KR20230082784A - Method for Preparing Titania Nanosol, and Method for Preparing Titania Nanofibers Using Titania Nanosol Prepared Thereby - Google Patents

Method for Preparing Titania Nanosol, and Method for Preparing Titania Nanofibers Using Titania Nanosol Prepared Thereby Download PDF

Info

Publication number
KR20230082784A
KR20230082784A KR1020210170582A KR20210170582A KR20230082784A KR 20230082784 A KR20230082784 A KR 20230082784A KR 1020210170582 A KR1020210170582 A KR 1020210170582A KR 20210170582 A KR20210170582 A KR 20210170582A KR 20230082784 A KR20230082784 A KR 20230082784A
Authority
KR
South Korea
Prior art keywords
titanium dioxide
weight
nanofibers
nanosol
stirring
Prior art date
Application number
KR1020210170582A
Other languages
Korean (ko)
Inventor
박동철
양완희
이정우
최형욱
Original Assignee
주식회사 위드엠텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 위드엠텍 filed Critical 주식회사 위드엠텍
Priority to KR1020210170582A priority Critical patent/KR20230082784A/en
Publication of KR20230082784A publication Critical patent/KR20230082784A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/004
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Dispersion Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a technology for producing highly active photolytic titanium dioxide nanofibers capable of exhibiting excellent photolytic properties as a photocatalyst, and more specifically, to a method of using titanium dioxide nanosol in which titanium dioxide nanoparticles are dispersed in the production of titanium dioxide nanofibers, and a method for preferably producing the titanium dioxide nanosol. The method for producing titanium dioxide nanosol according to the present invention comprises: a first step of adding water and titanium tetrachloride (TiCl_4) to the reactor and heating while stirring; a second step of adding and stirring hydrochloric acid (HCl) when the temperature reaches 50-60℃; and a third step of natural cooling and stirring, to produce titanium dioxide nanosol with a titanium dioxide solid content of 12-16 wt%. The method for producing titanium dioxide nanofibers according to the present invention is characterized in that it is produced by electrospinning and heat treating a precursor solution composition composed to comprise: 35-40 wt% of titanium dioxide nanosol with a titanium dioxide solid content of 12-16 wt%; ethanol 55-60 wt%; 3-4.5 wt% of polymer resin; and 1-1.5 wt% of silane coupling agent.

Description

이산화티탄 나노졸 제조방법 및 그 방법으로 제조된 나조졸을 이용한 광분해 고활성 이산화티탄 나노섬유 제조방법{Method for Preparing Titania Nanosol, and Method for Preparing Titania Nanofibers Using Titania Nanosol Prepared Thereby}Method for preparing titanium dioxide nanosol and method for producing photolytically active titanium dioxide nanofibers using nazosol prepared by the method {Method for Preparing Titania Nanosol, and Method for Preparing Titania Nanofibers Using Titania Nanosol Prepared Thereby}

본 발명은 광촉매로써 우수한 광분해 특성 발현이 가능한 광분해 고활성 이산화티탄 나노섬유의 제조기술에 관한 것으로, 더욱 상세하게는 이산화티탄 나노섬유의 제조에서 이산화티탄 나노입자가 분산된 이산화티탄 나노졸을 이용하는 방법과, 그 이산화티탄 나노졸을 바람직하게 제조하기 위한 방법에 관한 것이다. The present invention relates to a manufacturing technology of photolytically active titanium dioxide nanofibers capable of exhibiting excellent photolysis characteristics as a photocatalyst, and more particularly, to a method of using titanium dioxide nanosols in which titanium dioxide nanoparticles are dispersed in the production of titanium dioxide nanofibers. and a method for preferably preparing the titanium dioxide nanosol.

나노기술은 100만 분의 1을 뜻하는 마이크로를 넘어서는 미세한 기술이다. 나노 재료는 크기와 소비 에너지 등을 최소화하면서도 최고의 성능을 구현할 수 있기 때문에 휴대성과 편리성이 요구되는 전자기기 재료로 유리하게 적용되고 있다.Nanotechnology is a microscopic technology that goes beyond micro, which means one-millionth. Since nanomaterials can realize the best performance while minimizing size and energy consumption, they are advantageously applied as materials for electronic devices requiring portability and convenience.

나노 재료를 제조하는 방법의 하나로 전기방사 기술이 있다. 전기방사는 전기장을 이용하여 연속상의 나노섬유를 만드는 방법으로, 전기방사는 펌프를 통해 고분자 용액을 일정한 속도로 유입하여 노즐을 통해 토출시키면서 진행된다. 노즐 끝단에서 토출된 고분자 용액은 표면 장력에 의해 반구형을 이루는데 고전압을 노즐에 가하면 액상의 고분자 방울이 원뿔형태의 깔때기 형상으로 연신된다. 전극이 연결된 노즐의 고분자 용액에 전하가 계속 축전되면 상호 반발력에 의해 고분자 용액이 가지는 표면장력을 넘어서면서 노즐 끝단의 깔때기 형상이 jet로 방사 연신되면서 집전판으로 섬유들이 모아지게 된다. 전기방사 공정 중 액상의 jet이 집전판에 도달하기 전에 연신 및 용매의 휘발이 함께 수반되면서 무질서하게 배열 된 미세 섬유를 얻을 수 있다. 금속산화물 나노섬유는 고분자 내에 금속 전구체나 금속 산화물 전구체를 포함시켜 방사하고 이를 열처리하여 원하는 금속 상 및 금속산화물을 제조한다(전기전자재료학회논문지 제31권 제6호 등).Electrospinning is one of the methods for manufacturing nanomaterials. Electrospinning is a method of making continuous phase nanofibers using an electric field. Electrospinning proceeds by introducing a polymer solution at a constant rate through a pump and discharging it through a nozzle. The polymer solution discharged from the tip of the nozzle forms a hemispherical shape due to surface tension, and when a high voltage is applied to the nozzle, the liquid polymer droplets are elongated into a conical funnel shape. When the charge continues to accumulate in the polymer solution of the nozzle to which the electrode is connected, the surface tension of the polymer solution is overcome by the mutual repulsive force, and the funnel shape at the tip of the nozzle is radially stretched by the jet, and the fibers are collected by the collector plate. During the electrospinning process, drawing and volatilization of the solvent are accompanied before the liquid jet reaches the collector plate, resulting in randomly arranged fine fibers. Metal oxide nanofibers include metal precursors or metal oxide precursors in polymers, spin them, and heat-treat them to prepare desired metal phases and metal oxides (Journal of the Institute of Electrical and Electronic Materials, Vol. 31, No. 6, etc.).

전기방사를 통해 제조하는 금속산화물 나노섬유에는 대표적으로 이산화티탄(TiO2) 나노섬유가 있다. 이산화티탄 나노섬유는 물리 화학적으로 안정하고 내열성, 생체적합성, 광촉매 특성 등을 가지고 있어 많은 분야에 응용되고 있으며, 특히 광촉매 특성을 이용하여 공기오염 센서 및 오염물질 제거 필터에 많이 사용되고 있다. Metal oxide nanofibers prepared through electrospinning typically include titanium dioxide (TiO 2 ) nanofibers. Titanium dioxide nanofibers are physically and chemically stable and have heat resistance, biocompatibility, photocatalytic properties, etc., and are applied in many fields. In particular, they are widely used in air pollution sensors and pollutant removal filters using photocatalytic properties.

한편 이산화티탄 나노섬유의 제조기술과 관련하여 특허 제10-2183306호가 있다. 특허 제10-2183306호는 이산화티탄 나노섬유의 제조공정에서 Na+ 금속이온을 제공하여 전기방사 과정에서 전기흐름을 더욱 용이하게 함으로써 방사섬유의 직경제어를 가능케 한 기술이다. On the other hand, there is Patent No. 10-2183306 in relation to the manufacturing technology of titanium dioxide nanofibers. Patent No. 10-2183306 is a technology that makes it possible to control the diameter of spinning fibers by providing Na+ metal ions in the manufacturing process of titanium dioxide nanofibers to further facilitate the flow of electricity during the electrospinning process.

그런데 특허 제10-2183306호를 비롯하여 종래 전기방사를 통한 이산화티탄 나노섬유의 제조기술에서는 이산화티탄의 광촉매성능 확보를 위해 방사된 나노섬유의 열처리를 통한 이산화티탄 결정성 확보과정이 필수적이며, 이때 열처리는 400℃ 이상의 온도에서 3hr 이상 유지처리가 필요하다. 또한 전기방사에 사용하는 전구용액(precursor)은 나노사이즈의 이산화티탄 입자 형성을 위해 전구용액의 이산화티탄 잔존량이 3% 이하 수준으로 제조되어야 하며, 이러한 전구용액으로 방사섬유 제조하면 방사섬유가 전구용액의 중량 대비 40% 이하 수준으로 제조된다. 제조수율 향상을 위해 이산화티탄의 잔존량을 높이거나 과도한 전기방사 조건을 적용하면 제조된 방사섬유의 직경이 증가하여 나노섬유가 갖는 광분해 특성을 확보하는게 어렵게 된다. However, in the manufacturing technology of titanium dioxide nanofibers through conventional electrospinning, including Patent No. 10-2183306, it is essential to secure the crystallinity of titanium dioxide through heat treatment of the spun nanofibers in order to secure the photocatalytic performance of titanium dioxide. requires a maintenance treatment of 3 hours or more at a temperature of 400 ° C or higher. In addition, the precursor solution used for electrospinning must be prepared with a residual amount of titanium dioxide of 3% or less in order to form nano-sized titanium dioxide particles. It is manufactured at a level of 40% or less by weight of If the residual amount of titanium dioxide is increased or excessive electrospinning conditions are applied to improve the manufacturing yield, the diameter of the produced spun fiber increases, making it difficult to secure the photolysis characteristics of the nanofiber.

KRKR 10-2183306 10-2183306 B1B1

본 발명은 종래 이산화티탄 나노섬유의 제조기술을 개선하고자 개발된 것으로서, 열처리 온도 저하를 통한 공정 간소화가 가능한 이산화티탄 나노섬유의 제조기술을 제공하는데 기술적 과제가 있다. The present invention was developed to improve the conventional manufacturing technology of titanium dioxide nanofibers, and there is a technical problem in providing a manufacturing technology of titanium dioxide nanofibers capable of simplifying the process through a decrease in heat treatment temperature.

또한 본 발명은 이산화티탄 나노섬유의 제조를 위한 전구용액의 주요한 재료로 활용할 수 있으면서 광분해 성능의 결정성을 갖는 이산화티탄 고형분을 최대 16중량%까지 함유하는 이산화티탄 나노졸의 바람직한 제조방법을 제공하고자 한다.In addition, the present invention is to provide a preferred method for preparing titanium dioxide nanosol containing up to 16% by weight of titanium dioxide solids having crystallinity of photolysis performance while being able to be used as a main material of a precursor solution for the production of titanium dioxide nanofibers. do.

또한 본 발명은 광촉매로써 우수한 광분해 특성 발현이 가능한 광분해 고활성 이산화티탄 나노섬유의 제조기술을 제공하고자 한다.In addition, the present invention is to provide a manufacturing technology of photolytically highly active titanium dioxide nanofibers capable of exhibiting excellent photolytic properties as a photocatalyst.

상기한 기술적 과제를 해결하기 위해 본 발명은, 반응기에 물, 사염화티타늄(Titanium tetrachloride, TiCl4)을 투입 교반하면서 가열하는 제1단계; 온도가 50~60℃ 도달하면 염산(HCl)을 투입 교반하는 제2단계; 자연냉각하여 교반하는 제3단계;를 포함하여 이루어져, 이산화티탄 고형분 함량이 12~16중량%인 이산화티탄 나노졸로 제조하는 것을 특징으로 하는 이산화티탄 나노졸 제조방법을 제공한다.In order to solve the above technical problem, the present invention, water, titanium tetrachloride (Titanium tetrachloride, TiCl 4 ) in the reactor a first step of heating while stirring; A second step of stirring by adding hydrochloric acid (HCl) when the temperature reaches 50 to 60 ° C; A third step of natural cooling and stirring; provides a method for preparing titanium dioxide nano-sol, characterized in that the titanium dioxide nano-sol having a titanium dioxide solid content of 12 to 16% by weight is prepared.

또한 본 발명은 이산화티탄 고형분 함량이 12~16중량%인 이산화티탄 나노졸 35~40중량%; 에탄올 55~60중량%; 폴리머수지 3~4.5중량%; 실란커플링제 1~1.5중량%;를 포함하여 조성되는 것을 특징으로 하는 이산화티탄 나노섬유 제조용 전구용액 조성물을 제공한다. 여기서 폴리머수지는 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP)을 바람직하게 사용할 수 있고, 실란커플링제는 메타아크릴옥시프로필 트리에톡시실란(Methacryloxypropyl Triethoxysilane)을 바람직하게 사용할 수 있다.In addition, the present invention titanium dioxide solid content of 12 to 16% by weight titanium dioxide nano sol 35 to 40% by weight; 55 to 60% by weight of ethanol; 3 to 4.5% by weight of polymer resin; It provides a precursor solution composition for preparing titanium dioxide nanofibers, characterized in that the composition includes; 1 to 1.5% by weight of a silane coupling agent. Here, polyvinylpyrrolidone (PVP) may be preferably used as the polymer resin, and methacryloxypropyl triethoxysilane may be preferably used as the silane coupling agent.

또한 본 발명은 이산화티탄 고형분 함량이 12~16중량%인 이산화티탄 나노졸을 포함하는 전구용액 조성물을 전압 20kV, 노즐-접지판간의 간격 20cm 조건에서 1.2~1.5ml/hr의 속도로 전기방사한 후 180~210℃에서 4hr 이상 열처리하여 제조하는 것을 특징으로 광분해 고활성 이산화티탄 나노섬유 제조방법을 제공한다.In addition, the present invention electrospun a precursor solution composition containing titanium dioxide nanosol having a titanium dioxide solid content of 12 to 16% by weight at a rate of 1.2 to 1.5 ml / hr under the conditions of a voltage of 20 kV and a distance of 20 cm between the nozzle and the ground plate. It provides a method for producing photolytically active titanium dioxide nanofibers, characterized in that they are produced by heat treatment at 180 to 210 ° C. for 4 hr or more.

본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.

첫째, 이산화티탄 나노섬유 제조에서 아산화티탄 나노입자가 수계에 고르게 분산된 졸상태의 이산화티탄 나노졸을 이용하기 때문에, 이산화티탄 결정성 확보를 위한 별도의 고온 열처리 과정없이 폴리머수지만을 분해하기 위한 비교적 낮은 온도에서의 열처리 건조과정만으로도 이산화티탄 나노입자가 고르게 분산된 균일한 품질의 이산화티탄 나노섬유로 제조할 수 있다. 이로써 제조공정을 간소화하면서 쉽게 이산화티탄 나노섬유를 제조할 수 있다.First, in the production of titanium dioxide nanofibers, since titanium dioxide nanoparticles in a sol state in which titanium dioxide nanoparticles are evenly dispersed in a water system are used, it is necessary to decompose only the polymer resin without a separate high-temperature heat treatment process to secure titanium dioxide crystallinity. Titanium dioxide nanofibers of uniform quality, in which titanium dioxide nanoparticles are evenly dispersed, can be produced only by a heat treatment and drying process at a relatively low temperature. Accordingly, it is possible to easily manufacture titanium dioxide nanofibers while simplifying the manufacturing process.

둘째, 이산화티탄 나노졸의 제조에서 광분해 성능의 결정성을 갖는 이산화티탄 고형분을 12~16중량% 함유하는 나노졸로 제조할 수 있다. 이렇게 제조한 이산화티탄 나노졸을 이용하여 이산화티탄 나노섬유를 제조하면 광촉매로써의 광분해 특성이 향상된 광분해 고활성 이산화티탄 나노섬유로 제조할 수 있다. 이로써 본 발명에 따라 제조된 이산화티탄 나노섬유는 공기오염 센서, 오염물질 제거 필터 등에서 광촉매로 유리하게 활용할 수 있다.Second, in the production of titanium dioxide nano-sols, nano-sols containing 12 to 16% by weight of titanium dioxide solids having crystallinity of photolysis performance can be prepared. When titanium dioxide nanofibers are prepared using the thus prepared titanium dioxide nanosol, it is possible to manufacture titanium dioxide nanofibers with improved photolysis characteristics as a photocatalyst and high activity. Thus, the titanium dioxide nanofibers prepared according to the present invention can be advantageously used as photocatalysts in air pollution sensors, pollutant removal filters, and the like.

도 1은 [시험예1]의 결과로, 이산화티탄 나노섬유에 대한 XRD 분석결과 그래프와 SEM 측정 사진이다.
도 2는 [시험예2]의 결과로, 이산화티탄 나노섬유의 광분해 특성 평가를 위한 모형시험체 사진이다.
1 is a result of [Test Example 1], a graph of XRD analysis results for titanium dioxide nanofibers and a SEM measurement photograph.
2 is a photograph of a model test specimen for evaluation of photolysis characteristics of titanium dioxide nanofibers as a result of [Test Example 2].

본 발명은 전기방사를 통한 광촉매 이산화티탄 나노섬유의 제조기술에 관한 것으로, 이산화티탄 나노입자가 분산된 이산화티탄 나노졸을 사용하여 이산화티탄 나노섬유를 제조하는 방법과, 그 이산화티탄 나노졸의 바람직한 제조방법을 제안한다.The present invention relates to a technology for producing photocatalytic titanium dioxide nanofibers through electrospinning, a method for producing titanium dioxide nanofibers using a titanium dioxide nanosol in which titanium dioxide nanoparticles are dispersed, and a preferred method of the titanium dioxide nanosol Propose a manufacturing method.

1. 이산화티탄 나노졸 제조방법1. Manufacturing method of titanium dioxide nano sol

본 발명은 이산화티탄 나노섬유 제조를 위한 전기방사 전구용액의 조성에서 수계상태의 이산화티탄 나노졸을 사용하며, 이산화티탄 고형분이 최대 16%까지 함유하는 이산화티탄 나노졸의 바람직한 제조방법을 제안한다. 본 발명에 따른 이산화티탄 나노졸 제조방법은, 반응기에 물, 사염화티타늄(Titanium tetrachloride, TiCl4)을 투입 교반하면서 가열하는 제1단계; 온도가 50~60℃ 도달하면 염산(HCl)을 투입 교반하는 제2단계; 자연냉각하여 교반하는 제3단계;를 포함하여 이루어지는 것을 특징으로 한다. The present invention uses an aqueous titanium dioxide nano-sol in the composition of an electrospinning precursor solution for preparing titanium dioxide nanofibers, and proposes a preferred method for preparing titanium dioxide nano-sols containing up to 16% titanium dioxide solids. Titanium dioxide nano sol manufacturing method according to the present invention, a first step of heating while stirring while water, titanium tetrachloride (Titanium tetrachloride, TiCl 4 ) is added to the reactor; A second step of stirring by adding hydrochloric acid (HCl) when the temperature reaches 50 to 60 ° C; It is characterized in that it comprises a; third step of stirring by natural cooling.

제1단계는 물 100중량부에 사염화티타늄 20~30중량부를 투입한 후 2000rpm 이상으로 교반을 유지하면서 실시할 수 있다. 여기서 사염화티타늄의 함량범위는 적절한 이산화티탄 고형분을 확보하기 위함인데, 20중량부 미만이면 이산화티탄 형성에 필요한 고형분 함량이 부족하게 되고, 30중량부 초과하면 과도한 혼입량으로 인해 일부분 미분산된 이산화티탄 입자침전물이 발생하여 별도의 여과공정이 필요할 수 있다. The first step may be performed while maintaining stirring at 2000 rpm or more after adding 20 to 30 parts by weight of titanium tetrachloride to 100 parts by weight of water. Here, the content range of titanium tetrachloride is to secure an appropriate solid content of titanium dioxide. If it is less than 20 parts by weight, the solid content necessary for forming titanium dioxide is insufficient, and if it exceeds 30 parts by weight, titanium dioxide particles are partially undispersed due to excessive mixing. A separate filtration process may be required due to the formation of precipitates.

제2단계는 나노졸의 분산을 위해 해교제로서 역할하는 염산을 투입하는 과정으로, 온도가 50~60℃ 도달하면 0.1~0.3M의 염산 0.5~1.0중량부를 투입하여 15~30분간 2000rpm 이상으로 교반을 유지하면서 실시할 수 있다. 염산은 승온온도 50~60℃에서 투입하는데, 승온온도가 50℃ 미만이면 염산 투입시에도 이산화티탄 입자가 나노사이즈로 분산이 안되어 나노졸 제조가 불가능할 수 있고, 60℃ 초과하면 염산이 혼입된 상태에서 열에 의해 탄화(색상이 검게 됨)되는 현상이 나타나고 이로 인해 이산화티탄 나노입자가 서로 부분적으로 응집 침전되면서 나노졸 제조가 어렵게 된다. 제2단계에서 염산의 투입농도와 투입량, 교반시간 등은 염산이 투입될 때 탄화되지 않으면서 해교(분산)가 원활하게 이루어질 수 있는 조건이 된다.The second step is the process of adding hydrochloric acid serving as a peptizing agent for the dispersion of the nano-sol. When the temperature reaches 50 to 60 ° C, 0.5 to 1.0 parts by weight of 0.1 to 0.3 M hydrochloric acid is added and heated at 2000 rpm or more for 15 to 30 minutes. It can be carried out while maintaining stirring. Hydrochloric acid is added at an elevated temperature of 50 to 60 ° C. If the temperature is lower than 50 ° C, titanium dioxide particles are not dispersed in nano-size even when hydrochloric acid is added, making it impossible to manufacture nanosols. If the temperature exceeds 60 ° C, hydrochloric acid is mixed. Carbonization (blackening of color) occurs due to heat, and as a result, titanium dioxide nanoparticles partially aggregate and precipitate with each other, making it difficult to manufacture nanosols. In the second step, the concentration and amount of hydrochloric acid, stirring time, etc. become conditions for smooth peptization (dispersion) without being carbonized when hydrochloric acid is added.

제3단계는 자연냉각하여 10~15시간 교반을 유지하면서 실시할 수 있다. 사염화티타늄이 물에 투입되면 물과 반응하여 수백㎛의 입자로 존재하게 되고 이어 염산이 투입되면 이산화티탄 입자의 분산과 결정 형성이 이루어지게 되므로, 이후 서서히 냉각되는 조건이 유지되어야 나노졸 형태로 분산이 가능해진다. 특히 10시간 미만으로 교반하면 충분한 나노입자 분산이 어렵고, 15시간 초과하면 나노입자 분산이 안정화된 상태가 되기 때문에 더 이상의 공정시간이 불필요해진다.The third step can be carried out while maintaining stirring for 10 to 15 hours by natural cooling. When titanium tetrachloride is added to water, it reacts with water to exist as particles of hundreds of μm. Then, when hydrochloric acid is added, titanium dioxide particles are dispersed and crystals are formed. this becomes possible In particular, if the stirring time is less than 10 hours, it is difficult to sufficiently disperse the nanoparticles, and if the stirring time exceeds 15 hours, since the nanoparticle dispersion becomes stabilized, no further process time is required.

위와 같은 과정으로 제조하면 이산화티탄 나노입자가 고르게 분산되면서 이산화티탄 고형분을 12~16중량% 함유한 이산화티탄 나노졸로 제조된다. 이렇게 제조된 이산화티탄 나노졸을 전구용액에 사용하여 전기방사하면 이산화티탄 함량이 높은 나노섬유로 제조되어 광촉매로써 향상된 광분해 특성을 발현하게 된다.When prepared by the above process, the titanium dioxide nanoparticles are evenly dispersed to produce a titanium dioxide nanosol containing 12 to 16% by weight of titanium dioxide solids. When the thus-prepared titanium dioxide nano-sol is used in a precursor solution and electrospun, nanofibers having a high titanium dioxide content are produced and exhibit improved photolysis characteristics as a photocatalyst.

2. 이산화티탄 나노섬유 제조방법2. Manufacturing method of titanium dioxide nanofibers

본 발명은 이산화티탄 고형분을 12~16중량% 함유하도록 제조된 이산화티탄 나노졸을 이용하여 전구용액을 조성하고 이 전구용액을 전기방사한 후 열처리하여 제조하는 이산화티탄 나노섬유 제조방법을 제안한다. 특히 본 발명에서 전구용액은, 이산화티탄 고형분을 12~16중량% 함유하도록 제조된 이산화티탄 나노졸 35~40중량%; 에탄올 55~60중량%; 폴리머수지 3~4.5중량%; 실란커플링제 1~1.5중량%;를 포함하여 조성된다. The present invention proposes a method for producing titanium dioxide nanofibers by preparing a precursor solution using a titanium dioxide nanosol prepared to contain 12 to 16% by weight of titanium dioxide solid content, electrospinning the precursor solution, and then heat-treating the precursor solution. In particular, the precursor solution in the present invention is 35 to 40% by weight of titanium dioxide nanosol prepared to contain 12 to 16% by weight of titanium dioxide solids; 55 to 60% by weight of ethanol; 3 to 4.5% by weight of polymer resin; 1 to 1.5% by weight of a silane coupling agent;

전구용액에서 이산화티탄 나노졸은 이산화티탄 나노입자를 제공하는 기본적인 재료가 된다. 이산화티탄 나노졸은 이산화티탄 나노입자가 수계에 고르게 분산된 졸상태이므로, 이산화티탄 결정성 확보를 위한 별도의 고온의 열처리 과정없이 폴리머수지만을 분해하기 위한 열처리 건조과정만으로도 이산화티탄 나노입자가 고르게 분산된 균일한 품질의 이산화티탄 나노섬유를 제조할 수 있게 한다. 더구나 이산화티탄 나노졸은 광분해 성능의 결정성을 갖는 이산화티탄 고형분을 12~16중량% 함유하기 때문에, 광촉매로써의 광분해 특성이 향상된 이산화티탄 나노섬유로 제조할 수 있게 한다. 이와 같은 이산화티탄 나노졸은 전구용액에서 35~40중량%를 사용한다. 35중량% 미만이면 이산화티탄 나노섬유 제조 시 섬유상에 존재해야 하는 이산화티탄 입자의 함량이 너무 낮게 되어 열처리 시 섬유상이 쉽게 끊어지고 나아가 열처리 후에도 광촉매로써의 광분해 성능이 낮은 수준에 머물게 된다. 40중량% 초과하면 이산화티탄 입자 대비 폴리머수지의 함량이 적어져 전기방사 과정에서 방사섬유 형상 유지특성이 떨어지면서 이산화티탄 나노섬유의 제조가 어렵게 된다.In the precursor solution, the titanium dioxide nanosol becomes the basic material to provide the titanium dioxide nanoparticles. Since titanium dioxide nano-sol is in a sol state in which titanium dioxide nanoparticles are evenly dispersed in an aqueous system, titanium dioxide nanoparticles are uniformly dispersed only through a heat treatment and drying process to decompose polymer resin without a separate high-temperature heat treatment process to secure titanium dioxide crystallinity. It makes it possible to produce dispersed titanium dioxide nanofibers of uniform quality. In addition, since the titanium dioxide nanosol contains 12 to 16% by weight of titanium dioxide solids having crystallinity of photolysis performance, it is possible to manufacture titanium dioxide nanofibers with improved photolysis characteristics as a photocatalyst. Such titanium dioxide nanosols are used in an amount of 35 to 40% by weight in the precursor solution. If it is less than 35% by weight, the content of titanium dioxide particles that must be present in the fiber phase during the manufacture of titanium dioxide nanofibers is too low, so that the fiber phase is easily broken during heat treatment, and furthermore, the photolysis performance as a photocatalyst remains at a low level even after heat treatment. If it exceeds 40% by weight, the content of the polymer resin compared to the titanium dioxide particles is reduced, and the shape retention characteristics of the spun fibers are deteriorated during the electrospinning process, making it difficult to manufacture titanium dioxide nanofibers.

전구용액에서 에탄올(etOH)은 이산화티탄 나노졸과 혼합시 용해되는 폴리머수지의 분산에 효과적인 용매가 되며, 동시에 전기방사 과정에서 전구용액의 표면장력을 낮춰 나노사이즈의 전기방사를 가능케 하는 용매가 된다. 전구용액에서 에탄올은 55~60중량% 사용하는데, 55중량% 미만이면 전구용액의 고형분 함량이 높아져 전기방사 과정에서 나노 크기의 방사가 어려워질 수 있고, 60중량% 초과하면 전구용액의 고형분이 과도하게 낮아 전기방사 과정에서 방사섬유의 형상 유지가 어려울 수 있다. Ethanol (etOH) in the precursor solution becomes an effective solvent for dispersing the polymer resin dissolved when mixed with the titanium dioxide nanosol, and at the same time, it is a solvent that enables nano-sized electrospinning by lowering the surface tension of the precursor solution during the electrospinning process. . In the precursor solution, 55 to 60% by weight of ethanol is used. If it is less than 55% by weight, the solid content of the precursor solution increases, making nano-sized spinning difficult during the electrospinning process. If it exceeds 60% by weight, the solid content of the precursor solution is excessive. It may be difficult to maintain the shape of the spun fiber during the electrospinning process.

전구용액에서 폴리머수지는 방사섬유의 형상 유지를 위한 재료가 되며, 경제성과 상용성을 고려하여 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP)을 바람직하게 사용할 수 있다. 폴리머수지는 전구용액에서 3~4.5중량% 사용하는데, 3중량% 미만이면 전기방사 시 섬유형상 유지가 어렵고 4.5중량% 초과하면 섬유상이 뭉치는 등 섬유형태 형성이 어렵다.In the precursor solution, the polymer resin becomes a material for maintaining the shape of the spun fiber, and polyvinylpyrrolidone (PVP) can be preferably used in consideration of economic feasibility and compatibility. The polymer resin is used in an amount of 3 to 4.5% by weight in the precursor solution. If it is less than 3% by weight, it is difficult to maintain the fiber shape during electrospinning, and if it exceeds 4.5% by weight, it is difficult to form a fiber shape such as aggregation of fibers.

전구용액에서 실란커플링제는 PVP와 같은 폴리머수지와 혼용시에 폴리머수지의 결합 반복단위를 더 길게 하여 전기방사를 용이하게 하고, 또한 수계상태의 이산화티탄 나노졸에 의해 점성이 낮아져 전기방사 과정에서 섬유형상이 어려울 수 있는 문제를 개선하는 재료가 된다. 실란커플링제로는 메타아크릴옥시프로필 트리에톡시실란(MethacryloxyPropyl triethoxysilane)을 바람직하게 사용할 수 있다. 실란커플링제는 전구용액에서 1~1.5중량% 사용하는데, 1중량% 미만이면 실란커플링제 혼입에 따른 개선효과가 미흡하고 1.5중량% 초과하면 경제성이 떨어진다.When mixed with a polymer resin such as PVP, the silane coupling agent in the precursor solution facilitates electrospinning by lengthening the bonded repeating unit of the polymer resin, and also lowers the viscosity by the water-based titanium dioxide nano sol, which is effective in the electrospinning process. It becomes a material that improves the problem that the fiber shape can be difficult. As the silane coupling agent, methacryloxypropyl triethoxysilane can be preferably used. The silane coupling agent is used in an amount of 1 to 1.5% by weight in the precursor solution. If the amount is less than 1% by weight, the improvement effect due to the incorporation of the silane coupling agent is insufficient, and if it exceeds 1.5% by weight, the economic efficiency is poor.

위와 같은 전구용액을 전기방사한 후 열처리하여 폴리머수지를 제거하면 이산화티탄 나노섬유로 제조할 수 있다. 이때 전기방사는 전구용액을 전압 20kV, 노즐-접지판간의 간격 20cm 조건에서 1.2~1.5ml/hr의 속도로 방사하면서 실시할 수 있으며, 열처리는 180~210℃에서 4hr 이상 처리하면서 실시할 수 있다. 이로써 폴리머수지가 효과적으로 제거되는 한편 이산화티탄이 결정성을 가지게 되면서 광촉매로써 우수한 광분해 특성이 발현되는 이산화티탄 나노섬유로 제조된다.After electrospinning the precursor solution as described above, heat treatment is performed to remove the polymer resin, and titanium dioxide nanofibers can be produced. At this time, electrospinning can be performed while spinning the bulb solution at a rate of 1.2 to 1.5 ml / hr under the condition of a voltage of 20 kV and a distance of 20 cm between the nozzle and the ground plate, and the heat treatment can be performed at 180 to 210 ° C. for 4 hr or more. . As a result, the polymer resin is effectively removed, while titanium dioxide has crystallinity, so that titanium dioxide nanofibers exhibit excellent photolysis characteristics as a photocatalyst.

이하에서는 제조예 및 시험예에 의거하여 본 발명을 상세히 살펴본다. 다만, 아래의 제조예와 시험예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이로써 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail based on preparation examples and test examples. However, the preparation examples and test examples below are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

[제조예1] 이산화티탄 나노졸 제조[Preparation Example 1] Preparation of titanium dioxide nano sol

물 100중량부, TiCl4(밀도 1.73g/cc, 무색, 순도 >99%) 25중량부, HCl(0.2M) 0.8중량부를 이산화티탄 나노졸 제조를 위한 원재료로 준비하였다. 교반가열 할 수 있는 반응기에 물을 투입한 후 TiCl4를 투입하여 2000~3000rpm으로 교반을 유지하고, 이어 반응기를 가열하여 반응기 내부온도가 50~60℃에 도달하면 HCl을 투입하여 약 20분간 교반을 유지하며, 마지막으로 자연냉각한 후 12hr이상 교반을 유지하였다. 이로써 이산화티탄 나노졸이 제조되었다. 제조된 이산화티탄 나노졸은 200℃에서 12hr 이상 건조하여 고형분 함량을 확인한 결과, 15.3중량%로 확인되었다.100 parts by weight of water, 25 parts by weight of TiCl 4 (density 1.73g/cc, colorless, purity >99%), and 0.8 parts by weight of HCl (0.2M) were prepared as raw materials for preparing titanium dioxide nanosol. After adding water to a reactor capable of stirring and heating, TiCl 4 is added to maintain stirring at 2000 to 3000 rpm, and then, when the internal temperature of the reactor reaches 50 to 60 ° C by heating the reactor, HCl is added and stirred for about 20 minutes. While maintaining, and finally, after natural cooling, stirring was maintained for 12 hr or more. Thus, titanium dioxide nano sol was prepared. The prepared titanium dioxide nano sol was dried at 200 ° C. for 12 hr or more, and as a result of confirming the solid content, it was confirmed to be 15.3% by weight.

[제조예2] 전기방사 나노섬유 제조[Preparation Example 2] Preparation of electrospun nanofibers

1. 전구용액 조성1. Composition of the precursor solution

[제조예1]에서 제조된 이산화티탄 나노졸을 포함하여 아래 [표 1]과 같은 조성으로 전구용액을 조성하였다.A precursor solution was prepared with the composition shown in [Table 1] below, including the titanium dioxide nano-sol prepared in [Preparation Example 1].

전구용액 조성물(중량%)Prosolution composition (% by weight) 구분division 실시예Example 비고note 이산화티탄 나노졸Titanium dioxide nanosol 3838 [제조예1] 고형분 15.3%, pH 3.3[Preparation Example 1] Solid content 15.3%, pH 3.3 에탄올ethanol 5757 순도 99.5% 무수에탄올, 밀도 0.79g/cc99.5% pure ethanol, density 0.79g/cc 폴리비닐필롤리돈
(K-30)
polyvinylpyrrolidone
(K-30)
3.73.7 백색분말, pH 5~8(10g/L solution),
비중 1.05, 분자량(MW)1~1.7x106
White powder, pH 5-8 (10 g/L solution),
Specific gravity 1.05, molecular weight (MW) 1~1.7x10 6
실란커플링제(메타아크릴옥시프로필 트리에톡시실란)Silane coupling agent (methacryloxypropyl triethoxysilane) 1.31.3 비중 0.99, 굴절률 1.427Specific gravity 0.99, refractive index 1.427 합계Sum 100100 --

2. 전기방사2. Electrospinning

위 [표 1]과 같이 조성된 전구용액을 이용하여 전압 20kV, 노즐-접지판간의 간격 20cm 조건에서 전기방사를 실시하였으며, 전기용액은 1.2~1.5ml/hr의 속도로 방사 처리하였다.Electrospinning was performed under conditions of a voltage of 20 kV and a distance of 20 cm between the nozzle and the ground plate using the precursor solution prepared as shown in [Table 1] above, and the electrospinning treatment was performed at a rate of 1.2 to 1.5 ml/hr.

3. 방사섬유의 열처리3. Heat treatment of spun fibers

방사섬유를 180~210℃ 온도에서 4hr 이상 열처리하여 PVP를 제거하였으며, 이로써 이산화티탄 나노입자를 갖는 이산화티탄 나노섬유가 제조되었다.PVP was removed by heat-treating the spun fibers at a temperature of 180 to 210 ° C. for 4 hr or more, thereby preparing titanium dioxide nanofibers having titanium dioxide nanoparticles.

[시험예1] 이산화티탄 나노섬유의 분석[Test Example 1] Analysis of titanium dioxide nanofibers

[제조예2]에서 제조된 이산화티탄 나노섬유에 대하여 열처리 전후의 중량을 확인하였으며, 그 결과 열처리 후의 중량잔존율이 15.5%로 확인되었다. 또한 열처리 후의 이산화티탄 나노섬유에 대하여 결정성 및 섬유직경 특성평가를 실시하였으며, 그 결과는 도 1과 같이 나타냈다. 도 1에서와 같이 열처리 후 최종 제조된 이산화티탄 나노섬유는 XRD 분석결과 광촉매로써의 특성이 우수한 아나타제(anatase) 결정이 학인되었으며, 또한 SEM 측정 결과 방사섬유의 직경이 200nm 이하급을 갖는 것으로 확인되었다.The weight before and after heat treatment was confirmed for the titanium dioxide nanofibers prepared in [Preparation Example 2], and as a result, the weight residual rate after heat treatment was confirmed to be 15.5%. In addition, crystallinity and fiber diameter characteristics were evaluated for the titanium dioxide nanofibers after heat treatment, and the results were shown in FIG. 1. As shown in FIG. 1, the titanium dioxide nanofibers finally prepared after heat treatment were confirmed to have anatase crystals having excellent properties as a photocatalyst as a result of XRD analysis, and also as a result of SEM measurement, it was confirmed that the diameter of the spinning fibers was less than 200 nm. .

[시험예2] 이산화티탄 나노섬유의 광분해 특성[Test Example 2] Photolysis characteristics of titanium dioxide nanofibers

[제조예2]에서 최종 제조된 이산화티탄 나노섬유를 기존의 이산화티탄 나노섬유(특허 제10-2183306호에 따라 제조)와 비교하여 광분해 특성을 평가하였다. 광분해 특성 평가를 위해 경량골재를 이용하여 패널 모형시험체를 제작하였으며, 특히 모형시험체는 이산화티탄 나노섬유를 모형시험체(비중1) 부피 대비 2중량%를 혼입하여 제조하였다. 제조한 모형시험체 건조표면에 acidred 44 유기염료를 용해 0.02M로 제조한 적색안료 용액을 모형시험체의 1/2만을 도포한 후 실내에서 1일간 건조하였으며, 건조한 모형시험체를 가시광선하에서 노출 경과한 후 적색 유기염료의 분해 여부를 색상변화로 확인하고 이를 광분해 특성으로 평가하였다.The photolysis characteristics of the titanium dioxide nanofibers finally prepared in [Preparation Example 2] were compared with existing titanium dioxide nanofibers (manufactured according to Patent No. 10-2183306). To evaluate the photodegradation characteristics, panel model specimens were produced using lightweight aggregates. In particular, the model specimens were prepared by incorporating 2% by weight of titanium dioxide nanofibers compared to the volume of the model specimen (specific gravity 1). On the dried surface of the prepared model test body, a red pigment solution prepared by dissolving acidred 44 organic dye at 0.02M was applied to only 1/2 of the model test body, and then dried indoors for 1 day, and after exposure of the dried model test body under visible light Decomposition of the red organic dye was confirmed by color change and evaluated by photolysis characteristics.

색상변화를 확인한 결과는 도 2와 같다. 보는 바와 같이 가시광조사 5시간 경과시점에서 [제조예2]의 이산화티탄 나노섬유를 혼입 제조한 모형시험체 표면은 적색염료가 완전히 분해된 것으로 확인되었으나, 기존 이산화티탄 나노섬유를 혼입 제조한 모형시험체 표면은 일부 적색염료가 잔존하는 것으로 확인되었다. 이와 같은 결과를 통해, 본 발명에 따라 제조된 이산화티탄 나노섬유는 광분해 특성이 우수하다고 할 수 있다.The result of confirming the color change is shown in FIG. 2 . As can be seen, at the lapse of 5 hours of visible light irradiation, it was confirmed that the red dye was completely decomposed on the surface of the model specimen prepared by mixing the titanium dioxide nanofibers of [Production Example 2], but the surface of the model specimen manufactured by mixing the existing titanium dioxide nanofibers It was confirmed that some red dye remained. Through these results, it can be said that the titanium dioxide nanofibers prepared according to the present invention have excellent photolysis characteristics.

Claims (6)

반응기에 물, 사염화티타늄(Titanium tetrachloride, TiCl4)을 투입 교반하면서 가열하는 제1단계;
온도가 50~60℃ 도달하면 염산(HCl)을 투입 교반하는 제2단계;
자연냉각하여 교반하는 제3단계;
를 포함하여 이루어져, 이산화티탄 고형분 함량이 12~16중량%인 이산화티탄 나노졸로 제조하는 것을 특징으로 하는 이산화티탄 나노졸 제조방법.
A first step of heating while stirring by adding water and titanium tetrachloride (TiCl 4 ) to the reactor;
A second step of stirring by adding hydrochloric acid (HCl) when the temperature reaches 50 to 60 ° C;
A third step of stirring by natural cooling;
A method for producing a titanium dioxide nano-sol, characterized in that the titanium dioxide nano-sol having a titanium dioxide solid content of 12 to 16% by weight is prepared by including a.
제1항에서,
상기 제1단계는, 물 100중량부에 사염화티타늄 20~30중량부를 투입한 후 2000rpm 이상으로 교반을 유지하면서 실시하고,
상기 제2단계는, 온도가 50~60℃ 도달하면 0.1~0.3M의 염산 0.5~1.0중량부를 투입하여 15~30분간 2000rpm 이상으로 교반을 유지하면서 실시하며,
상기 제3단계는, 자연냉각하여 10~15시간 교반을 유지하면서 실시하는 것을 특징으로 하는 이산화티탄 나노졸 제조방법.
In paragraph 1,
The first step is carried out while maintaining stirring at 2000 rpm or more after adding 20 to 30 parts by weight of titanium tetrachloride to 100 parts by weight of water,
In the second step, when the temperature reaches 50 to 60 ° C, 0.5 to 1.0 parts by weight of 0.1 to 0.3 M hydrochloric acid is added and carried out while maintaining stirring at 2000 rpm or more for 15 to 30 minutes,
The third step is a method for producing titanium dioxide nano sol, characterized in that carried out while maintaining stirring for 10 to 15 hours by natural cooling.
제1항 또는 제3항에 따라 제조된 이산화티탄 나노졸 35~40중량%;
에탄올 55~60중량%;
폴리머수지 3~4.5중량%;
실란커플링제 1~1.5중량%;
를 포함하여 조성되는 것을 특징으로 하는 이산화티탄 나노섬유 제조용 전구용액 조성물.
35 to 40% by weight of the titanium dioxide nanosol prepared according to claim 1 or 3;
55 to 60% by weight of ethanol;
3 to 4.5% by weight of polymer resin;
1 to 1.5% by weight of a silane coupling agent;
A precursor solution composition for producing titanium dioxide nanofibers, characterized in that the composition comprises a.
제3항에서,
상기 폴리머수지는, 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP)이고,
상기 실란커플링제는, 메타아크릴옥시프로필 트리에톡시실란(Methacryloxypropyl Triethoxysilane)인 것을 특징으로 하는 이산화티탄 나노섬유 제조용 전구용액 조성물.
In paragraph 3,
The polymer resin is polyvinylpyrrolidone (PVP),
The silane coupling agent is a precursor solution composition for producing titanium dioxide nanofibers, characterized in that methacryloxypropyl triethoxysilane.
제3항에 따른 전구용액 조성물을 전기방사한 후, 열처리하여 제조하는 것을 특징으로 광분해 고활성 이산화티탄 나노섬유 제조방법.A method for producing photolytically active titanium dioxide nanofibers, characterized in that they are produced by electrospinning the precursor solution composition according to claim 3 and then heat-treating. 제5항에서,
상기 전기방사는, 전구용액 조성물을 전압 20kV, 노즐-접지판간의 간격 20cm 조건에서 1.2~1.5ml/hr의 속도로 방사하면서 실시하며,
상기 열처리는, 180~210℃에서 4hr 이상 처리하면서 실시하는 것을 특징으로 하는 광분해 고활성 이산화티탄 나노섬유 제조방법.
In paragraph 5,
The electrospinning is performed while spinning the precursor solution composition at a speed of 1.2 to 1.5 ml/hr under conditions of a voltage of 20 kV and a distance of 20 cm between the nozzle and the ground plate,
The heat treatment is a photolytically active titanium dioxide nanofiber manufacturing method, characterized in that carried out while processing at 180 ~ 210 ° C. for 4 hr or more.
KR1020210170582A 2021-12-02 2021-12-02 Method for Preparing Titania Nanosol, and Method for Preparing Titania Nanofibers Using Titania Nanosol Prepared Thereby KR20230082784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210170582A KR20230082784A (en) 2021-12-02 2021-12-02 Method for Preparing Titania Nanosol, and Method for Preparing Titania Nanofibers Using Titania Nanosol Prepared Thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210170582A KR20230082784A (en) 2021-12-02 2021-12-02 Method for Preparing Titania Nanosol, and Method for Preparing Titania Nanofibers Using Titania Nanosol Prepared Thereby

Publications (1)

Publication Number Publication Date
KR20230082784A true KR20230082784A (en) 2023-06-09

Family

ID=86765084

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210170582A KR20230082784A (en) 2021-12-02 2021-12-02 Method for Preparing Titania Nanosol, and Method for Preparing Titania Nanofibers Using Titania Nanosol Prepared Thereby

Country Status (1)

Country Link
KR (1) KR20230082784A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183306B1 (en) 2019-11-18 2020-11-26 주식회사 위드엠텍 Electrospinning Solution for Fabricating Titania Nanofibers and Method for preparing Titania Nanofibers Using the Same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183306B1 (en) 2019-11-18 2020-11-26 주식회사 위드엠텍 Electrospinning Solution for Fabricating Titania Nanofibers and Method for preparing Titania Nanofibers Using the Same

Similar Documents

Publication Publication Date Title
CN108138367B (en) Nanofiber-nanowire composite and method for producing the same
JP4607825B2 (en) Titanium oxide nanorods and method for producing the same
UA119753C2 (en) Titania particles and a process for their production
Francis et al. Synthesis, characterization and mechanical properties of nylon–silver composite nanofibers prepared by electrospinning
WO2012096172A1 (en) Method for manufacturing metal-oxide-containing particles and method for manufacturing aggregate of metal-oxide colloidal particles
DE10205920A1 (en) Nanoscale rutile and process for its production
KR101349293B1 (en) Nanofiber composite and method for fabricating same
JP6555483B2 (en) Acicular strontium carbonate fine particles and dispersions thereof
US20090068466A1 (en) Titania fiber and method for manufacturing titania fiber
Zhao et al. Preparation of Low‐Dimensional Bismuth Tungstate (Bi2WO6) Photocatalyst by Electrospinning
Dai et al. Electrospinning of PVA‐Calcium Phosphate Sol Precursors for the Production of Fibrous Hydroxyapatite
CN101423249B (en) Monodisperse pure rutile type or rutile type and anatase type composite phase titanium dioxide hollow submicron sphere and preparation method thereof
TWI566830B (en) Preparation of Photocatalyst Composite Nanofibers
KR20230082784A (en) Method for Preparing Titania Nanosol, and Method for Preparing Titania Nanofibers Using Titania Nanosol Prepared Thereby
CN106192077B (en) A kind of preparation method of the full meso-porous nano fiber of Ag loading ZnOs
KR102183306B1 (en) Electrospinning Solution for Fabricating Titania Nanofibers and Method for preparing Titania Nanofibers Using the Same
KR101007887B1 (en) METHOD FOR PREPARING SiO2-TiO2-BASED COMPOSITE INORGANIC FIBERS USING TWO-STEP HEAT-TREATMENT
CN102242407B (en) Method for preparing silicon oxide/silver nano composite fibers
KR100630864B1 (en) A method for producing nano-fiber and a nano-fiber produced by the same
KR102345591B1 (en) Electrospinning Solution for Fabricating Titania Nanofibers and Method for preparing Titania Nanofibers Using the Same
Mehrpouya et al. The formation of titanium dioxide crystallite nanoparticles during activation of PAN nanofibers containing titanium isopropoxide
KR100500910B1 (en) Nano alumina fiber and it's manufacturing method
CN102659152B (en) Method for preparing nanometer alumina slurry with good water dispersibility
DE102011081000A1 (en) Preparing titanium dioxide particle, useful e.g. as photo catalysts, comprises producing solution of glucose, titanium(III) chloride and aqueous ammonia in water and/or solvent, heating and cooling the solution, and filtering the particle
Jadhav et al. Preparation and Characterization of Electro-Spun Fabricated Ag–TiO2 Composite Nanofibers and Its Enhanced Photo-Catalytic Activity for the Degradation of Congo Red

Legal Events

Date Code Title Description
E601 Decision to refuse application