 우수한 효율로 대량생산할 수 있는 효과가 있다.The recombinant Yarrowia lipolytica strain for producing isopropanol according to the present invention has a thl (thiolase) or nphT7 (acetoacetyl CoA synthase) gene; atoDA (acetoacetyl-CoA transferase) gene; adh (alcohol dehydrogenases) gene; and adc (acetoacetate decarboxylase) gene, which can sustainably maintain acetylCoA expression in the recombinant strain and overexpress genes of the isopropanol production pathway, so that the wild-type Yarrowia lipolytica strain is In contrast to the inability to produce isopropanol, the recombinant Yarrowia lipolytica strain has the effect of being able to mass-produce isopropanol in an environmentally friendly manner with excellent efficiency.

도 1은 본 발명의 일실시예에서 야로위아 리포리티카 균주 내로 이소프로판올 생산경로 도입을 위해 adc, adhatoDA 유전자가 도입된 재조합 pYLEX1IPA 발현벡터의 모식도를 나타낸 것이다.
도 2는 본 발명의 일실시예에서 야로위아 리포리티카 균주 내로 아세토아세틸 코에이 생산경로 강화를 위해 thl 또는 nphT7 유전자가 도입된 재조합 pYLEX1THLIPA 발현벡터 및 pYLEX1NphT7IPA 발현벡터의 모식도를 나타낸 것이다.
도 3은 본 발명에 따른 이소프로판올 생산경로 도입 및 아세토아세틸 코에이 생산경로가 강화된 재조합 야로위아 리포리티카 균주 내에서 이소프로판올 생산경로를 모식도로 나타낸 것이다. 도 3에서 보라색은 도입된 이소프로판올 생산경로를 나타낸 것이고, 노란색 및 핑크색은 아세토아세틸 코에이 생산 강화관련 유전자 도입 경로를 나타낸 것이며, 도입된 외래 유전자들은 야로위아 리포리티카의 게놈 DNA에 삽입된 상태로 존재한다.
도 4는 본 발명에서 제조한 재조합 야로위아 리포리티카 균주로부터 이소프로판올 생산량을 분석한 결과를 나타낸 것으로, A는 각 균주의 시간별 성장 그래프를 나타낸 것이고, B는 각 균주의 이소프로판올 생산량을 측정한 결과를 나타낸 것이다.
도 5는 탄소원으로 글리세롤 또는 글루코오스를 이용한 상태에서 본 발명의 재조합 야로위아 리포리티카 균주로부터 이소프로판올 생산량을 측정한 결과를 나타낸 것으로, A는 각 균주의 시간별 성장 그래프를 나타낸 것이고, B는 각 균주의 이소프로판올 생산량을 측정한 결과를 나타낸 것이다.
1 is a schematic diagram of a recombinant pYLEX1IPA expression vector into which adc , adh and atoDA genes are introduced for introduction of an isopropanol production pathway into a Yarrowia lipolytica strain in one embodiment of the present invention.
Figure 2 shows a schematic diagram of a recombinant pYLEX1THLIPA expression vector and a pYLEX1NphT7IPA expression vector into which a thl or nphT7 gene was introduced to enhance the acetoacetyl-CoA production pathway into Yarrowia lipolytica strains in one embodiment of the present invention.
Figure 3 is a schematic diagram showing the isopropanol production pathway in the recombinant Yarrowia lipolytica strain in which the isopropanol production pathway was introduced and the acetoacetyl-CoA production pathway was enhanced according to the present invention. In Figure 3, the purple color shows the isopropanol production pathway introduced, and the yellow and pink colors show the gene introduction pathway related to the enhancement of acetoacetyl-CoA production, and the introduced foreign genes are inserted into the genomic DNA of Yarrowia lipolytica. exist.
Figure 4 shows the results of analyzing the isopropanol production from the recombinant Yarrowia lipolytica strain prepared in the present invention, A is a graph showing the growth over time of each strain, B is the result of measuring the isopropanol production of each strain it is shown
Figure 5 shows the results of measuring isopropanol production from the recombinant Yarrowia lipolytica strain of the present invention in the state of using glycerol or glucose as a carbon source, A is a graph showing the growth of each strain over time, B is each strain It shows the result of measuring isopropanol production.

본 발명은 이소프로판올을 고효율로 대량 생산할 수 있는 이소프로판올 생산용 재조합 미생물을 제공함에 특징이 있다.The present invention is characterized by providing a recombinant microorganism for producing isopropanol capable of mass-producing isopropanol with high efficiency.

이소프로판올 생산기술에 있어서 환경오염의 문제를 해소하기 위한 방안으로 미생물로부터 이소프로판올을 생산하기 위한 연구가 진행되고 있으나, 지금까지 개발된 미생물을 통한 이소프로판올 생산은 대부분 클로스트리디움 균주를 이용한 기술로서, 이소프로판올 이외에도 부탄올 등 다른 종류의 알콜이 혼합되어 있는 문제점이 있었다.As a way to solve the problem of environmental pollution in isopropanol production technology, research on producing isopropanol from microorganisms is being conducted, but most of the isopropanol production through microorganisms developed so far is a technology using Clostridium strains, There was a problem that other types of alcohol such as butanol were mixed.

이에 본 발명자들은 미생물을 이용하되, 이소프로판올만을 효과적으로 대량생산할 수 있는 미생물의 개발을 연구하던 중, 효모의 한 종류인 야로위아 리포리티카(Yarrowia lipolytica) 균주에 외래 유전자를 도입시킨 재조합 야로위아 리포리티카 균주를 제조하였고, 이로부터 이소프로판올을 효과적으로 대량생산할 수 있음을 확인하였다. 본 발명에서 선택한 상기 야로위아 리포리티카(Yarrowia lipolytica) 균주는 안정성을 인정받은 효모이며 지방생산 효모로 알려져 있다.Accordingly, while the present inventors were studying the development of microorganisms capable of effectively mass-producing only isopropanol while using microorganisms, the recombinant Yarrowia lipolytica introduced a foreign gene into a strain of Yarrowia lipolytica , a type of yeast. A strain of tika was prepared, and it was confirmed that isopropanol could be effectively mass-produced therefrom. The Yarrowia lipolytica strain selected in the present invention is a yeast recognized for its stability and is known as fat-producing yeast.

구체적으로 본 발명에서 제공하는 이소프로판올 생산용 재조합 미생물은, 야로위아 리포리티카 균주에, 아세토아세틸 코에이 생산경로 강화와 관련된 thl(thiolase) 또는 nphT7(acetoacetyl CoA synthase) 유전자, 이소프로판올 생산 경로 관련 유전자인 atoDA(acetoacetyl-CoA transferase) 유전자, adh(alcohol dehydrogenases) 유전자 및 adc(acetoacetate decarboxylase) 유전자가 도입된 특징을 갖는다.Specifically, the recombinant microorganism for isopropanol production provided by the present invention is a Yarrowia lipolytica strain, thl (thiolase) or nphT7 (acetoacetyl CoA synthase) gene related to acetoacetyl CoA production pathway enhancement, isopropanol production pathway related gene, AtoDA (acetoacetyl-CoA transferase) gene, adh (alcohol dehydrogenases) gene, and adc (acetoacetate decarboxylase) gene are introduced.

이소프로판올 생산용 재조합 야로위아 리포리티카 균주의 제조를 위해 도입된 외래 유전자인 상기 thl 유전자는 서열번호 13의 염기서열로 이루어진 것일 수 있고, nphT7 유전자는 서열번호 14의 염기서열로 이루어진 것일 수 있다. The thl gene, which is a foreign gene introduced to prepare a recombinant Yarrowia lipolytica strain for isopropanol production, may consist of the nucleotide sequence of SEQ ID NO: 13, and the nphT7 gene may consist of the nucleotide sequence of SEQ ID NO: 14.

또한 상기 atoDA 유전자는 서열번호 2의 염기서열로 이루어진 것일 수 있고, 상기 adc 유전자는 서열번호 1의 염기서열로 이루어진 것일 수 있으며, 상기 adh 유전자는 서열번호 3의 염기서열로 이루어진 것일 수 있다.In addition, the atoDA gene may have the nucleotide sequence of SEQ ID NO: 2, the adc gene may have the nucleotide sequence of SEQ ID NO: 1, and the adh gene may have the nucleotide sequence of SEQ ID NO: 3.

본 발명의 일실시예에 따르면, 이소프로판올 생산용 재조합 야로위아 리포리티카 균주의 제조를 위해 pYLEX1 벡터에 이소프로판올 생산경로 관련 유전자들인 atoDA(acetoacetyl-CoA transferase) 유전자; adh(alcohol dehydrogenases) 유전자; 및 adc(acetoacetate decarboxylase) 유전자를 클로닝하여, 상기 유전자들이 도입된 재조합 발현벡터인 pYLEX1IPA를 제조하였다.According to one embodiment of the present invention, atoDA (acetoacetyl-CoA transferase) gene, which is an isopropanol production pathway-related gene, in pYLEX1 vector for the production of a recombinant Yarrowia lipolytica strain for isopropanol production; adh (alcohol dehydrogenases) gene; and adc (acetoacetate decarboxylase) genes were cloned to prepare pYLEX1IPA, a recombinant expression vector into which the genes were introduced.

이후 상기 atoDA, adcadh 유전자가 도입된 pYLEX1IPA 벡터에 아세토아세틸 코에이 생산경로 강화 관련 인자인 thl(thiolase) 또는 nphT7(acetoacetyl CoA synthase) 유전자를 추가로 도입시켜 재조합 발현벡터를 제조하였으며, 그 결과, 상기 thl 유전자가 도입된 pYLEX1THLIPA 재조합 발현벡터 및 nphT7 유전자가 도입된 pYLEX1NphT7IPA 재조합 발현벡터를 각각 제조하였다.Then, a recombinant expression vector was prepared by additionally introducing thl (thiolase) or nphT7 (acetoacetyl CoA synthase) genes, which are factors related to acetoacetyl CoA production pathway enhancement, into the pYLEX1IPA vector into which the atoDA , adc , and adh genes were introduced. As a result, , pYLEX1THLIPA recombinant expression vector into which the thl gene was introduced and pYLEX1NphT7IPA recombinant expression vector into which the nphT7 gene was introduced were respectively prepared.

그런 뒤, 상기 재조합 발현벡터로 각각 야로위아 리포리티카 균주를 형질전환시켜 형질전환체인 이소프로판올 생산용 재조합 야로위아 리포리티카 균주를 각각 제조하였다.Then, each of the Yarrowia lipolytica strains was transformed with the recombinant expression vector to prepare a transformant, a recombinant Yarrowia lipolytica strain for isopropanol production, respectively.

따라서 본 발명은 thl(thiolase) 또는 nphT7(acetoacetyl CoA synthase) 유전자; atoDA(acetoacetyl-CoA transferase) 유전자; adh(alcohol dehydrogenases) 유전자; 및 adc(acetoacetate decarboxylase) 유전자가 순차적으로 연결되어 포함된 재조합 발현벡터로 형질전환된, 이소프로판올 생산용 재조합 야로위아 리포리티카 균주를 제공할 수 있다.Therefore, the present invention is a thl (thiolase) or nphT7 (acetoacetyl CoA synthase) gene; atoDA (acetoacetyl-CoA transferase) gene; adh (alcohol dehydrogenases) gene; And adc (acetoacetate decarboxylase) genes can be provided with a recombinant Yarrowia lipolytica strain for producing isopropanol transformed with a recombinant expression vector containing sequentially linked genes.

상기 본 발명의 재조합 야로위아 리포리티카 균주는 상기 균주 내에서 아세틸코에이 발현을 지속가능하게 유지할 수 있고 이소프로판올 생산 경로의 유전자들을 과발현시킬 수 있어, 궁극적으로 이소프로판올을 생산하지 못하는 야생형 야로위아 리포리티카 균주와 대비하여 재조합 야로위아 리포리티카 균주는 이소프로판올을 새롭게 우수한 효율로 대량생산 할 수 있다.The recombinant Yarrowia lipolytica strain of the present invention can sustainably maintain the expression of AcetylCoA within the strain and can overexpress the genes of the isopropanol production pathway, ultimately not producing isopropanol Wild-type Yarrowia lipolytica Compared to the Tica strain, the recombinant Yarrowia lipolytica strain can mass-produce isopropanol with excellent new efficiency.

나아가 본 발명은 본 발명에 따른 야로위아 리포리티카 균주를 이용한 이소프로판올의 대량 생산방법을 제공할 수 있다.Furthermore, the present invention can provide a method for mass production of isopropanol using the Yarrowia lipolytica strain according to the present invention.

상기 방법은 바람직하게, (1) 본 발명의 이소프로판올 생산용 재조합 야로위아 리포리티카 균주를 배양하는 단계; 및 (2) 상기 재조합 야로위아 리포리티카 균주로부터 생산된 이소프로판올을 수득하는 단계를 포함한다.The method preferably comprises: (1) culturing the recombinant Yarrowia lipolytica strain for producing isopropanol of the present invention; and (2) obtaining isopropanol produced from the recombinant Yarrowia lipolytica strain.

상기 (1) 단계의 이소프로판올 생산용 재조합 야로위아 리포리티카 균주는 앞서 기술한 이소프로판올 생산 향상을 위해 thl(thiolase) 또는 nphT7(acetoacetyl CoA synthase) 유전자; atoDA(acetoacetyl-CoA transferase) 유전자; adh(alcohol dehydrogenases) 유전자; 및 adc(acetoacetate decarboxylase) 유전자가 도입된 재조합 야로위아 리포리티카 균주일 수 있다.The recombinant Yarrowia lipolytica strain for isopropanol production in step (1) has a thl (thiolase) or nphT7 (acetoacetyl CoA synthase) gene for the above-described isopropanol production enhancement; atoDA (acetoacetyl-CoA transferase) gene; adh (alcohol dehydrogenases) gene; and a recombinant Yarrowia lipolytica strain into which an acetoacetate decarboxylase ( adc ) gene has been introduced.

또한 상기 배양은 탄소원으로 글리세롤 또는 글루코오스를 이용한 배지를 이용하여 배양할 수 있으며, 상기 글리세롤 또는 글루코오스는 배양배지에 2~10 중량%로 함유하도록 할 수 있다. 바람직하게는 8중량%로 상기 글리세롤 또는 글루코오스를 포함한 배지를 사용할 수 있다.In addition, the culture may be cultured using a medium using glycerol or glucose as a carbon source, and the glycerol or glucose may be contained in the culture medium at 2 to 10% by weight. Preferably, a medium containing the glycerol or glucose at 8% by weight may be used.

본 발명의 일실시예에서는 글리세롤 또는 글루코오스를 포함하는 배지를 이용하여 본 발명의 재조합 야로위아 리포리티카 균주를 배양한 후, 이소프로판올의 생산량을 분석하였는데, 글루코오스를 포함하는 배지가 글리세롤을 포함하는 배지에 비해 이소프로판올 생산량이 더 많은 것으로 나타났으나, 글리세롤 함유 배지를 이용한 경우에도 상당량의 이소프로판올이 생산되는 것을 확인할 수 있었다.In one embodiment of the present invention, after culturing the recombinant Yarrowia lipolytica strain of the present invention using a medium containing glycerol or glucose, the production of isopropanol was analyzed. However, it was confirmed that a significant amount of isopropanol was produced even when a glycerol-containing medium was used.

그러므로 본 발명에 따른 재조합 균주를 이용할 경우, 상대적으로 가치 없는 폐 글리세롤을 탄소원으로 이용할 수 있음을 알 수 있었고, 경제적으로 이소프로판올을 생산할 수 있음을 알 수 있었다.Therefore, when using the recombinant strain according to the present invention, it was found that relatively worthless waste glycerol could be used as a carbon source, and isopropanol could be economically produced.

상기 (2) 단계에서 이소프로판올의 수득은 상기 재조합 균주 자체 또는 상기 균주의 배양물 또는 균주의 배양배지로부터 회수하여 얻을 수 있다.In the step (2), isopropanol may be obtained by recovering the recombinant strain itself or the culture medium of the strain or the culture medium of the strain.

본 발명에서, 용어 "벡터 (vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자, 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환 되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드 (plasmid)" 및 "벡터 (vector)"는 때로 상호 교환적으로 사용된다. 그러나, 본 발명은 당업계에 알려진 또는 알려지게 되는 바와 동등한 기능을 갖는 벡터의 다른 형태를 포함한다.In the present invention, the term "vector" means a DNA preparation containing DNA sequences operably linked to suitable regulatory sequences capable of expressing the DNA in a suitable host. Vectors can be plasmids, phage particles, or simply latent genomic inserts. Once transformed into a suitable host, the vector can replicate and function independently of the host genome or, in some cases, can integrate into the genome itself. As the plasmid is currently the most commonly used form of vector, "plasmid" and "vector" are sometimes used interchangeably in the context of the present invention. However, the present invention includes other forms of vectors having functions equivalent to those known or becoming known in the art.

본 발명에서 "증폭"이란 해당 유전자의 일부 염기를 변이, 치환, 또는 삭제시키거나, 일부 염기를 도입시키거나, 또는 동일한 효소를 코딩하는 다른 미생물 유래의 유전자를 도입시켜 대응하는 효소의 활성을 증가시키는 것을 포괄하는 개념이다.In the present invention, "amplification" means to increase the activity of a corresponding enzyme by mutating, substituting, or deleting some bases of a corresponding gene, introducing some bases, or introducing a gene derived from another microorganism encoding the same enzyme. It is a concept that encompasses

본 발명에서 “발현 조절 서열 (expression control sequence)”이라는 표현은 특정한 숙주 생물에서 작동가능하게 연결된 코딩 서열의 발현에 필수적인 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 실시하기 위한 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 예를 들면, 원핵생물에 적합한 조절 서열은 프로모터, 임의로 오퍼레이터 서열 및 리보좀 결합 부위를 포함한다. 진핵세포는 프로모터, 폴리아데닐화 시그날 및 인핸서가 이에 포함된다. 플라스미드에서 유전자의 발현 양에 가장 영향을 미치는 인자는 프로모터이다.In the present invention, the expression “expression control sequence” means a DNA sequence essential for the expression of an operably linked coding sequence in a specific host organism. Such regulatory sequences include promoters for effecting transcription, optional operator sequences for regulating such transcription, sequences encoding suitable mRNA ribosome binding sites, and sequences regulating termination of transcription and translation. For example, regulatory sequences suitable for prokaryotes include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells include promoters, polyadenylation signals and enhancers. The factor most influencing the amount of expression of a gene in a plasmid is a promoter.

본 발명의 DNA 서열을 발현시키기 위하여, 매우 다양한 발현 조절 서열 중 어느 것이라도 벡터에 사용될 수 있다. 유용한 발현 조절서열로는, 예를 들어, SV40 또는 아데노바이러스의 초기 및 후기 프로모터들, lac 시스템, trp 시스템, TAC 또는 TRC 시스템, T3 및 T7 프로모터들, 파지 람다의 주요 오퍼레이터 및 프로모터 영역, fd 코드 단백질의 조절 영역, 3-포스포글리세레이트 키나제 또는 다른 글리콜분해 효소에 대한 프로모터, 상기 포스파타제의 프로모터들, 예를 들어 Pho5, 효모 알파-교배 시스템의 프로모터 및 원핵세포 또는 진핵 세포 또는 이들의 바이러스의 유전자의 발현을 조절하는 것으로 알려진 구성과 유도의 기타 다른 서열 및 이들의 여러 조합이 포함된다.In order to express the DNA sequence of the present invention, any of a wide variety of expression control sequences can be used in the vector. Useful expression control sequences include, for example, SV40 or adenovirus early and late promoters, lac system, trp system, TAC or TRC system, T3 and T7 promoters, major operator and promoter regions of phage lambda, fd code regulatory regions of proteins, promoters for 3-phosphoglycerate kinase or other glycolytic enzymes, promoters of said phosphatases, e.g. Pho5, promoters of yeast alpha-mating systems and prokaryotic or eukaryotic cells or their viruses. Other sequences, both constitutive and inducible, known to modulate the expression of a gene, and various combinations thereof, are included.

핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 “작동가능하게 연결 (operably linked)”된다. 이것은 적절한 분자 (예를 들면, 전사 활성화 단백질)은 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, “작동가능하게 연결된”은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서 (enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터 (oligonucleotide adaptor) 또는 링커(linker)를 사용한다.A nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. This may be a gene and regulatory sequence(s) linked in such a way that when a suitable molecule (eg, transcriptional activating protein) is bound to the regulatory sequence(s), it enables gene expression. For example, DNA for a pre-sequence or secretory leader is operably linked to DNA for a polypeptide when expressed as a pre-protein that participates in secretion of the polypeptide; A promoter or enhancer is operably linked to a coding sequence if it affects transcription of the sequence; or the ribosome binding site is operably linked to a coding sequence if it affects transcription of the sequence; or the ribosome binding site is operably linked to a coding sequence when positioned to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous and, in the case of a secretory leader, contiguous and in reading frame. However, enhancers do not have to contact. Linkage of these sequences is accomplished by ligation (linkage) at convenient restriction enzyme sites. If such a site does not exist, a synthetic oligonucleotide adapter or linker according to a conventional method is used.

