KR20230081099A - 측량용 드론과 이를 이용한 3차원 지형 데이터 생성 방법 - Google Patents
측량용 드론과 이를 이용한 3차원 지형 데이터 생성 방법 Download PDFInfo
- Publication number
- KR20230081099A KR20230081099A KR1020210168833A KR20210168833A KR20230081099A KR 20230081099 A KR20230081099 A KR 20230081099A KR 1020210168833 A KR1020210168833 A KR 1020210168833A KR 20210168833 A KR20210168833 A KR 20210168833A KR 20230081099 A KR20230081099 A KR 20230081099A
- Authority
- KR
- South Korea
- Prior art keywords
- drone
- surveying
- flight
- information
- data
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 14
- 238000004891 communication Methods 0.000 claims abstract description 32
- 238000005259 measurement Methods 0.000 claims abstract description 9
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims description 8
- 230000006870 function Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 238000012545 processing Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 6
- 238000004590 computer program Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
- B64C39/024—Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D43/00—Arrangements or adaptations of instruments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D47/00—Equipment not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
본 발명은 3차원 지형 데이터를 생성할 수 있도록 하기 위한 데이터를 수집하기 위한 측량용 드론에 관한 것으로서, 이를 위하여 상기 측량용 드론을 초고속 광대역 통신망을 통해 서버에 연결시키는 통신부와, 상기 측량용 드론에 장착되어 임의의 포인트에서 깊이 데이터를 포함한 포인트 데이터를 생성하는 복수의 라이다 센서와, 상기 측량용 드론의 비행 시 자세 정보를 측정하는 드론 자세 측정부와, 상기 측량용 드론의 위치 관련 정보를 획득하는 위치 정보 획득부와, 상기 측량용 드론에 대한 비행을 제어하며, 상기 자세 정보 및 상기 위치 정보를 기반으로 상기 측량용 드론의 비행 및 비행 자세를 제어하며, 상기 측량용 드론이 정지 비행 상태에 돌입됨에 따라 상기 라이다 센서에서 생성된 포인트 데이터를 상기 통신부를 통해 상기 서버에 전송하며, 상기 자세 정보 및 위치 정보를 포함한 비행 정보를 수집하여 상기 통신부를 통해 상기 서버에 전송하는 비행 제어기를 포함하는 측량용 드론을 제공할 수 있다.
Description
본 발명은 3차원 지형 데이터 생성을 위한 드론에 관한 것이다.
측량은 지형 및 지물의 위치, 형상, 면적 등을 측정하여 공간상의 관계를 규명하는 기술로, 최근에는 위치 확인 시스템(GPS)의 발달과 지도의 대중화로 고정밀의 측량기술이 요구되고 있다.
최근에는 드론 기술이 발전됨에 따라 드론을 이용한 측량 기술이 개발되고 있다.
그러나, 종래의 국내 드론 측량은 장시간 처리시간으로 공정 및 장비간 연계성이 저하되고 있기 때문에 대부분 외산 소프트웨어에 의존하고 있는 실정이다.
또한, 국내 드론 측량 기술은 외산 소프트웨어와 기술제품을 응용하는 수준에 머물러 있음에 따라 국내의 환경에 맞게 다양하고 세부적인 임무를 수행하는데 한계점이 있다.
본 발명은 라이다 센서를 이용하여 3차원 지형 데이터의 생성에 필요한 포인트 데이터를 수집하고, 수집된 포인트 데이터와 비행 정보를 초고속 광대역 통신망을 통해 서버에 전송하여 데이터베이스를 구축한 후 이를 토대로 3차원 지형 데이터를 생성할 수 있는 측량용 드론과 이를 이용한 3차원 지형 데이터 생성 방법을 제공한다.
또한, 본 발명은 두 개의 프로세서가 내장된 비행 제어기를 이용하여 데이터 수집 및 전송과 더불어 비행 각기 다른 프로세서로 제어함으로써, 제어의 효율성을 높일 수 있는 측량용 드론과 이를 이용한 3차원 지형 데이터 생성 방법을 제공한다.
본 발명이 해결하고자 하는 과제는 상기에서 언급한 것으로 제한되지 않으며, 언급되지 않은 또 다른 해결하고자 하는 과제는 아래의 기재들로부터 본 발명이 속하는 통상의 지식을 가진 자에 의해 명확하게 이해될 수 있을 것이다.
상술한 해결하고자 하는 과제를 해결하기 위해서 본 발명의 실시예에 따른 측량용 드론은 상기 측량용 드론을 초고속 광대역 통신망을 통해 서버에 연결시키는 통신부와, 상기 측량용 드론에 장착되어 임의의 포인트에서 깊이 데이터를 포함한 포인트 데이터를 생성하는 복수의 라이다 센서와, 상기 측량용 드론의 비행 시 자세 정보를 측정하는 드론 자세 측정부와, 상기 측량용 드론의 위치 관련 정보를 획득하는 위치 정보 획득부와, 상기 측량용 드론에 대한 비행을 제어하며, 상기 자세 정보 및 상기 위치 정보를 기반으로 상기 측량용 드론의 비행 및 비행 자세를 제어하며, 상기 측량용 드론이 정지 비행 상태에 돌입됨에 따라 상기 라이다 센서에서 생성된 포인트 데이터를 상기 통신부를 통해 상기 서버에 전송하며, 상기 자세 정보 및 위치 정보를 포함한 비행 정보를 수집하여 상기 통신부를 통해 상기 서버에 전송하는 비행 제어기를 포함할 수 있다.
본 발명의 실시예에 따르면, 상기 비행 제어기는 상기 서버로부터 비행 제어 명령을 수신하며, 상기 수신한 비행 제어 명령에 따라 상기 측량용 드론의 비행을 제어할 수 있다.
본 발명의 실시예에 따르면, 상기 라이다 센서는 상기 측량용 드론의 다리 부분에 수직 방향으로 적어도 세 개 이상 설치될 수 있다.
상술한 해결하고자 하는 과제를 해결하기 위해서 본 발명의 실시예에 따른 측량용 드론을 이용한 3차원 지형 데이터 생성 방법은 해당 지역에 대해 복수의 정지 지점이 포함된 비행 경로를 생성한 후 이를 상기 측량용 드론에 셋팅하는 단계와, 해당 지역에 대해 비행 경로를 기반으로 상기 측량용 드론이 비행하는 단계와, 상기 비행 경로를 통해 비행 중 정지 지점에 도달함에 따라 상기 측량용 드론을 정지 비행 상태로 제어하는 단계와, 상기 정지 비행 상태에서 라이다 센서의 구동을 통해 포인트를 생성하는 단계와, 상기 포인트 데이터 및 상기 측량용 드론의 비행 정보를 상기 측량용 드론과 초고속 광대역 통신망으로 연결된 서버에 전송하는 단계와, 상기 단계들을 반복적으로 수행하여 상기 비행 경로 상 각 정지 지점에서의 포인트 데이터 및 비행 정보를 상기 서버의 데이터베이스에 저장하는 단계와, 상기 서버에서 상기 비행 정보의 위치 정보 기반으로 상기 포인트 데이터들의 수집 위치를 판단하고, 상기 자세 정보를 기초하여 상기 측량용 드론에 설치된 라이다 센서의 방위각을 계산하며, 상기 계산한 위치, 방위각 및 포인트 데이터를 기반으로 3차원 지형 데이터를 생성하는 단계를 포함할 수 있다.
전술한 본 발명의 과제 해결 수단에 따르면, 라이다 센서를 이용하여 3차원 지형 데이터의 생성에 필요한 포인트 데이터를 수집하고, 수집된 포인트 데이터와 비행 정보를 초고속 광대역 통신망을 통해 서버에 전송하여 데이터베이스를 구축한 후 이를 토대로 3차원 지형 데이터를 생성할 수 있는 측량용 드론과 이를 이용한 3차원 지형 데이터 생성 방법을 제공함으로써, 3차원 지형 데이터의 생성에 필요한 정확한 데이터 수집이 가능하기 때문에 양질의 3차원 지형 데이터를 생성할 수 있다.
도 1은 본 발명의 실시예에 따른 측량용 드론의 세부 구성을 도시한 블록도이다.
도 2는 본 발명의 실시예에 따른 측량용 드론에서 비행 제어기의 세부 구성을 도시한 도면이다.
도 3은 본 발명의 실시예에 따른 측량용 드론을 이용한 3차원 지형 데이터 생성 시스템의 전체 구성을 도시한 도면이다.
도 4는 본 발명의 실시예에 따른 측량용 드론에 라이다 센서가 적용된 예시도이다.
도 5는 본 발명의 실시예에 따른 측량용 드론을 이용하여 데이터 수집 및 3차원 지형 데이터를 생성하는 과정을 도시한 흐름도이다.
도 2는 본 발명의 실시예에 따른 측량용 드론에서 비행 제어기의 세부 구성을 도시한 도면이다.
도 3은 본 발명의 실시예에 따른 측량용 드론을 이용한 3차원 지형 데이터 생성 시스템의 전체 구성을 도시한 도면이다.
도 4는 본 발명의 실시예에 따른 측량용 드론에 라이다 센서가 적용된 예시도이다.
도 5는 본 발명의 실시예에 따른 측량용 드론을 이용하여 데이터 수집 및 3차원 지형 데이터를 생성하는 과정을 도시한 흐름도이다.
이하, 도면을 참조하여 본 발명의 구체적인 실시형태를 설명하기로 한다. 이하의 상세한 설명은 본 명세서에서 기술된 방법, 장치 및/또는 시스템에 대한 포괄적인 이해를 돕기 위해 제공된다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.
본 발명의 실시예들을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 상세한 설명에서 사용되는 용어는 단지 본 발명의 실시예들을 기술하기 위한 것이며, 결코 제한적이어서는 안 된다. 명확하게 달리 사용되지 않는 한, 단수 형태의 표현은 복수 형태의 의미를 포함한다. 본 설명에서, "포함" 또는 "구비"와 같은 표현은 어떤 특성들, 숫자들, 단계들, 동작들, 요소들, 이들의 일부 또는 조합을 가리키기 위한 것이며, 기술된 것 이외에 하나 또는 그 이상의 다른 특성, 숫자, 단계, 동작, 요소, 이들의 일부 또는 조합의 존재 또는 가능성을 배제하도록 해석되어서는 안 된다.
이하, 첨부된 도면을 참조하여 측량용 드론과 이를 활용한 3차원 지형 데이터 생성 시스템에 대해 설명하기로 한다.
도 1은 본 발명의 실시예에 따른 측량용 드론의 세부 구성을 도시한 블록도이며, 도 2는 본 발명의 실시예에 따른 측량용 드론에서 비행 제어기의 세부 구성을 도시한 도면이며, 도 3은 본 발명의 실시예에 따른 측량용 드론을 이용한 3차원 지형 데이터 생성 시스템의 전체 구성을 도시한 도면이며, 도 4는 본 발명의 실시예에 따른 측량용 드론에 라이다 센서가 적용된 예시도이다.
도 1 내지 도 3에 도시된 바와 같이, 측량용 드론(100)은 전반적인 구성에 필요한 전력을 공급하기 위한 전원 공급부(110)(예컨대, 배터리), 드론 자세 측정부(120), 비행 제어기(FC : Flight controller)(130), 위치 정보 획득부(140), 적어도 둘 이상의 라이다(LiDAR, Light Detection And Ranging) 센서(150), 통신부(160) 등을 포함할 수 있다.
드론 자세 측정부(120)는 3축 자이로 센서 및 3축 가속도 센서로 구성된 관성 센서(IMU :Inertial Measurement Unit)로서, 측량용 드론(100)의 움직임과 자세 정보를 측정하여 비행 제어기(130)에 제공할 수 있다.
측량용 드론(100)의 비행 제어기(130)는 모터와 변속기(ESC : Electronic Speed Control)로 구성된 구동부(170)를 통해 측량용 드론(100)의 비행 자세 및 비행을 제어할 수 있다.
비행 제어기(130)는 드론 자세 측정부(120) 및 복수의 라이다 센서(150)와 연동하여 3차원 지형 데이터 생성에 필요한 데이터를 수집하는 제 1 프로세서(131) 및 측량용 드론(100)의 비행 자세 및 비행 제어 등과 같은 측정용 드론(100)의 운용에 필요한 제어 기능을 수행하는 제 2 프로세서(132)를 구비할 수 있다.
라이다 센서(150)는 측량용 드론(100)의 하부, 예컨대 다리 부분에 설치되어 높은 에너지 밀도와 짧은 주기를 갖는 펄스 신호를 생성할 수 있는 레이저를 해당 포인트에 조사한 후 반사되는 신호, 즉 반사파를 수신하며, 반사파에 대한 분석을 통해 해당 포인트에서의 깊이 데이터를 포함한 센싱 데이터를 생성한 후 이를 비행 제어기(130)의 제 1 프로세서(131)에 제공할 수 있다.
특히, 본 발명의 실시예에서 라이다 센서(150)는 10cm 이하 거리 측정 해상도를 가지며, 가로 75도 이상, 세로 15도 이상의 최대 방위각(FOV : Field Of View)를 가지며, 초당 4~10 프레임 가변 데이터를 생성할 수 있다.
또한, 라이다 센서(150)와 비행 제어기(130)의 제 1 프로세서(131)는 직렬 주변기기 인터페이스 버스(SPI : Serial Peripheral Interface Bus)를 통해 통신을 수행할 수 있다. 즉, 제 1 프로세서(131)는 라이더 센서(150)와 SPI로 연결되어 라이더 센서(150)로부터 센싱 데이터를 수신할 수 있다.
제 1 프로세서(131)는 센싱 데이터를 통신부(160)를 통해 초고속 광대역 통신망, 예컨대 5G 통신망에 송출하여 서버(200)에 실시간으로 전송할 수 있다. 이와 더불어, 제 1 프로세서(131)는 드론 자세 측정부(120)로부터 드론의 자세 정보 및 위치 정보 획득부(140)로부터 위치 정보를 획득한 후 자세 정보 및 위치 정보로 구성된 비행 정보를 생성한 후 이를 서버(200)에 실시간으로 전송할 수 있다.
특히, 본 발명의 실시예에 따른 라이다 센서(150)는 초당 60만 포인트 이상의 센싱 데이터를 생성할 수 있다.
이 경우, 제 1 프로세서(131)는 측량용 드론(100)이 정지 비행 상태에서 드론 자세 측정부(120) 및 위치 정보 획득부(140)로부터 획득한 위치 정보를 획득한 후 정지 비행 상태에서 라이다 센서(150)로부터 수신되는 복수의 포인트에 대한 센싱 데이터에 위치 정보 및 자세 정보를 매칭시킨 매칭 데이터를 생성한 후 이를 메모리(133)에 저장할 수 있다.
또한, 제 1 프로세서(131)는 정지 비행 상태에서 다시 비행 모드로 변경되어 비행이 시작되는 시점에서 메모리(133)에 저장된 매칭 데이터를 통신부(160)를 통해 서버(200)에 전송할 수 있다. 구체적으로, 제 1 프로세서(131)는 통신부(160)를 통해 5G 통신망에 접속하여 메모리(133)에 저장된 매칭 데이터를 서버(200)에 전송할 수 있다.
제 2 프로세서(132)는 측량용 드론(100)의 자세 정보를 측정하는 드론 자세 측정부(120), 측량용 드론(100)의 위치 정보를 획득하는 위치 정보 획득부(140) 및 복수의 구동부(170)와 연동되어 측량용 드론(100)의 정지 비행 및 비행 제어를 수행할 수 있다.
특히, 제 2 프로세서(132)는 통신부(160)를 통해 연결된 서버(200)로부터 비행 제어 명령을 실시간으로 수신하여 측량용 드론(100)의 비행을 제어할 수 있다.
또한, 제 2 프로세서(132)는 드론 자세 측정부(120)에서 제공되는 자세 정보를 토대로 측량용 드론(100)의 비행 자세 제어를 수행할 수 있다. 구체적으로, 제 2 프로세서(132)는 드론 자세 측정부(120)로부터 제공받은 자세 정보를 기반으로 비행 자세 제어를 통해 특정 지점에서의 측량용 드론(100)이 정지 비행할 수 있도록 하는 호퍼링 기능을 제공할 수 있다.
