KR20230081871A - 인공지능 기반의 고주파 레이저를 이용한 맞춤형 처방 데이터 생성 방법 및 장치 - Google Patents
인공지능 기반의 고주파 레이저를 이용한 맞춤형 처방 데이터 생성 방법 및 장치 Download PDFInfo
- Publication number
- KR20230081871A KR20230081871A KR1020210168632A KR20210168632A KR20230081871A KR 20230081871 A KR20230081871 A KR 20230081871A KR 1020210168632 A KR1020210168632 A KR 1020210168632A KR 20210168632 A KR20210168632 A KR 20210168632A KR 20230081871 A KR20230081871 A KR 20230081871A
- Authority
- KR
- South Korea
- Prior art keywords
- skin
- data
- neural network
- prescription data
- customized prescription
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 10
- 238000013528 artificial neural network Methods 0.000 abstract description 62
- 230000036555 skin type Effects 0.000 abstract description 38
- 238000005259 measurement Methods 0.000 abstract description 21
- 238000012545 processing Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000013527 convolutional neural network Methods 0.000 description 7
- 230000005484 gravity Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 238000001994 activation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000012549 training Methods 0.000 description 4
- 238000013135 deep learning Methods 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 206010013786 Dry skin Diseases 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 230000037336 dry skin Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 208000002874 Acne Vulgaris Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000037311 normal skin Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000019612 pigmentation Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000037394 skin elasticity Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/40—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/203—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/067—Radiation therapy using light using laser light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/02—Computing arrangements based on specific mathematical models using fuzzy logic
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06315—Needs-based resource requirements planning or analysis
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00452—Skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0626—Monitoring, verifying, controlling systems and methods
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Primary Health Care (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Physics & Mathematics (AREA)
- Epidemiology (AREA)
- Software Systems (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Data Mining & Analysis (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Strategic Management (AREA)
- Heart & Thoracic Surgery (AREA)
- Entrepreneurship & Innovation (AREA)
- Economics (AREA)
- Radiology & Medical Imaging (AREA)
- Artificial Intelligence (AREA)
- Electromagnetism (AREA)
- Educational Administration (AREA)
- Algebra (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
Abstract
인공지능 기반의 맞춤형 처방 데이터 생성 방법이 개시된다. 일 실시예에 따른 인공지능 기반의 맞춤형 처방 데이터 생성 방법은 사용자의 피부 이미지를 수신하는 단계, 상기 사용자의 피부 측정 데이터를 수신하는 단계, 상기 피부 이미지를 인공 신경망 기반의 제1 모델에 입력하여, 상기 사용자에 대응하는 피부 타입에 대한 제1 소속도를 계산하는 단계, 상기 피부 측정 데이터를 인공 신경망 기반의 제2 모델에 입력하여, 상기 피부 측정 데이터에 대응하는 피부 타입에 대한 제2 소속도를 계산하는 단계, 상기 제1 소속도 및 상기 제2 소속도에 기초하여, 최종 소속도를 결정하는 단계 및 상기 최종 소속도에 기초하여, 상기 사용자에 대응하는 맞춤형 처방 데이터를 결정하는 단계를 포함한다.
Description
아래 실시예들은 인공지능 기반의 고주파 레이저를 이용한 맞춤형 처방 데이터 생성 방법 및 장치에 관한 것이다.
4차 산업혁명 시대가 도래하며, 인공지능 기술 발달이 가속화되면서 다양한영상 데이터를 활용 목적에 따라 정밀하게 가공하고 처리할 수 있으며, 안면 인식 이나 동작 인식 등 신체 정보가 포함된 영상에 대한 식별을 기초로 하는 응용 기술도 등장하고 있다.
한편, 피부 미용 관련 분야에서는 이용자의 피부 상태 측정을 기반으로 하여 추정된 상태에 따라 피부에 적합한 화장품을 이용자에게 추천하는 피부 관리 방법 등이 활용되고 있다.
현재 이와 관련하여, 올인원 형식의 기계들은 많이 나와 있지만, 높은 가격과 근본적으로는 기능 중복이 많고, 구매 후 알 수 없는 A/S문제, 기기에 맞지 않는 제품사용, 기기활용 교육이 원활히 진행되지 않아, 효과가 미미하고 소비자의 피해 및 1인 창업 피부 미용사의 피해가 심심치 않게 발생한다.
실시예들은 ICT /AI 기술을 적용하여 고객에게 판매된 제품과 이력을 관리하며, 미용사에게 지속적인 교육과 고객 맞춤형 처방 데이터를 제공하고자 한다.
실시예들은 피부 이미지뿐만 아니라 피부 측정 데이터를 더 이용하여, 보다 정확하게 사용자의 피부 타입을 결정하는 방법을 제공하고자 한다.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
일 실시예에 따른 맞춤형 처방 데이터 생성 방법은 사용자의 피부 이미지를 수신하는 단계; 상기 사용자의 피부 측정 데이터를 수신하는 단계; 상기 피부 이미지를 인공 신경망 기반의 제1 모델에 입력하여, 상기 사용자에 대응하는 피부 타입에 대한 제1 소속도를 계산하는 단계; 상기 피부 측정 데이터를 인공 신경망 기반의 제2 모델에 입력하여, 상기 피부 측정 데이터에 대응하는 피부 타입에 대한 제2 소속도를 계산하는 단계; 상기 제1 소속도 및 상기 제2 소속도에 기초하여, 최종 소속도를 결정하는 단계; 및 상기 최종 소속도에 기초하여, 상기 사용자에 대응하는 맞춤형 처방 데이터를 결정하는 단계를 포함한다.
상기 맞춤형 처방 데이터를 결정하는 단계는 상기 최종 소속도를 복수의 퍼지 로직 모듈들 각각에 적용함으로써 복수의 피부 데이터들 각각의 점수를 계산하는 단계; 및 상기 복수의 피부 데이터들 각각의 점수에 기초하여, 상기 맞춤형 처방 데이터를 결정하는 단계를 포함할 수 있다.
일 실시예에 따른 맞춤형 처방 데이터 생성 방법은 상기 사용자의 나이, 성별 및 과거 시술 이력 중 적어도 하나를 포함하는 개인 정보 데이터를 수신하는 단계를 더 포함하고, 상기 맞춤형 처방 데이터를 결정하는 단계는 상기 개인 정보 데이터에 기초하여, 상기 맞춤형 처방 데이터를 조정하는 단계를 더 포함할 수 있다.
상기 맞춤형 처방 데이터는 상기 사용자에 사용될 기기 데이터, 레이저 파장 데이터, 시술 시간 데이터, 강도 데이터 및 주기 데이터 중 적어도 하나를 포함할 수 있다.
실시예들은 ICT /AI 기술을 적용하여 고객에게 판매된 제품과 이력을 관리하며, 미용사에게 지속적인 교육과 고객 맞춤형 처방 데이터를 제공할 수 있다.
실시예들은 피부 이미지뿐만 아니라 피부 측정 데이터를 더 이용하여, 보다 정확하게 사용자의 피부 타입을 결정하는 방법을 제공할 수 있다.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1a는 인공 신경망(Artificial Neural Network)를 이용한 딥러닝 연산 방법을 설명하기 위한 도면이다.
도 1b는 일 실시예에 따른 맞춤형 처방 데이터 생성 시스템을 설명하기 위한 도면이다.
도 2a 및 도 2b는 일 실시예에 따른 맞춤형 처방 데이터 생성 방법을 설명하기 위한 도면이다.
도 3은 일 실시예에 따른 최종 소속도에 기반하여 적용될 퍼지 규칙을 도시하는 예시도이다.
도 4는 일 실시예에 따른 맞춤형 처방 데이터의 예시를 도시한 도면이다.
도 1b는 일 실시예에 따른 맞춤형 처방 데이터 생성 시스템을 설명하기 위한 도면이다.
도 2a 및 도 2b는 일 실시예에 따른 맞춤형 처방 데이터 생성 방법을 설명하기 위한 도면이다.
도 3은 일 실시예에 따른 최종 소속도에 기반하여 적용될 퍼지 규칙을 도시하는 예시도이다.
도 4는 일 실시예에 따른 맞춤형 처방 데이터의 예시를 도시한 도면이다.
본 명세서에서 개시되어 있는 특정한 구조적 또는 기능적 설명들은 단지 기술적 개념에 따른 실시예들을 설명하기 위한 목적으로 예시된 것으로서, 실시예들은 다양한 다른 형태로 실시될 수 있으며 본 명세서에 설명된 실시예들에 한정되지 않는다.
제1 또는 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이런 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 이해되어야 한다. 예를 들어 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시 된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함으로 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 해당 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
실시예들은 퍼스널 컴퓨터, 랩톱 컴퓨터, 태블릿 컴퓨터, 스마트 폰, 텔레비전, 스마트 가전 기기, 지능형 자동차, 키오스크, 웨어러블 장치 등 다양한 형태의 제품으로 구현될 수 있다. 이하, 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
도 1a는 인공 신경망(Artificial Neural Network)를 이용한 딥러닝 연산 방법을 설명하기 위한 도면이다.
딥러닝(Deep Learning) 등을 포함하는 인공지능(AI) 알고리즘은 인공 신경망(Artificial Neural Network, ANN)에 입력 데이터(10)를 입력시키고, 컨볼루션 등의 연산을 통해 출력 데이터(30)를 학습하고, 학습된 인공 신경망을 이용하여 특징을 추출할 수 있다. 인공 신경망은 생물학적 뇌를 모델링한 컴퓨터 과학적 아키텍쳐(Computational Architecture)를 의미할 수 있다. 인공 신경망 내에서, 뇌의 뉴런들에 해당되는 노드들은 서로 연결되어 있고, 입력 데이터를 처리하기 위하여 집합적으로 동작한다. 다양한 종류의 뉴럴 네트워크들을 예로 들면, 컨볼루션 뉴럴 네트워크(Convolutional Neural Network, CNN), 회귀 뉴럴 네트워크(Recurrent Neural Network, RNN), 딥 빌리프 네트워크(Deep Belief Network, DBN), 제한된 볼츠만 기계(Restricted Boltzman Machine, RBM) 방식 등이 있으나, 이에 제한되지 않는다. 피드-포워드(feed-forward) 뉴럴 네트워크에서, 뉴럴 네트워크의 뉴런들은 다른 뉴런들과의 연결들(links)을 갖는다. 이와 같은 연결들은 뉴럴 네트워크를 통해, 한 방향으로, 예를 들어 순방향(forward direction)으로 확장될 수 있다.
도 1a는 입력 데이터(10)를 입력 받아 출력 데이터(130)를 출력하는 인공 신경망(예를 들어, 컨볼루션 뉴럴 네트워크(Convolution Neural Network, CNN)(20))의 구조를 도시한다. 인공 신경망은 2개 이상의 레이어(layer)를 보유한 딥 뉴럴 네트워크(deep neural network)일 수 있다.
컨볼루션 뉴럴 네트워크(20)는 입력 데이터(10)로부터 테두리, 선 색 등과 같은 "특징들(features)"을 추출하기 위해 이용될 수 있다. 컨볼루션 뉴럴 네트워크(20)는 복수의 레이어를 포함할 수 있다. 각각의 레이어는 데이터를 수신할 수 있고, 해당 레이어에 입력되는 데이터를 처리하여 해당 레이어에서 출력되는 데이터를 생성할 수 있다. 레이어에서 출력되는 데이터는, 컨볼루션 뉴럴 네트워크(20)에 입력된 이미지 또는 입력된 특징맵(feature map)을 필터(filter) 웨이트(weight) 값과 컨볼루션 연산하여 생성한 특징맵일 수 있다. 컨볼루션 뉴럴 네트워크(20)의 초기 레이어들은 입력으로부터 에지들 또는 그레디언트들과 같은 낮은 레벨의 특징들을 추출하도록 동작될 수 있다. 컨볼루션 뉴럴 네트워크(20)의 다음 레이어들은 이미지 내의 눈, 코 등과 같은 점진적으로 더 복잡한 특징들을 추출할 수 있다.
도 1b는 일 실시예에 따른 맞춤형 처방 데이터 생성 시스템을 설명하기 위한 도면이다.
일 실시예에 따른 맞춤형 처방 데이터 생성 시스템은 사용자의 피부 이미지 및 피부 측정 데이터를 이용하여 사용자의 피부 타입을 결정하고, 사용자의 피부 타입에 맞는 맞춤형 처방 데이터를 제공할 수 있다.
도 1b를 참조하면, 일 실시예에 따른 맞춤형 처방 데이터 생성 시스템은 맞춤형 처방 데이터 학습 장치(100) 및 맞춤형 처방 데이터 생성 장치(150)를 포함할 수 있다. 일 실시예에 따른 맞춤형 처방 데이터 학습 장치(100)는 뉴럴 네트워크를 생성하거나, 뉴럴 네트워크를 훈련(train)(또는 학습(learn))하거나, 뉴럴 네트워크를 재훈련(retrain)하는 기능들과 같은 다양한 프로세싱 기능들을 갖는 컴퓨팅 디바이스에 해당된다. 예를 들어, 맞춤형 처방 데이터 학습 장치(100)는 PC(personal computer), 서버 디바이스, 모바일 디바이스 등의 다양한 종류의 디바이스들로 구현될 수 있다.
맞춤형 처방 데이터 학습 장치(100)는 주어진 초기 뉴럴 네트워크를 반복적으로 훈련(학습)시킴으로써, 훈련된 뉴럴 네트워크(110)를 생성할 수 있다. 훈련된 뉴럴 네트워크(110)를 생성하는 것은 뉴럴 네트워크 파라미터를 결정하는 것을 의미할 수 있다. 여기서, 파라미터들은 예를 들어 뉴럴 네트워크의 입/출력 액티베이션들, 웨이트들, 바이어스들 등 뉴럴 네트워크에 입/출력되는 다양한 종류의 데이터를 포함할 수 있다. 뉴럴 네트워크의 반복적인 훈련이 진행됨에 따라, 뉴럴 네트워크의 파라미터들은 주어진 입력에 대해 보다 정확한 출력을 연산하기 위해 조정될(tuned) 수 있다.
일 실시예에 따른 훈련된 뉴럴 네트워크(110)는 복수의 뉴럴 네트워크로 구성될 수도 있다. 예를 들어, 훈련된 뉴럴 네트워크(110)는 제1 뉴럴 네트워크와 제2 뉴럴 네트워크를 포함할 수 있다. 예를 들어, 제1 뉴럴 네트워크는 피부 이미지에 대응하는 피부 타입을 결정하도록 학습될 수 있고, 제2 뉴럴 네트워크는 피부 측정 데이터에 대응하는 피부 타입을 결정하도록 학습될 수 있다. 제1 뉴럴 네트워크와 제2 뉴럴 네트워크는 독립적으로 학습될 수도 있고, 서로 연관되어 학습될 수도 있다.
맞춤형 처방 데이터 학습 장치(100)는 훈련된 뉴럴 네트워크(110)를 맞춤형 처방 데이터 생성 장치(150)에 전달할 수 있다. 맞춤형 처방 데이터 생성 장치(150)는 모바일 디바이스, 임베디드(embedded) 디바이스 등에 포함될 수 있다. 맞춤형 처방 데이터 생성 장치(150)는 뉴럴 네트워크의 구동을 위한 전용 하드웨어일 수 있다.
맞춤형 처방 데이터 생성 장치(150)는 훈련된 뉴럴 네트워크(110)를 그대로 구동하거나, 훈련된 뉴럴 네트워크(110)가 가공(예를 들어, 양자화)된 뉴럴 네트워크(160)를 구동할 수 있다. 가공된 뉴럴 네트워크(160)를 구동하는 맞춤형 처방 데이터 생성 장치(150)는, 맞춤형 처방 데이터 학습 장치(100)와는 별도의 독립적인 디바이스에서 구현될 수 있다. 하지만, 이에 제한되지 않고, 맞춤형 처방 데이터 생성 장치(150)는 맞춤형 처방 데이터 생성 모델 학습 장치(100)와 동일한 디바이스 내에도 구현될 수 있다.
도 2a는 일 실시예에 따른 맞춤형 처방 데이터 생성 방법을 설명하기 위한 도면이다.
도 1a 내지 도 1b를 참조하여 설명한 내용은 도 2a 및 도 2b에도 동일하게 적용될 수 있는 바, 중복된 내용을 생략할 수 있다.
도 2a를 참조하면, 일 실시예에 따른 맞춤형 처방 데이터 생성 장치(150)는 제1 모델(210), 제2 모델(220) 및 퍼지 로직 모듈(230)을 포함할 수 있다.
일 실시예에 따른 인공 신경망 기반의 제1 모델(210)은 도 1a를 참조하여 전술한 훈련된 뉴럴 네트워크(110)를 포함할 수 있다. 예를 들어, 제1 모델(210)은 훈련된 뉴럴 네트워크(110)의 제1 뉴럴 네트워크(예를 들어, 피부 이미지에 대응하는 피부 타입을 결정하도록 학습된 뉴럴 네트워크)를 포함할 수 있다.
일 실시예에 따른 맞춤형 처방 데이터 생성 장치(150)의 제1 모델(210)은 사용자 피부 이미지를 수신하여, 해당 피부 이미지에 대응하는 제1 소속도를 결정할 수 있다.
일 실시예에 따른 제1 소속도는 제1 뉴럴 네트워크의 출력 레이어가 출력하는 복수의 원소들에 대응하는 특징 값으로, 출력 가능한 피부 타입들 각각에 대한 스코어 또는 확률 값을 의미할 수 있다. 제1 소속도는 로짓(logit)으로 표현될 수도 있다.
보다 구체적으로, 뉴럴 네트워크는 입력 레이어, 히든 레이어, 및 출력 레이어를 포함할 수 있다. 각 레이어는 복수의 노드들을 포함하고, 인접한 레이어 사이의 노드들은 연결 가중치를 가지고 서로 연결될 수 있다. 각 노드들은 활성화 모델에 기초하여 동작할 수 있다. 활성화 모델에 따라 입력 값에 대응하는 출력 값이 결정될 수 있다. 임의의 노드의 출력 값은 해당 노드와 연결된 다음 레이어의 노드로 입력될 수 있다. 다음 레이어의 노드는 복수의 노드들로부터 출력되는 값들을 입력 받을 수 있다. 임의의 노드의 출력 값이 다음 레이어의 노드로 입력되는 과정에서, 연결 가중치가 적용될 수 있다. 다음 레이어의 노드는 활성화 모델에 기초하여 입력 값에 대응하는 출력 값을 해당 노드와 연결된 그 다음 레이어의 노드로 출력할 수 있다. 출력 레이어는 복수의 원소들에 대응하는 노드들을 포함할 수 있다. 출력 레이어의 노드들은 복수의 원소들에 대응하는 특징 값들을 출력할 수 있고, 해당 특징 값들을 제1 소속도라 지칭할 수 있다.
예를 들어, 제1 뉴럴 네트워크가 출력 가능한 피부 타입이 10개라고 하면, 생성 장치(150)의 제1 모델(210)은 사용자 피부 이미지를 수신하여, 해당 피부 이미지에 대응하는 제1 소속도(예를 들어, (a1, a2, ..., a10)=(0.4, 0.04, ..., 0.3))를 결정할 수 있다. 제1 소속도 각각의 원소는 사용자 피부 이미지를 제1 뉴럴 네트워크에 입력하여 출력되는 해당 피부 타입에 해당하는 확률 값을 의미할 수 있다. 또한, 각각의 피부 타입에 대응되는 제1 소속도의 원소들의 총합은 1로서 정의될 수 있다. 예를 들어, 제1 소속도가 (a1, a2, ..., a10)=(0.4, 0.04, ..., 0.35)인 경우, 입력된 사용자 피부 이미지의 피부 타입이 a1일 확률이 0.4, a2일 확률이 0.04, a3일 확률이 0.3임을 의미할 수 있다.
그러나, 피부 타입을 결정하는 다양한 요소들이 있는 바, 사용자 피부 이미지만을 가지고 피부 타입을 결정하는 것은 정확도가 떨어질 수 있다. 또한 정확한 피부 타입을 결정하는 것은 사용자 맞춤형 처방 데이터를 결정하기 위한 필수 선제 조건일 수 있다. 이에, 일 실시예에 따른 맞춤형 처방 데이터 생성 장치(150)는 피부 측정 데이터를 더 이용하여, 보다 정확하게 사용자의 피부 타입을 결정할 수 있다.
보다 구체적으로, 일 실시예에 따른 맞춤형 처방 데이터 생성 장치(150)의 제2 모델(220)은 피부 측정 데이터를 수신하여, 해당 피부 이미지에 대응하는 제2 소속도를 결정할 수 있다.
일 실시예에 따른 피부 측정 데이터는 맞춤형 처방 데이터 생성 장치(150)에 포함된 측정 도구 또는 맞춤형 처방 데이터 생성 장치(150)와 별도의 측정 도구를 통해 사용자의 피부를 측정하여 획득한 데이터일 수 있다. 예를 들어, 피부 측정 데이터는 사용자 피부의 유분 정도, 수분 정도, 유수분 밸런스 정도, 홍조 정도, 잡티의 분포 데이터 등을 포함할 수 있다.
일 실시예에 따른 인공 신경망 기반의 제2 모델(220)은 도 1a를 참조하여 전술한 훈련된 뉴럴 네트워크(110)를 포함할 수 있다. 예를 들어, 제2 모델(220)은 훈련된 뉴럴 네트워크(110)의 제2 뉴럴 네트워크(예를 들어, 피부 측정 데이터에 대응하는 피부 타입을 결정하도록 학습된 뉴럴 네트워크)를 포함할 수 있다.
일 실시예에 따른 제2 소속도는 제2 뉴럴 네트워크의 출력 레이어가 출력하는 복수의 원소들에 대응하는 특징 값으로, 출력 가능한 피부 타입들 각각에 대한 스코어 또는 확률 값을 의미할 수 있다.
예를 들어, 제2 뉴럴 네트워크가 출력 가능한 피부 타입이 10개라고 하면, 생성 장치(150)의 제2 모델(220)은 사용자 피부 측정 데이터를 수신하여, 해당 피부 측정 데이터에 대응하는 제1 소속도(예를 들어, (b1, b, ..., b0)=(0.15, 0.02, ..., 0.4))를 결정할 수 있다.
일 실시예에 따른 맞춤형 처방 데이터 생성 장치(150)는 제1 소속도와 제2 소속도의 조합에 기초하여, 최종 소속도를 결정할 수 있다. 보다 구체적으로, 맞춤형 처방 데이터 생성 장치(150)는 제1 소속도 및 제2 소속도를 앙상블 가중치에 따라 앙상블하여 최종 인식 결과를 생성할 수 있다. 앙상블 가중치는 각각의 소속도에 곱하여 지는 값으로, 미리 결정된 값을 사용할 수도 있고, 학습에 의하여 결정될 수도 있다. 예를 들어, 제1 소속도와 제2 소속도의 앙상블 가중치 비율은 0.8:0.2일 수 있고, 이 경우 피부 타입에 대응하는 최종 소속도는 (y1, y2, ..., yn) =(0.35, 0.036, ..., 0.36)일 수 있다.
도 2b는 퍼지 로직 모듈이 제1 소속도 및 제2 소속도 각각의 무게중심에 기반하여 앙상블 가중치를 결정하는 방법을 설명하는 예시도이다. 퍼지 로직은 사람 언어의 모호성을 컴퓨터로 처리하기 위한 논리이다. 예를 들어 100kg를 몸무게가 무거운 사람의 경계값으로 정의한다면, 몸무게가 99kg인 사람의 경우에는 몸무게가 가벼운 사람으로 처리되고, 몸무게가 101kg인 사람의 경우에는 몸무게가 무거운 사람으로 처리되는 종래 이분법적인 논리(bool논리)의 불합리성을 해결하기 위한 방안이다.
일 실시예로서, 퍼지 로직 모듈은 각각의 피부 타입에 대응하는 소속 함수(membership function)을 저장 및 관리할 수 있다. 보다 구체적으로, 각각의 피부 타입은 주름이 잘 생기는지에 대한 제1 유형, 색소가 잘 생기는지에 대한 제2 유형, 외부 자극에 대한 민감도에 대한 제3 유형, 건조한 피부인지에 대한 제4 유형, 여드름 등을 포함하는지에 대한 제5 유형 등을 포함할 수 있다.
도 2b를 참조하면, 예시적으로 건조한 피부인지에 대한 제4 유형에 대응하는 소속 함수가 도시된다. 퍼지 로직 모듈은 특정한 피부 유형에 대한 계산된 제1 소속도 및 제2 소속도를 이용하여 소속 함수에 대한 무게중심을 계산함으로써 앙상블 가중치를 결정할 수 있다. 앞서 설명한 바와 같이, 제1 소속도는 사용자의 피부 이미지를 입력으로 이용하여 출력된 값을 나타내고, 제2 소속도는 사용자의 피부 측정 데이터를 입력으로 이용하여 출력된 값을 나타낸다. 퍼지 로직 모듈은 각각의 소속도를 특정한 유형에 대응하는 소속 함수에 입력함으로써 아래의 수학식 1에 따라 무게중심을 계산할 수 있다. 상기 수학식 1에서, xi는 소속 함수에 입력된 i 번째 샘플을 나타내고, μ(xi)는 소속 함수의 결과값을 나타낼 수 있다.
위와 같이 서로 다른 피부 유형에 대한 소속도들은 퍼지 로직 모듈에 의해 이미지 데이터 및 측정 데이터에 대한 소속도 각각이 역퍼지화됨으로써 후술되는 사용자 맞춤형 처방 데이터를 생성하는데 활용될 수 있다.
퍼지 로직 모듈은 동일한 피부 유형에 대한 소속 함수를 이용하여 제1 소속도의 무게중심 및 제2 소속도의 무게중심을 비교할 수 있다. 또한, 퍼지 로직 모듈은 중심점으로부터 각각의 무게중심까지의 거리의 비율을 앙상블 가중치로 결정할 수 있다. 예를 들어, 피부 타입이 건성도 아니고, 지성도 아닌 보통으로서 5.1의 점수가 계산된 경우는 실제 보통의 피부일 수도 있고, 인공지능 기반의 처방 데이터가 해당 피부 데이터를 원활하게 해석하지 못한 경우일 수도 있기에 이런 경우에는 앙상블 가중치를 의도적으로 낮게 설정함으로써 처방 데이터의 정확도를 향상시킬 수 있다.
위 예시에서, 만약 피부 이미지만 이용하였다면, 제1 피부 타입(y1)이 최종 피부 타입으로 결정되었을 것이지만, 피부 측정 데이터를 더 고려하여 제n 피부 타입(yn)이 최종 피부 타입으로 결정될 수 있다.
일 실시예에 따른 맞춤형 처방 데이터 생성 장치(150)는 최종 피부 타입에 기초하여 맞춤형 처방 데이터를 결정할 수 있다. 예를 들어, 맞춤형 처방 데이터 생성 장치(150)는 각각의 피부 타입에 대응하는 맞춤형 처방 데이터베이스를 포함할 수 있다.
다른 실시예에 따르면, 맞춤형 처방 데이터 생성 장치(150)는 퍼지 로직 모듈(230)을 포함할 수 있고, 퍼지 로직 모듈(230)은 최종 소속도를 수신하여, 사용자 맞춤형 처방 데이터를 결정할 수도 있다. 아래에서, 도 3을 참조하여 퍼지 로직 모듈(230)에 기초하여 사용자 맞춤형 처방 데이터를 결정하는 방법에 대하여 상세히 설명한다.
도 3은 일 실시예에 따른 최종 소속도에 기반하여 적용될 퍼지 규칙을 도시하는 예시도이다.
도 3을 참조하면, 일 실시예에 따른 퍼지 로직 모듈(230)은 복수의 퍼지 로직 모듈들을 포함할 수 있다. 예를 들어, 제1 퍼지 로직 모듈은 최종 소속도를 수신하여, 제1 피부 데이터에 대한 점수를 계산할 수 있고, 제2 퍼지 로직 모듈은 최종 소속도를 수신하여, 제2 피부 데이터에 대한 점수를 계산할 수 있고, 제3 퍼지 로직 모듈은 최종 소속도를 수신하여, 제3 피부 데이터에 대한 점수를 계산할 수 있고, 제4 퍼지 로직 모듈은 최종 소속도를 수신하여, 제4 피부 데이터에 대한 점수를 계산할 수 있다.
일 실시예에 따른 각각의 피부 데이터는 맞춤형 처방 데이터를 결정하기 위해 필요한 요소를 의미할 수 있다. 예를 들어, 제1 피부 데이터는 피부 색 데이터를 의미할 수 있고, 제2 피부 데이터는 피부 타입 데이터(예를 들어, 지성 타입, 건성 타입, 복합성 타입)를 의미할 수 있고, 제3 피부 데이터는 피부 탄성 데이터를 의미할 수 있고, 제4 피부 데이터는 피부 색소 질환 데이터를 의미할 수 있다. 다만, 도 3에서는 설명의 편의를 위하여 제1 피부 데이터 내지 제4 피부 데이터를 예시로 들었으나, 위 예시에 한정되지 않고, 다양한 조합으로 퍼지 로직 모듈(230)이 구성될 수 있다.
퍼지 로직 모듈(230)은 최종 소속도를 서로 다른 퍼지 로직 모듈에 적용함으로써 각각의 피부 데이터에 대한 점수를 계산할 수 있고, 각각의 퍼지 로직 모듈 각각은 서로 다른 소속 함수(membership function)를 포함할 수 있다.
퍼지 로직 모듈(230)은 각각의 피부 데이터의 점수에 따라 사용자에게 적용될 퍼지 규칙을 결정할 수 있다. 각각의 피부 데이터는 1단계 내지 3단계로 결정될 수 있다. 퍼지 로직 모듈(230)은 각각의 피부 데이터 점수의 조합에 의하여 맞춤형 처방 데이터를 결정할 수 있다.
예를 들어, 제1 피부 데이터 내지 제3 피부 데이터가 1단계로, 제4 피부 데이터가 3단계로 계산될 경우, 퍼지 로직 모듈(230)은 시나리오 3을 맞춤형 처방 데이터로 결정할 수 있다. 일 실시예에 따른 맞춤형 처방 데이터는 사용자에 사용될 기기 데이터, 레이저 파장 데이터, 시술 시간 데이터, 강도 데이터 및 주기 데이터 중 적어도 하나를 포함할 수 있다.
일 실시예에 따른 맞춤형 처방 데이터 생성 장치(150)는 개인 정보 데이터를 이용하여 퍼지 로직 모듈(230)에서 결정한 맞춤형 처방 데이터를 조정하여, 보다 사용자에게 커스터마이즈된 처방 데이터를 결정할 수 있다. 일 실시예에 따른 개인 정보 데이터는 사용자의 나이, 성별 및 과거 시술 이력 중 적어도 하나를 포함할 수 있다.
예를 들어, 맞춤형 처방 데이터 생성 장치(150)는 사용자의 나이를 고려하여, 맞춤형 처방 데이터에서 사용자에게 사용될 레이저의 강도를 조절하거나, 사용자의 과거 시술 이력에 따라 시술 시간을 조절할 수 있다.
도 4는 일 실시예에 따른 맞춤형 처방 데이터의 예시를 도시한 도면이다.
도 4를 참조하면, 사용자의 피부 이미지와 피부 측정 데이터가 입력 데이터(410)로 퍼지 로직 모듈(400)에 입력될 수 있고, 그에 따라 역퍼지화가 진행됨으로써 맞춤형 처방 데이터(420)가 도출될 수 있다. 일 실시 예로서, 맞춤형 처방 데이터(420)는 사용자에 사용될 기기 데이터 및 해당 기기에 대응하는 레이저 파장 데이터, 시술 시간 데이터, 강도 데이터, 주기 데이터 및 추천 관리 코스 데이터를 포함할 수 있다.
이상에서 설명된 실시예들은 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치, 방법 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.
Claims (1)
- 인공지능 기반의 고주파 레이저를 이용한 맞춤형 처방 데이터 생성 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210168632A KR20230081871A (ko) | 2021-11-30 | 2021-11-30 | 인공지능 기반의 고주파 레이저를 이용한 맞춤형 처방 데이터 생성 방법 및 장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210168632A KR20230081871A (ko) | 2021-11-30 | 2021-11-30 | 인공지능 기반의 고주파 레이저를 이용한 맞춤형 처방 데이터 생성 방법 및 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230081871A true KR20230081871A (ko) | 2023-06-08 |
Family
ID=86765820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210168632A KR20230081871A (ko) | 2021-11-30 | 2021-11-30 | 인공지능 기반의 고주파 레이저를 이용한 맞춤형 처방 데이터 생성 방법 및 장치 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20230081871A (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170001181A (ko) | 2015-06-26 | 2017-01-04 | 박희철 | 이동통신단말기의 프레임 및 그 제조방법 |
KR20170004004A (ko) | 2014-06-02 | 2017-01-10 | 디아이씨 가부시끼가이샤 | 액정 배향막 |
KR20170040680A (ko) | 2015-10-05 | 2017-04-13 | 삼성중공업 주식회사 | 전기분해장치 |
KR102285912B1 (ko) | 2020-12-09 | 2021-08-03 | 우혜정 | 피부 상태 예측 및 피부관리 시스템 그리고 그 방법 |
KR102292629B1 (ko) | 2021-01-15 | 2021-08-23 | 주식회사 블라썸클라우드 | Ai 안면인식을 이용한 뷰티 콘텐츠 제공 시스템 및 방법 |
-
2021
- 2021-11-30 KR KR1020210168632A patent/KR20230081871A/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170004004A (ko) | 2014-06-02 | 2017-01-10 | 디아이씨 가부시끼가이샤 | 액정 배향막 |
KR20170001181A (ko) | 2015-06-26 | 2017-01-04 | 박희철 | 이동통신단말기의 프레임 및 그 제조방법 |
KR20170040680A (ko) | 2015-10-05 | 2017-04-13 | 삼성중공업 주식회사 | 전기분해장치 |
KR102285912B1 (ko) | 2020-12-09 | 2021-08-03 | 우혜정 | 피부 상태 예측 및 피부관리 시스템 그리고 그 방법 |
KR102292629B1 (ko) | 2021-01-15 | 2021-08-23 | 주식회사 블라썸클라우드 | Ai 안면인식을 이용한 뷰티 콘텐츠 제공 시스템 및 방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Song et al. | Training excitatory-inhibitory recurrent neural networks for cognitive tasks: a simple and flexible framework | |
JP2020091922A (ja) | 畳み込みニューラルネットワークにおける構造学習 | |
KR20200045128A (ko) | 모델 학습 방법 및 장치, 및 데이터 인식 방법 | |
KR20180060257A (ko) | 객체 인식 방법 및 장치 | |
KR20200129639A (ko) | 모델 학습 방법 및 장치 | |
KR20190081243A (ko) | 정규화된 표현력에 기초한 표정 인식 방법, 표정 인식 장치 및 표정 인식을 위한 학습 방법 | |
Patino-Saucedo et al. | Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform | |
Guidotti et al. | Verification and repair of neural networks: a progress report on convolutional models | |
Chen et al. | AI Computing Systems: An Application Driven Perspective | |
KR102365783B1 (ko) | 인공지능 기반의 맞춤형 처방 데이터 생성 방법 및 장치 | |
Nayak et al. | Optimizing a higher order neural network through teaching learning based optimization algorithm | |
KR20230081871A (ko) | 인공지능 기반의 고주파 레이저를 이용한 맞춤형 처방 데이터 생성 방법 및 장치 | |
KR20230080990A (ko) | 인공지능 기반의 고강도 집적 초음파를 이용한 맞춤형 처방 데이터 생성 방법 및 장치 | |
KR20230080991A (ko) | 인공지능 기반의 마이크로 니들 테라피 시스템을 이용한 맞춤형 처방 데이터 생성 방법 및 장치 | |
KR20230080989A (ko) | 인공지능 기반의 고밀도 초음파 에너지를 이용한 맞춤형 처방 데이터 생성 방법 및 장치 | |
Selitskiy | Elements of active continuous learning and uncertainty self-awareness: a narrow implementation for face and facial expression recognition | |
Wang et al. | Neuromorphic computing | |
Bjelak et al. | Emotion Detection Using Convolutional Neural Networks | |
KR102090109B1 (ko) | 학습 및 추론 장치 및 그 방법 | |
Adapa et al. | Comprehensive introduction to neural networks: Advent, evolution, applications, and challenges | |
Mohamed et al. | Deep learning and cognitive computing: Pillars and ladders | |
US20230019194A1 (en) | Deep Learning in a Virtual Reality Environment | |
Picone et al. | Metastimuli: an introduction to PIMS filtering | |
KR102593868B1 (ko) | 손톱 및 발톱 케어 정보 제공 및 전문가 매칭 플랫폼서비스 구동 방법, 장치 및 시스템 | |
KR102641137B1 (ko) | 인공지능 모델 기반 우주 기술의 산출 데이터에 대한 질의 응답 제공 방법, 장치 및 시스템 |