KR20230070263A - 칠러의 자유 냉각 작동 - Google Patents

칠러의 자유 냉각 작동 Download PDF

Info

Publication number
KR20230070263A
KR20230070263A KR1020237013030A KR20237013030A KR20230070263A KR 20230070263 A KR20230070263 A KR 20230070263A KR 1020237013030 A KR1020237013030 A KR 1020237013030A KR 20237013030 A KR20237013030 A KR 20237013030A KR 20230070263 A KR20230070263 A KR 20230070263A
Authority
KR
South Korea
Prior art keywords
compressor
refrigerant
temperature
motor
free cooling
Prior art date
Application number
KR1020237013030A
Other languages
English (en)
Inventor
카메론 에스. 넬슨
윌리엄 엘. 코프코
데이비드 에이. 브래드쇼
Original Assignee
존슨 컨트롤즈 타이코 아이피 홀딩스 엘엘피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 존슨 컨트롤즈 타이코 아이피 홀딩스 엘엘피 filed Critical 존슨 컨트롤즈 타이코 아이피 홀딩스 엘엘피
Publication of KR20230070263A publication Critical patent/KR20230070263A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0292Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/05Refrigerant levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

가열, 환기, 공기 조화, 및/또는 냉동(HVAC&R) 시스템(10)은 증발기(38), 콘덴서(34), 및 압축기(32)를 구비한 증기 압축 시스템(14)을 포함한다. 압축기(34)는 증기 압축 시스템(14)의 정상 작동 모드에서 그리고 증기 압축 시스템(14)의 자유 냉각 모드에서 그를 통해 냉매를 안내하도록 구성된다. HVAC&R 시스템(10)은 또한 정상 작동 모드에서 압축기(34)의 모터(50)로의 동력의 공급을 가능하게 하고 자유 냉각 모드에서 압축기(34)의 모터(50)로의 동력의 공급을 중단시키도록 구성된 제어기(40)를 포함한다.

Description

칠러의 자유 냉각 작동
본 출원은 2020년 9월 22일에 출원된 "칠러의 자유 냉각 작동"으로 명명된 미국 가출원 제63/081,565호의 혜택 및 그에 대한 우선권을 주장하고, 이는 모든 목적을 위해 전체로 참조에 의해 이로써 병합된다.
본 섹션은 독자에게 아래 기재된 본 개시의 다양한 측면에 관련될 수 있는 기술의 다양한 측면을 소개하도록 의도된다. 본 논의는 독자에게 본 개시의 다앙한 측면의 더 나은 이해를 용이하게 하는 배경 정보를 제공하는 것에 도움이 되는 것으로 여겨진다. 따라서, 이들 논의는 선행 기술의 인정으로서가 아니라 이러한 관점에서 읽혀져야 함이 이해되어야만 한다.
본 출원은 일반적으로 칠러 시스템에 관한 것이고, 더 구체적으로, 칠러 시스템의 자유 냉각 작동에 관한 것이다.
칠러 시스템, 또는 증기 압축 시스템은 칠러 시스템의 구성요소 내의 다른 온도 및 압축에 대한 노출에 응답해서 증기, 액체, 및 그의 조합 사이에 상을 변화시키는 작동 유체(예를 들어, 냉매)를 활용한다. 칠러 시스템은, 작동 유체가 컨디셔닝 유체로부터 열을 흡수하는 바와 같이, 컨디셔닝 유체(예를 들어, 물)와의 열 교환 관계에 작동 유체(예를 들어, 냉매)를 위치시키도록 구성된 증발기를 포함할 수 있다. 작동 유체에 의해 냉각된 컨디셔닝 유체는 그런 후에 칠러 시스템에 의해 제공된 컨디셔닝 장비 및/또는 컨디셔닝된 환경에 전달될 수 있다. 그러한 어플리케션에서, 컨디셔닝 유체는 건물에서 공기와 같은 다른 유체를 컨디셔닝하도록 에어 핸들러와 같은 다운스트림 장비를 통해 통과될 수 있다.
특정 칠러 시스템에서, 냉각 유체(예를 들어, 물)는 작동 유체를 냉각시키도록 추가적으로 또는 대안적으로 사용될 수 있다. 예를 들어, 칠러 시스템은 칠러 시스템의 콘덴서에 냉각 유체를 제공하도록 구성된 냉각 타워(또는 다른 물 또는 냉각 유체원)를 포함할 수 있다. 냉각 유체는 주변 공기를 통해 냉각 타워(또는 다른 물 또는 냉각 유체원)에서 냉각될 수 있고, 콘덴서는 냉매로부터 냉각 유체로 열을 전달하도록 냉매와의 열 교환 관계에 냉각 타워로부터의 냉각 유체를 위치시킬 수 있다. 압축기는 콘덴서와 증발기 사이에 위치될 수 있고 냉매의 압력을 조절하고 칠러 시스템의 구성요소 사이에 냉매를 순환시키도록 동력공급될 수 있다.
특정 시스템에서, 자유 냉각 작동은 주변 공기 온도가 (예를 들어, 봄, 겨울, 및/또는 가을철에) 상대적으로 낮을 때와 같은, 특정 조건 동안 활성화될 수 있다. 주변 공기 온도가 상대적으로 낮을 때, 칠러의 냉각 요구사항은 감소될 수 있고 및/또는 작동 조건은 칠러가 압축기에 동력을 공급하지 않고 적합한 냉각 용량에서 작동하게 할 수 있다. 예를 들어, 외기의 주변 온도가 상대적으로 낮을 때 쿨링 타워에 의해 제공된 냉각 유체가 상대적으로 낮은 온도를 가질 수 있기 때문에, 칠러 시스템은 압축기에 동력공급하지 않고 적합한 용량에서 컨디셔닝 유체를 냉각시키도록 작동할 수 있다. 자유 냉각을 활용하는 전통적인 칠러 시스템에서, 칠러 시스템의 압축기로의 동력은 중단될 수 있고 냉매는 압축기 바이패스 밸브 또는 그와 유사한 것을 통해 압축기를 우회하도록 향해질 수 있다. 자유 냉각을 채용하는 전통적인 시스템에서, 압축기를 우회하도록 냉매를 향하게 하는 것은 그렇지 않으면 칠러 시스템의 냉각 용량을 감소시킬 수 있는 압력 손실을 회피할 수 있다. 그러나, 이제 전통적인 또는 종래의 자유 냉각 기법을 활용하는 전통적인 또는 종래의 칠러 시스템이 시스템의 부품수 및 비용에 영향을 미치는 외부 구성요소(예를 들어, 압축기 바이패스 밸브)를 포함할 수 있고, 사용될 수 있는 냉매의 유형에서 제한될 수 있고, 이용가능한 냉각 용량의 관점에서 개선될 수 있음이 인정된다.
여기 개시된 특정 구현예의 요약이 아래에 제시된다. 이들 측면이 단지 독자에게 이들 특정 구현예의 간략한 요약을 제공하도록 제시되고 이들 측면은 본 개시의 범위를 한정하도록 의도되지 않음이 이해되어야만 한다. 참으로, 본 개시는 아래 제시될 수 없는 다양한 측면을 포함할 수 있다.
일 구현예에서, 가열, 환기, 공기 조화, 및/또는 냉동(HVAC&R) 시스템은 증발기, 콘덴서, 및 압축기를 구비한 증기 압축 시스템을 포함한다. 압축기는 증기 압축 시스템의 정상 작동 모드에서 그리고 증기 압축 시스템의 자유 냉각 모드에서 그를 통해 냉매를 안내하도록 구성된다. HVAC&R 시스템은 또한 정상 작동 모드에서 압축기의 모터에 동력의 공급을 가능하게 하고 자유 냉각 모드에서 압축기의 모터에 동력의 공급을 중단시키도록 구성된 제어기를 포함한다.
또 다른 구현예에서, 가열, 환기, 공기 조화, 및/또는 냉동(HVAC&R) 시스템을 작동시키는 방법은 압축기가 모터에 의해 구동되고 증기 압축 시스템의 증발기와 증기 압축 시스템의 콘덴서 사이에 냉매를 편향시키는 바와 같이, HVAC&R 시스템의 정상 작동 모드에 응답해서 증기 압축 시스템의 압축기의 모터에 동력을 공급하는 단계를 포함한다. 방법은 또한 압축기의 로터가 부상되어 냉매가 압축기를 통해 통과하는 것을 가능하게 하는 바와 같이, HVAC&R 시스템의 자유 냉각 모드에 응답해서 증기 압축 시스템의 압축기의 모터에 동력을 불능화하는 단계를 포함한다.
또 다른 구현예에서, 칠러 시스템은 냉매 회로를 통해 냉매를 순환시키도록 구성된 압축기, 압축기의 모터, 및 칠러 시스템의 정상 작동 모드에 응답해서 압축기의 모터에 동력의 공급을 가능하게 하고 칠러 시스템의 자유 냉각 모드에 응답해서 압축기의 모터에 동력의 공급을 불능화하도록 구성된 제어기를 포함한다.
본 개시의 다양한 측면은 다음의 구체적인 설명을 읽고 도면을 참조할 시에 더 잘 이해될 수 있고, 여기서:
도 1은 본 개시의 측면에 따른 상업적 환경에서 가열, 환기, 공기 조화, 및/또는 냉동(HVAC&R) 시스템을 활용할 수 있는 건물의 구현예의 사시도이고;
도 2는 본 개시의 측면에 따라, 도 1의 HVAC&R 시스템에서 사용을 위한, 때때로 칠러 시스템으로 언급되는 증기 압축 시스템의 구현예의 사시도이고;
도 3은 본 개시의 측면에 따른, 도 2의 증기 압축 시스템의 구현예의 개략적인 도시이며;
도 4는 본 개시의 측면에 따른, 도 2의 증기 압축 시스템의 구현예의 개략적인 도시이며;
도 5는 본 개시의 측면에 따라, 제어기 및 압축기의 일부의 횡단면를 포함하는 도 2의 증기 압축 시스템의 일부의 구현예의 개략적인 도시이며;
도 6은 본 개시의 측면에 따른, 도 2의 증기 압축 시스템의 구현예의 개략적인 도시이며; 그리고
도 7는 본 개시의 측면에 따라, 도 2의 증기 압축 시스템을 작동시키는 방법의 구현예를 도시하는 공정 흐름도이다.
하나 이상의 특정 구현예가 아래 기재될 것이다. 이들 구현예의 간결한 기재를 제공하려는 노력으로, 실제 실행의 모든 특징부가 명세서에 기재되는 것은 아니다. 임의의 공사 또는 설계 프로젝트로서, 임의의 그러한 실제 실행의 전개에서, 다수의 실행 특정 결정은 하나의 실행 내지 또 다른 실행에서 다를 수 있는 시스템 관련 제약 및 비지니스 관련 제약의 준수와 같은 개발자의 특정 목표를 달성하도록 이루어져야만 한다. 게다가, 그러한 개발 노력은 복잡하고 시간 소모적일 수 있지만 그럼에도 본 개시의 혜택을 갖는 통상의 기술자에게 설계, 조작, 및 제조의 일상적인 업무일 수 있음이 인정되어야만 한다.
본 개시의 다양한 구현예의 요소를 소개할 때, 관사 “어(a),” “언(an),” 및 “더(the)”는 하나 이상의 요소가 있음을 의미하도록 의도된다. 용어 “포함하는(comprising),” “포함하는(including),” 및 “갖는(having)”은 포괄적이고 열거된 요소가 아닌 추가 요소가 있을 수 있음을 의미하도록 의도된다. 추가적으로, 본 개시의 “일 구현예” 또는 “구현예”에 대한 참조는 열거된 특징부를 역시 병합하는 추가 구현예의 존재를 배제하는 바와 같이 해석되도록 의도되지 않음이 이해되어야만 한다.
본 개시의 구현예는 아래 특정 예에서 칠러 또는 칠러 시스템으로 언급되는 증기 압축 시스템을 활용하는 가열, 환기, 공기 조화, 및/또는 냉동(HVAC&R) 시스템에 관한 것이다. 더 구체적으로, 본 개시의 구현예는 칠러의 자유 냉각 모드 또는 작동에 관한 것이다.
현재 개시된 칠러는 HVAC&R 시스템의 수동(예를 들어, 동력공급되지 않는) 압축기가 그를 통해 냉매 흐름을 수용하는 자유 냉각 모드를 포함한다. 즉, 자유 냉각 모드 동안, 압축기의 회전을 구동하도록 구성된 모터는 동력공급되지 않거나 작동되지 않을 수 있다. 예를 들어, 칠러는 칠러의 다른 가능한 구성요소 가운데, 압축기, 증발기, 콘덴서, 및 팽창 밸프를 통해 작동 유체(예를 들어, 냉매)를 순환시키도록 구성된다. 증발기는 냉매가 컨디셔닝 유체로부터 열을 흡수하는 바와 같이, 열 교환 관계에서 냉매 및 컨디셔닝 유체(예를 들어, 물)를 위치시킬 수 있다. 컨디셔닝 유체는, 컨디셔닝 유체가 구조의 컨디셔닝된 공간에 전달된 공기 흐름을 냉각시키도록 사용되는 건물과 같은, 구조와 증발기 사이에 순환될 수 있다. 일부 구현예에서, HVAC&R 시스템의 에어 핸들링 유닛(AHU)은 칠러로부터 컨디셔닝 유체를 수용하고 컨디셔닝 유체를 활용하여 컨디셔닝된 공간에 전달된 공기를 냉각시킬 수 있다. 컨디셔닝 유체는 그런 후에 다시 냉각될 증발기로 되돌아갈 수 있다.
냉매는 증발기로부터, 냉매가 콘덴서에 전달되기 전에 냉매의 온도 및 압력을 증가시키도록 칠러의 정상 작동 모드에서 동력공급되는 압축기를 향해 순환될 수 있다. 냉매를 수용할 시에, 콘덴서는 콘덴서와 냉각 타워와 같은 냉각원 사이에 순환된 냉각 유체(예를 들어, 물)와의 열 교환 관계에 냉매를 위치시킨다. 냉각 유체는 콘덴서에서 냉매로부터 열을 흡수하여 냉매의 증기 형태를 액체로 응축시킨다. 가열된 냉각 유체는 콘덴서로부터, 콘덴서로 다시 전달하도록 냉각될 냉각원(예를 들어, 냉각 타워)으로 보내질 수 있다. 예를 들어, 냉각 타워는 냉각 유체를 냉각시키도록 주변 공기를 활용할 수 있다. 지하 냉각 저장소와 같은 다른 냉각원 역시 가능할 수 있다.
특정 조건에서, 예를 들어, 가을, 겨울, 및/또는 봄철 동안, 주변 공기 또는 다른 냉각 매체가 상대적으로 차가울 수 있다. 상대적으로 차가운 주변 공기는 칠러의 냉각 요구사항을 감소시킬 수 있다. 또한, 상대적으로 차가운 주변 공기는 냉각원(예를 들어, 냉각 타워)으로부터 콘덴서로 보내진 냉각 유체를 상대적으로 차갑게 할 수 있다. 상대적으로 낮은 온도를 갖는 냉각 유체는 칠러가 압축기에 동력을 공급하지 않고 (예를 들어, 위에 기재된 바와 같은 증발기를 통해) 건물에 적합한 냉각 용량을 제공할 수 있는 그러한 온도로 냉매를 냉각시키고 응축시킬 수 있다. 압축기가 냉매를 압축하고 증기 압축 시스템을 통해 냉매를 강제하도록 동력공급되지 않는 작동 모드는 자유 냉각 또는 자유 냉각 모드로 언급될 수 있다.
자유 냉각 기법을 채용하는 전통적인 칠러에서, 냉매는, 압축기가 그렇지 않으면 칠러의 냉각 용량을 감소시킬 수 있는 실질적 압력 손실을 야기하지 않는 바와 같이 자유 냉각 조건 동안 압축기를 우회하도록 향해진다. 본 개시에 따라, 압축기가 동력공급되지 않지만(예를 들어, 압축기의 모터가 작동되지 않지만) 압축기는 그를 통해 냉매를 수용하고 향하도록 구성되거나 설계되는 자유 냉각 모드가 채용된다. 예를 들어, 압축기는 냉매를 수용하는 것에 응답해서 부상되고 자유롭게 회전되는 바와 같이 구성될 수 있는 반면에 압축기의 모터는 동력공급되지 않고, 그로써 그렇지 않으면 압축기에 의해 야기될 수 있는 압력 손실을 감소시키거나, 완화하거나, 무효화한다. 일 구현예에서, 압축기는 자기 베어링 또는 오일 프리 시스템에서, 압축기의 로터를 부상시키는 롤링 요소 베어링을 포함할 수 있다. 부가적으로 또는 대안적으로, 압축기의 가변 지오메트리 디퓨저(VGD) 및/또는 예비 회전 베인(PRV)이 자유 냉각 모드의 개시에 응답해서 열릴 수 있다.
압축기의 로터를 부상시키고, VGD 및 PRV를 열고, 압축기를 통해 냉매를 향하게 하는 한편, 압축기 모터는 자유 냉각 모드 동안 동력공급되지 않음으로써, 칠러 시스템의 부품수, 복잡성, 및/또는 비용이 자유 냉각 작동 동안 압축기 바이패스 조립체를 채용하는 전통적인 시스템에 비해 실질적으로 감소된다. 또한, 칠러의 감소된 부품수, 감소된 복잡성, 및/또는 감소된 비용은 압축기에서 실질적 압력 손실을 발생시키지 않고 달성된다. 이러한 방식으로, 본 구현예는 칠러의 개선된 작동 및 칠러와 연관된 제조, 작동, 및/또는 유지 비용에서의 감소 모두를 가능하게 한다. 여전히 또한, 현재 기재된 특징부는 R-123, R-514A, R-1224yd, R-1233zd, R-134a, R-1234ze, R-1234yf, R-1311, R-32, R-410A, 및 다른 것을 포함하는, 광범위한 냉매(예를 들어, 낮은 매체 및 고압 냉매)의 사용을 가능하게 한다. 강하막 증발기, 팽창 밸프 스로틀링, 냉매 펌프, 및 다른 것과 같은 다른 특징부는 냉각 용량 및 전통적인 구현예에 걸친 다른 측면을 개선하도록 여기 개시된 시스템에 병합될 수 있고 이는 도면을 참조하여 아래에 구체적으로 기재된다.
이제 도면으로 되돌아가서, 도 1은 일반적인 상업적 환경을 위한 건물(12)에서 가열, 환기, 공기 조화, 및/또는 냉동(HVAC&R) 시스템(10)의 구현예의 사시도이다. HVAC&R 시스템은 빌딩(12)을 가열하도록 따뜻한 액체를 공급하는 보일러(16) 및 빌딩(12)을 냉각하도록 냉각된 액체를 공급하는 증기 압축 시스템(14)을 포함할 수 있다. 때때로 칠러로 언급되는 증기 압축 시스템(14)은 증기 압축 시스템(14)의 콘덴서에서 냉각 유체(예를 들어, 물과 같은 액체)에 의해 냉각되고 증기 압축 시스템(14)의 증발기에서 컨디셔닝 유체(예를 들어, 물과 같은 액체)에 의해 가열된 작동 유체(예를 들어, 냉매)를 순환시킬 수 있다. 냉각 유체는 예를 들어, 주변 공기를 통해 냉각 유체를 냉각시키는 냉각 타워에 의해 제공될 수 있다. 위에 언급된 작동 유체에 의해 냉각된 컨디셔닝 유체는 빌딩(12)의 컨디셔닝된 공간에 제공된 공기 흐름을 냉각시키도록 활용될 수 있다.
HVAC&R 시스템(10)은 빌딩(12)을 통해 공기를 순환시키는 공기 분배 시스템을 포함할 수 있다. 공기 분배 시스템은 또한 공기 귀환 덕트(18), 공기 공급 덕트(20), 및/또는 에어 핸들러(22)를 포함할 수 있다. 일부 구현예에서, 에어 핸들러(22)는 도관(24)에 의해 보일러(16) 및 증기 압축 시스템(14)에 연결된 열 교환기를 포함할 수 있다. 공기 핸들러(22)에서 열 교환기는 HVAC&R 시스템(10)의 모드에 따라, 보일러(16)로부터 가열된 액체 또는 증기 압축 시스템(14)으로부터 컨디셔닝 유체(예를 들어, 물과 같은 냉각된 액체)를 수용할 수 있다. HVAC&R 시스템(10)은 건물(12)의 각각 상에 분리 에어 핸들러와 함께 도시되지만, 다른 구현예에서, HVAC&R 시스템(10)은 에어 핸들러(22) 및/또는 플로어 사이에 또는 그 가운데 공유될 수 있는 다른 구성요소를 포함할 수 있다.
증기 압축 시스템(14) 또는 칠러는 위에 기재된 증발기와 콘덴서 사이에 배치된 압축기를 포함할 수 있다. 압축기는 압축기가 작동 유체(예를 들어, 냉매)를 수용하고 작동 유체가 콘덴서에 전달되기 전에 작동 유체의 온도 및 압력을 증가시키도록 동력공급되는 정상 작동 모드에서 작동될 수 있다. 본 개시에 따라서, 증기 압축 시스템(14)을 통해 냉매를 강제하도록 압축기의 모터에 동력을 공급하지 않고 증기 압축 시스템(14)이 적합한 냉각 용량을 제공할 수 있는 충분히 낮은 온도에 냉각 유체(또는, 다르게 언급해서, 냉각 타워를 통해 냉각 유체를 냉각시키도록 활용된 주변 공기)가 있을 때, 압축기는 자유 냉각 모드에서 작동될 수 있다.
예를 들어, 자유 냉각 모드에서, 압축기는 작동 유체(예를 들어, 냉매)를 수용하지만 그를 통해 냉매를 강제하도록 동력공급되지 않는다. 대신에, 압축기는 그를 통해 (예를 들어, 자연 대류를 통해) 냉매를 통과하게 하도록 구성된다. 자유 냉각 모드 동안 압축기에서 압축 손실을 감소시키거나 무효화하기 위해, 압축기는 하나 이상의 자기 베어링, 또는 오일 프리 시스템에서, 하나 이상의 롤링 요소 베어링을 통해 부상된 로터를 포함하는 원심 압축기일 수 있다. 또한, 원심 압축기의 가변 지오메트리 디퓨저(VGD) 및/또는 예비 회전 베인(PRV)은 그를 통해 수동 냉매 흐름을 가능하게 하도록 자유 냉각 모드에서 열릴 수 있다. 따라서, 원심 압축기의 모터가 자유 냉각 모드 동안 동력공급되지 않음에도, 원심 압축기의 로터는 자유 냉각 모드에서 냉매를 수용하는 것에 응답해서 자유롭게 회전할 수 있다. 위에 언급된 바와 같은 원심 압축기를 구성함으로써, 자유 냉각 모드는 냉매가 압축기를 우회하지 않고 활용될 수 있는 한편 여전히 증기 압축 시스템(14)이 건물(12)에 적합한 냉각 용량을 제공하게 할 수 있다. 따라서, 현재 고려되는 구현예는 효과적인 자유 냉각을 가능하게 하는 한편 전통적인 구현예의 부품수, 압력 손실, 및 전체 비용을 감소시킨다. 또한, 전통적인 구현예와는 달리, 현재 고려된 구현예는 R-123, R-514A, R-1224yd, R-1233zd, R-134a, R-1234ze, R-1234yf, R-1311, R-32, R-410A, 및 다른 것을 포함하는, 광범위한 냉매와 호환가능하다.
도 2 및 도 3은 도 1의 HVAC&R 시스템(10)에서 사용될 수 있는 증기 압축 시스템(14) 또는 칠러의 구현예의 개략적인 도시이다. 증기 압축 시스템(14)은 원심 압축기와 같은 압축기(32)로 시작하는 회로를 통해 냉매를 순환시킬 수 있다. 회로는 또한 콘덴서(34), 팽창 밸브(들) 또는 장치(들)(36), 및 증발기(38)를 포함할 수 있다. 증기 압축 시스템(14)은 아날로그-디지털(A/D) 변환기(42), 마이크로프로세서(44), 비휘발성 메모리(46), 및/또는 인터페이스 보드(48)를 갖는 제어 패널(40)을 더 포함할 수 있다.
증기 압축 시스템(14)에서 냉매로서 사용될 수 있는 유체의 일부 예는 수소불화탄소(HFC) 기반 냉매, 예를 들어, R-410A, R-407, R-134a, 하이드로플루오로 올레핀(HFO), 암모니아(NH3)와 같은 “천연” 냉매, R-717, 이산화탄소(CO2), R-744, 또는 탄화수소 기반 냉매, 수증기, 또는 임의의 다른 적합한 냉매이다. 다른 가능한 냉매는 R-123, R-514A, R-1224yd, R-1233zd, R-134a, R-1234ze, R-1234yf, R-1311, R-32, 및 R-410A를 포함한다. 일부 구현예에서, 증기 압축 시스템(14)은 R-134a와 같은, 중압 냉매에 비해, 저압 냉매로도 언급되는, 1기압에서 약 섭씨 19도(화씨 66도)의 기준 끓는점을 갖는 냉매를 효율적으로 활용하도록 구성될 수 있다. 여기 사용된 바와 같은, “기준 끓는점”은 1기압에서 측정된 끓는점 온도를 언급할 수 있다.
일부 구현예에서, 증기 압축 시스템(14)은 가변속 드라이브(VSD)(52), 모터(50), 압축기(32), 콘덴서(34), 팽창 밸브 또는 장치(36), 및/또는 증발기(38) 중 하나 이상을 사용할 수 있다. 모터(50)는 정상 작동 모드 동안 압축기(32)를 구동할 수 있고 가변속 드라이브(VSD)(52)에 의해 동력공급될 수 있다. VSD(52)는 정상 작동 모드 동안 교류 전력(AC)을 수용하고, AC 전력은 AC 전원으로부터 특정 고정선 전압 및 고정선 주파수를 포함하고 모터(50)에 가변 전압 및 주파수를 갖는 동력을 제공한다. 다른 구현예에서, 모터(50)는 AC 또는 직류(DC) 전원으로부터 직접 동력공급될 수 있다. 모터(50)는 VSD에 의해 또는 스위치드 릴럭턴스 모터, 유도 모터, 전자 정류 영구 자석 모터, 또는 또 다른 적합한 모터와 같은 AC 또는 DC 전원으로부터 직접 동력공급될 수 있는 임의 유형의 전기 모터를 포함할 수 있다. 모터(50) 및/또는 VSD(52)는 압축기(32)의 일부로 간주될 수 있음이 언급되어야만 한다. 즉, 자유 냉각 모드 동안 동력을 수신하지 않는 것으로 압축기(32)를 기재한 본 개시에 예에서, 모터(50) 및/또는 VSD(52)는 동력을 수신하지 않을 수 있음이 이해되어야만 한다. 그러나, 압축기(32)의 로터를 부상시키도록 구성된 자기 베어링과 같은 압축기(32)의 다른 구성요소는 자유 냉각 모드에서 동력을 수신할 수 있다.
정상 작동 모드 동안, 압축기(32)는 냉매 증기를 압축하고 증기를 방출 통로를 통해 콘덴서(34)에 전달한다. 압축기(32)에 의해 콘덴서(34)에 전달된 냉매 증기는 콘덴서(34)에서 냉각 유체(예를 들어, 물 또는 공기)에 열을 전달할 수 있다. 냉매 증기는 냉각 유체와의 열적 열전달(thermal heat transfer)의 결과로서 콘덴서(34)에서 냉매 액체로 응축할 수 있다. 콘덴서(34)로부터의 액체 냉매는 팽창 장치(36)를 통해 증발기(38)로 흐를 수 있다. 도 3의 도시된 구현예에서, 콘덴서(34)는 수 냉각되고 콘덴서(34)에 냉각 유체를 공급하는, 냉각 타워(56)에 연결된 튜브 번들(54)을 포함한다.
증발기(38)에 전달된 액체 냉매는 실질적으로 부하(62)(예를 들어, 도 1의 건물(12))에 보내지는 컨디셔닝 유체로부터 열을 흡수할 수 있다. 즉, 컨디셔닝 유체는 증발기(38)에서 냉매에 의해 냉각될 수 있고, 그런 후에 빌딩(12)에 공간을 컨디셔닝하도록 제공된 공기 흐름을 컨디셔닝하도록 도 1의 빌딩(12)에 활용될 수 있다. 증발기(38)에서 액체 냉매는 액체 냉매로부터 냉매 증기로의 상 변화를 겪을 수 있다. 도 3의 도시된 구현예에 도시된 바와 같이, 증발기(38)는 공급 라인(60S)을 갖는 튜브 번들(58) 및 냉각 부하(62)에 연결된 리턴 라인(60R)을 포함할 수 있다. 증발기(38)의 냉각 유체(예를 들어, 물, 에틸렌 글리콜, 염화칼슘 브라인, 염화나트륨 브라인, 또는 임의의 다른 적합한 유체)는 리턴 라인(60R)을 통해 증발기(38)에 들어오고 공급 라인(60S)을 통해 증발기(38)를 빠져나간다. 증발기(38)는 냉매와의 열적 열 전달을 통해 튜브 번들(58)에서 냉각 유체의 온도를 감소시킬 수 있다. 증발기(38)에서 튜브 번들(58)은 복수의 튜브 및/또는 복수의 튜브 번들을 포함할 수 있다. 어느 경우든, 증기 냉매는 증발기(38)를 빠져나와 흡입 라인에 의해 압축기(32)로 되돌아가서 사이클을 완료한다.
앞서 언급된 바와 같이, 증기 압축 시스템(14)은 낮은 주변 온도 조건과 같은, 특정 조건에서 자유 냉각 모드에서 작동될 수 있다. 예를 들어, 주변 온도가 온도 임계치 아래에 있을 때, 냉각 타워(56)와 연관된 냉각 유체가 온도 임계치 아래에 있을 때, 또는 증기 압축 시스템(14)을 통해 순환된 냉매가 온도 임계치 아래에 있을 때, 증기 압축 시스템(14)은 압축기(32)(또는, 다르게 언급해서, 압축기(32)의 모터(50) 및/또는 VSD(52))에 동력을 공급하지 않고 적합한 냉각 용량을 제공할 수 있다. 본 구현예에 따라서, 압축기(32)는 부상된 로터를 갖는 원심 압축기를 포함할 수 있다. 로터는 하나 이상의 자기 베어링을 통해 또는 오일 프리 시스템에서, 하나 이상의 롤링 요소 베어링을 통해 부상될 수 있다. 또는, 압축기(32)의 가변 지오메트리 디퓨저(VGD), 예비 회전 베인(PRV), 및/또는 팽창 장치(36)는 자유 냉각 모드의 개시에 응답해서 위치를 완전히 열도록 설정될 수 있다. 부상된 로터, 열린 VGD, 열린 PRV, 및/또는 열린 팽창 장치(36)는 자유 냉각 모드 동안 냉매를 수용하는 것에 응답해서, 동력공급되지 않음에도, 압축기(32)의 임펠러가 자유롭게 회전하게 할 수 있다. 일부 구현예에서, 팽창 밸브(36)는 이용가능한 액체 헤드를 개선하고 증발기(38)에 침수로 인한 불이익을 감소시키도록 콘덴서 액체 레벨을 유지하기 위해 자유 냉각 모드 동안 스로틀링될 수 있다. 콘덴서 액체 레벨은 제어기(40)에 통신적으로 결합된 센서(121)(도 6)에 의해 검출될 수 있고, 제어기(40)는 콘덴서(34)에서 액체 레벨에 기반해서 팽창 장치(들)(36, 66)의 스로틀링을 작동할 수 있다.
자유 냉각 모드 동안 압축기(32)를 통해 냉매가 통과하는 것을 가능하게 하고 자유 냉각 모드 동안 냉매를 수용하는 것에 응답해서 압축기(32)의 로터가 자유롭게 회전하는 것을 가능하게 함으로써, 증기 압축 시스템(14)(예를 들어, 칠러)의 부품수, 복잡성, 및/또는 비용이 압축기 바이패스 특징부를 갖는 전통적인 구현예에 비해 감소될 수 있다. 예를 들어, 전통적인 시스템에 포함된 압축기 바이패스 밸브 또는 회로는 제거될 수 있다. 또한, 증기 압축 시스템(14)의 부품수, 복잡성, 및/또는 비용은 자유 냉각 모드 동안 압축기(32)에서 실질적 압력 손실을 발생시키지 않고 감소될 수 있다.
도 4는 콘덴서(34)와 팽창 장치(36) 사이에 병합된 중간 회로(64)를 갖는 증기 압축 시스템(14)의 구현예의 개략적인 도시이다. 중간 회로(64)는 콘덴서(34)에 직접 유동적으로 연결된 입구 라인(68)을 가질 수 있다. 다른 구현예에서, 입구 라인(68)은 콘덴서(34)에 간접적으로 유동적으로 결합될 수 있다. 도 4의 도시된 구현예에 도시된 바와 같이, 입구 라인(68)은 중간 용기(70)의 상류에 위치된 제 1 팽창 장치(66)를 포함한다. 일부 구현예에서, 중간 용기(70)는 플래시 탱크(예를 들어, 플래시 인터쿨러)일 수 있다. 다른 구현예에서, 중간 용기(70)는 열 교환기 또는 “표면 이코노마이저”로서 구성될 수 있다. 도 4의 도시된 구현예에서, 중간 용기(70)는 플래시 탱크로서 사용되고, 제 1 팽창 장치(66)는 콘덴서(34)로부터 수용된 액체 냉매(예를 들어, 그를 팽창시키도록)의 압력을 낮추도록 구성된다. 팽창 공정 동안, 액체 냉매의 일부는 증발할 수 있고, 따라서, 중간 용기(70)는 제 1 팽창 장치(66)로부터 수용된 액체 냉매로부터 증기 냉매를 분리하도록 사용될 수 있다. 추가적으로, 중간 용기(70)는 중간 용기(70)에 들어갈 때 액체 냉매에 의해 경험된 압력 강하로 인해(예를 들어, 중간 용기(70)에 들어갈 때 경험된 부피에서의 급격한 증가로 인해) 액체 냉매의 추가 팽창을 제공할 수 있다. 중간 용기(70)에서 증기 냉매는 압축기(32)의 흡입 라인(74)을 통해 압축기(32)에 의해 끌어당겨질 수 있다. 다른 구현예에서, 중간 용기(70)에서 증기 냉매는 압축기(32)의 (예를 들어, 흡입 단계가 아닌) 중간 단계로 끌어당겨질 수 있다. 중간 용기(70)에서 수집하는 액체 냉매는 팽장 장치(66)에서 및/또는 중간 용기(70)에서 냉매의 팽창으로 인해 콘덴서(34)를 빠져나가는 액체 냉매보다 더 낮은 엔탈피에 있을 수 있다. 중간 용기(70)로부터의 액체 냉매는 그런 후에 라인(72)을 통해 그리고 제 2 팽창 장치(36)를 통해 증발기(38)로 흐를 수 있다.
도 4의 증기 압축 시스템(14)은 증발기(38) 및/또는 중간 용기(70)로부터 압축기(32)에 의해 수용된 냉매의 압력 및 온도를 증가시키도록 (예를 들어, 모터(50), VSD(52), 및 모터(50) 및/또는 VSD(52)를 제어하는 제어 패널(40)에 동력공급하는 것을 통해) 동력공급된다. 도 3의 증기 압축 시스템(14)에 대해 기재된 바와 같이, 도 4의 증기 압축 시스템(14)은 또한 자유 냉각 모드에서 본 개시에 따라 작동될 수 있고, 그로써 압축기(32)는 동력공급되지 않지만 여전히 그를 통해 냉매의 흐름을 가능하게 한다. 도 5를 참조하여 아래 자세히 기재된 바와 같이, 압축기(32)(예를 들어, 압축기(32)의 임펠러)는 자유 냉각 모드 동안 냉매를 수용하는 것에 응답해서 자유롭게 회전하도록 구성될 수 있다.
도 5는 제어 패널(40)(예를 들어, 제어기) 및 압축기(32)의 일부의 황단면을 도시하는 도 2의 증기 압축 시스템(14)의 일부의 구현예의 개략적인 도시이다. 다른 유형의 압축기가 본 기법으로 활용될 수 있음에도, 도시된 압축기(32)는 개시된 자유 냉각 모드에서 작동하기에 적합한 원심 압축기이다.
압축기(32)는 정상 작동 모드에서 작동될 수 있고, 그로써 압축기(32)가 압축기(32)의 흡입 측면(80)(예를 들어, 입구)에서 냉매를 수용함에 따라서, 제어 패널(40)은 (예를 들어, 압축기(32)에 상응하는 모터(50) 및/또는 VSD를 통해) 압축기(32)에 동력을 공급한다. 정상 작동 모드에서, 압축기(32)는 냉매를 예를 들어, 증기 압축 시스템(14)의 콘덴서(34)에 전달하기 전에 냉매의 압력 및 온도를 증가시키도록 작동한다. 예를 들어, 모터(50)는 압축기(32)의 샤프트(82)가 회전하게 할 수 있다. 샤프트(82)는 베인 또는 블레이드(86)를 갖는 임펠러(84)에 결합될 수 있다. 샤프트(82)를 통해 모터(50)에 의해 회전으로 구동된 다른 특징부 가운데 샤프트(82) 및 임펠러(84)는 압축기(32)의 로터(85)로 집합적으로 언급될 수 있다. 압축기(32)가 정상 작동 모드 동안 모터(50)에 의해 회전으로 구동됨에 따라, 임펠러(84)의 회전 블레이드(86)는 압축기(32)의 디퓨저(88)를 향해 통과하는 냉매의 에너지를 점진적으로 증가시킬 수 있다. 디퓨저(88)는 냉매의 속도를 감소시킴으로써 압력으로 냉매의 운동 에너지를 변환한다. 예를 들어, 도시된 디퓨저(88)는 소망하는 작동 파라미터 및/또는 압축기(32)의 성능에 기반해서 다양한 온도로 디퓨저(88)를 통해 냉매 흐름 경로를 열거나 제한하도록 제어 패널(40)을 통해 제어될 수 있는 디퓨저 링(90)을 갖는 가변 지오메트리 디퓨저(VGD)이다. 도시된 압축기(32)는 또한 압축기(32)를 통한 냉매의 흐름(94)에 대해 임펠러(84)의 상류에 배치된 예비 회전 베인(92)을 포함한다. 예비 회전 베인(92), 임펠러(84), 및 디퓨저(88)를 통해 또는 그를 가로질러 통과한 후에, 가압된 냉매는 도 2-도 4에 콘덴서(34)와 같은 증기 압축 시스템의 다운스트림 구성요소에 가압된 냉매의 뒤이은 분배를 위해 콜렉터(96)에 축적될 수 있다.
앞서 기재된 바와 같이, 그리고 본 개시에 따라서, 증기 압축 시스템(14)은 자유 냉각 모드에서 작동될 수 있고, 그로써 압축기(32)는 냉매를 수용하지만 동력공급되지 않는다(예를 들어, 회전으로 구동된다). 증기 압축 시스템(14)이 자유 냉각 모드에서 작동되는 동안, 압축기(32)(예를 들어, 임펠러(84))는 냉매를 수용하는 것에 응답하여 자유롭게 회전하도록 구성된다. 예를 들어, 도시된 압축기(32)는 자기 베어링 또는 오일 프리 시스템에서, 롤링 요소 베어링일 수 있는 베어링을 포함한다. 자기 베어링 또는 오일 프리 시스템에서, 롤링 요소 베어링을 포함함으로써, 로터(85)는 부상될 수 있고 냉매를 수용하는 것에 응답해서 자유롭게 회전하는 것이 가능해질 수 있는 반면에 압축기(32)(예를 들어, 압축기(32)의 모터(50) 및/또는 상응하는 VSD(52))는 제어 패널(40)에 의해 동력공급되지 않는다. 또한, 제어 패널(40)이 자유 냉각 모드를 개시하거나 작동시킬 때, 제어 패널(40)은 열린 위치(예를 들어, 완전히 열린 위치)로 예비 회전 베인(92) 및 가변 지오메트리 디퓨저(88)를 조절할 수 있고, 그로써 자유 냉각 모드에서 증기 압축 시스템(14)의 작동 동안 냉매에서 압력 손실을 감소시키거나 무효화시킨다.
도 6은 도 2의 증기 압축 시스템(14)의 구현예의 개략적인 도시이다. 도시된 구현예에서, 증기 압축 시스템(14)은 도 4에 제시된 것과 유사한 특징부를 포함하지만 중간 용기는 없다. 그러나, 도 6에서 증기 압축 시스템(14)은 또한 콘덴서(34)와 증발기(38) 사이에 배치된 액체 펌프(116), 그리고 고온 가스 바이패스 밸브(114)(HGBV)를 포함한다. 또한, 도 6에서 증발기(38)는 강하막 증발기이고, 증기 압축 시스템(14)(즉, 칠러)은 작동 조건에 따라 냉매가 증발기(38)(예를 들어, 강하막 증발기)의 다양한 부분으로 향하게 하도록 작동가능한 바이패스 밸브(110)를 포함할 수 있다.
위에 언급된 바와 같이, 냉매는 증발기(38)(예를 들어, 강하막 증발기)로 향해질 수 있고 부하(62)로 그리고 그로부터 보내진 컨디셔닝 유체를 냉각시키도록 활용될 수 있다. 부하(62)는 예를 들어, 컨디셔닝된 공간에 제공된 공기 흐름을 냉각시키도록 냉각된 컨디셔닝 유체를 활용하는 하나 이상의 에어 핸들링 유닛(AHU)일 수 있다. 일반적으로, 증발기(38)(예를 들어, 강하막 증발기)는, 냉매가 상부 입구(101)로부터 그리고 증발기(38)를 통해 아래로 중력을 이용해 공급되는 바와 같이, 예를 들어, 상부 입구(101)에서 증발기(38)의 최상부를 향해 냉매를 수용하도록 구성될 수 있다. 특정 조건 동안, 냉매의 압력은, 냉매가 증발기(38)의 최상부로 이동될 수 없는 바와 같거나, 그렇지 않으면, 냉매가 강하막 증발기로서 증발기(38)를 작동시키도록 증발기(38)의 최상부로 이동된다면, 시스템(14)이 (예를 들어, 압력 손실, 냉각 용량 등을) 겪는 바와 같을 수 있다. 이들 조건 동안, 강하막 바이패스 밸브(110)는 냉매를 증발기(38)의 바닥을 향해, 예를 들어, 하부 입구(103)로 이동하게 하도록 작동될 수 있다(예를 들어, 열릴 수 있다). 예를 들어, 제어 패널(40)은 예를 들어, 제어 패널(10)에 통신가능하게 결합된 센서(123)에 의해 검출된 냉매 압력에 기반해서, 강하막 바이패스 밸브(110)의 열림 및/또는 닫힘을 (예를 들어, 네트워크(115)에 걸친 유선 연결을 통해 또는 무선 연결을 통해) 지시할 수 있다. 따라서, 강하막 바이패스 밸브(110)가 냉매를 상부 입구(101)로부터 하부 입구(103)로 전향하도록 작동될 때, 증발기(38)는 만액식 증발기로서 작동될 수 있다. 또 다른 구현예에서, 강하막 바이패스 밸브(110)가 도시된 것과 다르게 위치될 수 있고 냉매를 증발기(38)의 상부 입구(101)로부터 하부 입구(103)로 전향하도록 닫힐 수 있음이 언급되어야만 한다.
앞서 기재된 바와 같이, 증기 압축 시스템(14)은 또한 HGBV(114)를 포함할 수 있다. HGBV(114)는 증기 냉매가 증발기(38)로부터 콘덴서(34)를 향해 그리고 그로 통과 가능하도록 작동될 수 있다(예를 들어, 열릴 수 있다). 증기 냉매가 콘덴서(34)로 통과할 수 있도록 HGBV(114)를 여는 것은 증기 압축 시스템(14)의 축적 냉매 흐름 경로 영역 또는 크기를 증가시키고 증기 압축 시스템(14)의 냉각 용량을 개선할 수 있다. 일부 구현예에서, HGBV(114)는 자유 냉각 작동의 개시에 응답해서 열릴 수 있다.
또한, 특정 구현예에서, 증기 압축 시스템(14)은 액체 냉매를 콘덴서(34)로부터 증발기(38)로 이동시키도록 자유 냉각 작동 동안 작동될 수 있는(예를 들어, 동력공급될 수 있는) 액체 펌프(116)를 포함할 수 있다. 펌프(116)는 강하막 바이패스 밸브(110) 및 하부 입구(103) 및 연관된 배관에 대한 필요를 제거할 수 있다. 그러나, 특정 구현예에서, 증기 압축 시스템(14)은 열사이펀으로서 작동할 수 있고, 그로써 자연 대류가 중력을 통해 아래로 흐르는 더 차가운 액체 냉매에 의해 대체됨에 따라 그것은 증기 압축 시스템(14) 내에서 위로 가열된 액체 냉매를 이동시킨다.
펌프(116)가 없는 구현예에서, 강하막 바이패스 밸브(110) 및 상응하는 특징부의 포함이 바람직할 수 있다. 콘덴서(34)가 상부 입구(101)보다 물리적으로 더 낮다면, 중력이 액체 냉매의 충분한 흐름을 제공할 수 없도록 강하막 바이패스 밸브(110)가 자유 냉각 작동 동안 요구될 수 있다.
다른 특징부는 여기 기재된 증기 압축 시스템(14) (및 상응하는 자유 냉각 작동)과 함께 병합되고 및/또는 활용될 수 있다. 예를 들어, 증기 압축 시스템(14)의 용량은 컨디셔닝 유체의 온도에 대한 피드백에 기반해 조절될 수 있다. 더 구체적으로, 제어 패널(40)은 증발기(38)를 빠져나가는 컨디셔닝된 유체의 온도를 모니터링할 수 있다. 센서(120)는 증발기(38)를 빠져나가는 컨디셔닝된 유체의 온도를 검출할 수 있고 온도 데이터를 주기적으로 수신하고 검출된 온도에 기반해서 증기 압축 시스템(14)의 용량을 조절하는 제어 패널(40)에 통신적으로 결합될 수 있다. 센서(120), 또는 분리 센서는 또한 자유 냉각 작동을 개시할 때를 검출하도록 활용될 수 있음이 언급되어야만 한다. 예를 들어, 자유 냉각 작동은 센서에 의해 검출된 주변 온도에 기반해서 및/또는 센서에 의해 검출된 냉각 유체 온도에 기반해서 더 차가운 계절(예를 들어, 가을, 겨울, 및/또는 봄) 동안 개시될 수 있다. 앞서 언급된 바와 같이, 증기 압축 시스템(14)은 압축기(32)에 동력공급을 하지 않고 그의 회전을 구동하지 않고 상대적으로 추운 계절 동안 냉각 요구사항을 맞추기에 적합한 용량에서 작동가능할 수 있다. 제어 패널(40)은 메모리(46)에 저장된 온도 임계치를 포함할 수 있다. 온도 임계치는 (예를 들어, 센서(120)에 의해 검출된 바와 같은) 증발기(38)를 떠나는 컨디셔닝 유체의 온도, 주변 공기 온도, 냉각 타워(56)로 그리고 그로부터 보내진 냉각 유체의 온도, (예를 들어, 증기 압축 시스템(14) 가운데 선택된 위치에서 검출된) 냉매 온도, 또는 그의 조합에 관련될 수 있다. 온도 임계치에 상응하는 검출된 온도가 온도 임계치 아래로 강하할 때, 제어 패널(40)은 자유 냉각 작동을 개시할 수 있다.
이들 특징부에 덧붙여서, 특정 조건에서, 모터(50)는 자유 냉각 모드 동안 발전기로서 작동될 수 있다. 예를 들어, 제어 패널(40)은 자유 냉각 모드 동안 모터(50)(또는 모터(50) 및/또는 압축기(32)의 부분으로 간주될 수 있는 VSD(52))에 공급된 동력을 중단시킬 수 있는 한편, (예를 들어, 그를 통해 향해진 수동 냉매 흐름에 의해 유도된) 자유 냉각 모드 동안 자유 회전 압축기(32)의 운동 에너지는 압축기(32)의 로터(85)에 결합된 모터(50) 또는 분리 발전기를 통해 에너지를 발생시키도록 이용되고 활용될 수 있다. 따라서, 모터(50)는 VSD(52)(예를 들어, 전기 시스템, 배터리, 커패시터, 유틸리티 그리드, 등)를 통해 부하(122)에 결합될 수 있고, 부하(122)는 자유 냉각 모드 동안 모터(52)에서 또는 그에 의해 생성된 전기 에너지를 활용하거나 저장할 수 있다.
또한, 앞서 기재된 바와 같이, 팽창 장치(36)(또는 시스템(14)의 일부 다른 팽창 장치)는 이용가능한 액체 헤드를 개선하고 증발기(38)에 침수로 인한 불이익을 감소시키도록 콘덴서 액체 레벨을 유지하기 위해 자유 냉각 작동 동안 스로틀링될 수 있다. 콘덴서 액체 레벨은 제어기(40)에 유선 또는 무선으로 통신적으로 결합된 센서(121)에 의해 검출될 수 있고, 제어기(40)는 콘덴서(34)에서 액체 레벨에 기반해서 팽창 장치(66)의 스로틀링을 작동시킬 수 있다.
도 7은 도 2의 증기 압축 시스템(14)을 작동시키는 방법(200)의 구현예를 도시하는 공정 흐름도이다. 방법(200)은 정상 작동 모드에서 증기 압축 시스템(14)을 작동시키는 단계(블록(202))를 포함하고, 그로써 압축기(32)(또는 그의 모터(50) 또는 VSD(52))가 동력을 공급받고, 냉매를 수용하고, 냉매를 콘덴서(34)에 전달하기 전에 냉매의 온도 및 압력을 증가시킨다.
방법(200)은 또한 증기 압축 시스템(14)과 연관된 유체의 실제 온도를 검출하는 단계를 포함한다. 앞서 언급된 바와 같이, 유체는 (예를 들어, 실질적으로 콘덴서(34)에서 냉매로부터 열을 추출하는 유체를 냉각시키도록 냉각 타워(56)에 의해 활용된) 주변 공기, 냉각 타워(56)와 콘덴서(34) 사이에 통과된 유체, 증발기(38)와 부하(62)(예를 들어, 공기 핸들링 유닛) 사이에 통과된 유체, 또는 냉매일 수 있다. 아래 논의될 바와 같이, 유체의 검출된 실제 온도는 자유 냉각 모드에서 작동이 소망되는지를 결정하도록 사용될 수 있다. 그러나, 특정 구현예에서, 증기 압축 시스템(14)은 자유 냉각 모드를 개시하도록 수동으로 작동될 수 있다.
도시된 방법(200)은 임계 온도와 블록(204)에 대해 위에 논의된 실제 온도를 비교하는 단계(블록(206))를 포함한다. 예를 들어, 도시된 바와 같이, 방법(200)은 실제 온도가 임계 온도보다 낮은지를 결정하는 단계(블록(208))를 포함한다. 실제 온도가 임계 온도(블록(210))보다 낮지 않다면, 증기 압축 시스템(14)의 정상 작동이 계속할 수 있다. 실제 온도가 임계 온도보다 더 낮다면(블록(212)), 그때 자유 냉각 모드가 개시된다(블록(214)).
앞서 기재된 바와 같이, 자유 냉각 모드에서, 압축기(32)로의(예를 들어, 압축기(32)의 모터(50) 또는 VSD(52)로의) 동력이 중단된다. 그러나, 압축기(32)는 여전히 그를 통해 냉매 흐름을 수용하고 향하게 하도록 구성된다. 달리 말해서, 냉매 흐름은 자유 냉각 모드에서 압축기(32)를 우회하지 않는다. 압축기(32)는 (예를 들어, 냉매를 수용하는 것에 응답해서) 자유 냉각 모드 동안 자유롭게 회전하도록 구성된다. 자유 냉각 모드 동안 효율성을 개선하기 위해, 압축기(32)는 그렇지 않으면 현재 개시된 자유 냉각 모드 동안 압축기(32)에 의해 야기될 수 있는 압력 손실에 감소를 가능하게 하는 특징부를 포함할 수 있다. 예를 들어, 압축기(32)의 VGD(예를 들어, 디퓨저(88))는 열린(예를 들어, 완전히 열린) 위치로 설정될 수 있거나, 압축기(32)의 PRV(92)는 열린(예를 들어, 완전히 열린) 위치로 설정될 수 있거나, 증기 압축 시스템(14)의 팽창 밸브(예를 들어, 밸브(36))는 열린(예를 들어, 완전히 열린) 위치로 설정될 수 있거나, 그의 임의의 다른 조합일 수 있다. 그러나, 특정 구현예에서, 팽창 밸브(36)는 이용가능한 액체 헤드를 개선하고 증발기(38)에 침수로 인한 불이익을 감소시키도록 콘덴서 액체 레벨을 유지하기 위해 자유 냉각 모드 동안 스로틀링될 수 있다. 또한, 특정 구현예에서, 강하막 바이패수 밸브(110)는 도 6에 대해 자세히 기재된, 상부 입구(101)로부터 하부 입구(103)로 특정 작동 조건에 응답해서, 냉매를 전향하도록 포함되고 작동될 수 있다. 여전히 또한, HGBV(114)는 증기 냉매를 자유 냉각 모드 동안 증발기(38)로부터 콘덴서(34)로 통과시키도록 포함되고 작동될 수 있다. 최종으로, 모터(50)는 자유 회전 압축기(32)의 운동 에너지를 발생시키고 전기 에너지로 전환하기 위해 발전기로서 자유 냉각 모드에서 작동될 수 있다.
본 구현예의 특정 특징부만이 여기 도시되고 기재되는 한편, 다양한 수정 및 변경이 해당 기술분야의 당업자에게 발생할 것이다. 그러므로, 첨부된 청구항이 개시의 진정한 사상 내에 해당하는 그러한 모든 수정 및 변경을 포함하도록 의도됨이 이해되어야만 한다. 또한, 개시된 구현예의 특정 요소가 서로 조합되거나 교환될 수 있음이 이해되어야만 한다.
여기 제시되고 청구된 기법은 본 기술 분야를 명백히 개선하는 실제 성질의 소재 대상 및 구체적 예에 대해 참조되고 그에 적용되며, 그러한 바와 같이 추상적이거나, 막연하거나, 순수하게 이론적이지 않다. 또한, 본 명세서의 끝에 첨부된 임의의 청구항이 “…[기능]을 [수행]하기 위한 수단” 또는 “…[기능]을 [수행]하기 위한 단계”로 지시된 하나 이상의 요소를 포함한다면, 그러한 요소가 35 U.S.C. 112(f) 하에 해석되어야만 함이 의도된다. 그러나, 임의의 다른 방식으로 지시된 요소를 포함하는 임의의 청구항에 대해, 그러한 요소는 35 U.S.C. 112(f) 하에 해석되지 않아야만 함이 의도된다.

Claims (20)

  1. 증발기, 콘덴서, 및 압축기를 포함하는 증기 압축 시스템, 상기 압축기는 상기 증기 압축 시스템의 정상 작동 모드에서 그리고 상기 증기 압축 시스템의 자유 냉각 모드에서 그를 통해 냉매를 안내하도록 구성되고; 및
    상기 정상 작동 모드에서 상기 압축기의 모터에 동력의 공급을 가능하게 하고 상기 자유 냉각 모드에서 상기 압축기의 상기 모터에 동력의 공급을 중단시키도록 구성되는 제어기를 포함하는, 가열, 환기, 공기 조화, 및/또는 냉동(HVAC&R) 시스템.
  2. 청구항 1에 있어서,
    상기 압축기는 부상된 로터를 포함하는, HVAC&R 시스템.
  3. 청구항 2에 있어서,
    상기 압축기는 자기 베어링을 포함하고, 상기 부상된 로터는 상기 자기 베어링을 통해 부상되는, HVAC&R 시스템.
  4. 청구항 3에 있어서,
    상기 제어기는 상기 자유 냉각 모드에서 상기 자기 베어링에 동력의 추가 공급을 가능하게 하도록 구성되는, HVAC&R 시스템.
  5. 청구항 2에 있어서,
    상기 압축기는 롤링 요소 베어링을 포함하고, 상기 부상된 로터는 상기 롤링 요소 베어링을 통해 부상되는, HVAC&R 시스템.
  6. 청구항 1에 있어서,
    상기 압축기는:
    가변 지오메트리 디퓨저(VGD)를 포함하고, 상기 제어기는 상기 자유 냉각 모드의 개시에 응답해서 상기 VGD를 완전히 열린 VGD 위치로 지시하도록 구성되고; 또는
    예비 회전 베인(PRV)을 포함하고, 상기 제어기는 상기 자유 냉각 모드의 개시에 응답해서 상기 PRV를 완전히 열린 PRV 위치로 지시하도록 구성되는, HVAC&R 시스템.
  7. 청구항 1에 있어서,
    상기 압축기는 상기 모터에 동력을 제공하도록 구성되는 가변속 드라이브(VSD)를 포함하고, 상기 제어기는 상기 VSD가 상기 정상 작동 모터에서 상기 모터에 동력의 공급을 가능하도록 제어하고 상기 VSD가 상기 자유 냉각 모드에서 상기 모터에 동력의 공급을 중단하도록 제어하도록 구성되는, HVAC&R 시스템.
  8. 청구항 1에 있어서,
    상기 냉매의 온도, 상기 증발기를 통해 지향되는 컨디셔닝 유체의 온도, 상기 콘덴서를 통해 지향되는 냉각 유체의 온도, 또는 주변 공기의 온도를 검출하도록 구성되는 온도 센서를 포함하고, 상기 제어기는 상기 온도 센서로부터 상기 온도를 나타내는 데이터를 수신하도록 구성되고, 상기 제어기는 상기 온도가 임계 온도 값보다 더 낮다는 결정에 응답하여 상기 자유 냉각 모드를 개시하도록 구성되는, HVAC&R 시스템.
  9. 청구항 1에 있어서,
    냉매 펌프를 포함하고, 상기 제어기는 상기 냉매 펌프가 상기 증기 압축 시스템을 통해 상기 냉매의 적어도 액체상을 강제하도록 상기 자유 냉각 모드의 개시에 응답해서 상기 냉매 펌프를 활성화하도록 구성되는, HVAC&R 시스템.
  10. 청구항 1에 있어서,
    상기 모터는 상기 자유 냉각 모드 동안 상기 압축기의 로터의 운동 에너지를 전기 에너지로 변환하도록 구성되는, HVAC&R 시스템.
  11. 가열, 환기, 공기 조화, 및/또는 냉동(HVAC&R) 시스템을 작동시키는 방법으로서,
    압축기가 모터에 의해 구동되고 증기 압축 시스템의 증발기와 상기 증기 압축 시스템의 콘덴서 사이에 냉매를 편향시키도록 상기 HVAC&R 시스템의 정상 작동 모드에 응답하여 상기 증기 압축 시스템의 상기 압축기의 상기 모터에 동력을 공급하는 단계; 및
    상기 압축기의 로터가 부상되어 상기 냉매가 상기 압축기를 통해 통과가능하도록 상기 HVAC&R 시스템의 자유 냉각 모드에 응답하여 상기 증기 압축 시스템의 상기 압축기의 상기 모터에 동력을 불능화하는 단계를 포함하는, HVAC&R 시스템을 작동시키는 방법.
  12. 청구항 11에 있어서,
    자기 베어링을 통해 상기 압축기의 상기 로터를 부상시키는 단계를 포함하는, HVAC&R 시스템을 작동시키는 방법.
  13. 청구항 12에 있어서,
    상기 자유 냉각 모드에 응답하여 상기 자기 베어링에 추가 동력을 공급하는 단계를 포함하는, HVAC&R 시스템을 작동시키는 방법.
  14. 청구항 11에 있어서,
    롤링 요소 베어링을 통해 상기 압축기의 상기 로터를 부상시키는 단계를 포함하는, HVAC&R 시스템을 작동시키는 방법.
  15. 청구항 11에 있어서,
    상기 압축기의 상기 로터의 운동 에너지를 전기 에너지로 변환하는 단계를 포함하는, HVAC&R 시스템을 작동시키는 방법.
  16. 냉매 회로를 통해 냉매를 순환시키도록 구성되는 압축기;
    상기 압축기의 모터; 및
    칠러 시스템의 정상 작동 모드에 응답하여 상기 압축기의 상기 모터에 동력의 공급을 가능하게 하고 상기 칠러 시스템의 자유 냉각 모드에 응답하여 상기 압축기의 상기 모터에 동력의 공급을 불능화하도록 구성된 제어기를 포함하는, 칠러 시스템.
  17. 청구항 16에 있어서,
    상기 압축기는 자기 베어링 또는 롤링 요소 베어링에 의해 부상된 로터를 포함하는, 칠러 시스템.
  18. 청구항 16에 있어서,
    상기 냉매를 수용하도록 구성되는 상기 냉매 회로의 증발기; 및
    상기 냉매를 수용하도록 구성되는 상기 냉매 회로의 콘덴서를 포함하는, 칠러 시스템.
  19. 청구항 17에 있어서,
    상기 냉매의 온도, 상기 증발기를 통해 지향되는 컨디셔닝 유체의 온도, 상기 콘덴서를 통해 지향되는 냉각 유체의 온도, 또는 주변 공기의 온도를 검출하도록 구성되는 온도 센서를 포함하고, 상기 제어기는 상기 온도 센서로부터 상기 온도를 나타내는 데이터를 수신하도록 구성되고, 상기 제어기는 상기 온도가 임계 온도 값보다 더 낮다는 결정에 응답하여 상기 자유 냉각 모드를 개시하도록 구성되는, 칠러 시스템.
  20. 청구항 16에 있어서,
    상기 모터는 상기 자유 냉각 모드 동안 상기 압축기의 로터의 운동 에너지를 전기 에너지로 변환하도록 구성되는, 칠러 시스템.
KR1020237013030A 2020-09-22 2021-09-21 칠러의 자유 냉각 작동 KR20230070263A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202063081565P 2020-09-22 2020-09-22
US63/081,565 2020-09-22
PCT/US2021/051356 WO2022066663A1 (en) 2020-09-22 2021-09-21 Free cooling operation of a chiller

Publications (1)

Publication Number Publication Date
KR20230070263A true KR20230070263A (ko) 2023-05-22

Family

ID=80844650

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237013030A KR20230070263A (ko) 2020-09-22 2021-09-21 칠러의 자유 냉각 작동

Country Status (6)

Country Link
US (1) US20230375240A1 (ko)
EP (1) EP4217669A4 (ko)
KR (1) KR20230070263A (ko)
CN (1) CN116209865A (ko)
TW (1) TW202214955A (ko)
WO (1) WO2022066663A1 (ko)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2122276B1 (en) * 2006-12-21 2019-10-30 Carrier Corporation Free-cooling limitation control for air conditioning systems
WO2008082378A1 (en) * 2006-12-28 2008-07-10 Carrier Corporation Methods and systems for controlling air conditioning systems having a cooling mode and a free-cooling mode
US11199356B2 (en) * 2009-08-14 2021-12-14 Johnson Controls Technology Company Free cooling refrigeration system
KR101593481B1 (ko) * 2014-03-23 2016-02-12 권영목 프리쿨링과 냉동사이클을 이용한 절전형 냉각 시스템
CN107735575B (zh) * 2015-07-06 2019-10-18 江森自控科技公司 用于多级离心压缩机的容量控制系统和方法
WO2017203317A1 (en) * 2016-05-25 2017-11-30 Carrier Corporation Air and water cooled chiller for free cooling applications

Also Published As

Publication number Publication date
EP4217669A4 (en) 2024-05-01
EP4217669A1 (en) 2023-08-02
CN116209865A (zh) 2023-06-02
WO2022066663A1 (en) 2022-03-31
TW202214955A (zh) 2022-04-16
US20230375240A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
US10648702B2 (en) Low capacity, low-GWP, HVAC system
CN111503910B (zh) 运行冷却器的方法
CN113874659B (zh) 阀系统和方法
JP6528078B2 (ja) 空気調和機
WO2017165924A1 (en) An air conditioning system
KR20220074937A (ko) 압축기용 제동 시스템
CN102297481A (zh) 一种节能空调系统
KR20230070263A (ko) 칠러의 자유 냉각 작동
US11668496B2 (en) Supplemental cooling for an HVAC system
JP2007183078A (ja) 冷凍機及び冷凍装置
JP6698312B2 (ja) 制御装置、制御方法、及び熱源システム
KR102574817B1 (ko) 열원 가변 공급형 히트펌프 시스템
US11041651B2 (en) Energy recovery system for HVAC system
JP2020510786A (ja) 可変形態ディフューザリング
US20230147950A1 (en) System and method for operation of variable geometry diffuser as check valve
US20220307739A1 (en) Lubrication system for a compressor
US20230358448A1 (en) Hvac system with bypass conduit
US20220364776A1 (en) Mechanical-cooling, free-cooling, and hybrid-cooling operation of a chiller
US20190203730A1 (en) Thrust bearing placement for compressor
JP2017110821A (ja) 空気調和装置
CN115038873A (zh) 用于压缩机的容积比控制系统
JP2019002586A (ja) ヒートポンプシステム
WO2014002145A1 (ja) 空気調和装置およびその制御方法
CN106642560A (zh) 一种水冷变容量空调机组