한편, 제 2 프로세서(132)는 비행 제어 명령을 초고속 광대역 통신망을 통해 연결된 관리자 단말기(250)로부터 수신할 수도 있다.
서버(200)는 측량용 드론(100)과 초고속 광대역 통신망으로 연결되어 측량용 드론(100)로부터 센싱 데이터 및 비행 정보를 수신하여 데이터베이스(210)를 구축할 수 있다. 여기에서, 센싱 데이터는 정지 비행 중 해당 포인트에서 라이다 센서(150)를 통해 측정한 포인트 데이터를 의미할 수 있다.
또한, 서버(200)는 데이터베이스(210)에 저장된 비행 정보의 위치 정보 기반으로 포인트 데이터들의 수집 위치를 판단하고, 자세 정보를 기초하여 해당 포인트에서의 측량용 드론(100)에 설치된 라이다 센서(150)의 방위각을 계산하며, 계산한 위치, 방위각 및 포인트 데이터를 기반으로 3차원 지형 데이터를 생성할 수 있다. 즉, 서버(200)는 포인트 데이터 내 깊이 데이터를 기초하여 3차원 지형 데이터를 생성할 수 있다.
특히, 본 발명의 실시예에서 라이다 센서(150)는 도 4에 도시된 바와 같이, 측량용 드론(100)의 다리 부분에 복수개, 예컨대 Z축 방향으로 적어도 세 개 이상 설치되어 어느 하나가 기준 라이다 센서(151)로 동작하고, 기준 라이다 센서(151)로부터 각 라이다 센서(152, 153)까지의 높이 값을 이용하여 Z축 좌표를 생성할 수 있다.
즉, 본 발명의 실시예에 따른 각 라이다 센서(151, 152, 153)는 측량용 드론(100)의 서로 다른 높이에 설치되어 설치 위치 값(Z축 좌표값)을 포인트 데이터와 함께 비행 제어기(130)에 제공할 수 있다.
이에 따라, 비행 제어기(130)의 제 1 프로세서(131)는 각 라이다 센서(151, 152, 153)에 의해 측정된 포인트 데이터와 Z축 좌표값을 초고속 광대역 통신망을 통해 연결된 서버(200)에 전송할 수 있다.
이 경우, 서버(200)는 포인트 데이터, Z축 좌표값, 비행 정보 등을 통해 데이터베이스(210)를 구축하고, 데이터베이스(210)에 저장된 데이터를 이용하여 3차원 지형 데이터를 생성할 수 있다.
본 발명의 다른 실시예에 따르면, 각 라디아 센서(150)는 측량용 드론(100)의 각 다리에 n(n은 1 이상의 자연수)개씩 설치되되, 각 다리의 끝 부분을 기준으로 Z축 방향으로 서로 다른 높이를 갖도록 설치되어 포인트 데이터를 생성함과 더불어 자신의 설치 위치 값을 비행 제어기(130)에 제공하여 서버(200)에 전송할 수 있다.
한편, 본 발명의 실시예에 따른 측량용 드론(100)에는 비행 시작 전에 다수의 정지 지점, 즉 정지 지점에 해당되는 GPS 좌표 정보를 갖는 비행 경로가 설정될 수 있다. 여기에서, 설정은 측량용 드론(100)과 유선 또는 무선으로 연결된 컴퓨팅 디바이스(미도시됨)에 의해 이루어지거나 서버(200)로부터 제공받은 이루어질 수 있다.
이 경우, 측량용 드론(100)의 제 2 프로세서(132)는 메모리(133)에 비행 경로를 저장하고, 비행 중 실시간으로 위치 정보 획득부(140)로부터 획득한 위치 정보와 비행 경로 내 정지 지점의 GPS 좌표 정보간의 비교를 통해 정지 비행, 즉 호퍼링 기능의 수행이 필요한지를 판단할 수 있다.
정지 비행 상태에서, 측량용 드론(100)은 제 2 프로세서(132)에 의해 기 설정된 시간 동안 호퍼링 기능을 수행하며, 통신부(160)를 통해 연결된 서버(200)에 데이터, 즉 라이다 센서(150)에 의해 측정된 포인트 데이터, 비행 정보 등을 전송할 수 있다.
상술한 바와 같은 구성을 갖는 측량용 드론이 동작하는 과정에 대해 도 5를 참조하여 설명하기로 한다.
도 5는 본 발명의 실시예에 따른 측량용 드론을 이용하여 데이터 수집 및 3차원 지형 데이터를 생성하는 과정을 도시한 흐름도이다.
도 5에 도시된 바와 같이, 측량용 드론(100)은 통신 연결 설정 과정을 통해 서버(200)와 초고속 광대역 통신망으로 연결될 수 있다(S300).
그런 다음, 측량용 드론(100)에는 다수의 정지 지점을 갖는 비행 경로가 설정된다(S302).
이후, 측량용 드론(100)은 비행 경로에 의거하여 비행을 시작(S304)하고, 비행 시작과 더불어 위치 정보 획득부(140)로부터 위치 정보를 획득한 후 위치 정보와 정지 지점 상의 GPS 좌표 정보간의 비교를 통해 정지 지점에 도착하였는지를 판단한다(S306).
정지 지점에 도달한 경우, 측량용 드론(100)은 호퍼링 기능을 통해 정지 비행을 수행하며(S308), 라이다 센서(150)의 구동을 통해 포인트 데이터를 생성한다(S310).
이후, 측량용 드론(100)은 포인트 데이터, 비행 정보(예컨대 위치 정보와 자세 정보 등을 포함함), 라이다 센서(150)의 설치 위치 값 등을 통신부(160)를 통해 서버(200)에 전송한다(S312).
기 설정된 시간이 경과 또는 기 설정된 양의 데이터 전송이 완료된 것이 인지됨에 따라 측량용 드론(100)은 비행 경로를 기반으로 다음 정지 지점까지의 비행을 시작(S314)할 수 있다.
상술한 바와 같은 S302에서 S314까지의 반복적으로 수행하여 3차원 지형 데이터의 생성에 필요한 데이터가 데이터베이스(210)에 구축됨에 따라 서버(200)는 데이터베이스(210)에 구축된 데이터를 이용하여 해당 지역에 대한 3차원 지형 데이터를 생성한다(S316).
한편, 첨부된 블록도의 각 블록과 흐름도의 각 단계의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수도 있다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 블록도의 각 블록에서 설명된 기능들을 수행하는 수단을 생성하게 된다.
이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 기록매체(또는 메모리) 등에 저장되는 것도 가능하므로, 그 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 기록매체(또는 메모리)에 저장된 인스트럭션들은 블록도의 각 블록에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다.
그리고, 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 블록도의 각 블록에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 적어도 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실시 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
100 : 측량용 드론
200 : 서버
210 : 데이터베이스
250 : 관리자 단말기
200 : 서버
210 : 데이터베이스
250 : 관리자 단말기
Claims (4)
- 측량용 드론에 있어서,
상기 측량용 드론을 초고속 광대역 통신망을 통해 서버에 연결시키는 통신부와,
상기 측량용 드론에 장착되어 임의의 포인트에서 깊이 데이터를 포함한 포인트 데이터를 생성하는 복수의 라이다 센서와,
상기 측량용 드론의 비행 시 자세 정보를 측정하는 드론 자세 측정부와,
상기 측량용 드론의 위치 관련 정보를 획득하는 위치 정보 획득부와,
상기 측량용 드론에 대한 비행을 제어하며, 상기 자세 정보 및 상기 위치 정보를 기반으로 상기 측량용 드론의 비행 및 비행 자세를 제어하며, 상기 측량용 드론이 정지 비행 상태에 돌입됨에 따라 상기 라이다 센서에서 생성된 포인트 데이터를 상기 통신부를 통해 상기 서버에 전송하며, 상기 자세 정보 및 위치 정보를 포함한 비행 정보를 수집하여 상기 통신부를 통해 상기 서버에 전송하는 비행 제어기를 포함하는 측량용 드론.
- 제1항에 있어서,
상기 비행 제어기는,
상기 서버로부터 비행 제어 명령을 수신하며, 상기 수신한 비행 제어 명령에 따라 상기 측량용 드론의 비행을 제어하는 측량용 드론.
- 제1항에 있어서,
상기 라이다 센서는,
상기 측량용 드론의 다리 부분에 수직 방향으로 적어도 세 개 이상 설치되는 측량용 드론.
- 측량용 드론을 이용한 3차원 지형 데이터를 생성하는 방법에 있어서,
해당 지역에 대해 복수의 정지 지점이 포함된 비행 경로를 생성한 후 이를 상기 측량용 드론에 셋팅하는 단계와,
해당 지역에 대해 비행 경로를 기반으로 상기 측량용 드론이 비행하는 단계와,
상기 비행 경로를 통해 비행 중 정지 지점에 도달함에 따라 상기 측량용 드론을 정지 비행 상태로 제어하는 단계와,
상기 정지 비행 상태에서 라이다 센서의 구동을 통해 포인트를 생성하는 단계와,
상기 포인트 데이터 및 상기 측량용 드론의 비행 정보를 상기 측량용 드론과 초고속 광대역 통신망으로 연결된 서버에 전송하는 단계와,
상기 단계들을 반복적으로 수행하여 상기 비행 경로 상 각 정지 지점에서의 포인트 데이터 및 비행 정보를 상기 서버의 데이터베이스에 저장하는 단계와,
상기 서버에서 상기 비행 정보의 위치 정보 기반으로 상기 포인트 데이터들의 수집 위치를 판단하고, 상기 자세 정보를 기초하여 상기 측량용 드론에 설치된 라이다 센서의 방위각을 계산하며, 상기 계산한 위치, 방위각 및 포인트 데이터를 기반으로 3차원 지형 데이터를 생성하는 단계를 포함하는 측량용 드론을 이용한 3차원 지형 데이터 생성 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210168833A KR102652927B1 (ko) | 2021-11-30 | 2021-11-30 | 측량용 드론 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210168833A KR102652927B1 (ko) | 2021-11-30 | 2021-11-30 | 측량용 드론 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230081099A true KR20230081099A (ko) | 2023-06-07 |
KR102652927B1 KR102652927B1 (ko) | 2024-04-01 |
Family
ID=86761493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210168833A KR102652927B1 (ko) | 2021-11-30 | 2021-11-30 | 측량용 드론 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102652927B1 (ko) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100860767B1 (ko) * | 2008-04-22 | 2008-09-29 | (주)신한항업 | 항공 레이저 측량 데이터를 이용한 수치도화 제작 장치 및방법 |
US20160046373A1 (en) * | 2013-03-11 | 2016-02-18 | Airphrame, Inc. | Unmanned aerial vehicle and methods for controlling same |
WO2016160961A1 (en) * | 2015-03-31 | 2016-10-06 | Amazon Technologies, Inc. | Modular lidar system |
KR102082946B1 (ko) * | 2017-12-07 | 2020-04-28 | (주)유에스티21 | 연안 모니터링 및 관측을 위한 공중 및 수상 복합 이동체 |
KR102149658B1 (ko) * | 2018-11-21 | 2020-09-02 | 한국전력공사 | 전력설비를 활용한 드론 충전 시스템, 이의 방법, 및 이 방법을 저장한 컴퓨터 판독 가능한 저장 매체 |
KR102170907B1 (ko) | 2019-05-09 | 2020-10-28 | 주식회사 이쓰리 | 무인항공기를 이용한 미세먼지 측정장치 |
KR20210064841A (ko) * | 2019-11-26 | 2021-06-03 | 군산대학교산학협력단 | 지적 측량 드론 및 이를 이용한 지적 측량 방법 |
KR102312012B1 (ko) * | 2021-04-13 | 2021-10-12 | 세종대학교산학협력단 | 무인 비행체의 거리 센서를 이용한 지표면의 공중 분석 |
KR102475042B1 (ko) * | 2018-09-28 | 2022-12-06 | 현대오토에버 주식회사 | 정밀 지도 구축 장치 및 방법 |
-
2021
- 2021-11-30 KR KR1020210168833A patent/KR102652927B1/ko active IP Right Grant
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100860767B1 (ko) * | 2008-04-22 | 2008-09-29 | (주)신한항업 | 항공 레이저 측량 데이터를 이용한 수치도화 제작 장치 및방법 |
US20160046373A1 (en) * | 2013-03-11 | 2016-02-18 | Airphrame, Inc. | Unmanned aerial vehicle and methods for controlling same |
WO2016160961A1 (en) * | 2015-03-31 | 2016-10-06 | Amazon Technologies, Inc. | Modular lidar system |
KR102082946B1 (ko) * | 2017-12-07 | 2020-04-28 | (주)유에스티21 | 연안 모니터링 및 관측을 위한 공중 및 수상 복합 이동체 |
KR102475042B1 (ko) * | 2018-09-28 | 2022-12-06 | 현대오토에버 주식회사 | 정밀 지도 구축 장치 및 방법 |
KR102149658B1 (ko) * | 2018-11-21 | 2020-09-02 | 한국전력공사 | 전력설비를 활용한 드론 충전 시스템, 이의 방법, 및 이 방법을 저장한 컴퓨터 판독 가능한 저장 매체 |
KR102170907B1 (ko) | 2019-05-09 | 2020-10-28 | 주식회사 이쓰리 | 무인항공기를 이용한 미세먼지 측정장치 |
KR20210064841A (ko) * | 2019-11-26 | 2021-06-03 | 군산대학교산학협력단 | 지적 측량 드론 및 이를 이용한 지적 측량 방법 |
KR102312012B1 (ko) * | 2021-04-13 | 2021-10-12 | 세종대학교산학협력단 | 무인 비행체의 거리 센서를 이용한 지표면의 공중 분석 |
Also Published As
Publication number | Publication date |
---|---|
KR102652927B1 (ko) | 2024-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110673115B (zh) | 雷达与组合导航系统的联合标定方法、装置、设备及介质 | |
CN110458961B (zh) | 基于增强现实的系统 | |
CN109212540A (zh) | 基于激光雷达系统的测距方法、装置及可读存储介质 | |
CN108427438A (zh) | 飞行环境检测方法、装置、电子设备及存储介质 | |
CN113820735B (zh) | 位置信息的确定方法、位置测量设备、终端及存储介质 | |
CN108073167A (zh) | 一种基于深度相机与激光雷达的定位与导航方法 | |
CN111033561A (zh) | 用于利用语义信息来导航机器人设备的系统和方法 | |
US10131446B1 (en) | Addressing multiple time around (MTA) ambiguities, particularly for lidar systems, and particularly for autonomous aircraft | |
CN112506222A (zh) | 一种无人机智能化避障方法及装置 | |
CN109239725A (zh) | 基于激光测距装置的地图测绘方法及终端 | |
CN112631314B (zh) | 基于多线激光雷达与事件相机slam的机器人控制方法、系统 | |
CN106851575B (zh) | 一种统一定位基站坐标系的方法和定位校准装置 | |
CN111947644B (zh) | 一种室外移动机器人定位方法、系统及其电子设备 | |
CN113767264A (zh) | 参数标定方法、装置、系统和存储介质 | |
CN110262538B (zh) | 地图数据采集方法、装置、设备及存储介质 | |
US20210229810A1 (en) | Information processing device, flight control method, and flight control system | |
CN110988949A (zh) | 定位方法、定位装置、计算机可读存储介质与可移动设备 | |
CN112146627A (zh) | 在无特征表面上使用投影图案的飞行器成像系统 | |
CN112447058B (zh) | 泊车方法、装置、计算机设备及存储介质 | |
KR20170074388A (ko) | 고정밀 측위 시스템 및 방법 | |
CN114689046A (zh) | 一种无人机巡检隧道的方法与系统 | |
JPH10318743A (ja) | 飛行体を用いた測量方法及びその装置 | |
KR20230081099A (ko) | 측량용 드론과 이를 이용한 3차원 지형 데이터 생성 방법 | |
CN112229396B (zh) | 无人车重定位方法、装置、设备及存储介质 | |
EP3943979A1 (en) | Indoor device localization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |