KR20230085219A - 히스토리 기반 움직임 벡터에 기반한 인터 예측 방법 및 그 장치 - Google Patents

히스토리 기반 움직임 벡터에 기반한 인터 예측 방법 및 그 장치 Download PDF

Info

Publication number
KR20230085219A
KR20230085219A KR1020237018724A KR20237018724A KR20230085219A KR 20230085219 A KR20230085219 A KR 20230085219A KR 1020237018724 A KR1020237018724 A KR 1020237018724A KR 20237018724 A KR20237018724 A KR 20237018724A KR 20230085219 A KR20230085219 A KR 20230085219A
Authority
KR
South Korea
Prior art keywords
ctu
hmvp
candidate
prediction
current block
Prior art date
Application number
KR1020237018724A
Other languages
English (en)
Inventor
박내리
남정학
장형문
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20230085219A publication Critical patent/KR20230085219A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/423Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)

Abstract

본 발명에 따른 영상 디코딩 방법은 현재 블록에 대한 HMVP(history-based motion vector prediction) 버퍼를 도출하는 단계, 상기 HMVP 버퍼에 포함된 HMVP 후보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계, 상기 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성하는 단계, 및 상기 예측 샘플들을 기반으로 복원 샘플들을 생성하되, 상기 HMVP 버퍼는 상기 현재 블록을 포함하는 현재 CTU가 위치하는 CTU 행의 첫번째 CTU를 처리하는 경우, 초기화되는 것을 특징으로 한다.

Description

히스토리 기반 움직임 벡터에 기반한 인터 예측 방법 및 그 장치{HISTORY-BASED MOTION VECTOR BASED INTER PREDICTION METHOD AND APPARATUS THEREOF}
본 발명은 영상 코딩 기술에 관한 것으로서 보다 상세하게는 히스토리 기반 움직임 벡터에 기반한 인터 예측 방법 및 그 장치에 관한 것이다.
최근 4K 또는 8K 이상의 UHD(Ultra High Definition) 영상/비디오와 같은 고해상도, 고품질의 영상/비디오에 대한 수요가 다양한 분야에서 증가하고 있다. 영상/비디오 데이터가 고해상도, 고품질이 될수록 기존의 영상/비디오 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 영상/비디오 데이터를 저장하는 경우, 전송 비용과 저장 비용이 증가된다.
또한, 최근 VR(Virtual Reality), AR(Artificial Realtiy) 컨텐츠나 홀로그램 등의 실감 미디어(Immersive Media)에 대한 관심 및 수요가 증가하고 있으며, 게임 영상과 같이 현실 영상과 다른 영상 특성을 갖는 영상/비디오에 대한 방송이 증가하고 있다.
이에 따라, 상기와 같은 다양한 특성을 갖는 고해상도 고품질의 영상/비디오의 정보를 효과적으로 압축하여 전송하거나 저장하고, 재생하기 위해 고효율의 영상/비디오 압축 기술이 요구된다.
본 발명의 기술적 과제는 영상 코딩 효율을 높이는 방법 및 장치를 제공함에 있다.
본 발명의 다른 기술적 과제는 효율적인 인터 예측 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 히스토리 기반 움직임 벡터 도출하는 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 HMVP(history-based motion vector prediction) 후보를 효율적으로 도출하는 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 HMVP 버퍼를 효율적으로 초기화하는 방법 및 장치를 제공함에 있다.
본 발명의 일 실시예에 따르면, 디코딩 장치에 의하여 수행되는 영상 디코딩 방법을 제공한다. 상기 방법은 현재 블록에 대한 HMVP(history-based motion vector prediction) 버퍼를 도출하는 단계, 상기 HMVP 버퍼에 포함된 HMVP 후보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계, 상기 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성하는 단계, 및 상기 예측 샘플들을 기반으로 복원 샘플들을 생성하되, 상기 HMVP 버퍼는 상기 현재 블록을 포함하는 현재 CTU가 위치하는 CTU 행의 첫번째 CTU를 처리하는 경우, 초기화되는 것을 특징으로 한다.
본 발명의 다른 일 실시예에 따르면, 영상 디코딩을 수행하는 디코딩 장치가 제공된다. 상기 디코딩 장치는 현재 블록에 대한 HMVP(history-based motion vector prediction) 버퍼를 도출하고, 상기 HMVP 버퍼에 포함된 HMVP 후보를 기반으로 상기 현재 블록의 움직임 정보를 도출하고, 상기 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성하는 예측부, 및 상기 예측 샘플들을 기반으로 복원 샘플들을 생성하는 가산부를 포함하고, 상기 HMVP 버퍼는 상기 현재 블록을 포함하는 현재 CTU가 위치하는 CTU 행의 첫번째 CTU를 처리하는 경우, 초기화되는 것을 특징으로 한다.
본 발명의 또 다른 일 실시예에 따르면, 인코딩 장치에 의하여 수행되는 영상 인코딩 방법이 제공된다. 상기 방법은 현재 블록에 대한 HMVP(history-based motion vector prediction) 버퍼를 도출하는 단계, 상기 HMVP 버퍼에 포함된 HMVP 후보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계, 상기 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성하는 단계, 상기 예측 샘플들을 기반으로 레지듀얼 샘플들을 도출하는 단계, 및 상기 레지듀얼 샘플들에 대한 정보를 포함하는 영상 정보를 인코딩하는 단계를 포함하되, 상기 HMVP 버퍼는 상기 현재 블록을 포함하는 현재 CTU가 위치하는 CTU 행의 첫번째 CTU를 처리하는 경우, 초기화되는 것을 특징으로 한다.
본 발명의 또 다른 일 실시예에 따르면, 영상 인코딩을 수행하는 인코딩 장치가 제공된다. 상기 인코딩 장치는 현재 블록에 대한 HMVP(history-based motion vector prediction) 버퍼를 도출하고, 상기 HMVP 버퍼에 포함된 HMVP 후보를 기반으로 상기 현재 블록의 움직임 정보를 도출하고, 상기 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성하는 예측부, 상기 예측 샘플들을 기반으로 레지듀얼 샘플들을 도출하는 레지듀얼 처리부, 및 상기 레지듀얼 샘플들에 대한 정보를 포함하는 영상 정보를 인코딩하는 엔트로피 인코딩부를 포함하되, 상기 HMVP 버퍼는 상기 현재 블록을 포함하는 현재 CTU가 위치하는 CTU 행의 첫번째 CTU를 처리하는 경우, 초기화되는 것을 특징으로 한다.
본 발명의 또 다른 일 실시예에 따르면, 인코딩 장치에 의하여 수행된 영상 인코딩 방법에 따라 생성된 인코딩된 영상 정보가 포함된 영상 데이터가 저장된 디지털 저장 매체를 제공한다.
본 발명의 또 다른 일 실시예에 따르면, 디코딩 장치에 의하여 상기 영상 디코딩 방법을 수행하도록 야기하는 인코딩된 영상 정보가 포함된 영상 데이터가 저장된 디지털 저장 매체를 제공한다.
본 발명의 일 실시예에 따르면 전반적인 영상/비디오 압축 효율을 높일 수 있다.
본 발명의 일 실시예에 따르면 효율적인 인터 예측을 통하여 레지듀얼 처리에 필요한 전송되는 데이터량을 줄일 수 있다.
본 발명의 일 실시예에 따르면 효율적으로 HMVP 버퍼를 관리할 수 잇다.
본 발명의 일 실시예에 따르면 효율적인 HMVP 버퍼 관리를 통하여 병렬 처리를 지원할 수 있다.
본 발명의 일 실시예에 따르면 인터 예측을 위한 움직임 벡터를 효율적으로 도출할 수 있다.
도 1은 본 발명이 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 2는 본 발명이 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3은 본 발명이 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 4는 인터 예측 기반 비디오/영상 인코딩 방법의 예를 나타낸다.
도 5는 인터 예측 기반 비디오/영상 인코딩 방법의 예를 나타낸다.
도 6은 인터 예측 절차를 예시적으로 나타낸다.
도 7은 종래의 머지 또는 AMVP 모드에서 움직임 정보 후보 도출을 위하여 사용되었던 공간적 주변 블록들을 예시적으로 나타낸다.
도 8은 HMVP 후보 기반 디코딩 절차의 예를 개략적으로 나타낸다.
도 9는 FIFO 규칙에 따른 HMVP 테이블 업데이트를 예시적으로 나타내고, 도 10은 제한된 FIFO 규칙에 따른 HMVP 테이블 업데이트를 예시적으로 나타낸다.
도 11은 병렬 처리를 위한 기법 중 하나인 WPP(Wavefront Parallel Processing)를 예시적으로 나타낸다.
도 12는 병렬 처리를 고려하여 일반 HMVP 방법을 적용할 때의 문제점을 예시적으로 나타낸다.
도 13은 본 발명의 일 실시예에 따른 히스토리 관리 버퍼(HMVP 버퍼)의 초기화 방법을 예시적으로 나타낸다.
도 14는 본 발명의 일 실시예에 다른 HMVP 버퍼 관리 방법을 예시적으로 나타낸다.
도 15는 본 발명의 다른 일 실시예에 다른 HMVP 버퍼 관리 방법을 예시적으로 나타낸다.
도 16은 본 발명의 또 다른 일 실시예에 다른 HMVP 버퍼 관리 방법을 예시적으로 나타낸다.
도 17은 HMVP 버퍼 관리 방법을 예시적으로 나타낸다.
도 18 및 19는 본 발명의 실시예에 따른 인터 예측 방법을 포함하는 비디오/영상 인코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다.
도 20 및 21는 본 발명의 실시예에 따른 인터 예측 방법을 포함하는 영상 디코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다.
도 22는 본 문서에서 개시된 발명이 적용될 수 있는 컨텐츠 스트리밍 시스템의 예를 나타낸다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정 실시예에 한정하려고 하는 것이 아니다. 본 명세서에서 상용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명의 기술적 사상을 한정하려는 의도로 사용되는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 도는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 발명에서 설명되는 도면상의 각 구성들은 서로 다른 특징적인 기능들에 관한 설명의 편의를 위해 독립적으로 도시된 것으로서, 각 구성들이 서로 별개의 하드웨어나 별개의 소프트웨어로 구현된다는 것을 의미하지는 않는다. 예컨대, 각 구성 중 두 개 이상의 구성이 합쳐져 하나의 구성을 이룰 수도 있고, 하나의 구성이 복수의 구성으로 나뉘어질 수도 있다. 각 구성이 통합 및/또는 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성 요소에 대해서 중복된 설명은 생략될 수 있다.
도 1은 본 발명을 적용될 수 있는 비디오/영상 코딩 시스템의 예를 개략적으로 나타낸다.
도 1을 참조하면, 비디오/영상 코딩 시스템은 제1 장치(소스 디바이스) 및 제2 장치(수신 디바이스)를 포함할 수 있다. 소스 디바이스는 인코딩된 비디오(video)/영상(image) 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스로 전달할 수 있다.
상기 소스 디바이스는 비디오 소스, 인코딩 장치, 전송부를 포함할 수 있다. 상기 수신 디바이스는 수신부, 디코딩 장치 및 렌더러를 포함할 수 있다. 상기 인코딩 장치는 비디오/영상 인코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 비디오/영상 디코딩 장치라고 불릴 수 있다. 송신기는 인코딩 장치에 포함될 수 있다. 수신기는 디코딩 장치에 포함될 수 있다. 렌더러는 디스플레이부를 포함할 수도 있고, 디스플레이부는 별개의 디바이스 또는 외부 컴포넌트로 구성될 수도 있다.
비디오 소스는 비디오/영상의 캡쳐, 합성 또는 생성 과정 등을 통하여 비디오/영상을 획득할 수 있다. 비디오 소스는 비디오/영상 캡쳐 디바이스 및/또는 비디오/영상 생성 디바이스를 포함할 수 있다. 비디오/영상 캡쳐 디바이스는 예를 들어, 하나 이상의 카메라, 이전에 캡쳐된 비디오/영상을 포함하는 비디오/영상 아카이브 등을 포함할 수 있다. 비디오/영상 생성 디바이스는 예를 들어 컴퓨터, 타블렛 및 스마트폰 등을 포함할 수 있으며 (전자적으로) 비디오/영상을 생성할 수 있다. 예를 들어, 컴퓨터 등을 통하여 가상의 비디오/영상이 생성될 수 있으며, 이 경우 관련 데이터가 생성되는 과정으로 비디오/영상 캡쳐 과정이 갈음될 수 있다.
인코딩 장치는 입력 비디오/영상을 인코딩할 수 있다. 인코딩 장치는 압축 및 코딩 효율을 위하여 예측, 변환, 양자화 등 일련의 절차를 수행할 수 있다. 인코딩된 데이터(인코딩된 비디오/영상 정보)는 비트스트림(bitstream) 형태로 출력될 수 있다.
전송부는 비트스트림 형태로 출력된 인코딩된 비디오/영상 정보 또는 데이터를 파일 또는 스트리밍 형태로 디지털 저장매체 또는 네트워크를 통하여 수신 디바이스의 수신부로 전달할 수 있다. 디지털 저장 매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장 매체를 포함할 수 있다. 전송부는 미리 정해진 파일 포멧을 통하여 미디어 파일을 생성하기 위한 엘리먼트를 포함할 수 있고, 방송/통신 네트워크를 통한 전송을 위한 엘리먼트를 포함할 수 있다. 수신부는 상기 비트스트림을 수신/추출하여 디코딩 장치로 전달할 수 있다.
디코딩 장치는 인코딩 장치의 동작에 대응하는 역양자화, 역변환, 예측 등 일련의 절차를 수행하여 비디오/영상을 디코딩할 수 있다.
렌더러는 디코딩된 비디오/영상을 렌더링할 수 있다. 렌더링된 비디오/영상은 디스플레이부를 통하여 디스플레이될 수 있다.
이 문서는 비디오/영상 코딩에 관한 것이다. 예를 들어 이 문서에서 개시된 방법/실시예는 VVC (versatile video coding) 표준, EVC (essential video coding) 표준, AV1 (AOMedia Video 1) 표준, AVS2 (2nd generation of audio video coding standard) 또는 차세대 비디오/영상 코딩 표준(ex. H.267 or H.268 등)에 개시되는 방법에 적용될 수 있다.
이 문서에서는 비디오/영상 코딩에 관한 다양한 실시예들을 제시하며, 다른 언급이 없는 한 상기 실시예들은 서로 조합되어 수행될 수도 있다.
이 문서에서 비디오(video)는 시간의 흐름에 따른 일련의 영상(image)들의 집합을 의미할 수 있다. 픽처(picture)는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 슬라이스(slice)/타일(tile)는 코딩에 있어서 픽처의 일부를 구성하는 단위이다. 슬라이스/타일은 하나 이상의 CTU(coding tree unit)을 포함할 수 있다. 하나의 픽처는 하나 이상의 슬라이스/타일로 구성될 수 있다. 하나의 픽처는 하나 이상의 타일 그룹으로 구성될 수 있다. 하나의 타일 그룹은 하나 이상의 타일들을 포함할 수 있다. 브릭은 픽처 내 타일 이내의 CTU 행들의 사각 영역을 나타낼 수 있다(a brick may represent a rectangular region of CTU rows within a tile in a picture). 타일은 다수의 브릭들로 파티셔닝될 수 있고, 각 브릭은 상기 타일 내 하나 이상의 CTU 행들로 구성될 수 있다(A tile may be partitioned into multiple bricks, each of which consisting of one or more CTU rows within the tile). 다수의 브릭들로 파티셔닝되지 않은 타일은 또한 브릭으로 불릴 수 있다(A tile that is not partitioned into multiple bricks may be also referred to as a brick). 브릭 스캔은 픽처를 파티셔닝하는 CTU들의 특정한 순차적 오더링을 나타낼 수 있으며, 상기 CTU들은 브릭 내에서 CTU 래스터 스캔으로 정렬될 수 있고, 타일 내 브릭들은 상기 타일의 상기 브릭들의 래스터 스캔으로 연속적으로 정렬될 수 있고, 그리고 픽처 내 타일들은 상기 픽처의 상기 타일들의 래스터 스캔으로 연속적으로 정렬될 수 있다(A brick scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a brick, bricks within a tile are ordered consecutively in a raster scan of the bricks of the tile, and tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture). 타일은 특정 타일 열 및 특정 타일 열 이내의 CTU들의 사각 영역이다(A tile is a rectangular region of CTUs within a particular tile column and a particular tile row in a picture). 상기 타일 열은 CTU들의 사각 영역이고, 상기 사각 영역은 상기 픽처의 높이와 동일한 높이를 갖고, 너비는 픽처 파라미터 세트 내의 신택스 요소들에 의하여 명시될 수 있다(The tile column is a rectangular region of CTUs having a height equal to the height of the picture and a width specified by syntax elements in the picture parameter set). 상기 타일 행은 CTU들의 사각 영역이고, 상기 사각 영역은 픽처 파라미터 세트 내의 신택스 요소들에 의하여 명시되는 너비를 갖고, 높이는 상기 픽처의 높이와 동일할 수 있다(The tile row is a rectangular region of CTUs having a height specified by syntax elements in the picture parameter set and a width equal to the width of the picture). 타일 스캔은 픽처를 파티셔닝하는 CTU들의 특정 순차적 오더링을 나타낼 수 있고, 상기 CTU들은 타일 내 CTU 래스터 스캔으로 연속적으로 정렬될 수 있고, 픽처 내 타일들은 상기 픽처의 상기 타일들의 래스터 스캔으로 연속적으로 정렬될 수 있다(A tile scan is a specific sequential ordering of CTUs partitioning a picture in which the CTUs are ordered consecutively in CTU raster scan in a tile whereas tiles in a picture are ordered consecutively in a raster scan of the tiles of the picture). 슬라이스는 픽처의 정수개의 브릭들을 포함할 수 있고, 상기 정수개의 브릭들은 하나의 NAL 유닛에 포함될 수 있다(A slice includes an integer number of bricks of a picture that may be exclusively contained in a single NAL unit). 슬라이스는 다수의 완전한 타일들로 구성될 수 있고, 또는 하나의 타일의 완전한 브릭들의 연속적인 시퀀스일 수도 있다(A slice may consists of either a number of complete tiles or only a consecutive sequence of complete bricks of one tile). 이 문서에서 타일 그룹과 슬라이스는 혼용될 수 있다. 예를 들어 본 문서에서 tile group/tile group header는 slice/slice header로 불리 수 있다.
픽셀(pixel) 또는 펠(pel)은 하나의 픽처(또는 영상)을 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 '샘플(sample)'이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 루마(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 크로마(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다.
유닛(unit)은 영상 처리의 기본 단위를 나타낼 수 있다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 하나의 유닛은 하나의 루마 블록 및 두개의 크로마(ex. cb, cr) 블록을 포함할 수 있다. 유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들(또는 샘플 어레이) 또는 변환 계수(transform coefficient)들의 집합(또는 어레이)을 포함할 수 있다.
이 문서에서 "/"와 ","는 "및/또는"으로 해석된다. 예를 들어, "A/B"는 "A 및/또는 B"로 해석되고, "A, B"는 "A 및/또는 B"로 해석된다. 추가적으로, "A/B/C"는 "A, B 및/또는 C 중 적어도 하나"를 의미한다. 또한, "A, B, C"도 "A, B 및/또는 C 중 적어도 하나"를 의미한다. (In this document, the term "/" and "," should be interpreted to indicate "and/or." For instance, the expression "A/B" may mean "A and/or B." Further, "A, B" may mean "A and/or B." Further, "A/B/C" may mean "at least one of A, B, and/or C." Also, "A/B/C" may mean "at least one of A, B, and/or C.")
추가적으로, 본 문서에서 "또는"는 "및/또는"으로 해석된다. 예를 들어, "A 또는 B"은, 1) "A" 만을 의미하고, 2) "B" 만을 의미하거나, 3) "A 및 B"를 의미할 수 있다. 달리 표현하면, 본 문서의 "또는"은 "추가적으로 또는 대체적으로(additionally or alternatively)"를 의미할 수 있다. (Further, in the document, the term "or" should be interpreted to indicate "and/or." For instance, the expression "A or B" may comprise 1) only A, 2) only B, and/or 3) both A and B. In other words, the term "or" in this document should be interpreted to indicate "additionally or alternatively.")
도 2는 본 발명이 적용될 수 있는 비디오/영상 인코딩 장치의 구성을 개략적으로 설명하는 도면이다. 이하 비디오 인코딩 장치라 함은 영상 인코딩 장치를 포함할 수 있다.
도 2를 참조하면, 인코딩 장치(200)는 영상 분할부(image partitioner, 210), 예측부(predictor, 220), 레지듀얼 처리부(residual processor, 230), 엔트로피 인코딩부(entropy encoder, 240), 가산부(adder, 250), 필터링부(filter, 260) 및 메모리(memory, 270)를 포함하여 구성될 수 있다. 예측부(220)는 인터 예측부(221) 및 인트라 예측부(222)를 포함할 수 있다. 레지듀얼 처리부(230)는 변환부(transformer, 232), 양자화부(quantizer 233), 역양자화부(dequantizer 234), 역변환부(inverse transformer, 235)를 포함할 수 있다. 레지듀얼 처리부(230)은 감산부(subtractor, 231)를 더 포함할 수 있다. 가산부(250)는 복원부(reconstructor) 또는 복원 블록 생성부(recontructged block generator)로 불릴 수 있다. 상술한 영상 분할부(210), 예측부(220), 레지듀얼 처리부(230), 엔트로피 인코딩부(240), 가산부(250) 및 필터링부(260)는 실시예에 따라 하나 이상의 하드웨어 컴포넌트(예를 들어 인코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(270)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(270)을 내/외부 컴포넌트로 더 포함할 수도 있다.
영상 분할부(210)는 인코딩 장치(200)에 입력된 입력 영상(또는, 픽쳐, 프레임)를 하나 이상의 처리 유닛(processing unit)으로 분할할 수 있다. 일 예로, 상기 처리 유닛은 코딩 유닛(coding unit, CU)이라고 불릴 수 있다. 이 경우 코딩 유닛은 코딩 트리 유닛(coding tree unit, CTU) 또는 최대 코딩 유닛(largest coding unit, LCU)으로부터 QTBTTT (Quad-tree binary-tree ternary-tree) 구조에 따라 재귀적으로(recursively) 분할될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조, 바이너리 트리 구조, 및/또는 터너리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 이 경우 예를 들어 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조 및/또는 터너리 구조가 나중에 적용될 수 있다. 또는 바이너리 트리 구조가 먼저 적용될 수도 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 발명에 따른 코딩 절차가 수행될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환, 및 복원 등의 절차를 포함할 수 있다. 다른 예로, 상기 처리 유닛은 예측 유닛(PU: Prediction Unit) 또는 변환 유닛(TU: Transform Unit)을 더 포함할 수 있다. 이 경우 상기 예측 유닛 및 상기 변환 유닛은 각각 상술한 최종 코딩 유닛으로부터 분할 또는 파티셔닝될 수 있다. 상기 예측 유닛은 샘플 예측의 단위일 수 있고, 상기 변환 유닛은 변환 계수를 유도하는 단위 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 단위일 수 있다.
유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타낼 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 휘도(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 채도(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다. 샘플은 하나의 픽처(또는 영상)을 픽셀(pixel) 또는 펠(pel)에 대응하는 용어로서 사용될 수 있다.
인코딩 장치(200)는 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 인터 예측부(221) 또는 인트라 예측부(222)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)를 감산하여 레지듀얼 신호(residual signal, 잔여 블록, 잔여 샘플 어레이)를 생성할 수 있고, 생성된 레지듀얼 신호는 변환부(232)로 전송된다. 이 경우 도시된 바와 같이 인코더(200) 내에서 입력 영상 신호(원본 블록, 원본 샘플 어레이)에서 예측 신호(예측 블록, 예측 샘플 어레이)를 감산하는 유닛은 감산부(231)라고 불릴 수 있다. 예측부는 처리 대상 블록(이하, 현재 블록이라 함)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 현재 블록 또는 CU 단위로 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있다. 예측부는 각 예측모드에 대한 설명에서 후술하는 바와 같이 예측 모드 정보 등 예측에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 예측에 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
인트라 예측부(222)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 비방향성 모드는 예를 들어 DC 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 방향성 모드는 예측 방향의 세밀한 정도에 따라 예를 들어 33개의 방향성 예측 모드 또는 65개의 방향성 예측 모드를 포함할 수 있다. 다만, 이는 예시로서 설정에 따라 그 이상 또는 그 이하의 개수의 방향성 예측 모드들이 사용될 수 있다. 인트라 예측부(222)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(221)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 인터 예측부(221)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 사용되는지를 지시하는 정보를 생성할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 머지 모드의 경우에, 인터 예측부(221)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)을 시그널링함으로써 현재 블록의 움직임 벡터를 지시할 수 있다.
예측부(220)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보를 기반으로 픽처 내 샘플 값을 시그널링할 수 있다.
상기 예측부 (인터 예측부(221) 및/또는 상기 인트라 예측부(222) 포함)를 통해 생성된 예측 신호는 복원 신호를 생성하기 위해 이용되거나 레지듀얼 신호를 생성하기 위해 이용될 수 있다. 변환부(232)는 레지듀얼 신호에 변환 기법을 적용하여 변환 계수들(transform coefficients)를 생성할 수 있다. 예를 들어, 변환 기법은 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), KLT(Karhunen-Lo*?*ve Transform), GBT(Graph-Based Transform), 또는 CNT(Conditionally Non-linear Transform) 중 적어도 하나를 포함할 수 있다. 여기서, GBT는 픽셀 간의 관계 정보를 그래프로 표현한다고 할 때 이 그래프로부터 얻어진 변환을 의미한다. CNT는 이전에 복원된 모든 픽셀(all previously reconstructed pixel)를 이용하여 예측 신호를 생성하고 그에 기초하여 획득되는 변환을 의미한다. 또한, 변환 과정은 정사각형의 동일한 크기를 갖는 픽셀 블록에 적용될 수도 있고, 정사각형이 아닌 가변 크기의 블록에도 적용될 수 있다.
양자화부(233)는 변환 계수들을 양자화하여 엔트로피 인코딩부(240)로 전송되고, 엔트로피 인코딩부(240)는 양자화된 신호(양자화된 변환 계수들에 관한 정보)를 인코딩하여 비트스트림으로 출력할 수 있다. 상기 양자화된 변환 계수들에 관한 정보는 레지듀얼 정보라고 불릴 수 있다. 양자화부(233)는 계수 스캔 순서(scan order)를 기반으로 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있고, 상기 1차원 벡터 형태의 양자화된 변환 계수들을 기반으로 상기 양자화된 변환 계수들에 관한 정보를 생성할 수도 있다. 엔트로피 인코딩부(240)는 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 다양한 인코딩 방법을 수행할 수 있다. 엔트로피 인코딩부(240)는 양자화된 변환 계수들 외 비디오/이미지 복원에 필요한 정보들(예컨대 신택스 요소들(syntax elements)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 인코딩된 정보(ex. 인코딩된 비디오/영상 정보)는 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 본 문서에서 인코딩 장치에서 디코딩 장치로 전달/시그널링되는 정보 및/또는 신택스 요소들은 비디오/영상 정보에 포함될 수 있다. 상기 비디오/영상 정보는 상술한 인코딩 절차를 통하여 인코딩되어 상기 비트스트림에 포함될 수 있다. 상기 비트스트림은 네트워크를 통하여 전송될 수 있고, 또는 디지털 저장매체에 저장될 수 있다. 여기서 네트워크는 방송망 및/또는 통신망 등을 포함할 수 있고, 디지털 저장매체는 USB, SD, CD, DVD, 블루레이, HDD, SSD 등 다양한 저장매체를 포함할 수 있다. 엔트로피 인코딩부(240)로부터 출력된 신호는 전송하는 전송부(미도시) 및/또는 저장하는 저장부(미도시)가 인코딩 장치(200)의 내/외부 엘리먼트로서 구성될 수 있고, 또는 전송부는 엔트로피 인코딩부(240)에 포함될 수도 있다.
양자화부(233)로부터 출력된 양자화된 변환 계수들은 예측 신호를 생성하기 위해 이용될 수 있다. 예를 들어, 양자화된 변환 계수들에 역양자화부(234) 및 역변환부(235)를 통해 역양자화 및 역변환을 적용함으로써 레지듀얼 신호(레지듀얼 블록 or 레지듀얼 샘플들)를 복원할 수 있다. 가산부(155)는 복원된 레지듀얼 신호를 인터 예측부(221) 또는 인트라 예측부(222)로부터 출력된 예측 신호에 더함으로써 복원(reconstructed) 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)가 생성될 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다. 가산부(250)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편 픽처 인코딩 및/또는 복원 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(260)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(260)은 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(270), 구체적으로 메모리(270)의 DPB에 저장할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다. 필터링부(260)은 각 필터링 방법에 대한 설명에서 후술하는 바와 같이 필터링에 관한 다양한 정보를 생성하여 엔트로피 인코딩부(240)로 전달할 수 있다. 필터링 관한 정보는 엔트로피 인코딩부(240)에서 인코딩되어 비트스트림 형태로 출력될 수 있다.
메모리(270)에 전송된 수정된 복원 픽처는 인터 예측부(221)에서 참조 픽처로 사용될 수 있다. 인코딩 장치는 이를 통하여 인터 예측이 적용되는 경우, 인코딩 장치(100)와 디코딩 장치에서의 예측 미스매치를 피할 수 있고, 부호화 효율도 향상시킬 수 있다.
메모리(270) DPB는 수정된 복원 픽처를 인터 예측부(221)에서의 참조 픽처로 사용하기 위해 저장할 수 있다. 메모리(270)는 현재 픽처 내 움직임 정보가 도출된(또는 인코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(221)에 전달할 수 있다. 메모리(270)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(222)에 전달할 수 있다.
도 3은 본 발명이 적용될 수 있는 비디오/영상 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3을 참조하면, 디코딩 장치(300)는 엔트로피 디코딩부(entropy decoder, 310), 레지듀얼 처리부(residual processor, 320), 예측부(predictor, 330), 가산부(adder, 340), 필터링부(filter, 350) 및 메모리(memoery, 360)를 포함하여 구성될 수 있다. 예측부(330)는 인터 예측부(331) 및 인트라 예측부(332)를 포함할 수 있다. 레지듀얼 처리부(320)는 역양자화부(dequantizer, 321) 및 역변환부(inverse transformer, 321)를 포함할 수 있다. 상술한 엔트로피 디코딩부(310), 레지듀얼 처리부(320), 예측부(330), 가산부(340) 및 필터링부(350)는 실시예에 따라 하나의 하드웨어 컴포넌트(예를 들어 디코더 칩셋 또는 프로세서)에 의하여 구성될 수 있다. 또한 메모리(360)는 DPB(decoded picture buffer)를 포함할 수 있고, 디지털 저장 매체에 의하여 구성될 수도 있다. 상기 하드웨어 컴포넌트는 메모리(360)을 내/외부 컴포넌트로 더 포함할 수도 있다.
비디오/영상 정보를 포함하는 비트스트림이 입력되면, 디코딩 장치(300)는 도 0.2-1의 인코딩 장치에서 비디오/영상 정보가 처리된 프로세스에 대응하여 영상을 복원할 수 있다. 예를 들어, 디코딩 장치(300)는 상기 비트스트림으로부터 획득한 블록 분할 관련 정보를 기반으로 유닛들/블록들을 도출할 수 있다. 디코딩 장치(300)는 인코딩 장치에서 적용된 처리 유닛을 이용하여 디코딩을 수행할 수 있다. 따라서 디코딩의 처리 유닛은 예를 들어 코딩 유닛일 수 있고, 코딩 유닛은 코딩 트리 유닛 또는 최대 코딩 유닛으로부터 쿼드 트리 구조, 바이너리 트리 구조 및/또는 터너리 트리 구조를 따라서 분할될 수 있다. 코딩 유닛으로부터 하나 이상의 변환 유닛이 도출될 수 있다. 그리고, 디코딩 장치(300)를 통해 디코딩 및 출력된 복원 영상 신호는 재생 장치를 통해 재생될 수 있다.
디코딩 장치(300)는 도 0.2-1의 인코딩 장치로부터 출력된 신호를 비트스트림 형태로 수신할 수 있고, 수신된 신호는 엔트로피 디코딩부(310)를 통해 디코딩될 수 있다. 예를 들어, 엔트로피 디코딩부(310)는 상기 비트스트림을 파싱하여 영상 복원(또는 픽처 복원)에 필요한 정보(ex. 비디오/영상 정보)를 도출할 수 있다. 상기 비디오/영상 정보는 어댑테이션 파라미터 세트(APS), 픽처 파라미터 세트(PPS), 시퀀스 파라미터 세트(SPS) 또는 비디오 파라미터 세트(VPS) 등 다양한 파라미터 세트에 관한 정보를 더 포함할 수 있다. 또한 상기 비디오/영상 정보는 일반 제한 정보(general constraint information)을 더 포함할 수 있다. 디코딩 장치는 상기 파라미터 세트에 관한 정보 및/또는 상기 일반 제한 정보를 더 기반으로 픽처를 디코딩할 수 있다. 본 문서에서 후술되는 시그널링/수신되는 정보 및/또는 신택스 요소들은 상기 디코딩 절차를 통하여 디코딩되어 상기 비트스트림으로부터 획득될 수 있다. 예컨대, 엔트로피 디코딩부(310)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 영상 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값 들을 출력할 수 있다. 보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)를 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다. 엔트로피 디코딩부(310)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(인터 예측부(332) 및 인트라 예측부(331))로 제공되고, 엔트로피 디코딩부(310)에서 엔트로피 디코딩이 수행된 레지듀얼 값, 즉 양자화된 변환 계수들 및 관련 파라미터 정보는 레지듀얼 처리부(320)로 입력될 수 있다. 레지듀얼 처리부(320)는 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플들, 레지듀얼 샘플 어레이)를 도출할 수 있다. 또한, 엔트로피 디코딩부(310)에서 디코딩된 정보 중 필터링에 관한 정보는 필터링부(350)으로 제공될 수 있다. 한편, 인코딩 장치로부터 출력된 신호를 수신하는 수신부(미도시)가 디코딩 장치(300)의 내/외부 엘리먼트로서 더 구성될 수 있고, 또는 수신부는 엔트로피 디코딩부(310)의 구성요소일 수도 있다. 한편, 본 문서에 따른 디코딩 장치는 비디오/영상/픽처 디코딩 장치라고 불릴 수 있고, 상기 디코딩 장치는 정보 디코더(비디오/영상/픽처 정보 디코더) 및 샘플 디코더(비디오/영상/픽처 샘플 디코더)로 구분할 수도 있다. 상기 정보 디코더는 상기 엔트로피 디코딩부(310)를 포함할 수 있고, 상기 샘플 디코더는 상기 역양자화부(321), 역변환부(322), 가산부(340), 필터링부(350), 메모리(360), 인터 예측부(332) 및 인트라 예측부(331) 중 적어도 하나를 포함할 수 있다.
역양자화부(321)에서는 양자화된 변환 계수들을 역양자화하여 변환 계수들을 출력할 수 있다. 역양자화부(321)는 양자화된 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 이 경우 상기 재정렬은 인코딩 장치에서 수행된 계수 스캔 순서를 기반하여 재정렬을 수행할 수 있다. 역양자화부(321)는 양자화 파라미터(예를 들어 양자화 스텝 사이즈 정보)를 이용하여 양자화된 변환 계수들에 대한 역양자화를 수행하고, 변환 계수들(transform coefficient)를 획득할 수 있다.
역변환부(322)에서는 변환 계수들를 역변환하여 레지듀얼 신호(레지듀얼 블록, 레지듀얼 샘플 어레이)를 획득하게 된다.
예측부는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부는 엔트로피 디코딩부(310)로부터 출력된 상기 예측에 관한 정보를 기반으로 상기 현재 블록에 인트라 예측이 적용되는지 또는 인터 예측이 적용되는지 결정할 수 있고, 구체적인 인트라/인터 예측 모드를 결정할 수 있다.
예측부(320)는 후술하는 다양한 예측 방법을 기반으로 예측 신호를 생성할 수 있다. 예를 들어, 예측부는 하나의 블록에 대한 예측을 위하여 인트라 예측 또는 인터 예측을 적용할 수 있을 뿐 아니라, 인트라 예측과 인터 예측을 동시에 적용할 수 있다. 이는 combined inter and intra prediction (CIIP)라고 불릴 수 있다. 또한, 예측부는 블록에 대한 예측을 위하여 인트라 블록 카피(intra block copy, IBC) 예측 모드에 기반할 수도 있고 또는 팔레트 모드(palette mode)에 기반할 수도 있다. 상기 IBC 예측 모드 또는 팔레트 모드는 예를 들어 SCC(screen content coding) 등과 같이 게임 등의 컨텐츠 영상/동영상 코딩을 위하여 사용될 수 있다. IBC는 기본적으로 현재 픽처 내에서 예측을 수행하나 현재 픽처 내에서 참조 블록을 도출하는 점에서 인터 예측과 유사하게 수행될 수 있다. 즉, IBC는 본 문서에서 설명되는 인터 예측 기법들 중 적어도 하나를 이용할 수 있다. 팔레트 모드는 인트라 코딩 또는 인트라 예측의 일 예로 볼 수 있다. 팔레트 모드가 적용되는 경우 팔레트 테이블 및 팔레트 인덱스에 관한 정보가 상기 비디오/영상 정보에 포함되어 시그널링될 수 있다.
인트라 예측부(331)는 현재 픽처 내의 샘플들을 참조하여 현재 블록을 예측할 수 있다. 상기 참조되는 샘플들은 예측 모드에 따라 상기 현재 블록의 주변(neighbor)에 위치할 수 있고, 또는 떨어져서 위치할 수도 있다. 인트라 예측에서 예측 모드들은 복수의 비방향성 모드와 복수의 방향성 모드를 포함할 수 있다. 인트라 예측부(331)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측부(332)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 방향(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 예를 들어, 인터 예측부(332)는 주변 블록들을 기반으로 움직임 정보 후보 리스트를 구성하고, 수신한 후보 선택 정보를 기반으로 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출할 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 상기 예측에 관한 정보는 상기 현재 블록에 대한 인터 예측의 모드를 지시하는 정보를 포함할 수 있다.
가산부(340)는 획득된 레지듀얼 신호를 예측부(인터 예측부(332) 및/또는 인트라 예측부(331) 포함)로부터 출력된 예측 신호(예측된 블록, 예측 샘플 어레이)에 더함으로써 복원 신호(복원 픽처, 복원 블록, 복원 샘플 어레이)를 생성할 수 있다. 스킵 모드가 적용된 경우와 같이 처리 대상 블록에 대한 레지듀얼이 없는 경우, 예측된 블록이 복원 블록으로 사용될 수 있다.
가산부(340)는 복원부 또는 복원 블록 생성부라고 불릴 수 있다. 생성된 복원 신호는 현재 픽처 내 다음 처리 대상 블록의 인트라 예측을 위하여 사용될 수 있고, 후술하는 바와 같이 필터링을 거쳐서 출력될 수도 있고 또는 다음 픽처의 인터 예측을 위하여 사용될 수도 있다.
한편, 픽처 디코딩 과정에서 LMCS (luma mapping with chroma scaling)가 적용될 수도 있다.
필터링부(350)는 복원 신호에 필터링을 적용하여 주관적/객관적 화질을 향상시킬 수 있다. 예를 들어 필터링부(350)는 복원 픽처에 다양한 필터링 방법을 적용하여 수정된(modified) 복원 픽처를 생성할 수 있고, 상기 수정된 복원 픽처를 메모리(360), 구체적으로 메모리(360)의 DPB에 전송할 수 있다. 상기 다양한 필터링 방법은 예를 들어, 디블록킹 필터링, 샘플 적응적 오프셋(sample adaptive offset), 적응적 루프 필터(adaptive loop filter), 양방향 필터(bilateral filter) 등을 포함할 수 있다.
메모리(360)의 DPB에 저장된 (수정된) 복원 픽처는 인터 예측부(332)에서 참조 픽쳐로 사용될 수 있다. 메모리(360)는 현재 픽처 내 움직임 정보가 도출된(또는 디코딩된) 블록의 움직임 정보 및/또는 이미 복원된 픽처 내 블록들의 움직임 정보를 저장할 수 있다. 상기 저장된 움직임 정보는 공간적 주변 블록의 움직임 정보 또는 시간적 주변 블록의 움직임 정보로 활용하기 위하여 인터 예측부(260)에 전달할 수 있다. 메모리(360)는 현재 픽처 내 복원된 블록들의 복원 샘플들을 저장할 수 있고, 인트라 예측부(331)에 전달할 수 있다.
본 명세서에서, 인코딩 장치(100)의 필터링부(260), 인터 예측부(221) 및 인트라 예측부(222)에서 설명된 실시예들은 각각 디코딩 장치(300)의 필터링부(350), 인터 예측부(332) 및 인트라 예측부(331)에도 동일 또는 대응되도록 적용될 수 있다.
상술한 바와 같이 비디오 코딩을 수행함에 있어 압축 효율을 높이기 위하여 예측을 수행한다. 이를 통하여 코딩 대상 블록인 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록을 생성할 수 있다. 여기서 상기 예측된 블록은 공간 도메인(또는 픽셀 도메인)에서의 예측 샘플들을 포함한다. 상기 예측된 블록은 인코딩 장치 및 디코딩 장치에서 동일하게 도출되며, 상기 인코딩 장치는 원본 블록의 원본 샘플 값 자체가 아닌 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼에 대한 정보(레지듀얼 정보)를 디코딩 장치로 시그널링함으로써 영상 코딩 효율을 높일 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 레지듀얼 샘플들을 포함하는 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록과 상기 예측된 블록을 합하여 복원 샘플들을 포함하는 복원 블록을 생성할 수 있고, 복원 블록들을 포함하는 복원 픽처를 생성할 수 있다.
상기 레지듀얼 정보는 변환 및 양자화 절차를 통하여 생성될 수 있다. 예를 들어, 인코딩 장치는 상기 원본 블록과 상기 예측된 블록 간의 레지듀얼 블록을 도출하고, 상기 레지듀얼 블록에 포함된 레지듀얼 샘플들(레지듀얼 샘플 어레이)에 변환 절차를 수행하여 변환 계수들을 도출하고, 상기 변환 계수들에 양자화 절차를 수행하여 양자화된 변환 계수들을 도출하여 관련된 레지듀얼 정보를 (비트스트림을 통하여) 디코딩 장치로 시그널링할 수 있다. 여기서 상기 레지듀얼 정보는 상기 양자화된 변환 계수들의 값 정보, 위치 정보, 변환 기법, 변환 커널, 양자화 파라미터 등의 정보를 포함할 수 있다. 디코딩 장치는 상기 레지듀얼 정보를 기반으로 역양자화/역변환 절차를 수행하고 레지듀얼 샘플들(또는 레지듀얼 블록)을 도출할 수 있다. 디코딩 장치는 예측된 블록과 상기 레지듀얼 블록을 기반으로 복원 픽처를 생성할 수 있다. 인코딩 장치는 또한 이후 픽처의 인터 예측을 위한 참조를 위하여 양자화된 변환 계수들을 역양자화/역변환하여 레지듀얼 블록을 도출하고, 이를 기반으로 복원 픽처를 생성할 수 있다.
인터 예측이 적용되는 경우, 인코딩 장치/디코딩 장치의 예측부는 블록 단위로 인터 예측을 수행하여 예측 샘플을 도출할 수 있다. 인터 예측은 현재 픽처 이외의 픽처(들)의 데이터 요소들(e.g. 샘플값들, 또는 움직임 정보 등)에 의존적인 방법으로 도출되는 예측을 나타낼 수 있다(Inter prediction can be a prediction derived in a manner that is dependent on data elements (e.g., sample values or motion information) of picture(s) other than the current picture). 현재 블록에 인터 예측이 적용되는 경우, 참조 픽처 인덱스가 가리키는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 참조 블록(참조 샘플 어레이)을 기반으로, 현재 블록에 대한 예측된 블록(예측 샘플 어레이)을 유도할 수 있다. 이때, 인터 예측 모드에서 전송되는 움직임 정보의 양을 줄이기 위해 주변 블록과 현재 블록 간의 움직임 정보의 상관성에 기초하여 현재 블록의 움직임 정보를 블록, 서브블록 또는 샘플 단위로 예측할 수 있다. 상기 움직임 정보는 움직임 벡터 및 참조 픽처 인덱스를 포함할 수 있다. 상기 움직임 정보는 인터 예측 타입(L0 예측, L1 예측, Bi 예측 등) 정보를 더 포함할 수 있다. 인터 예측이 적용되는 경우, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 참조 블록을 포함하는 참조 픽처와 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일할 수도 있고, 다를 수도 있다. 상기 시간적 주변 블록은 동일 위치 참조 블록(collocated reference block), 동일 위치 CU(colCU) 등의 이름으로 불릴 수 있으며, 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 예를 들어, 현재 블록의 주변 블록들을 기반으로 움직임 정보 후보 리스트가 구성될 수 있고, 상기 현재 블록의 움직임 벡터 및/또는 참조 픽처 인덱스를 도출하기 위하여 어떤 후보가 선택(사용)되는지를 지시하는 플래그 또는 인덱스 정보가 시그널링될 수 있다. 다양한 예측 모드를 기반으로 인터 예측이 수행될 수 있으며, 예를 들어 스킵 모드와 (노멀) 머지 모드의 경우에, 현재 블록의 움직임 정보는 선택된 주변 블록의 움직임 정보와 같을 수 있다. 스킵 모드의 경우, 머지 모드와 달리 레지듀얼 신호가 전송되지 않을 수 있다. 움직임 정보 예측(motion vector prediction, MVP) 모드의 경우, 선택된 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하고, 움직임 벡터 차분(motion vector difference)은 시그널링될 수 있다. 이 경우 상기 움직임 벡터 예측자 및 움직임 벡터 차분의 합을 이용하여 상기 현재 블록의 움직임 벡터를 도출할 수 있다
인터 예측에 기반한 비디오/영상 인코딩 절차는 개략적으로 예를 들어 다음을 포함할 수 있다.
도 4는 인터 예측 기반 비디오/영상 인코딩 방법의 예를 나타낸다.
인코딩 장치는 현재 블록에 대한 인터 예측을 수행한다(S400). 인코딩 장치는 현재 블록의 인터 예측 모드 및 움직임 정보를 도출하고, 상기 현재 블록의 예측 샘플들을 생성할 수 있다. 여기서 인터 예측 모드 결정, 움직임 정보 도출 및 예측 샘플들 생성 절차는 동시에 수행될 수도 있고, 어느 한 절차가 다른 절차보다 먼저 수행될 수도 있다. 예를 들어, 인코딩 장치의 인터 예측부는 예측 모드 결정부, 움직임 정보 도출부, 예측 샘플 도출부를 포함할 수 있으며, 예측 모드 결정부에서 상기 현재 블록에 대한 예측 모드를 결정하고, 움직임 정보 도출부에서 상기 현재 블록의 움직임 정보를 도출하고, 예측 샘플 도출부에서 상기 현재 블록의 예측 샘플들을 도출할 수 있다. 예를 들어, 인코딩 장치의 인터 예측부는 움직임 추정(motion estimation)을 통하여 참조 픽처들의 일정 영역(서치 영역) 내에서 상기 현재 블록과 유사한 블록을 서치하고, 상기 현재 블록과의 차이가 최소 또는 일정 기준 이하인 참조 블록을 도출할 수 있다. 이를 기반으로 상기 참조 블록이 위치하는 참조 픽처를 가리키는 참조 픽처 인덱스를 도출하고, 상기 참조 블록과 상기 현재 블록의 위치 차이를 기반으로 움직임 벡터를 도출할 수 있다. 인코딩 장치는 다양한 예측 모드들 중 상기 현재 블록에 대하여 적용되는 모드를 결정할 수 있다. 인코딩 장치는 상기 다양한 예측 모드들에 대한 RD cost를 비교하고 상기 현재 블록에 대한 최적의 예측 모드를 결정할 수 있다.
예를 들어, 인코딩 장치는 상기 현재 블록에 스킵 모드 또는 머지 모드가 적용되는 경우, 후술하는 머지 후보 리스트를 구성하고, 상기 머지 후보 리스트에 포함된 머지 후보들이 가리키는 참조 블록들 중 상기 현재 블록과 중 상기 현재 블록과의 차이가 최소 또는 일정 기준 이하인 참조 블록을 도출할 수 있다. 이 경우 상기 도출된 참조 블록과 연관된 머지 후보가 선택되며, 상기 선택된 머지 후보를 가리키는 머지 인덱스 정보가 생성되어 디코딩 장치로 시그널링될 수 있다. 상기 선택된 머지 후보의 움직임 정보를 이용하여 상기 현재 블록의 움직임 정보가 도출할 수 있다.
다른 예로, 인코딩 장치는 상기 현재 블록에 (A)MVP 모드가 적용되는 경우, 후술하는 (A)MVP 후보 리스트를 구성하고, 상기 (A)MVP 후보 리스트에 포함된 mvp (motion vector predictor) 후보들 중 선택된 mvp 후보의 움직임 벡터를 상기 현재 블록의 mvp로 이용할 수 있다. 이 경우, 예를 들어, 상술한 움직임 추정에 의하여 도출된 참조 블록을 가리키는 움직임 벡터가 상기 현재 블록의 움직임 벡터로 이용될 수 있으며, 상기 mvp 후보들 중 상기 현재 블록의 움직임 벡터와의 차이가 가장 작은 움직임 벡터를 갖는 mvp 후보가 상기 선택된 mvp 후보가 될 있다. 상기 현재 블록의 움직임 벡터에서 상기 mvp를 뺀 차분인 MVD(motion vector difference)가 도출될 수 있다. 이 경우 상기 MVD에 관한 정보가 디코딩 장치로 시그널링될 수 있다. 또한, (A)MVP 모드가 적용되는 경우, 상기 참조 픽처 인덱스의 값은 참조 픽처 인덱스 정보 구성되어 별도로 상기 디코딩 장치로 시그널링될 수 있다.
인코딩 장치는 상기 예측 샘플들을 기반으로 레지듀얼 샘플들을 도출할 수 있다(S410). 인코딩 장치는 상기 현재 블록의 원본 샘플들과 상기 예측 샘플들의 비교를 통하여 상기 레지듀얼 샘플들을 도출할 수 있다.
인코딩 장치는 예측 정보 및 레지듀얼 정보를 포함하는 영상 정보를 인코딩한다(S420). 인코딩 장치는 인코딩된 영상 정보를 비트스트림 형태로 출력할 수 있다. 상기 예측 정보는 상기 예측 절차에 관련된 정보들로 예측 모드 정보(ex. skip flag, merge flag or mode index 등) 및 움직임 정보에 관한 정보를 포함할 수 있다. 상기 움직임 정보에 관한 정보는 움직임 벡터를 도출하기 위한 정보인 후보 선택 정보(ex. merge index, mvp flag or mvp index)를 포함할 수 있다. 또한 상기 움직임 정보에 관한 정보는 상술한 MVD에 관한 정보 및/또는 참조 픽처 인덱스 정보를 포함할 수 있다. 또한 상기 움직임 정보에 관한 정보는 L0 예측, L1 예측, 또는 쌍(bi) 예측이 적용되는지 여부를 나타내는 정보를 포함할 수 있다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 관한 정보이다. 상기 레지듀얼 정보는 상기 레지듀얼 샘플들에 대한 양자화된 변환 계수들에 관한 정보를 포함할 수 있다.
출력된 비트스트림은 (디지털) 저장매체에 저장되어 디코딩 장치로 전달될 수 있고, 또는 네트워크를 통하여 디코딩 장치로 전달될 수도 있다.
한편, 상술한 바와 같이 인코딩 장치는 상기 참조 샘플들 및 상기 레지듀얼 샘플들을 기반으로 복원 픽처(복원 샘플들 및 복원 블록 포함)를 생성할 수 있다. 이는 디코딩 장치에서 수행되는 것과 동일한 예측 결과를 인코딩 장치에서 도출하기 위함이며, 이를 통하여 코딩 효율을 높일 수 있기 때문이다. 따라서, 인코딩 장치는 복원 픽처(또는 복원 샘플들, 복원 블록)을 메모리에 저장하고, 인터 예측을 위한 참조 픽처로 활용할 수 있다. 상기 복원 픽처에 인루프 필터링 절차 등이 더 적용될 수 있음은 상술한 바와 같다.
인터 예측에 기반한 비디오/영상 디코딩 절차는 개략적으로 예를 들어 다음을 포함할 수 있다.
도 5는 인터 예측 기반 비디오/영상 디코딩 방법의 예를 나타낸다.
도 5를 참조하면, 디코딩 장치는 상기 인코딩 장치에서 수행된 동작과 대응되는 동작을 수행할 수 있다. 디코딩 장치는 수신된 예측 정보를 기반으로 현재 블록에 예측을 수행하고 예측 샘플들을 도출할 수 있다.
구체적으로 디코딩 장치는 수신된 예측 정보를 기반으로 상기 현재 블록에 대한 예측 모드를 결정할 수 있다(S500). 디코딩 장치는 상기 예측 정보 내의 예측 모드 정보를 기반으로 상기 현재 블록에 어떤 인터 예측 모드가 적용되는지 결정할 수 있다.
예를 들어, 상기 merge flag를 기반으로 상기 현재 블록에 상기 머지 모드가 적용되는지 또는 (A)MVP 모드가 결정되는지 여부를 결정할 수 있다. 또는 상기 mode index를 기반으로 다양한 인터 예측 모드 후보들 중 하나를 선택할 수 있다. 상기 인터 예측 모드 후보들은 스킵 모드, 머지 모드 및/또는 (A)MVP 모드를 포함할 수 있고, 또는 후술하는 다양한 인터 예측 모드들을 포함할 수 있다.
디코딩 장치는 상기 결정된 인터 예측 모드를 기반으로 상기 현재 블록의 움직임 정보를 도출한다(S510). 예를 들어, 디코딩 장치는 상기 현재 블록에 스킵 모드 또는 머지 모드가 적용되는 경우, 후술하는 머지 후보 리스트를 구성하고, 상기 머지 후보 리스트에 포함된 머지 후보들이 중 하나의 머지 후보를 선택할 수 있다. 상기 선택은 상술한 선택 정보(merge index)를 기반으로 수행될 수 있다. 상기 선택된 머지 후보의 움직임 정보를 이용하여 상기 현재 블록의 움직임 정보가 도출할 수 있다. 상기 선택된 머지 후보의 움직임 정보가 상기 현재 블록의 움직임 정보로 이용될 수 있다.
다른 예로, 디코딩 장치는 상기 현재 블록에 (A)MVP 모드가 적용되는 경우, 후술하는 (A)MVP 후보 리스트를 구성하고, 상기 (A)MVP 후보 리스트에 포함된 mvp (motion vector predictor) 후보들 중 선택된 mvp 후보의 움직임 벡터를 상기 현재 블록의 mvp로 이용할 수 있다. 상기 선택은 상술한 선택 정보(mvp flag or mvp index)를 기반으로 수행될 수 있다. 이 경우 상기 MVD에 관한 정보를 기반으로 상기 현재 블록의 MVD를 도출할 수 있으며, 상기 현재 블록의 mvp와 상기 MVD를 기반으로 상기 현재 블록의 움직임 벡터를 도출할 수 있다. 또한, 상기 참조 픽처 인덱스 정보를 기반으로 상기 현재 블록의 참조 픽처 인덱스를 도출할 수 있다. 상기 현재 블록에 관한 참조 픽처 리스트 내에서 상기 참조 픽처 인덱스가 가리키는 픽처가 상기 현재 블록의 인터 예측을 위하여 참조되는 참조 픽처로 도출될 수 있다.
한편, 후술하는 바와 같이 후보 리스트 구성 없이 상기 현재 블록의 움직임 정보가 도출될 수 있으며, 이 경우 후술하는 예측 모드에서 개시된 절차에 따라 상기 현재 블록의 움직임 정보가 도출될 수 있다. 이 경우 상술한 바와 같은 후보 리스트 구성은 생략될 수 있다.
디코딩 장치는 상기 현재 블록의 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성할 수 있다(S520). 이 경우 상기 현재 블록의 참조 픽처 인덱스를 기반으로 상기 참조 픽처를 도출하고, 상기 현재 블록의 움직임 벡터가 상기 참조 픽처 상에서 가리키는 참조 블록의 샘플들을 이용하여 상기 현재 블록의 예측 샘플들을 도출할 수 있다. 이 경우 후술하는 바와 같이 경우에 따라 상기 현재 블록의 예측 샘플들 중 전부 또는 일부에 대한 예측 샘플 필터링 절차가 더 수행될 수 있다.
예를 들어, 디코딩 장치의 인터 예측부는 예측 모드 결정부, 움직임 정보 도출부, 예측 샘플 도출부를 포함할 수 있으며, 예측 모드 결정부에서 수신된 예측 모드 정보를 기반으로 상기 현재 블록에 대한 예측 모드를 결정하고, 움직임 정보 도출부에서 수신된 움직임 정보에 관한 정보를 기반으로 상기 현재 블록의 움직임 정보(움직임 벡터 및/또는 참조 픽처 인덱스 등)를 도출하고, 예측 샘플 도출부에서 상기 현재 블록의 예측 샘플들을 도출할 수 있다.
디코딩 장치는 수신된 레지듀얼 정보를 기반으로 상기 현재 블록에 대한 레지듀얼 샘플들을 생성한다(S530). 디코딩 장치는 상기 예측 샘플들 및 상기 레지듀얼 샘플들을 기반으로 상기 현재 블록에 대한 복원 샘플들을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있다. (S540). 이후 상기 복원 픽처에 인루프 필터링 절차 등이 더 적용될 수 있음은 상술한 바와 같다.
도 6은 인터 예측 절차를 예시적으로 나타낸다.
도 6을 참조하면, 상술한 바와 같이 인터 예측 절차는 인터 예측 모드 결정 단계, 결정된 예측 모드에 따른 움직임 정보 도출 단계, 도출된 움직임 정보에 기반한 예측 수행(예측 샘플 생성) 단계를 포함할 수 있다. 상기 인터 예측 절차는 상술한 바와 같이 인코딩 장치 및 디코딩 장치에서 수행될 수 있다. 본 문서에서 코딩 장치라 함은 인코딩 장치 및/또는 디코딩 장치를 포함할 수 있다.
도 6을 참조하면, 코딩 장치는 현재 블록에 대한 인터 예측 모드를 결정한다(S600). 픽처 내 현재 블록의 예측을 위하여 다양한 인터 예측 모드가 사용될 수 있다. 예를 들어, 머지 모드, 스킵 모드, MVP(motion vector prediction) 모드, 어파인(Affine) 모드, 서브블록 머지 모드, MMVD (merge with MVD) 모드 등 다양한 모드가 사용될 수 있다. DMVR (Decoder side motion vector refinement) 모드, AMVR(adaptive motion vector resolution) 모드, Bi-prediction with CU-level weight (BCW), Bi-directional optical flow (BDOF) 등이 부수적인 모드로 더 혹은 대신 사용될 수 있다. 어파인 모드는 어파인 움직임 예측(affine motion prediction) 모드라고 불릴 수도 있다. MVP 모드는 AMVP(advanced motion vector prediction) 모드라고 불릴 수도 있다. 본 문서에서 일부 모드 및/또는 일부 모드에 의하여 도출된 움직임 정보 후보는 다른 모드의 움직임 정보 관련 후보들 중 하나로 포함될 수도 있다. 예를 들어, HMVP 후보는 상기 머지/스킵 모드의 머지 후보로 추가될 수 있고, 또는 상기 MVP 모드의 mvp 후보로 추가될 수도 있다. 상기 HMVP 후보가 상기 머지 모드 또는 스킵 모드의 움직임 정보 후보로 사용되는 경우, 상기 HMVP 후보는 HMVP 머지 후보라고 불릴 수 있다.
현재 블록의 인터 예측 모드를 가리키는 예측 모드 정보가 인코딩 장치로부터 디코딩 장치로 시그널링될 수 있다. 상기 예측 모드 정보는 비트스트림에 포함되어 디코딩 장치에 수신될 수 있다. 상기 예측 모드 정보는 다수의 후보 모드들 중 하나를 지시하는 인덱스 정보를 포함할 수 있다. 또는, 플래그 정보의 계층적 시그널링을 통하여 인터 예측 모드를 지시할 수도 있다. 이 경우 상기 예측 모드 정보는 하나 이상의 플래그들을 포함할 수 있다. 예를 들어, 스킵 플래그를 시그널링하여 스킵 모드 적용 여부를 지시하고, 스킵 모드가 적용 안되는 경우에 머지 플래그를 시그널링하여 머지 모드 적용 여부를 지시하고, 머지 모드가 적용 안되는 경우에 MVP 모드 적용되는 것으로 지시하거나 추가적인 구분을 위한 플래그를 더 시그널링할 수도 있다. 어파인 모드는 독립적인 모드로 시그널링될 수도 있고, 또는 머지 모드 또는 MVP 모드 등에 종속적인 모드로 시그널링될 수도 있다. 예를 들어, 어파인 모드는 어파인 머지 모드 및 어파인 MVP 모드를 포함할 수 있다.
코딩 장치는 상기 현재 블록에 대한 움직임 정보를 도출한다(S610). 상기 움직임 정보 도출을 상기 인터 예측 모드를 기반으로 도출될 수 있다.
코딩 장치는 현재 블록의 움직임 정보를 이용하여 인터 예측을 수행할 수 있다. 인코딩 장치는 움직임 추정(motion estimation) 절차를 통하여 현재 블록에 대한 최적의 움직임 정보를 도출할 수 있다. 예를 들어, 인코딩 장치는 현재 블록에 대한 원본 픽처 내 원본 블록을 이용하여 상관성이 높은 유사한 참조 블록을 참조 픽처 내의 정해진 탐색 범위 내에서 분수 픽셀 단위로 탐색할 수 있고, 이를 통하여 움직임 정보를 도출할 수 있다. 블록의 유사성은 위상(phase) 기반 샘플 값들의 차를 기반으로 도출할 수 있다. 예를 들어, 블록의 유사성은 현재 블록(or 현재 블록의 템플릿)과 참조 블록(or 참조 블록의 템플릿) 간 SAD를 기반으로 계산될 수 있다. 이 경우 탐색 영역 내 SAD가 가장 작은 참조 블록을 기반으로 움직임 정보를 도출할 수 있다. 도출된 움직임 정보는 인터 예측 모드 기반으로 여러 방법에 따라 디코딩 장치로 시그널링될 수 있다.
코딩 장치는 상기 현재 블록에 대한 움직임 정보를 기반으로 인터 예측을 수행한다(S620). 코딩 장치는 상기 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플(들)을 도출할 수 있다. 상기 예측 샘플들을 포함하는 현재 블록은 예측된 블록이라고 불릴 수 있다.
한편, 인터 예측에 있어 종래의 머지 또는 AMVP 모드에 따르면, 현재 블록의 공간적/시간적으로 인접한 블록의 움직임 벡터를 움직임 정보 후보로 사용함으로써 움직임 정보량을 줄이는 방법이 사용되어 왔다. 예를 들어, 현재 블록의 움직임 정보 후보들을 도출하기 위하여 사용되는 주변 블록들은 현재 블록의 좌하측 코너 주변 블록, 좌측 주변 블록, 우상측 코너 주변 블록, 상측 주변 블록, 좌상측 코너 주변 블록을 포함할 수 있었다.
도 7은 종래의 머지 또는 AMVP 모드에서 움직임 정보 후보 도출을 위하여 사용되었던 공간적 주변 블록들을 예시적으로 나타낸다.
기본적으로 상기 공간적 주변 블록은 현재 블록과 바로 맞닿아 있는 블록으로 제한되어 왔다. 이는 하드웨어 구현성을 높이기 위한 것으로 현재 블록과 멀리 떨어져 있는 블록의 정보를 유도하기 위하여는 라인버퍼 증가 등의 이슈가 발생되기 때문이었다. 그러나, 현재 블록의 움직임 정보 후보를 도출하기 위하여 인접하지 않은 블록의 움직임 정보 사용하는 것은 다양한 후보를 구성할 수 있으므로 성능 향상을 가져올 수 있다. 라인버퍼 증가 없이 인접하지 않은 블록의 움직임 정보를 사용하기 위해 HMVP(History based Motion Vector Prediction) 방법이 사용될 수 있다. 본 문서에서 HMVP는 History based Motion Vector Prediction 또는 History based Motion Vector Predictor를 나타낼 수 있다. 본 발명에 따르면 HMVP를 이용하여 효율적으로 인터 예측을 수행할 수 있으며, 병렬 프로세싱을 지원할 수 있다. 예를 들어, 본 발명의 실시예에서는 병렬화 프로세싱을 위해 히스토리 버퍼를 관리하는 다양한 방법을 제안하고 있으며, 이를 기반으로 병렬 프로세싱이 지원될 수 있다. 다만, 병렬 프로세싱을 지원한다 함은 병렬 프로세싱이 필수적으로 수행되어야 한다는 의미는 아니며, 하드웨어 성능이나 서비스 형태를 고려하여 코딩 장치가 병렬 프로세싱을 수행할 수도 있고, 수행하지 않을 수도 있다. 예를 들어, 코딩 장치가 멀티 코어 프로세서를 구비한 경우 코딩 장치는 슬라이스들, 브릭들 및/또는 타일들 중 일부를 병렬 처리할 수 있다. 한편, 코딩 장치가 싱글 코어 프로세서를 구비한 경우이거나 혹은 멀티 코어 프로세서를 구비한 경우에도 코딩 장치는 연산 및 메모리 부담을 줄이면서 순차적 프로세싱을 수행할 수도 있다.
상술한 HMVP 방법에 따른 HMVP 후보는 이전에 코딩된 블록의 움직임 정보를 포함할 수 있다. 예를 들어, 현재 픽처 내 블록 코딩 순서에 따라 이전에 코딩된 블록의 움직임 정보는 만약 상기 이전에 코딩된 블록이 현재 블록에 인접하지 않으면 상기 현재 블록의 움직임 정보로 고려되지 않았다. 그러나, HMVP 후보는 상기 이전에 코딩된 블록이 현재 블록에 인접한지 여부를 고려하지 않고 현재 블록의 움직임 정보 후보(ex. 머지 후보 또는 MVP 후보)로 고려될 수 있다. 이 경우, 복수개의 HMVP 후보가 버퍼에 저장될 수 있다. 예를 들어, 현재 블록에 머지 모드가 적용되는 경우, HMVP 후보(HMVP 머지 후보)가 머지 후보 리스트에 추가될 수 있다. 이 경우, 상기 HMVP 후보는 머지 후보 리스트에 포함되는 공간적 머지 후보들 및 시간적 머지 후보 다음에 추가될 수 있다.
HMVP 방법에 따르면 이전에 코딩된 블록의 움직임 정보가 테이블 형태로 저장될 수 있으며, 현재 블록의 움직임 정보 후보(ex. 머지 후보)로 사용될 수 있다. 복수의 HMVP 후보들을 포함하는 테이블(or 버퍼, 리스트)이 인코딩/디코딩 절차 동안 유지될 수 있다. 상기 테이블(or 버퍼, 리스트)은 HMVP 테이블(or 버퍼, 리스트)이라고 불릴 수 있다. 본 발명의 일 실시예에 따르면 상기 테이블(or 버퍼, 리스트)은 새로운 슬라이스를 접하는(encounter) 경우 초기화될 수 있다. 또는 본 발명의 일 실시예에 따르면 상기 테이블(or 버퍼, 리스트)은 새로운 CTU 행을 접하는 경우 초기화될 수 있다. 상기 테이블이 초기화되는 경우 상기 테이블에 포함된 HMVP 후보들의 개수는 0으로 설정될 수 있다. 상기 테이블(or 버퍼, 리스트)의 사이즈는 특정 값(ex. 5 등)으로 고정될 수 있다. 예를 들어, 인터 코딩된 블록이 있는 경우, 연관된 움직임 정보가 상기 테이블의 마지막 엔트리로 새로운 HMVP 후보로써 추가될 수 있다. 상기 (HMVP) 테이블은 (HMVP) 버퍼 또는 (HMVP) 리스트로 불릴 수 있다.
도 8은 HMVP 후보 기반 디코딩 절차의 예를 개략적으로 나타낸다. 여기서, HMVP 후보 기반 디코딩 절차는 HMVP 후보 기반 인터 예측 절차를 포함할 수 있다.
도 8을 참조하면, 디코딩 장치는 HMVP 후보(들)을 포함하는 HMVP 테이블을 로드하고, 상기 HMVP 후보(들) 중 적어도 하나를 기반으로 블록을 디코딩한다. 구체적으로 예를 들어, 디코딩 장치는 상기 HMVP 후보(들) 중 적어도 하나를 기반으로 현재 블록의 움직임 정보를 도출할 수 있으며, 상기 움직임 정보를 기반으로 상기 현재 블록에 대한 인터 예측을 수행하여, 예측된 블록(예측 샘플 포함)을 도출할 수 있다. 상기 예측된 블록을 기반으로 복원 블록이 생성될 수 있음은 상술한 바와 같다. 상기 현재 블록의 도출된 움직임 정보는 상기 테이블에 업데이트될 수 있다. 이 경우 상기 움직임 정보가 상기 테이블의 마지막 엔트리로 새로운 HMVP 후보로써 추가될 수 있다. 만약, 상기 테이블에 기존에 포함된 HMVP 후보들의 개수가 상기 테이블의 사이즈와 같은 경우, 상기 테이블에 처음으로 들어온 후보가 삭제되고, 상기 도출된 움직임 정보가 상기 테이블의 마지막 엔트리로 새로운 HMVP 후보로써 추가될 수 있다.
도 9는 FIFO 규칙에 따른 HMVP 테이블 업데이트를 예시적으로 나타내고, 도 10은 제한된 FIFO 규칙에 따른 HMVP 테이블 업데이트를 예시적으로 나타낸다.
상기 테이블에는 FIFO(first-in-first-out) 규칙이 적용될 수 있다. 예를 들어, 만약 테이블 사이즈 S가 16인 경우, 이는 16개의 HMVP 후보들이 상기 테이블에 포함될 수 있음을 나타낸다. 만약 이전에 코딩된 블록들로부터 16개보다 많은 HMVP 후보들이 발생하는 경우, FIFO 규칙이 적용될 수 있으며, 이를 통하여 상기 테이블은 가장 최근 코딩된 최대 16개의 움직임 정보 후보들을 포함할 수 있다. 이 경우, 상기 도 9에 도시되 바와 같이, FIFO 규칙이 적용되어 가장 오래된 HMVP 후보가 제거되고, 새로운 HMVP 후보가 추가될 수 있다.
한편, 코딩 효율을 더 향상시키기 위하여, 도 10에 도시된 바와 같이 제한된 FIFO 규칙이 적용될 수도 있다. 도 10을 참조하면, HMVP 후보를 테이블에 삽입할 때, 먼저 중복 체크(redundancy check)가 먼저 적용될 수 있다. 이를 통하여 동일한 움직임 정보를 갖는 HMVP 후보가 이미 상기 테이블에 존재하는지 여부를 판단할 수 있다. 만약, 상기 테이블에 동일한 움직임 정보를 갖는 HMVP 후보가 존재하는 경우, 상기 동일한 움직임 정보를 갖는 HMVP 후보는 상기 테이블에서 제거되고, 상기 제거되는 HMVP 후보 이후의 HMVP 후보들은 한칸씩 움직이며(즉, 각 인덱스들 -1), 이후 새로운 HMVP 후보가 삽입될 수 있다.
상술한 바와 같이 HMVP 후보들은 머지 후보 리스트 구성 절차에서 사용될 수 있다. 이 경우 예를 들어, 상기 테이블 내의 마지막 엔트리부터 처음 엔트리까지 삽입 가능한 모든 HMVP 후보들은 공간적 머지 후보들 및 시간적 머지 후보 다음에 삽입될 수 있다. 이 경우 프루닝 체크가 HMVP 후보들에 대하여 적용될 수 있다. 허용되는 최대 머지 후보의 개수는 시그널링될 수 있으며, 가용 머지 후보의 전체 개수가 최대 머지 후보의 개수에 도달하는 경우, 상기 머지 후보 리스트 구성 절차는 종료될 수 있다.
유사하게, HMVP 후보들은 (A)MVP 후보 리스트 구성 절차에서 사용될 수도 있다. 이 경우, HMVP 테이블 내 마지막 k개의 HMVP 후보들의 움직임 벡터들이 MVP 후보 리스트를 구성하는 TMVP 후보 다음에 추가될 수 있다. 이 경우, 예를 들어, MVP 타겟 참조 픽처와 동일한 참조 픽처를 갖는 HMVP 후보가 상기 MVP 후보 리스트 구성을 위하여 사용될 수 있다. 여기서 MVP 타겟 참조 픽처는 상기 MVP 모드가 적용된 현재 블록의 인터 예측을 위한 참조 픽처를 나타낼 수 있다. 이 경우 프루닝 체크가 HMVP 후보들에 대하여 적용될 수 있다. 상기 k는 예를 들어 4일 수 있다. 다만 이는 예시로서 상기 k는 1, 2, 3, 4 등 다양한 값을 가질 수 있다.
한편, 전체 머지 후보의 개수가 15와 같거나 더 큰 경우, 다음 표 1과 같이 truncated unary plus fixed length (with 3 bits) 이진화(binarization) 방법이 머지 인덱스 코딩을 위하여 적용될 수 있다.
Figure pat00001
상기 표는 Nmrg=15인 경우를 가정하였고, Nmrg는 머지 후보들의 전체 개수를 나타낸다.
한편, 비디오 코덱을 적용한 솔루션 개발 시 구현 최적화를 위해 영상/비디오 코딩에 있어서 병렬 처리가 지원될 수도 있다.
도 11은 병렬 처리를 위한 기법 중 하나인 WPP(Wavefront Parallel Processing)를 예시적으로 나타낸다.
도 11을 참조하면, WPP가 적용되는 경우, CTU 행 단위로 병렬화 처리가 될 수 있다. 이 경우, X 표시된 블록들을 코딩(인코딩/디코딩)하는 경우에 화살표가 가리키는 위치와 디펜던시가 존재하게 된다. 따라서 현재 코딩하고자 하는 블록의 우상측 CTU가 코딩 완료되는 것을 기다려야 한다. 또한, WPP가 적용되는 경우, CABAC (컨텍스트) 확률 테이블의 초기화는 슬라이스 단위로 이뤄질 수 있으며, 엔트로피 인코딩/디코딩을 포함하여 병렬화 처리하기 위해서는 CTU 행 단위로 CABAC 확률 테이블이 초기화 되어야 한다. WPP는 효율적인 초기화 위치를 정하기 위해 제안된 기술이라고 볼 수 있다.
상술한 HMVP 방법은 미리 정해진 버퍼(HMVP 테이블) 크기만큼 각 블록의 코딩 절차에서 도출된 움직임 정보를 후보로 저장한다. 이 경우 도 9에서 부가 조건 없이 개시한 것처럼 버퍼 수만큼 후보를 채울 수 있고, 또는 새롭게 추가되는 후보와 버퍼(HMVP 테이블) 내에 존재하는 후보와의 중복 체크를 통하여 중복되지 않도록 후보를 채울 수도 이다. 이를 통하여 다양한 후보를 구성할 수 있다. 그러나, 비디오 코덱을 적용한 솔루션 개발 시 HMVP 후보들이 버퍼에 채워지는 시점을 일반적으로 알 수 없기 때문에 WPP를 적용하거나 WPP 을 적용하지 않더라도 병렬 처리가 가능하도록 구현하는 것이 불가능하다.
도 12는 병렬 처리를 고려하여 일반 HMVP 방법을 적용할 때의 문제점을 예시적으로 나타낸다.
도 12를 참조하면, WPP와 같이 각 CTU 행 단위로 병렬화 하는 경우, HMVP 버퍼의 디펜던시 문제가 발생할 수 있다. 예를 들어, N(N>=1)번째 CTU 행에서의 첫번째 CTU를 위한 HMVP 버퍼는 N-1번째 CTU 행에 존재하는 블록, 예를들어, N-1번째 CTU 행의 마지막 CTU내 블록의 코딩(인코딩/디코딩)이 완료되어야 채워질 수 있기 때문이다. 즉, 현재 구조 하에서 병렬 처리가 적용되는 경우에는 디코딩 장치는 현재 HMVP 버퍼에 저장된 HMVP 후보들이 현재 (대상) 블록의 디코딩을 위하여 사용되는 HMVP 버퍼가 맞는지 여부를 알 수 없다. 이는 순차적 처리를 적용하는 경우에 현재 블록의 코딩 시점에서 도출되는 HMVP 버퍼와 병렬 처리를 적용하는 경우에 현재 블록의 코딩 시점에서 도출되는 HMVP 버퍼에 차이가 발생할 수 있기 때문이다.
본 발명의 일 실시예에서는 상기와 같은 문제점을 해결하기 위하여, HMVP를 적용할 때, 히스토리 관리 버퍼(HMVP 버퍼)를 초기화 해줌으로써 병렬 처리가 지원될 수 있도록 한다.
도 13은 본 발명의 일 실시예에 따른 히스토리 관리 버퍼(HMVP 버퍼)의 초기화 방법을 예시적으로 나타낸다.
도 13을 참조하면, CTU 행의 첫 CTU마다 HMVP 버퍼가 초기화될 수 있다. 즉, CTU 행의 첫 CTU를 코딩하는 경우, HMVP 버퍼를 초기화하여 HMVP 버퍼에 포함된 HMVP 후보들의 개수가 0이 되도록 할 수 있다. 상기와 같이 CTU 행마다 HMVP 버퍼를 초기화함으로써, 병렬 처리가 지원되는 경우에도 제약 없이 현재 블록의 좌측 방향에 위치하는 CTU들의 코딩 과정에서 도출된 HMVP 후보들을 사용할 수 있다. 이 경우, 예를 들어 현재 블록인 현재 CU가 CTU 행의 첫번째 CTU에 위치하고, 현재 CU가 상기 첫번째 CTU의 첫번째 CU에 해당하는 경우, 상기 HMVP 버퍼에 포함된 HMVP 후보들의 개수가 0이다. 또한, 예를 들어 상기 CTU 행에서 현재 CU보다 앞서 코딩된 CU가 인터 모드로 코딩되면, 상기 앞서 코딩된 CU의 움직임 정보를 기반으로 HMVP 후보가 도출되어 상기 HMVP 버퍼에 포함될 수 있다.
도 14는 본 발명의 일 실시예에 다른 HMVP 버퍼 관리 방법을 예시적으로 나타낸다.
도 14를 참조하면, 슬라이스 단위로 HMVP 버퍼를 초기화할 수 있으며, 슬라이스 내 CTU들에 대해서도 코딩 대상 CTU(현재 CTU)가 각 CTU 행의 첫번째 CTU 인지 여부를 판단할 수 있다. 도 14에서는 예시로서 (ctu_idx % Num)이 0이면, 첫번째 CTU로 판단되는 것으로 기술하였다. 이 때, Num은 각 CTU 행에서의 CTU개수를 의미한다. 다른 예로, 상술한 브릭 개념을 이용하는 경우, ctu_idx_in_brick % BrickWidth)가 0이면, (해당 브릭 내) CTU 행의 첫번째 CTU인 것으로 판단할 수 있다. 여기서, ctu_idx_in_brick은 상기 브릭 내 해당 CTU의 인덱스를 나타내고, BrickWidth는 해당 브릭의 너비를 CTU 단위로 나타낸다. 즉, BrickWidth는 해당 브릭 내 CTU 열의 개수를 나타낼 수 잇다. 현재 CTU가 CTU 행의 첫번째 CTU인 경우에는 HMVP 버퍼를 초기화(즉, HMVP 버퍼 내 후보들의 개수를 0으로 설정)하고, 그렇지 않은 경우에는 HMVP 버퍼를 유지한다. 이후 해당 CTU 내 각 CU별 예측 과정(ex. 머지 or MVP 모드 기반)을 거치며, 이 때 HMVP 버퍼에 저장된 후보가 머지 모드 또는 MVP 모드의 움직임 정보 후보(ex. 머지 후보 or MVP 후보)로 포함될 수 있다. 머지 모드 또는 MVP 모드 등에 기반한 인터 예측 과정에서 도출된 대상 블록(현재 블록)의 움직임 정보는 HMVP 버퍼에 새로운 HMVP 후보로 저장(업데이트)된다. 이 경우 상술한 중복 체크 과정이 더 수행될 수 있다. 이후 CU 및 CTU에 대하여도 상술한 절차가 반복될 수 있다.
다른 예로, HMVP를 적용할 때, 매 CTU 마다 HMVP 버퍼를 초기화 함으로써 CTU 단위의 디펜던시를 제거할 수도 있다. 이 경우, CTU 단위로 HMVP 버퍼가 초기화 되므로 CTU 내에 존재하는 블록들의 움직임 정보가 HMVP 테이블에 저장된다. 이 경우, 동일 CTU 내에 있는 블록(ex. CU)들의 움직임 정보를 기반으로 HMVP 후보를 도출할 수 있으며, 다음과 같이 현재 CTU가 각 CTU 행의 첫번째 CTU 인지 여부 판단없이 HMVP 버퍼 초기화가 가능해진다.
도 15는 본 발명의 다른 일 실시예에 다른 HMVP 버퍼 관리 방법을 예시적으로 나타낸다.
도 15를 참조하면, 현재 CTU가 각 CTU 행의 첫번째 CTU 인지 여부 판단없이 CTU 마다 HMVP 버퍼 초기화를 수행할 수 있다.
한편, 매 CTU 마다 HMVP 버퍼 초기화를 할 경우, 해당 CTU 내에 존재하는 블록들의 움직임 정보를 도출된 HMVP 후보만이 HMVP 버퍼에 포함되므로 인접하지 않은 블록으로부터 도출되는 후보의 사용이 제한적일 수 밖에 없다. 따라서, 현재 CTU에 인접한 좌측 CTU의 후보를 HMVP 버퍼에 저장하여 가능한 후보를 늘릴 수 있다.
도 16은 본 발명의 또 다른 일 실시예에 다른 HMVP 버퍼 관리 방법을 예시적으로 나타낸다.
도 16을 참조하면, 현재 CTU(N-th CTU)와 좌측으로 두개의 CTU, 즉, (N-1)th, (N-2)th CTU가 존재할 때, 현재 CTU내에 존재하는 CU들은 (N-1)th CTU 내의 블록들로부터 도출된 HMVP 후보(들)을 사용할 수 있다. 이 경우 (N-2)th CTU 내의 블록들로부터 도출된 HMVP 후보(들)은 사용될 수 없고, 초기화 또는 제거된다.
본 실시예에서 제안하는 방법을 적용하기 위한 HMVP 버퍼는 다음과 같이 제어 또는 관리될 수 있다.
도 17은 HMVP 버퍼 관리 방법을 예시적으로 나타낸다.
도 17을 참조하면, HMVP의 버퍼 크기가 S(ex. 16)일 때 (buffer index 0~15), 각 CTU내의 CU들은 도 17에 도시된 바와 같이 저장되며, 이는 블록 인덱스로 나타낼 수 있다. (N-1)th CTU 코딩이 완료되면 (N-2)th CTU에서 도출되었던 HMVP 후보들은 버퍼에서 제거되며, 현재 CTU 내 블록들로부터 도출된 움직임 정보들이 HMVP 후보들로서 HMVP 버퍼에 저장된다. 버퍼 관리를 위해 그림에서 도시한 바와 같이 CTU 인덱스로 나타낸 CTU 지시자(indicator)가 존재할 수 있으며, 코딩 장치는 CTU 인덱스를 기반으로 버퍼에서 제거할 대상을 찾을 수 있다.
상술한 HMVP의 히스토리 관리 버퍼(HMVP 버퍼)의 크기는 버퍼 크기에 따른 성능 증가폭, 버퍼에 존재하는 후보들과의 중복 체크 등을 위한 계산량 등을 고려하여 결정될 수 있다. 상술한 실시예들에서와 같이 버퍼 초기화로 인해 기존 HMVP와 비교하여 이용 가능한 HMVP 후보가 줄기 때문에 HMVP를 위한 관리 버퍼 크기가 더 작아져도 성능의 변화가 거의 없다. 예를 들어, CTU 행마다 HMVP 버퍼를 초기화하는 실시예나, 현재 CTU의 인접한 좌측 CTU로부터 도출된 HMVP 후보들까지 사용하는 실시예를 적용할 때 버퍼 사이즈 S를 5 또는 6으로 설정할 수 있다. 또한 예를 들어, 상술한 CTU마다 HMVP 버퍼를 초기화하는 실시예를 적용할 때 버퍼 사이즈 S를 4 또는 5로 설정할 수 있으며, 이 경우 성능 저하가 거의 없다. 또한, 히스토리 관리 버퍼의 버퍼 크기를 결정할 때, SIMD(Single Instruction Multiple Data)를 적용 여부가 고려될 수 있다. 예를 들어, 복수개(ex. 8개)의 데이터를 한번에 비교 및 계산하는 것이 가능할 경우, 버퍼 사이즈를 줄일 필요 없이 SIMD를 적용하는 것이 계산 복잡도 증가 없이 성능을 유지할 수 있어 효율적이다.
도 18 및 19는 본 발명의 실시예에 따른 인터 예측 방법을 포함하는 비디오/영상 인코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다. 도 18에서 개시된 방법은 도 2에서 개시된 인코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 18의 S1800 내지 S1830은 상기 인코딩 장치의 예측부(220)에 의하여 수행될 수 있고, 도 18의 S1840은 상기 인코딩 장치의 레지듀얼 처리부(230)에 의하여 수행될 수 있고, 도 18의 S1850은 상기 인코딩 장치의 엔트로피 인코딩부(240)에 의하여 수행될 수 있다. 도 18에서 개시된 방법은 본 문서에서 상술한 실시예들을 포함할 수 있다.
도 18을 참조하면, 인코딩 장치는 현재 블록에 대한 HMVP 버퍼를 도출한다(S1800). 인코딩 장치는 본 문서의 실시예들에서 상술한 HMVP 버퍼 관리 방법들을 수행할 수 있다. 일 예로, 상기 HMVP 버퍼는 슬라이스 단위로 초기화될 수 있다.
다른 예로, 상기 HMVP 버퍼는 CTU 행 단위로 초기화될 수 있다. 인코딩 장치는 상기 현재 CTU가 상기 CTU 행의 상기 첫번째 CTU인지 여부를 판단할 수 있다. 이 경우 상기 HMVP 버퍼는 상기 현재 블록을 포함하는 현재 CTU가 위치하는 CTU 행의 첫번째 CTU에서 초기화될 수 있다. 다시 말하면, 상기 HMVP 버퍼는 상기 현재 블록을 포함하는 현재 CTU가 위치하는 CTU 행의 첫번째 CTU를 처리하는 경우(when processing a first-ordered CTU) 초기화될 수 있다. 상기 현재 CTU가 상기 CTU 행의 상기 첫번째 CTU인 것으로 판단된 경우, 상기 HMVP 버퍼는 상기 현재 CTU 내에서 상기 현재 블록보다 먼저 인코딩된 블록의 움직임 정보를 기반으로 도출된 HMVP 후보를 포함할 수 있다. 상기 현재 CTU가 상기 CTU 행의 상기 첫번째 CTU가 아닌 것으로 판단된 경우, 상기 HMVP 버퍼는 상기 현재 CTU 내에서 상기 현재 블록보다 이전에 인코딩된 블록의 움직임 정보를 기반으로 도출된 HMVP 후보 및 상기 CTU 행의 이전 CTU 내에서 이전에 인코딩된 블록의 움직임 정보를 기반으로 도출된 HMVP 후보를 포함할 수 있다. 또한, 예를 들어 현재 블록인 현재 CU가 CTU 행의 첫번째 CTU에 위치하고, 현재 CU가 상기 첫번째 CTU의 첫번째 CU에 해당하는 경우, 상기 HMVP 버퍼에 포함된 HMVP 후보들의 개수가 0이다. 또한, 예를 들어 상기 CTU 행에서 현재 CU보다 앞서 코딩된 CU(ex, 현재 CTU에서 현재 CU보다 먼저 코딩된 CU 및/또는 현재 CTU 행에서 현재 CTU보다 먼저 코딩된 CTU 내 CU)가 인터 모드로 코딩되면, 상기 앞서 코딩된 CU의 움직임 정보를 기반으로 HMVP 후보가 도출되어 상기 HMVP 버퍼에 포함될 수 있다. 만약 현재 블록에 머지 모드가 적용되는 경우, 상기 HMVP 후보는 상기 현재 블록에 대한 머지 후보 리스트 내의 가용한 머지 후보들(ex. 공간적 머지 후보들 및 시간적 머지 후보 포함)의 개수가 미리 결정된 최대 머지 후보 개수보다 작은 경우에 상기 머지 후보 리스트에 추가될 수 있다. 이 경우, 상기 HMVP 후보는 상기 머지 후보 리스트 내에서 상기 공간적 후보들 및 시간적 후보들 뒤에 삽입될 수 있다. 다시 말하면, 상기 HMVP 후보에는 상기 머지 후보 리스트 내에서 상기 공간적 후보들 및 시간적 후보들에 할당되는 인덱스보다 더 큰 인덱스 값이 할당될 수 있다.
또 다른 예로, 상기 HMVP 버퍼는 CTU 단위로 초기화될 수 있다. 또는, 상기 HMVP 버퍼는 현재 CTU의 좌측 CTU에서 도출된 HMVP 후보까지 포함할 수 있다. 상기 HMVP 버퍼가 초기화되는 경우, 상기 HMVP 버퍼에 포함되는 HMVP 후보들의 개수는 0으로 설정될 수 있다.
인코딩 장치는 상기 HMVP 버퍼를 기반으로 상기 현재 블록의 움직임 정보를 도출한다(S1810). 인코딩 장치는 상기 HMVP 버퍼에 포함된 HMVP 후보를 기반으로 상기 현재 블록의 움직임 정보를 도출할 수 있다. 예를 들어, 상기 현재 블록에 머지 모드 또는 MVP(motion vector prediction) 모드가 적용되는 경우, 상기 HMVP 버퍼에 포함된 상기 HMVP 후보를 머지 후보 또는 MVP 후보로 사용할 수 있다. 예를 들어, 상기 현재 블록에 머지 모드가 적용되는 경우, 상기 HMVP 버퍼에 포함된 상기 HMVP 후보는 머지 후보 리스트의 후보로 포함되고, 머지 인덱스를 기반으로 상기 머지 후보 리스트에 포함된 후보들 중에서 상기 HMVP 후보를 지시할 수 있다. 상기 머지 인덱스는 예측 관련 정보로서 후술하는 영상 정보에 포함될 수 있다. 이 경우 상기 HMVP 후보는 상기 머지 후보 리스트에 포함되는 공간적 머지 후보들 및 시간적 머지 후보보다 더 낮은 우선순위로 상기 머지 후보 리스트 내에서 인덱스가 할당될 수 있다. 즉, 상기 HMVP 후보에 할당되는 인덱스 값은 상기 공간적 머지 후보들 및 시간적 머지 후보의 인덱스 값들보다 더 높은 값이 할당될 수 있다.
인코딩 장치는 상기 도출된 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성한다(S1820). 인코딩 장치는 상기 움직임 정보를 기반으로 인터 예측(움직임 보상)을 수행하여 상기 움직임 정보가 참조 픽처 상에서 가리키는 참조 샘플들을 이용하여 예측 샘플들을 도출할 수 있다.
인코딩 장치는 상기 예측 샘플들을 기반으로 레지듀얼 샘플들을 생성한다(S1830). 인코딩 장치는 상기 현재 블록에 대한 원본 샘플들과 상기 현재 블록에 대한 예측 샘플들을 기반으로 레지듀얼 샘플들을 생성할 수 있다.
인코딩 장치는 상기 레지듀얼 샘플들을 기반으로 레지듀얼 샘플들에 대한 정보를 도출하고, 상기 레지듀얼 샘플들에 대한 정보를 포함하는 영상 정보를 인코딩한다(S1840). 상기 레지듀얼 샘플들에 대한 정보는 레지듀얼 정보라고 불리 수 있으며, 양자화된 변환 계수들에 대한 정보를 포함할 수 있다. 인코딩 장치는 상기 레지듀얼 샘플들에 변환/양자화 절차를 수행하여 양자화된 변환 계수들을 도출할 수 있다.
인코딩된 영상 정보는 비트스트림 형태로 출력될 수 있다. 상기 비트스트림은 네트워크 또는 저장매체를 통하여 디코딩 장치로 전송될 수 있다. 영상 정보는 예측 관련 정보를 더 포함할 수 있으며, 상기 예측 관련 정보는 다양한 예측 모드(ex. 머지 모드, MVP 모드 등)에 대한 정보, MVD 정보 등을 더 포함할 수 있다.
도 20 및 21는 본 발명의 실시예에 따른 인터 예측 방법을 포함하는 영상 디코딩 방법 및 관련 컴포넌트의 일 예를 개략적으로 나타낸다. 도 20에서 개시된 방법은 도 3에서 개시된 디코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 20의 S2000 내지 S2030은 상기 디코딩 장치의 예측부(330), S2040은 상기 디코딩 장치의 가산부(340)에 의하여 수행될 수 있다. 도 20에서 개시된 방법은 본 문서에서 상술한 실시예들을 포함할 수 있다.
도 20을 참조하면, 디코딩 장치는 현재 블록에 대한 HMVP 버퍼를 도출한다(S2000). 디코딩 장치는 본 문서의 실시예들에서 상술한 HMVP 버퍼 관리 방법들을 수행할 수 있다. 일 예로, 상기 HMVP 버퍼는 슬라이스 단위로 초기화될 수 있다.
다른 예로, 상기 HMVP 버퍼는 CTU 행 단위로 초기화될 수 있다. 디코딩 장치는 상기 현재 CTU가 상기 CTU 행의 상기 첫번째 CTU인지 여부를 판단할 수 있다. 이 경우 상기 HMVP 버퍼는 상기 현재 블록을 포함하는 현재 CTU가 위치하는 CTU 행의 첫번째 CTU에서 초기화될 수 있다. 다시 말하면, 상기 HMVP 버퍼는 상기 현재 블록을 포함하는 현재 CTU가 위치하는 CTU 행의 첫번째 CTU를 처리하는 경우(when processing a first-ordered CTU) 초기화될 수 있다. 상기 현재 CTU가 상기 CTU 행의 상기 첫번째 CTU인 것으로 판단된 경우, 상기 HMVP 버퍼는 상기 현재 CTU 내에서 상기 현재 블록보다 먼저 디코딩된 블록의 움직임 정보를 기반으로 도출된 HMVP 후보를 포함할 수 있다. 상기 현재 CTU가 상기 CTU 행의 상기 첫번째 CTU가 아닌 것으로 판단된 경우, 상기 HMVP 버퍼는 상기 현재 CTU 내에서 상기 현재 블록보다 이전에 디코딩된 블록의 움직임 정보를 기반으로 도출된 HMVP 후보 및 상기 CTU 행의 이전 CTU 내에서 이전에 디코딩된 블록의 움직임 정보를 기반으로 도출된 HMVP 후보를 포함할 수 있다. 또한, 예를 들어 현재 블록인 현재 CU가 CTU 행의 첫번째 CTU에 위치하고, 현재 CU가 상기 첫번째 CTU의 첫번째 CU에 해당하는 경우, 상기 HMVP 버퍼에 포함된 HMVP 후보들의 개수가 0이다. 또한, 예를 들어 상기 CTU 행에서 현재 CU보다 앞서 코딩된 CU(ex. 현재 CTU에서 현재 CU보다 먼저 코딩된 CU 및/또는 현재 CTU 행에서 현재 CTU보다 먼저 코딩된 CTU 내 CU)가 인터 모드로 코딩되면, 상기 앞서 코딩된 CU의 움직임 정보를 기반으로 HMVP 후보가 도출되어 상기 HMVP 버퍼에 포함될 수 있다. 만약 현재 블록에 머지 모드가 적용되는 경우, 상기 HMVP 후보는 상기 현재 블록에 대한 머지 후보 리스트 내의 가용한 머지 후보들(ex. 공간적 머지 후보들 및 시간적 머지 후보 포함)의 개수가 미리 결정된 최대 머지 후보 개수보다 작은 경우에 상기 머지 후보 리스트에 추가될 수 있다. 이 경우, 상기 HMVP 후보는 상기 머지 후보 리스트 내에서 상기 공간적 후보들 및 시간적 후보들 뒤에 삽입될 수 있다. 다시 말하면, 상기 HMVP 후보에는 상기 머지 후보 리스트 내에서 상기 공간적 후보들 및 시간적 후보들에 할당되는 인덱스보다 더 큰 인덱스 값이 할당될 수 있다.
또 다른 예로, 상기 HMVP 버퍼는 CTU 단위로 초기화될 수 있다. 또는, 상기 HMVP 버퍼는 현재 CTU의 좌측 CTU에서 도출된 HMVP 후보까지 포함할 수 있다. 상기 HMVP 버퍼가 초기화되는 경우, 상기 HMVP 버퍼에 포함되는 HMVP 후보들의 개수는 0으로 설정될 수 있다.
디코딩 장치는 상기 HMVP 버퍼를 기반으로 상기 현재 블록의 움직임 정보를 도출한다(S2010). 디코딩 장치는 상기 HMVP 버퍼에 포함된 HMVP 후보를 기반으로 상기 현재 블록의 움직임 정보를 도출할 수 있다. 예를 들어, 상기 현재 블록에 머지 모드 또는 MVP(motion vector prediction) 모드가 적용되는 경우, 상기 HMVP 버퍼에 포함된 상기 HMVP 후보를 머지 후보 또는 MVP 후보로 사용할 수 있다. 예를 들어, 상기 현재 블록에 머지 모드가 적용되는 경우, 상기 HMVP 버퍼에 포함된 상기 HMVP 후보는 머지 후보 리스트의 후보로 포함되고, 비트스트림으로부터 획득된 머지 인덱스를 기반으로 상기 머지 후보 리스트에 포함된 후보들 중에서 상기 HMVP 후보가 지시될 수 있다. 이 경우 상기 HMVP 후보는 상기 머지 후보 리스트에 포함되는 공간적 머지 후보들 및 시간적 머지 후보보다 더 낮은 우선순위로 상기 머지 후보 리스트 내에서 인덱스가 할당될 수 있다. 즉, 상기 HMVP 후보에 할당되는 인덱스 값은 상기 공간적 머지 후보들 및 시간적 머지 후보의 인덱스 값들보다 더 높은 값이 할당될 수 있다.
디코딩 장치는 상기 도출된 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성한다(S2020). 디코딩 장치는 상기 움직임 정보를 기반으로 인터 예측(움직임 보상)을 수행하여 상기 움직임 정보가 참조 픽처 상에서 가리키는 참조 샘플들을 이용하여 예측 샘플들을 도출할 수 있다. 상기 예측 샘플들을 포함하는 현재 블록을 예측된 블록이라 부를 수 있다.
디코딩 장치는 상기 예측 샘플들을 기반으로 복원 샘플들을 생성한다(S2030). 상기 복원 샘플들을 기반으로 복원 블록/픽처가 생성될 수 있음은 상술한 바와 같다. 디코딩 장치는 상기 비트스트림으로부터 레지듀얼 정보(양자화된 변환 계수들에 관한 정보 포함)를 획득할 수 있으며, 상기 레지듀얼 정보를 레지듀얼 샘플들을 도출할 수 있고, 상기 예측 샘플들과 상기 레지듀얼 샘플들을 기반으로 상기 복원 샘플들이 생성될 수 있음은 상술한 바와 같다. 이후 필요에 따라 주관적/객관적 화질을 향상시키기 위하여 디블록킹 필터링, SAO 및/또는 ALF 절차와 같은 인루프 필터링 절차가 상기 복원 픽처에 적용될 수 있음은 상술한 바와 같다.
상술한 실시예에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타내어진 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 본 발명에 따른 방법은 소프트웨어 형태로 구현될 수 있으며, 본 발명에 따른 인코딩 장치 및/또는 디코딩 장치는 예를 들어 TV, 컴퓨터, 스마트폰, 셋톱박스, 디스플레이 장치 등의 영상 처리를 수행하는 장치에 포함될 수 있다.
본 발명에서 실시예들이 소프트웨어로 구현될 때, 상술한 방법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. 프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 즉, 본 발명에서 설명한 실시예들은 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 예를 들어, 각 도면에서 도시한 기능 유닛들은 컴퓨터, 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 이 경우 구현을 위한 정보(ex. information on instructions) 또는 알고리즘이 디지털 저장 매체에 저장될 수 있다.
또한, 본 발명이 적용되는 디코딩 장치 및 인코딩 장치는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, VR(virtual reality) 장치, AR(argumente reality) 장치, 화상 전화 비디오 장치, 운송 수단 단말 (ex. 차량(자율주행차량 포함) 단말, 비행기 단말, 선박 단말 등) 및 의료용 비디오 장치 등에 포함될 수 있으며, 비디오 신호 또는 데이터 신호를 처리하기 위해 사용될 수 있다. 예를 들어, OTT 비디오(Over the top video) 장치로는 게임 콘솔, 블루레이 플레이어, 인터넷 접속 TV, 홈시어터 시스템, 스마트폰, 태블릿 PC, DVR(Digital Video Recoder) 등을 포함할 수 있다.
또한, 본 발명이 적용되는 처리 방법은 컴퓨터로 실행되는 프로그램의 형태로 생산될 수 있으며, 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 본 발명에 따른 데이터 구조를 가지는 멀티미디어 데이터도 또한 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 상기 컴퓨터가 판독할 수 있는 기록 매체는 컴퓨터로 읽을 수 있는 데이터가 저장되는 모든 종류의 저장 장치 및 분산 저장 장치를 포함한다. 상기 컴퓨터가 판독할 수 있는 기록 매체는, 예를 들어, 블루레이 디스크(BD), 범용 직렬 버스(USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크 및 광학적 데이터 저장 장치를 포함할 수 있다. 또한, 상기 컴퓨터가 판독할 수 있는 기록 매체는 반송파(예를 들어, 인터넷을 통한 전송)의 형태로 구현된 미디어를 포함한다. 또한, 인코딩 방법으로 생성된 비트스트림이 컴퓨터가 판독할 수 있는 기록 매체에 저장되거나 유무선 통신 네트워크를 통해 전송될 수 있다.
또한, 본 발명의 실시예는 프로그램 코드에 의한 컴퓨터 프로그램 제품으로 구현될 수 있고, 상기 프로그램 코드는 본 발명의 실시예에 의해 컴퓨터에서 수행될 수 있다. 상기 프로그램 코드는 컴퓨터에 의해 판독가능한 캐리어 상에 저장될 수 있다.
도 22는 본 문서에서 개시된 발명이 적용될 수 있는 컨텐츠 스트리밍 시스템의 예를 나타낸다.
도 22를 참조하면, 본 발명이 적용되는 컨텐츠 스트리밍 시스템은 크게 인코딩 서버, 스트리밍 서버, 웹 서버, 미디어 저장소, 사용자 장치 및 멀티미디어 입력 장치를 포함할 수 있다.
상기 인코딩 서버는 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들로부터 입력된 컨텐츠를 디지털 데이터로 압축하여 비트스트림을 생성하고 이를 상기 스트리밍 서버로 전송하는 역할을 한다. 다른 예로, 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들이 비트스트림을 직접 생성하는 경우, 상기 인코딩 서버는 생략될 수 있다.
상기 비트스트림은 본 발명이 적용되는 인코딩 방법 또는 비트스트림 생성 방법에 의해 생성될 수 있고, 상기 스트리밍 서버는 상기 비트스트림을 전송 또는 수신하는 과정에서 일시적으로 상기 비트스트림을 저장할 수 있다.
상기 스트리밍 서버는 웹 서버를 통한 사용자 요청에 기초하여 멀티미디어 데이터를 사용자 장치에 전송하고, 상기 웹 서버는 사용자에게 어떠한 서비스가 있는지를 알려주는 매개체 역할을 한다. 사용자가 상기 웹 서버에 원하는 서비스를 요청하면, 상기 웹 서버는 이를 스트리밍 서버에 전달하고, 상기 스트리밍 서버는 사용자에게 멀티미디어 데이터를 전송한다. 이때, 상기 컨텐츠 스트리밍 시스템은 별도의 제어 서버를 포함할 수 있고, 이 경우 상기 제어 서버는 상기 컨텐츠 스트리밍 시스템 내 각 장치 간 명령/응답을 제어하는 역할을 한다.
상기 스트리밍 서버는 미디어 저장소 및/또는 인코딩 서버로부터 컨텐츠를 수신할 수 있다. 예를 들어, 상기 인코딩 서버로부터 컨텐츠를 수신하게 되는 경우, 상기 컨텐츠를 실시간으로 수신할 수 있다. 이 경우, 원활한 스트리밍 서비스를 제공하기 위하여 상기 스트리밍 서버는 상기 비트스트림을 일정 시간동안 저장할 수 있다.
상기 사용자 장치의 예로는, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등이 있을 수 있다.
상기 컨텐츠 스트리밍 시스템 내 각 서버들은 분산 서버로 운영될 수 있으며, 이 경우 각 서버에서 수신하는 데이터는 분산 처리될 수 있다.

Claims (3)

  1. 디코딩 장치에 의하여 수행되는 영상 디코딩 방법에 있어서,
    현재 블록에 대한 HMVP(history-based motion vector prediction) 버퍼를 도출하는 단계;
    상기 현재 블록에 대한 머지 후보 리스트를 구성하는 머지 후보들을 도출하되, 상기 머지 후보들은 공간적 후보 블록들을 기반으로 도출되는 공간적 후보들 및 시간적 후보 블록을 기반으로 도출되는 시간적 후보를 포함하고, 상기 HMVP 버퍼에 포함된 HMVP 후보는 상기 머지 후보 리스트의 머지 후보로 삽입되고, 상기 HMVP 후보는 상기 머지 후보 리스트 내 상기 시간적 후보 다음에 삽입되는 단계;
    상기 머지 후보 리스트 내의 상기 HMVP 후보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계;
    상기 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성하는 단계; 및
    상기 예측 샘플들을 기반으로 복원 샘플들을 생성하는 단계를 포함하되,
    상기 머지 후보 리스트에 포함된 상기 머지 후보들 중 상기 HMVP 후보는 비트스트림으로부터 획득된 머지 인덱스를 기반으로 지시되고,
    상기 현재 블록은 CTU(coding tree unit)로부터 분할된 CU(coding unit)에 대응하고,
    상기 HMVP 버퍼는 슬라이스의 각 CTU 행의 첫번째 CTU에서 초기화되고,
    상기 방법은 상기 CTU가 현재 슬라이스의 CTU 행의 첫번째 CTU인지 여부를 결정하는 단계를 더 포함하되,
    상기 CTU가 상기 현재 슬라이스의 CTU 행의 상기 첫번째 CTU라는 결정의 결과를 기반으로, 상기 HMVP 버퍼는 상기 CTU에 대하여 초기화되는 것을 특징으로 하는, 영상 디코딩 방법.
  2. 인코딩 장치에 의하여 수행되는 영상 인코딩 방법에 있어서,
    현재 블록에 대한 HMVP(history-based motion vector prediction) 버퍼를 도출하는 단계;
    상기 현재 블록에 대한 머지 후보 리스트를 구성하는 머지 후보들을 도출하되, 상기 머지 후보들은 공간적 후보 블록들을 기반으로 도출되는 공간적 후보들 및 시간적 후보 블록을 기반으로 도출되는 시간적 후보를 포함하고, 상기 HMVP 버퍼에 포함된 HMVP 후보는 상기 머지 후보 리스트의 머지 후보로 삽입되고, 상기 HMVP 후보는 상기 머지 후보 리스트 내 상기 시간적 후보 다음에 삽입되는 단계;
    상기 머지 후보 리스트 내의 상기 HMVP 후보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계;
    상기 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성하는 단계;
    상기 예측 샘플들을 기반으로 레지듀얼 샘플들을 도출하는 단계; 및
    상기 레지듀얼 샘플들에 대한 정보를 포함하는 영상 정보를 인코딩하는 단계를 포함하되,
    상기 영상 정보는 상기 머지 후보 리스트에 포함된 상기 머지 후보들 중 상기 HMVP 후보를 지시하는 머지 인덱스에 관한 정보를 포함하고,
    상기 현재 블록은 CTU(coding tree unit)로부터 분할된 CU(coding unit)에 대응하고,
    상기 HMVP 버퍼는 슬라이스의 각 CTU 행의 첫번째 CTU에서 초기화되고,
    상기 방법은 상기 CTU가 현재 슬라이스의 CTU 행의 첫번째 CTU인지 여부를 결정하는 단계를 더 포함하되,
    상기 CTU가 상기 현재 슬라이스의 CTU 행의 상기 첫번째 CTU라는 결정의 결과를 기반으로, 상기 HMVP 버퍼는 상기 CTU에 대하여 초기화되는 것을 특징으로 하는, 영상 인코딩 방법.
  3. 특정 방법에 의해 생성된 비트스트림을 저장하는 컴퓨터 판독 가능한 저장 매체로서, 상기 특정 방법은,
    현재 블록에 대한 HMVP(history-based motion vector prediction) 버퍼를 도출하는 단계;
    상기 현재 블록에 대한 머지 후보 리스트를 구성하는 머지 후보들을 도출하되, 상기 머지 후보들은 공간적 후보 블록들을 기반으로 도출되는 공간적 후보들 및 시간적 후보 블록을 기반으로 도출되는 시간적 후보를 포함하고, 상기 HMVP 버퍼에 포함된 HMVP 후보는 상기 머지 후보 리스트의 머지 후보로 삽입되고, 상기 HMVP 후보는 상기 머지 후보 리스트 내 상기 시간적 후보 다음에 삽입되는 단계;
    상기 머지 후보 리스트 내의 상기 HMVP 후보를 기반으로 상기 현재 블록의 움직임 정보를 도출하는 단계;
    상기 움직임 정보를 기반으로 상기 현재 블록에 대한 예측 샘플들을 생성하는 단계;
    상기 예측 샘플들을 기반으로 레지듀얼 샘플들을 도출하는 단계; 및
    상기 레지듀얼 샘플들에 대한 정보를 포함하는 영상 정보를 인코딩하는 단계를 포함하되,
    상기 영상 정보는 상기 머지 후보 리스트에 포함된 상기 머지 후보들 중 상기 HMVP 후보를 지시하는 머지 인덱스에 관한 정보를 포함하고,
    상기 현재 블록은 CTU(coding tree unit)로부터 분할된 CU(coding unit)에 대응하고,
    상기 HMVP 버퍼는 슬라이스의 각 CTU 행의 첫번째 CTU에서 초기화되고,
    상기 특정 방법은 상기 CTU가 현재 슬라이스의 CTU 행의 첫번째 CTU인지 여부를 결정하는 단계를 더 포함하되,
    상기 CTU가 상기 현재 슬라이스의 CTU 행의 상기 첫번째 CTU라는 결정의 결과를 기반으로, 상기 HMVP 버퍼는 상기 CTU에 대하여 초기화되는 것을 특징으로 하는, 컴퓨터 판독 가능한 저장 매체.

KR1020237018724A 2018-08-13 2019-08-13 히스토리 기반 움직임 벡터에 기반한 인터 예측 방법 및 그 장치 KR20230085219A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180094609 2018-08-13
KR20180094609 2018-08-13
PCT/KR2019/010312 WO2020036417A1 (ko) 2018-08-13 2019-08-13 히스토리 기반 움직임 벡터에 기반한 인터 예측 방법 및 그 장치
KR1020217000858A KR102541425B1 (ko) 2018-08-13 2019-08-13 히스토리 기반 움직임 벡터에 기반한 인터 예측 방법 및 그 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020217000858A Division KR102541425B1 (ko) 2018-08-13 2019-08-13 히스토리 기반 움직임 벡터에 기반한 인터 예측 방법 및 그 장치

Publications (1)

Publication Number Publication Date
KR20230085219A true KR20230085219A (ko) 2023-06-13

Family

ID=69525664

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020237018724A KR20230085219A (ko) 2018-08-13 2019-08-13 히스토리 기반 움직임 벡터에 기반한 인터 예측 방법 및 그 장치
KR1020217000858A KR102541425B1 (ko) 2018-08-13 2019-08-13 히스토리 기반 움직임 벡터에 기반한 인터 예측 방법 및 그 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020217000858A KR102541425B1 (ko) 2018-08-13 2019-08-13 히스토리 기반 움직임 벡터에 기반한 인터 예측 방법 및 그 장치

Country Status (8)

Country Link
US (4) US10841607B2 (ko)
EP (1) EP3813369A4 (ko)
JP (1) JP7282872B2 (ko)
KR (2) KR20230085219A (ko)
CN (4) CN116781930A (ko)
BR (4) BR122021008224A2 (ko)
MX (1) MX2021001670A (ko)
WO (1) WO2020036417A1 (ko)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2723076A4 (en) * 2011-06-14 2015-03-04 Samsung Electronics Co Ltd METHOD AND APPARATUS FOR ENCODING MOVEMENT INFORMATION, AND METHOD AND APPARATUS FOR DECODING THE SAME
EP3791585A1 (en) 2018-06-29 2021-03-17 Beijing Bytedance Network Technology Co. Ltd. Partial/full pruning when adding a hmvp candidate to merge/amvp
WO2020003284A1 (en) 2018-06-29 2020-01-02 Beijing Bytedance Network Technology Co., Ltd. Interaction between lut and amvp
KR20210025537A (ko) * 2018-06-29 2021-03-09 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 하나 또는 다수의 룩업 테이블들을 사용하여 이전에 코딩된 모션 정보를 순서대로 저장하고 이를 사용하여 후속 블록들을 코딩하는 개념
JP7460617B2 (ja) 2018-06-29 2024-04-02 北京字節跳動網絡技術有限公司 Lut更新条件
TWI719523B (zh) 2018-06-29 2021-02-21 大陸商北京字節跳動網絡技術有限公司 哪個查找表需要更新或不更新
SG11202012293RA (en) 2018-06-29 2021-01-28 Beijing Bytedance Network Technology Co Ltd Update of look up table: fifo, constrained fifo
CN110662053B (zh) 2018-06-29 2022-03-25 北京字节跳动网络技术有限公司 使用查找表的视频处理方法、装置和存储介质
CN110677669B (zh) 2018-07-02 2021-12-07 北京字节跳动网络技术有限公司 具有lic的lut
CN117676163A (zh) * 2018-07-06 2024-03-08 寰发股份有限公司 解码器的视频解码方法及装置
CN116781930A (zh) 2018-08-13 2023-09-19 Lg电子株式会社 图像编码/解码方法、图像数据发送方法和存储介质
WO2020053800A1 (en) 2018-09-12 2020-03-19 Beijing Bytedance Network Technology Co., Ltd. How many hmvp candidates to be checked
SI3846467T1 (sl) 2018-10-04 2024-02-29 Lg Electronics Inc. Postopki za kodiranje slik na podlagi zgodovine
US11317099B2 (en) 2018-10-05 2022-04-26 Tencent America LLC Method and apparatus for signaling an offset in video coding for intra block copy and/or inter prediction
CN114584788B (zh) * 2018-10-10 2022-09-23 华为技术有限公司 帧间预测方法及装置
CN117478875A (zh) 2018-10-24 2024-01-30 华为技术有限公司 视频编解码器和方法
CN118042117A (zh) 2018-12-07 2024-05-14 松下电器(美国)知识产权公司 编码装置、解码装置、编码方法、解码方法和计算机可读取介质
CN112470476A (zh) 2018-12-28 2021-03-09 Jvc建伍株式会社 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
KR102648159B1 (ko) 2019-01-10 2024-03-18 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 Lut 업데이트의 호출
US11025935B2 (en) * 2019-01-10 2021-06-01 Tencent America LLC Method and apparatus for history based motion information buffer update with parallel processing capability
CN113383554B (zh) 2019-01-13 2022-12-16 北京字节跳动网络技术有限公司 LUT和共享Merge列表之间的交互
WO2020147773A1 (en) * 2019-01-16 2020-07-23 Beijing Bytedance Network Technology Co., Ltd. Inserting order of motion candidates in lut
KR20210123300A (ko) 2019-02-02 2021-10-13 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 비디오 코딩에서 인트라 블록 복사를 위한 버퍼 관리
AU2020214083B2 (en) * 2019-02-02 2023-06-01 Beijing Bytedance Network Technology Co., Ltd. Buffer management for intra block copy in video coding
WO2020173477A1 (en) * 2019-02-27 2020-09-03 Beijing Bytedance Network Technology Co., Ltd. Regression-based motion vector field based sub-block motion vector derivation
CN117395439A (zh) 2019-03-01 2024-01-12 北京字节跳动网络技术有限公司 用于视频编解码中的帧内块复制的基于方向的预测
CN117640927A (zh) 2019-03-04 2024-03-01 北京字节跳动网络技术有限公司 视频编解码中的帧内块复制中的实施方式方面
US10979716B2 (en) * 2019-03-15 2021-04-13 Tencent America LLC Methods of accessing affine history-based motion vector predictor buffer
CN113615193A (zh) * 2019-03-22 2021-11-05 北京字节跳动网络技术有限公司 Merge列表构建和其他工具之间的交互
KR102664876B1 (ko) * 2019-03-22 2024-05-10 로즈데일 다이나믹스 엘엘씨 Dmvr 및 bdof 기반의 인터 예측 방법 및 장치
CN113994699B (zh) * 2019-06-06 2024-01-12 北京字节跳动网络技术有限公司 视频编解码的运动候选列表构建
US11277616B2 (en) * 2019-06-20 2022-03-15 Qualcomm Incorporated DC intra mode prediction in video coding
CN114175645B (zh) 2019-07-06 2024-04-12 北京字节跳动网络技术有限公司 用于视频编解码中的帧内块复制的虚拟预测缓冲
CA3146391A1 (en) 2019-07-10 2021-01-14 Beijing Bytedance Network Technology Co., Ltd. Sample identification for intra block copy in video coding
EP3981146A4 (en) * 2019-07-11 2022-08-03 Beijing Bytedance Network Technology Co., Ltd. BITSTREAM CONFORMITY RESTRICTIONS FOR INTRA-BLOCK COPY IN VIDEO ENCODING
US11223840B2 (en) 2019-08-19 2022-01-11 Tencent America LLC Method and apparatus for video coding
US20220279163A1 (en) * 2019-08-21 2022-09-01 Lg Electronics Inc. Image encoding/decoding method and device for performing prediction on basis of hmvp candidate, and method for transmitting bitstream
KR102519664B1 (ko) 2021-08-31 2023-04-10 삼성전자주식회사 스토리지 장치, 스토리지 컨트롤러 및 스토리지 컨트롤러의 동작 방법
US20230345004A1 (en) * 2022-04-25 2023-10-26 Tencent America LLC Ctu level inheritance of cabac context initialization

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140048783A (ko) * 2012-10-09 2014-04-24 한국전자통신연구원 깊이정보값을 공유하여 움직임 정보를 유도하는 방법 및 장치
US20160134883A1 (en) * 2013-04-05 2016-05-12 Samsung Electronics Co., Ltd. Video stream coding method according to prediction struction for multi-view video and device therefor, and video stream decoding method according to prediction structure for multi-view video and device therefor
CN106664414B (zh) * 2014-06-19 2019-07-05 寰发股份有限公司 视频编码中用于单个样本模式的候选生成的方法及装置
KR101748620B1 (ko) * 2014-06-20 2017-07-04 성균관대학교산학협력단 영상의 부호화/복호화 방법 및 이를 이용하는 장치
CN105187845B (zh) * 2015-08-10 2018-07-03 珠海全志科技股份有限公司 视频数据解码装置及解码方法
JP6740549B2 (ja) * 2016-03-16 2020-08-19 日本電気株式会社 動画像符号化装置、方法、プログラム、および動画像符号化システム
FI20165547A (fi) * 2016-06-30 2017-12-31 Nokia Technologies Oy Laitteisto, menetelmä ja tietokoneohjelma videokoodausta ja videokoodauksen purkua varten
CN117336504A (zh) * 2017-12-31 2024-01-02 华为技术有限公司 图像预测方法、装置以及编解码器
CN117676163A (zh) * 2018-07-06 2024-03-08 寰发股份有限公司 解码器的视频解码方法及装置
US11606575B2 (en) 2018-07-10 2023-03-14 Qualcomm Incorporated Multiple history based non-adjacent MVPs for wavefront processing of video coding
US10440378B1 (en) * 2018-07-17 2019-10-08 Tencent America LLC Method and apparatus for history-based motion vector prediction with parallel processing
US10958934B2 (en) * 2018-07-27 2021-03-23 Tencent America LLC History-based affine merge and motion vector prediction
US10362330B1 (en) * 2018-07-30 2019-07-23 Tencent America LLC Combining history-based motion vector prediction and non-adjacent merge prediction
CN116781930A (zh) * 2018-08-13 2023-09-19 Lg电子株式会社 图像编码/解码方法、图像数据发送方法和存储介质
US11212550B2 (en) * 2018-09-21 2021-12-28 Qualcomm Incorporated History-based motion vector prediction for affine mode
US11070796B2 (en) * 2018-09-28 2021-07-20 Qualcomm Incorporated Ultimate motion vector expression based pruning for video coding
JP7193624B2 (ja) * 2018-10-02 2022-12-20 エルジー エレクトロニクス インコーポレイティド Hmvpに基づいて予測候補を構成する方法及び装置
SI3846467T1 (sl) * 2018-10-04 2024-02-29 Lg Electronics Inc. Postopki za kodiranje slik na podlagi zgodovine
EP3843405A4 (en) * 2018-10-05 2021-10-27 LG Electronics Inc. IMAGE CODING PROCESS USING HISTORY-BASED MOVEMENT INFORMATION, AND ASSOCIATED DEVICE
US10979716B2 (en) * 2019-03-15 2021-04-13 Tencent America LLC Methods of accessing affine history-based motion vector predictor buffer

Also Published As

Publication number Publication date
US10841607B2 (en) 2020-11-17
US20240129517A1 (en) 2024-04-18
CN116781930A (zh) 2023-09-19
US20200186820A1 (en) 2020-06-11
KR102541425B1 (ko) 2023-06-13
US11632564B2 (en) 2023-04-18
BR122021008224A2 (pt) 2021-05-04
EP3813369A1 (en) 2021-04-28
US20230013535A1 (en) 2023-01-19
CN112585966A (zh) 2021-03-30
MX2021001670A (es) 2021-04-19
WO2020036417A1 (ko) 2020-02-20
EP3813369A4 (en) 2021-04-28
CN112585966B (zh) 2023-08-15
BR122021008241A2 (pt) 2021-05-04
BR122021008228A2 (pt) 2021-05-04
CN116781931A (zh) 2023-09-19
JP7282872B2 (ja) 2023-05-29
US11895315B2 (en) 2024-02-06
US20210029373A1 (en) 2021-01-28
KR20210010633A (ko) 2021-01-27
CN116800982A (zh) 2023-09-22
BR112021002604A2 (pt) 2021-05-04
JP2021533681A (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
KR102541425B1 (ko) 히스토리 기반 움직임 벡터에 기반한 인터 예측 방법 및 그 장치
KR102542000B1 (ko) 히스토리 기반 영상 코딩 방법 및 그 장치
KR102578820B1 (ko) 히스토리 기반 움직임 정보를 이용한 영상 코딩 방법 및 그 장치
JP7141463B2 (ja) インター予測モードに基づいた映像処理方法およびそのための装置
KR102510771B1 (ko) 영상 코딩 시스템에서 어파인 mvp 후보 리스트를 사용하는 어파인 움직임 예측에 기반한 영상 디코딩 방법 및 장치
KR102467326B1 (ko) 영상 코딩 시스템에서 서브 블록 단위의 움직임 예측에 기반한 영상 디코딩 방법 및 장치
JP7230189B2 (ja) シンタックスデザイン方法及びシンタックスを用いてコーディングを行う装置

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal