KR20230074086A - 비디오 신호의 부호화 또는 복호화 방법 및 장치 - Google Patents

비디오 신호의 부호화 또는 복호화 방법 및 장치 Download PDF

Info

Publication number
KR20230074086A
KR20230074086A KR1020230062915A KR20230062915A KR20230074086A KR 20230074086 A KR20230074086 A KR 20230074086A KR 1020230062915 A KR1020230062915 A KR 1020230062915A KR 20230062915 A KR20230062915 A KR 20230062915A KR 20230074086 A KR20230074086 A KR 20230074086A
Authority
KR
South Korea
Prior art keywords
block
prediction
transform
coding
square
Prior art date
Application number
KR1020230062915A
Other languages
English (en)
Other versions
KR102698394B1 (ko
Inventor
한종기
이재영
Original Assignee
세종대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220091076A external-priority patent/KR102534604B1/ko
Application filed by 세종대학교산학협력단 filed Critical 세종대학교산학협력단
Publication of KR20230074086A publication Critical patent/KR20230074086A/ko
Priority to KR1020240111069A priority Critical patent/KR20240132415A/ko
Application granted granted Critical
Publication of KR102698394B1 publication Critical patent/KR102698394B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/129Scanning of coding units, e.g. zig-zag scan of transform coefficients or flexible macroblock ordering [FMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

본 발명은 비디오 신호의 복호화 방법 및 이의 장치에 관한 것이다. 본 발명의 일 실시예에 따른 복호화 방법은, 복수 개의 변환 블록들의 모양을 고려하여 상기 복수 개의 변환 블록들의 코딩 순서를 가변적으로 설정할지를 지시하는 제 1 제어 정보를 확인하는 단계; 상기 복수 개의 변환 블록들의 코딩 순서가 가변적으로 설정된 경우, 상기 복수 개의 변환 블록들의 코딩 순서를 지시하는 제 2 제어 정보를 확인하는 단계; 및 상기 제 2 제어 정보가 지시하는 코딩 순서에 따라 상기 복수 개의 변환 블록들을 코딩하는 단계를 포함하며, 상기 제 1 제어 정보가 존재하지 않는 경우, 상기 복수 개의 변환 블록들은 일반적인 코딩 순서에 따라 코딩되는 것을 포함한다.

Description

비디오 신호의 부호화 또는 복호화 방법 및 장치{METHOD AND APPARATUS FOR ENCODING OR DECODING VIDEO SIGNAL}
본 발명은 비디오 신호의 부호화 또는 복호화 방법 및 장치에 관한 것으로서, 더욱 상세하게는, 비정방형 코딩 블록 및/또는 비정방형 변환 블록을 이용하는 비디오 신호의 부호화 또는 복호화 방법 및 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 응용 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비하여 상대적으로 데이터량이 증가하기 때문에, 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용하여 저장하는 경우, 전송 비용과 저장 비용이 증가하게 된다. 영상 데이터가 고해상도, 고품질화 됨에 따라 발생하는 이러한 문제들을 해결하기 위하여 고효율의 영상 압축 기술들이 활용될 수 있다.
비디오 압축 기술들은 비디오 시퀀스들에 고유한 리던던시를 감소 또는 제거하기 위해 공간 예측 및/또는 시간 예측을 포함한다. 블록 기반 비디오 코딩에 있어서, 비디오 프레임 또는 슬라이스는 블록들로 분할될 수 있다. 각각의 블록은 추가적으로 분할될 수 있다. 인트라 코딩된 I 프레임 또는 슬라이스에서의 블록들은 동일 프레임 또는 슬라이스에서의 이웃 블록들에서의 참조 샘플에 대한 공간 예측을 이용하여 인코딩된다. 인터 코딩된 P 또는 B 프레임 또는 슬라이스에서의 블록들은 동일 프레임 또는 슬라이스에서의 이웃 블록들에서의 참조 샘플에 대한 공간 예측, 또는 다른 참조 프레임에서의 참조 샘플에 대한 시간 예측을 이용할 수도 있다. 공간 또는 시간 예측은 코딩될 블록에 대한 예측 블록을 발생시킨다. 잔여 데이터는 코딩될 원 블록과 예측 블록 사이의 픽셀 차이를 나타낸다.
일반적으로 현재 블록은 동일한 크기의 정방향 코딩 블록(CU) 및 변환 블록(TU)를 이용하여 영상을 부호화하며, 각 코딩 블록 또는 예측 블록 크기를 기반으로 변환 블록들은 쿼드트리 분할 구조로 코딩 블록에 적용된다. 그러나, 이러한 정방향 코딩 블록을 이용하는 경우, 코딩 블록마다 예측 모드 및 예측 정보를 전송하여야 하므로 영상의 종류에 따라 불필요한 정보를 전송하여 부호화 효율을 저하시킬 수 있다. 또한, 코딩 블록에 해당하는 영상의 특성과 예측 모드에 따라 발생하는 잔차 신호의 특성을 고려하지 못하는 단점이 있다.
본 발명이 해결하고자 하는 과제는 영상에 따라 다양한 모양의 코딩 블록 및 변환 블록을 이용함으로써 코딩 효율을 향상시키는 비디오 신호의 부호화 및 복호화 장치를 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 다른 과제는 현재 블록의 화면 내 예측 모드에 따라 코딩 효율을 높일 수 있는 변환 블록의 코딩 순서를 결정하는 방법 및 이를 수행하는 비디오 신호의 부호화 및 복호화 방법 및 장치를 제공하는 것이다.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 비디오 신호의 복호화 방법은, 현재 영상을 구성하는 코딩 블록의 구조를 설정하는 단계; 상기 코딩 블록에 대응하는 변환 블록들의 구조를 설정하는 단계; 및 상기 변환 블록들을 이용하여 예측 신호를 생성하는 단계를 포함하고, 상기 코딩 블록은 정방형(square) 블록 및 비정방형(non-square) 블록 중 어느 하나 이상을 포함한다.
상기 변환 블록은 상기 코딩 블록의 동일한 크기 또는 작은 크기의 정방형(square) 변환 블록 및 비정방형(non-square) 변환 블록 중 어느 하나 이상을 포함한다.
일 실시예에서, 상기 정방형 변환 블록은 쿼트트리 구조를 갖는 변환 블록일 수 있고, 상기 비정방형 변환 블록은 비정방형 바이너리트리 구조 또는 비정방형 쿼트트리 구조를 갖는 변환 블록일 수 있다. 또한, 상기 변환 블록의 모양 및 크기를 나타내는 변환 블록 분할 정보를 수신하는 단계를 더 포함할 수 있다.
일 실시예에서, 상기 변환 블록은 비정방형 변환 서브 블록 및 정방형 변환 서브 블록 중 어느 하나 이상을 포함하여 분할될 수 있고, 상기 변환 블록을 서브 변환 블록들로 재분할하는 단계를 더 포함하며, 상기 서브 변환 블록들로 재분할되는 경우, 상기 예측 신호는 상기 서브 변환 블록별로 생성될 수 있다. 또한, 상기 서브 변환 블록들은 비정방형 서브 변환 블록 및 정방형 서브 변환 블록 중 어느 하나 이상을 포함할 수 있다.
일 실시예에서, 상기 현재 블록이 화면내 예측을 수행하는 경우, 상기 현재 블록의 화면내 예측 모드의 방향이 90˚이상 180˚미만의 각도를 갖는 제 1 모드 영역, 180˚이상 225˚ 미만의 각도를 갖는 제 2 모드 영역, 및 45˚이상 90˚미만의 각도를 갖는 제 3 영역 중 어느 모드 영역에 속하는지 판단하는 단계; 및 상기 화면내 예측 모드이 속하는 모드 영역에 기초하여 상기 변환 블록의 코딩 순서를 가변적으로 결정하는 단계를 더 포함할 수 있다.
상기 화면내 예측 모드의 방향이 제 2 모드 영역인 경우, 상기 변환 블록은 좌측 하단으로부터 우측 상단 방향순으로 코딩될 수 있고, 상기 변환 블록이 정방형 변환 블록이면, 좌측 하단, 우측 하단, 좌측 상단, 및 우측 상단의 순서로 코딩될 수 있으며, 상기 변환 블록이 정방형 변환 블록이면, 좌측 하단, 좌측 상단, 우측 하단, 및 우측 상단의 순서로 코딩될 수 있다.
또한, 상기 변환 블록이 세로로 분할된 비정방형 변환 블록이면, 좌측으로부터 우측의 순서로 코딩될 수 있고, 상기 변환 블록이 가로로 분할된 비정방형 변환 블록이면, 하단으로부터 상단의 순서로 코딩될 수 있다.
상기 화면내 예측 모드의 방향이 제 3 영역 모드인 경우, 상기 변환 블록은 우측 상단으로부터 좌측 하단 순서로 코딩될 수 있고, 상기 변환 블록이 정방형 변환 블록이면, 우측 상단, 좌측 상단, 우측 하단, 및 좌측 하단의 순서로 코딩될 수 있으며, 상기 변환 블록이 정방형 변환 블록이면, 우측 상단, 우측 하단, 좌측 상단, 및 좌측 하단의 순서로 코딩될 수 있다.
또한, 상기 변환 블록이 세로로 분할된 비정방형 변환 블록이면, 우측으로부터 좌측의 순서로 코딩될 수 있고, 상기 변환 블록이 가로로 분할된 비정방형 변환 블록이면, 상단으로부터 하단의 순서로 코딩될 수 있다.
상기 과제를 해결하기 위한 본 발명의 다른 실시예에 따른 비디오 신호의 복호화 장치는, 현재 영상을 구성하는 코딩 블록의 구조를 설정하고, 상기 코딩 블록에 대응하는 변환 블록들의 구조를 설정하는 블록 설정부; 및 상기 변환 블록들을 이용하여 예측 신호를 생성하는 예측 신호 생성부를 포함하고, 상기 코딩 블록 및 상기 변환 블록은 정방형(square) 블록 및 비정방형(non-square) 블록 중 어느 하나 이상을 포함하며, 상기 예측 신호 생성부는 상기 코딩 블록의 화면내 예측 모드를 예측 방향에 따라 구분한 모드 영역들 중 어느 모드 영역에 속하는지에 따라 가변적인 코딩 순서에 따라 상기 변환 블록들을 코딩할 수 있다.
본 발명의 실시예에 따르면, 영상에 따라 비정방형 코딩 블록 및 비정방형 변환 블록을 이용함으로써 부호화 효율을 향상시키는 비디오 신호의 부호화 및 복호화 장치를 제공하는 것이다.
또한, 본 발명의 다른 실시예에 따르면, 현재 블록의 화면 내 예측 모드의 방향에 따라 변환 블록의 코딩 순서를 변경함으로써, 고해상도의 영상을 부호화 및 복호화할 수 있고, 코딩 효율을 증가시킬 수 있는 변환 블록의 코딩 순서를 결정하는 방법 및 이를 수행하는 비디오 신호의 복호화 방법 및 장치를 제공하는 것이다.
도 1은 본 발명의 일 실시예에 따른 비디오 부호화 장치를 개략적으로 나타낸 블록도이다.
도 2는 본 발명의 일 실시예에 따른 비디오 복호화 장치를 개략적으로 나타낸 블록도이다.
도 3은 일반적인 방법에 따른 현재 블록의 코딩 블록을 설명하기 위한 것이다.
도 4a 내지 도 4c 는 본 발명의 일 실시예에 따른 현재 블록의 비정방형 코딩 블록들의 예시를 나타내는 것이다.
도 5a 내지 도 6d 는 본 발명의 일 실시예에 따른 현재 코딩 블록을 위한 변환 블록들의 예시를 나타내는 것이다.
도 7a 내지 도 10 은 본 발명의 일 실시예에 따른 서브 변환 블록들의 예시를 나타내는 것이다.
도 11은 일반적인 방법에 따른 변환 블록의 코딩 순서 및 방법을 설명하기 위한 것이다.
도 12a 내지 도 12c 는 본 발명의 일 실시예에 따른 변환 블록들의 예시를 나타내는 것이다.
도 13는 본 발명의 일 실시예에 따른 화면 내 예측 모드가 속하는 모드 영역들을 나타내는 것이다.
도 14a 및 도 14b 는 본 발명의 일 실시예에 따른 현재 블록의 화면내 예측 모드가 제 1 모드 영역에 속하는 경우 변환 블록들의 코딩 순서를 나타내는 것이고, 도 15a 내지 도 15c 는 본 발명의 일 실시예에 따른 현재 블록의 화면내 예측 모드가 제 2 모드 영역에 속하는 경우 변환 블록들의 코딩 순서를 나타내는 것이며, 도 16a 내지 도 16c 는 본 발명의 일 실시예에 따른 현재 블록의 화면내 예측 모드가 제 3 모드 영역에 속하는 경우 변환 블록들의 코딩 순서를 나타내는 것이다.
도 17a 내지 도 19c 는 본 발명의 일 실시예에 따른 화면내 예측 모드를 고려한 변환 블록의 코딩 순서를 적용하여 정방형 및 비정방형 변환 블록을 코딩하는 순서의 다양한 예시를 나타내는 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.
또한, 도면에서 각 유닛의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다 (comprise)" 및/또는 "포함하는 (comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
본 명세서에서 제 1, 제 2 등의 용어가 다양한 구성요소, 부재, 부품, 영역, 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 구성요소, 부재, 부품, 영역, 및/또는 부분들은 이들 용어에 의해 한정되어서는 안됨은 자명하다. 이들 용어는 하나의 구성요소, 부재, 부품, 영역 또는 부분을 다른 영역 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제 1 구성요소, 부재, 부품, 영역 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제 2 구성요소, 부재, 부품, 영역 또는 부분을 지칭할 수 있다. 또한, 및/또는 용어는 복수의 관련되어 기재되는 항목들의 조합 또는 복수의 관련되어 기재되는 항목들 중의 어느 항목을 포함한다.
어느 구성요소가 다른 구성요소에 "연결되어" 있거나 "접속되어" 있다고 언급되는 경우에는, 상기 다른 구성요소에 직접적으로 연결되어 있거나 접속되어 있는 경우 뿐만 아니라, 상기 어느 구성요소와 상기 다른 구성요소 사이에 다른 구성요소가 존재하는 경우를 포함하여 이해되어야 한다. 그러나, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있거나 "직접 접속되어" 있다고 지칭되는 경우에는, 중간에 다른 구성요소가 존재하지 아니하고 상기 어느 구성요소와 상기 다른 구성요소가 직접 연결 또는 접속된 것으로 이해되어야 할 것이다.
이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. 도면들에 있어서, 예를 들면, 부재들의 크기와 형상은 설명의 편의와 명확성을 위하여 과장될 수 있으며, 실제 구현시, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니된다.
도 1은 본 발명의 일 실시예에 따른 영상 부호화 장치를 개략적으로 나타낸 블록도이다.
도 1을 참조하면, 영상 부호화 장치(100)는 픽처 분할부(105), 화면간 예측부(110), 화면내 예측부(115), 변환부(120), 양자화부(125), 재정렬부(130), 엔트로피 부호화부(135), 역양자화부(140), 역변환부(145), 필터부(150) 및 메모리(155)를 포함한다.
도 1에 나타난 각 구성요소들은 영상 부호화 장치에서 서로 다른 특징적인 기능들을 나타내기 위하여 독립적으로 도시한 것이며, 각 구성요소들이 분리된 하드웨어나 각각 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성요소는 설명의 편의상 각각의 구성요소로 나열하여 포함한 것으로 각 구성요소 중 적어도 두 개의 구성요소가 합쳐져 하나의 구성요소로 이루어지거나, 하나의 구성요소가 복수개의 구성요소로 나뉘어져 기능을 수행할 수 있다. 이러한 각 구성요소가 통합된 실시예 또는 분리된 실시예도 본 발명의 본질적인 측면에서 벗어나지 않는 한 본 발명의 권리범위에 포함될 수 있다.
픽처 분할부(105)는 입력된 픽처를 적어도 하나의 처리 단위로 분할할 수 있다. 상기 처리 단위는 예측 블록(Prediction Unit, 이하 "PU"라 함)일 수 있고, 변환 블록(Transform Unit, 이하 "TU"라 함)일 수도 있으며, 코딩 블록(Coding Unit, 이하 "CU"라 함)일 수도 있다. 다만, 본 명세서에서는 설명의 편의를 위해, 예측 블록을 예측 단위, 변환 블록을 변환 단위, 부호화 또는 복호화 블록을 부호화 단위 또는 복호화 단위로 표현할 수도 있다.
일 실시예에서, 픽처 분할부(105)는 하나의 픽처에 대하여 복수의 부호화 블록, 예측 블록, 및 변환 블록의 조합으로 분할하고, 소정의 기준(예를 들어, 비용 함수)에 기초하여 하나의 부호화 블록, 예측 블록, 및 변환 블록의 조합을 선택하여 픽처를 부호화할 수 있다.
예를 들어, 하나의 픽처는 복수 개의 코딩 블록으로 분할될 수 있다. 일 실시예에서, 하나의 픽처는 쿼드 트리 구조(Quad Tree Structure) 또는 바이너리 트리 구조와 같은 재귀적인 트리 구조를 사용하여 상기 코딩 블록을 분할할 수 있으며, 하나의 영상 또는 최대 크기 코딩 블록(largest coding unit)를 루트로 하여 다른 코딩 블록으로 분할되는 코딩 블록은 분할된 코딩 블록의 개수만큼의 자식 노드를 가지고 분할될 수 있다. 이러한 과정을 통하여 더 이상 분할되지 아니하는 코딩 블록은 리프 노드가 될 수 있다. 예를 들어, 하나의 코딩 블록에 대하여 정방형 분할만이 가능하다고 가정한 경우에는 하나의 코딩 블록은 예를 들어, 4 개의 코딩 블록으로 분할될 수 있다. 그러나, 본 발명에서는 상기 코딩 블록, 예측 블록 및/또는 변환 블록은 분할 시 대칭 분할에 한정하지 아니하고, 비대칭 분할(Asymmetric Partition)도 가능하며 4 개의 분할 뿐만 아니라 2 개의 분할도 가능하다. 그러나, 이러한 분할 개수는 예시적일 뿐 본 발명이 이에 한정되는 것은 아니다. 이와 같이, 코딩 블록 및 변환 블록으로 비대칭 분할된 비정방형(non-square) 블록을 이용하는 비디오 신호의 부호화 및 복호화 방법 및 장치에 대하여 도 3 내지 도 19c를 참조하여 설명하기로 한다.
예측 블록도 하나의 코딩 블록 내에서 동일한 크기의 적어도 하나의 정방형(square) 또는 비정방형(non-square) 등의 형태를 가지고 분할된 것일 수 있고, 하나의 코딩 블록 내에서 분할된 예측 블록 중 어느 하나의 예측 블록이 다른 하나의 예측 블록과 상이한 형태와 크기를 가지도록 분할될 수도 있다. 일 실시예에서는, 코딩 블록과 예측 블록이 동일할 수 있다. 즉, 코딩 블록과 예측 블록을 구분하지 아니하고, 분할된 코딩 블록을 기준으로 예측이 수행될 수도 있다.
예측부는 화면간 예측(inter prediction)을 수행하는 화면간 예측부(110) 및 화면내 예측(intra prediction)을 수행하는 화면내 예측부(115)를 포함할 수 있다. 코딩 효율을 높이기 위하여, 영상 신호를 그대로 부호화하는 것이 아니라, 이미 부호화 및 복호화가 완료된 픽처 내부의 특정 영역을 이용하여 영상을 예측하고, 원래의 영상과 예측 영상 사이의 레지듀얼 값을 부호화한다. 또한, 예측을 위하여 사용된 예측 모드 정보, 움직임 벡터 정보 등은 레지듀얼 값과 함께 엔트로피 부호화부(135)에서 부호화되어 복호화부에 전달될 수 있다. 특정한 부호화 모드를 이용하는 경우에는 예측부(110, 115)를 통하여 예측 블록을 생성하지 아니하고, 원본 블록을 그대로 부호화하여 복호화부에 전송하는 것도 가능하다.
일 실시예에서, 예측부(110, 115)는 예측 블록에 대하여 화면간 예측을 수행할 것인지 화면내 예측을 수행할 것인지를 결정하고, 화면간 예측 모드, 움직임 벡터, 및 참조 픽쳐와 같은 상기 예측 방법 각각에 따른 구체적인 정보들을 결정할 수 있다. 이 경우, 예측이 수행되는 처리 단위와 예측 방법, 그리고 세부 처리 단위는 각각 다를 수 있다. 예를 들어, 예측 모드와 예측 방법은 예측 블록에 따라 결정되더라도, 예측의 수행은 변환 블록에 따라 수행될 수 있다.
예측부(110, 115)는, 픽처 분할부(105)에서 분할된 픽처의 처리 단위에 대하여 예측을 수행하여 예측된 샘플로 구성되는 예측 블록을 생성할 수 있다. 예측부(110, 115)에서의 픽처 처리 단위는 코딩 블록 단위일 수 있고, 변환 블록 단위일 수도 있으며, 예측 블록 단위일 수도 있다.
화면간 예측부(110)는 현재 픽처의 이전 픽처 또는 이후 픽처 중 적어도 하나 이상의 픽처의 정보를 기초로 예측 블록을 예측할 수 있고, 경우에 따라 현재 픽처 내의 코딩이 완료된 일부 영역의 정보를 기초로 예측 블록을 예측할 수 있다. 화면간 예측부(110)는 참조 픽처 보간부, 움직임 예측부, 및 움직임 보상부를 포함할 수 있다.
일 실시예에서, 화면간 예측부(110)에서 예측을 위하여 이용되는 상기 하나 이상의 픽처의 정보는 이미 부호화 및 복호화가 진행된 픽처들의 정보일 수 있고, 임의의 방법으로 변형되어 저장된 픽처들의 정보일 수 있다. 예를 들어, 상기 임의의 방법으로 변형되어 저장된 픽처는 부호화 및 복호화가 진행된 픽처를 확대 또는 축소한 픽처일 수 있고, 또는 픽처 내의 모든 픽셀 값의 밝기를 변형시키거나, 칼라 포맷을 변형시킨 픽처일 수도 있다.
참조 픽처 보간부는 메모리(155)로부터 참조 픽처 정보를 제공받아 참조 픽처에서 정수 픽셀 이하의 픽셀 정보를 생성할 수 있다. 휘도 픽셀의 경우, 필터의 계수를 달리하는 DCT 기반의 8-탭 보간 필터(DCT-based Interpolation Filter)를 이용하여 1/4 픽셀 단위로 정수 이하의 픽셀 정보를 생성할 수 있다. 색차 신호의 경우에는 필터의 계수를 달리하는 DCT 기반의 4-탭 보간 필터(DCT-based Interpolation Filter)를 이용하여 1/8 픽셀 단위로 정수 이하의 픽셀 정보를 생성할 수 있다. 그러나, 필터의 종류 및 정수 이하의 픽셀 정보를 생성하는 단위는 이에 한정되지는 아니하고, 다양한 보간 필터를 이용하여 정수 이하의 픽셀 정보를 생성하는 단위가 결정될 수 있을 것이다.
움직임 예측부는 상기 참조 픽처 보간부에 의하여 보간된 참조 픽처를 기초로 하여 움직임 예측을 수행할 수 있다. 움직임 벡터를 산출하기 위하여 다양한 방법이 사용될 수 있다. 움직임 벡터는 보간된 픽셀을 기초로 하여 정수 픽셀 단위 또는 1/2 또는 1/4 픽셀 단위의 움직임 벡터값을 가질 수 있다. 일 실시예에서는, 움직임 예측부에서 움직임 예측 방법을 다르게 하여 현재 블록의 예측 단위를 예측할 수 있다. 상기 움직임 예측 방법은 머지(Merge) 방법, AMVP(Advanced Motion Vector Prediction) 방법, 및 스킵(Skip) 방법을 포함하여 다양한 방법이 사용될 수 있다. 이와 같이, 화면간 예측부(110)에서 선택된 참조 픽처의 인덱스, 움직임 벡터 예측자(MVP), 레지듀얼 신호를 포함하는 정보들은 엔트로피 코딩되어 복호화기로 전송될 수 있다.
화면내 예측부(115)는 화면간 예측과 달리 현재 픽처 내의 픽셀 정보인 현재 블록 주변의 참조 픽셀 정보들을 기초로 하여 예측 블록을 생성할 수 있다. 상기 예측 블록의 주변 블록들은 화면간 예측을 수행한 블록인 경우, 즉, 참조 픽셀이 화면간 예측을 수행한 픽셀인 경우에는 화면간 예측을 수행한 블록에 포함되는 참조 픽셀을 주변의 화면내 예측을 수행한 블록의 참조 픽셀 정보로 대체하여 사용할 수도 있다.
상기 참조 픽셀이 이용 가능하지 아니하는 경우(unavailable)에는 이를 이용 가능하도록 설정하는 것이 선행되어야 한다. 일반적으로 이와 같은 경우, 상기 이용 가능하지 아니한 참조 픽셀은 이용 가능한(available) 주변 화소들 중 적어도 하나의 참조 픽셀로 대체하여 사용되거나 기설정된 샘플값을 할당하여 이용해왔다.
그러나, 이러한 이용 가능하지 아니한 참조 픽셀에 이용 가능한 참조 픽셀을 복사하여 이용하는 방법은, 현재 영상의 복호화시 화면내 예측 부호화 효율을 저하시키는 문제점이 발생할 수 있다. 본 발명의 다양한 실시예에 따르면, 이러한 문제점을 해결하기 위하여, 변환 블록의 코딩시 이용 가능하지 아니한 참조 픽셀 영역보다는 이용 가능한 참조 픽셀 영역을 이용해 화면 내 예측을 수행할 수 있도록, 화면 내 예측 모드의 방향에 따라 변환 블록들의 코딩 순서를 다양한 방법으로 변경할 수 있다. 이와 관련한 자세한 설명은 후술하기로 한다.
또한, 화면내 예측부(115)는 화면내 예측 모드를 부호화하기 위하여 이웃 블록들로부터 획득한 가장 가능성 있는 화면내 예측 모드(MPM : Most Probable mode)를 이용할 수 있다. 본 발명의 다양한 실시예에 따르면, 상기 가장 가능성 있는 화면내 예측 모드들로 구성되는 가장 가능성 있는 화면내 예측 모드 리스트(MPM List)는 다양한 방법으로 구성될 수 있다.
화면내 예측부(115)가 화면내 예측을 수행하는 경우에도 예측이 수행되는 처리 단위와 예측 방법 및 구체적인 내용이 정해지는 처리 단위는 서로 다를 수 있다. 예를 들어, 예측 모드가 예측 단위(PU)로 정해져서 상기 예측 단위로 예측이 수행될 수도 있고, 예측 모드는 예측 단위로 정해지되 예측의 수행은 변환 단위(TU)로 수행될 수도 있다. 일 실시예에서, 예측 모드가 코딩 블록(CU) 단위로 결정되고, 상기 코딩 블록 단위와 예측 단위가 동일하여 상기 코딩 블록 단위로 예측이 수행될 수도 있다.
화면내 예측의 예측 모드는 65개의 방향성 예측 모드 및 적어도 2 개 이상의 비방향성 모드를 포함할 수 있다. 상기 비방향성 모드는 DC 예측 모드 및 플래너 모드(Planar Mode)를 포함할 수 있다. 상기 67개의 화면간 예측 모드의 개수는 예시적일 뿐, 본 발명이 이에 한정되는 것은 아니며, 다양한 방법으로 예측하기 위하여 더 많은 방향성 또는 비방향성 모드로 화면내 예측을 수행할 수 있다.
일 실시예에서, 화면내 예측은 참조 픽셀에 필터를 적용한 후 예측 블록을 생성할 수 있다. 이 경우, 상기 참조 픽셀에 필터를 적용할지 여부는 현재 블록의 화면내 예측 모드 및/또는 크기에 따라 결정될 수 있다.
예측 단위(PU)는 더 이상 분할되지 않는 코딩 유닛(CU)으로부터 다양한 사이즈 및 형태로 결정될 수 있다. 예를 들어, 화면간 예측의 경우 예측 단위는 2N x 2N, 2N x N, N x 2N 또는 N x N와 같은 크기를 가질 수 있다. 화면내 예측의 경우 예측 단위는 2N x 2N 또는 N x N (N은 정수)와 같은 크기를 가질 수 있으나, 이와 같은 정방향 크기 뿐만 아니라 비정방향 크기 모양으로도 화면내 예측을 수행할 수 있다. 이 경우, N x N 크기의 예측 단위는 특정한 경우에만 적용하도록 설정할 수도 있다. 또한, 상술한 크기의 예측 단위 이외에도, N x mN, mN x N, 2N x mN 또는 mN x 2N (m은 분수 또는 정수임) 와 같은 크기를 갖는 화면내 예측 단위를 더 정의하여 사용할 수도 있다.
화면내 예측부(115)에서 생성된 예측 블록과 원본 블록 사이의 레지듀얼 값(레지듀얼 블록 또는 레지듀얼 신호)은 변환부(120)에 입력될 수 있다. 또한, 예측을 위하여 사용되는 예측 모드 정보, 보간 필터 정보 등은 레지듀얼 값과 함께 엔트로피 부호화부(135)에서 부호화되어 복호화기로 전달될 수 있다.
변환부(120)는 변환 단위로 원본 블록과 예측부(110, 115)를 통하여 생성된 예측 단위의 레지듀얼 값 정보를 포함하는 레지듀얼 블록을 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), KLT(Karhunen Loeve Transform)과 같은 변환 방법을 이용하여 변환시킬 수 있다. 레지듀얼 블록을 변환하기 위하여 DCT, DST 또는 KLT 를 적용할지는 레지듀얼 블록을 생성하기 위하여 사용된 예측 단위의 화면내 예측 모드 정보를 기초로 결정할 수 있다.
변환부(120)에서의 변환 블록은 TU일 수 있고, 정방형(square) 구조, 비정방형(non-square) 구조, 정방형 쿼드 트리(square quad tree) 구조, 비정방형 쿼드 트리(non-square quad tree) 구조 또는 바이너리 트리(binary tree) 구조를 가질 수 있다. 일 실시예에서, 변환 단위의 크기는 소정의 최대 및 최소 크기의 범위 내에서 정해질 수 있다. 또한, 하나의 변환 블록은 서브 변환 블록으로 더 분할될 수 있으며, 상기 서브 변환 블록들은 정방형(square) 구조, 비정방형(non-square) 구조, 정방형 쿼드 트리(square quad tree) 구조, 비정방형 쿼드 트리(non-square quad tree) 구조 또는 바이너리 트리(binary tree) 구조를 가질 수 있다.
양자화부(125)는 변환부(120)에서 변환된 레지듀얼 값들을 양자화하여 양자화 계수를 생성할 수 있다. 일 실시예에서, 상기 변환된 레지듀얼 값들은 주파수 영역으로 변환된 값일 수 있다. 상기 양자화 계수는 변환 단위에 따라 또는 영상의 중요도에 따라 변경될 수 있으며, 양자화부(125)에서 산출된 값은 역양자화부(140) 및 재정렬부(130)에 제공될 수 있다.
재정렬부(130)는 양자화부(125)로부터 제공된 양자화 계수를 재정렬할 수 있다. 재정렬부(130)는 상기 양자화 계수를 재정렬함으로써 엔트로피 부호화부(135)에서의 부호화 효율을 향상시킬 수 있다. 재정렬부(130)는 계수 스캐닝(Coefficient Scanning) 방법을 통하여 2차원 블록 형태의 양자화 계수들을 1차원의 벡터 형태로 재정렬할 수 있다. 상기 계수 스캐닝 방법은 변환 단위의 크기 및 화면내 예측 모드에 따라 어떠한 스캔 방법이 사용될지 여부가 결정될 수 있다. 상기 계수 스캐닝 방법은 지그-재그 스캔, 2차원의 블록 형태의 계수를 열 방향으로 스캔하는 수직 스캔, 및 2차원의 블록 형태 계수를 행 방향으로 스캔하는 수평 스캔을 포함할 수 있다. 일 실시예에서, 재정렬부(130)는 양자화부에서 전송되는 계수들의 확률적인 통계를 기반으로 계수 스캐닝의 순서를 변경함으로써 엔트로피 부호화부(135)에서의 엔트로피 부호화 효율을 높일 수도 있다.
엔트로피 부호화부(135)는 재정렬부(130)에 의하여 재정렬된 양자화 계수들에 대한 엔트로피 부호화를 수행할 수 있다. 엔트로피 부호화는 예를 들어, 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Content-Adaptive Binary Arithmetic Coding)과 같은 다양한 부호화 방법을 이용할 수 있다.
엔트로피 부호화부(135)는 재정렬부(130) 및 예측부(110, 115)로부터 전달받은 코딩 유닛의 양자화 계수 정보 및 블록 타입 정보, 예측 모드 정보, 분할 단위 정보, 예측 유닛 정보 및 전송 단위 정보, 움직임 벡터 정보, 참조 픽처 정보, 블록의 보간 정보, 필터링 정보와 같은 다양한 정보를 부호화할 수 있다. 또한, 일 실시예에서 엔트로피 부호화부(135)는 필요한 경우에, 전송하는 파라미터 셋 또는 신택스에 일정한 변경을 가할 수도 있다.
역양자화부(140)는 양자화부(125)에서 양자화된 값들을 역양자화하고, 역변환부(145)는 역양자화부(140)에서 역양자화된 값들을 역변화한다. 역양자화부(140) 및 역변환부(145)에서 생성된 레지듀얼 값은 예측부(110,115)에서 예측된 예측 블록과 합쳐져 복원 블록(Reconstructed Block)이 생성될 수 있다. 상기 생성된 복원 블록들로 구성된 영상은 움직임 보상 영상 또는 MC 영상(Motion Compensated Picture)일 수 있다.
상기 움직임 보상 영상은 필터부(150)에 입력될 수 있다. 필터부(150)는 디블록킹 필터부, 오프셋 보정부(Sample Adaptive Offset, SAO), 및 적응적 루프 필터부(Adaptive Loop Filter, ALF)를 포함할 수 있으며, 요약하자면, 상기 움직임 보상 영상는 디블록킹 필터부에서 디블록킹 필터가 적용되어 블록킹 잡음(blocking artifact)를 감소 또는 제거 시킨 후, 오프셋 보정부에 입력되어 오프셋을 보정시킬 수 있다. 상기 오프셋 보정부에서 출력된 픽처는 상기 적응적 루프 필터부에 입력되어 ALF(Adaptive Loop Filter) 필터를 통과하며, 상기 필터를 통과한 픽처는 메모리(155)로 전송될 수 있다.
필터부(150)에 대하여 구체적으로 설명하면, 상기 디블록킹 필터부는 복원된 픽처에서 블록 간의 경계에 생성된 블록 내의 왜곡을 제거할 수 있다. 디블록킹을 수행할지 여부를 판단하기 위해서는 블록에 포함된 몇 개의 열 또는 행에 포함된 픽셀을 기초로 현재 블록에 디블록킹 필터를 적용할지 여부를 판단할 수 있다. 블록에 디블록킹 필터를 적용하는 경우, 필요한 디블록킹 필터링 강도에 따라 강한 필터(Strong Filter) 또는 약한 필터(Weak Filter)를 적용할 수 있다. 또한, 디블록킹 필터를 적용함에 있어 수직 필터링 및 수평 필터링 수행시 수평 방향 필터링 및 수직 방향 필터링이 병행 처리되도록 할 수 있다.
오프셋 보정부는 디블록킹 필터가 적용된 레지듀얼 블록에 대하여, 픽셀 단위로 원본 영상과의 오프셋을 보정할 수 있다. 특정 픽처에 대한 오프셋을 보정하기 위하여 영상에 포함된 픽셀을 일정한 수의 영역으로 구분한 후, 오프셋을 수행할 영역을 결정하고, 해당 영역에 오프셋을 적용하는 방법(Band Offset) 또는 각 픽셀의 에지 정보를 고려하여 오프셋을 적용하는 방법(Edge Offset)의 형태로 적용될 수 있다. 그러나, 일 실시예에서 화면간 예측에 사용되는 복원 블록에 대하여는 필터부(150)에서 필터링을 적용하지 아니할 수 있다.
적응적 루프 필터부(Adaptive Loop Filter, ALF)는 필터링한 복원 영상과 원래의 영상을 비교한 값을 기초로, 고효율을 적용하는 경우에만 수행될 수 있다. 영상에 포함된 픽셀을 소정의 그룹으로 나눈 후, 해당 그룹에 적용될 하나의 필터를 결정하여 그룹마다 차별적으로 필터링을 수행할 수 있다. 상기 ALF를 적용할지 여부에 관련된 정보는 휘도 신호는 부호화 단위(Coding Unit, CU) 별로 전송될 수 있고, 각각의 블록에 따라 적용될 ALF 필터의 모양 및 필터 계수는 달라질 수 있다. 또한, 적용 대상 블록의 특성에 관계없이 동일한 형태(고정된 형태)의 ALF 필터가 적용될 수도 있다.
메모리(155)는 필터부(150)을 통하여 산출된 복원 블록 또는 픽처를 저장할 수 있다. 메모리(155)에 저장된 복원 블록 또는 픽처는 화면간 예측을 수행하는 화면간 예측부(110) 또는 화면내 예측부(115)에 제공될 수 있다. 화면내 예측부(115)에서 사용되는 복원 블록들의 화소값은 디블록킹 필터부, 오프셋 보정부, 및 적응적 루프 필터부가 적용되지 아니한 데이터들 일 수 있다.
도 2는 본 발명의 일 실시예에 따른 영상 복호화 장치를 개략적으로 나타낸 블록도이다. 도 2 를 참조하면, 영상 복호화 장치(200)는 엔트로피 복호화부(210), 재정렬부(215), 역양자화부(220), 역변환부(225), 화면간 예측부(230), 화면내 예측부(235), 필터부(240), 메모리(245)를 포함한다.
영상 부호화 장치로부터 영상 비트스트림이 입력되는 경우, 입력된 비트스트림은 부호화 장치에서 영상 정보가 처리된 절차의 역과정으로 복호화될 수 있다. 예를 들어, 영상 부호화 장치에서 엔트로피 부호화를 수행하기 위하여 CAVLC와 같은 가변 길이 부호화(Variable Length Coding: VLC, 이하 "VLC"라 함)가 사용된 경우에는, 엔트로피 복호화부(210)도 부호화 장치에서 사용한 VLC 테이블과 동일한 VLC 테이블로 구현하여 엔트로피 복호화를 수행할 수 있다. 또한, 부호화 장치에서 엔트로피 부호화를 수행하기 위하여 CABAC을 이용한 경우에는 엔트로피 복호화부(210)에서 이에 대응하여 CABAC을 이용한 엔트로피 복호화를 수행할 수 있다.
엔트로피 복호화부(210)에서는 복호화된 정보 중 예측 블록을 생성하기 위한 정보를 화면간 예측부(230) 및 화면내 예측부(235)로 제공하고, 엔트로피 복호화부에서 엔트로피 복호화가 수행된 레지듀얼 값은 재정렬부(215)로 입력될 수 있다.
재정렬부(215)는 엔트로피 복호화부(210)에서 엔트로피 복호화된 비트스트림을 영상 부호화기에서 재정렬한 방법을 기초로 재정렬할 수 있다. 재정렬부(215)는 부호화 장치에서 수행된 계수 스캐닝에 관련된 정보를 제공받고 부호화 장치에서 수행된 스캐닝 순서에 기초하여 역으로 스캐닝하는 방법을 통하여 재정렬을 수행할 수 있다.
역양자화부(220)는 부호화 장치에서 제공된 양자화 파라미터와 재정렬된 블록의 계수값을 기초로 역양자화를 수행할 수 있다. 역변환부(225)는 영상 부호화 장치에서 수행된 양자화 결과에 대하여, 부호화 장치의 변환부가 수행한 DCT, DST, 또는 KLT 에 대해 역DCT, 역DST, 또는 역KLT를 수행할 수 있다. 역변환은 부호화 장치에서 결정된 전송 단위 또는 영상의 분할 단위를 기초로 수행될 수 있다. 인코딩 장치의 변환부에서는 예측 방법, 현재 블록의 크기 및 예측 방향과 같은 정보에 따라 DCT, DST, 또는 KLT를 선택적으로 수행할 수 있고, 복호화 장치의 역변환부(225)는 부호화 장치의 변환부에서 수행된 변환 정보를 기초로 역변환 방법이 결정되어 역변환을 수행할 수 있다.
예측부(230, 235)는 엔트로피 복호화부(210)에서 제공된 예측 블록 생성과 관련된 정보와 메모리(245)에서 제공된 이전에 복호화된 블록 및/또는 픽처 정보를 기초로 예측 블록을 생성할 수 있다. 복원 블록은 예측부(230, 235)에서 생성된 예측 블록과 역변환부(225)에서 제공된 레지듀얼 블록을 이용하여 생성될 수 있다. 예측부(230, 235)에서 수행하는 구체적인 예측의 방법은 부호화 장치의 예측부(110, 115)에서 수행되는 예측의 방법과 동일할 수 있다.
예측부(230, 235)는 예측 단위 판별부(미도시), 화면간 예측부(230), 및 화면내 예측부(235)를 포함할 수 있다. 예측 단위 판별부는 엔트로피 복호화부(210)에서 입력되는 예측 단위 정보, 화면내 예측 방법의 예측 모드 정보, 화면간 예측 방법의 움직임 예측 관련 정보와 같은 다양한 정보를 입력 받아, 현재 코딩 블록에서의 예측 블록을 구분하고, 예측 블록이 화면간 예측을 수행하는지 아니면 화면내 예측을 수행하는지 여부를 판별할 수 있다.
화면간 예측부(230)는 영상 부호화기에서 제공된 현재 예측 블록의 화면간 예측에 필요한 정보를 이용하여 현재 예측 블록이 포함된 현재 픽처의 이전 픽처 또는 이후 픽처 중 적어도 하나의 픽처에 포함된 정보를 기초로 현재 예측 블록에 대한 화면간 예측을 수행할 수 있다.
구체적으로 화면간 예측에서는 현재 블록에 대하여, 참조 픽처를 선택하고 현재 블록과 동일한 크기의 참조 블록을 선택하여 현재 블록에 대한 예측 블록을 생성할 수 있다. 이 때, 참조 픽처의 정보를 이용하기 위하여, 현재 픽처의 주변 블록들의 정보를 이용할 수 있다. 예를 들어, 스킵(skip) 모드, 머지(merge) 모드, 및 AMVP(Advanced Motion Vector Prediction)와 같은 방법을 이용하여 주변 블록의 정보에 기반하여 현재 블록에 대한 예측 블록을 생성할 수 있다.
예측 블록은 1/2 픽셀 샘플 단위와 1/4 픽셀 샘플 단위와 같이 정수 이하의 샘플 단위로 생성될 수 있다. 이 경우, 움직임 벡터 역시 정수 픽셀 이하의 단위로 표현될 수 있다. 예를 들어, 휘도 픽셀에 대해서는 1/4 픽셀 단위로, 색차 픽셀에 대하여는 1/8 픽셀 단위로 표현될 수 있다.
현재 블록의 화면간 예측에 필요한 움직임 벡터 및 참조 픽처 인덱스를 포함하는 움직임 정보는 부호화 장치로부터 수신한 스킵 플래그, 머지 플래그 등을 확인하고 이에 대응하여 유도될 수 있다.
화면내 예측부(235)는 현재 픽처 내의 픽셀 정보를 기초로 예측 블록을 생성할 수 있다. 예측 단위가 화면내 예측을 수행한 예측 단위인 경우에는 영상 부호화기에서 제공된 예측 단위의 화면내 예측 모드 정보를 기초로 화면내 예측을 수행할 수 있다. 상기 예측 단위의 주변 블록들은 화면간 예측을 수행한 블록인 경우, 즉, 참조 픽셀이 화면간 예측을 수행한 픽셀인 경우에는 화면간 예측을 수행한 블록에 포함되는 참조 픽셀을 주변의 화면내 예측을 수행한 블록의 참조 픽셀 정보로 대체하여 사용할 수도 있다.
상기 참조 픽셀이 이용 가능하지 아니하는 경우(unavailable)에는 이를 이용 가능하도록 설정하는 것이 선행되어야 한다. 일반적으로 이와 같은 경우, 상기 이용 가능하지 아니한 참조 픽셀은 이용 가능한(available) 주변 화소값들 중 적어도 하나의 참조 픽셀로 대체하여 사용되거나 기설정된 샘플값을 할당하여 이용해왔다.
그러나, 이러한 이용 가능하지 아니한 참조 픽셀에 이용 가능한 참조 픽셀을 복사하여 이용하는 방법은, 현재 영상의 복호화시 화면내 예측 부호화 효율을 저하시키는 문제점이 발생할 수 있다. 본 발명의 다양한 실시예에 따르면, 이러한 문제점을 해결하기 위하여, 변환 블록의 코딩시 이용 가능하지 아니한 참조 픽셀 영역보다는 이용 가능한 참조 픽셀 영역을 이용해 화면 내 예측을 수행할 수 있도록, 화면 내 예측 모드의 방향에 따라 변환 블록들의 코딩 순서를 다양한 방법으로 변경할 수 있다. 이와 관련된 자세한 설명은 후술하기로 한다.
또한, 화면내 예측부(235)는 화면내 예측 모드를 부호화하기 위하여 이웃 블록들로부터 획득한 가장 가능성 있는 화면내 예측 모드(MPM: Most Probable Mode)을 이용할 수 있다. 일 실시예에서, 상기 가장 가능성 있는 화면내 예측 모드는 현재 블록의 공간적 이웃 블록의 화면내 예측 모드를 이용할 수 있다.
일 실시예에서, 화면내 예측부(235)에서 예측이 수행되는 처리 단위와 예측 방법 및 구체적인 내용이 정해지는 처리 단위는 서로 다를 수 있다. 예를 들어, 예측 단위로 예측 모드가 정해져 예측 단위로 예측이 수행될 수 있고, 예측 단위로 예측 모드가 정해지고 변환 단위로 화면내 예측이 수행될 수도 있다.
이 경우, 예측 블록(PU)은 더 이상 분할되지 않는 코딩 블록(CU)으로부터 다양한 사이즈 및 형태로 결정될 수 있다. 예를 들어, 화면내 예측의 경우 예측 블록은 2N x 2N 또는 N x N (N은 정수)와 같은 크기를 가질 수 있으나, 이와 같은 정방향 크기 뿐만 아니라 비정방향 크기 모양인 N x mN, mN x N, 2N x mN 또는 mN x 2N (m은 분수 또는 정수임)으로도 화면내 예측을 수행할 수 있다. 이 경우, N x N 크기의 예측 단위는 특정한 경우에만 적용하도록 설정할 수도 있다.
또한, 변환 블록(TU)도 다양한 사이즈 및 형태로 결정될 수 있다. 예를 들어, 변환 블록은 2N x 2N 또는 N x N (N은 정수)와 같은 크기를 가질 수 있으나, 이와 같은 정방향 크기 뿐만 아니라 비정방향 크기 모양인 N x mN, mN x N, 2N x mN 또는 mN x 2N (m은 분수 또는 정수임)으로도 화면내 예측을 수행할 수 있다. 이 경우, N x N 크기의 예측 단위는 특정한 경우에만 적용하도록 설정할 수도 있다. 일 실시예에서, 변환 블록은 정방형(square) 구조, 비정방형(non-square) 구조, 정방형 쿼드 트리(square quad tree) 구조, 비정방형 쿼드 트리(non-square quad tree) 구조, 또는 바이너리 트리(binary tree) 구조로 갖는 블록들 중 하나일 수 있다. 일 실시예에서, 변환 블록의 크기는 소정의 최대 및 최소 크기의 범위 내에서 정해질 수 있다. 또한, 하나의 변환 블록은 서브 변환 블록으로 분할될 수 있으며, 이 경우 상기 서브 변환 블록들도 정방형(square) 구조, 비정방형(non-square) 구조, 정방형 쿼드 트리(square quad tree) 구조, 비정방형 쿼드 트리(non-square quad tree) 구조, 또는 바이너리 트리(binary tree) 구조로 분할될 수 있다.
화면내 예측부(235)에는 AIS(Adaptive Intra Smoothing) 필터부, 참조 픽셀 보간부, DC 필터부를 포함할 수 있다. 상기 AIS 필터부는 현재 블록의 참조 픽셀에 필터링을 수행하는 부분으로써 현재 예측 단위의 예측 모드에 따라 필터의 적용 여부를 결정하여 적용할 수 있다. 영상 부호화기에서 제공된 예측 단위의 예측 모드 및 AIS 필터 정보를 이용하여 현재 블록의 참조 픽셀에 AIS 필터링을 수행할 수 있다. 현재 블록의 예측 모드가 AIS 필터링을 수행하지 아니하는 모드인 경우에는, 상기 AIS 필터부는 현재 블록에 적용되지 아니할 수 있다.
참조 픽셀 보간부는 예측 단위의 예측 모드가 참조 픽셀을 보간한 샘플값을 기초로 화면내 예측을 수행하는 예측 단위인 경우에, 참조 픽셀을 보간하여 정수값 이하의 픽셀 단위의 참조 픽셀을 생성할 수 있다. 현재 예측 단위의 예측 모드가 참조 픽셀을 보간하지 아니하고 예측 블록을 생성하는 예측 모드인 경우, 참조 픽셀은 보간되지 아니할 수 있다. DC 필터부는 현재 블록의 예측 모드가 DC 모드인 경우에 필터링을 통하여 예측 블록을 생성할 수 있다.
복원된 블록 및/또는 픽처는 필터부(240)로 제공될 수 있다. 필터부(240)는 복원된 블록 및/또는 픽처에 디블록킹 필터부, 오프셋 보정부(Sample Adaptive Offset) 및/또는 적응적 루프 필터부를 포함할 수 있다. 상기 디블록킹 필터부는 영상 부호화기로부터 해당 블록 또는 픽처에 디블록킹 필터가 적용되었는지 여부를 나타내는 정보 및 디블록킹 필터가 적용된 경우 강한 필터 또는 약한 필터를 적용하였는지를 나타내는 정보를 제공받을 수 있다. 상기 디블록킹 필터부는 영상 부호화기에서 제공된 디블록킹 필터 관련 정보를 제공받고, 영상 복호화기에서 해당 블록에 대한 디블록킹 필터링을 수행할 수 있다.
상기 오프셋 보정부는 부호화시 영상에 적용된 오프셋 보정의 종류 및 오프셋 값 정보 등을 기초로 복원된 영상에 오프셋 보정을 수행할 수 있다. 상기 적응적 루프 필터부는 부호화기로부터 제공된 적응적 루프 필터의 적용 여부에 관한 정보, 적응적 루프 필터의 계수 정보와 같은 정보들을 기초로 부호화 단위로 적용될 수 있다. 상기 적응적 루프 필터와 관련된 정보들은 특정 파라미터 셋(parameter set)에 포함되어 제공될 수 있다.
메모리(245)는 복원된 픽처 또는 블록을 저장하여 이후에 참조 픽처 또는 참조 블록으로 사용할 수 있고, 또한 복원된 픽처를 출력부로 제공할 수 있다.
본 명세서에서는 설명의 편의를 위하여 생략하였지만, 복호화 장치에 입력되는 비트스트림은 파싱(parsing) 단계를 거쳐 엔트로피 복호화부로 입력될 수 있다. 또한, 엔트로피 복호화부에서 파싱 과정을 수행하도록 할 수 있다.
본 명세서에서 코딩은 경우에 따라 부호화 또는 복호화로 해석될 수 있고, 정보(information)는 값(values), 파라미터(parameter), 계수(coefficients), 성분(elements), 플래그(flag) 등을 모두 포함하는 것으로 이해될 수 있다. '화면' 또는 '픽처(picture)'는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, '슬라이스(slice)', '프레임(frame)' 등은 실제 비디오 신호의 코딩에 있어서 픽처의 일부를 구성하는 단위이며, 필요에 따라서는 픽처와 서로 혼용되어 사용될 수 있다.
'픽셀(pixel)', '픽셀' 또는 'pel'은 하나의 영상을 구성하는 최소의 단위를 나타낸다. 또한, 특정한 픽셀의 값을 나타내는 용어로서, '샘플(sample)'을 사용할 수 있다. 샘플은 휘도(Luma) 및 색차(Chroma) 성분으로 나누어질 수 있으나, 일반적으로는 이를 모두 포함하는 용어로 사용될 수 있다. 상기에서 색차 성분은 정해진 색상들 간의 차이를 나타내는 것으로 일반적으로 Cb 및 Cr로 구성된다.
'유닛(unit)'은 상술한 부호화 유닛, 예측 유닛, 변환 유닛과 같이 영상 처리의 기본 단위 또는 영상의 특정 위치를 지칭하며, 경우에 따라서는 '블록' 또는 '영역(area)'등의 용어와 서로 혼용하여 사용될 수 있다. 또한, 블록은 M개의 열과 N개의 행으로 구성된 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타내는 용어로 사용될 수도 있다.
도 3은 종래 기술에 따른 현재 블록에 대한 코딩 블록을 설명하기 위한 것이다.
도 3을 참조하면, 현재 블록(10)에 해당하는 영상은 동일한 크기의 정방형(square) 코딩 블록들(11, 12, 13, 14)을 이용하여 부호화 또는 복호화될 수 있다. 예를 들어, 현재 블록(10)의 영상이 현재 블록 내에서 한쪽에 치우쳐 정방형 코딩 블록들 중 CU1(12) 및 CU3(14)에만 위치하는 경우에도, 4 개의 정방형 코딩 블록으로 분할되어 실제 영상이 존재하지 아니하는 코딩 블록인 CU0(11) 및 CU2(13)도 부호화 또는 복호화 하여야 하므로, 상기 CU0(11) 및 CU2(13)에 대한 예측 모드 및 예측 정보도 전송하여야 한다. 이와 같은 방법은, 해당 블록의 영상의 특징과는 관계없이 전송하여야 하는 정보들이 많기 때문에 부호화 효율을 저하시킬 수 있다. 이러한 문제점을 해결하기 위하여 본 발명의 일 실시예에 따른 코딩 블록은 정방형 코딩 블록 뿐만 아니라, 비정방형(non-square) 코딩 블록을 포함할 수 있다.
도 4a 내지 도 4c는 본 발명의 일 실시예에 따른 현재 블록의 비정방형 코딩 블록들의 예시를 나타내는 것이다.
도 4a 내지 도 4c에 나타난 바와 같이, 코딩 블록은 비정방형 코딩 블록을 포함할 수 있다. 또한, 각 코딩 블록마다 예측 모드와 예측 정보들은 독립적으로 결정되어 전송될 수 있다. 일 실시예에서, 상기 비정방형 코딩 블록은 가로 방향보다 세로 방향의 길이가 더 긴 세로 방향의 비정방형 코딩 블록 및 세로 방향보다 가로 방향의 길이가 더 긴 가로 방향의 비정방형 코딩 블록을 포함할 수 있다.
먼저 도 4a를 참조하면, 현재 블록을 코딩하기 위한 코딩 블록(21 내지 27)은 세로 방향의 비정방형 모양의 코딩 블록들(21, 24, 25)을 포함하는 예시를 나타낸다. 예를 들어, 세로 방향의 비정방형 코딩 블록은 16 x 32 의 크기를 갖거나(21) 8 x 32 의 크기를 가질 수 있으나(24, 25), 본 발명에서 코딩 블록의 가로 및 세로 크기 비율은 제한되지 아니한다. 일 실시예에서, 세로 방향의 비정방형 모양의 코딩 블록들은 현재 블록에 해당하는 영상이 가로 방향에 비하여 세로 방향으로 변화가 큰 경우 이용될 수 있다.
또한, 도 4b를 참조하면, 현재 블록을 코딩하기 위한 코딩 블록(31 내지 37)은 가로 방향의 비정방형 모양의 코딩 블록들(31, 34, 35)을 포함하는 예시를 나타낸다. 예를 들어, 가로 방향의 비정방형 코딩 블록은 32 x 16 의 크기를 갖거나(31) 32 x 8 의 크기를 가질 수 있으나(34, 35), 본 발명에서 코딩 블록의 가로 및 세로 크기 비율은 제한되지 아니한다. 일 실시예에서, 가로 방향의 비정방형 모양의 코딩 블록들은 현재 블록에 해당하는 영상이 세로 방향에 비하여 가로 방향으로 변화가 큰 경우 이용될 수 있다. 그러나, 이는 예시일 뿐, 현재 블록을 위하여 어느 방향의 비정방형 코딩 블록을 이용하는지 여부의 결정 방법은 본 발명에서 제한하지 아니하며, 비정방형 코딩 블록의 최대 및 최소 크기도 제한하지 아니한다. 또한, 비정방형 코딩 블록의 개수 및 가로 길이와 세로 길이와의 비율도 제한하지 아니하며, 현재 블록은 1:N 으로도 분할될 수 있다.
일 실시예에서는, 현재 코딩 블록(CU)에 대응되는 예측 블록(PU)을 별도로 설정하는 것이 아니라 현재 코딩 블록(CU)이 그대로 예측 블록(PU)으로 이용될 수 있다. 이 경우에도 코딩 블록(CU)은 일반적인 방법과 같이 정방향 블록의 모양 뿐만 아니라, 비정방향 블록일 수 있고, 상기 코딩 블록(CU)들을 포함하는 현재 블록은 1:N 분할 구조를 갖는 것도 가능하다. 또한, 다른 실시예에서는, 현재 코딩 블록(CU)이 예측 블록(PU) 및 변환 블록(TU)으로 모두 동일하게 이용될 수도 있으며, 이 경우에도 상술한 바와 같이 현재 코딩 블록을 포함하는 현재 블록이 정방형 블록들로 분할되는 구조, 비정방형 블록들로 분할되는 구조, 및 1:N 로 분할되는 구조들을 이용하여 분할될 수 있다.
도 4c를 참조하면, 코딩 트리 블록(Coding Tree Unit, CTU)은 다양한 크기의 정방형 코딩 블록(CB0 내지 CB4, CB8, CB9, CB11, CB12, CB15) 및 다양한 크기의 비정방형 코딩 블록(CB5 내지 CB7, CB10, CB13, CB14, CB17 내지 CB19)을 포함할 수 있다. 이와 같이, 정방형 코딩 블록 뿐만 아니라 비정방형 코딩 블록을 이용하여 현재 블록을 코딩함으로써, 불필요한 예측 모드 및 예측 정보의 전송을 감소시킴으로써 코딩 효율을 향상시킬 수 있다.
종래의 비디오 신호의 코딩에 있어서, 코딩 블록으로서 정방형 블록만을 이용할 뿐 아니라, 변환 블록으로서도 정방형 변환 블록만을 사용하였다. 각 코딩 블록 또는 예측 블록의 크기에 기초하는 변환 블록들은 쿼드트리 분할 구조로 재분할 될 수 있으며, 예를 들어, 하나의 변환 블록을 쿼드트리 구조로 분할하는 경우, 상기 변환 블록은 4 개의 정방형 서브 변환 블록들로 분할될 수 있다. 이러한 정방형 변환 블록들만 이용하는 종래의 코딩 방법은 코딩 블록에 해당하는 영상의 특성과 예측 모드에 따라 발생되는 잔차 신호의 특성을 고려하기 어려운 점이 있다. 따라서, 본 발명의 일 실시예에 따른 비디오 신호의 코딩 방법은 비정방형 코딩 블록 뿐 아니라, 변환 블록으로서 비정방형 변환 블록 및 비정방형 서브 변환 블록을 이용할 수 있다.
도 5a 내지 도 6c는 본 발명의 일 실시예에 따른 현재 코딩 블록을 위한 변환 블록들의 예시를 나타내는 것이다. 도 5a 및 도 5b는 N x N 크기의 정방형의 현재 코딩 블록(미도시)에 대한 초기 변환 블록의 구성의 예시이고, 도 6a 내지 도 6c는 비정방형의 현재 코딩 블록에 대한 초기 변환 블록의 구성을 나타내는 것이다.
정방형의 현재 코딩 블록에 대하여 하나 또는 다수의 변환 블록들을 이용하는 경우, 현재 코딩 블록을 구성하는 변환 블록은 정방형 변환 블록 및 비정방형 변환 블록을 포함할 수 있다. 상기 변환 블록은 변환 매트릭스를 이용하여 잔차 신호를 주파수 영역으로 변환할 수 있다.
도 5a를 참조하면, 정방형 코딩 블록은 초기 변환 블록의 구성으로서 하나의 정방형 변환 블록(41) 또는 4 개의 정방형 변환 블록들(42 내지 45)로 구성될 수 있다. 또한, 도 5b를 참조하면, 정방형 코딩 블록을 이용하는 경우에는 초기 변환 블록으로서 2 개의 비정방형 변환 블록(46 내지 48) 또는 4 개의 비정방형 변환 블록(51 내지 58)으로 구성될 수 있다. 상기 2 개의 비정방형 변환 블록은 N/2 x N 크기의 세로 방향의 비정방형 변환 블록(46, 47) 또는 N x N/2 크기의 가로 방향의 비정방형 변환 블록(48, 49)일 수 있고, 상기 4 개의 비정방형 변환 블록은 N/4 x N 크기의 세로 방향의 비정방형 변환 블록(51 내지 54) 또는 N x N/4 크기의 가로 방향의 비정방형 변환 블록(55 내지 58)일 수 있다.
이와 같이, 정방형 코딩 블록을 위한 변환 블록을 구성하는 경우, 정방형 변환 블록 뿐만 아니라, 비정방형 변환 블록으로 초기 변환 블록을 구성할 수 있다. 앞서 2 개 또는 4 개의 비정방형 변환 블록을 예시하였으나, 본 발명에서 비정방형 변환 블록의 크기 및 개수는 이에 한정되지 아니한다. 또한, 현재 코딩 블록이 화면내 예측을 수행하는 경우, 화면 내 예측 모드의 방향성에 따라 현재 코딩 블록의 변환 블록 구성을 상이하게 결정할 수 있다. 예를 들면, 현재 코딩 블록이 수직 방향의 화면 내 예측 모드를 이용하는 경우에는 현재 코딩 블록에 대한 변환 블록으로서 가로로 분할된 비정방형 변환 블록을 이용함으로써, 상단의 복호된 참조 샘플들을 이용하여 현재 변환 블록이 예측 신호를 생성할 수 있게 된다.
도 6a 내지 도 6d를 참조하는 일 실시예에 따르면, 비정방형의 현재 코딩 블록(미도시)에 대하여 하나 또는 다수의 변환 블록들을 이용하는 경우에도, 현재 코딩 블록을 구성하는 변환 블록은 정방형 변환 블록 및 비정방형 변환 블록을 포함할 수 있다.
도 6a를 참조하면, 본 발명에서 코딩 블록은 가로 길이(A)와 세로 길이(B)가 상이한 비정방형 코딩 블록(60a, 60b)일 수 있다. 이 경우, 현재 비정방형의 코딩 블록을 하나 또는 다수의 변환 블록들로 초기 구성할 때, 코딩 블록을 균등하게 분할하기 위하여 정방형 변환 블록을 이용하거나 비정방형 변환 블록을 이용할 수 있다.
도 6b를 참조하면, 비정방형 코딩 블록(60a, 60b)을 위한 초기 변환 블록 구성으로서 N 개의 a x a 크기의 정방형 변환 블록(61)이 이용될 수 있다. 이 경우, 정방형 변환 블록(61)의 가로 및 세로 길이인 a 는 비정방형 코딩 블록의 가로 및 세로 길이 중 작은 길이와 동일할 수 있다. 일 실시예에서는, 정방형 변환 블록(61)의 가로 및 세로 길이를 상위 파라미터로부터 계산하거나 기설정된 방법을 통하여 획득할 수 있다.
도 6c를 참조하면, 비정방형 코딩 블록(60a, 60b)을 위한 초기 변환 블록의 구성으로서 M (여기서 M은 정수)개의 비정방형 변환 블록(62 내지 65)이 이용될 수 있다. 상기 비정방형 변환 블록(62, 63)은 비정방형 코딩 블록(60a)와 동일한 크기일 수 있고, 또는, 비정방형 코딩 블록(60a, 60b) 보다 작은 크기의 비정방형 변환 블록(64, 65)일 수도 있다. 일 실시예에서, 비정방형 변환 블록(62, 63)의 가로 길이(a) 및 세로 길이(b)는 코딩 블록(60a, 60b)의 가로 및 세로 길이와 동일하게 설정될 수 있다. 다른 실시예에서는, 비정방형 변환 블록(64, 65)의 가로 및 세로 길이를 상위 파라미터로부터 계산하거나 기설정된 방법을 통하여 획득할 수 있다.
또한, 도 6d를 참조하면, 비정방형 코딩 블록(60a, 60b)을 위한 초기 변환 블록의 구성으로서 쿼드트리 구조의 M 개의 비정방형 또는 정방형 변환 블록(66, 67)이 이용될 수 있다. 상기 비정방형 또는 정방형 변환 블록(66, 67)은 비정방형 코딩 블록보다 작은 크기의 블록으로서 상기 비정방형 코딩 블록의 크기가 커 변환 블록 하나로 대응되지 아니하는 경우, 이용될 수 있다. 본 발명에서는 쿼드트리 구조의 변환 블록들에 대하여 설명하지만, 상기 비정방형 또는 정방형 변환 블록(66, 67)의 개수는 이에 한정되지 아니한다.
현재 코딩 블록을 구성하는 변환 블록은 더 작은 크기의 서브 변환 블록들로 분할될 수 있다. 상기 서브 변환 블록들은 각각 독립적인 변환 과정을 수행하여 변환 계수를 생성할 수 있으며, 다양한 모양 및 크기를 가질 수 있다. 또한, 상기 서브 변환 블록들로 분할되기 이전의 상위 변환 블록의 크기 및 모양에 기초하여 분할 방법을 다르게 결정할 수 있고, 상기 상위 변환 블록의 모양와 독립적으로 상이한 모양을 가질 수 있다.
도 7a 내지 도 10 은 본 발명의 일 실시예에 따른 서브 변환 블록의 예시를 나타내는 것이다. 도 7a 내지 도 7d는 변환 블록이 정방형 변환 블록인 경우 상기 변환 블록의 서브 변환 블록들의 예시를 나타낸 것이고, 도 8a 내지 도 8d는 변환 블록이 세로 방향의 비정방형 변환 블록인 경우, 서브 변환 블록들의 예시를 나타낸 것이며, 도 9a 내지 도 9d는 가로 방향의 비정방형 변환 블록에 대한 서브 변환 블록들의 예시를 나타낸 것이다. 또한, 도 10은 여러가지 서브 변환 블록들로 구성된 변환 블록을 나타낸 것이다.
도 7a 내지 도 7d를 참조하면, 현재 변환 블록이 N x N 크기의 정방형 변환 블록(70)인 경우, 정방형 변환 블록(70)은 다양한 방법으로 분할되어 서브 변환 블록(71a 내지 73h)를 생성할 수 있다. 정방형 변환 블록(70)은 정방형 쿼드트리 분할 방법을 이용하여 정방형의 4 개의 서브 변환 블록들(71a 내지 71d)로 분할될 수 있고(도 7b), 바이너리트리 분할 방법을 이용하여 세로 또는 가로 방향의 비정방형 2 개의 서브 변환 블록들(72a 내지 72d)로 분할될 수 있다(도 7c). 일 실시예서는, 비정방형 쿼드트리 분할 방법을 이용하여 세로 또는 가로 방향의 4 개의 비정방형 서브 변환 블록(73a 내지 73h)로 분할될 수 있다(도 7d). 분할되는 상기 서브 변환 블록들의 개수 및 크기는 일 예시일 뿐, 본 발명의 설명에 한정되지 아니한다.
도 8a 내지 도 8d를 참조하면, 도 8a와 같이 현재 변환 블록이 A(가로 길이) x B(세로 길이) 크기의 비정방형 변환 블록(80)인 경우, 비정방형 변환 블록(80)은 다양한 방법으로 분할되어 서브 변환 블록(81a 내지 83d)를 생성할 수 있다. 비정방형 변환 블록(80)은 정방형 쿼드트리 분할 방법을 이용하여 정방형의 4 개의 서브 변환 블록들(81a 내지 81d)로 분할될 수 있고(도 8b), 5 개 이상의 서브 변환 블록들(미도시)로 분할될 수 있다. 이 경우, 정방형 서브 변환 블록들의 가로 및 세로의 길이는 비정방형 변환 블록(80)의 가로 및 세로 길이 중 짧은 길이(도 8a에서는 A)와 동일할 수 있으나, 본 발명은 이에 한정되지 아니한다. 비정방형 변환 블록(80)의 세로 길이(B)가 가로 길이(A)의 정수 배인 경우, 비정방형 변환 블록(80)은 도 8b와 같은 정방형 분할 방법에 따라 서브 변환 블록으로 분할될 수 있다.
도 8c를 참조하면, 비정방형 변환 블록(80)은 바이너리트리 분할 방법을 이용하여 세로 또는 가로 방향의 비정방형 2 개의 서브 변환 블록들(82a 내지 82d)로 분할될 수 있다. 도 8d를 참조하면, 비정방형 쿼드트리 분할 방법을 이용하여 비정방형 변환 블록(80)은 4 개의 비정방형 서브 변환 블록(83a 내지 83d)로 분할될 수 있다. 분할되는 상기 서브 변환 블록들의 개수 및 크기는 일 예시일 뿐, 본 발명의 설명에 한정되지 아니한다.
도 9a 내지 도 9d를 참조하면, 도 9a와 같이 현재 변환 블록이 A(가로 길이) x B(세로 길이) 크기의 비정방형 변환 블록(90)인 경우, 비정방형 변환 블록(90)은 다양한 방법으로 분할되어 서브 변환 블록(91a 내지 93d)를 생성할 수 있다. 비정방형 변환 블록(90)은 정방형 쿼드트리 분할 방법을 이용하여 정방형의 4 개의 서브 변환 블록들(91a 내지 91d)로 분할될 수 있고(도 9b), 5 개 이상의 서브 변환 블록들(미도시)로 분할될 수 있다. 이 경우, 정방형 서브 변환 블록들의 가로 및 세로의 길이는 비정방형 변환 블록(90)의 가로 및 세로 길이 중 짧은 길이(도 9a에서는 B)와 동일할 수 있으나, 본 발명은 이에 한정되지 아니한다. 비정방형 변환 블록(90)의 가로 길이(A)가 세로 길이(B)의 정수 배인 경우, 비정방형 변환 블록(90)은 도 9b와 같은 정방형 분할 방법에 따라 서브 변환 블록으로 분할될 수 있다.
도 9c를 참조하면, 비정방형 변환 블록(90)은 바이너리트리 분할 방법을 이용하여 세로 또는 가로 방향의 비정방형 2 개의 서브 변환 블록들(92a 내지 92d)로 분할될 수 있다. 도 9d를 참조하면, 비정방형 쿼드트리 분할 방법을 이용하여 비정방형 변환 블록(90)은 4 개의 비정방형 서브 변환 블록(93a 내지 93d)로 분할될 수 있다. 분할되는 상기 서브 변환 블록들의 개수 및 크기는 일 예시일 뿐, 본 발명의 설명에 한정되지 아니한다.
도 10은 도 7a 내지 도 9d에 나타난 바와 같은 분할 방법을 이용하여 현재 코딩 블록을 변환한 예시를 나타낸 것이다. 도 10에 따르면, 현재 코딩 블록은 정방형 변환 블록 뿐만 아니라, 비정방형 변환 블록이 적용될 수 있고, 상기 정방형 또는 비정방형 변환 블록은 정방형 서브 변환 블록 뿐만 아니라 비정방형 서브 변환 블록으로도 분할될 수 있다. 이러한 변환 블록 적용 및 서브 변환 블록으로의 분할은 도 7a 내지 도 9d에서 도시한 바와 같은 방법 중 하나 또는 그 이상을 조합하여 적용될 수 있다. 또한, 변환 블록의 모양 및 개수 또는 서브 변환 블록의 모양 및 개수는 본 발명의 예시에 한정되지 아니함은 마찬가지이다.
일반적으로 현재 블록이 화면내 예측을 수행하는 경우, 래스터 스캔(raster scan) 방법을 이용하여 변환 블록을 복호화하며, 화면내 예측 모드의 방향에 따라 예측 신호를 생성하기 위하여 이용되는 참조 샘플들이 결정된다.
도 11은 일반적인 방법에 따른 변환 블록의 코딩 순서 및 방법을 설명하기 위한 것이다. 도 11을 참조하면, 현재 블록의 화면내 예측 모드의 방향이 2 내지 10 번인 경우, 각 변환 블록들(TU0 내지 TU3)은 언제나 상기 변환 블록의 좌측에 위치하는 참조 샘플만을 이용하여 예측 신호를 생성하게 된다. 이 경우, 변환 블록들 중 가장 먼저 예측 신호를 생성하는 제 1 변환 블록(TU0)은 변환 블록에 위치하는 제 1 참조 샘플 영역(111)을 이용하여 예측 신호를 생성하는데, 제 1 참조 샘플 영역(111)은 이용 가능한 참조 샘플 및/또는 이용 가능하지 아니한 참조 샘플들로 구성될 수 있다. 이후, 제 2 변환 블록(TU1)도 제 1 변환 블록(TU0)의 일부 픽셀들이 제 2 변환 블록(TU1)을 위한 제 2 참조 샘플 영역(112)을 구성하므로, 제 2 참조 샘플 영역(112)은 복호된 샘플들인 제 1 변환 블록(TU0)의 일부 픽셀들, 즉, 이용 가능한 참조 샘플들로 구성됨을 알 수 있다.
그 후 예측 신호를 생성하는 제 3 변환 블록(TU2)은 제 3 변환 블록(TU2)의 좌측에 위치하는 픽셀들을 참조 샘플로서 이용하기 때문에, 복호된 제 1 변환 블록(TU0) 및 제 2 변환 블록(TU1)의 픽셀들을 이용하지 아니하므로 예측을 위해 이용되는 제 3 참조 샘플 영역(113)은 이용 가능하지 아니한 참조 샘플들로 구성될 수 있다. 제 4 변환 블록(TU3)은 제 3 변환 블록(TU2)의 일부 픽셀들이 제 4 변환 블록(TU3)을 위한 제 4 참조 샘플 영역(114)을 구성하므로, 제 4 참조 샘플 영역(114)은 복호된 샘플들인 제 3 변환 블록(TU2)의 일부 픽셀들, 즉, 이용 가능한 참조 샘플들로 구성됨을 알 수 있다.
이와 같이, 종래의 코딩 순서에 따라 변환 블록으로부터 예측 신호를 생성하는 경우, 화면내 예측 모드의 방향에 따라 이용 가능하지 아니한 참조 샘플들을 이용하여 예측 신호를 생성하는 경우들이 발생할 수 있다. 따라서, 본 발명의 일실시예에 따른 비디오 신호의 코딩 방법은 현재 코딩 블록의 화면내 예측 모드의 방향에 따라 변환 블록들의 코딩 순서를 가변적으로 결정함으로써 부호화 효율을 높일 수 있다.
도 12a 내지 도 12c는 본 발명의 일 실시예에 따른 변환 블록들의 예시를 나타내는 것이다.
도 12a 내지 도 12c 를 참조하면, 본 발명의 일 실시예에 따른 변환 블록들은 동일한 크기의 4 개의 변환 블록들이 2 개의 라인으로 구성되어 있는 구조일 수 있고(도 12a), 동일한 크기의 변환 블록들이 가로 또는 세로로 나열된 구조일 수 있다(도 12b 및 도 12c). 상기 변환 블록들은 더 작은 크기의 서브 변환 블록들로 재분할될 수 있고, 재분할시 서브 변환 블록들의 구조도 도 12a 내지 도 12c에 나타난 바와 같은 구조를 가질 수 있다.
현재 블록의 화면내 예측 모드를 고려하지 아니하고 변환 블록들을 코딩하면 각 변환 블록의 예측 신호 생성시 복호되지 아니한 주변 블록들을 이용할 수 있다. 이 경우, 상기 예측 신호 생성을 위하여 이용되는 참조 샘플들은 이용 가능하지 아니한(unavailable) 샘플들일 수 있으므로, 주변의 이용 가능한 샘플값들이 복사된 상기 이용 가능하지 아니한 샘플들을 이용하게 되어 부호화 효율이 좋지 아니할 수 있다. 따라서, 본 발명에서는 변환 블록들에 대응하는 현재 블록의 화면내 예측 모드가 어떤 모드 영역에 속하는지를 고려하여 변환 블록의 코딩 순서를 가변적으로 결정하는 방법을 제안한다.
변환 블록들의 코딩 순서를 화면내 예측 모드에 따라 가변적으로 결정하기 위하여 먼저 화면내 예측 모드를 예측 방향에 따라 구분할 수 있다. 도 13은 본 발명의 일 실시예에 따른 화면내 예측 모드가 속하는 모드 영역들을 나타내는 것이다.
도 13을 참조하면, 방향성을 갖는 화면내 예측 모드들은 예측 방향에 따라 제 1 모드 영역 내지 제 3 모드 영역(131 내지 133)으로 구분할 수 있다. 도 13에 나타난 화면내 예측 모드 중 가로 방향 및 세로 방향의 화면내 예측 모드를 제외한 90˚ 내지 180˚의 각도를 갖는 화면내 예측 모드들은 제 1 모드 영역(131)을 구성하는 화면내 예측 모드일 수 있다. 제 2 모드 영역은 가로 방향의 예측 모드 및 180˚ 내지 225˚의 각도를 갖는 화면내 예측 모드일 수 있으며, 제 3 모드 영역은 세로 방향의 예측 모드 및 45˚ 내지 90˚의 각도를 갖는 화면내 예측 모드일 수 있다. 이와 같이 구분된 모드 영역에 기초하여 변환 블록들이 속하는 모드 영역에 따라 변환 블록들의 코딩 순서를 가변적으로 결정할 수 있다.
도 14a 및 도 14b는 본 발명의 일 실시예에 따른 현재 블록의 화면내 예측 모드가 제 1 모드 영역에 속하는 경우 변환 블록들의 코딩 순서를 나타내는 것이다. 제 1 모드 영역에 속하는 경우의 변환 블록들의 코딩 순서는 종래의 변환 블록들의 코딩 순서와 동일하다. 도 14a는 변환 블록들이 N x N 구조를 갖는 경우 코딩 순서를 나타나며, TB0, TB1, TB2, TB3 순으로 코딩될 수 있다. 도 14b는 변환 블록들이 세로 방향 및 가로 방향의 비정방형 변환 블록인 경우 코딩 순서를 나타내며, 좌측으로부터 우측으로, 상단으로부터 하단으로의 순서로 코딩된다. 예를 들어, TB4, TB5, TB6, TB7, TB8, TB9, 및 TB10 의 순서로 코딩될 수 있다.
도 15a 내지 도 15c 는 본 발명의 일실시예에 따른 화면내 예측 모드가 제 2 모드 영역에 속하는 변환 블록들의 코딩 순서를 나타내는 것이다. 상기 복수 개의 변환 블록들은 좌측 하단으로부터 우측 상단의 순서로 코딩될 수 있으며, N x N 구조를 갖는 변환 블록들은 도 15a 및 도 15b에 나타난 바와 같이 코딩될 수 있다. 도 15a를 참조하면, 좌측 하단에 위치하는 TB2 로부터 TB3, TB0, 및 TB1의 순서로 코딩될 수 있고, 도 15b를 참조하면 좌측 하단에 위치하는 TB2 로부터 TB0, TB3, 및 TB1의 순서로 코딩될 수 있다.
또한, 세로 및 가로 방향의 비정방형 변환 블록들은 좌측으로부터 우측으로, 하단으로부터 상단의 순서로 코딩될 수 있다. 도 15c를 참조하면, 좌측에 위치하는 TB4로부터 TB5, TB6이 코딩되고, 우측 하단에 위치하는 TB10로부터 TB9, TB8, 및 TB7 순서로 코딩될 수 있다.
도 16a 내지 도 16c 는 본 발명의 일실시예에 따른 화면내 예측 모드가 제 3 모드 영역에 속하는 변환 블록들의 코딩 순서를 나타내는 것이다. 상기 복수 개의 변환 블록들은 우측 상단으로부터 좌측 하단의 순서로 코딩될 수 있으며, N x N 구조를 갖는 변환 블록들은 도 16a 및 도 16b에 나타난 바와 같이 코딩될 수 있다. 도 16a를 참조하면, 우측 상단에 위치하는 TB1 로부터 TB0, TB3, 및 TB2의 순서로 코딩될 수 있고, 도 16b를 참조하면 우측 상단에 위치하는 TB1 로부터 TB3, TB0, 및 TB2의 순서로 코딩될 수 있다.
또한, 세로 및 가로 방향의 비정방형 변환 블록들은 우측으로부터 좌측으로, 상단으로부터 하단의 순서로 코딩될 수 있다. 도 16c를 참조하면, 우측 상단에 위치하는 TB7로부터 아래로 TB8, TB9, 및 TB10 이 차례로 코딩되고, 좌측의 세로 방향의 비정방형 변환 블록들 중 우측에 위치하는 TB6, TB5, 및 TB4 의 순서로 코딩될 수 있다.
이와 같이, 현재 블록의 화면내 예측 모드의 방향을 고려하여 구분된 모드 영역 및 변환 블록의 모양을 고려하여 가변적으로 변환 블록의 코딩 순서를 결정함으로써, 각 변환 블록이 복호화된 주변 블록의 이용 가능한 참조 샘플들을 이용하여 예측 신호를 생성할 수 있으므로 부호화 효율이 향상될 수 있다.
일 실시예에서, 변환 블록들이 앞서 설명한 도 12a 내지 도 12c와 같은 유형의 구조를 갖는 경우, 상기 변환 블록들에 해당하는 현재 코딩 블록의 화면내 예측 모드가 속하는 모드 영역에 따라 결정되는 변환 블록들의 코딩 순서는 하기 표 1과 같다.
변환 블록
구조 유형
화면 내 예측 모드 영역
영역 1 영역 2 영역 3
유형 1
(도 12a)
TB0->TB1->TB2->TB3 TB2->TB3->TB0->TB1 TB1->TB0->TB3->TB2
유형 2
(도 12b)
TB0->TB1->…->TBN TB0->TB1->…->TBN TBN->…->TB1->TB0
유형 3
(도 12c)
TB0->TB1->…->TBN TBN->…->TB1->TB0 TB0->TB1->…->TBN
도 17a 내지 도 17c는 표 1에 기재된 변환 블록의 코딩 순서를 이용하여 현재 블록을 구성하고 있는 정방형 및 비정방형 변환 블록들의 코딩 순서를 나타내는 예시이다. 도 17a는 현재 블록의 화면내 예측 모드가 제 1 모드 영역에 속하는 경우의 현재 블록에 대한 변환 블록들의 코딩 순서를 나타내는 것이고, 도 17b는 현재 블록의 화면내 예측 모드가 제 2 모드 영역에 속하는 경우 현재 블록에 대한 변환 블록들의 코딩 순서를 나타내는 것이며, 도 17c는 현재 블록의 화면내 예측 모드가 제 3 모드 영역에 속하는 경우 현재 블록에 대한 변환 블록들의 코딩 순서를 나타내는 것이다. 도 17a를 참조하면, 현재 블록의 화면내 예측 모드가 제 1 모드 영역에 속하는 경우에는 변환 블록의 모양에 관계없이 변환 블록들은 일반적인 코딩 순서와 마찬가지로 좌측 상단으로부터 우측 하단의 순서로 코딩될 수 있다. 또한, 현재 블록의 화면내 예측 모드가 제 2 모드 영역에 속하는 경우에는 변환 블록이 예측 신호 생성시 좌측 하단 블록에 속하는 참조 샘플들을 이용하므로, 좌측 하단으로부터 우측 상단의 순서로 변환 블록을 코딩하는 것이 부호화 효율을 향상시킬 수 있다. 도 17b를 참조하면, 현재 블록은 좌측 하단으로부터 우측 상단의 순서로 코딩함에 있어서, 좌측 하단, 우측 하단, 좌측 상단, 및 우측 상단의 순서로 코딩하는 방법을 선택할 수 있다. 현재 블록의 화면내 예측 모드가 제 3 모드 영역에 속하는 경우에는 변환 블록이 예측 신호 생성시 우측 상단에 속하는 참조 샘플들을 이용하므로 우측 상단으로부터 좌측 하단의 순서로 변환 블록을 코딩하는 것이 부호화 효율을 향상시킬 수 있다. 도 17c를 참조하면, 이 중 우측 상단, 좌측 상단, 우측 하단, 및 좌측 하단의 순서로 코딩하는 방법을 선택할 수 있다.
다른 실시예에서는, 화면내 예측 모드를 고려하는 변환 블록의 코딩 순서를 하기 표 2와 같이 결정할 수 있다.
변환 블록
구조 유형
화면 내 예측 모드 영역
제 1 모드 영역 제 2 모드 영역 제 3 모드 영역
유형 1
(도 12a)
TB0->TB1->TB2->TB3 TB2->TB0->TB3->TB1 TB1->TB3->TB0->TB2
유형 2
(도 12b)
TB0->TB1->…->TBN TB0->TB1->…->TBN TBN->…->TB1->TB0
유형 3
(도 12c)
TB0->TB1->…->TBN TBN->…->TB1->TB0 TB0->TB1->…->TBN
도 18a 내지 도 18c는 표 2에 기재된 변환 블록의 코딩 순서를 이용하여 현재 블록을 구성하고 있는 정방형 및 비정방형 변환 블록들의 코딩 순서를 나타내는 예시이다. 도 18a는 현재 블록의 화면내 예측 모드가 제 1 모드 영역에 속하는 경우의 현재 블록에 대한 변환 블록들의 코딩 순서를 나타내는 것이고, 도 18b는 현재 블록의 화면내 예측 모드가 제 2 모드 영역인 경우 현재 블록에 대한 변환 블록들의 코딩 순서를 나타내는 것이며, 도 18c는 현재 블록의 화면내 예측 모드가 제 3 모드 영역인 경우 현재 블록에 대한 변환 블록들의 코딩 순서를 나타내는 것이다. 도 18a를 참조하면, 현재 블록의 화면내 예측 모드가 제 1 모드 영역에 속하는 경우에는 변환 블록의 모양에 관계없이 변환 블록들은 일반적인 코딩 순서와 마찬가지로 좌측 상단으로부터 우측 하단의 순서로 코딩될 수 있다. 또한, 현재 블록의 화면내 예측 모드가 제 2 모드 영역에 속하는 경우에는 변환 블록이 예측 신호 생성시 좌측 하단 블록에 속하는 참조 샘플들을 이용하므로 좌측 하단으로부터 우측 상단의 순서로 변환 블록을 코딩하는 것이 부호화 효율을 향상시킬 수 있다. 도 18b를 참조하면, 현재 블록은 좌측 하단으로부터 우측 상단의 순서로 코딩함에 있어서, 좌측 하단, 좌측 상단, 우측 하단, 및 우측 상단의 순서로 코딩하는 방법을 선택할 수 있다. 현재 블록의 화면내 예측 모드가 제 3 모드 영역에 속하는 경우에는 변환 블록이 예측 신호 생성시 우측 상단에 속하는 참조 샘플들을 이용하므로 우측 상단으로부터 좌측 하단의 순서로 변환 블록을 코딩하는 것이 부호화 효율을 향상시킬 수 있다. 도 18c를 참조하면, 이 중 우측 상단, 우측 하단, 좌측 상단, 및 좌측 하단의 순서로 코딩하는 방법을 선택할 수 있다.
이러한 모드 영역에 따른 변환 블록들의 코딩 순서는 상기 예시에 한정되는 것이 아니라, 상기 예시들의 조합으로 결정되는 것도 가능하다.
도 19a 내지 도 19c는 도 17a 내지 도 18c를 참조하여 설명한 모드 영역별 변환 블록들의 코딩 순서를 교차적으로 선택한 경우 변환 블록들의 코딩 순서를 나타낸 것이다.
도 19a는 현재 블록의 화면내 예측 모드가 제 1 모드 영역에 속하는 경우의 현재 블록에 대한 변환 블록들의 코딩 순서를 나타내는 것이고, 도 19b는 현재 블록의 화면내 예측 모드가 제 2 모드 영역인 경우 현재 블록에 대한 변환 블록들의 코딩 순서를 나타내는 것이며, 도 19c는 현재 블록의 화면내 예측 모드가 제 3 모드 영역인 경우 현재 블록에 대한 변환 블록들의 코딩 순서를 나타내는 것이다.
제 1 모드 영역인 경우 변환 블록들의 코딩 순서는 도 17a 및 도 18a를 참조하여 설명한 바와 같이 좌측 상단으로부터 우측 하단으로 결정될 수 있다. 제 2 모드 영역인 경우, 도 19b를 참조하면, 도 17b를 참조하여 결정된 코딩 순서에 따라 좌측 하단, 우측 하단, 좌측 상단, 및 우측 상단의 순서로 변환 블록들을 코딩할 수 있고, 도 19c를 참조하면, 현재 블록의 화면내 예측 모드가 제 3 모드 영역인 경우 도 18c를 참조하여 설명한 코딩 순서에 따라 우측 상단, 우측 하단, 좌측 상단, 및 좌측 하단의 순서로 변환 블록들을 코딩할 수 있다. 다른 실시예에서는, 제 2 모드 영역 및 제 3 모드 영역의 코딩 순서를 도 18b 및 도 17c를 참조하여 설명한 코딩 순서로 결정할 수도 있다. 이와 같이, 현재 블록에 대한 변환 블록들은 상기 현재 블록의 화면내 예측 모드에 따라 결정되는 다양한 코딩 순서의 조합을 이용하여 예측 신호를 생성함으로써, 부호화 효율을 향상시킬 수 있게 된다.
이상에서 설명한 본 발명이 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경이 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.

Claims (3)

  1. 복수 개의 변환 블록들의 모양이 비정방형인지 확인하는 단계;
    상기 복수 개의 변환 블록들의 모양이 비정방형인 경우, 상기 복수 개의 변환 블록들의 코딩 순서를 가변적으로 설정할지를 지시하는 제 1 제어 정보를 확인하는 단계;
    상기 복수 개의 변환 블록들의 코딩 순서가 가변적으로 설정된 경우, 상기 복수 개의 변환 블록들의 코딩 순서를 지시하는 제 2 제어 정보를 확인하는 단계; 및
    상기 제 2 제어 정보가 지시하는 코딩 순서에 따라 상기 복수 개의 변환 블록들을 코딩하는 단계를 포함하며,
    상기 제 1 제어 정보가 존재하지 않는 경우, 상기 복수 개의 변환 블록들은 일반적인 코딩 순서에 따라 코딩되는 비디오 신호의 복호화 방법.
  2. 제 1 항에 있어서,
    상기 일반적인 코딩 순서는 상기 복수 개의 변환 블록들의 분할 순서를 포함하는 비디오 신호의 복호화 방법.
  3. 제 1 항에 있어서,
    상기 제 2 제어 정보는 좌측에서 우측 방향으로 코딩되는 제 1 코딩 순서 및 우측에서 좌측 방향으로 코딩되는 제 2 코딩 순서 중 어느 하나를 지시하는 정보를 포함하는 비디오 신호의 복호화 방법.
KR1020230062915A 2016-06-17 2023-05-16 비디오 신호의 부호화 또는 복호화 방법 및 장치 KR102698394B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020240111069A KR20240132415A (ko) 2016-06-17 2024-08-20 비디오 신호의 부호화 또는 복호화 방법 및 장치

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020160075723 2016-06-17
KR20160075723 2016-06-17
KR1020220091076A KR102534604B1 (ko) 2016-06-17 2022-07-22 비디오 신호의 부호화 또는 복호화 방법 및 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020220091076A Division KR102534604B1 (ko) 2016-06-17 2022-07-22 비디오 신호의 부호화 또는 복호화 방법 및 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020240111069A Division KR20240132415A (ko) 2016-06-17 2024-08-20 비디오 신호의 부호화 또는 복호화 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20230074086A true KR20230074086A (ko) 2023-05-26
KR102698394B1 KR102698394B1 (ko) 2024-08-23

Family

ID=60939829

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020170035361A KR102426131B1 (ko) 2016-05-28 2017-03-21 비디오 신호의 부호화 또는 복호화 방법 및 장치
KR1020230062915A KR102698394B1 (ko) 2016-06-17 2023-05-16 비디오 신호의 부호화 또는 복호화 방법 및 장치
KR1020240111069A KR20240132415A (ko) 2016-06-17 2024-08-20 비디오 신호의 부호화 또는 복호화 방법 및 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020170035361A KR102426131B1 (ko) 2016-05-28 2017-03-21 비디오 신호의 부호화 또는 복호화 방법 및 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020240111069A KR20240132415A (ko) 2016-06-17 2024-08-20 비디오 신호의 부호화 또는 복호화 방법 및 장치

Country Status (1)

Country Link
KR (3) KR102426131B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117834858A (zh) 2018-04-24 2024-04-05 三星电子株式会社 视频编码方法和装置以及视频解码方法和装置
WO2021054885A1 (en) * 2019-09-19 2021-03-25 Telefonaktiebolaget Lm Ericsson (Publ) Allowing a matrix based intra prediction block to have multiple transform blocks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100037180A (ko) * 2008-10-01 2010-04-09 에스케이 텔레콤주식회사 영상 부호화/복호화 방법 및 장치
KR20110126485A (ko) * 2010-05-17 2011-11-23 에스케이 텔레콤주식회사 인트라 블록 및 인터 블록이 혼합된 코딩블록을 이용하는 영상 부호화/복호화 장치 및 그 방법
KR20140092861A (ko) * 2011-10-31 2014-07-24 미쓰비시덴키 가부시키가이샤 동화상 부호화 장치, 동화상 복호 장치, 동화상 부호화 방법 및 동화상 복호 방법
KR20140131299A (ko) * 2014-09-25 2014-11-12 에스케이텔레콤 주식회사 선택적 부호화를 이용한 영상 부호화/복호화 장치 및 방법
KR20150014414A (ko) * 2009-10-01 2015-02-06 에스케이텔레콤 주식회사 가변 크기의 매크로블록을 이용한 영상 부호화/복호화 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100037180A (ko) * 2008-10-01 2010-04-09 에스케이 텔레콤주식회사 영상 부호화/복호화 방법 및 장치
KR20150014414A (ko) * 2009-10-01 2015-02-06 에스케이텔레콤 주식회사 가변 크기의 매크로블록을 이용한 영상 부호화/복호화 방법 및 장치
KR20110126485A (ko) * 2010-05-17 2011-11-23 에스케이 텔레콤주식회사 인트라 블록 및 인터 블록이 혼합된 코딩블록을 이용하는 영상 부호화/복호화 장치 및 그 방법
KR20140092861A (ko) * 2011-10-31 2014-07-24 미쓰비시덴키 가부시키가이샤 동화상 부호화 장치, 동화상 복호 장치, 동화상 부호화 방법 및 동화상 복호 방법
KR20140131299A (ko) * 2014-09-25 2014-11-12 에스케이텔레콤 주식회사 선택적 부호화를 이용한 영상 부호화/복호화 장치 및 방법

Also Published As

Publication number Publication date
KR102698394B1 (ko) 2024-08-23
KR20170142860A (ko) 2017-12-28
KR102426131B1 (ko) 2022-07-27
KR20240132415A (ko) 2024-09-03

Similar Documents

Publication Publication Date Title
US11917149B2 (en) Method for constructing tile structure and apparatus therefor
KR101794199B1 (ko) 참조 픽쳐 리스트 관리 방법 및 이러한 방법을 사용하는 장치
US20230336769A1 (en) Method and Apparatus for Encoding or Decoding Video Signal
KR102698394B1 (ko) 비디오 신호의 부호화 또는 복호화 방법 및 장치
US20210136365A1 (en) Image encoding/decoding method and device using intra prediction
US20200296403A1 (en) Method and Apparatus for Encoding or Decoding Video Signal
KR20230054805A (ko) 비디오 신호의 복호화 방법 및 이의 장치
KR20180086094A (ko) 비디오 신호의 부호화 또는 복호화 방법 및 장치
KR102345458B1 (ko) 예측 모션 벡터 리스트를 구성하는 방법 및 이의 장치
KR102435502B1 (ko) 비디오 신호의 부호화 또는 복호화 방법 및 장치
KR102447951B1 (ko) 비디오 신호의 복호화 방법 및 이의 장치
KR102534604B1 (ko) 비디오 신호의 부호화 또는 복호화 방법 및 장치
KR102523384B1 (ko) 비디오 신호의 복호화 방법 및 이의 장치
KR20240157009A (ko) 비디오 신호의 복호화 방법 및 이의 장치
KR20220134476A (ko) 영상 신호 부호화/복호화 방법 및 이를 기초로 생성된 비트스트림을 저장하는 기록 매체
KR20180086093A (ko) 비디오 신호의 부호화 또는 복호화 방법 및 장치
KR20210111602A (ko) 비디오 신호 처리 방법 및 장치
KR20210082877A (ko) 영상 신호 부호화/복호화 방법 및 이를 위한 장치
KR20210075552A (ko) 비디오 신호 처리 방법 및 장치
KR20210112660A (ko) 비디오 신호 처리 방법 및 장치
KR20210082876A (ko) 영상 신호 부호화/복호화 방법 및 이를 위한 장치
KR20180020047A (ko) 비디오 신호의 부호화 또는 복호화 방법 및 장치
KR20190023294A (ko) 영상 부호화/복호화 방법 및 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant