KR20230063302A - 문자열 데이터를 동형 암호화하는 장치 및 방법 - Google Patents
문자열 데이터를 동형 암호화하는 장치 및 방법 Download PDFInfo
- Publication number
- KR20230063302A KR20230063302A KR1020220092724A KR20220092724A KR20230063302A KR 20230063302 A KR20230063302 A KR 20230063302A KR 1020220092724 A KR1020220092724 A KR 1020220092724A KR 20220092724 A KR20220092724 A KR 20220092724A KR 20230063302 A KR20230063302 A KR 20230063302A
- Authority
- KR
- South Korea
- Prior art keywords
- ciphertext
- homomorphic
- encrypted
- data
- homomorphic ciphertext
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 43
- 239000013598 vector Substances 0.000 claims abstract description 53
- 238000003672 processing method Methods 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims description 13
- 230000002457 bidirectional effect Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 description 23
- 238000004891 communication Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000013136 deep learning model Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 2
- 230000008451 emotion Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/008—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols involving homomorphic encryption
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
- H04L9/0618—Block ciphers, i.e. encrypting groups of characters of a plain text message using fixed encryption transformation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Security & Cryptography (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mathematical Physics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Data Mining & Analysis (AREA)
- Computational Mathematics (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Pure & Applied Mathematics (AREA)
- Algebra (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Health & Medical Sciences (AREA)
- Bioethics (AREA)
- General Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
암호문 처리 방법이 개시된다. 본 암호문 처리 방법은 문자형 데이터를 문장 단위로 구분하는 단계, 문장 단위별로 기설정된 인코딩 알고리즘을 이용하여 하나의 문장에 대한 기설정된 크기를 갖는 벡터 값을 산출하는 단계, 및 산출된 벡터 값을 동형 암호화하여 동형 암호문을 생성하는 단계를 포함한다.
Description
본 개시는 문자열 데이터를 동형 암호화하는 장치 및 방법에 관한 것으로, 구체적으로, 문자열 데이터를 동형 암호화하여 저장할 수 있는 장치 및 방법에 대한 것이다
통신 기술이 발달하고, 전자 장치의 보급이 활발해짐에 따라, 전자 장치 간의 통신 보안을 유지하기 위한 노력이 지속적으로 이루어지고 있다. 이에 따라, 대부분의 통신 환경에서는 암호화/복호화 기술이 사용되고 있다.
암호화 기술에 의해 암호화된 메시지가 상대방에게 전달되면, 상대방은 메시지를 이용하기 위해서는 복호화를 수행하여야 한다. 이 경우, 상대방은 암호화된 데이터를 복호화하는 과정에서 자원 및 시간 낭비가 발생하게 된다. 또한, 상대방이 연산을 위해 일시적으로 메시지를 복호화한 상태에서 제3자의 해킹이 이루어지는 경우, 그 메시지가 제3자에게 손쉽게 유출될 수 있다는 문제점도 있었다.
이러한 문제를 해결하기 위하여 동형 암호화 방법이 연구되고 있다. 동형 암호화(homomorphic encryption)에 따르면, 암호화된 정보를 복호화하지 않고 암호문 자체에서 연산을 하더라도, 평문에 대해 연산한 후 암호화한 값과 동일한 결과를 얻을 수 있다. 따라서, 암호문을 복호화하지 않은 상태에서 각종 연산을 수행할 수 있다.
기존에는 수치형 데이터에 대해서만 동형 암호문으로 생성하여 복호화하지 않은 상태에서 연산을 수행하였다. 그러나 최근에는 딥 러닝 모델이 발전하면서 이미지, 텍스트, 음성과 같은 비정형 데이터에 대한 처리 능력이 증가하며, 비정형 데이터가 담고 있는 정보의 내용에 대한 개인 정보 보호가 요구되고 있다.
따라서 본 개시는 상술한 바와 같은 문제점을 해결하기 위한 고안된 것으로, 문자열 데이터를 동형 암호화하여 저장할 수 있는 장치 및 방법을 제공하는 데 있다.
본 개시는 이상과 같은 목적을 달성하기 위한 것으로, 본 개시의 일 실시 예에 따른 암호문 처리방법은 문자형 데이터를 문장 단위로 구분하는 단계, 상기 문장 단위별로 기설정된 인코딩 알고리즘을 이용하여 하나의 문장에 대한 기설정된 크기를 갖는 벡터 값을 산출하는 단계, 및 상기 산출된 벡터 값을 동형 암호화하여 동형 암호문을 생성하는 단계를 포함한다.
이 경우, 상기 동형 암호문을 생성하는 단계는, 문장 단위별로 생성된 벡터 값 각각을 동형 암호화하고, 동형 암호화된 벡터 값 각각을 상기 동형 암호문 내의 복수의 슬롯에 순차적으로 넣어 동형 암호문을 생성할 수 있다.
한편, 상기 동형 암호문을 생성하는 단계는, 상기 문자형 데이터 내의 복수의 문장 각각에 대한 순서 인덱스를 생성하고, 상기 생성된 순서 인덱스를 암호화하고, 상기 복수의 문장 각각에 대해서 상기 암호화된 순서 인덱스와 상기 암호화된 순서 인덱스에 대응되는 암호화된 벡터 값을 상기 동형 암호문 내의 복수의 슬롯 중 하나에 넣어 동형 암호문을 생성할 수 있다.
이 경우, 상기 동형 암호문을 생성하는 단계는, 상기 동형 암호문의 실수 영역에 상기 암호화된 수치형 데이터를 위치시키고, 상기 동형 암호문의 허수 영역에 상기 암호화된 순서 인덱스를 위치시켜 동형 암호문을 생성할 수 있다.
한편, 상기 기설정된 크기의 벡터 값은, [-1, 1] 크기 내의 32비트의 실수 값을 가질 수 있다.
한편, 본 암호문 처리 방법은 음성 데이터를 문자형 데이터로 변환하는 단계를 더 포함하고, 상기 문자형 데이터를 문장 단위로 구분하는 단계는, 상기 변환된 문자형 데이터에 대해서 문자 단위로 구분할 수 있다.
한편, 상기 문자형 데이터는 문자 메시지, 채팅 메시지 중 적어도 하나일 수 있다.
한편, 상기 기설정된 인코딩 알고리즘은 BERT(Bidirectional Encoder Representations from Transformers) 언어 모델일 수 있다.
한편, 본 개시의 일 실시 예에 따른 연산 장치는 문자형 데이터를 저장하는 메모리, 및 상기 문자형 데이터에 대한 동형 암호문을 생성하는 프로세서를 포함하며, 상기 프로세서는, 문자형 데이터를 문장 단위로 구분하고, 상기 문장 단위별로 기설정된 인코딩 알고리즘을 이용하여 하나의 문장에 대한 기설정된 크기를 갖는 벡터 값을 산출하고, 상기 산출된 벡터 값을 동형 암호화하여 동형 암호문을 생성한다.
이 경우, 상기 프로세서는 문장 단위별로 생성된 벡터 값 각각을 동형 암호화하고, 동형 암호화된 벡터 값 각각을 상기 동형 암호문 내의 복수의 슬롯에 순차적으로 넣어 동형 암호문을 생성할 수 있다.
한편, 상기 프로세서는, 상기 문자형 데이터 내의 복수의 문장 각각에 대한 순서 인덱스를 생성하고, 상기 생성된 순서 인덱스를 암호화하고, 상기 복수의 문장 각각에 대해서 상기 암호화된 순서 인덱스와 상기 암호화된 순서 인덱스에 대응되는 암호화된 벡터 값을 상기 동형 암호문 내의 복수의 슬롯 중 하나에 넣어 동형 암호문을 생성할 수 있다.
이 경우, 상기 프로세서는, 상기 동형 암호문의 실수 영역에 상기 암호화된 수치형 데이터를 위치시키고, 상기 동형 암호문의 허수 영역에 상기 암호화된 순서 인덱스를 위치시켜 동형 암호문을 생성할 수 있다.
한편, 상기 프로세서는, 음성 데이터가 입력되면, 상기 입력된 음성 데이터를 문자형 데이터로 변환하여 상기 메모리에 저장할 수 있다.
따라서 본 개시는 상술한 바와 같은 문제점을 해결하기 위한 고안된 것으로, 비정형 데이터를 동형 암호화하여 저장하는바, 비정형 데이터에 포함된 개인 정보 등이 누출되는 것을 방지할 수 있다. 또한, 연산이 가능한 동형 암호문을 생성하는바, 비정형 데이터를 처리하는 딥 러닝 모델에도 개인 정보의 누출 없이 적용하는 것이 가능하다.
도 1은 본 개시의 일 실시 예에 따른 네트워크 시스템의 구조를 설명하기 위한 도면,
도 2는 본 개시의 일 실시 예에 따른 연산 장치의 구성을 나타낸 블록도,
도 3은 동형 암호문에 대한 연산 동작을 설명하기 위한 도면,
도 4는 본 개시의 비정형 데이터에 대한 수치형 데이터로의 변환 동작을 설명하기 위한 도면, 그리고,
도 5는 본 개시의 일 실시 예에 따른 암호문 처리 방법을 설명하기 위한 흐름도이다.
도 2는 본 개시의 일 실시 예에 따른 연산 장치의 구성을 나타낸 블록도,
도 3은 동형 암호문에 대한 연산 동작을 설명하기 위한 도면,
도 4는 본 개시의 비정형 데이터에 대한 수치형 데이터로의 변환 동작을 설명하기 위한 도면, 그리고,
도 5는 본 개시의 일 실시 예에 따른 암호문 처리 방법을 설명하기 위한 흐름도이다.
이하에서는 첨부 도면을 참조하여 본 개시에 대해서 자세하게 설명한다. 본 개시에서 수행되는 정보(데이터) 전송 과정은 필요에 따라서 암호화/복호화가 적용될 수 있으며, 본 개시 및 특허청구범위에서 정보(데이터) 전송 과정을 설명하는 표현은 별도로 언급되지 않더라도 모두 암호화/복호화하는 경우도 포함하는 것으로 해석되어야 한다. 본 개시에서 "A로부터 B로 전송(전달)" 또는 "A가 B로부터 수신"과 같은 형태의 표현은 중간에 다른 매개체가 포함되어 전송(전달) 또는 수신되는 것도 포함하며, 반드시 A로부터 B까지 직접 전송(전달) 또는 수신되는 것만을 표현하는 것은 아니다.
본 개시의 설명에 있어서 각 단계의 순서는 선행 단계가 논리적 및 시간적으로 반드시 후행 단계에 앞서서 수행되어야 하는 경우가 아니라면 각 단계의 순서는 비제한적으로 이해되어야 한다. 즉, 위와 같은 예외적인 경우를 제외하고는 후행 단계로 설명된 과정이 선행단계로 설명된 과정보다 앞서서 수행되더라도 개시의 본질에는 영향이 없으며 권리범위 역시 단계의 순서에 관계없이 정의되어야 한다. 그리고 본 명세서에서 "A 또는 B"라고 기재한 것은 A와 B 중 어느 하나를 선택적으로 가리키는 것뿐만 아니라 A와 B 모두를 포함하는 것도 의미하는 것으로 정의된다. 또한, 본 개시에서 "포함"이라는 용어는 포함하는 것으로 나열된 요소 이외에 추가로 다른 구성요소를 더 포함하는 것도 포괄하는 의미를 가진다.
본 개시에서는 본 개시의 설명에 필요한 필수적인 구성요소만을 설명하며, 본 개시의 본질과 관계가 없는 구성요소는 언급하지 아니한다. 그리고 언급되는 구성요소만을 포함하는 배타적인 의미로 해석되어서는 안 되며 다른 구성요소도 포함할 수 있는 비배타적인 의미로 해석되어야 한다.
그리고 본 개시에서 "값"이라 함은 스칼라값뿐만 아니라 벡터도 포함하는 개념으로 정의된다. 그리고 본 개시에서 '산출한다', '계산한다' 등의 표현은 해당 산출 또는 계산의 결과물을 생성한다는 표현으로 대체될 수 있다. 또한, 동형 암호문에 처리를 수행하여, 동형 암호문을 '처리한다', '변경한다', 등의 표현은 해당 처리 결과에 대응되는 동형 암호문을 생성한다라는 표현으로 대체될 수 있다.
또한, 별도의 언급이 없다면, 후술하는 암호문에 대한 연산은 동형 연산을 의미한다. 예를 들어, 동형 암호문에 대한 덧셈은 두 동형 암호문에 대한 동형 덧셈을 의미한다.
그리고 본 개시에서 문자형 데이터는 실수, 허수 등과 같은 수치형 데이터를 제외한 데이터를 의미하며, 텍스트로 구성되는 데이터뿐만 아니라, 특정 정보를 수치 값으로 변환할 수 있는 모든 형태의 데이터(예를 들어, 이미지 데이터, 음성 데이터)를 포함한다. 이러한 문자형 데이터는 비정형 데이터로 지칭될 수 있다.
후술하는 본 개시의 각 단계의 수학적 연산 및 산출은 해당 연산 또는 산출을 하기 위해 공지되어 있는 코딩 방법 및/또는 본 개시에 적합하게 고안된 코딩에 의해서 컴퓨터 연산으로 구현될 수 있다.
이하에서 설명하는 구체적인 수학식은 가능한 여러 대안 중에서 예시적으로 설명되는 것이며, 본 개시의 권리 범위가 본 개시에 언급된 수학식에 제한되는 것으로 해석되어서는 아니된다.
설명의 편의를 위해서, 본 개시에서는 다음과 같이 표기를 정하기로 한다.
a ← D : 분포(D)에 따라서 원소(a)를 선택함
mod(q) : q 원소로 모듈(modular) 연산
이하에서는 첨부된 도면을 이용하여 본 개시의 다양한 실시 예들에 대하여 구체적으로 설명한다.
도 1은 본 개시의 일 실시 예에 따른 네트워크 시스템의 구조를 설명하기 위한 도면이다.
도 1을 참조하면, 네트워크 시스템은 복수의 전자 장치(100-1 ~ 100-n), 제1 서버 장치(200), 제2 서버 장치(300)를 포함할 수 있으며, 각 구성들은 네트워크(10)를 통해 서로 연결될 수 있다.
네트워크(10)는 다양한 형태의 유무선 통신 네트워크, 방송 통신 네트워크, 광통신 네트워크, 클라우드 네트워크 등으로 구현될 수 있으며, 각 장치들은 별도의 매개체 없이 와이파이, 블루투스, NFC(Near Field Communication) 등과 같은 방식으로 연결될 수도 있다.
도 1에서는 전자 장치가 복수 개(100-1 ~ 100-n)인 것으로 도시하였으나, 반드시 복수 개의 전자 장치가 사용되어야 하는 것은 아니며 하나의 장치가 사용될 수도 있다. 일 예로, 전자 장치(100-1 ~ 100-n)는 스마트폰, 태블릿, 게임 플레이어, PC, 랩톱 PC, 홈서버, 키오스크 등과 같은 다양한 형태의 장치로 구현될 수 있으며, 이밖에 IoT 기능이 적용된 가전 제품 형태로도 구현될 수 있다.
사용자는 자신이 사용하는 전자 장치(100-1 ~ 100-n)를 통해서 다양한 정보를 입력할 수 있다. 입력된 정보는 전자 장치(100-1 ~ 100-n) 자체에 저장될 수도 있지만, 저장 용량 및 보안 등을 이유로 외부 장치로 전송되어 저장될 수도 있다. 도 1에서 제1 서버 장치(200)는 이러한 정보들을 저장하는 역할을 수행하고, 제2 서버 장치(300)는 제1 서버 장치(200)에 저장된 정보의 일부 또는 전부를 이용하는 역할을 수행할 수 있다.
각 전자 장치(100-1 ~ 100-n)는 입력된 정보를 동형 암호화하여, 동형 암호문을 제1 서버 장치(200)로 전송할 수 있다.
각 전자 장치(100-1 ~ 100-n)는 동형 암호화를 수행하는 과정에서 산출되는 암호화 노이즈, 즉, 에러를 암호문에 포함시킬 수 있다. 구체적으로는, 각 전자 장치(100-1 ~ 100-n)에서 생성하는 동형 암호문은, 추후에 비밀 키를 이용하여 복호화하였을 때 메시지 및 에러 값을 포함하는 결과 값이 복원되는 형태로 생성될 수 있다.
일 예로, 전자 장치(100-1 ~ 100-n)에서 생성하는 동형 암호문은 비밀 키를 이용하여 복호화 하였을 때 다음과 같은 성질을 만족하는 형태로 생성될 수 있다.
[수학식 1]
Dec(ct, sk) = <ct, sk> = M+e(mod q)
여기서 < , >는 내적 연산(usual inner product), ct는 암호문, sk는 비밀 키, M은 평문 메시지, e는 암호화 에러 값, mod q는 암호문의 모듈러스(Modulus)를 의미한다. q는 스케일링 팩터(scaling factor)(Δ)가 메시지에 곱해진 결과 값 M보다 크게 선택되어야 한다. 에러 값 e의 절대값이 M에 비해서 충분히 작다면, 암호문의 복호화 값 M+e 는 유효숫자연산에서 원래의 메시지를 동일한 정밀도로 대체할 수 있는 값이다. 복호화된 데이터 중에서 에러는 최하위 비트(LSB) 측에 배치되고, M은 차하위 비트 측에 배치될 수 있다.
메시지의 크기가 너무 작거나 너무 큰 경우, 스케일링 팩터를 이용하여 그 크기를 조절할 수도 있다. 스케일링 팩터를 사용하게 되면, 정수 형태의 메시지뿐만 아니라 실수 형태의 메시지까지도 암호화할 수 있게 되므로, 활용성이 크게 증대할 수 있다. 또한, 스케일링 팩터를 이용하여 메시지의 크기를 조절함으로써, 연산이 이루어지고 난 이후의 암호문에서 메시지들이 존재하는 영역, 즉, 유효 영역의 크기도 조절될 수 있다.
실시 예에 따라, 암호문 모듈러스 q는 다양한 형태로 설정되어 사용될 수 있다. 일 예로, 암호문의 모듈러스는 스케일링 팩터 Δ의 지수승 q=ΔL 형태로 설정될 수 있다. Δ가 2라면, q=210 과 같은 값으로 설정될 수 있다.
그리고 본 개시에서 따른 동형 암호문은 비정형 데이터를 동형 암호화하는 것을 가정하여 설명하다, 수치형 데이터에 대한 동형 암호화도 가능하며, 후술하는 과정에서 비정형 데이터에 대한 동형 암호문과 수치형 데이터에 대한 동형 암호문 간의 연산도 수행할 수 있다.
제1 서버 장치(200)는 수신된 동형 암호문을 복호화하지 않고, 암호문 상태로 저장할 수 있다.
제2 서버 장치(300)는 동형 암호문에 대한 특정 처리 결과를 제1 서버 장치(200)로 요청할 수 있다. 제1 서버 장치(200)는 제2 서버 장치(300)의 요청에 따라 특정 연산을 수행한 후, 그 결과를 제2 서버 장치(300)로 전송할 수 있다.
일 예로, 두 개의 전자 장치(100-1, 100-2)가 전송한 암호문 ct1, ct2가 제1 서버 장치(200)에 저장된 경우, 제2 서버 장치(300)는 두 전자 장치(100-1, 100-2)로부터 제공된 정보들을 합산한 값을 제1 서버 장치(200)로 요청할 수 있다. 제1 서버 장치(200)는 요청에 따라 두 암호문을 합산하는 연산을 수행한 후, 그 결과 값(ct1 + ct2)을 제2 서버 장치(300)로 전송할 수 있다. 이때, 서버 장치(200)는 덧셈/뺄셈 등과 같은 기본적인 사칙 연산뿐만 아니라, 근사 함수를 이용하여 비다항식 연산, 통계 연산 등을 수행할 수 있다.
동형 암호문의 성질상, 제1 서버 장치(200)는 복호화를 하지 않은 상태에서 연산을 수행할 수 있고, 그 결과 값도 암호문 형태가 된다. 본 개시에서는 연산에 의해 획득된 결과값을 연산 결과 암호문이라 한다. 예를 들어, 제2 서버 장치(200)는 수치형 데이터를 암호화하여 제1 동형 암호문과 제2 동형 암호문 간의 동형 연산을 수행할 수 있다.
그리고 제2 서버 장치(200)는 수치형 데이터를 암호화한 제1 동형 암호문과 비정형 데이터(예를 들어, 텍스트 데이터)를 암호화한 제2 동형 암호문 간의 동형 연산을 수행할 수 있다. 또한, 제2 서버 장치(200)는 비정형 데이터를 각각 암호화한 제1 동형 암호문과 제2 동형 암호문 간의 동형 연산을 수행할 수도 있다. 이에 대한 예시는 도 3을 참조하여 후술한다.
제1 서버 장치(200)는 연산 결과 암호문을 제2 서버 장치(300)로 전송할 수 있다. 제2 서버 장치(300)는 수신된 연산 결과 암호문을 복호화하여, 각 동형 암호문들에 포함된 데이터들의 연산 결과값을 획득할 수 있다.
제1 서버 장치(200)는 사용자 요청에 따라 연산을 수차례 수행할 수 있다. 이 경우, 매번 연산마다 획득되는 연산 결과 암호문 내의 근사 메시지 비중이 달라진다. 제1 서버 장치(200)는 근사 메시지 비중이 임계치를 초과하면, 재부팅(Bootstrapping) 동작을 수행할 수 있다. 이와 같이 제1 서버 장치(200)는 연산 동작을 수행할 수 있다는 점에서, 연산 장치라 지칭될 수도 있다.
이상과 같이 본 개시에 따른 네트워크 시스템은 일반적인 수치형 데이터에 대한 동형 암호화 및 동형 연산을 수행할 수 있을 뿐만 아니라, 비정형 데이터에 대한 동형 암호화 및 동형 연산을 수행할 수 있다.
한편, 도 1에서는 제1 전자 장치 및 제2 전자 장치에서 암호화를 수행하고, 제2 서버 장치가 복호화를 수행하는 경우를 도시하였으나, 반드시 이에 한정되는 것은 아니다.
도 2는 본 개시의 일 실시 예에 따른 연산 장치의 구성을 나타낸 블록도이다.
구체적으로, 도 1의 시스템에서 제1 전자 장치, 제2 전자 장치 등과 같이 동형 암호화를 수행하는 장치, 제1 서버 장치 등과 같이 동형 암호문을 연산하는 장치, 제2 서버 장치 등과 같이 동형 암호문을 복호화하는 장치 등을 연산 장치라고 지칭할 수 있다. 이러한 연산 장치는 PC(Personal computer), 노트북, 스마트폰, 태블릿, 서버 등 다양한 장치일 수 있다.
도 2를 참조하면, 연산 장치(400)는 통신 장치(410), 메모리(420), 디스플레이(430), 조작 입력 장치(440) 및 프로세서(450)를 포함할 수 있다.
통신 장치(410)는 연산 장치(400)를 외부 장치(미도시)와 연결하기 위해 형성되고, 근거리 통신망(LAN: Local Area Network) 및 인터넷망을 통해 외부 장치에 접속되는 형태뿐만 아니라, USB(Universal Serial Bus) 포트 또는 무선 통신(예를 들어, WiFi 802.11a/b/g/n, NFC, Bluetooth) 포트를 통하여 접속되는 형태도 가능하다. 이러한 통신 장치(410)는 송수신부(transceiver)로 지칭될 수도 있다.
통신 장치(410)는 공개 키를 외부 장치로부터 수신할 수 있으며, 연산 장치(400) 자체적으로 생성한 공개 키를 외부 장치로 전송할 수 있다.
그리고 통신 장치(410)는 외부 장치로부터 메시지를 수신할 수 있으며, 생성한 동형 암호문을 외부 장치로 송신할 수 있다.
또한, 통신 장치(410)는 암호문 생성에 필요한 각종 파라미터를 외부 장치로부터 수신할 수 있다. 한편, 구현시에 각종 파라미터는 후술하는 조작 입력 장치(440)를 통하여 사용자로부터 직접 입력받을 수 있다.
또한, 통신 장치(410)는 외부 장치로부터 동형 암호문에 대한 연산을 요청받을 수 있으며, 그에 따라 계산된 결과를 외부 장치에 전송할 수 있다.
메모리(420)는 연산 장치(400)를 구동하기 위한 O/S나 각종 소프트웨어, 데이터 등을 저장하기 위한 구성요소이다. 메모리(420)는 RAM이나 ROM, 플래시 메모리, HDD, 외장 메모리, 메모리 카드 등과 같은 다양한 형태로 구현될 수 있으며, 어느 하나로 한정되는 것은 아니다.
메모리(420)는 암호화할 메시지를 저장한다. 여기서 메시지는 사용자가 각종 이용하는 각종 신용 정보, 개인 정보 등과 같은 수치형 데이터뿐만 아니라, 텍스트 데이터, 음성 데이터, 이미지 데이터 비정형 데이터일 수 있다. 또한, 연산 장치(400)에서 사용되는 위치 정보, 인터넷 사용 시간 정보 등 사용 이력 등과 관련된 정보일 수도 있다.
여기서, 이미지 데이터는 사용자의 개인 정보를 갖는 이미지(예를 들어, 신분증, 사원증, 명함 이미지)일 수 있다. 그리고 텍스트 데이터는 사용자의 개인 정보(주소, 주민 등록 번호, 전화번호)를 갖는 텍스트 데이터일 수 있다.
그리고 메모리(420)는 공개 키를 저장할 수 있으며, 연산 장치(400)가 직접 공개 키를 생성한 장치인 경우, 비밀 키뿐만 아니라, 공개 키 및 비밀 키 생성에 필요한 각종 파라미터를 저장할 수 있다.
그리고 메모리(420)는 후술한 과정에서 생성된 동형 암호문을 저장할 수 있다. 그리고 메모리(420)는 외부 장치에서 전송한 동형 암호문을 저장할 수도 있다. 또한, 메모리(420)는 후술하는 연산 과정에서의 결과물인 연산 결과 암호문을 저장할 수도 있다.
디스플레이(430)는 연산 장치(400)가 지원하는 기능을 선택받기 위한 사용자 인터페이스 창을 표시한다. 구체적으로, 디스플레이(430)는 연산 장치(400)가 제공하는 각종 기능을 선택받기 위한 사용자 인터페이스 창을 표시할 수 있다. 이러한 디스플레이(430)는 LCD(liquid crystal display), OLED(Organic Light Emitting Diodes) 등과 같은 모니터일 수 있으며, 후술할 조작 입력 장치(440)의 기능을 동시에 수행할 수 있는 터치 스크린으로 구현될 수도 있다.
디스플레이(430)는 비밀 키 및 공개 키 생성에 필요한 파라미터의 입력을 요청하는 메시지를 표시할 수 있다. 그리고 디스플레이(430)는 암호화 대상이 메시지를 선택하는 메시지를 표시할 수 있다. 한편, 구현시에 암호화 대상은 사용자가 직접 선택할 수도 있고, 자동으로 선택될 수 있다. 즉, 암호화가 필요한 개인 정보 등은 사용자가 직접 메시지를 선택하지 않더라도 자동으로 설정될 수 있다.
조작 입력 장치(440)는 사용자로부터 연산 장치(400)의 기능 선택 및 해당 기능에 대한 제어 명령을 입력받을 수 있다. 구체적으로, 조작 입력 장치(440)는 사용자로부터 비밀 키 및 공개 키 생성에 필요한 파라미터를 입력받을 수 있다. 또한, 조작 입력 장치(440)는 사용자로부터 암호화될 메시지를 설정받을 수 있다.
프로세서(450)는 연산 장치(400) 내의 각 구성을 제어한다. 이러한 프로세서(450)는 CPU(central processing unit), ASIC(application-specific integrated circuit)과 같은 단일 장치로 구성될 수 있으며, CPU, GPU(Graphics Processing Unit) 등의 복수의 장치로 구성될 수도 있다.
프로세서(450)는 전송하고자 하는 메시지가 입력되면 메모리(420)에 저장한다. 프로세서(450)는 메모리(420)에 저장된 각종 설정 값 및 프로그램을 이용하여, 메시지를 동형 암호화한다. 이 경우, 공개 키가 사용될 수 있다.
프로세서(450)는 암호화를 수행하는데 필요한 공개 키를 자체적으로 생성하여 사용할 수도 있고, 외부 장치로부터 수신하여 사용할 수도 있다. 일 예로, 복호화를 수행하는 제2 서버 장치(300)가 공개 키를 다른 장치들에게 배포할 수 있다.
자체적으로 키를 생성하는 경우, 프로세서(450)는 Ring-LWE 기법을 이용하여 공개 키를 생성할 수 있다. 구체적으로 설명하면, 프로세서(450)는 먼저 각종 파라미터 및 링을 설정하여, 메모리(420)에 저장할 수 있다. 파라미터의 예로는 평문 메시지 비트의 길이, 공개 키 및 비밀 키의 크기 등이 있을 수 있다.
링은 다음과 같은 수학식으로 표현될 수 있다.
[수학식 2]
여기서 R은 링, Zq는 계수, f(x)는 n차 다항식이다.
링(Ring)이란 기 설정된 계수를 가지는 다항식의 집합으로, 원소들 사이에 덧셈과 곱셈이 정의되어 있으며 덧셈과 곱셈에 대해서 닫혀 있는 집합을 의미한다. 이러한 링은 환으로 지칭될 수 있다.
일 예로, 링은 계수가 Zq인 n차 다항식의 집합을 의미한다. 구체적으로는, n이 Φ(N)일 때, N차 사이클로토믹 다항식 (N-th cyclotomic polynomial)을 의미한다. (f(x))란 f(x)로 생성되는 Zq[x]의 이데알(ideal)을 나타낸다. Euler totient 함수 Φ(N)이란 N과 서로소이고 N보다 작은 자연수의 개수를 의미한다. ΦN(x)를 N차 사이클로토믹 다항식으로 정의하면, 링은 다음과 같은 수학식 3으로도 표현될 수 있다.
[수학식 3]
비밀 키(sk)는 다음과 같이 표현될 수 있다.
한편, 상술한 수학식 3의 링은 평문 공간에서 복소수를 갖는다. 한편, 동형 암호문에 대한 연산 속도를 향상하기 위하여, 상술한 링의 집합 중 평문 공간이 실수인 집합만을 이용할 수도 있다. 또는 후술하는 바와 같이 비정형 데이터의 경우, 비정형 데이터에 대응되는 암호 데이터는 실수에 그 값을 갖고, 비정형 데이터와 관련된 정보(예를 들어, 순서(예를 들어, 단어 순서, 문장 순서, 음성 순서 등)와 관련된 인덱스 정보, 위치와 관련된 인덱스 정보, 비정형 데이터의 속성에 대한 속성 정보)는 허수에 그 값을 갖도록 하는 것도 가능하다.
이와 같은 링이 설정되면, 프로세서(450)는 링으로부터 비밀 키(sk)를 산출할 수 있다.
[수학식 4]
여기서, s(x)는 작은 계수로 랜덤하게 생성한 다항식을 의미한다.
그리고 프로세서(450)는 링으로부터 제1 랜덤 다항식(a(x))을 산출한다. 제1 랜덤 다항식은 다음과 같이 표현될 수 있다.
[수학식 5]
또한, 프로세서(450)는 에러를 산출할 수 있다. 구체적으로, 프로세서(450)는 이산 가우시안 분포 또는 그와 통계적 거리가 가까운 분포로부터 에러를 추출할 수 있다. 이러한 에러는 다음과 같이 표현될 수 있다.
[수학식 6]
에러까지 산출되면, 프로세서(450)는 제1 랜덤 다항식 및 비밀 키에 에러를 모듈러 연산하여 제2 랜덤 다항식을 산출할 수 있다. 제2 랜덤 다항식은 다음과 같이 표현될 수 있다.
[수학식 7]
최종적으로 공개 키(pk)는 제1 랜덤 다항식 및 제2 랜덤 다항식을 포함하는 형태로 다음과 같이 설정된다.
[수학식 8]
상술한 키 생성 방법은 일 예에 불과하므로, 반드시 이에 한정되는 것은 아니며, 이 밖에 다른 방법으로 공개 키 및 비밀 키를 생성할 수도 있음은 물론이다.
한편, 프로세서(450)는 공개 키가 생성되면, 다른 장치들에 전송되도록 통신 장치(410)를 제어할 수 있다.
그리고 프로세서(450)는 메시지에 대한 동형 암호문을 생성할 수 있다. 구체적으로, 프로세서(450)는 메시지에 대해서 앞서 생성된 공개 키를 적용하여 동형 암호문을 생성할 수 있다. 이때, 프로세서(450)는 암호문의 길이를 스케일링 팩터의 크기에 대응되도록 생성할 수 있다.
그리고 프로세서(450)는 동형 암호화를 수행할 데이터의 속성을 확인할 수 있다. 그리고 프로세서(450)는 확인된 데이터 속성에 따라 전처리를 수행하거나, 그에 대응되는 방식으로 동형 암호화를 수행할 수 있다.
예를 들어, 암호화 대상이 텍스트 데이터인 경우, 프로세서(450)는 텍스트 데이터에서 불필요한 기호(예를 들어, 부호, 특수문자) 등을 제거하는 처리를 수행하고, 문장 단위별로 기설정된 인코딩 알고리즘을 이용하여 각 문장별 벡터 값을 산출할 수 있다. 이때, 프로세서(450)는 BERT(Bidirectional Encoder Representations from Transformers) 언어 모델을 이용하여, 문장별 벡터 값을 산출할 수 있다. BERT 언어 모델 및 이를 이용한 벡터 값 산출 동작에 대해서는 도 4를 참조하여 후술한다.
그리고 프로세서(450)는 산출된 벡터 값을 동형 암호화하여 동형 암호문을 생성할 수 있다. 구체적으로, 문장 단위별로 생성된 벡터 값 각각을 동형 암호화하고, 동형 암호화된 벡터 값을 동형 암호문 내에 복수의 슬롯에 넣어 동형 암호문을 생성할 수 있다. 이때, 프로세서(450)는 문장 순서에 대응되게 복수의 슬롯에 순차적으로 동형 암호화된 벡터 값을 넣을 수 있다.
또는 프로세서(450)는 복수의 문장 각각에 대한 순서 인덱스를 생성하고, 생성된 순서 인덱스 대응되는 벡터 값 각각을 하나의 슬롯에 넣을 수 있다. 구체적으로, 동형 암호문은 실수 영역과 허수 영역을 포함하며, 프로세서(450)는 동형 암호문 내의 실수 영역에 상술한 암호화된 벡터 값을 넣고, 허수 영역에 순서 인덱스를 넣을 수 있다. 또한, 반대로 허수 영역에 암호화된 벡터 값을 넣고, 실수 영역에 순서 인덱스를 넣는 것도 가능하다. 이때, 순서 인덱스는 평문 상태로 저장될 수 있으며, 동형 암호화되어 암호화된 상태로도 저장될 수 있다.
한편, 이상에서는 텍스트 데이터를 문장 단위로 구분하고, 문장 단위별 벡터화, 동형 암호화를 수행하는 것으로 설명하였지만, 구현시에는 단어 단위로 동형 암호화를 수행하는 것도 가능하다. 예를 들어, 텍스트 문장을 단어 단위로 구분하고, 각 단어에 대응되는 인덱스 값을 동형 암호화하는 것도 가능하다. 여기서 사용되는 인덱스 값은 사용자가 직접 정의한 인덱스 테이블이 이용될 수 있으며, 특정 사전에서의 해당 단어의 위치(또는 순서)가 이용될 수도 있다.
또한, 채팅 서비스, SNS 서비스 등에 이용되는 텍스트 데이터의 경우, 채팅 순서(또는 사용자별 채널 순서), SNS 표시 순서(시간 순서)로 텍스트를 구분하여, 구분된 텍스트 단위로 동형 암호문을 수행하는 것도 가능하다.
그리고 암호화 대상이 음성 데이터인 경우, 프로세서(450)는 다음의 두 가지 방식 중 하나로 동형 암호화를 수행할 수 있다. 첫째로, 음성 데이터 자체를 동형 암호화하는 방식이다. 구체적으로, 음성 데이터에 대한 주파수 대역별 디지털화된 신호 값을 동형 암호화하는 방식이다. 즉, 음성 데이터를 구성하는 신호 값 자체를 수치값으로 보고 동형 암호화를 수행하는 방식이다.
이 경우, 프로세서(450)는 음성 데이터를 기설정된 시간 단위로 쪼개고, 각 시간 단위별 음성 데이터를 동형 암호화하고, 여러 시간 단위의 암호 데이터를 동형 암호문 내의 복수 슬롯에 넣어 동형 암호문을 생성할 수 있다. 구체적으로, 기설정된 시간 단위로 음성 데이터를 동형 암호화하고, 동형 암호화된 음성 데이터를 복수의 슬롯에 넣어 동형 암호문을 생성할 수 있다. 이때, 프로세서(450)는 시간 순서에 대응되는 복수의 슬롯에 순차적으로 동형 암호화된 음성 데이터를 넣을 수 있다.
또는 프로세서(450)는 각 음성 데이터에 대한 순서 인덱스를 생성하고, 생성된 순서 인덱스에 대응되는 암호화된 음성 데이터를 하나의 슬롯에 넣을 수 있다. 구체적으로, 프로세서(450)는 동형 암호문 내의 실수 영역에 상술한 암호화된 음성 데이터를 넣고, 허수 영역에 순서 인덱스를 넣을 수 있다. 이때, 순서 인덱스는 평문 상태로 저장될 수 있으며, 동형 암호화되어 암호화된 상태로도 저장될 수 있다. 또한, 허수 영역에 암호화된 음성 데이터가 저장되고, 실수 영역에 순서 인덱스가 저장될 수도 있다.
두번째는, 음성 데이터의 컨텐츠를 동형 암호화하는 것으로, 프로세서(450)는 음성 데이터에 대한 음성 인식을 수행하여 텍스트 데이터를 생성하고, 생성된 텍스트 데이터를 동형 암호화할 수 있다. 텍스트 데이터에 대한 동형 암호화 방식은 앞서 설명한 방식으로 동형 암호화를 수행할 수 있다.
그리고 암호화 대상이 이미지인 경우, 프로세서(450)는 이에 대해서도 다음과 같은 두 가지 방식 중 하나로 동형 암호화를 수행할 수 있다. 첫째로, 이미지 데이터 자체를 동형 암호화하는 것으로, 이미지를 구성하는 채널(예를 들어, R/G/B 또는 CMYK 등) 별 데이터 각각을 동형 암호화하는 방식이다.
이때, 프로세서(450)는 이미지 크기에 따라 해당 이미지를 복수의 영역으로 구분하고, 구분된 영역별로 데이터를 동형 암호화할 수도 있다. 예를 들어, 하나의 이미지를 9개의 블록으로 구분한 경우, 각 블록별 동형 암호화를 수행하고, 각 블록을 동형 암호문 내의 각 슬롯에 저장할 수 있다. 이때, 프로세서(450)는 블록 순서에 대응되는 슬롯 순서대로 암호화된 이미지 블록을 저장할 수 있다. 또는 프로세서(450)는 각 블록별로 인덱스를 부여하고, 부여된 인덱스와 해당 인덱스에 대응되는 암호화된 블록 이미지를 하나의 슬롯에 저장할 수 있다. 예를 들어, 암호문 내의 실수 영역에 암호화된 블록 이미지를 저장하고, 허수 영역에 블록 인덱스를 저장할 수 있다.
둘째로, 이미지 데이터 내의 텍스트(정보)를 동형 암호화하는 것으로, 프로세서(450)는 이미지 데이터에 대한 OCR를 수행하고, OCR 결과로 나온 텍스트 데이터를 동형 암호화할 수 있다.
한편, 이미지의 경우 다양한 형태를 가질 수 있는데, 예를 들어, 사진의 경우, 앞서 설명한 바와 같은 첫번째 방식으로 동형 암호화를 수행할 수 있다. 그리고, 텍스트만 존재하는 서류와 같은 이미지에 대해서는 두번째 방식으로 동형 암호화를 수행할 수 있다. 그리고, 사진(또는 그래픽)과 텍스트가 섞여 있는 이미지의 경우, 사진에 대응되는 영역에 대해서는 앞서 설명한 첫번째 방식으로 동형 암호화를 수행하고, 텍스트 영역에 대해서는 상술한 두번째 방식과 같이 OCR을 수행하고, OCR 결과에 대응되는 텍스트를 동형 암호화를 수행할 수 있다.
이 경우, 프로세서(450)는 이미지 내의 포함된 텍스트, 사진 등의 레이아웃에 대한 정보에 대해서도 별도의 암호화를 수행하여, 추후에 복원 과정에서 동일한 형태의 이미지가 재구성될 수 있도록 할 수 있다. 예를 들어, 프로세서(450)는 각 슬롯에 저장되는 데이터의 이미지 상의 영역(즉, 배치 위치), 속성에 대한 속성 정보를 암호화된 데이터를 저장할 수 있다.
예시로, 하나의 이미지에 A 이미지, B 텍스트가 배치되어 있는 경우, 프로세서(450)는 앞서 설명한 바와 같이 각 컨텐츠 속성에 대응되는 방식으로 암호화를 수행하고, 제1 슬롯에 암호화된 A 이미지를 실수 영역에, A 이미지가 이미지라는 속성 정보와 배치 위치에 대한 정보를 허수 영역에 넣고, 제2 슬롯에 B 텍스트에 대한 벡터 값(또는 해당 텍스트를 구성하는 ASCII 값)의 동형 암호화 결과를 실수 영역에 B 텍스트가 텍스트라는 정보 및 배치 위치에 대한 정보를 허수 영역에 넣을 수 있다. 예시로, 하나의 컨텐츠가 동형 암호문 내의 하나의 슬롯에 위치하는 것으로 설명하였지만, 구현시에 하나의 컨텐츠가 복수의 슬롯을 차지할 수도 있다. 예를 들어, 제1 슬롯에, 이미지의 A블록에 대한 암호화된 데이터, 제2 슬롯에 이미지의 B블록에 대한 암호화된 데이터 등과 같다.
이와 같이 이미지에 대해서는 다양한 방식의 암호화가 가능한데, 프로세서(450)는 이미지에 대한 동형 암호화를 수행하기 전에, 사용자로부터 암호화 방식을 선택받아 진행하거나, 이미지 분석을 통하여 암호화 방식을 선행적으로 결정하고, 결정한 방식에 대응되는 처리를 수행할 수 있다.
이상에서는 텍스트 데이터, 음성 데이터, 이미지 데이터와 같은 3가지 비정형 데이터에 대한 동형 암호화 방식에 대해서 설명하였지만, 상술한 예시 이외에 다양한 비정형 데이터를 동형 암호화하는 것이 가능하다.
그리고 프로세서(450)는 동형 암호문이 생성되면 메모리(420)에 저장하거나, 사용자 요청 또는 기 설정된 디폴트 명령에 따라 동형 암호문을 다른 장치에 전송하도록 통신 장치(410)를 제어할 수 있다.
한편, 본 개시의 일 실시 예에 따르면, 패킹(packing)이 이루어질 수도 있다. 동형 암호화에서 패킹을 이용하게 되면, 다수의 메시지를 하나의 암호문으로 암호화하는 것이 가능해진다. 이때, 하나의 암호문은 복수의 슬롯을 갖는다고 표현할 수 있으며, 상술한 각 슬롯에 하나의 비정형 데이터에 대한 암호문이 저장될 수 있다. 예를 들어, 복수의 문장으로 구성된 텍스트 데이터에 대한 동형 암호문을 생성하는 경우, 각 문장 별로 대응되는 벡터 값을 산출하고, 산출된 벡터 값에 대한 동형 암호 데이터를 각 슬롯에 넣어 동형 암호문을 생성할 수 있다. 이 경우, 연산 장치(400)에서 각 암호문들 간의 연산을 수행하게 되면, 결과적으로 다수의 메시지에 대한 연산이 병렬적으로 처리되므로 연산 부담이 많이 줄어들게 된다.
구체적으로는, 프로세서(450)는 메시지가 복수의 메시지 벡터로 이루어지는 경우, 복수의 메시지 벡터를 병렬적으로 암호화할 수 있는 형태의 다항식으로 변환한 후, 그 다항식에 스케일링 팩터를 승산하고 공개 키를 이용하여 동형 암호화할 수도 있다. 이에 따라, 복수의 메시지 벡터를 패킹한 암호문을 생성할 수 있다.
그리고 프로세서(450)는 동형 암호문에 대한 복호화가 필요한 경우, 동형 암호문에 비밀 키를 적용하여 다항식 형태의 복호문을 생성하고, 다항식 형태의 복호문을 디코딩하여 메시지를 생성할 수 있다. 이때 생성한 메시지는 앞서 설명한 수학식 1에서 언급한 바와 같이 에러를 포함할 수 있다.
그리고 프로세서(450)는 암호문에 대한 연산을 수행할 수 있다. 구체적으로, 프로세서(450)는 동형 암호문에 대해서 암호화된 상태를 유지한 상태에서 덧셈 또는 곱셈 등의 연산을 수행할 수 있다. 또한, 프로세서(450)는 상술한 바와 같은 사칙 연산 뿐만 아니라 다양한 통계 연산도 수행할 수 있다.
한편, 연산 장치(400)는 연산이 완료되면, 연산 결과 데이터로부터 유효 영역의 데이터를 검출할 수 있다. 구체적으로, 연산 장치(400)는 연산 결과 데이터를 라운딩 처리를 수행하여 유효 영역의 데이터를 검출할 수 있다. 라운딩 처리란 암호화된 상태에서 메시지의 반올림(round-off)을 진행하는 것을 의미하며, 다르게는 리스케일링(rescaling)이라고 할 수도 있다. 구체적으로는, 연산 장치(400)는 암호문 각각의 성분에 스케일링 인수의 역수인 Δ-1을 곱하고 반올림하여, 노이즈 영역을 제거한다. 노이즈 영역은 스케일링 팩터의 크기에 대응되도록 결정될 수 있다. 결과적으로 노이즈 영역이 제외된 유효 영역의 메시지를 검출할 수 있다. 암호화 상태에서 진행되므로 추가적인 에러가 발생하지만 크기는 충분히 작으므로 무시할 수 있다.
이상과 같이 본 개시의 일 실시 예에 따른 연산 장치(400)는 일반적인 수치형 데이터에 대한 동형 암호화 및 동형 연산을 수행할 수 있을 뿐만 아니라, 비정형 데이터에 대한 동형 암호화 및 동형 연산을 수행할 수 있다.
도 3은 동형 암호문에 대한 연산 동작을 설명하기 위한 도면이다. 구체적으로, 도 3에서는 두 개의 동형 암호문(10, 20)에 대한 연산을 나타낸다.
각 동형 암호문(10, 20)은 근사 메시지 영역(11, 21)을 각각 포함할 수 있다. 근사 메시지 영역(11, 21)에는 메시지 및 에러(m1+e1, m2+e2)가 함께 들어가 있다.
예를 들어, 두 동형 암호문이 수치형 데이터를 암호화한 경우, 두 동형 암호문의 동형 연산 결과(Enc(m3) = Enc(m1) + Enc(m2))는 평문 상의 연산 결과(Enc(m1+m2))를 동형 암호화한 것과 같다.
이하에서는 일반적인 수치형 데이터가 아닌 비정형 데이터에 대한 연산 방식을 설명한다.
예시로, "AAA"라는 이름을 갖는 사람들의 거주 지역의 분포를 통계학 적으로 분석하는 것을 가정한다. 거주 지역은 서울 1, 부산2, 등과 같이 거주 지역에 대응되는 특정 값으로 수치화하여 저장하는 것이 가능하나, 이름의 경우 수치화하여 저장하는 것이 어렵다. 따라서, 이름은 텍스트 그 자체로 저장되고, 거주 지역은 해당 지역에 대응되는 수치 값으로 저장되었다고 가정한다.
이러한 경우, 제1 데이터(100)는 복수의 사용자에 대한 암호화된 이름, 거주 지역에 대한 인덱스 값이 동형 암호화되어 저장할 수 있다. 이러한 경우, 제1 이름 및 제1 거주 지역을 갖는 데이터가 얼마나 되는지를 찾기 위하여, 복수의 슬롯에 암호화된 제1 이름, 암호화된 제1 거주지역에 대한 인덱스를 갖는 마스크 암호문(20)이 이용될수 있다.
그리고, 두 동형 암호문 간의 근사 비교를 수행하여, 특정 이름(AAA), 특정 지역(1)을 갖는 사용자의 개수 정보만을 갖는 암호문(30)을 생성할 수 있다. 여기서, 근사 비교는 동일한 값을 갖는 결과에 대해서는 암호화된 1의 값을 산출하고, 다른 값을 갖는 결과에 대해서는 암호화된 0의 값을 산출하는 비교일 수 있다. 따라서, 결과로 나온 동형 암호문(30)은 암호화된 1, 0의 값만을 가질 수 있다. 필요한 경우, 해당 데이터를 이용하여 다른 다양한 동형 연산을 수행하여 필요한 다른 정보를 획득하는 것이 가능하다. 그리고, 결과로 나온 동형 암호문은 사용자의 정보 등을 포함하지 않고, 필터에 대응되는 정보에 대응되는 데이터가 존재하는지만을 나타내기 때문에 개인 정보가 누출될 여지가 없다. 또한, 그 결과 데이터 자체도 동형 암호문 상태이기 때문에, 해당 결과 데이터가 누출되더라도 해당 암호문에 대한 비밀 키를 알지 못하여 그 결과를 알지 못한다는 점에서, 개인 정보의 처리 과정에서의 보안성이 높다.
다른 예시로, 비정형 데이터로서 이미지 데이터가 이용되는 경우를 설명한다. 최근에 개인 확인을 이용하여, 신분증을 촬영하여 기관 등에 제출되는 경우가 있다. 그런데, 신분증에는 다양한 개인 정보가 포함되어 있기 때문에, 촬영된 이미지가 노출되는 경우, 큰 피해가 발생될 수 있다.
그러나, 본 개시에 따라 신분증 이미지를 동형 암호화하여 저장한 경우, 해당 데이터가 노출되더라도 비밀 키를 없이는 개인 정보를 확인하는 것이 불가능하다.
한편, 이와 같이 기관에 제출된 이미지가 동형 암호문이 되는 경우, 기관에서는 해당 암호문이 정당한 이미지인지를 확인할 수 없게 된다. 이를 확인하기 위해서, 동형 암호문을 복호화하여 처리할 수 있으나, 본 개시의 방식을 이용하면 복호화 없이 제출된 동형 암호문이 정당한 신분증에 대한 이미지인지를 검증할 수 있다.
예를 들어, 신분증의 경우, 해당 신분증을 발행한 기관 및 해당 기관에 대한 이미지가 포함되어 있다. 따라서, 앞선 방식으로 신분증 이미지를 동형 암호화하는 경우, 사진에 대응되는 영역, 신분증을 발행한 기관에 대한 텍스트 정보, 해당 기관에 대한 이미지 각각이 각 속성에 맞게 암호화되어 동형 암호문의 각 슬롯에 저장되어 있을 수 있다.
따라서, 해당 신분증에 대한 검증을 수행하는 기관에서는, 제출된 신분증의 종류에 대응되는 텍스트(신분증을 발행한 기관) 및/또는 해당 기관의 이미지 각각에 대한 동형 암호문을 생성하고(상술한 바와 같은 제2 동형 암호문을 생성), 제출된 제1 동형 암호문과 제2 동형 암호문 간의 근사 비교 동작을 수행할 수 있다. 연산 결과 암호문은 제1 동형 암호문에 기관에 대응되는 텍스트, 기관 이미지 중 적어도 하나가 포함되어 있는 경우, 암호화된 1의 값을 갖는 연산 결과 암호문(300이 생성될 수 있다.
이 경우, 해당 연산 결과 암호문을 복호화하여 1의 값이 포함되어 있는지를 확인함으로써, 정당한 신분증을 제출한 것인지를 확인하거나, 다른 동형 연산과정에 해당 결과를 필터 값을 넣어, 정당한 신분증 결과가 있는 경우에만 정상 결과가 나오도록 할 수 있다.
한편, 상술한 바와 같은 연산 동작은 하나의 예시에 불가하며, 다양한 동형 연산 방식들을 조합하여 상술한 예시 이외에 다른 방식으로 상술한 목적을 달성할 수 있다. 또한, 비정형 데이터는 다양한 분야에 이용될 수 있은바, 상술한 예시 이외에 개인 정보 보호가 필요한 경우에도 적용될 수 있다.
도 4는 본 개시의 비정형 데이터에 대한 수치형 데이터로의 변환 동작을 설명하기 위한 도면이다.
도 4를 참조하면, 텍스트 데이터를 수치형 데이터로 변환하는 BERT 언어 모델을 도시한다.
BERT 모델은 입력받은 문자열 데이터를 수치형 데이터로 임베딩 변환하는 모델이다. 이 모델은 하나의 텍스트 문장이 길이가 768인 벡터 하나 또는 768x 토큰 개수의 어레이로 변환한다. 여기서 생성하는 수치형 데이터는 [-1, 1] 사이의 부동 소수점 형식의 32비트 실수일 수 있다. 이 모델은 하나의 문장을 구성하는 복수의 단어 각각에 대응되는 단어 인덱스(수치값)를 확인하고, 해당 복수의 단어 인덱스 값을 해당 모델의 입력 값으로 하고, 그에 대한 결과로서 상술한 바와 같은 벡터 값을 산출한다.
이와 같이 BERT는 숫자로만 이루어진 벡터 값을 산출함에도 불구하고, 해당 벡터 값을 기초로 원문의 텍스트를 복구할 수 있다. 이와 같은 점을 반영하여, 본 개시에서는 텍스트 데이터를 문장으로 구분하고, 구분된 문장 별로 상술한 벡터 값을 암호화하여 문자열 데이터에 대한 동형 암호화를 수행한다.
한편, 이상에서는 문자열 단위로 동형 암호화를 수행하는 것으로 설명하였지만, BERT 모델의 입력이 되는 단어 인덱스 단위로 동형 암호화를 수행하는 것도 가능하다.
예시로, "I like korea"라는 문장을 동형 암호화한다고 하면, "I like korea"에 대한 BERT 모델의 출력 벡터 값을 동형 암호화는 방식이 가능하다. 또는 "I"에 대응되는 단어 인덱스 값, like에 대응되는 단어 인덱스 값, " korea"에 대응되는 단어 인덱스 값 각각을 동형 암호화하는 것도 가능하다.
이와 같이 텍스트를 문장 단위로 동형 암호화한 경우, 다음과 같이 해당 동형 암호문을 활용하는것이 가능하다.
복수의 텍스트를 이용하여 텍스트의 감성을 분석하는 딥러닝 모델이 개발되고 있다. 해당 딥러닝 모델을 학습 또는 이용하기 위해서는 다양한 텍스트 데이터가 요구되는데, 이러한 텍스트 데이터에서는 이름, 주소 개인적인 사생활 내용 등 개인 정보가 포함되어 있을 수 있다. 따라서, 텍스트 데이터를 암호화하지 않고, 이용하는 경우, 개인 정보 노출이 발생할 수 있으나, 본 개시에 따라 텍스트 데이터를 동형 암호화하고, 동형 암호화된 암호문을 대상으로 학습 데이터로써 사용하게 되는 경우, 개인 정보 노출 없이도 다양한 딥러닝 모델을 학습 시키는 것이 가능하다.
도 5는 본 개시의 일 실시 예에 따른 암호문 처리 방법을 설명하기 위한 흐름도이다.
도 5를 참조하면, 먼저, 문자형 데이터를 문장 단위로 구분한다(S510). 한편, 암호화의 대상이되는 데이터가 음성 데이터인 경우, 선행적으로 음성 데이터를 음성 인식 모델을 이용하여 문자형 데이터로 변환을 수행할 수 있다.
그리고, 문장 단위별로 기설정된 인코딩 알고리즘을 이용하여 하나의 문장에 대한 기설정된 크기를 갖는 벡터 값을 산출한다(S520). 여기서, 기설정된 크기의 벡터 값은 [-1, 1] 크기 내의 32비트의 실수 값을 가질 수 있으며, 기설정된 인코딩 알고리즘은 BERT(Bidirectional Encoder Representations from Transformers) 언어 모델일 수 있다.
그리고, 산출된 벡터 값을 동형 암호화하여 동형 암호문을 생성한다(S530). 구체적으로, 문장 단위별로 생성된 벡터 값 각각을 동형 암호화하고, 동형 암호화된 벡터 값 각각을 동형 암호문 내의 복수의 슬롯에 순차적으로 넣어 동형 암호문을 생성할 수 있다.
또는 문자형 데이터내의 복수의 문장 각각에 대한 순서 인덱스를 생성하고, 생성된 순서 인덱스를 암호화하고, 복수의 문장 각각에 대해서 암호화된 순서 인덱스와 암호화된 순서 인덱스에 대응되는 암호화된 벡터 값을 동형 암호문 내의 복수의 슬롯 중 하나에 넣어 동형 암호문을 생성할 수도 있다. 이 경우, 동형 암호문의 실수 영역에 암호화된 수치형 데이터를 위치시키고, 동형 암호문의 허수 영역에 암호화된 순서 인덱스를 위치시켜 동형 암호문을 생성할 수도 있다.
이와 같이 본 개시에 따른 본 개시에 따른 암호문 처리 방법은 수치형 데이터 뿐만 아니라, 텍스트 데이터, 이미지 데이터, 음성 데이터 등 다양한 비정형 데이터에 대해서도 동형 암호문을 생성하는 것이 가능하다.
한편, 상술한 다양한 실시 예에 따른 암호문 처리 방법은 각 단계들을 수행하기 위한 프로그램 코드 형태로 구현되어, 기록 매체에 저장되고 배포될 수도 있다. 이 경우, 기록 매체가 탑재된 장치는 상술한 암호화 또는 암호문 처리 등의 동작들을 수행할 수 있다.
이러한 기록 매체는, ROM, RAM, 메모리 칩, 메모리 카드, 외장형 하드, 하드, CD, DVD, 자기 디스크 또는 자기 테이프 등과 같은 다양한 유형의 컴퓨터 판독 가능 매체가 될 수 있다.
이상 첨부 도면을 참고하여 본 개시에 대해서 설명하였지만 본 개시의 권리범위는 후술하는 특허청구범위에 의해 결정되며 전술한 실시 예 및/또는 도면에 제한되는 것으로 해석되어서는 안 된다. 그리고 특허청구범위에 기재된 개시의, 당업자에게 자명한 개량, 변경 및 수정도 본 개시의 권리범위에 포함된다는 점이 명백하게 이해되어야 한다
100: 전자 장치
200: 제1 서버 장치
300: 제2 서버 장치 400: 연산 장치
410: 통신 장치 420: 메모리
430: 디스플레이 440: 조작 입력 장치
450: 프로세서
300: 제2 서버 장치 400: 연산 장치
410: 통신 장치 420: 메모리
430: 디스플레이 440: 조작 입력 장치
450: 프로세서
Claims (13)
- 연산 장치에서의 암호문 처리 방법에 있어서,
문자형 데이터를 문장 단위로 구분하는 단계;
상기 문장 단위별로 기설정된 인코딩 알고리즘을 이용하여 하나의 문장에 대한 기설정된 크기를 갖는 벡터 값을 산출하는 단계; 및
상기 산출된 벡터 값을 동형 암호화하여 동형 암호문을 생성하는 단계;를 포함하는 암호문 처리 방법. - 제1항에 있어서,
상기 동형 암호문을 생성하는 단계는,
문장 단위별로 생성된 벡터 값 각각을 동형 암호화하고, 동형 암호화된 벡터 값 각각을 상기 동형 암호문 내의 복수의 슬롯에 순차적으로 넣어 동형 암호문을 생성하는 암호문 처리 방법. - 제1항에 있어서,
상기 동형 암호문을 생성하는 단계는,
상기 문자형 데이터내의 복수의 문장 각각에 대한 순서 인덱스를 생성하고, 상기 생성된 순서 인덱스를 암호화하고, 상기 복수의 문장 각각에 대해서 상기 암호화된 순서 인덱스와 상기 암호화된 순서 인덱스에 대응되는 암호화된 벡터 값을 상기 동형 암호문 내의 복수의 슬롯 중 하나에 넣어 동형 암호문을 생성하는 암호문 처리 방법. - 제3항에 있어서,
상기 동형 암호문을 생성하는 단계는,
상기 동형 암호문의 실수 영역에 상기 암호화된 수치형 데이터를 위치시키고, 상기 동형 암호문의 허수 영역에 상기 암호화된 순서 인덱스를 위치시켜 동형 암호문을 생성하는 암호문 처리 방법. - 제1항에 있어서,
상기 기설정된 크기의 벡터 값은,
[-1, 1] 크기 내의 32비트의 실수 값을 갖는 암호문 처리 방법. - 제1항에 있어서,
음성 데이터를 문자형 데이터로 변환하는 단계;를 더 포함하고,
상기 문자형 데이터를 문장 단위로 구분하는 단계는,
상기 변환된 문자형 데이터에 대해서 문자 단위로 구분하는 암호문 처리 방법. - 제1항에 있어서,
상기 문자형 데이터는 문자 메시지, 채팅 메시지 중 적어도 하나인 암호문 처리 방법. - 제4항에 있어서,
상기 기설정된 인코딩 알고리즘은 BERT(Bidirectional Encoder Representations from Transformers) 언어 모델인 암호문 처리 방법. - 문자형 데이터를 저장하는 메모리; 및
상기 문자형 데이터에 대한 동형 암호문을 생성하는 프로세서;를 포함하며,
상기 프로세서는,
문자형 데이터를 문장 단위로 구분하고, 상기 문장 단위별로 기설정된 인코딩 알고리즘을 이용하여 하나의 문장에 대한 기설정된 크기를 갖는 벡터 값을 산출하고, 상기 산출된 벡터 값을 동형 암호화하여 동형 암호문을 생성하는 연산 장치. - 제9항에 있어서,
상기 프로세서는,
문장 단위별로 생성된 벡터 값 각각을 동형 암호화하고, 동형 암호화된 벡터 값 각각을 상기 동형 암호문 내의 복수의 슬롯에 순차적으로 넣어 동형 암호문을 생성하는 연산 장치. - 제9항에 있어서,
상기 프로세서는,
상기 문자형 데이터내의 복수의 문장 각각에 대한 순서 인덱스를 생성하고, 상기 생성된 순서 인덱스를 암호화하고, 상기 복수의 문장 각각에 대해서 상기 암호화된 순서 인덱스와 상기 암호화된 순서 인덱스에 대응되는 암호화된 벡터 값을 상기 동형 암호문 내의 복수의 슬롯 중 하나에 넣어 동형 암호문을 생성하는 연산 장치. - 제11항에 있어서,
상기 프로세서는,
상기 동형 암호문의 실수 영역에 상기 암호화된 수치형 데이터를 위치시키고, 상기 동형 암호문의 허수 영역에 상기 암호화된 순서 인덱스를 위치시켜 동형 암호문을 생성하는 연산 장치. - 제9항에 있어서,
상기 프로세서는,
음성 데이터가 입력되면, 상기 입력된 음성 데이터를 문자형 데이터로 변환하여 상기 메모리에 저장하는 연산 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/358,315 US20240039696A1 (en) | 2021-11-01 | 2023-07-25 | Apparatus and method for homomorphic encryption of text data |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210148316 | 2021-11-01 | ||
KR20210148316 | 2021-11-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230063302A true KR20230063302A (ko) | 2023-05-09 |
Family
ID=86409178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220092724A KR20230063302A (ko) | 2021-11-01 | 2022-07-26 | 문자열 데이터를 동형 암호화하는 장치 및 방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20240039696A1 (ko) |
KR (1) | KR20230063302A (ko) |
-
2022
- 2022-07-26 KR KR1020220092724A patent/KR20230063302A/ko unknown
-
2023
- 2023-07-25 US US18/358,315 patent/US20240039696A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20240039696A1 (en) | 2024-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3553995B1 (en) | Terminal device for performing homomorphic encryption, server device for processing cipher text thereof, and methods therefor | |
JP6964688B2 (ja) | 暗号文に対する近似演算を行う装置及び方法 | |
KR102040106B1 (ko) | 실수 평문에 대한 동형 암호화 방법 | |
KR101965628B1 (ko) | 동형 암호화를 수행하는 단말 장치와 그 암호문을 처리하는 서버 장치 및 그 방법들 | |
US8345876B1 (en) | Encryption/decryption system and method | |
CN107733656A (zh) | 一种密码认证方法及装置 | |
KR102297536B1 (ko) | 암호문에 대한 비다항식 연산을 수행하는 장치 및 방법 | |
US20210279341A1 (en) | Cryptographic security system, method, and program product using data partitioning | |
KR20220121221A (ko) | 동형 암호문의 변환 장치 및 방법 | |
JP7170878B2 (ja) | 暗号文に対する非多項式演算を行う装置及び方法 | |
US20240097878A1 (en) | Apparatus for privacy preserving text search using homomorphic encryption and method thereof | |
KR102522708B1 (ko) | 동형 암호문에 대한 통계 연산 수행하는 장치 및 방법 | |
US20240039696A1 (en) | Apparatus and method for homomorphic encryption of text data | |
EP4072062A1 (en) | Apparatus for processing non-polynomial operation on homomorphic encrypted messages and methods thereof | |
Ramadhan et al. | Data security using low bit encoding algorithm and rsa algorithm | |
KR102452181B1 (ko) | 근사 암호화된 암호문에 대한 정렬 장치 및 방법 | |
KR102062377B1 (ko) | 전자서명을 은닉서명으로 변환하는 암호화 방법 | |
Vasilakis et al. | Copyright Protection on Electronic Books: Study and Design of a New Approach | |
KR20240035315A (ko) | 동형 암호를 이용한 프라이버시 보존 텍스트 검색 장치 및 방법 | |
KR102393941B1 (ko) | 근사 암호화된 암호문에 대한 인코딩 또는 디코딩 | |
KR102466016B1 (ko) | 동형 암호문을 처리하는 서버 장치 및 그 방법 | |
US20240039695A1 (en) | Electronic apparatus for generating homomorphic encrypted message and method therefor | |
US20230421352A1 (en) | Apparatus for processing homomorphic encrypted messages and method thereof | |
US20240127656A1 (en) | Method for generating homomorphic encrypted message including vote analysis data and electronic apparatus therefor | |
US20240305464A1 (en) | Server and method for identifying target user thereof |