본원 명세서에 사용된 용어 “발현 벡터”는 통상 이종의 DNA의 단편이 삽입된 재조합 캐리어 (recombinant carrier)로서 일반적으로 이중 가닥의 DNA의 단편을 의미한다. 여기서, 이종 DNA는 숙주 세포에서 천연적으로 발견되지 않는 DNA인 이형 DNA를 의미한다. 발현 벡터는 일단 숙주 세포내에 있으면 숙주 염색체 DNA와 무관하게 복제할 수 있으며 벡터의 수 개의 카피 및 그의 삽입된 (이종) DNA가 생성될 수 있다.As used herein, the term “expression vector” usually refers to a double-stranded DNA fragment as a recombinant carrier into which a heterologous DNA fragment is inserted. Here, heterologous DNA refers to heterologous DNA, which is DNA not found naturally in the host cell. Once in a host cell, an expression vector can replicate independently of the host chromosomal DNA and several copies of the vector and its inserted (heterologous) DNA can be produced.

당업계에 주지된 바와 같이, 숙주세포에서 형질감염 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가, 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동 가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점 (replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함되게 된다. 발현 숙주가 진핵세포인 경우에는, 발현 벡터는 진핵 발현 숙주 내에서 유용한 발현 마커를 더 포함하여야만 한다.As is well known in the art, in order to increase the expression level of a transfected gene in a host cell, the gene must be operably linked to transcriptional and translational expression control sequences that function in the selected expression host. Preferably, the expression control sequence and the corresponding gene are included in one expression vector that includes a bacterial selectable marker and a replication origin together. When the expression host is a eukaryotic cell, the expression vector must further contain an expression marker useful in the eukaryotic expression host.

상술한 발현 벡터에 의해 형질전환 또는 형질감염된 숙주 세포는 본 발명의 또 다른 측면을 구성한다. 본원 명세서에 사용된 용어 “형질전환”은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. 본원 명세서에 사용된 용어 “형질감염”은 임의의 코딩 서열이 실제로 발현되든 아니든 발현 벡터가 숙주 세포에 의해 수용되는 것을 의미한다.Host cells transformed or transfected with the expression vectors described above constitute another aspect of the present invention. As used herein, the term “transformation” means introducing DNA into a host so that the DNA becomes replicable as an extrachromosomal factor or by completion of chromosomal integration. As used herein, the term “transfection” refers to acceptance of an expression vector by a host cell, whether or not any coding sequences are actually expressed.

발명의 숙주 세포는 원핵 또는 진핵생물 세포일 수 있다. 또한, DNA의 도입효율이 높고, 도입된 DNA의 발현효율이 높은 숙주가 통상 사용된다. 대장균, 슈도모나스, 바실러스, 스트렙토마이세스, 진균, 효모와 같은 주지의 진핵 및 원핵 숙주들이 숙주 세포의 예이다.Host cells of the invention may be prokaryotic or eukaryotic cells. In addition, a host with high efficiency of DNA introduction and high expression efficiency of the introduced DNA is usually used. Known eukaryotic and prokaryotic hosts such as Escherichia coli, Pseudomonas, Bacillus, Streptomyces, fungi, and yeast are examples of host cells.

물론 모든 벡터와 발현 조절 서열이 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다.Of course, it should be understood that not all vectors and expression control sequences function equally well in expressing the DNA sequences of the present invention. Likewise, not all hosts function equally well for the same expression system. However, those skilled in the art can appropriately select among various vectors, expression control sequences, and hosts without undue experimental burden and without departing from the scope of the present invention. For example, in selecting a vector, consideration must be given to the host, since the vector must replicate within it. The vector's copy number, ability to control copy number, and expression of other proteins encoded by the vector, such as antibiotic markers, should also be considered.

발현 조절 서열을 선정함에 있어서도, 여러 가지 인자들을 고려하여야만 한다. 예를 들어, 서열의 상대적 강도, 조절가능성 및 본 발명의 DNA 서열과의 상용성 등, 특히 가능성이 있는 이차 구조와 관련하여 고려하여야 한다. 단세포 숙주는 선정된 벡터, 본 발명의 DNA 서열에 의해 코딩되는 산물의 독성, 분비 특성, 단백질을 정확하게 폴딩시킬 수 있는 능력, 배양 및 발효 요건들, 본 발명의 DNA 서열에 의해 코딩되는 산물을 숙주로부터 정제하는 것의 용이성 등의 인자를 고려하여 선정되어야만 한다.Even in selecting expression control sequences, various factors must be considered. For example, relative strength of the sequence, controllability and compatibility with the DNA sequences of the present invention should be considered, particularly with respect to potential secondary structures. A unicellular host is a selected vector, the toxicity of the product encoded by the DNA sequence of the present invention, the secretion characteristics, the ability to correctly fold proteins, culture and fermentation requirements, and the product encoded by the DNA sequence of the present invention into the host. It must be selected in consideration of factors such as ease of purification from

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. These examples are intended to explain the present invention in more detail, and the scope of the present invention is not limited to these examples.

<실시예 1><Example 1>

이소프로판올 생산능이 부여된 재조합 야로위아 리포리티카 균주의 제조Preparation of recombinant Yarrowia lipolytica strain endowed with isopropanol production ability

본 발명자들은 이소프로판올을 대량생산할 수 있는 재조합 미생물의 제조를 위해 야로위아 리포리티카를 이용하여 다음과 같은 방법으로 재조합 미생물을 제조하였다.The present inventors prepared a recombinant microorganism in the following manner using Yarrowia lipolytica for the production of a recombinant microorganism capable of mass-producing isopropanol.

<1-1> 이소프로판올 생산경로 도입을 위한 재조합 벡터의 제조 및 형질전환된 야로위아 리포리티카 균주의 제조<1-1> Preparation of recombinant vector for introduction of isopropanol production route and preparation of transformed Yarrowia lipolytica strain

도 1에 나타낸 바와 같이, 야로위아 리포리티카 균주에서 이소프로판올 생산을 위하여 atoDA, adc, adh 유전자 도입을 위한 재조합 벡터를 다음과 같이 제조하였다. pYLEX1 벡터에 atoDA, adc, adh 유전자를 도입하여 재조합 pYLEX1IPA 벡터를 제조하였는데, 재조합 pYLEX1IPA 벡터의 제조를 위해 대장균 K12의 게놈 DNA를 주형으로 하여 atoDA 유전자를 증폭하였고, adc 유전자는 클로스트리디움 아세토부틸리쿰(Clostridium acetobutylicum ATCC 842)의 게놈 DNA를 주형으로 하여 증폭하였으며, adh 유전자는 효모용 코돈 최적화를 위해 cosmo GENTECH 회사를 통해 클로스트리디움 베이린키(Clostridium beijerinckii NRRL B593) 유래의 adh 유전자 서열을 효모용 코돈 최적화를 거쳐 최종 합성하였다.As shown in Figure 1, for the production of isopropanol in the Yarrowia lipolytica strain, atoDA , adc , and adh genes were prepared as follows. A recombinant pYLEX1IPA vector was prepared by introducing the atoDA , adc , and adh genes into the pYLEX1 vector. To prepare the recombinant pYLEX1IPA vector, the atoDA gene was amplified using the genomic DNA of E. coli K12 as a template, and the adc gene was Clostridium acetobutylly The genomic DNA of Clostridium acetobutylicum ATCC 842 was amplified as a template, and the adh gene sequence derived from Clostridium beijerinckii NRRL B593 was amplified through cosmo GENTECH for yeast codon optimization. It was finally synthesized through codon optimization.

구체적으로, adc 유전자의 증폭은 pYLEX1 벡터로의 클로닝을 위해 벡터의 해당 제한효소 서열을 포함하는 정방향, 역방향 프라이머(Xcm1_adc_F, Kpn1_adc_R)를 이용하여 PCR을 수행하였고 그 결과 735bp의 서열번호 1의 adc 유전자 서열을 확보하였고, 이후 atoDAadh 유전자를 Overlap PCR 방법으로 연결한 후 pYLEX1 벡터에 도입하였다. 상기 atoDAadh 유전자의 벡터로의 클로닝을 위해 제한효소 서열을 포함하는 정방향 및 역방향 프라이머(SpeI_atoDA_F, ClaI_atoDA_R; Sac1_adh_F, Pac1_adh_R)를 이용하여 PCR을 수행하였고 그 결과 1313bp의 서열번호 2의 atoDA 유전자 서열 및 1056bp의 서열번호 3의 adh 유전자 서열을 확보하였다. 또한, atoDA-adh 연결 서열은 클로닝을 위해 제한효소 서열을 포함하는 정방향 및 역방향 프라이머(Pmel1_atoDAadh_F, BamH1_atoDAadh_R)를 이용하여 PCR을 수행하였고 그 결과 2411 bp의 서열번호 4의 atoDA-adh 연결서열을 확보하였다. 상기 준비된 각각의 유전자들은 pYLEX1 벡터에 제한효소를 처리한 후, 라이게이션 반응을 통해 재조합 pYLEX1IPA 벡터를 제조하였고, 대장균 DH5a 균주 및 야로위아 리포리티카 균주로 각각 형질전환하여 형질전환된 미생물을 제조하였다. 또한 상기 각 유전자 서열을 확보하기 위해 사용한 프라이머 서열들은 하기 표 1에 기재하였다.Specifically, the amplification of the adc gene was performed by PCR using forward and reverse primers (Xcm1_adc_F, Kpn1_adc_R) containing the corresponding restriction enzyme sequence of the vector for cloning into the pYLEX1 vector, resulting in 735 bp of the adc gene of SEQ ID NO: 1. The sequence was obtained, and then the atoDA and adh genes were ligated by overlap PCR and introduced into the pYLEX1 vector. For cloning of the atoDA and adh genes into vectors, PCR was performed using forward and reverse primers (SpeI_atoDA_F, ClaI_atoDA_R; Sac1_adh_F, Pac1_adh_R) containing restriction enzyme sequences, resulting in 1313 bp of the atoDA gene sequence of SEQ ID NO: 2 and The adh gene sequence of SEQ ID NO: 3 of 1056 bp was obtained. In addition, the atoDA - adh linkage sequence was subjected to PCR using forward and reverse primers (Pmel1_atoDAadh_F, BamH1_atoDAadh_R) containing restriction enzyme sequences for cloning, and as a result, a 2411 bp atoDA - adh linkage sequence of SEQ ID NO: 4 was obtained. . Each of the prepared genes was treated with a restriction enzyme in the pYLEX1 vector, and then a recombinant pYLEX1IPA vector was prepared through a ligation reaction, and transformed into an E. coli DH5a strain and a Yarrowia lipolytica strain, respectively, to prepare a transformed microorganism. . In addition, the primer sequences used to secure each gene sequence are listed in Table 1 below.

프라이머 서열primer sequence 프라이머명Primer name 서열(5‘->3’)Sequence (5‘->3’) 서열번호sequence number Xcm1_adc_FXcm1_adc_F ATCCAGTCCGACTCTGGATGTTAAAGGATGAAGTAATTAAACAAATTAGCACATCCAGTCCGACTCTGGATGTTAAAGGATGAAGTAATTAAACAAATTAGCAC 55 Kpn1_adc_RKpn1_adc_R CCGGTACCTTACTTAAGATAATCATATATAACTTCAGCTCTAGGCCCGGTACCTTACTTAAGATAATCATATATAACTTCAGCTCTAGGC 66 speI_atoDA_FspeI_atoDA_F GCGCACTAGTATGAAAACAAAATTGATGACATGCGCACTAGTATGAAAACAAAATTGATGACAT 77 ClaI_atoDA_RClaI_atoDA_R TTTAATCGATTCATAAATCACCCCGTTTAATCGATTCATAAATCACCCCG 88 Sac1_adh_FSac1_adh_F GCGCCACAATGAAAACAAAATTGATGACATGCGCCACAATGAAAACAAATTGATGACAT 99 Pac1_adh_RPac1_adh_R CTTAATTAATTACAGGATAACCACTGCCTTCTTAATTAATTACAGGATAACCACTGCCTT 1010 Pmel1_atoDAadh_FPmel1_atoDAadh_F GCGCCACGTGATGAAAACAAAATTGATGACATGCGCCACGTGATGAAAACAAAATTGATGACAT 1111 BamH1_atoDAadh_RBamH1_atoDAadh_R TAAGGATCCTTACAGGATAACCACTGCCTTTAAGGATCCTTACAGGATAACCACTGCCTT 1212

<1-2> 아세토아세틸 코에이 생산경로 강화를 위한 재조합 벡터의 제조 및 형질전환된 야로위아 리포리티카 균주의 제조<1-2> Preparation of recombinant vector for enhancing acetoacetyl-CoA production pathway and preparation of transformed Yarrowia lipolytica strain

상기 실시예 <1-1>에서 제조한 재조합 pYLEX1IPA 벡터를 토대로 도 2에 나타낸 바와 같이, 야로위아 리포리티카 균주에서 이소프로판올 생산경로 강화를 위해 아세토아세틸 코에이 합성 경로 유전자인 thl 또는 nphT7을 과발현할 수 있는 제조합 발현벡터인 pYLEX1THLIPA 벡터 및 pYLEX1NphT7IPA 벡터를 각각 제작하고 이를 도입한 이소프로판올 생산경로가 강화된 형질전환된 야로위아 리포리티카 균주를 제조하였다.As shown in Figure 2 based on the recombinant pYLEX1IPA vector prepared in Example <1-1>, the Yarrowia lipolytica strain overexpresses the acetoacetyl CoA synthesis pathway gene, thl or nphT7 , to enhance the isopropanol production pathway. The pYLEX1THLIPA vector and the pYLEX1NphT7IPA vector, which can be recombinant expression vectors, were respectively constructed, and a transformed Yarrowia lipolytica strain having an enhanced isopropanol production pathway was prepared.

구체적으로, 재조합 pYLEX1THLIPA 발현벡터의 제조를 위해, 클로스트리디움 아세토부틸리쿰(Clostridium acetobutylicum ATCC 842)의 게놈 DNA를 주형으로 thl 유전자를 증폭하였고, 재조합 pYLEX1NphT7IPA 발현벡터의 제조를 위해, nphT7 유전자는 cosmo GENTECH 회사를 통해 Streptomyces sp. (strain CL190) 유래 nphT7 유전자 서열 기반으로 효모용 코돈 최적화하여 최종 합성하였다.Specifically, to prepare the recombinant pYLEX1THLIPA expression vector, the thl gene was amplified using the genomic DNA of Clostridium acetobutylicum ATCC 842 as a template, and to prepare the recombinant pYLEX1NphT7IPA expression vector, the nphT7 gene was cosmo Streptomyces sp. Based on the nphT7 gene sequence derived from (strain CL190), it was finally synthesized by optimizing codons for yeast.

thl 유전자의 클로닝을 위해 벡터의 해당 제한 효소 서열을 포함하는 정방향 및 역방향 프라이머(Xcm1_thl_F, Kpn1_thl_R)를 이용하여 PCR을 수행하였고, 그 결과 1179bp의 서열번호 13의 thl 유전자 서열을 확보하였다. PCR을 통해 증폭된 thl 유전자와 pYLEX1IPA 벡터는 제한효소를 처리한 후, 라이게이션 반응을 진행하여 재조합 pYLEX1THLIPA 발현벡터를 제조하였고, 이후 이를 대장균 (Escherichia coli) DH5a와 야로위아 리포리티카 균주로 각각 형질전환하였다.For cloning of the thl gene, PCR was performed using forward and reverse primers (Xcm1_thl_F, Kpn1_thl_R) containing the corresponding restriction enzyme sequence of the vector, and as a result, the thl gene sequence of SEQ ID NO: 13 of 1179 bp was obtained. The thl gene and the pYLEX1IPA vector amplified through PCR were treated with restriction enzymes, and then ligation was performed to prepare a recombinant pYLEX1THLIPA expression vector, which was then transformed into Escherichia coli DH5a and Yarrowia lipolytica strains, respectively. converted.

또한, nphT7 유전자는 프라이머(Gibson_nphT7_F, Gibson_nphT7_R)를 이용하여 PCR을 수행하였고 그 결과 1027bp의 서열번호 14의 nphT7 유전자를 확보하였다. 제한효소 DpnI이 처리된 nphT7 서열과 YLEX1IPA 벡터를 Gibson assembly 키트를 이용해서 연결 반응을 진행하여 재조합 pYLEX1NphT7IPA 발현벡터를 제조하였고, 이를 대장균(Escherichia coli) DH5a와 야로위아 리포리티카 균주로 각각 형질전환하였다. 상기 각각의 재조합 발현벡터의 제조를 위해 사용한 각 프라이머의 염기서열은 하기 표 2에 기재된 바와 같다.In addition, PCR was performed on the nphT7 gene using primers (Gibson_nphT7_F, Gibson_nphT7_R), and as a result, the nphT7 gene of SEQ ID NO: 14 of 1027 bp was obtained. The restriction enzyme DpnI-treated nphT7 sequence and the YLEX1IPA vector were subjected to a ligation reaction using a Gibson assembly kit to prepare a recombinant pYLEX1NphT7IPA expression vector, which was transformed into Escherichia coli DH5a and Yarrowia lipolytica strains, respectively. . The nucleotide sequence of each primer used to prepare each of the recombinant expression vectors is as shown in Table 2 below.

프라이머 서열primer sequence 프라이머명Primer name 서열(5‘->3’)Sequence (5‘->3’) 서열번호sequence number Gibson_nphT7_FGibson_nphT7_F TACAACCACACACATCCACAATGACGGATGTTCGATTCCTACAACCACACACATCCACAATGACGGATGTTCGATTCC 1515 Gibson_nphT7_RGibson_nphT7_R CAATTTTGTTTTCATCACCTACCACTCGATAAGTGCGCAATTTTGTTTTCATCACCTACCACTCGATAAGTGCG 1616 Xcm1_thl_FXcm1_thl_F ATCCAGTCCGACTCTGGATGAAAGAAGTTGTAATAGCTAGTGATCCAGTCCGACTCTGGATGAAAGAAGTTGTAATAGCTAGTG 1717 Kpn1_thl_RKpn1_thl_R CCGGTACCTTACTTAAGATAATCATATATAACTTCAGCTCTAGGCCCGGTACCTTACTTAAGATAATCATATATAACTTCAGCTCTAGGC 1818

<실시예 2><Example 2>

본 발명의 재조합 야로위아 리포리티카 균주를 이용한 이소프로판올의 대량생산 확인Confirmation of mass production of isopropanol using the recombinant Yarrowia lipolytica strain of the present invention

본 발명자들은 상기 실시예 1에서 제조된 pYLEX1THLIPA 발현벡터 및 pYLEX1NphT7IPA 발현벡터로 각각 형질전환된 야로위아 리포리티카 균주를 대상으로 이소프로판올의 생산량을 분석하였다.The present inventors analyzed the production of isopropanol in the Yarrowia lipolytica strains transformed with the pYLEX1THLIPA expression vector and the pYLEX1NphT7IPA expression vector prepared in Example 1, respectively.

<2-1> 이소프로판올 생산량 분석<2-1> Analysis of isopropanol production

실시예 1에서 제조된 아세토아세틸 코에이 생산경로가 강화된 재조합 야로위아 리포리티카 균주를 대상으로 이소프로판올의 생산량을 분석하였다. 이를 위해 모든 형질전환체들을 50 ml의 YPD 배지를 포함한 250 ml 진탕 삼각 플라스크에서 30°C의 온도 및 200 rpm의 조건으로 120시간 배양하였다. 이후 이소프로판올의 생산량을 측정하였다.The production of isopropanol was analyzed for the recombinant Yarrowia lipolytica strain having an enhanced acetoacetyl-CoA production pathway prepared in Example 1. To this end, all transformants were cultured in a 250 ml shaking flask containing 50 ml of YPD medium at 30 ° C and 200 rpm for 120 hours. Afterwards, the amount of isopropanol produced was measured.

그 결과, 도 4에 나타낸 바와 같이, thl 유전자를 포함하는 pYLEX1THLIPA 발현벡터가 도입된 균주에서는 약 347.709 mg/L의 이소프로판올이 생산되는 것을 확인할 수 있었고, nphT7 유전자를 포함하는 pYLEX1NphT7IPA 발현벡터가 도입된 균주에서는 약 504.4631 mg/L의 이소프로판올이 생산되는 것을 확인할 수 있었다. 이를 통해 nphT7 유전자의 과발현 균주는 thl 유전자 과발현 균주보다 이소프로판올 최대 생산량이 약 1.45배 더 증가시킬 수 있음을 알 수 있었다.As a result, as shown in FIG. 4, it was confirmed that about 347.709 mg/L of isopropanol was produced in the strain into which the pYLEX1THLIPA expression vector containing the thl gene was introduced, and the pYLEX1NphT7IPA expression vector containing the nphT7 gene was introduced into the strain. It was confirmed that about 504.4631 mg/L of isopropanol was produced. Through this, it was found that the strain overexpressing the nphT7 gene could increase the maximum production of isopropanol by about 1.45 times more than the strain overexpressing the thl gene.

반면, 아세토아세틸 코에이 생산경로가 강화되지 않은 pYLEX1IPA 균주에서는 이소프로판올 생산이 확인되지 않았다.On the other hand, isopropanol production was not confirmed in the pYLEX1IPA strain in which the acetoacetyl-CoA production pathway was not enhanced.

<2-2> 재조합 야로위아 리포리티카 균주로부터 이소프로판올 생산을 위한 탄소원 배지 분석<2-2> Analysis of carbon source medium for isopropanol production from recombinant Yarrowia lipolytica strains

나아가 본 발명자들은 본 발명에 따른 pYLEX1NphT7IPA 발현벡터가 도입된 재조합 야로위아 리포리티카 균주로부터 가치 없는 폐 글리세롤(crude glycerol)을 이용한 이소프로판올 생산 가능 여부를 확인하기 위해, 상기 균주를 50 ml의 YPD (8% Glucose) 및 YPG (8% Glycerol) 배지를 각각 포함한 250ml 진탕 삼각 플라스크에서 30°C 온도 및 200 rpm의 조건으로 120시간 배양한 다음, 이소프로판올의 생산량을 분석하였다.Furthermore, the inventors of the present invention, in order to determine whether isopropanol production using waste glycerol (crude glycerol) from the recombinant Yarrowia lipolytica strain into which the pYLEX1NphT7IPA expression vector according to the present invention was introduced, the strain was prepared in 50 ml of YPD (8 % Glucose) and YPG (8% Glycerol) media, respectively, in a 250ml shaker flask and cultured at 30°C temperature and 200 rpm for 120 hours, and then the production of isopropanol was analyzed.

그 결과, 도 5에 나타낸 바와 같이, 8% 글루코오스를 탄소원으로 사용할 때, 약 508.7 mg/L의 이소프로판올이 생합성 되는 것을 확인할 수 있었고, 8% 글리세롤을 탄소원으로 사용할 때, 약 282.4 mg/L의 이소프로판올을 생합성 할 수 있음을 확인하였다.As a result, as shown in FIG. 5, when 8% glucose was used as a carbon source, it was confirmed that about 508.7 mg/L of isopropanol was biosynthesized, and when 8% glycerol was used as a carbon source, about 282.4 mg/L of isopropanol was obtained. was confirmed to be biosynthetic.

이러한 결과를 통해 본 발명자들은 글루코오스 이외에도 가치 없는 폐 글리세롤을 탄소원으로 사용할 경우, 본 발명의 재조합 야로위아 리포리티카 균주로부터 이소프로판올을 효과적으로 대량생산 할 수 있음을 알 수 있었다.From these results, the present inventors found that isopropanol can be effectively mass-produced from the recombinant Yarrowia lipolytica strain of the present invention when waste glycerol, which is worthless in addition to glucose, is used as a carbon source.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been looked at with respect to its preferred embodiments. Those skilled in the art to which the present invention pertains will be able to understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a limiting point of view. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the equivalent scope will be construed as being included in the present invention.

<110> Industry Academic Cooperation Foundation of Korea University <120> Recombinant Yarrowia lipolytica for producing isopropanol and method for preparing isopropanol using thereof <130> NPDC100450 <160> 18 <170> KoPatentIn 3.0 <210> 1 <211> 735 <212> DNA <213> Artificial Sequence <220> <223> adc DNA sequence <400> 1 atgttaaagg atgaagtaat taaacaaatt agcacgccat taacttcgcc tgcatttcct 60 agaggaccct ataaatttca taatcgtgag tattttaaca ttgtatatcg tacagatatg 120 gatgcacttc gtaaagttgt gccagagcct ttagaaattg atgagccctt agtcaggttt 180 gaaattatgg caatgcatga tacgagtgga cttggttgtt atacagaaag cggacaggct 240 attcccgtaa gctttaatgg agttaaggga gattatcttc atatgatgta tttagataat 300 gagcctgcaa ttgcagtagg aagggaatta agtgcatatc ctaaaaagct cgggtatcca 360 aagctttttg tggattcaga tactttagta ggaactttag actatggaaa acttagagtt 420 gcgacagcta caatggggta caaacataaa gccttagatg ctaatgaagc aaaggatcaa 480 atttgtcgcc ctaattatat gttgaaaata atacccaatt atgatggaag ccctagaata 540 tgtgagctta taaatgcgaa aatcacagat gttaccgtac atgaagcttg gacaggacca 600 actcgactgc agttatttga tcacgctatg gcgccactta atgatttgcc agtaaaagag 660 attgtttcta gctctcacat tcttgcagat ataatattgc ctagagctga agttatatat 720 gattatctta agtaa 735 <210> 2 <211> 651 <212> DNA <213> Artificial Sequence <220> <223> atoDA DNA sequence <400> 2 atggatgcga aacaacgtat tgcgcgccgt gtggcgcaag agcttcgtga tggtgacatc 60 gttaacttag ggatcggttt acccacaatg gtcgccaatt atttaccgga gggtattcat 120 atcactctgc aatcggaaaa cggcttcctc ggtttaggcc cggtcacgac agcgcatcca 180 gatctggtga acgctggcgg gcaaccgtgc ggtgttttac ccggtgcagc catgtttgat 240 agcgccatgt catttgcgct aatccgtggc ggtcatattg atgcctgcgt gctcggcggt 300 ttgcaagtag acgaagaagc aaacctcgcg aactgggtag tgcctgggaa aatggtgccc 360 ggtatgggtg gcgcgatgga tctggtgacc gggtcgcgca aagtgatcat cgccatggaa 420 cattgcgcca aagatggttc agcaaaaatt ttgcgccgct gcaccatgcc actcactgcg 480 caacatgcgg tgcatatgct ggttactgaa ctggctgtct ttcgttttat tgacggcaaa 540 atgtggctca ccgaaattgc cgacgggtgt gatttagcca ccgtgcgtgc caaaacagaa 600 gctcggtttg aagtcgccgc cgatctgaat acgcaacggg gtgatttatg a 651 <210> 3 <211> 1056 <212> DNA <213> Artificial Sequence <220> <223> adh DNA sequence <400> 3 atgaaaggat ttgctatgct aggcataaac aagttaggtt ggatcgaaaa ggaacgtccg 60 gtagcaggaa gttatgacgc aattgttaga ccattggcag tgagcccatg tacatcagac 120 atacacactg tgtttgaggg tgcactgggc gatagaaaaa atatgatctt aggccatgaa 180 gctgtcggag aagtcgtgga ggttgggagt gaagtcaagg attttaagcc aggagataga 240 gtaattgttc cttgtactac cccagactgg cgtagtttgg aggtccaagc agggtttcaa 300 caacactcca atggcatgtt ggcggggtgg aagttctcta atttcaaaga tggtgttttt 360 ggtgagtatt tccacgtcaa tgatgcggat atgaatttgg cgatccttcc taaagacatg 420 ccgcttgaaa atgctgttat gattactgat atgatgacca cgggatttca tggggcagaa 480 cttgctgata tccaaatggg ctcatctgtt gtagtgattg gtataggagc tgttggcctt 540 atgggtatcg ccggggcgaa gttaaggggc gctggccgta taataggggt aggctctagg 600 cccatttgcg ttgaggctgc taagttttat ggagcaactg acattcttaa ttacaagaat 660 ggtcatatag tagaccaagt tatgaagctt accaacggta agggtgtaga tagggtgatc 720 atggcgggtg gaggtagcga aactttaagt caggctgtat ctatggtcaa gccaggaggc 780 attattagca acataaacta tcatggctcc ggcgacgcgt tgttaattcc aagagtcgag 840 tggggttgcg ggatggcaca caaaacaatc aaaggtggat tgtgccccgg gggccgtcta 900 cgtgctgaga tgttgcgtga tatggtggtc tataatcgtg tcgatttgag taagttagtc 960 acccatgtgt accatggatt tgaccatata gaagaggcac tgttactaat gaaggacaaa 1020 ccgaaagatt tgataaaggc agtggttatc ctgtaa 1056 <210> 4 <211> 2410 <212> DNA <213> Artificial Sequence <220> <223> atoDA-adh DNA sequence <400> 4 atgaaaacaa aattgatgac attacaagac gccaccggct tctttcgtga cggcatgacc 60 atcatggtgg gcggatttat ggggattggc actccatccc gcctggttga agcattactg 120 gaatctggtg ttcgcgacct gacattgata gccaatgata ccgcgtttgt tgataccggc 180 atcggtccgc tcatcgtcaa tggtcgagtc cgcaaagtga ttgcttcaca tatcggcacc 240 aacccggaaa caggtcggcg catgatatct ggtgagatgg acgtcgttct ggtgccgcaa 300 ggtacgctaa tcgagcaaat tcgctgtggt ggagctggac ttggtggttt tctcacccca 360 acgggtgtcg gcaccgtcgt agaggaaggc aaacagacac tgacactcga cggtaaaacc 420 tggctgctcg aacgcccact gcgcgccgac ctggcgctaa ttcgcgctca tcgttgcgac 480 acacttggca acctgaccta tcaacttagc gcccgcaact ttaaccccct gatagccctt 540 gcggctgata tcacgctggt agagccagat gaactggtcg aaaccggcga gctgcaacct 600 gaccatattg tcacccctgg tgccgttatc gaccacatca tcgtttcaca ggagagcaaa 660 taatggatgc gaaacaacgt attgcgcgcc gtgtggcgca agagcttcgt gatggtgaca 720 tcgttaactt agggatcggt ttacccacaa tggtcgccaa ttatttaccg gagggtattc 780 atatcactct gcaatcggaa aacggcttcc tcggtttagg cccggtcacg acagcgcatc 840 cagatctggt gaacgctggc gggcaaccgt gcggtgtttt acccggtgca gccatgtttg 900 atagcgccat gtcatttgcg ctaatccgtg gcggtcatat tgatgcctgc gtgctcggcg 960 gtttgcaagt agacgaagaa gcaaacctcg cgaactgggt agtgcctggg aaaatggtgc 1020 ccggtatggg tggcgcgatg gatctggtga ccgggtcgcg caaagtgatc atcgccatgg 1080 aacattgcgc caaagatggt tcagcaaaaa ttttgcgccg ctgcaccatg ccactcactg 1140 cgcaacatgc ggtgcatatg ctggttactg aactggctgt ctttcgtttt attgacggca 1200 aaatgtggct caccgaaatt gccgacgggt gtgatttagc caccgtgcgt gccaaaacag 1260 aagctcggtt tgaagtcgcc gccgatctga atacgcaacg gggtgattta tgaatcgatg 1320 gattacaagg atgacgacga taagatctga gctcatgaaa ggatttgcta tgctaggcat 1380 aaacaagtta ggttggatcg aaaaggaacg tccggtagca ggaagttatg acgcaattgt 1440 tagaccattg gcagtgagcc catgtacatc agacatacac actgtgtttg agggtgcact 1500 gggcgataga aaaaatatga tcttaggcca tgaagctgtc ggagaagtcg tggaggttgg 1560 gagtgaagtc aaggatttta agccaggaga tagagtaatt gttccttgta ctaccccaga 1620 ctggcgtagt ttggaggtcc aagcagggtt tcaacaacac tccaatggca tgttggcggg 1680 gtggaagttc tctaatttca aagatggtgt ttttggtgag tatttccacg tcaatgatgc 1740 ggatatgaat ttggcgatcc ttcctaaaga catgccgctt gaaaatgctg ttatgattac 1800 tgatatgatg accacgggat ttcatggggc agaacttgct gatatccaaa tgggctcatc 1860 tgttgtagtg attggtatag gagctgttgg ccttatgggt atcgccgggg cgaagttaag 1920 gggcgctggc cgtataatag gggtaggctc taggcccatt tgcgttgagg ctgctaagtt 1980 ttatggagca actgacattc ttaattacaa gaatggtcat atagtagacc aagttatgaa 2040 gcttaccaac ggtaagggtg tagatagggt gatcatggcg ggtggaggta gcgaaacttt 2100 aagtcaggct gtatctatgg tcaagccagg aggcattatt agcaacataa actatcatgg 2160 ctccggcgac gcgttgttaa ttccaagagt cgagtggggt tgcgggatgg cacacaaaac 2220 aatcaaaggt ggattgtgcc ccgggggccg tctacgtgct gagatgttgc gtgatatggt 2280 ggtctataat cgtgtcgatt tgagtaagtt agtcacccat gtgtaccatg gatttgacca 2340 tatagaagag gcactgttac taatgaagga caaaccgaaa gatttgataa aggcagtggt 2400 tatcctgtaa 2410 <210> 5 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> Xcm1_adc_F primer sequence <400> 5 atccagtccg actctggatg ttaaaggatg aagtaattaa acaaattagc ac 52 <210> 6 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Kpn1_adc_R primer sequence <400> 6 ccggtacctt acttaagata atcatatata acttcagctc taggc 45 <210> 7 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> speI_atoDA_F primer sequence <400> 7 gcgcactagt atgaaaacaa aattgatgac at 32 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> ClaI_atoDA_R primer sequence <400> 8 tttaatcgat tcataaatca ccccg 25 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Sac1_adh_F primer sequence <400> 9 gcgccacaat gaaaacaaaa ttgatgacat 30 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Pac1_adh_R primer sequence <400> 10 cttaattaat tacaggataa ccactgcctt 30 <210> 11 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Pmel1_atoDAadh_F primer sequence <400> 11 gcgccacgtg atgaaaacaa aattgatgac at 32 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> BamH1_atoDAadh_R primer sequence <400> 12 taaggatcct tacaggataa ccactgcctt 30 <210> 13 <211> 1179 <212> DNA <213> Artificial Sequence <220> <223> thl DNA sequence <400> 13 atgaaagaag ttgtaatagc tagtgcagta agaacagcga ttggatctta tggaaagtct 60 cttaaggatg taccagcagt agatttagga gctacagcta taaaggaagc agttaaaaaa 120 gcaggaataa aaccagagga tgttaatgaa gtcattttag gaaatgttct tcaagcaggt 180 ttaggacaga atccagcaag acaggcatct tttaaagcag gattaccagt tgaaattcca 240 gctatgacta ttaataaggt ttgtggttca ggacttagaa cagttagctt agcagcacaa 300 attataaaag caggagatgc tgacgtaata atagcaggtg gtatggaaaa tatgtctaga 360 gctccttact tagcgaataa cgctagatgg ggatatagaa tgggaaacgc taaatttgtt 420 gatgaaatga tcactgacgg attgtgggat gcatttaatg attaccacat gggaataaca 480 gcagaaaaca tagctgagag atggaacatt tcaagagaag aacaagatga gtttgctctt 540 gcatcacaaa aaaaagctga agaagctata aaatcaggtc aatttaaaga tgaaatagtt 600 cctgtagtaa ttaaaggcag aaagggagaa actgtagttg atacagatga gcaccctaga 660 tttggatcaa ctatagaagg acttgcaaaa ttaaaacctg ccttcaaaaa agatggaaca 720 gttacagctg gtaatgcatc aggattaaat gactgtgcag cagtacttgt aatcatgagt 780 gcagaaaaag ctaaagagct tggagtaaaa ccacttgcta agatagtttc ttatggttca 840 gcaggagttg acccagcaat aatgggatat ggacctttct atgcaacaaa agcagctatt 900 gaaaaagcag gttggacagt tgatgaatta gatttaatag aatcaaatga agcttttgca 960 gctcaaagtt tagcagtagc aaaagattta aaatttgata tgaataaagt aaatgtaaat 1020 ggaggagcta ttgcccttgg tcatccaatt ggagcatcag gtgcaagaat actcgttact 1080 cttgtacacg caatgcaaaa aagagatgca aaaaaaggct tagcaacttt atgtataggt 1140 ggcggacaag gaacagcaat attgctagaa aagtgctag 1179 <210> 14 <211> 990 <212> DNA <213> Artificial Sequence <220> <223> nphT7 DNA sequence <400> 14 atgacggatg ttcgattccg aattattggt accggtgcct atgttcccga acgaatcgtc 60 tctaatgacg aagtgggagc acctgctggc gtggatgacg attggattac aagaaagaca 120 ggaattagac aacggcggtg ggcagctgac gatcaggcaa cgtctgatct tgcaactgcc 180 gccggtcgag cagcactgaa ggctgctggc attacccctg aacagcttac tgtgatcgca 240 gtggccactt ccacacccga cagaccccaa cctcctacgg cagcttacgt tcaacatcac 300 ctcggtgcta ctggaactgc cgcatttgat gtcaacgctg tgtgttccgg cacggtcttc 360 gccctttcct cggtggcagg tacgctcgtc tatcgtggag gctacgccct cgtcattggt 420 gccgaccttt attcgcggat cctgaacccc gcagatcgga agaccgttgt gctctttgga 480 gatggtgccg gtgcaatggt cctcggccct acatccactg gaactggtcc tattgtccgt 540 cgggtcgctc tccacacctt cggaggactc acagatctga ttagagtgcc cgccggaggt 600 tcccgtcagc ctctcgatac agatggactc gatgcaggtc tgcagtattt tgcaatggat 660 ggacgggaag tgcgacggtt cgttactgaa catcttcctc aactcattaa aggatttctg 720 catgaagcag gcgttgatgc tgccgacatt agccacttcg tcccccatca ggcaaatgga 780 gttatgctcg acgaggtttt tggagagctc catcttccca gagccactat gcaccggacc 840 gtcgagactt atggaaacac tggagccgca tcgatcccca ttacaatgga cgctgccgtt 900 cgagctggtt cctttcgtcc cggcgagctg gttcttctgg ctggatttgg tggtggcatg 960 gctgccagct tcgcacttat cgagtggtag 990 <210> 15 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Gibson_nphT7_F primer sequence <400> 15 tacaaccaca cacatccaca atgacggatg ttcgattcc 39 <210> 16 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Gibson_nphT7_R primer sequence <400> 16 caattttgtt ttcatcacct accactcgat aagtgcg 37 <210> 17 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> Xcm1_thl_F primer sequence <400> 17 atccagtccg actctggatg aaagaagttg taatagctag tg 42 <210> 18 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Kpn1_thl_R primer sequence <400> 18 ccggtacctt acttaagata atcatatata acttcagctc taggc 45 <110> Industry Academic Cooperation Foundation of Korea University <120> Recombinant Yarrowia lipolytica for producing isopropanol and method for preparing isopropanol using its <130> NPDC100450 <160> 18 <170> KoPatentIn 3.0 <210> 1 <211> 735 <212> DNA <213> artificial sequence <220> <223> adc DNA sequence <400> 1 atgttaaagg atgaagtaat taaacaaatt agcacgccat taacttcgcc tgcatttcct 60 agaggaccct ataaatttca taatcgtgag tattttaaca ttgtatatcg tacagatatg 120 gatgcacttc gtaaagttgt gccagagcct ttagaaattg atgagccctt agtcaggttt 180 gaaattatgg caatgcatga tacgagtgga cttggttgtt atacagaaag cggacaggct 240 attcccgtaa gctttaatgg agttaaggga gattatcttc atatgatgta tttagataat 300 gagcctgcaa ttgcagtagg aagggaatta agtgcatatc ctaaaaagct cgggtatcca 360 aagctttttg tggattcaga tactttagta ggaactttag actatggaaa acttagagtt 420 gcgacagcta caatggggta caaacataaa gccttagatg ctaatgaagc aaaggatcaa 480 atttgtcgcc ctaattatat gttgaaaata atacccaatt atgatggaag ccctagaata 540 tgtgagctta taaatgcgaa aatcacagat gttaccgtac atgaagcttg gacaggacca 600 actcgactgc agttatttga tcacgctatg gcgccactta atgatttgcc agtaaaagag 660 attgtttcta gctctcacat tcttgcagat ataatattgc ctagagctga agttatatat 720 gattatta agtaa 735 <210> 2 <211> 651 <212> DNA <213> artificial sequence <220> <223> atoDA DNA sequence <400> 2 atggatgcga aacaacgtat tgcgcgccgt gtggcgcaag agcttcgtga tggtgacatc 60 gttaacttag ggatcggttt acccacaatg gtcgccaatt atttaccgga gggtattcat 120 atcactctgc aatcggaaaa cggcttcctc ggtttaggcc cggtcacgac agcgcatcca 180 gatctggtga acgctggcgg gcaaccgtgc ggtgttttac ccggtgcagc catgtttgat 240 agcgccatgt catttgcgct aatccgtggc ggtcatattg atgcctgcgt gctcggcggt 300 ttgcaagtag acgaagaagc aaacctcgcg aactgggtag tgcctgggaa aatggtgccc 360 ggtatgggtg gcgcgatgga tctggtgacc gggtcgcgca aagtgatcat cgccatggaa 420 cattgcgcca aagatggttc agcaaaaatt ttgcgccgct gcaccatgcc actcactgcg 480 caacatgcgg tgcatatgct ggttactgaa ctggctgtct ttcgttttat tgacggcaaa 540 atgtggctca ccgaaattgc cgacgggtgt gatttagcca ccgtgcgtgc caaaacagaa 600 gctcggtttg aagtcgccgc cgatctgaat acgcaacggg gtgatttatg a 651 <210> 3 <211> 1056 <212> DNA <213> artificial sequence <220> <223> adh DNA sequence <400> 3 atgaaaggat ttgctatgct aggcataaac aagttaggtt ggatcgaaaa ggaacgtccg 60 gtagcaggaa gttatgacgc aattgttaga ccattggcag tgagcccatg tacatcagac 120 atacacactg tgtttgaggg tgcactgggc gatagaaaaa atatgatctt aggccatgaa 180 gctgtcggag aagtcgtgga ggttgggagt gaagtcaagg attttaagcc aggagataga 240 gtaattgttc cttgtactac cccagactgg cgtagtttgg aggtccaagc agggtttcaa 300 caacactcca atggcatgtt ggcggggtgg aagttctcta atttcaaaga tggtgttttt 360 ggtgagtatt tccacgtcaa tgatgcggat atgaatttgg cgatccttcc taaagacatg 420 ccgcttgaaa atgctgttat gattactgat atgatgacca cgggatttca tggggcagaa 480 cttgctgata tccaaatggg ctcatctgtt gtagtgattg gtataggagc tgttggcctt 540 atgggtatcg ccggggcgaa gttaaggggc gctggccgta taataggggt aggctctagg 600 cccatttgcg ttgaggctgc taagttttat ggagcaactg acattcttaa ttacaagaat 660 ggtcatatag tagaccaagt tatgaagctt accaacggta agggtgtaga tagggtgatc 720 atggcgggtg gaggtagcga aactttaagt caggctgtat ctatggtcaa gccaggaggc 780 attattagca acataaacta tcatggctcc ggcgacgcgt tgttaattcc aagagtcgag 840 tggggttgcg ggatggcaca caaaacaatc aaaggtggat tgtgccccgg gggccgtcta 900 cgtgctgaga tgttgcgtga tatggtggtc tataatcgtg tcgatttgag taagttagtc 960 acccatgtgt accatggatt tgaccatata gaagaggcac tgttactaat gaaggacaaa 1020 ccgaaagatt tgataaaggc agtggttatc ctgtaa 1056 <210> 4 <211> 2410 <212> DNA <213> artificial sequence <220> <223> atoDA-adh DNA sequence <400> 4 atgaaaacaa aattgatgac attacaagac gccaccggct tctttcgtga cggcatgacc 60 atcatggtgg gcggatttat ggggattggc actccatccc gcctggttga agcattactg 120 gaatctggtg ttcgcgacct gacattgata gccaatgata ccgcgtttgt tgataccggc 180 atcggtccgc tcatcgtcaa tggtcgagtc cgcaaagtga ttgcttcaca tatcggcacc 240 aacccggaaa caggtcggcg catgatatct ggtgagatgg acgtcgttct ggtgccgcaa 300 ggtacgctaa tcgagcaaat tcgctgtggt ggagctggac ttggtggttt tctcacccca 360 acgggtgtcg gcaccgtcgt agaggaaggc aaacagacac tgacactcga cggtaaaacc 420 tggctgctcg aacgcccact gcgcgccgac ctggcgctaa ttcgcgctca tcgttgcgac 480 acacttggca acctgaccta tcaacttagc gcccgcaact ttaaccccct gatagccctt 540 gcggctgata tcacgctggt agagccagat gaactggtcg aaaccggcga gctgcaacct 600 gaccatattg tcacccctgg tgccgttatc gaccacatca tcgtttcaca ggagagcaaa 660 taatggatgc gaaacaacgt attgcgcgcc gtgtggcgca agagcttcgt gatggtgaca 720 tcgttaactt agggatcggt ttaccccacaa tggtcgccaa ttatttaccg gagggtattc 780 atatcactct gcaatcggaa aacggcttcc tcggtttagg cccggtcacg acagcgcatc 840 cagatctggt gaacgctggc gggcaaccgt gcggtgtttt acccggtgca gccatgtttg 900 atagcgccat gtcatttgcg ctaatccgtg gcggtcatat tgatgcctgc gtgctcggcg 960 gtttgcaagt agacgaagaa gcaaacctcg cgaactgggt agtgcctggg aaaatggtgc 1020 ccggtatggg tggcgcgatg gatctggtga ccgggtcgcg caaagtgatc atcgccatgg 1080 aacattgcgc caaagatggt tcagcaaaaa ttttgcgccg ctgcaccatg ccactcactg 1140 cgcaacatgc ggtgcatatg ctggttactg aactggctgt ctttcgtttt attgacggca 1200 aaatgtggct caccgaaatt gccgacgggt gtgatttagc caccgtgcgt gccaaaacag 1260 aagctcggtt tgaagtcgcc gccgatctga atacgcaacg gggtgattta tgaatcgatg 1320 gattacaagg atgacgacga taagatctga gctcatgaaa ggatttgcta tgctaggcat 1380 aaacaagtta ggttggatcg aaaaggaacg tccggtagca ggaagttatg acgcaattgt 1440 tagaccattg gcagtgagcc catgtacatc agacatacac actgtgtttg agggtgcact 1500 gggcgataga aaaaatatga tcttaggcca tgaagctgtc ggagaagtcg tggaggttgg 1560 gagtgaagtc aaggatttta agccaggaga tagagtaatt gttccttgta ctaccccaga 1620 ctggcgtagt ttggaggtcc aagcagggtt tcaacaacac tccaatggca tgttggcggg 1680 gtggaagttc tctaatttca aagatggtgt ttttggtgag tatttccacg tcaatgatgc 1740 ggatatgaat ttggcgatcc ttcctaaaga catgccgctt gaaaatgctg ttatgattac 1800 tgatatgatg accacgggat ttcatggggc agaacttgct gatatccaaa tgggctcatc 1860 tgttgtagtg attggtatag gagctgttgg ccttatgggt atcgccgggg cgaagttaag 1920 gggcgctggc cgtataatag gggtaggctc taggcccatt tgcgttgagg ctgctaagtt 1980 ttatggagca actgacattc ttaattacaa gaatggtcat atagtagacc aagttatgaa 2040 gcttaccaac ggtaagggtg tagatagggt gatcatggcg ggtggaggta gcgaaacttt 2100 aagtcaggct gtatctatgg tcaagccagg aggcattatt agcaacataa actatcatgg 2160 ctccggcgac gcgttgttaa ttccaagagt cgagtggggt tgcgggatgg cacacaaaac 2220 aatcaaaggt ggattgtgcc ccgggggccg tctacgtgct gagatgttgc gtgatatggt 2280 ggtctataat cgtgtcgatt tgagtaagtt agtcacccat gtgtaccatg gatttgacca 2340 tatagaagag gcactgttac taatgaagga caaaccgaaa gatttgataa aggcagtggt 2400 tatcctgtaa 2410 <210> 5 <211> 52 <212> DNA <213> artificial sequence <220> <223> Xcm1_adc_F primer sequence <400> 5 atccagtccg actctggatg ttaaaggatg aagtaattaa acaaattagc ac 52 <210> 6 <211> 45 <212> DNA <213> artificial sequence <220> <223> Kpn1_adc_R primer sequence <400> 6 ccggtacctt acttaagata atcatatata acttcagctc taggc 45 <210> 7 <211> 32 <212> DNA <213> artificial sequence <220> <223> speI_atoDA_F primer sequence <400> 7 gcgcactagt atgaaaacaa aattgatgac at 32 <210> 8 <211> 25 <212> DNA <213> artificial sequence <220> <223> ClaI_atoDA_R primer sequence <400> 8 tttaatcgat tcataaatca ccccg 25 <210> 9 <211> 30 <212> DNA <213> artificial sequence <220> <223> Sac1_adh_F primer sequence <400> 9 gcgccacaat gaaaacaaaa ttgatgacat 30 <210> 10 <211> 30 <212> DNA <213> artificial sequence <220> <223> Pac1_adh_R primer sequence <400> 10 cttaattaat tacaggataa ccactgcctt 30 <210> 11 <211> 32 <212> DNA <213> artificial sequence <220> <223> Pmel1_atoDAadh_F primer sequence <400> 11 gcgccacgtg atgaaaacaa aattgatgac at 32 <210> 12 <211> 30 <212> DNA <213> artificial sequence <220> <223> BamH1_atoDAadh_R primer sequence <400> 12 taaggatcct tacaggataa ccactgcctt 30 <210> 13 <211> 1179 <212> DNA <213> artificial sequence <220> <223> thl DNA sequence <400> 13 atgaaagaag ttgtaatagc tagtgcagta agaacagcga ttggatctta tggaaagtct 60 cttaaggatg taccagcagt agatttagga gctacagcta taaaggaagc agttaaaaaa 120 gcaggaataa aaccagagga tgttaatgaa gtcattttag gaaatgttct tcaagcaggt 180 ttaggacaga atccagcaag acaggcatct tttaaagcag gattaccagt tgaaattcca 240 gctatgacta ttaataaggt ttgtggttca ggacttagaa cagttagctt agcagcacaa 300 attataaaag caggagatgc tgacgtaata atagcaggtg gtatggaaaa tatgtctaga 360 gctccttaact tagcgaataa cgctagatgg ggatatagaa tgggaaacgc taaatttgtt 420 gatgaaatga tcactgacgg attgtgggat gcatttaatg attaccacat gggaataaca 480 gcagaaaaca tagctgagag atggaacatt tcaagagaag aacaagatga gtttgctctt 540 gcatcacaaa aaaaagctga agaagctata aaatcaggtc aatttaaaga tgaaatagtt 600 cctgtagtaa ttaaaggcag aaagggagaa actgtagttg atacagatga gcaccctaga 660 tttggatcaa ctatagaagg acttgcaaaa ttaaaacctg ccttcaaaaa agatggaaca 720 gttacagctg gtaatgcatc aggattaaat gactgtgcag cagtacttgt aatcatgagt 780 gcagaaaaag ctaaagagct tggagtaaaa ccacttgcta agatagtttc ttatggttca 840 gcaggagttg acccagcaat aatgggatat ggacctttct atgcaacaaa agcagctatt 900 gaaaaagcag gttggacagt tgatgaatta gatttaatag aatcaaatga agcttttgca 960 gctcaaagtt tagcagtagc aaaagattta aaatttgata tgaataaagt aaatgtaaat 1020 ggaggagcta ttgcccttgg tcatccaatt ggagcatcag gtgcaagaat actcgttact 1080 cttgtacacg caatgcaaaa aagagatgca aaaaaaggct tagcaacttt atgtataggt 1140 ggcggacaag gaacagcaat attgctagaa aagtgctag 1179 <210> 14 <211> 990 <212> DNA <213> artificial sequence <220> <223> nphT7 DNA sequence <400> 14 atgacggatg ttcgattccg aattattggt accggtgcct atgttcccga acgaatcgtc 60 tctaatgacg aagtggggagc acctgctggc gtggatgacg attggattac aagaaagaca 120 ggaattagac aacggcggtg ggcagctgac gatcaggcaa cgtctgatct tgcaactgcc 180 gccggtcgag cagcactgaa ggctgctggc attacccctg aacagcttac tgtgatcgca 240 gtggccactt ccacacccga cagaccccaa cctcctacgg cagcttacgt tcaacatcac 300 ctcggtgcta ctggaactgc cgcatttgat gtcaacgctg tgtgttccgg cacggtcttc 360 gccctttcct cggtggcagg tacgctcgtc tatcgtggag gctacgccct cgtcattggt 420 gccgaccttt attcgcggat cctgaacccc gcagatcgga agaccgttgt gctctttgga 480 gatggtgccg gtgcaatggt cctcggccct acatccactg gaactggtcc tattgtccgt 540 cgggtcgctc tccacacctt cggaggactc acagatctga ttagagtgcc cgccggaggt 600 tcccgtcagc ctctcgatac agatggactc gatgcaggtc tgcagtattt tgcaatggat 660 ggacgggaag tgcgacggtt cgttactgaa catcttcctc aactcattaa aggatttctg 720 catgaagcag gcgttgatgc tgccgacatt agccacttcg tcccccatca ggcaaatgga 780 gttatgctcg acgaggtttt tggagagctc catcttccca gagccactat gcaccggacc 840 gtcgagactt atggaaacac tggagccgca tcgatcccca ttacaatgga cgctgccgtt 900 cgagctggtt cctttcgtcc cggcgagctg gttcttctgg ctggatttgg tggtggcatg 960 gctgccagct tcgcacttat cgagtggtag 990 <210> 15 <211> 39 <212> DNA <213> artificial sequence <220> <223> Gibson_nphT7_F primer sequence <400> 15 tacaaccaca cacatccaca atgacggatg ttcgattcc 39 <210> 16 <211> 37 <212> DNA <213> artificial sequence <220> <223> Gibson_nphT7_R primer sequence <400> 16 caattttgtt ttcatcacct accactcgat aagtgcg 37 <210> 17 <211> 42 <212> DNA <213> artificial sequence <220> <223> Xcm1_thl_F primer sequence <400> 17 atccagtccg actctggatg aaagaagttg taatagctag tg 42 <210> 18 <211> 45 <212> DNA <213> artificial sequence <220> <223> Kpn1_thl_R primer sequence <400> 18 ccggtacctt acttaagata atcatatata acttcagctc taggc 45

Claims (12)

thl(thiolase) 또는 nphT7(acetoacetyl CoA synthase) 유전자; atoDA(acetoacetyl-CoA transferase) 유전자; adh(alcohol dehydrogenases) 유전자; 및 adc(acetoacetate decarboxylase) 유전자가 순차적으로 연결되어 포함된 재조합 발현벡터로 형질전환된,
이소프로판올 생산용 재조합 야로위아 리포리티카 균주.
thl (thiolase) or nphT7 (acetoacetyl CoA synthase) genes; atoDA (acetoacetyl-CoA transferase) gene; adh (alcohol dehydrogenases) gene; And adc (acetoacetate decarboxylase) gene is transformed with a recombinant expression vector containing sequentially linked,
Recombinant Yarrowia lipolytica strains for isopropanol production.
제1항에 있어서,
상기 thl 유전자는 서열번호 13의 염기서열로 이루어진 것을 특징으로 하는, 이소프로판올 생산용 재조합 야로위아 리포리티카 균주.
According to claim 1,
The thl gene is characterized in that consisting of the nucleotide sequence of SEQ ID NO: 13, recombinant Yarrowia lipolytica strain for producing isopropanol.
제1항에 있어서,
상기 nphT7 유전자는 서열번호 14의 염기서열로 이루어진 것을 특징으로 하는, 이소프로판올 생산용 재조합 야로위아 리포리티카 균주.
According to claim 1,
The recombinant Yarrowia lipolytica strain for isopropanol production, characterized in that the nphT7 gene consists of the nucleotide sequence of SEQ ID NO: 14.
제1항에 있어서,
상기 atoDA 유전자는 서열번호 2의 염기서열로 이루어진 것을 특징으로 하는, 이소프로판올 생산용 재조합 야로위아 리포리티카 균주.
According to claim 1,
The atoDA gene is a recombinant Yarrowia lipolytica strain for isopropanol production, characterized in that consisting of the nucleotide sequence of SEQ ID NO: 2.
제1항에 있어서,
상기 adc 유전자는 서열번호 1의 염기서열로 이루어진 것을 특징으로 하는, 이소프로판올 생산용 재조합 야로위아 리포리티카 균주.
According to claim 1,
The adc gene is a recombinant Yarrowia lipolytica strain for isopropanol production, characterized in that consisting of the nucleotide sequence of SEQ ID NO: 1.
제1항에 있어서,
상기 adh 유전자는 서열번호 3의 염기서열로 이루어진 것을 특징으로 하는, 이소프로판올 생산용 재조합 야로위아 리포리티카 균주.
According to claim 1,
The adh gene is characterized in that consisting of the nucleotide sequence of SEQ ID NO: 3, recombinant Yarrowia lipolytica strain for producing isopropanol.
제1항에 있어서,
상기 재조합 발현벡터는 thl(thiolase) 유전자; atoDA(acetoacetyl-CoA transferase) 유전자; adh(alcohol dehydrogenases) 유전자; 및 adc(acetoacetate decarboxylase) 유전자가 순차적으로 연결되어 포함된 pYLEX1THLIPA 발현벡터인 것을 특징으로 하는, 이소프로판올 생산용 재조합 야로위아 리포리티카 균주.
According to claim 1,
The recombinant expression vector includes a thl (thiolase) gene; atoDA (acetoacetyl-CoA transferase) gene; adh (alcohol dehydrogenases) gene; And adc (acetoacetate decarboxylase) gene is sequentially linked to the pYLEX1THLIPA expression vector, characterized in that, a recombinant Yarrowia lipolytica strain for isopropanol production.
제1항에 있어서,
상기 재조합 발현벡터는 nphT7(acetoacetyl CoA synthase) 유전자; atoDA(acetoacetyl-CoA transferase) 유전자; adh(alcohol dehydrogenases) 유전자; 및 adc(acetoacetate decarboxylase) 유전자가 순차적으로 연결되어 포함된 pYLEX1NphT7IPA 발현벡터인 것을 특징으로 하는, 이소프로판올 생산용 재조합 야로위아 리포리티카 균주.
According to claim 1,
The recombinant expression vector includes nphT7 (acetoacetyl CoA synthase) gene; atoDA (acetoacetyl-CoA transferase) gene; adh (alcohol dehydrogenases) gene; And adc (acetoacetate decarboxylase) gene is sequentially linked to the pYLEX1NphT7IPA expression vector, characterized in that, a recombinant Yarrowia lipolytica strain for isopropanol production.
(1) 제1항 내지 제8항 중 어느 한 항의 이소프로판올 생산용 재조합 야로위아 리포리티카 균주를 배양하는 단계; 및
(2) 상기 재조합 야로위아 리포리티카 균주로부터 생산된 이소프로판올을 수득하는 단계를 포함하는,
이소프로판올의 대량 생산방법.
(1) culturing the recombinant Yarrowia lipolytica strain for producing isopropanol according to any one of claims 1 to 8; and
(2) obtaining isopropanol produced from the recombinant Yarrowia lipolytica strain,
Method for mass production of isopropanol.
제9항에 있어서,
상기 이소프로판올을 수득하는 것은 상기 균주 자체, 균주의 배양물 또는 균주의 배양배지로부터 수득하는 것을 특징으로 하는, 이소프로판올의 대량 생산방법.
According to claim 9,
Obtaining the isopropanol is characterized in that obtained from the strain itself, the culture of the strain or the culture medium of the strain, isopropanol mass production method.
제9항에 있어서,
상기 배양은 탄소원으로 글리세롤 또는 글루코오스를 이용하는 것을 특징으로 하는, 이소프로판올의 대량 생산방법.
According to claim 9,
The culturing is a method for mass production of isopropanol, characterized in that using glycerol or glucose as a carbon source.
제11항에 있어서,
기 글리세롤 또는 글루코오스는 배양배지에 2~10 중량%로 함유되어 있는 것을 특징으로 하는, 이소프로판올의 대량 생산방법.
According to claim 11,
A method for mass production of isopropanol, characterized in that the group glycerol or glucose is contained in the culture medium in an amount of 2 to 10% by weight.
KR1020210188731A 2021-12-27 2021-12-27 Recombinant Yarrowia lipolytica for producing isopropanol and method for preparing isopropanol using thereof KR20230099414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210188731A KR20230099414A (en) 2021-12-27 2021-12-27 Recombinant Yarrowia lipolytica for producing isopropanol and method for preparing isopropanol using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210188731A KR20230099414A (en) 2021-12-27 2021-12-27 Recombinant Yarrowia lipolytica for producing isopropanol and method for preparing isopropanol using thereof

Publications (1)

Publication Number Publication Date
KR20230099414A true KR20230099414A (en) 2023-07-04

Family

ID=87156080

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210188731A KR20230099414A (en) 2021-12-27 2021-12-27 Recombinant Yarrowia lipolytica for producing isopropanol and method for preparing isopropanol using thereof

Country Status (1)

Country Link
KR (1) KR20230099414A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101346615B1 (en) 2009-09-22 2014-01-03 한국과학기술원 Enhanced Butanol, Ethanol and Isopropanol Producing Recombinant Mutant Microorganisms and Method for Preparing It Using the Same
KR101466223B1 (en) 2012-05-21 2014-11-28 한국화학연구원 Genetically modified isopropanol producing microorganisms and the method for preparing isopropanol using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101346615B1 (en) 2009-09-22 2014-01-03 한국과학기술원 Enhanced Butanol, Ethanol and Isopropanol Producing Recombinant Mutant Microorganisms and Method for Preparing It Using the Same
KR101466223B1 (en) 2012-05-21 2014-11-28 한국화학연구원 Genetically modified isopropanol producing microorganisms and the method for preparing isopropanol using the same

Similar Documents

Publication Publication Date Title
US10662426B2 (en) Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves
CN107636147B (en) Genetically engineered microorganisms for the production of chorismic acid derivatives
AU2010300642B2 (en) Fermentive production of isobutanol using highly effective ketol-acid reductoisomerase enzymes
CA2882276E (en) Recombinant microorganisms expressing a stereospecific diol dehydratase enzyme
CA2619989C (en) Regulation of heterologous recombinant protein expression in methylotrophic and methanotrophic bacteria
CA2776151A1 (en) Improved flux to acetolactate-derived products in lactic acid bacteria
US20140065697A1 (en) Cells and methods for producing isobutyric acid
US6107093A (en) Recombinant cells that highly express chromosomally-integrated heterologous genes
EP3008178A1 (en) Microbial production of 3-hydroxypropionic acid
CN112204146A (en) Acid-tolerant yeast having inhibited ethanol production pathway and method for producing lactic acid using the same
US20070172937A1 (en) Recombinant cells that highly express chromosomally-integrated heterologous genes
Liu et al. Metabolic engineering of a Lactobacillus plantarum double ldh knockout strain for enhanced ethanol production
Janke et al. The production of isoprene from cellulose using recombinant Clostridium cellulolyticum strains expressing isoprene synthase
CA2097803C (en) Recombinant cells that highly express chromosomally-integrated heterologous genes
US20220049235A1 (en) Engineering Bacteria for Ferulic Acid Production, Preparation Method and Use Thereof
CN104928272A (en) Fusion polypeptide, nucleic acid molecule encoding the same, and method for producing itaconic acid using the same
KR20230099414A (en) Recombinant Yarrowia lipolytica for producing isopropanol and method for preparing isopropanol using thereof
US9096859B2 (en) Microbial conversion of plant biomass to advanced biofuels
WO2021127707A1 (en) Microbial ester production
US20150275238A1 (en) Genetically engineered microbes and methods for converting organic acids to alcohols
US20230235368A1 (en) Methods for Producing Designer Esters and Assessing Alcohol Acyltransferase Specificity for Ester Biosynthesis
KR20230111410A (en) α-Ketoglutaric Semialdehyde Dehydrogenase Variant having Improved Activity toward 3-Hydroxypropanal
Zhang et al. Enhancing plasmid transformation efficiency and enabling CRISPR‐Cas9/Cpf1‐based genome editing in Clostridium
AU3556902A (en) Recombinant cells that highly express chromosomally- integrated heterologous genes

Legal Events

Date Code Title Description
E902 Notification of reason for refusal