KR20230074702A - High plasticity thermoforming steel for automobiles with antioxidant performance and thermoforming process - Google Patents

High plasticity thermoforming steel for automobiles with antioxidant performance and thermoforming process Download PDF

Info

Publication number
KR20230074702A
KR20230074702A KR1020237002199A KR20237002199A KR20230074702A KR 20230074702 A KR20230074702 A KR 20230074702A KR 1020237002199 A KR1020237002199 A KR 1020237002199A KR 20237002199 A KR20237002199 A KR 20237002199A KR 20230074702 A KR20230074702 A KR 20230074702A
Authority
KR
South Korea
Prior art keywords
steel
thermoforming
automobiles
high plasticity
thermoformed
Prior art date
Application number
KR1020237002199A
Other languages
Korean (ko)
Inventor
이 동
샤오광 쉬
렌동 리우
쳉치안 선
츄페이 한
준숑 왕
Original Assignee
안강 스틸 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안강 스틸 컴퍼니 리미티드 filed Critical 안강 스틸 컴퍼니 리미티드
Publication of KR20230074702A publication Critical patent/KR20230074702A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

본 발명은 항산화성능을 구비한 자동차용 고가소성 열성형 강 및 열성형 공정을 제공하며, 상기 열 성형 강은, C:0.18%-0.28%, Si:≤0.20%, Mn:1.20%-2.0%, P:0.030%-0.080%, S≤0.004%, Als:0.02%-0.06%, Nb:0.02%-0.06%, Ti:0.025%-0.045%, V:0.05%-0.15%, Cr:0.5%-2.50%, Mo:0.10%-0.30%, B:0.0015%-0.0035%, N≤0.005%, 잔부는 Fe 및 불가피한 불순물인 화학 성분 질량 백분율을 구비한다. 본 발명에서 제공하는 열성형 강은 높은 항산화성 및 고가소성을 구비하고, 열성형 시 분위기 보호가 필요하지 않으며 열성형 후 블라스팅 처리가 필요하지 않다.The present invention provides a high plasticity thermoforming steel for automobiles having antioxidant performance and a thermoforming process, wherein the thermoforming steel is: C: 0.18%-0.28%, Si: ≤0.20%, Mn: 1.20%-2.0% , P:0.030%-0.080%, S≤0.004%, Als:0.02%-0.06%, Nb:0.02%-0.06%, Ti:0.025%-0.045%, V:0.05%-0.15%, Cr:0.5% -2.50%, Mo: 0.10% -0.30%, B: 0.0015% -0.0035%, N≤0.005%, the balance being Fe and unavoidable impurities, chemical composition mass percentages. The thermoformed steel provided in the present invention has high antioxidant properties and high plasticity, and does not require atmosphere protection during thermoforming and does not require blasting after thermoforming.

Description

항산화성능을 구비한 자동차용 고가소성 열성형 강 및 열성형 공정High plasticity thermoforming steel for automobiles with antioxidant performance and thermoforming process

본 발명은 자동차용 강 기술 분야에 관한 것으로, 구체적으로는 항산화성능을 구비한 자동차용 고가소성 열성형 강 및 열성형 공정에 관한 것이다.The present invention relates to the technical field of steel for automobiles, and more particularly, to a high plasticity thermoforming steel for automobiles having antioxidant performance and a thermoforming process.

근년래 차체용 신소재가 지속적으로 개발되어 차체에 적용되었지만 1000MPa 이상의 냉간 프레스용 초고강도 강판은 균열 및 리바운드가 큰 등 문제의 제약을 받아 통상 단순한 형상의 부재 제조에 사용된다. 하지만 열성형 강은 열성형 공정으로 오스테나이트 영역에서 성형되기에 리바운드량이 작아 조립 정밀도의 요구 사항을 충족할 수 있으며 보압 퀀칭을 통해 1500MPa 이상의 초고강력 부재를 얻을 수 있어 차체 구조와 부품 설계를 효과적으로 간소화시켰고 차량 무게를 크게 저감하였다. In recent years, new materials for car bodies have been continuously developed and applied to car bodies, but ultra-high-strength steel sheets for cold pressing of 1000 MPa or more are limited by problems such as cracks and large rebound, and are usually used for manufacturing simple-shaped members. However, since thermoformed steel is formed in the austenite region through the thermoforming process, the rebound amount is small, so it can meet the requirements for assembly precision, and through holding and pressure quenching, ultra-high strength members of 1500MPa or more can be obtained, effectively simplifying the body structure and part design. and significantly reduced vehicle weight.

현재 시장에 있는 열성형 강은 표면 상태에 따라 코팅층이 있는 열성형 강과 무코팅층 열성형 강으로 나눌 수 있는데, 이 중 무코팅층강은 가열로에서 가열할 때 강철 표면에 산화철을 형성하기 쉽고 탈탄 상황이 발생하여 강철의 성능에 영향을 미치므로 가열할 때 보호 분위기를 사용해야 하며, 동시에 열성형 후 쇼트 블라스팅 처리를 진행해야 하므로 원가와 공정이 증가되고; 하지만 코팅층강은 강판 표면에 알루미늄 규소 코팅층 또는 아연 기반 코팅층이 있어 가열 과정에서 강철의 표면 탈탄화 및 산화를 효과적으로 방지할 수 있으며, 열성형 후 쇼트 블라스팅 공정을 면제할 수 있지만 무코팅층 강에 비하여 코팅층 열성형 강의 원가가 비교적 높다. 기존 기술로 대량 생산 및 사용되는 열성형 강의 강도 수준은 1500MPa 이지만 열성형 후 연신율은 단지 6-9% 정도이므로 자동차 분야의 발전 수요를 충족시키지 못하며, 열성형 후 강철을 비교적 낮은 원가를 유지하면서 표면 산화 탈탄 문제를 해결할 수 있으며 쇼트 블라스팅 공정을 피면할 수 있는 동시에 열성형 후 또한 높은 가소성을 구비할 수 있도록 하는 비교적 좋은 기술은 아직 없다. Currently, thermoforming steel on the market can be divided into coated thermoforming steel and uncoated thermoforming steel according to the surface condition. This occurs and affects the performance of steel, so it is necessary to use a protective atmosphere when heating, and at the same time to carry out shot blasting treatment after thermoforming, which increases costs and processes; However, coated layer steel has an aluminum silicon coating layer or a zinc-based coating layer on the surface of the steel sheet, which can effectively prevent surface decarburization and oxidation of the steel during the heating process, and can exempt the shot blasting process after thermoforming, but the coating layer is lower than that of non-coated layer steel. The cost of thermoforming steel is relatively high. The strength level of thermoformed steel mass-produced and used with existing technology is 1500 MPa, but the elongation after thermoforming is only 6-9%, which cannot meet the demand for power generation in the automotive field. There is still no relatively good technology that can solve the problem of oxidative decarburization and avoid the shot blasting process, while also having high plasticity after thermoforming.

공개 번호가 CN107354385B 인 특허에서 초고강도의 자동차용 열성형 강의 제조방법을 제시하였으며, 성분중 C:0.5-0.6%, Mn:0.5%-2.0%, Si:1.5%-2.5%, Cr:1.0%-3.0%, Al:1.0%-2.0%, Nb:0.01%-0.03%, B:0.001%-0.005%이며, 열성형 후 강판의 강도는 1500-2000MPa에 달하며 연신율은 10%-20%이다. 이 특허에서 제시한 강판은 우수한 고가소성을 구비하지만 성분중의 Cr,Al의 함량이 비교적 높기에 원가 및 제련의 난이도가 증가되며, 동시에 생산공정이 복잡하고 기존 장비가 생산요구를 충족시키지 못하며, 또한 생산시에 분위기 보호와 쇼트 블라스팅 공정을 필요로 한다. In the patent with Publication No. CN107354385B, a method for manufacturing ultra-high-strength thermoforming steel for automobiles was presented, and among the components, C: 0.5-0.6%, Mn: 0.5%-2.0%, Si: 1.5%-2.5%, Cr: 1.0% -3.0%, Al: 1.0%-2.0%, Nb: 0.01%-0.03%, B: 0.001%-0.005%, the strength of the steel sheet after thermoforming reaches 1500-2000MPa, and the elongation is 10%-20%. The steel sheet presented in this patent has excellent high plasticity, but the cost and difficulty of smelting increase due to the relatively high content of Cr and Al in the components. At the same time, the production process is complicated and the existing equipment does not meet the production requirements, In addition, atmosphere protection and shot blasting processes are required during production.

공개번호가 CN103255340B 인 특허에서 자동차용 고인성 열성형 강판 및 그의 제조방법을 제시하였으며, 강판의 화학 성분 중 C:0.1%-0.5%, Si:0.5-1.5%, Mn:1.2%-2.4%, Ti:0.01%-0.05%, B:0.001%-0.005%, S:≤0.01%, P:≤0.01%이고, 열성형 후 강판의 인장 강도는 1600MPa, 연신율은 16%에 달하며 종합 성능이 우수하고 합금 원가가 비교적 낮다. 하지만 강판은 최종의 조직 및 기계적 특성을 얻기 위해 가열 과정에서 변형한 후 2차의 담금질을 필요로 하므로 이의 열 성형 공정이 복잡하고 기존 장비로서는 달성할 수 없으며 가열 시 여전히 가스 보호가 필요하며 열 성형 후 쇼트 블라스팅 처리를 진행해야 한다. In the patent with Publication No. CN103255340B, a high-toughness thermoformed steel sheet for automobiles and a manufacturing method thereof are presented, and among the chemical components of the steel sheet, C: 0.1%-0.5%, Si: 0.5-1.5%, Mn: 1.2%-2.4%, Ti:0.01%-0.05%, B:0.001%-0.005%, S:≤0.01%, P:≤0.01%, the tensile strength of the steel sheet after thermoforming is 1600MPa, the elongation rate reaches 16%, and the overall performance is excellent. The alloy cost is relatively low. However, since steel sheet requires secondary quenching after deformation in the heating process to obtain the final structure and mechanical properties, its thermoforming process is complicated and cannot be achieved with conventional equipment, gas protection is still required during heating, and thermoforming After that, shot blasting should be performed.

상기를 종합하면, 항산화성이 우수한 자동차용 고가소성 열성형 강 및 열성형 공정의 개발은 좋은 응용 전망을 가지고 있다.Taken together, the development of high plasticity thermoforming steel for automobiles with excellent antioxidant properties and thermoforming process has good application prospects.

상기와 같은 기술적 과제에 따라, 항산화성능을 구비한 자동차용 고가소성 열성형 강 및 열성형 공정을 제공한다.According to the above technical problem, to provide a high-plasticity thermoforming steel and a thermoforming process for automobiles having antioxidant performance.

본 발명의 기술적 수단은 다음과 같다. The technical means of the present invention are as follows.

항산화성능을 구비한 자동차용 고가소성 열성형 강에 있어서, 상기 열성형 강의 화학 성분의 질량 백분율은, C:0.18%-0.28%, Si:≤0.20%, Mn:1.20%-2.0 %, P:0.030%-0.080%, S≤0.004%, Als:0.02%-0.06%, Nb:0.02%-0.06%, Ti:0.025%-0.045%, V:0.05%-0.15%, Cr:0.5%-2.50%, Mo:0.10%-0.30%, B:0.0015%-0.0035%, N≤0.005% 잔부는 Fe 및 불가피한 불순물이다. In the high plastic thermoforming steel for automobiles having antioxidant performance, the mass percentages of the chemical components of the thermoforming steel are: C: 0.18%-0.28%, Si: ≤0.20%, Mn: 1.20%-2.0%, P: 0.030%-0.080%, S≤0.004%, Als:0.02%-0.06%, Nb:0.02%-0.06%, Ti:0.025%-0.045%, V:0.05%-0.15%, Cr:0.5%-2.50% , Mo: 0.10% - 0.30%, B: 0.0015% - 0.0035%, N≤0.005% The balance is Fe and unavoidable impurities.

열성형 강의 조직은 페라이트, 마르텐사이트 및 잔류 오스테나이트로 구성된다. The structure of thermoformed steel consists of ferrite, martensite and retained austenite.

상기 페라이트의 부피 분율은 5%-12%, 상기 마르텐사이트의 부피 분율은 78%-89%, 상기 잔류 오스테나이트의 부피 분율은 6%-10%이다. The volume fraction of ferrite is 5%-12%, the volume fraction of martensite is 78%-89%, and the volume fraction of retained austenite is 6%-10%.

상기 열성형 강의 인장 강도는 1400MPa-1700MPa이며, 항산화 속도는 0.1g/(m2·h) 미만이고, 항복 강도는 900MPa-1450MPa이며, 연신율은 18.0% 이상이고 강의 표면은 완전히 탈탄화되지 않고 탈탄층의 두께는 15μm이하이고, 상기 열성형 강판의 두께는 0.8mm-12.0mm이다. The tensile strength of the thermoformed steel is 1400MPa-1700MPa, the oxidation rate is less than 0.1g/(m 2 ·h), the yield strength is 900MPa-1450MPa, the elongation is 18.0% or more, and the surface of the steel is not completely decarburized and decarburized. The thickness of the layer is 15 μm or less, and the thickness of the thermoformed steel sheet is 0.8 mm-12.0 mm.

본 발명에 의해 개시된 열성형 강 성분의 주요 작용은 다음과 같다. The main actions of the thermoforming steel component disclosed by the present invention are as follows.

C: C는 강의 강도를 확보하기 위한 필요한 요소인 바, 강의 담금질성을 높이는데 유리하며, 탄소 함량이 너무 낮으면 열간 프레스 후 강의 강도가 예상 목표에 도달하지 못하고 탄소 함량이 너무 높으면 열간 성형 후 강의 강도가 너무 높아 가소성이 저하된다. 이 외에, C 함량의 증가는 강철의 상전이 온도를 낮추고 오스테나이트화 온도를 낮추어 비 쇼트 블라스팅 표면을 얻는데 도움이 되며, 동시에 C 함량의 증가는 열 성형 및 압력 유지 과정에서 강이 충분한 함량의 과냉각 오스테나이트를 생성하여 가소성을 향상시키는데 도움이 된다. 따라서 본 발명에서 C의 최적 범위는 0.18%-0.28%이다. C: C is a necessary element for securing the strength of steel, and is advantageous for increasing the hardenability of steel. If the carbon content is too low, the strength of the steel after hot pressing cannot reach the expected target, and if the carbon content is too high, after hot forming The strength of the steel is too high and the plasticity is reduced. In addition to this, increasing the C content helps to lower the phase transition temperature of steel and lower the austenitizing temperature to obtain a non-shot blasted surface, at the same time, increasing the C content helps the steel to have a sufficient supercooled austenitic content during the thermoforming and pressure holding process. It helps to improve plasticity by generating nitrite. Therefore, the optimal range of C in the present invention is 0.18%-0.28%.

Si: Si는 강철에서 탄화물 석출이 없는 원소로서 열 성형 냉각 및 압력 유지 과정에서 탄화물 석출에 좋은 억제 효과가 있어 잔류 오스테나이트 함량과 안정성을 확보한다. 하지만 Si 함량이 너무 높으면 열성형 기판 표면에 다량의 산화철 껍질, 색차와 같은 결함이 발생하여 열성형 부품의 표면 품질에 영향을 미치며 동시에 너무 높은 Si 원소는 2상 영역을 확장하고 오스테나이트화 온도를 높여 강철을 비교적 높은 온도에서 보온시켜 강철 표면을 악화시키기 쉽다. 따라서 본 발명에서 제안한 Si의 함량은 ≤0.20%이다. Si: Si is an element that does not precipitate carbides in steel, and has a good inhibitory effect on carbide precipitation during thermoforming cooling and pressure maintenance to secure the retained austenite content and stability. However, if the Si content is too high, defects such as a large amount of iron oxide skin and color difference will occur on the surface of the thermoformed substrate, affecting the surface quality of the thermoformed part. It is easy to insulate the steel at a relatively high temperature by increasing the temperature, thereby deteriorating the steel surface. Therefore, the content of Si proposed in the present invention is ≤0.20%.

Mn: Mn은 본 발명에서 주로 강철의 담금질성을 향상시키고 상전이 온도를 낮추며 비교적 낮은 온도에서 강의 오스테나이트화를 실현하는 역할을 하며, Mn 함량이 너무 높으면 강철의 조직 균일성이 악화되어 조직에 심각한 띠 모양의 조직 결함이 발생하기 쉽다. 따라서 본 발명에서는 Mn의 함량을 1.20%-2.0 %로 선정하였다.Mn: In the present invention, Mn mainly serves to improve the hardenability of steel, lower the phase transition temperature, and realize austenitization of steel at a relatively low temperature. It is prone to band-shaped tissue defects. Therefore, in the present invention, the content of Mn was selected as 1.20%-2.0%.

P: 본 발명에서 P의 역할은 Si와 유사하고 시멘타이트의 생성을 억제하고 잔류 오스테나이트의 안정성을 증가시킬 수 있으며 동시에 P는 마르텐사이트 슬래브를 미세화하고 균일하게 분포하며 인성을 향상시킬 수 있다. 본 발명에서 P의 함량은 0.030%-0.080%이다. P: The role of P in the present invention is similar to that of Si, and can suppress the formation of cementite and increase the stability of retained austenite, while at the same time, P can refine and uniformly distribute martensite slabs and improve toughness. In the present invention, the content of P is 0.030%-0.080%.

S: S는 본 발명에서 유해 원소이며, S는 MnS의 혼입을 형성하여 강판의 미세조직과 기계적 특성을 악화시키므로 발명에서는 S≤0.004%로 한정한다. S: S is a harmful element in the present invention, and since S deteriorates the microstructure and mechanical properties of the steel sheet by forming incorporation of MnS, it is limited to S≤0.004% in the present invention.

Als: Als(산용해성 알루미늄)는 제련 과정에서 탈산소 및 질소 고정 역할을 일으키지만 Als가 너무 많으면 대량의 알루미늄계의 혼입을 초래한다. 따라서 본 발명에서 Als의 범위는 0.020%-0.060%이다. Als: Als (acid-soluble aluminum) plays a role in oxygenation and nitrogen fixation in the smelting process, but too much Als results in the incorporation of a large amount of aluminum. Therefore, the range of Als in the present invention is 0.020%-0.060%.

Cr: Cr은 강철의 담금질성을 향상시키는 원소로서, 본 발명에서 Cr 원소의 주요 기능은 강의 고온 항산화성을 향상시키는 동시에 강철의 템퍼링 안정성을 향상시켜 강철이 압력 유지 온도 범위에서 템퍼링 마르텐사이트가 발생하지 않도록 하는 것이다. 제일 바람직한 Cr 함량 범위는 0.5%에서 2.50%사이에 있다. Cr: Cr is an element that improves the hardenability of steel. In the present invention, the main function of the Cr element is to improve the high-temperature antioxidant properties of the steel and at the same time improve the tempering stability of the steel, so that the steel generates tempering martensite in the pressure holding temperature range is to avoid doing it. The most preferred Cr content range is between 0.5% and 2.50%.

Mo: Mo는 강의 강도와 인성을 향상시킬 수 있는 중강성 탄화물 형성 원소이다. 본 발명에서 Mo는 마르텐사이트 전이 온도를 낮추고 잔류 오스테나이트의 안정성을 크게 향상시킬 수 있으며 동시에 Mo 원소의 첨가는 강의 항산화성을 증가시켰다. 본 발명에서 Mo의 함량은 0.10%-0.30%이다. Mo: Mo is a medium-hardness carbide-forming element that can improve the strength and toughness of steel. In the present invention, Mo can lower the martensite transition temperature and greatly improve the stability of retained austenite, and at the same time, the addition of Mo element increases the antioxidant property of the steel. In the present invention, the content of Mo is 0.10%-0.30%.

Nb, V: Nb 및 V는 주로 강에서 미세 결정 강화 및 석출 강화 등의 역할을 한다. 본 발명에서 양자는 나노 크기의 미세한 탄화물을 통해 분산 석출되어 원래의 오스테나이트 립계를 효과적으로 피닝함으로써 열 성형 후 강판 중의 각 상 조직을 더욱 미세화시키고 종합 성능을 향상시킬 수 있다. 동시에 분산하여 석출된 탄화물은 수소 트랩으로 작용하여 강 중의 확산 가능한 수소를 피닝하여 지연파괴에 대한 저항성을 향상시킬 수 있다. 또한, V 와 N 에 의해 형성된 VN 석출은 BN 의 석출을 억제하고 B 석출로 인한 강도 감소를 피면할 수 있다. 본 발명에서 Nb의 함량은0.020%-0.060%이고 V의 함량은 0.050%-0.15%이다. Nb, V: Nb and V mainly play roles such as microcrystal strengthening and precipitation strengthening in steel. In the present invention, both are dispersed and precipitated through nano-sized fine carbides to effectively pin the original austenite grain boundary, thereby further refining each phase structure in the steel sheet after thermoforming and improving overall performance. At the same time, the dispersed and precipitated carbide acts as a hydrogen trap and pins diffusible hydrogen in the steel to improve resistance to delayed fracture. In addition, the VN precipitation formed by V and N can suppress the precipitation of BN and avoid a decrease in strength due to the B precipitation. In the present invention, the content of Nb is 0.020%-0.060% and the content of V is 0.050%-0.15%.

Ti: Ti는 붕소의 담금질 효과를 확보하기 위한 것으로서, 붕소 강에서 질소를 고정하는데 사용된다. 또한 Ti는 C 원소 특성을 가진 미세한 탄화물과 석출되어 열 성형 후 조직 중의 마르텐사이트의 경도와 강도를 감소시켜 강판의 가소성과 인성을 향상시키는 데 도움이 된다. 본 발명에서 Ti의 함량은 0.025%- 0.045%이다. Ti: Ti is used to secure the quenching effect of boron, and is used to fix nitrogen in boron steel. In addition, Ti is precipitated with fine carbides having C element properties to reduce the hardness and strength of martensite in the structure after thermoforming, thereby helping to improve the plasticity and toughness of the steel sheet. The content of Ti in the present invention is 0.025% - 0.045%.

B: 강에 붕소를 첨가하면 강의 담금질성을 크게 향상시킬 수 있고 담금질 후 강의 강도의 안정성을 확보할 수 있다. B 함량이 너무 낮으면 효과가 현저하지 않으며, B 함량이 너무 높으면 강 중의 N과 B의 화합물을 형성하기 쉬워 강판의 성능이 저하된다. 따라서 본 발명에서 B의 함량은 0.0015%-0.0035%이다. B: When boron is added to steel, the hardenability of the steel can be greatly improved and the stability of the strength of the steel after hardening can be secured. If the B content is too low, the effect is not remarkable, and if the B content is too high, it is easy to form a compound of N and B in the steel, and the performance of the steel sheet deteriorates. Therefore, the content of B in the present invention is 0.0015%-0.0035%.

N: N의 함량이 낮으면 낮을수록 좋지만, 너무 낮으면 생산이 어렵고 원가가 증가되므로 본 발명에서 N의 함량은 0.005%이하이다. N: The lower the N content, the better. However, if the N content is too low, production is difficult and costs increase. In the present invention, the N content is 0.005% or less.

본 발명에서는 C, Mn, Cr, Mo 등의 합금원소를 첨가하여 오스테나이트화 온도를 낮추고 강의 담금질성을 향상시켜 강의 산화를 억제하는데 유리하며 동시에 강철의 열성형 후의 임계 냉각 속도를 낮추어 두꺼운 규격의 열성형 강의 생산을 진행할 수 있다. 또한, 화학 성분과 열성형 공정을 배합하여 공기 냉각 단계에서 일정량의 페라이트를 얻고 냉각 후 압력 유지 단계에서 일정량의 안정성이 좋은 잔류 오스테나이트를 얻어 강의 가소성을 향상시키며, 성분 중 Si와 P 원소의 첨가는 탄화물 석출을 억제하였고 강 중의 잔류 오스테나이트 함량을 확보하였으며 강의 기계적 성능을 향상시켰고, 또한 강 성분 중의 Cr, Mo 원소가 항산화 작용을 하여 강을 보호 분위기가 없는 조건에서 가열 및 보온할 수 있게 하며, 열성형 후 쇼트 블라스팅 없이 바로 후속 공정 생산을 진행할 수 있다. In the present invention, alloying elements such as C, Mn, Cr, and Mo are added to lower the austenitization temperature and improve the hardenability of the steel, which is advantageous in suppressing oxidation of the steel. Production of thermoformed steel can be carried out. In addition, by combining the chemical components and the thermoforming process, a certain amount of ferrite is obtained in the air cooling step, and a certain amount of retained austenite with good stability is obtained in the pressure holding step after cooling to improve the plasticity of the steel, and the addition of Si and P elements among the components suppressed the precipitation of carbides, secured the retained austenite content in the steel, improved the mechanical performance of the steel, and also the Cr and Mo elements in the steel components act as antioxidants, enabling the steel to be heated and kept warm in conditions without a protective atmosphere, , After thermoforming, the subsequent production process can proceed immediately without shot blasting.

본 발명에서는 또한 하기 단계를 포함하는 항산화성능을 구비한 자동차용 고가소성 열성형 강의 열성형 공정을 공개하였다. The present invention also discloses a thermoforming process of high plasticity thermoforming steel for automobiles having antioxidant performance including the following steps.

(1) 상기 성분을 함유하는 열성형 기판을 온도 AC3-AC3+15℃의 가열로에 넣어 가열 및 보온하며, 보온시간은 180s-300s이며; (1) put the thermoforming substrate containing the above components in a heating furnace at a temperature of A C3 -A C3 +15°C to heat and keep warm, and keep warm for 180s-300s;

(2) 가열된 열성형 기판을 가열로에서 꺼내 공기 냉각하고 Ar3 온도까지 공기 냉각한 후 5s-8s 머무른 후 열성형 금형에 넣어 변형 및 냉각을 진행하고, 냉각속도 ≥18℃/s이고, 180℃-250℃까지 냉각한 후 보압을 진행하고, 보압 시간은 40s-80s이며, 보압 후 성형된 부품을 꺼내어 실온까지 공기 냉각하여 상기 열성형 강을 얻는다. (2) Take the heated thermoforming substrate out of the heating furnace, air cool it, air cool it to Ar3 temperature, stay for 5s-8s, put it in a thermoforming mold to deform and cool, cooling rate ≥18℃/s, After cooling to 180°C-250°C, packing is performed, the holding time is 40s-80s, and after packing, the molded parts are taken out and air-cooled to room temperature to obtain the thermoforming steel.

본 발명에서 제공한 강은 열성형 시 분위기 보호가 필요 없고, 열성형 후 쇼트 블라스팅 처리가 필요하지 않으며, 후속 공정을 바로 수행할 수 있으며, 전체 공정 원가가 현재 열성형 제품보다 낮다. The steel provided in the present invention does not require atmosphere protection during thermoforming, does not require shot blasting treatment after thermoforming, and can perform subsequent processes immediately, and the overall process cost is lower than that of current thermoforming products.

상기 열간 성형 기판은 제련, 열간 압연 및 냉간 압연을 거쳐 얻은 것이다. 제련의 성분 및 그의 질량 백분율은 상기 항산화성능을 구비한 자동차용 고가소성 열성형 강의 성분 및 그의 질량 백분율이다.The hot-formed substrate is obtained through smelting, hot rolling and cold rolling. Components of smelting and their mass percentages are the components of high-plasticity thermoforming steel for automobiles having the above antioxidant properties and their mass percentages.

본 발명은 선행 기술에 비해 다음과 같은 장점이 있다. The present invention has the following advantages over the prior art.

(1) 화학 성분과 열성형 공정의 배합을 통해 기존의 전부 마르텐사이트인 조직에 일정 함량의 페라이트와 잔류 오스테나이트 조직을 도입시켜 강의 가소성을 향상시켰으며, 인장 강도가 1400MPa 이상인 조건하에서, 연신율이 12%에 달하고 이를 초과할 수 있도록 보장한다. (1) Through the combination of chemical components and thermoforming process, a certain amount of ferrite and retained austenite was introduced into the existing all-martensitic structure to improve the plasticity of the steel, and under the condition of tensile strength of 1400 MPa or more, the elongation was It reaches 12% and is guaranteed to exceed it.

(2) Cr 등의 원소를 첨가하여 강의 항산화 성능을 향상시키고, 강판의 항산화 속도는 0.1g/(m2·h) 미만이고, 항산화성 등급은 1급에 도달하며, 강은 열성형 시 분위기 보호가 필요하지 않고, 열성형 후 쇼트 블라스팅 처리가 필요하지 않으며, 후속 공정을 직접 진행할 수 있다. (2) Adding elements such as Cr to improve the antioxidant performance of the steel, the antioxidant rate of the steel sheet is less than 0.1g/(m 2 ·h), the antioxidant grade reaches the first class, and the steel is heated in the atmosphere during thermoforming No protection is required, no shot blasting treatment is required after thermoforming, and subsequent processing can be carried out directly.

(3) 제안된 열성형 강 및 열성형 공정은 장비 개조 없이 기존 장비로 구현될 수 있으며 원가가 낮다. (3) The proposed thermoforming steel and thermoforming process can be implemented with existing equipment without equipment modification, and the cost is low.

상기 이유로 본 발명은 자동차용 강 등의 분야에서 널리 보급될 수 있다.For these reasons, the present invention can be widely spread in fields such as automotive steel.

설명해야 할 것은, 본 발명의 실시예 및 실시예의 특징은 충돌하지 않은 상황하에서 서로 결합될 수 있다. 설명된 실시예는 단지 본 발명의 일부 실시예일 뿐 모든 실시예는 아니다. 다음의 적어도 하나의 예시적인 실시예에 대한 설명은 실제상 단지 예시일 뿐이며, 본 발명 및 이의 적용 또는 사용에 대한 어떠한 제한으로도 작용하지 않는다. 본 발명의 실시예에 기초하여, 본 분야의 당업자가 진보성 있는 노동을 들이지 않는 전제 하에서 얻은 다른 모든 실시예는 본 발명의 보호 범위에 속한다. It should be noted that embodiments of the present invention and features of embodiments may be combined with each other under non-conflicting circumstances. The described embodiments are only some, but not all, of the present invention. The following description of at least one exemplary embodiment is merely illustrative in nature and does not act as any limitation to the invention or its application or use. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without inventive labor shall fall within the protection scope of the present invention.

본 발명은 항산화성능을 구비한 자동차용 고가소성 열성형 강을 제공하였는바, 상기 열성형 강은, C:0.18%-0.28%, Si:≤0.20%, Mn:1.20%-2.0%, P:0.030%-0.080%, S≤0.004%, Als:0.02%-0.06%, Nb:0.02%-0.06%, Ti:0.025%-0.045%, V:0.05%-0.15%, Cr:0.5%-2.50%, Mo:0.10%-0.30%, B:0.0015%-0.0035%, N≤0.005%, 잔부가 Fe 및 불가피한 불순물인 화학 성분 질량 백분율을 구비한다. The present invention provides a high-plasticity thermoforming steel for automobiles having antioxidant performance. 0.030%-0.080%, S≤0.004%, Als:0.02%-0.06%, Nb:0.02%-0.06%, Ti:0.025%-0.045%, V:0.05%-0.15%, Cr:0.5%-2.50% , Mo: 0.10% - 0.30%, B: 0.0015% - 0.0035%, N≤0.005%, the balance being Fe and unavoidable impurities.

열성형 강의 조직은 페라이트, 마르텐사이트 및 잔류 오스테나이트로 구성된다. The structure of thermoformed steel consists of ferrite, martensite and retained austenite.

상기 페라이트의 부피 분율은 5%-12%, 상기 마르텐사이트의 부피 분율은 78%-89%, 상기 잔류 오스테나이트의 부피 분율은 6%-10%이다. The volume fraction of ferrite is 5%-12%, the volume fraction of martensite is 78%-89%, and the volume fraction of retained austenite is 6%-10%.

상기 열성형 강의 인장 강도(tensile strength)는 1400MPa-1700MPa 이고, 항산화 속도는 0.1g/(m2·h) 미만이고, 항복 강도(yield strength)는 900MPa- 1450MPa이며, 연신율은 18.0% 이상이고 강의 표면은 완전히 탈탄화되지 않고 탈탄층의 두께는 15μm 이하이고, 상기 열성형 강의 두께는 0.8mm-12.0mm 이다. The tensile strength of the thermoformed steel is 1400MPa-1700MPa, the antioxidant rate is less than 0.1g/(m 2 ·h), the yield strength is 900MPa-1450MPa, the elongation is 18.0% or more, and the steel The surface is not completely decarburized, the thickness of the decarburized layer is less than 15 μm, and the thickness of the thermoformed steel is 0.8mm-12.0mm.

본 구체적 실시방식에서 제출한 우수한 항산화성능을 구비한 고강도 열성형 강은 제련, 열간 압연 및 냉간 압연을 거쳐 열성형 기판을 얻고 열성형 기판의 두께는 0.8mm-12.0mm이다. 다음으로 열성형 공정 처리를 진행하고 열성형 공정은 하기 단계를 포함한다. The high-strength thermoformed steel with excellent antioxidant performance presented in this specific embodiment is subjected to smelting, hot rolling and cold rolling to obtain a thermoforming substrate having a thickness of 0.8mm-12.0mm. Next, a thermoforming process is performed, and the thermoforming process includes the following steps.

(1) 열성형 기판을 온도 AC3-AC3+15℃의 가열로에 넣어 가열 및 보온하고, 보온시간은 180s-300s이며; (1) Put the thermoformed board into a heating furnace at a temperature of A C3 -A C3 +15°C to heat and keep warm, and keep warm for 180s-300s;

(2) 가열된 열성형 기판을 가열로에서 꺼내 공기 냉각하고 Ar3 온도까지 공기 냉각한 후 5s-8s 머무른 후 열성형 금형에 넣어 변형 및 냉각을 진행하고, 냉각속도 ≥18℃/s이고, 180℃-250℃까지 냉각한 후 보압을 진행하고, 보압 시간은 40s-80s이며, 보압 후 성형된 부품을 꺼내어 실온까지 공기 냉각하여 상기 열성형 강을 얻는다. (2) Take the heated thermoforming substrate out of the heating furnace, air cool it, air cool it to Ar3 temperature, stay for 5s-8s, put it in a thermoforming mold to deform and cool, cooling rate ≥18℃/s, After cooling to 180°C-250°C, packing is performed, the holding time is 40s-80s, and after packing, the molded part is taken out and air-cooled to room temperature to obtain the thermoforming steel.

본 발명의 실시예의 구체적인 성분, 열성형 공정 매개변수 및 열성형 후 강의 조직 및 성능은 표 1-3과 같다.The specific components, thermoforming process parameters, and steel structure and performance after thermoforming in the examples of the present invention are shown in Tables 1-3.

표1 본 발명 실시예의 화학 성분(wt,%)Table 1 Chemical composition (wt,%) of Examples of the present invention

Figure pct00001
Figure pct00001

표2 본 발명 실시예의 열성형 공정 매개변수Table 2 Thermoforming process parameters of examples of the present invention

Figure pct00002
Figure pct00002

표3 본 발명 실시예의 조직 및 성능 매개변수Table 3 Organization and performance parameters of the examples of the present invention

Figure pct00003
Figure pct00003

본 구체적인 실시형태에서는 화학 성분과 열성형 공정의 배합을 통해 기존의 전부 마르텐사이트인 조직에 일정 함량의 페라이트와 잔류 오스테나이트 조직을 도입시켜 강의 가소성을 향상시켰으며, 인장 강도가 1400MPa 이상인 조건하에서, 연신율이 12%에 달하고 이를 초과할 수 있도록 보장하였다. Cr, Mo 등의 원소를 첨가하여 강의 항산화 성능을 향상시키고, 강의 항산화 속도 <0.1g/(m2·h)이고, 항산화성 등급이 1급에 도달하였으며, 강은 열성형 시 분위기 보호가 필요하지 않고, 열성형 후 쇼트 블라스팅 처리가 필요하지 않으며 바로 후속공정을 진행할 수 있고, 또한 제출한 강판과 열성형 공정의 전체 공정의 원가는 현재의 열성형 부품 생산 원가보다 낮으며, 장비 개조 없이 기존 장비로 구현될 수 있다. In this specific embodiment, the plasticity of the steel is improved by introducing a certain content of ferrite and retained austenite structure into the existing all-martensite structure through the combination of chemical components and the thermoforming process, and the tensile strength is 1400 MPa or more Under the condition, It was ensured that the elongation reached and exceeded 12%. Elements such as Cr and Mo are added to improve the antioxidant performance of the steel, the antioxidant rate of the steel is <0.1g/(m 2 h), the antioxidant level has reached the first class, and the steel requires atmosphere protection during thermoforming The cost of the entire process of the submitted steel plate and thermoforming process is lower than the current production cost of thermoformed parts, and the existing process can be performed without equipment modification. It can be implemented as a device.

마지막으로 설명해야 할 것은, 위의 각 실시예는 본 발명의 기술적 방안을 설명하기 위한 것일 뿐 이에 대한 한정이 아니며, 비록 위의 각 실시예를 참조하여 본 발명을 상세하게 설명했지만, 본 분야의 당업자는 여전히 상기 각 실시예에 기재된 기술적 방안을 수정하거나, 그 기술적 특징의 일부 또는 전부를 동등하게 대체할 수 있으며, 이러한 수정 또는 대체는 해당 기술적 방안의 본질을 본 발명의 각 실시예의 기술적 방안의 범위로부터 벗어나도록 하지 않는다는 것을 이해해야 한다.Finally, it should be noted that each of the above embodiments is only for explaining the technical solution of the present invention, but is not limited thereto, and although the present invention has been described in detail with reference to each of the above embodiments, A person skilled in the art may still modify the technical solution described in each of the above embodiments, or equally replace some or all of its technical features, and such modification or substitution may change the essence of the technical solution to the technical solution of each embodiment of the present invention. It should be understood that it does not let you go out of scope.

Claims (10)

항산화성능을 구비한 자동차용 고가소성 열성형 강에 있어서, 상기 열성형 강의 화학 성분 질량 백분율은, C:0.18%-0.28%, Si:≤0.20%, Mn:1.20%-2.0 %, P:0.030%-0.080%, S≤0.004%, Als:0.02%-0.06%, Nb:0.02%-0.06%, Ti:0.025%-0.045%, V:0.05%-0.15%, Cr:0.5%-2.50%, Mo:0.10%-0.30%, B:0.0015%-0.0035%, N≤0.005%, 잔부는 Fe 및 불가피한 불순물인 것을 특징으로 하는 항산화성능을 구비한 자동차용 고가소성 열성형 강. In the high plasticity thermoforming steel for automobiles having antioxidant performance, the chemical composition mass percentage of the thermoforming steel is C: 0.18%-0.28%, Si: ≤0.20%, Mn: 1.20%-2.0%, P: 0.030 %-0.080%, S≤0.004%, Als:0.02%-0.06%, Nb:0.02%-0.06%, Ti:0.025%-0.045%, V:0.05%-0.15%, Cr:0.5%-2.50%, Mo: 0.10%-0.30%, B: 0.0015%-0.0035%, N≤0.005%, the balance is Fe and unavoidable impurities, characterized in that the anti-oxidation performance of the automobile high plasticity thermoforming steel. 제1항에 있어서,
상기 열성형 강의 조직은 페라이트, 마르텐사이트 및 잔류 오스테나이트로 구성된 것을 특징으로 하는 항산화성능을 구비한 자동차용 고가소성 열성형 강.
According to claim 1,
The structure of the thermoforming steel is high plasticity thermoforming steel for automobiles having antioxidant performance, characterized in that composed of ferrite, martensite and retained austenite.
제2항에 있어서,
상기 페라이트의 부피 분율은 5%-12%, 상기 마르텐사이트의 부피 분율은 78%-89%, 상기 잔류 오스테나이트의 부피 분율은 6%-10% 인 것을 특징으로 하는 항산화성능을 구비한 자동차용 고가소성 열성형 강.
According to claim 2,
The volume fraction of the ferrite is 5%-12%, the volume fraction of the martensite is 78%-89%, and the volume fraction of the retained austenite is 6%-10%. Highly plastic thermoformed steel.
제1항에 있어서,
상기 열성형 강의 인장 강도는 1400MPa-1700MPa 인 것을 특징으로 하는 항산화성능을 구비한 자동차용 고가소성 열성형 강.
According to claim 1,
High plasticity thermoforming steel for automobiles having antioxidant performance, characterized in that the tensile strength of the thermoforming steel is 1400MPa-1700MPa.
제1항에 있어서,
상기 열성형 강의 항산화 속도는 0.1g/(m2·h) 미만인 것을 특징으로 하는 항산화성능을 구비한 자동차용 고가소성 열성형 강.
According to claim 1,
The antioxidation rate of the thermoformed steel is less than 0.1 g / (m 2 · h).
제1항에 있어서,
상기 열성형 강의 항복 강도는 900MPa-1450MPa 인 것을 특징으로 하는 항산화성능을 구비한 자동차용 고가소성 열성형 강.
According to claim 1,
The yield strength of the thermoforming steel is 900MPa-1450MPa, characterized in that the high plasticity thermoforming steel for automobiles having antioxidant performance.
제1항에 있어서,
상기 열성형 강의 연신율은 18.0% 이상인 것을 특징으로 하는 항산화성능을 구비한 자동차용 고가소성 열성형 강.
According to claim 1,
The elongation of the thermoforming steel is high plasticity thermoforming steel for automobiles having antioxidant performance, characterized in that 18.0% or more.
제1항에 있어서,
상기 열성형 강의 표면은 완전히 탈탄화되지 않고, 탈탄층의 두께는 15μm 이하인 것을 특징으로 하는 항산화성능을 구비한 자동차용 고가소성 열성형 강.
According to claim 1,
The surface of the thermoformed steel is not completely decarburized, and the thickness of the decarburized layer is 15 μm or less.
제1항에 있어서,
상기 열성형 강의 두께는 0.8mm-12.0mm 인 것을 특징으로 하는 항산화성능을 구비한 자동차용 고가소성 열성형 강.
According to claim 1,
The thickness of the thermoforming steel is 0.8mm-12.0mm, characterized in that the high plasticity thermoforming steel for automobiles having antioxidant performance.
(1) 청구항 1 내지 9항 중의 어느 한 항에 기재된 성분을 함유하는 열성형 기판을 온도 AC3-AC3+15℃의 가열로에 넣어 가열 및 보온하며, 보온시간은 180s-300s인 단계;
(2) 가열된 열성형 기판을 가열로에서 꺼내 공기 냉각하고 Ar3 온도까지 공기 냉각한 후 5s-8s 머무른 후 열성형 금형에 넣어 변형 및 냉각을 진행하고, 냉각속도 ≥18℃/s 이고, 180℃-250℃까지 냉각한 후 보압을 진행하고, 보압 시간은 40s-80s 이며, 보압 후 성형된 부품을 꺼내어 실온까지 공기 냉각하여 상기 열성형 강을 얻는 단계를 포함하는 것을 특징으로 하는 항산화성능을 구비한 자동차용 고가소성 열성형 강의 열성형 공정.
(1) putting the thermoformed substrate containing the component according to any one of claims 1 to 9 into a heating furnace at a temperature of A C3 -A C3 +15 °C to heat and keep warm, and keep warm for 180s-300s;
(2) Take the heated thermoforming substrate out of the heating furnace, air cool it, air cool it to Ar3 temperature, stay for 5s-8s, put it in a thermoforming mold to deform and cool, and the cooling rate is ≥18℃/s, After cooling to 180 ° C-250 ° C, packing is performed, the packing time is 40 s-80 s, and after packing, the molded part is taken out and air-cooled to room temperature to obtain the thermoformed steel. Thermoforming process of high plasticity thermoforming steel for automobiles having a.
KR1020237002199A 2021-11-19 2021-11-25 High plasticity thermoforming steel for automobiles with antioxidant performance and thermoforming process KR20230074702A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202111401590.5A CN114058968A (en) 2021-11-19 2021-11-19 High-plasticity hot forming steel with oxidation resistance for automobile and hot forming process
CN202111401590.5 2021-11-19
PCT/CN2021/132955 WO2023087352A1 (en) 2021-11-19 2021-11-25 High-plasticity thermoformed steel having oxidation resistance for automobile, and thermoforming process

Publications (1)

Publication Number Publication Date
KR20230074702A true KR20230074702A (en) 2023-05-31

Family

ID=80275679

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237002199A KR20230074702A (en) 2021-11-19 2021-11-25 High plasticity thermoforming steel for automobiles with antioxidant performance and thermoforming process

Country Status (5)

Country Link
EP (1) EP4215636A4 (en)
JP (1) JP2024505319A (en)
KR (1) KR20230074702A (en)
CN (1) CN114058968A (en)
WO (1) WO2023087352A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807777B (en) * 2022-04-27 2023-06-16 鞍钢股份有限公司 500 MPa-level steel for automobile axle housing for hot stamping and production method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794687B2 (en) * 1989-03-29 1995-10-11 新日本製鐵株式会社 Method for producing HT80 steel excellent in high weldability, stress corrosion cracking resistance and low temperature toughness
CN103255340B (en) 2012-12-28 2015-08-05 中北大学 A kind of automobile high-strong toughness thermoforming steel plate and preparation method thereof
CN104195443A (en) * 2014-05-19 2014-12-10 首钢总公司 High-flexural-behavior hot-formed steel used for automobiles and manufacturing method thereof
CN104384283A (en) * 2014-09-25 2015-03-04 中南林业科技大学 Hot-stamping forming process of 22MnB5 high-strength thin steel plate
CN104278216A (en) * 2014-10-15 2015-01-14 山东钢铁股份有限公司 Steel plate with thickness of larger than 60mm and yield strength of 690MPa and preparation method of steel plate
CN106119692B (en) * 2016-08-24 2018-03-20 武汉钢铁有限公司 With the tensile strength >=1500MPa hot formings steel and production method of medium thin slab Direct Rolling
CN106191678B (en) * 2016-08-24 2018-06-26 武汉钢铁有限公司 With the tensile strength >=1700MPa hot formings steel and production method of medium thin slab Direct Rolling
CN106119694B (en) * 2016-08-24 2018-01-23 武汉钢铁有限公司 With the tensile strength >=1900MPa hot formings steel and production method of medium thin slab Direct Rolling
CN107354385B (en) 2017-07-11 2018-11-06 北京科技大学 A kind of preparation method of automobile superhigh-strength hot forming steel
CN108707823A (en) * 2018-05-31 2018-10-26 攀钢集团攀枝花钢铁研究院有限公司 Ultrahigh-strength steel plates and preparation method thereof and unimach slab products
CN109622706B (en) * 2018-12-11 2020-08-25 吉林省正轩车架有限公司 Process method for manufacturing automobile parts by hot stamping and forming medium-thickness boron alloy steel plate
CN110029274B (en) * 2019-04-25 2020-09-15 首钢集团有限公司 1600 MPa-grade high-strength high-plasticity steel for hot stamping and preparation method thereof
CN110129670B (en) * 2019-04-25 2020-12-15 首钢集团有限公司 1300 MPa-grade high-strength high-plasticity steel for hot stamping and preparation method thereof
CN111041382A (en) * 2019-12-03 2020-04-21 马鞍山钢铁股份有限公司 1800 MPa-grade non-coating hot forming steel with low high-temperature friction coefficient and preparation method thereof
CN111020124A (en) * 2019-12-13 2020-04-17 首钢集团有限公司 Hot stamping steel coated with zinc-based coating and preparation method thereof
CN111411295B (en) * 2020-03-24 2021-06-15 首钢集团有限公司 Multiphase steel member and preparation method and application thereof

Also Published As

Publication number Publication date
CN114058968A (en) 2022-02-18
EP4215636A1 (en) 2023-07-26
WO2023087352A1 (en) 2023-05-25
EP4215636A4 (en) 2024-06-26
JP2024505319A (en) 2024-02-06

Similar Documents

Publication Publication Date Title
JP7269588B2 (en) Steels used for hot stamping, hot stamping methods and formed components
KR101027285B1 (en) High strength steel sheet for hot forming with excellent heat treatment property, hot formed hardening member and manufacturing methods thereof
KR20190021453A (en) Thin slab direct rolling and hot rolled thin plate steel with a tensile strength of ≥ 1500 MPa and manufacturing method
JP5825189B2 (en) High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and low-temperature toughness, and method for producing the same
EP2592168B1 (en) Abrasion resistant steel plate with excellent impact properties and method for producing said steel plate
CN103614640B (en) A kind of non-coating hot press-formed steel of resistance to high temperature oxidation
CN113316650B (en) High-strength steel strip
KR101677398B1 (en) Steels for hot forming and method of manufacturion component using thereof
CN116334489A (en) Hot stamping forming steel with super-strong high-temperature oxidation resistance and preparation method thereof
CA3053396C (en) Press hardened steel with extremely high strength
KR102289525B1 (en) Method for manufacturing hot stamping product and hot stamping product manufactured using the same
KR20210080239A (en) Steel material for hot press forming, hot pressed member and manufacturing method theerof
US8652273B2 (en) High tensile steel for deep drawing and manufacturing method thereof and high-pressure container produced thereof
CN112877591B (en) High-strength and high-toughness hardware tool and steel for chain and manufacturing method thereof
KR20230074702A (en) High plasticity thermoforming steel for automobiles with antioxidant performance and thermoforming process
CN108950150A (en) Manganese Q&amp;P steel heat treatment process in superhigh intensity cold rolling based on complete austenitizing
CN108546871B (en) Steel for integrated reactor top assembly of nuclear power unit and manufacturing method thereof
KR20230074701A (en) High-strength, high-plasticity thermoforming steel for automobiles with antioxidant properties and thermoforming process
JP5076691B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
KR20090056195A (en) Forging steel using high frequency heat treatment and method for manufacturing the same
JP4178940B2 (en) High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same
JP2021502480A (en) Ultra-high-strength, high-ductility steel sheet with excellent cold formability and its manufacturing method
KR20190107585A (en) Martensit-based precipitation hardening type lightweight steel and manufacturing method for the same
RU2812417C1 (en) Method for producing high-strength steel sheet
US20240141473A1 (en) Hot stamping component and manufacturing method therefor