KR20230074241A - Process for producing liquid hydrogen - Google Patents

Process for producing liquid hydrogen Download PDF

Info

Publication number
KR20230074241A
KR20230074241A KR1020237013911A KR20237013911A KR20230074241A KR 20230074241 A KR20230074241 A KR 20230074241A KR 1020237013911 A KR1020237013911 A KR 1020237013911A KR 20237013911 A KR20237013911 A KR 20237013911A KR 20230074241 A KR20230074241 A KR 20230074241A
Authority
KR
South Korea
Prior art keywords
stream
bar
hydrogen
heat exchanger
outlet
Prior art date
Application number
KR1020237013911A
Other languages
Korean (ko)
Inventor
제프리 프레더릭 스키너
Original Assignee
가스콘솔트 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가스콘솔트 리미티드 filed Critical 가스콘솔트 리미티드
Publication of KR20230074241A publication Critical patent/KR20230074241A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0082Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0092Mixtures of hydrocarbons comprising possibly also minor amounts of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • F25J1/0209Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop as at least a three level refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0219Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/10Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/20Quasi-closed internal or closed external hydrogen refrigeration cycle

Abstract

고온 팽창기 및 저온 팽창기가 구비된 냉각 루프에서 순환하는 냉매와의 열 교환에 의해 수소 가스를 중간 온도로 냉각시키는 단계를 포함하는 수소 가스를 액화하기 위한 방법으로서, 상기 저온 팽창기로부터의 출구 스트림은 일부 응축된 냉매를 포함하고; 상기 순환 냉매로부터 응축물을 분리하는 수단이 제공되고; 수소 가스를 상기 응축물의 증발 및 재가열로의 열 교환에 의해 추가로 냉각시키는 단계를 포함한다. 상기 냉각 루프에서의 유체는 전형적으로 메탄(예컨대 이산화탄소, 수증기 및 기타 불순물을 제거한 후의 천연 가스) 또는 질소 또는 이들의 혼합물이다.A method for liquefying hydrogen gas comprising cooling hydrogen gas to an intermediate temperature by heat exchange with a refrigerant circulating in a cooling loop equipped with a high-temperature expander and a low-temperature expander, wherein an outlet stream from the low-temperature expander is partially contains condensed refrigerant; means for separating condensate from the circulating refrigerant are provided; and further cooling the hydrogen gas by evaporation of the condensate and heat exchange to reheat. The fluid in the cooling loop is typically methane (eg natural gas after removal of carbon dioxide, water vapor and other impurities) or nitrogen or mixtures thereof.

Figure P1020237013911
Figure P1020237013911

Description

액화 수소를 생산하기 위한 공정Process for producing liquid hydrogen

본 발명은 수소 가스를 액화(liquefying)하기 위한 방법, 특히 액화하고자 하는 수소를 액화 전에 중간 온도로 냉각시키는 방법에 관한 것이다.The present invention relates to a method for liquefying hydrogen gas, and in particular to a method for cooling hydrogen to be liquefied to an intermediate temperature prior to liquefaction.

액화 수소는 탄소 함유 연료를 대체할 잠재성을 가진다. 현재 우주 응용 분야에서 사용하는 것 외에도 향후 항공 및 운송용 연료로 사용하기 위해 상당한 양의 액체 수소가 필요할 것이다. 연료로서 수소의 사용이 증가함에 따라 수소를 액체 형태로 대규모로 저장하고 수송할 필요가 발생할 것이다.Liquefied hydrogen has the potential to replace carbonaceous fuels. In addition to its current use in space applications, significant amounts of liquid hydrogen will be needed for future use as a fuel for aviation and transportation. As the use of hydrogen as a fuel increases, there will be a need to store and transport hydrogen in liquid form on a large scale.

기존 및 제안된 수소 액화 공정은 대부분 다음 단계를 포함한다:Existing and proposed hydrogen liquefaction processes mostly include the following steps:

- 유입되는 수소를 증발 유체("제1 냉매")와의 열 교환에 의해 중간 온도(이하 "중간 온도"라 함)로 냉각(이하 "예냉"이라 함)시키는 제1 단계; 가장 널리 제안된 제1 냉매 유체는 액체 메탄(LNG)과 함께 액체 질소이며, 혼합 냉매도 제안됨 ; 및- a first step of cooling (hereinafter referred to as "pre-cooling") the incoming hydrogen to an intermediate temperature (hereinafter referred to as "intermediate temperature") by heat exchange with an evaporation fluid ("first refrigerant"); The most widely proposed first refrigerant fluid is liquid nitrogen with liquid methane (LNG); mixed refrigerants have also been proposed; and

- 상기 예냉된(precooled) 수소를 상기 예냉된 수소의 일부 또는 헬륨과 같은 제2 냉매의 일-팽창(work-expansion)에 의해 추가 냉각 및 액화하는 제2 단계.- a second step of further cooling and liquefying the precooled hydrogen by work-expansion of a part of the precooled hydrogen or a second refrigerant such as helium.

어떠한 예냉 없이 앞서 언급한 제2 단계(수소 또는 제2 냉매의 팽창에 의한 냉각)만 포함하는 수소 액화 공정이 가능하고 실행될 수 있지만, 예냉의 제1 단계를 도입하는 것이 다음과 같은 두 가지 요인 때문에 바람직하다: (a) 전체 액화 공정의 총 압축 동력 감소, 및 (b) 제2 냉매 시스템의 감소된 순환율 및 압축 동력으로 인한 낮은 투자 및 생산 비용의 인식.Although a hydrogen liquefaction process involving only the aforementioned second step (cooling by expansion of hydrogen or a second refrigerant) without any pre-cooling is possible and feasible, the introduction of the first step of pre-cooling is preferred because of two factors: Desirable: (a) reduced total compression power of the entire liquefaction process, and (b) perceived lower investment and production costs due to the reduced circulation rate and compression power of the secondary refrigerant system.

요인 (b)와 관련하여, 제1 예냉 단계(전형적으로 제1 냉매로 액체 질소를 약 -190 ℃에서 사용)의 출구(outlet)에서 수소의 가장 낮은 실용 온도(practical temperature) 사용은 상기 제2 단계에서 냉매의 필요한 순환율과 이에 따른 압축 동력을 최소화한다. 그러나, 예냉 시스템의 압축 동력 요구 사항을 고려할 때 실용 예냉 온도가 가장 낮다고 해서 전체 액화 공정의 총 압축 동력이 반드시 가장 낮은 것은 아니다.Regarding factor (b), the use of the lowest practical temperature of hydrogen at the outlet of the first pre-cooling stage (typically liquid nitrogen at about -190 °C as the first refrigerant) uses the second Minimize the required circulation rate of the refrigerant in the step and thus the compression power. However, considering the compression power requirements of the pre-cooling system, the lowest practical pre-cooling temperature does not necessarily mean the lowest total compression power of the entire liquefaction process.

발명의 요약Summary of Invention

본 발명의 주요 측면은 수소의 액화에 관한 것으로, 액화될 수소 스트림(stream)을 전형적으로 -150 ℃ 내지 -200 ℃의 중간 온도로 예냉시키는 개선된 방법을 개시한다.A key aspect of the present invention relates to the liquefaction of hydrogen, and discloses an improved process in which a hydrogen stream to be liquefied is pre-cooled to an intermediate temperature, typically between -150°C and -200°C.

본 출원에서 압력이 "bar"로 표시되는 모든 경우 이는 절대 바이다.In this application, wherever pressure is expressed as "bar", it is absolute bar.

개시된 예냉 수단은 메탄 또는 질소 또는 이들의 혼합물이 예시되나 이에 제한되지 않는 유체를 함유하는 폐쇄 사이클로서 다음을 포함한다:The disclosed pre-cooling means is a closed cycle containing a fluid such as but not limited to methane or nitrogen or mixtures thereof including:

- 가스 출구 스트림을 갖는 고온 가스 팽창기- hot gas expander with gas outlet stream

- 부분적으로 액화된 출구 스트림을 갖는 저온 가스 팽창기- a low-temperature gas expander with a partially liquefied exit stream;

- 저온 가스 팽창기로부터 출구 스트림에서 액체 분리- liquid separation in the exit stream from the cold gas expander;

- 상기 분리된 액체를 대기압에 가까운 압력(near-atmospheric pressure)으로 감압- Reduce the separated liquid to a pressure close to atmospheric pressure (near-atmospheric pressure)

- 일차로 상기 고온 가스 팽창기로부터의 출구 스트림과의 열 교환에 의해; 이차로 상기 액체 분리 후에 상기 저온 가스 팽창기로부터의 출구 스트림과의 열 교환에 의해; 삼차로 상기 감압된 액체 냉매의 증발에 따른 열 교환에 의해 공급 수소(및 사용되는 경우 제2 냉매)를 대략 주변 온도(near-ambient temperature)에서부터 -150 ℃ 및 -200 ℃의 상기 전형적인 중간 온도로 연속적으로 냉각- primarily by heat exchange with the outlet stream from said hot gas expander; secondly by heat exchange with the exit stream from the cold gas expander after the liquid separation; Thirdly, supply hydrogen (and second refrigerant, if used) is brought from about near-ambient temperature to the typical intermediate temperatures of -150 °C and -200 °C by heat exchange following evaporation of the reduced pressure liquid refrigerant. continuously cooled

- 생성된 저압 냉매 스트림의 재압축.- Recompression of the low pressure refrigerant stream produced.

전술한 예냉 사이클의 배열은 특히 저온 가스 팽창기에서 액체의 형성 후 저온 가스 팽창기 출구 스트림으로부터 상기 액체의 분리라는 면에서 GB2486036에 기술된 메탄 액화(LNG 생산) 공정과 유사하다. 참조된 경우에는 저온 가스 팽창기에서 형성된 액체가 공정의 총 액체(LNG) 출력의 일부에 기여하지만, 본 출원에서 상기 액체는 감압된 다음 액화될 수소와 함께 열 교환기에 의해 증발되어 수소 액화 공정에서 상기 수소를 전형적으로 -150 ℃ 내지 -200 ℃의 상기 중간 온도로 냉각시킨다.The arrangement of the foregoing pre-cooling cycle is similar to the methane liquefaction (LNG production) process described in GB2486036, particularly in terms of the formation of a liquid in the cold gas expander followed by separation of said liquid from the cold gas expander outlet stream. In the case referred to, the liquid formed in the low-temperature gas expander contributes to a portion of the total liquid (LNG) output of the process, but in the present application the liquid is depressurized and then evaporated by a heat exchanger together with the hydrogen to be liquefied so that in the hydrogen liquefaction process Hydrogen is cooled to this intermediate temperature, typically -150 °C to -200 °C.

본 발명은 상기 저온 가스 팽창기에서 냉매로서 질소를 사용하면서 상기 고온 가스 팽창기에서 냉매로서 메탄을 사용하는 것을 포함한다.The present invention includes using methane as a refrigerant in the hot gas expander while using nitrogen as the refrigerant in the cold gas expander.

본 출원인은 이러한 액화하려는 수소의 냉각 방법, 즉 가스 팽창기에서 액체 냉매의 형성, 수소 액화 공정에서 예냉제(precoolant)로서 상기 액체의 분리와 감압 및 증발이 종래 기술에 개시되지 않았으며, 신규하다는 것을 제안한다. 상기 액체의 생산은 저온 가스 팽창기에서 기계적 일을 직접 생산하기 때문에 열적으로 효율적이다. 또한 혼합 냉매와 같이 비용이 많이 들고 정교한 액체 제1 냉매를 외부에서 공급할 필요성을 제거한, 수소 액화 공정 내에서 액체 메탄 또는 액체 질소와 같은 액체 냉매를 생산한다는 실질적인 이점도 있다.The applicant finds that such a method for cooling hydrogen to be liquefied, that is, the formation of a liquid refrigerant in a gas expander, the separation, depressurization and evaporation of the liquid as a precoolant in the hydrogen liquefaction process has not been disclosed in the prior art and is novel. Suggest. The production of the liquid is thermally efficient as it directly produces mechanical work in the low temperature gas expander. There is also a practical advantage of producing a liquid refrigerant such as liquid methane or liquid nitrogen within the hydrogen liquefaction process which eliminates the need for an external supply of expensive and sophisticated liquid primary refrigerants such as mixed refrigerants.

따라서, 본 발명의 주요 측면에 따라 수소를 액화하기 위한 공정에 대한 설명이 다음과 같이 제공된다(도 1/3 및 이에 나타낸 장비 태그(tag) 및 스트림 번호 참조):Accordingly, a description of a process for liquefying hydrogen according to the main aspects of the present invention is provided as follows (see FIG. 1/3 and equipment tags and stream numbers shown therein):

- 순수한 수소 공급 가스의 스트림[1]을 제공한다;- providing a stream [1] of pure hydrogen feed gas;

- 1 bar 내지 50 bar의 압력에서 재순환(recycled) 수소 가스 스트림[2]을 제공한다;- providing a recycled hydrogen gas stream [2] at a pressure of 1 bar to 50 bar;

- 상기 스트림 [1] 및 [2]를 수소 압축기[A]로 유입시킴으로서, 상기 압축기는 10 bar 내지 200 bar의 압력, 보다 전형적으로는 20 bar 내지 100 bar의 압력으로 냉각 후 결합된 배출 스트림[3]을 가진다;- by introducing the streams [1] and [2] into the hydrogen compressor [A], which compressor cools to a pressure of 10 bar to 200 bar, more typically to a pressure of 20 bar to 100 bar, and the combined discharge stream [ 3];

- 상기 결합된 배출 스트림[3]을 열 교환기[B]의 제1 고온 통로(hot passage)에서 냉각시킴으로서, 상기 고온 통로는 출구 스트림[4]을 가진다;- cooling the combined discharge stream [3] in a first hot passage of a heat exchanger [B], said hot passage having an outlet stream [4];

- 상기 스트림[4]을 열 교환기[C]의 제1 고온 통로에서 냉각시킴으로서, 상기 고온 통로는 출구 스트림[5]을 가진다;- cooling said stream [4] in a first hot passage of heat exchanger [C], said hot passage having an outlet stream [5];

- 상기 스트림[5]을 열 교환기[D]의 제1 고온 통로에서 냉각시킴으로서, 상기 고온 통로는 출구 스트림[6]을 가진다;- cooling said stream [5] in a first hot passage of heat exchanger [D], said hot passage having an outlet stream [6];

- 상기 스트림[6]을 수소 액화 유닛[E]에 통과시킨다;- passing said stream [6] through a hydrogen liquefaction unit [E];

- 수소 액화 유닛[E]은 전형적으로 두 부분으로 분리되는 스트림[6]을 포함한다; 제1 부분[e-1]을 제1 가스 팽창기에서 냉각하여 출구 스트림[e-2]을 형성한다; 제2 부분[e-3]을 제1 열 교환기에서 냉각하여 스트림[e-4]을 형성한다; 스트림[e-4]을 두 부분으로 분리한다; 제1 부분[e-5]을 제2 가스 팽창기에서 냉각하여 출구 스트림[e-6]을 형성한다; 제2 부분[e-7]을 제2 열 교환기에서 냉각 및 액화하여 액화 수소 생성물 스트림[7]을 형성한다; 상기 스트림[e-6]을 제2 열 교환기를 통해 재순환시켜 스트림[e-8]을 형성한다; 상기 스트림 [e-2]과 [e-8]을 결합하여 스트림[e-9]을 형성한다; 상기 스트림[e-9]을 제1 열 교환기에서 재가열하여 재순환 수소 스트림[8]을 형성한다; 오르토-수소(ortho-hydrogen)의 파라-수소(para-hydrogen)로의 전환을 용이하게 하기 위해 제2 열 교환기에 촉매를 제공한다;- the hydrogen liquefaction unit [E] typically comprises a stream [6] which is separated into two parts; cooling the first portion [e-1] in a first gas expander to form an outlet stream [e-2]; cooling the second portion [e-3] in the first heat exchanger to form stream [e-4]; Split stream [e-4] into two parts; cooling the first portion [e-5] in a second gas expander to form an outlet stream [e-6]; cooling and liquefying the second portion [e-7] in a second heat exchanger to form a liquefied hydrogen product stream [7]; recycling the stream [e-6] through the second heat exchanger to form stream [e-8]; combining the streams [e-2] and [e-8] to form stream [e-9]; reheating the stream [e-9] in a first heat exchanger to form a recycle hydrogen stream [8]; providing a catalyst to the second heat exchanger to facilitate the conversion of ortho-hydrogen to para-hydrogen;

- 액화 수소 생성물 스트림[7]은 -240 내지 -255 ℃의 온도를 갖는다;- the liquid hydrogen product stream [7] has a temperature of -240 to -255 °C;

- 재순환 수소 스트림[8]은 1 bar 내지 30 bar의 압력을 가진다; 상기 스트림[8]을 열 교환기[D]의 제1 저온 통로(cold passage)에서 재가열하여 출구 스트림[9]을 형성한다; 상기 스트림[9]을 열 교환기[C]의 제1 저온 통로에서 재가열하여 출구 스트림[10]을 형성한다; 상기 스트림[10]을 열 교환기[B]의 제1 저온 통로에서 재가열한다; 상기 열 교환기[B]로부터의 상기 재가열된 스트림은 상기 수소 재순환 가스 스트림[2]을 형성한다;- the recycle hydrogen stream [8] has a pressure between 1 bar and 30 bar; The stream [8] is reheated in a first cold passage of the heat exchanger [D] to form an outlet stream [9]; The stream [9] is reheated in the first cold passage of the heat exchanger [C] to form the outlet stream [10]; The stream [10] is reheated in the first cold passage of heat exchanger [B]; The reheated stream from the heat exchanger [B] forms the hydrogen recycle gas stream [2];

- 열 교환기 [B], [C] 및 [D]는 단일 장치에 물리적으로 결합될 수 있다;- heat exchangers [B], [C] and [D] may be physically combined into a single unit;

- 10 bar 내지 150 bar의 압력에서 냉매 가스(refrigerant gas) 스트림[21]을 제공한다;- providing a refrigerant gas stream [21] at a pressure of 10 bar to 150 bar;

- 냉매 가스의 스트림[21]을 제1[22] 부분과 제2[25] 부분으로 분리한다;- separating a stream [21] of refrigerant gas into a first [22] part and a second [25] part;

- 상기 제1 부분[22]을 제1 냉매 가스 팽창기[L]에 통과시킴으로서, 상기 제1 냉매 가스 팽창기로부터의 출구 스트림[23]은 5 bar 내지 50 bar의 압력을 가진다;- passing said first part [22] through a first refrigerant gas expander [L], whereby the outlet stream [23] from said first refrigerant gas expander has a pressure of 5 bar to 50 bar;

- 상기 제1 냉매 가스 팽창기 출구 스트림[23]을 열 교환기[B]의 제2 저온 통로에서 재가열하여 재가열된 스트림[24]을 형성한다;- reheating said first refrigerant gas expander outlet stream [23] in a second cold passage of heat exchanger [B] to form a reheated stream [24];

- 상기 재가열된 스트림[24]을 압축기[M]에서 10 내지 150 bar의 압력으로 압축하여 냉각 후 상기 냉매 가스[21]의 제1 성분을 형성한다;- the reheated stream [24] is compressed in a compressor [M] to a pressure of 10 to 150 bar to form, after cooling, a first component of the refrigerant gas [21];

- 냉매 가스의 제2 부분[25]을 출구 스트림[26]을 갖는 열 교환기[B]의 제2 고온 통로로 통과시킨다;- passing a second portion of the refrigerant gas [25] into the second hot passage of the heat exchanger [B] with the outlet stream [26];

- 상기 냉매 가스[26]의 상기 냉각된 제2 부분을 제2 냉매 가스 팽창기[N]에 통과시킴으로서, 상기 제2 냉매 가스 팽창기로부터의 출구 스트림[27]은 전형적으로 3 bar 내지 50 bar의 압력을 갖고 증기와 액체의 혼합물을 포함한다;- passing the cooled second part of the refrigerant gas [26] through a second refrigerant gas expander [N], whereby the outlet stream [27] from the second refrigerant gas expander is typically at a pressure of 3 bar to 50 bar. and contains a mixture of vapor and liquid;

- 상기 제2 가스 팽창기[N]의 출구 스트림[27]을 증기/액체 분리기[O]에서 분리하여 증기 스트림[28]과 액체 스트림[29]을 형성한다;- the outlet stream [27] of the second gas expander [N] is separated in a vapor/liquid separator [O] to form a vapor stream [28] and a liquid stream [29];

- 상기 액체 스트림[29]을 전형적으로 밸브[P]에서 감압하여 0.5 bar 내지 10 bar, 전형적으로 대기압에 가까운 압력을 갖는 스트림[30]을 형성한다; 상기 스트림[30]의 온도는 전형적으로 냉매로서 메탄을 사용하는 경우 -160 ℃이고 냉매로서 질소를 사용하는 경우 -195 ℃이며, 둘 다 실질적으로 대기압이다;- the liquid stream [29] is typically depressurized at valve [P] to form a stream [30] having a pressure between 0.5 bar and 10 bar, typically close to atmospheric pressure; The temperature of the stream [30] is typically −160° C. using methane as the refrigerant and −195° C. using nitrogen as the refrigerant, both at substantially atmospheric pressure;

- 상기 스트림[30]을 열 교환기(D)의 제2 저온 통로에서 증발 및 재가열하여 출구 증기 스트림[31]을 형성한다;- said stream [30] is evaporated and reheated in the second cold passage of heat exchanger (D) to form an outlet vapor stream [31];

- 상기 스트림[31]을 출구 스트림[32]을 갖는 냉매 압축기[Q]에 의해 스트림[28]의 압력과 동일한 압력으로 압축한다;- the stream [31] having an exit stream [32] compressed by the refrigerant compressor [Q] to a pressure equal to that of stream [28];

- 상기 스트림[28]과 상기 스트림[32]을 결합하여 스트림[34]을 형성한다;- combine said stream [28] with said stream [32] to form stream [34];

- 상기 스트림[34]을 열 교환기[C]의 제2 저온 통로에서 재가열하여 스트림[35]을 형성한 다음 열 교환기[B]의 제3 저온 통로에서 재가열하여 스트림[36]을 형성한다;- said stream [34] is reheated in the second cold passage of heat exchanger [C] to form stream [35] and then reheated in the third cold passage of heat exchanger [B] to form stream [36];

- 재가열된 상기 스트림[36]을 압축기[M]에서 10 내지 150 bar의 압력으로 압축하여 냉각 후 상기 냉매 가스[21]의 제2 성분을 형성한다.- The reheated stream [36] is compressed in a compressor [M] at a pressure of 10 to 150 bar to form a second component of the refrigerant gas [21] after cooling.

본 발명의 제2 측면은 상온 상당히 아래의 흡입 온도로 수소 재순환 압축기를 작동시키기 위해 전술한 2-단계 팽창기 예냉 회로의 고효율의 이점을 취한다. 제안된 흐름도는 도 2/3에 개략적으로 도시되어 있다. 스트림[9]은 전형적으로 -120 ℃의 온도에서 압축기[A]의 제1 부분으로 유입된다.A second aspect of the present invention takes advantage of the high efficiency of the aforementioned two-stage expander pre-cooling circuit to operate the hydrogen recycle compressor at a suction temperature well below room temperature. The proposed flow chart is schematically shown in FIG. 2/3. Stream [9] enters the first part of compressor [A], typically at a temperature of -120 °C.

대안적으로, 압축기[A]로의 입구 스트림은 도 1/3의 수소 액화기 유닛(hydrogen liquefier unit)[E]의 출구 스트림[8] 또는 열 교환기[C]의 제1 저온 통로[10]의 출구에서 직접 취해질 수 있다.Alternatively, the inlet stream to the compressor [A] is the outlet stream [8] of the hydrogen liquefier unit [E] of Figure 1/3 or the first cold passage [10] of the heat exchanger [C]. It can be taken directly at the exit.

압축기[A]의 입구 온도에 따라, 상기 압축기[A]의 전력은 도 1/3에 표시된 주위 입구 온도의 구성에 비해 대략 50% 정도 감소될 수 있다. 제1 냉매 압축기[M] 및 [Q]에 대한 전력 수요가 거의 동일하게 증가한다.Depending on the inlet temperature of the compressor [A], the power of the compressor [A] can be reduced by approximately 50% compared to the ambient inlet temperature configuration shown in Figure 1/3. The power demand for the first refrigerant compressors [M] and [Q] increases almost equally.

본 출원인은 입구 온도가 상온 상당히 아래인 수소 압축기의 이러한 작동 배열이 신규하고 다음과 같이 수소 액화를 위한 선행 기술에 비해 특히 유리하다는 것을 제안한다:The Applicant proposes that this operating arrangement of a hydrogen compressor where the inlet temperature is well below room temperature is novel and has particular advantages over the prior art for hydrogen liquefaction as follows:

- 수소 압축은 수소의 밀도가 원심 압축기에서 사용하기에는 너무 낮을 수 있기 때문에 일반적으로 왕복 압축기를 사용해야 한다; 왕복 압축기의 상대적으로 높은 투자 및 운영 비용을 고려하면, 특히 여러 대의 압축기를 병렬로 필요로 하는 대규모 설치에서 상온 아래의 입구 온도를 사용하기 때문에 왕복 압축기의 전력 요구량이 크게 감소할 것이다;- Hydrogen compression usually requires the use of a reciprocating compressor as the density of hydrogen may be too low for use in a centrifugal compressor; Considering the relatively high investment and operating costs of reciprocating compressors, the power requirements of reciprocating compressors will be greatly reduced due to the use of sub-ambient inlet temperatures, especially in large-scale installations requiring several compressors in parallel;

- 입구 온도가 상온보다 상당히 아래인 상태로 수소 압축기를 작동하면 입구 밀도가 증가한다; 예를 들어 -120 ℃에서 입구 밀도는 상온 밀도의 약 2배이므로, 수소 액화에서 원심 압축의 이용을 용이하게 한다.- operating the hydrogen compressor with an inlet temperature well below room temperature increases the inlet density; For example, the inlet density at -120 °C is about twice the room temperature density, facilitating the use of centrifugal compression in hydrogen liquefaction.

도 3/3에 도시된 본 발명의 제3 측면에서, 폐쇄 회로 내 하나 이상의 단계에서 제2 냉매의 팽창에 의해 수소 액화 유닛[E]에서 수소 스트림을 추가 냉각하고 액화하는 데 필요한 냉각의 일부 또는 전부가 제공된다. 이러한 배열로, 스트림[6]의 일부의 팽창에 의해 수소 액화 유닛[E]에서 생산되는 냉각의 양이 상당히 감소되거나 심지어 제거될 수 있으며, 결과적으로 스트림[8]의 유량 및 압축기[A]에 필요한 전력은 도 1/3에 설명된 흐름도에서보다 훨씬 낮을 수 있다.In the third aspect of the invention, shown in Figure 3/3, part of the cooling required to further cool and liquefy the hydrogen stream in the hydrogen liquefaction unit [E] by expansion of the second refrigerant in one or more stages in a closed circuit; everything is provided With this arrangement, the amount of refrigeration produced in the hydrogen liquefaction unit [E] by expansion of a portion of stream [6] can be significantly reduced or even eliminated, resulting in the flow rate of stream [8] and compressor [A]. The required power may be much lower than in the flowchart illustrated in FIG. 1/3.

본 발명의 제3 측면에 따르면:According to a third aspect of the invention:

- 제2 냉매의 스트림[11]은 열 교환기 [B], [C] 및 [D]에서 연속적으로 냉각되어 전형적으로 수소 액화기 유닛[E]에 대한 수소 입구 스트림[6]과 동일한 온도를 갖는 스트림[14]을 형성한다;- the stream [11] of the second refrigerant is continuously cooled in heat exchangers [B], [C] and [D] to typically have the same temperature as the hydrogen inlet stream [6] to the hydrogen liquefier unit [E]. form stream [14];

- 본 발명의 상기 주요 측면에 대해 기술되고 도면 1/3에 도시된 수소 액화 유닛[E]의 전형적인 내부 배열 외에도, 수소 액화 유닛[E]은 전형적으로 스트림[14]의 두 부분으로의 분리를 더 포함한다; 제1 팽창기에서 제1 부분[e-11]을 냉각하여 출구 스트림[e-12]을 형성한다; 제2 부분[e-13]을 제1 열 교환기에서 냉각하여 스트림[e-14]을 형성한다; 상기 스트림[e-14]을 제1 열 교환기에서 재가열하여 스트림[e-15]을 형성한다; 상기 스트림[e-12]을 제2 팽창기에서 추가 냉각하여 출구 스트림[e-16]을 형성한다; 상기 스트림[e-16]을 제2 열 교환기에서 재가열하여 스트림[e-17]을 형성한다; 그리고 스트림 [e-15]과 [e-17]을 결합하여 스트림[15]을 형성한다;- in addition to the typical internal arrangement of the hydrogen liquefaction unit [E] described for the above main aspect of the invention and shown in Figure 1/3, the hydrogen liquefaction unit [E] typically provides separation of the stream [14] into two parts. contains more; cooling the first portion [e-11] in a first expander to form an outlet stream [e-12]; cooling the second portion [e-13] in the first heat exchanger to form stream [e-14]; reheating the stream [e-14] in a first heat exchanger to form stream [e-15]; The stream [e-12] is further cooled in a second expander to form an outlet stream [e-16]; reheating the stream [e-16] in a second heat exchanger to form stream [e-17]; and combining streams [e-15] and [e-17] to form stream [15];

- 스트림[15]은 스트림[14]보다 낮은 압력에서 수소 액화기 유닛[E]을 떠난다;- stream [15] leaves the hydrogen liquefier unit [E] at a lower pressure than stream [14];

- 이어 스트림[15]은 열 교환기 [D], [C] 및 [B]에서 연속적으로 재가열되어 대략 주변 온도에서 재가열된 스트림[18]을 형성한다;- stream [15] is then successively reheated in heat exchangers [D], [C] and [B] to form a reheated stream [18] at about ambient temperature;

- 이 다음으로 스트림[18]은 압축기[F]에서 재압축되어 냉각 후 상기 언급된 제2 냉매[11]를 형성한다.- Following this, stream [18] is recompressed in compressor [F] to form, after cooling, the aforementioned second refrigerant [11].

제2 냉매는 수소, 헬륨, 또는 네온 또는 이들의 혼합물을 포함할 수 있다.The second refrigerant may include hydrogen, helium, or neon or mixtures thereof.

제2 냉매로서 수소를 사용하는 경우, 제2 냉매 회로에서 전환 촉매가 없으면 오르토-수소에서 파라-수소로의 상당한 전환이 기대되지 않는다. 본 발명의 이러한 제3 측면에서 상기 언급된 생성된 스트림[6]의 더 낮은 흐름으로 인해, 수소 액화기 유닛[E]에서 상기 전환 촉매를 통과하는 수소의 흐름은 도 1/3에 도시된 본 발명의 주요 측면에서 보다 더 낮을 수 있으며 그 결과 오르토-파라 수소 전환 촉매의 양도 감소할 수 있다.When using hydrogen as the second refrigerant, no significant conversion of ortho-hydrogen to para-hydrogen is expected without a conversion catalyst in the second refrigerant circuit. Due to the lower flow of the above-mentioned produced stream [6] in this third aspect of the invention, the flow of hydrogen through the conversion catalyst in the hydrogen liquefier unit [E] is the same as shown in Figure 1/3. It may be lower than in the main aspect of the invention and as a result the amount of ortho-para hydrogen conversion catalyst may be reduced.

본 발명은 널리 사용되는 공정 시뮬레이션 소프트웨어에 의해 광범위하게 시뮬레이션되었다.The present invention has been extensively simulated by widely used process simulation software.

바람직한 실시양태의 설명Description of Preferred Embodiments

본 발명이 이제 본 발명에 따른 공정의 실시양태를 예시하는 흐름도를 나타내는 첨부 도면을 참조하여 설명될 것이다.The present invention will now be described with reference to the accompanying drawings which present a flowchart illustrating an embodiment of a process according to the present invention.

정확한 흐름도는 변경될 수 있지만, 일반적으로 이러한 기본 요소를 포함한다.The exact flow diagram can vary, but usually includes these basic elements.

도 1/3에 도시된 본 발명의 제1 실시양태에서, 25 bar의 압력으로 액화될 수소의 공급 스트림[1]이 압축기[A]로 유입된다. 압축기는 또한 아래에 설명된 재순환 수소 스트림[2]을 수용한다. 공급 수소와 냉각 후 재순환 수소의 결합된 스트림[3]이 압축기로부터 75 bar에서 배출된다.In the first embodiment of the invention shown in Figure 1/3, a feed stream [1] of hydrogen to be liquefied at a pressure of 25 bar is introduced into the compressor [A]. The compressor also receives a recycle hydrogen stream [2] described below. A combined stream [3] of feed hydrogen and recycle hydrogen after cooling exits the compressor at 75 bar.

결합된 스트림[3]은 열 교환기[B]의 제1 고온 통로를 통과함으로써 -50 ℃로 냉각되어 스트림[4]을 형성하고; 그런 다음 열 교환기[C]의 제1 고온 통로를 통과하여 -120 ℃로 추가 냉각되어 스트림[5]을 형성한다; 필요한 냉각은 메탄 냉매의 폐쇄 회로에 의해 아래에 설명된 바와 같이 제공된다.The combined stream [3] is cooled to -50 °C by passing through the first hot passage of the heat exchanger [B] to form stream [4]; It is then passed through the first hot passage of the heat exchanger [C] and further cooled to -120 ° C to form stream [5]; The necessary cooling is provided as described below by a closed circuit of methane refrigerant.

열 교환기[C]의 출구 스트림[5]은 저압 메탄 냉매 스트림의 증발에 의해 -158 ℃로 더 냉각되어 스트림[6]을 형성한다.The outlet stream [5] of the heat exchanger [C] is further cooled to -158 °C by evaporation of the low pressure methane refrigerant stream to form stream [6].

이어서 스트림[6]은 하나 이상의 수소 팽창기, 하나 이상의 열 교환기 및 하나 이상의 오르토-파라 수소 촉매 전환 단계를 포함하는 수소 액화 유닛[E]으로 흐른다.Stream [6] then flows to a hydrogen liquefaction unit [E] comprising one or more hydrogen expanders, one or more heat exchangers and one or more ortho-para hydrogen catalytic conversion stages.

수소 액화 유닛[E]은 온도가 -244 ℃이고 압력이 7.5 bar인 액체 수소의 출구 스트림[7]과 온도가 -161 ℃이고 압력이 6.8 bar인 가스 수소 스트림[8]의 출구 스트림을 갖는다.The hydrogen liquefaction unit [E] has an outlet stream of liquid hydrogen [7] with a temperature of -244 °C and a pressure of 7.5 bar and an outlet stream of a gaseous hydrogen stream [8] with a temperature of -161 °C and a pressure of 6.8 bar.

스트림[8]은 먼저 열 교환기[D]의 저온 통로에서 재가열되어 온도 -123 ℃의 스트림[9]을 형성한 다음, 열 교환기[C]의 제1 저온 통로에서 추가로 재가열되어 온도 -53 ℃의 스트림[10]을 형성한 다음, 열 교환기[B]의 제1 저온 통로에서 추가로 재가열되고, 대략 주변 온도에서 재가열된 스트림은 상기 언급된 수소 재순환 스트림[2]을 형성한다.Stream [8] is first reheated in the cold passage of heat exchanger [D] to form stream [9] with a temperature of -123 °C and then further reheated in the first cold passage of heat exchanger [C] to a temperature of -53 °C. is further reheated in the first cold pass of the heat exchanger [B], and the reheated stream at about ambient temperature forms the aforementioned hydrogen recycle stream [2].

상기 언급된 메탄 냉매를 포함하는 폐쇄 냉각 회로는 냉매 압축기[M]의 배출 시 압력이 90 bar인 스트림[21]을 가진다.The closed refrigerant circuit comprising the aforementioned methane refrigerant has a stream [21] with a pressure of 90 bar at the discharge of the refrigerant compressor [M].

압축기[M]의 출구 스트림[21]은 제1 부분[22]과 제2 부분[25]으로 분리된다.The outlet stream [21] of the compressor [M] is separated into a first portion [22] and a second portion [25].

제1 부분[22]은 압력이 26 bar이고 온도가 -54 ℃인 출구 스트림[23]을 갖는 제1 냉매 가스 팽창기[L]로 전달된다. 제2 부분[25]은 상기 언급된 수소 스트림[4]과 동일한 출구 온도 -50 ℃의 출구 스트림[26]을 가지는 열 교환기[B]의 제2 고온 통로를 통과한다.The first portion [22] is passed to a first refrigerant gas expander [L] with an outlet stream [23] having a pressure of 26 bar and a temperature of -54 °C. The second portion [25] passes through the second hot passage of the heat exchanger [B] with an outlet stream [26] having the same outlet temperature -50 °C as the aforementioned hydrogen stream [4].

스트림[23]은 열 교환기[B]의 제2 저온 통로에서 대략 주변 온도로 재가열된다. 상기 재가열된 스트림[24]은 상기 냉매 가스 스트림[21]의 냉각 후 제1 성분으로서 대략 주변 온도에서 냉매 압축기[M]로 흐른다.Stream [23] is reheated to about ambient temperature in the second cold passage of heat exchanger [B]. The reheated stream [24] flows to the refrigerant compressor [M] at about ambient temperature as a first component after cooling of the refrigerant gas stream [21].

열 교환기[B]로부터의 출구 스트림[26]은 압력 10 bar 및 온도 -124 ℃의 출구 스트림[27]을 갖고 증기와 액체를 모두 포함하는 제2 냉매 가스 팽창기[N]로 흐른다.The outlet stream [26] from the heat exchanger [B] flows into a second refrigerant gas expander [N] containing both vapor and liquid with an outlet stream [27] at a pressure of 10 bar and a temperature of -124 °C.

스트림[27]은 증기/액체 분리기[O]에서 분리되어 증기 스트림[28]과 액체 스트림[29]을 형성한다.Stream [27] is separated in a vapor/liquid separator [0] to form a vapor stream [28] and a liquid stream [29].

액체 스트림[29]은 밸브[P]에서 대기압에 가까운 압력으로 감압되어, 온도 -158 ℃의 출구 스트림[30]에서 액체와 증기의 혼합물을 형성한다.The liquid stream [29] is reduced to near-atmospheric pressure at valve [P], forming a mixture of liquid and vapor in the outlet stream [30] at a temperature of -158 °C.

스트림[30]은 열 교환기(D)의 제2 저온 통로에서 완전히 증발되고 재가열되어, 상기 언급된 수소 스트림[9]과 동일한 -123 ℃의 온도를 갖는 출구 증기 스트림[31]을 형성한다. 스트림[31]은 스트림[28]과 동일한 압력 9.7 bar의 출구 스트림[32]을 갖는 냉매 압축기[Q]에 의해 압축된다. 그런 다음 스트림[28]과 [33]이 결합되어 스트림[34]을 형성한다.Stream [30] is completely evaporated and reheated in the second cold passage of heat exchanger (D) to form an outlet vapor stream [31] having the same temperature of -123 °C as the aforementioned hydrogen stream [9]. Stream [31] is compressed by the refrigerant compressor [Q] with an outlet stream [32] at the same pressure as stream [28] at 9.7 bar. Streams [28] and [33] are then combined to form stream [34].

스트림[34]은 먼저 열 교환기[C]의 제2 저온 통로에서 재가열되어 온도 -53 ℃의 스트림[35]을 형성한 다음 열 교환기[B]의 제3 저온 통로에서 재가열된다. 재가열된 스트림[36]은 상기 냉매 가스 스트림[21]의 냉각 후 제2 성분으로서 대략 주변 온도 압축기[M]로 흐른다.Stream [34] is first reheated in the second cold passage of heat exchanger [C] to form stream [35] at a temperature of -53 °C and then reheated in the third cold passage of heat exchanger [B]. The reheated stream [36] flows to the about ambient temperature compressor [M] as a second component after cooling of the refrigerant gas stream [21].

본 발명이 본 발명의 제2 실시양태를 나타내는 첨부 도면 2/3을 참조하여 더 설명될 것이다. 상기 개념에서 설명된 이 제2 실시양태는 제1 실시양태의 변형을 포함하며, 이에 따라 수소 재순환 압축기[A]는 대기압 상당히 아래의 흡입 온도를 갖는 입구 스트림을 수용한다.The present invention will be further explained with reference to the accompanying drawing 2/3 showing a second embodiment of the present invention. This second embodiment described in the above concept comprises a variant of the first embodiment, whereby the hydrogen recycle compressor [A] receives an inlet stream having a suction temperature well below atmospheric pressure.

이 제2 실시양태의 실시예에서, 수소 재순환 스트림[9]은 -123 ℃의 온도 및 6.6 bar의 압력에서 압축기[A]로 직접 흐른다. 그런 다음 압축기[A]로부터의 출구 스트림[3]의 온도는 대략 주변 온도로 감소된다.In this example of the second embodiment, the hydrogen recycle stream [9] flows directly to the compressor [A] at a temperature of -123 °C and a pressure of 6.6 bar. The temperature of the outlet stream [3] from the compressor [A] is then reduced to approximately ambient temperature.

Claims (13)

수소 가스를 액화(liquefying)하기 위한 공정으로서,
- 수소 공급 가스의 스트림(stream)[1]을 제공하는 단계;
- 1 bar 내지 50 bar의 압력에서 재순환(recycled) 수소 가스 스트림[2]을 제공하는 단계;
- 스트림 [1] 및 [2]를 수소 압축기[A]로 유입시키는 단계로서, 상기 압축기는 압력 10 bar 내지 200 bar의 결합된 배출 스트림[3]을 갖는 단계;
- 상기 결합된 배출 스트림[3]을 열 교환기[B]의 제1 고온 통로(hot passage)에서 냉각시키는 단계로서, 상기 고온 통로는 출구 스트림[4]을 갖는 단계;
- 상기 스트림[4]을 열 교환기[C]의 제1 고온 통로에서 냉각시키는 단계로서, 상기 고온 통로는 출구 스트림[5]을 갖는 단계;
- 상기 스트림[5]을 열 교환기[D]의 제1 고온 통로에서 냉각시키는 단계로서, 상기 고온 통로는 출구 스트림[6]을 갖는 단계;
- 상기 스트림[6]을 하나 이상의 수소 가스 팽창기, 하나 이상의 열 교환기 및 오르토-수소(ortho-hydrogen)에서 파라-수소(para-hydrogen)로의 하나 이상의 촉매적 전환 단계를 포함하는 수소 액화기 유닛(hydrogen liquefier unit)[E]에 통과시키는 단계로서; 상기 수소 액화기는 온도가 -240 내지 -255 ℃인 액체 수소의 출구 스트림[7]과 압력이 1 bar 내지 20 bar인 가스 수소의 출구 스트림[8]을 갖는 단계;
- 상기 스트림[8]을 상기 열 교환기[D]의 제1 저온 통로(cold passage)에서 출구 스트림[9]으로 재가열하고, 이어서 상기 열 교환기[C]의 제1 저온 통로에서 출구 스트림[10]으로 재가열한 다음, 상기 열 교환기[B]의 제1 저온 통로에서 재가열하는 단계로서, 상기 열 교환기[B]로부터 재가열된 스트림은 상기 수소 재순환 가스 스트림[2]을 형성하는 단계;
- 10 bar 내지 150 bar의 압력에서 냉매 가스(refrigerant gas)의 스트림[21]을 제공하는 단계;
- 상기 냉매 가스의 스트림[21]을 제1[22] 부분과 제2[25] 부분으로 분리하는 단계;
- 상기 제1 부분[22]을 제1 냉매 가스 팽창기[L]에 통과시키는 단계로서, 상기 제1 냉매 가스 팽창기로부터의 출구 스트림[23]은 5 bar 내지 50 bar의 압력을 갖는 단계;
- 상기 제1 냉매 가스 팽창기 출구 스트림[23]을 열 교환기[B]의 제2 저온 통로에서 재가열하여 재가열된 스트림[24]을 형성하는 단계;
- 상기 재가열된 스트림[24]을 압축기[M]에서 10 내지 150 bar의 압력으로 압축하여 상기 냉매 가스의 제1 성분[21]을 형성하는 단계;
- 상기 냉매 가스의 제2 부분[25]을 출구 스트림[26]을 갖는, 열 교환기[B]의 제2 고온 통로에 통과시키는 단계;
- 상기 냉매 가스[26]의 상기 냉각된 제2 부분을 제2 냉매 가스 팽창기[N]에 통과시키는 단계로서, 상기 제2 냉매 가스 팽창기[27]로부터의 출구 스트림은 3 bar 내지 50 bar의 압력을 갖고 증기와 액체의 혼합물을 포함하는 단계;
- 상기 제2 가스 팽창기[N]의 출구 스트림[27]을 증기/액체 분리기[O]에서 분리하여 증기 스트림[28]과 액체 스트림[29]을 형성하는 단계;
- 상기 액체 스트림[29]을 밸브[P]에서 감압하여 0.5 bar 내지 10 bar의 압력을 갖는 스트림[30]을 형성하는 단계;
- 상기 스트림[30]을 열 교환기(D)의 제2 저온 통로에서 증발 및 재가열하여 출구 증기 스트림[31]을 형성하는 단계;
- 상기 스트림[31]을 출구 스트림[32]을 갖는 저압 냉매 압축기[Q]에 의해 스트림[28]의 압력과 동일한 압력으로 압축하는 단계;
- 스트림[28]과 스트림[32]을 결합하여 스트림[34]을 형성하는 단계;
- 상기 스트림[34]을 열 교환기[C]의 제2 저온 통로에서 재가열하여 스트림[35]을 형성한 다음 열 교환기[B]의 제3 저온 통로에서 재가열하여 스트림[36]을 형성하는 단계;
- 상기 재가열된 스트림[36]을 압축기[M]에서 10 내지 150 bar의 압력으로 압축하여 상기 냉매 가스[21]의 제2 성분을 형성하는 단계를 포함하는,
방법.
As a process for liquefying hydrogen gas,
- providing a stream [1] of hydrogen feed gas;
- providing a recycled hydrogen gas stream [2] at a pressure of 1 bar to 50 bar;
- introducing streams [1] and [2] into a hydrogen compressor [A], said compressor having a combined outlet stream [3] with a pressure of 10 bar to 200 bar;
- cooling the combined discharge stream [3] in a first hot passage of a heat exchanger [B], said hot passage having an outlet stream [4];
- cooling said stream [4] in a first hot passage of a heat exchanger [C], said hot passage having an outlet stream [5];
- cooling said stream [5] in a first hot passage of a heat exchanger [D], said hot passage having an outlet stream [6];
- a hydrogen liquefier unit comprising at least one hydrogen gas expander, at least one heat exchanger and at least one catalytic conversion step of ortho-hydrogen to para-hydrogen ( As a step of passing through a hydrogen liquefier unit) [E]; wherein the hydrogen liquefier has an outlet stream of liquid hydrogen [7] with a temperature of -240 to -255 ° C and an outlet stream of gaseous hydrogen [8] with a pressure of 1 bar to 20 bar;
- reheating the stream [8] into the outlet stream [9] in the first cold passage of the heat exchanger [D], followed by the outlet stream [10] in the first cold passage of the heat exchanger [C]. and then reheating in the first cold passage of the heat exchanger [B], wherein the reheated stream from the heat exchanger [B] forms the hydrogen recycle gas stream [2];
- providing a stream [21] of refrigerant gas at a pressure of 10 bar to 150 bar;
- separating the stream [21] of the refrigerant gas into a first [22] part and a second [25] part;
- passing the first portion [22] through a first refrigerant gas expander [L], wherein the outlet stream [23] from the first refrigerant gas expander has a pressure of 5 bar to 50 bar;
- reheating said first refrigerant gas expander outlet stream [23] in a second cold passage of a heat exchanger [B] to form a reheated stream [24];
- compressing the reheated stream [24] in a compressor [M] to a pressure of 10 to 150 bar to form the first component [21] of the refrigerant gas;
- passing the second portion [25] of the refrigerant gas through a second hot passage of the heat exchanger [B], having an outlet stream [26];
- passing the cooled second part of the refrigerant gas [26] through a second refrigerant gas expander [N], wherein the outlet stream from the second refrigerant gas expander [27] has a pressure of 3 bar to 50 bar. having a mixture of vapor and liquid;
- separating the outlet stream [27] of the second gas expander [N] in a vapor/liquid separator [O] to form a vapor stream [28] and a liquid stream [29];
- reducing the liquid stream [29] at valve [P] to form stream [30] having a pressure of 0.5 bar to 10 bar;
- evaporating and reheating said stream [30] in a second cold passage of a heat exchanger (D) to form an outlet vapor stream [31];
- compressing said stream [31] by means of a low pressure refrigerant compressor [Q] having an outlet stream [32] to a pressure equal to that of stream [28];
- combining stream [28] with stream [32] to form stream [34];
- reheating said stream [34] in a second cold passage of heat exchanger [C] to form stream [35] and then reheating in a third cold passage of heat exchanger [B] to form stream [36];
- compressing the reheated stream [36] in a compressor [M] to a pressure of 10 to 150 bar to form the second component of the refrigerant gas [21],
method.
제1항에 있어서, 압축기[A]로부터의 결합된 배출 스트림[3]은 20 bar 내지 100 bar의 압력을 갖는, 공정.The process according to claim 1, wherein the combined discharge stream [3] from the compressor [A] has a pressure between 20 bar and 100 bar. 제1항 또는 제2항에 있어서, 스트림(30)의 압력은 1 bar 내지 3 bar인, 공정.3. The process according to claim 1 or 2, wherein the pressure of the stream (30) is between 1 bar and 3 bar. 제1항 내지 제3항 중 어느 한 항에 있어서, 냉매 가스는 메탄 또는 메탄이 풍부한 가스(methane-rich gas)인, 공정.4. The process according to any one of claims 1 to 3, wherein the refrigerant gas is methane or a methane-rich gas. 제4항에 있어서, 제2 가스 팽창기[N]로부터의 출구 스트림[27]의 압력은 10 bar 내지 50 bar인, 공정.5. The process according to claim 4, wherein the pressure of the outlet stream [27] from the second gas expander [N] is between 10 bar and 50 bar. 제1항 내지 제3항 중 어느 한 항에 있어서, 냉매 가스는 질소인, 공정.4. The process according to any one of claims 1 to 3, wherein the refrigerant gas is nitrogen. 제6항에 있어서, 제2 가스 팽창기[N]로부터의 출구 스트림[27]의 압력은 3 bar 내지 30 bar인, 공정.7. The process according to claim 6, wherein the pressure of the outlet stream [27] from the second gas expander [N] is between 3 bar and 30 bar. 제1항 내지 제3항 중 어느 한 항에 있어서, 냉매 가스는 메탄과 질소의 혼합물인, 공정.4. The process according to any preceding claim, wherein the refrigerant gas is a mixture of methane and nitrogen. 제1항 내지 제3항 중 어느 한 항에 있어서, 제1 냉매 가스 팽창기[L]에 흐르는 냉매 가스[21]는 메탄 또는 메탄이 풍부한 가스인 반면에, 제2 냉매 가스 팽창기[N], 분리기[O] 및 밸브[P]에 흐르는 냉매 가스[26]는 질소인, 공정.4. The separator according to any one of claims 1 to 3, wherein the refrigerant gas [21] flowing in the first refrigerant gas expander [L] is methane or a methane-rich gas, while in the second refrigerant gas expander [N], the separator The process wherein the refrigerant gas [26] flowing through [O] and valve [P] is nitrogen. 제1항 내지 제9항 중 어느 한 항에 있어서, 압축기(A)의 입구 스트림[2]의 온도는 -200 ℃ 내지 40 ℃인, 공정.10. The process according to any preceding claim, wherein the temperature of the inlet stream [2] of the compressor (A) is -200 °C to 40 °C. 제10항에 있어서, 압축기[A]로의 입구 스트림은 수소 액화기 유닛[E]의 배출 스트림[8]으로부터, 또는 열 교환기 [D] 또는 [C]의 제1 저온 통로의 배출구로부터 직접 취해지는, 공정.11. The method of claim 10, wherein the inlet stream to the compressor [A] is taken directly from the outlet stream [8] of the hydrogen liquefier unit [E] or from the outlet of the first cold passage of the heat exchanger [D] or [C]. , process. 제1항 내지 제11항 중 어느 한 항에 있어서, 대략 주변 온도(near-ambient temperature)에서 제2 냉매 가스[11]의 스트림을 제공하고; 상기 스트림[11]을 열 교환기[B]의 제3 고온 통로에서 냉각하여 출구 스트림[12]을 형성하고; 상기 스트림[12]을 열 교환기[C]의 제2 고온 통로에서 냉각하여 출구 스트림[13]을 형성하고; 상기 스트림[13]을 열 교환기[D]의 제2 고온 통로에서 냉각하여 출구 스트림[14]을 형성하고; 상기 스트림[14]을 수소 액화 유닛[E]에 통과시키고, 여기서 스트림[14]은 스트림[15]으로서 [E]를 떠나기 전에 하나 이상의 팽창 단계를 통과하여 냉각을 제공하며; 상기 스트림[15]을 열 교환기[D]의 제3 저온 통로에서 재가열하여 스트림[16]을 형성하고; 상기 스트림[16]을 열 교환기[C]의 제3 저온 통로에서 추가로 재가열하여 스트림[17]을 형성하고; 상기 스트림[17]을 열 교환기[B]의 제4 저온 통로에서 추가로 재가열하여 스트림[18]을 형성하고; 그리고 상기 스트림[18]을 압축기[F]에서 재압축하여 상기 스트림[11]을 형성하는, 공정.12. The method of claim 1, further comprising providing a stream of second refrigerant gas [11] at about near-ambient temperature; cooling the stream [11] in a third hot passage of the heat exchanger [B] to form an outlet stream [12]; cooling the stream [12] in a second hot passage of the heat exchanger [C] to form an outlet stream [13]; cooling the stream [13] in the second hot passage of the heat exchanger [D] to form an outlet stream [14]; passing said stream [14] to a hydrogen liquefaction unit [E], wherein stream [14] passes through one or more expansion stages to provide cooling before leaving [E] as stream [15]; reheating the stream [15] in a third cold passage of the heat exchanger [D] to form stream [16]; further reheating the stream [16] in a third cold passage of the heat exchanger [C] to form stream [17]; further reheating the stream [17] in a fourth cold passage of the heat exchanger [B] to form stream [18]; and recompressing the stream [18] in a compressor [F] to form the stream [11]. 제12항에 있어서, 상기 제2 냉매 가스는 수소, 헬륨 또는 수소 또는 헬륨과 네온의 혼합물인, 공정.13. The process of claim 12, wherein the second refrigerant gas is hydrogen, helium or a mixture of hydrogen or helium and neon.
KR1020237013911A 2020-11-21 2021-10-13 Process for producing liquid hydrogen KR20230074241A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB2018333.1A GB2601173B (en) 2020-11-21 2020-11-21 Process for producing liquefied Hydrogen
GB2018333.1 2020-11-21
PCT/GB2021/000117 WO2022106801A2 (en) 2020-11-21 2021-10-13 Process for producing liquefied hydrogen

Publications (1)

Publication Number Publication Date
KR20230074241A true KR20230074241A (en) 2023-05-26

Family

ID=74046705

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237013911A KR20230074241A (en) 2020-11-21 2021-10-13 Process for producing liquid hydrogen

Country Status (8)

Country Link
US (1) US20230332833A1 (en)
EP (1) EP4115130A2 (en)
JP (1) JP2024501105A (en)
KR (1) KR20230074241A (en)
CN (1) CN116507870A (en)
AU (1) AU2021382399A1 (en)
GB (1) GB2601173B (en)
WO (1) WO2022106801A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023240033A1 (en) * 2022-06-06 2023-12-14 Chart Energy & Chemicals, Inc. Cryogenic gas cooling system and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL298578A (en) * 1963-09-06
GB0120272D0 (en) * 2001-08-21 2001-10-10 Gasconsult Ltd Improved process for liquefaction of natural gases
DE10158328A1 (en) * 2001-11-28 2003-06-18 Linde Ag Method and device for producing liquid oxygen and liquid nitrogen
JP2004210597A (en) * 2003-01-06 2004-07-29 Toshiba Corp Waste-heat-using hydrogen/oxygen system and method for producing liquid hydrogen
GB2486036B (en) 2011-06-15 2012-11-07 Anthony Dwight Maunder Process for liquefaction of natural gas
WO2017154044A1 (en) * 2016-03-10 2017-09-14 日揮株式会社 Novel production equipment and production method of liquefied hydrogen and liquefied natural gas
US11543181B2 (en) * 2018-10-09 2023-01-03 Chart Energy & Chemicals, Inc. Dehydrogenation separation unit with mixed refrigerant cooling

Also Published As

Publication number Publication date
GB2601173B (en) 2022-11-16
AU2021382399A1 (en) 2023-05-18
GB2601173A (en) 2022-05-25
GB202018333D0 (en) 2021-01-06
EP4115130A2 (en) 2023-01-11
WO2022106801A9 (en) 2022-09-09
CN116507870A (en) 2023-07-28
WO2022106801A2 (en) 2022-05-27
WO2022106801A3 (en) 2022-08-04
JP2024501105A (en) 2024-01-11
US20230332833A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
US9863697B2 (en) Integrated methane refrigeration system for liquefying natural gas
US20180347897A1 (en) Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
US20180320957A1 (en) Low-temperature mixed--refrigerant for hydrogen precooling in large scale
KR101009853B1 (en) Natural gas liquefaction process with refrigerant separator
KR101242949B1 (en) Carbon dioxide re-liquefaction process
KR101009892B1 (en) Natural gas liquefaction process
KR20010040029A (en) Hybrid cycle for the production of liquefied natural gas
NO20191220A1 (en) Arctic Cascade method for natural gas liquefaction in a high-pressure cycle with pre-cooling by ethane and sub-cooling by nitrogen, and a plant for its implementation
CN110411145B (en) Improved method and system for cooling a hydrocarbon stream using a vapor phase refrigerant
CN210773045U (en) System for liquefying a natural gas feed stream to produce an LNG product
US20100154469A1 (en) Process and system for liquefaction of hydrocarbon-rich gas stream utilizing three refrigeration cycles
KR20230074241A (en) Process for producing liquid hydrogen
AU2017202953A1 (en) Natural gas liquefaction process
KR102108924B1 (en) Natural gas liquefaction treatment device
KR20160015919A (en) Natural gas liquefaction process
KR101620182B1 (en) Natural gas liquefaction process
US20230272971A1 (en) Single mixed refrigerant lng production process
Chakravarthy et al. Oxygen liquefier using a mixed gas refrigeration cycle