KR20230060949A - Hydrogen sensor based on porous materials - Google Patents

Hydrogen sensor based on porous materials Download PDF

Info

Publication number
KR20230060949A
KR20230060949A KR1020210145705A KR20210145705A KR20230060949A KR 20230060949 A KR20230060949 A KR 20230060949A KR 1020210145705 A KR1020210145705 A KR 1020210145705A KR 20210145705 A KR20210145705 A KR 20210145705A KR 20230060949 A KR20230060949 A KR 20230060949A
Authority
KR
South Korea
Prior art keywords
hydrogen
porous
sensor based
discoloration
zeolite
Prior art date
Application number
KR1020210145705A
Other languages
Korean (ko)
Inventor
이희주
김성준
Original Assignee
주식회사 패리티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 패리티 filed Critical 주식회사 패리티
Priority to KR1020210145705A priority Critical patent/KR20230060949A/en
Publication of KR20230060949A publication Critical patent/KR20230060949A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

The present invention relates to a hydrogen detection sensor based on a porous support body such as zeolite and a metal-organic framework (MOF). According to the present invention, the hydrogen detection sensor has excellent discoloration speed by using a porous substance as a support body, has a polymer film form, and has excellent elasticity to be deformed in various shapes according to a use environment and a purpose, so that it is predicted that a value of use in a hydrogen industry is enormous.

Description

다공성 지지체를 기반으로 한 수소감지센서{Hydrogen sensor based on porous materials}Hydrogen sensor based on porous materials}

본 발명은 제올라이트, 금속-유기 구조체(MOF) 등과 같은 다공성 지지체를 기반으로 한 수소감지센서에 관한 것이다.The present invention relates to a hydrogen sensor based on a porous support such as zeolite, metal-organic structure (MOF), and the like.

수소의 특성은 공기 중에서 수소 가스의 농도가 4 ~ 75% 혼합된 상태에서 20μJ 이상의 스파크나 표면온도가 135 ℃ 이상인 물체를 만나면 발화되어 폭발하는 것으로 알려졌다.It is known that the characteristics of hydrogen are ignited and exploded when it meets a spark of 20 μJ or more or an object with a surface temperature of 135 ℃ or more in a mixture of 4 to 75% hydrogen gas concentration in the air.

무취 무색인 수소의 기존 누출 검사 방식은 전기 화학식, 전기 저항식 및 열전도성 등 원리를 이용하여 수소 가스를 검출하는 장비들을 이용하고 있지만, 대부분 크기가 크고, 제한적이며 과도한 전력 소모를 요구할 뿐만 아니라 검출 동작 자체가 폭발 가능성이 있는 환경하에서 이루어지고 있다.Existing leak detection methods for odorless and colorless hydrogen use equipment that detects hydrogen gas using principles such as electrical chemical, electrical resistance, and thermal conductivity, but most of them are large in size, limited, and require excessive power consumption, as well as detection The operation itself is being carried out under a potentially explosive environment.

또한, 기존의 가스 누출 센서들은 소량의 누출 발생시 감지는 가능하나 복잡한 배관 설비 중 정확하게 어디에서 어떤 원인에 의해 누출이 일어나는지 정확한 위치 및 원인을 파악하기 어려운 경우가 많아 신속한 감지 및 대응이 이루어지지 못하고 있다.In addition, existing gas leak sensors are capable of detecting a small amount of leak, but it is often difficult to accurately detect and respond to the exact location and cause of where and by what cause the leak occurs among complex piping facilities. .

수소 센서가 실용적으로 보급되고 이용되려면, 수소에 대한 고감도 검지 성능을 가지고 수소 이외의 가스, 수증기, 온도 등에 영향을 받지 않아야 하며, 장수성, 높은 정확성, 대량생산, 작은 크기, 낮은 소모 전력, 저렴한 가격 등이 요구된다.For hydrogen sensors to be practically spread and used, they must have high sensitivity detection performance for hydrogen, be unaffected by gases other than hydrogen, water vapor, temperature, etc., have longevity, high accuracy, mass production, small size, low power consumption, and low cost. price, etc.

전기 화학식 센서는 외부 환경에 매우 민감하여 수명이 매우 낮고, 열 전도식 센서는 낮은 비용과 넓은 측정 범위를 지니고 있다는 장점이 있지만 저농도의 수소를 측정하는데 어려움이 있고 선택성과 안정성이 떨어진다. 또한 금속 저항성을 이용한 센서는 선택성이 좋고 반응성이 매우 좋아 반응속도가 빠른 장점이 있으나 높은 농도의 수소 기체를 측정하는데 어려움이 존재한다.The electrochemical sensor is very sensitive to the external environment and has a very short lifespan, and the thermal conductivity sensor has the advantage of low cost and wide measurement range, but has difficulty in measuring low concentration hydrogen and has poor selectivity and stability. In addition, the sensor using metal resistance has good selectivity and very good reactivity, so it has the advantage of fast reaction rate, but there is difficulty in measuring high concentration hydrogen gas.

이 외에도 여러 수소 센서 물질들이 있으나 모든 조건을 만족하는 센서 물질이 없어 아직까지 연구가 계속 진행 중이다. 수소와 반응하여 변색이 되는 금속을 이용한 수소 센서는 빠른 반응속도와 우수한 선택성을 보이고 수소 농도에 의존하지 않으며 전기식 센서에 비해 오작동이 낮고 외부 환경에 대해 제약이 거의 없어 안정적이다.In addition to this, there are various hydrogen sensor materials, but there is no sensor material that satisfies all conditions, so research is still ongoing. A hydrogen sensor using a metal that reacts with hydrogen to change color shows a fast response rate and excellent selectivity, does not depend on hydrogen concentration, has less malfunction compared to an electric sensor, and is stable because there are few restrictions on the external environment.

본 발명의 과제는 공기 중의 수분에 의한 환원에 취약한 수소 변색 안료를 보호할 수 있도록 코팅층이 형성되고, 비표면적이 크고, 기공을 통한 이온이나 전자의 확산이 빠른 다공성 물질을 지지체로 하여 수소 누출 감지를 빠르게 발견할 수 있는 수소 감지 센서를 제공하는 것이다.The object of the present invention is to form a coating layer to protect hydrogen discoloration pigments that are vulnerable to reduction by moisture in the air, to detect hydrogen leakage by using a porous material with a large specific surface area and rapid diffusion of ions or electrons through pores as a support It is to provide a hydrogen detection sensor that can quickly detect.

상기한 과제를 달성하기 위해 본 발명은 In order to achieve the above object, the present invention

다공성 지지체 표면에 부분적으로 부착된 백금족 금속 산화물을 포함하는 수소 변색 안료 코어와,A hydrogen tarnish pigment core comprising a platinum group metal oxide partially adhered to the surface of the porous support;

상기 수소 변색 안료 코어가 분산된 고분자 필름을 포함하는, 다공성 물질을 기반으로 한 수소감지센서를 제공한다. A hydrogen sensor based on a porous material including a polymer film in which the hydrogen discoloration pigment core is dispersed is provided.

본 발명에 따른 수소 감지 센서는 다공성 물질을 지지체로 하여 변색 속도가 뛰어나고, 고분자 필름 형태로, 신축성이 우수하여 사용 환경 및 목적에 맞게 다양한 형태로 변형할 수 있어 수소산업에서의 활용가치가 방대할 것으로 예상된다. The hydrogen detection sensor according to the present invention has excellent discoloration rate by using a porous material as a support, is in the form of a polymer film, and has excellent elasticity, so that it can be transformed into various shapes according to the use environment and purpose, so the value of utilization in the hydrogen industry is enormous. It is expected.

도 1은 다공성 지지체 표면에 부분적으로 부착된 백금족 금속 산화물을 포함하는 수소 변색 안료 코어를 나타낸 모식도이다.
도 2는 폴리머를 이용한 수소 변색 필름의 제조 과정을 나타낸 모식도이다.
도 3은 실시예 1에서 제조된 수소 감지 센서의 안정성을 평가하기 위해 30일 동안 물에 보관한 후 그 외관을 관찰한 결과를 나타낸 사진이다.
도 4는 실시예 1에서 제조한 PdO/제올라이트, PdO/MOF 수소 변색 안료의 분멀 X선 회절 분석 결과를 나타낸 것이다.
도 5는 실시예 1에서 제조한 PdO/제올라이트, PdO/MOF 수소 변색 안료의 분멀 라만 분광법 분석 결과를 나타낸 것이다.
도 6은 실험예 3에서 수소 감지 센서의 수소 감지능을 확인하기 위해 사용한
실험 장비를 나타낸 모식도이다.
도 7은 본 발명의 수소 감지 센서의 수소 가스 노출 시간에 따른 색채 변화 값을 나타낸 그래프이다.
1 is a schematic diagram showing a hydrogen-chromic pigment core comprising a platinum group metal oxide partially adhered to the surface of a porous support.
2 is a schematic diagram showing a manufacturing process of a hydrogen discoloration film using a polymer.
3 is a photograph showing the result of observing the appearance of the hydrogen sensor manufactured in Example 1 after storing it in water for 30 days to evaluate the stability.
4 shows the results of powder X-ray diffraction analysis of the PdO/zeolite and PdO/MOF hydrogen discoloring pigments prepared in Example 1.
5 shows the results of powder Raman spectroscopy analysis of the PdO/zeolite and PdO/MOF hydrogen discoloring pigments prepared in Example 1.
6 is used to confirm the hydrogen sensing ability of the hydrogen sensor in Experimental Example 3
It is a schematic diagram showing the experimental equipment.
7 is a graph showing color change values according to the hydrogen gas exposure time of the hydrogen sensor of the present invention.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 다공성 지지체를 기반으로 한 수소감지센서는, 다공성 지지체 표면에 부분적으로 부착된 백금족 금속 산화물을 포함하는 수소 변색 안료 코어와, 상기 수소 변색 안료 코어가 분산된 고분자 필름을 포함한다. The hydrogen sensor based on the porous support of the present invention includes a hydrogen-chromic pigment core containing a platinum group metal oxide partially attached to the surface of the porous support, and a polymer film in which the hydrogen-chromatic pigment core is dispersed.

상기 다공성 지지체는 제올라이트, 금속-유기 구조체(MOF), 탄소체, 그라파이트, 그래핀, 탄소나노튜브, 다공성 실리카, 다공성 고분자, 클레이 및 다공성 티타니아 등이 사용될 수 있으며, 바람직한 일 실시예에 의하면 제올라이트, 금속-유기 구조체(MOF)일 수 있다. The porous support may be zeolite, metal-organic structure (MOF), carbon body, graphite, graphene, carbon nanotube, porous silica, porous polymer, clay, porous titania, etc., and according to a preferred embodiment, zeolite, It may be a metal-organic structure (MOF).

상기 '금속-유기 구조체(MOF)'는 금속 마디 및 유기 링커로 이루어진 구조 단위의 연속체(succession) 또는 반복체(repetition)로서, 상기 구조 단위의 다중 연결(multiple link)을 통해 형성된 네트워크 구조체를 의미한다. The 'metal-organic structure (MOF)' is a succession or repetition of structural units composed of metal nodes and organic linkers, and means a network structure formed through multiple links of the structural units. do.

상세하게는 제올라이트로 faujasite-type(FAU)의 13X와 NaY를 사용하여 합성하고 금속-유기 구조체로는 오슬로 대학에서 합성한 UiO(Universitetet i Oslo)-66과 UiO-67 구조체를 이용할 수 있다. Specifically, faujasite-type (FAU) 13X and NaY are synthesized as zeolites, and UiO (Universitetet i Oslo) -66 and UiO-67 structures synthesized at the University of Oslo can be used as metal-organic structures.

상기 수소 변색 안료는 수소 가스에 노출되었을 때 수소 분자와의 반응에 의해 환원되어 화학적으로 비가역적인 변색이 일어나는 물질이면 제한 없이 사용할 수 있다. 구체적으로 수소 변색 안료는 백금족 금속 산화물을 포함하는 것을 사용할 수 있다. 상기 백금족 금속 산화물은 팔라듐(palladium), 이리듐(iridium), 루테늄(ruthenium), 백금(platinum) 또는 로듐(rhodium)의 산화물이 가능하다.The hydrogen discoloration pigment can be used without limitation as long as it is reduced by reaction with hydrogen molecules when exposed to hydrogen gas and chemically irreversible discoloration occurs. Specifically, the hydrogen discoloration pigment may be one containing a platinum group metal oxide. The platinum group metal oxide may be an oxide of palladium, iridium, ruthenium, platinum or rhodium.

상기 수소 변색 안료만으로는 외부 환경에 쉽게 환원되어 수소 센서로 사용이 어렵기 때문에 외부 환경에 제약 없이 수소 누출 감지 가능한 센서로 사용하기 위해서 고분자를 이용하여 필름형태로 제조한다. Since the hydrogen discoloration pigment alone is easily reduced in the external environment and difficult to use as a hydrogen sensor, it is manufactured in the form of a film using a polymer to be used as a sensor capable of detecting hydrogen leakage without restrictions in the external environment.

이때, 상기 고분자 필름은 예를 들어 스티렌계 블록 공중합체, 폴리우레탄, 폴리비닐리덴플로라이드(PVdF), 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리아미드(PA), 셀룰로오스, 폴리비닐클로라이드(PVC) 및 폴리비닐알콜(PVA)로 이루어진 군에서 선택될 수 있으며, 바람직하게는 통기성이 우수하고, 인장강도가 적합한 스티렌계 블록 공중합체, 폴리우레탄일 수 있다. 상기 스티렌계 블록공중합체는 SBS(poly(styrenebutadiene-styrene)), SIS(poly(styrene-isoprene-styrene)), SEBS(poly(styreneethylene/butylene-styrene)), SEPS(poly(styrene-ethylene-propylene-styrene)) 및 SBBS(poly(styrene-butadiene-butylene-styrene)) 중에서 선택된 1종 이상을 포함한다.At this time, the polymer film is, for example, a styrenic block copolymer, polyurethane, polyvinylidene fluoride (PVdF), polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polyamide (PA) , It may be selected from the group consisting of cellulose, polyvinyl chloride (PVC) and polyvinyl alcohol (PVA), and preferably may be a styrene-based block copolymer or polyurethane having excellent air permeability and suitable tensile strength. The styrenic block copolymer is SBS (poly (styrenebutadiene-styrene)), SIS (poly (styrene-isoprene-styrene)), SEBS (poly (styreneethylene / butylene-styrene)), SEPS (poly (styrene-ethylene-propylene -styrene)) and SBBS (poly (styrene-butadiene-butylene-styrene)).

본 발명의 수소 감지 센서는 비표면적이 매우 크고 기공을 통한 이온이나 전자의 확산이 빠른 다공성 지지체를 기반으로 하므로 수소변색안료뿐만 아니라 촉매로도 사용이 가능하다. 또한 이온이나 전자의 확산이 빨라 색 변환에 있어서 변색 속도가 빨라 기존 수소변색안료보다 성능이 더욱 우수하다. Since the hydrogen detection sensor of the present invention is based on a porous support having a very large specific surface area and rapid diffusion of ions or electrons through pores, it can be used as a catalyst as well as a hydrogen discoloration pigment. In addition, the diffusion of ions or electrons is fast, so the discoloration speed in color conversion is fast, so the performance is more excellent than existing hydrogen discoloration pigments.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다.Hereinafter, a preferred embodiment is presented to aid understanding of the present invention.

그러나 하기의 실시예는 본 발명을 더욱 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.However, the following examples are only provided to more easily understand the present invention, and the content of the present invention is not limited by the examples.

실시예 1Example 1

1.PdO/제올라이트 수소 변색 안료의 제조1. Preparation of PdO / zeolite hydrogen discoloration pigment

수소변색안료는 보통 전이금속 산화물 (SnO2, TiO2, PdO, ZnO, In2O3, WO3, MoO3, SrTiO3 등) 단일물 또는 2종 이상의 금속 산화물을 이용하여 제조가 된다. 여기서는 제올라이트(FAU, LTA, CHA, RHO type)를 지지체로 사용하고 산화 팔라듐(PdO)을 이용하여 수소변색안료를 제조하였다. Hydrochromic pigments are usually prepared using transition metal oxides (SnO 2 , TiO 2 , PdO, ZnO, In 2 O 3 , WO 3 , MoO 3 , SrTiO 3 , etc.) or two or more metal oxides. Here, a hydrochromic pigment was prepared using zeolite (FAU, LTA, CHA, RHO type) as a support and using palladium oxide (PdO).

제올라이트 10g에 물 100ml를 혼합하여 제올라이트 슬러리 용액을 제조하였다. 그 다음 상기 용액을 70~80℃ 가열한 후 2M 묽은 염산 용액 25ml에 염화 팔라듐 0.5g을 혼합하여 염화 팔라듐 수용액을 제조하여 상기 제올라이트 슬러리 용액에 pH 10~11을 유지하면서 천천히 넣어주었다. 이후 pH~8.0으로 조절해준 뒤 추가적으로 1시간 더 70~80℃ 로 가열한 후 진공 여과 및 건조를 통해 PdO@Zeolite 수소변색안료를 수득하였다.A zeolite slurry solution was prepared by mixing 100 ml of water with 10 g of zeolite. Then, after heating the solution to 70-80 ° C., 0.5 g of palladium chloride was mixed with 25 ml of a 2M dilute hydrochloric acid solution to prepare an aqueous solution of palladium chloride, which was slowly added to the zeolite slurry solution while maintaining pH 10-11. Thereafter, after adjusting the pH to 8.0, heating at 70 to 80 ℃ for an additional 1 hour, and then vacuum filtration and drying to obtain a PdO@Zeolite hydrogen discoloration pigment.

2. PdO/MOF 수소 변색 안료의 제조2. Preparation of PdO/MOF Hydrochromic Pigment

금속-유기 구조체를 이용한 수소변색안료의 제조는 오슬로 대학에서 보고한 UiO(Universitetet i Oslo)-66 / 67을 지지체로 사용하고 산화 팔라듐(PdO)을 이용하여 수소변색안료를 제조하였다. The production of hydrogen discoloration pigment using a metal-organic structure was prepared using UiO (Universitetet i Oslo)-66 / 67 reported by the University of Oslo as a support and using palladium oxide (PdO).

금속-유기 구조체 10g에 물 100ml를 혼합하여 금속-유기 구조체 슬러리 용액을 제조하였다. 그 다음 상기 용액을 70~80℃ 가열한 후 2M 묽은 염산 용액 25ml에 염화 팔라듐 0.5g을 혼합하여 염화 팔라듐 수용액을 제조하여 상기 금속-유기 구조체 슬러리 용액에 pH 4~7로 유지하면서 천천히 넣어주었다. 이후 pH~8.0으로 조절해준뒤 추가적으로 1시간 더 70~80℃ 로 가열한 후 진공 여과 및 건조를 통해 PdO@MOF 수소변색안료를 수득하였다.A metal-organic structure slurry solution was prepared by mixing 10 g of the metal-organic structure with 100 ml of water. Then, after heating the solution to 70-80 ° C, 0.5 g of palladium chloride was mixed with 25 ml of a 2M dilute hydrochloric acid solution to prepare an aqueous palladium chloride solution, which was slowly added to the metal-organic structure slurry solution while maintaining the pH at 4-7. Thereafter, after adjusting the pH to 8.0 and heating at 70 to 80 ° C for an additional 1 hour, a PdO@MOF hydrogen discoloration pigment was obtained through vacuum filtration and drying.

3. 폴리머를 이용한 수소 감지 센서의 제조3. Manufacture of hydrogen detection sensor using polymer

도 2는 폴리머를 이용한 수소 변색 필름의 제조 과정을 나타낸 모식도이다. 2 is a schematic diagram showing a manufacturing process of a hydrogen discoloration film using a polymer.

폴리머를 이용하여 수소 변색 필름을 제조하기 위해서는 수소 변색 안료의 분쇄작업을 먼저 진행하여 입자크기를 ~2um로 만들어주었다. 폴리머는 Styrene-Ethylene-Butylene-Styrene(SEBS) 공중합체와 폴리우레탄을 사용하였으며 SEBS는 톨루엔에 폴리우레탄은 테트라하이드로퓨란 테트라하이드로퓨란 용매를 사용하여 폴리머 용액을 제조하였다. 이후 폴리머용액에 수소 변색 안료 10~20wt%를 넣어 믹서 장비를 이용해 균일하게 잘 섞어준 뒤 수소 변색 안료를 포함하는 폴리머 용액을 닥터 블레이드를 이용해 일정 두께의 시편으로 만들고 이를 건조하여 수소 감지 센서를 제조하였다.In order to manufacture a hydrogen discoloration film using a polymer, the hydrogen discoloration pigment was pulverized first to make a particle size of ~2um. Styrene-Ethylene-Butylene-Styrene (SEBS) copolymer and polyurethane were used as the polymer, and SEBS was prepared as a polymer solution using toluene and polyurethane as tetrahydrofuran as a solvent. Thereafter, 10 to 20 wt% of the hydrogen discoloration pigment was added to the polymer solution and mixed well using a mixer equipment, and then the polymer solution containing the hydrogen discoloration pigment was made into a specimen of a certain thickness using a doctor blade and dried to manufacture a hydrogen detection sensor. did

실험예 1: 안정성 확인Experimental Example 1: Confirmation of stability

상기 실시예 1에서 제조된 수소 감지 센서의 안정성을 평가하기 위해 30일 동안 물에 보관한 후 그 외관을 관찰하였다.In order to evaluate the stability of the hydrogen detection sensor prepared in Example 1, its appearance was observed after being kept in water for 30 days.

도 3에 나타낸 바와 같이, 수소 감지 센서는 장기간 색이 변색하지 않아 안정함을 확인할 수 있었다. As shown in FIG. 3, it was confirmed that the hydrogen detection sensor was stable without discoloration for a long time.

실험예 2: 분말 X선 회절(powder X-ray diffraction)/라만 분광법(raman spectroscopy)Experimental Example 2: Powder X-ray diffraction/Raman spectroscopy

도 4는 실시예 1에서 제조한 PdO/제올라이트, PdO/MOF 수소 변색 안료의 분멀 X선 회절 분석 결과를 나타낸 것이다. 4 shows the results of powder X-ray diffraction analysis of the PdO/zeolite and PdO/MOF hydrogen discoloring pigments prepared in Example 1.

도 5는 실시예 1에서 제조한 PdO/제올라이트, PdO/MOF 수소 변색 안료의 분멀 라만 분광법 분석 결과를 나타낸 것이다. 5 shows the results of powder Raman spectroscopy analysis of the PdO/zeolite and PdO/MOF hydrogen discoloring pigments prepared in Example 1.

도 4 및 도 5를 참조하면, 수소 변색 안료 합성 후 powder x-ray diffraction 분석 및 raman spectroscopy 분석을 진행한 결과 다공성 지지체가 망가지지 않고 PdO가 잘 붙어있는 것을 확인할 수 있었다. 다만 MOF의 경우 peak 위치가 겹쳐 명확하게 확인이 어려우나 베이지 색을 띄는 것으로 보아 잘 합성된 것으로 보였다. Referring to FIGS. 4 and 5, as a result of powder x-ray diffraction analysis and raman spectroscopy analysis after synthesizing the hydrogen discoloration pigment, it was confirmed that the porous support was not damaged and PdO was well attached. However, in the case of MOF, it was difficult to clearly confirm that the peak position overlapped, but it seemed to be well synthesized because it had a beige color.

실험예 3: 소수 감지능 확인Experimental Example 3: Confirmation of Prime Number Sensing Ability

상기 실시예 1에서 제조된 수소 감지 센서를 도 6과 같은 수소 변색 테스트 장비를 사용하여 수소 감지 센서의 성능을 테스트하였다. 그 결과는 도 7에 나타내었다. The performance of the hydrogen detection sensor prepared in Example 1 was tested using a hydrogen discoloration test equipment as shown in FIG. 6 . The results are shown in FIG. 7 .

도 7을 참조하면, 본 발명에 따른 수소 감지 센서는 수분내 수소 가스에 의한 변색이 관찰이 되며 30분 후 ΔE>35 이상으로 색변화가 크게 나타나는 것을 확인할 수 있었다.Referring to FIG. 7 , in the hydrogen sensor according to the present invention, discoloration due to hydrogen gas was observed within a few minutes, and it was confirmed that a large color change occurred after 30 minutes with ΔE>35 or more.

Claims (4)

다공성 지지체 표면에 부분적으로 부착된 백금족 금속 산화물을 포함하는 수소 변색 안료 코어와,
상기 수소 변색 안료 코어가 분산된 고분자 필름을 포함하는, 다공성 물질을 기반으로 한 수소감지센서.
A hydrogen tarnish pigment core comprising a platinum group metal oxide partially adhered to the surface of the porous support;
A hydrogen sensor based on a porous material comprising a polymer film in which the hydrogen discoloration pigment core is dispersed.
제1항에 있어서, 상기 다공성 지지체는
제올라이트, 금속-유기 구조체(MOF), 탄소체, 그라파이트, 그래핀, 탄소나노튜브, 다공성 실리카, 다공성 고분자, 클레이 및 다공성 티타니아로 이루어진 군에서 선택된 1종 이상인 것인 다공성 물질을 기반으로 한 수소감지센서.

The method of claim 1, wherein the porous support
Hydrogen sensing based on a porous material that is at least one selected from the group consisting of zeolite, metal-organic structure (MOF), carbon body, graphite, graphene, carbon nanotube, porous silica, porous polymer, clay, and porous titania sensor.

제1항에 있어서, 상기 백금족 금속 산화물은
팔라듐(palladium), 이리듐(iridium), 루테늄(ruthenium), 백금(platinum) 또는 로듐(rhodium)의 산화물인 것인 다공성 물질을 기반으로 한 수소감지센서.

The method of claim 1, wherein the platinum group metal oxide
A hydrogen sensor based on a porous material which is an oxide of palladium, iridium, ruthenium, platinum or rhodium.

제1항에 있어서, 상기 고분자 필름은
스티렌계 블록 공중합체, 폴리우레탄, 폴리비닐리덴플로라이드(PVdF), 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌(PE), 폴리프로필렌(PP), 폴리아미드(PA), 셀룰로오스, 폴리비닐클로라이드(PVC) 및 폴리비닐알콜(PVA)로 이루어진 군에서 선택된 1종인 것인 다공성 물질을 기반으로 한 수소감지센서.
The method of claim 1, wherein the polymer film
Styrenic block copolymer, polyurethane, polyvinylidene fluoride (PVdF), polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polyamide (PA), cellulose, polyvinyl chloride (PVC) And a hydrogen sensor based on a porous material that is one selected from the group consisting of polyvinyl alcohol (PVA).
KR1020210145705A 2021-10-28 2021-10-28 Hydrogen sensor based on porous materials KR20230060949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210145705A KR20230060949A (en) 2021-10-28 2021-10-28 Hydrogen sensor based on porous materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210145705A KR20230060949A (en) 2021-10-28 2021-10-28 Hydrogen sensor based on porous materials

Publications (1)

Publication Number Publication Date
KR20230060949A true KR20230060949A (en) 2023-05-08

Family

ID=86381646

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210145705A KR20230060949A (en) 2021-10-28 2021-10-28 Hydrogen sensor based on porous materials

Country Status (1)

Country Link
KR (1) KR20230060949A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117343669A (en) * 2023-12-04 2024-01-05 中国石油大学(华东) Hydrogen-sensitive functional film for hydrogen leakage detection and preparation method thereof
CN117416953A (en) * 2023-12-18 2024-01-19 中国民用航空飞行学院 High-sensitivity graphene-based hydrogen sensor on aircraft and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117343669A (en) * 2023-12-04 2024-01-05 中国石油大学(华东) Hydrogen-sensitive functional film for hydrogen leakage detection and preparation method thereof
CN117343669B (en) * 2023-12-04 2024-02-23 中国石油大学(华东) Hydrogen-sensitive functional film for hydrogen leakage detection and preparation method thereof
CN117416953A (en) * 2023-12-18 2024-01-19 中国民用航空飞行学院 High-sensitivity graphene-based hydrogen sensor on aircraft and preparation method thereof

Similar Documents

Publication Publication Date Title
KR20230060949A (en) Hydrogen sensor based on porous materials
Zhang et al. Two-dimensional mesoporous ZnCo2O4 nanosheets as a novel electrocatalyst for detection of o-nitrophenol and p-nitrophenol
Zhu et al. Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens
Vellingiri et al. The sensitive detection of formaldehyde in aqueous media using zirconium-based metal organic frameworks
Fei et al. Humidity sensors based on Li-loaded nanoporous polymers
Virji et al. Hydrazine detection by polyaniline using fluorinated alcohol additives
Rahman et al. Sensitive and selective m-tolyl hydrazine chemical sensor development based on CdO nanomaterial decorated multi-walled carbon nanotubes
Kuberský et al. Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte
Tang et al. Lattice proton intercalation to regulate WO3‐based solid‐contact wearable pH sensor for sweat analysis
TWI410625B (en) Gas sensing material and gas sensor employing the same
Atta et al. Gold-doped nano-perovskite-decorated carbon nanotubes for electrochemical sensing of hazardous hydrazine with application in wastewater sample
He et al. 3D flower-like NiCo-LDH composites for a high-performance NO2 gas sensor at room temperature
Fernández-Ramos et al. Chemoresistive NH3 gas sensor at room temperature based on the carbon gel-TiO2 nanocomposites
JP4883624B2 (en) High sensitivity gas sensor and manufacturing method thereof
WO1997009613A1 (en) Solid state gas sensor and filter assembly
Grigorieva et al. Synthesis, structure, and sensor properties of vanadium pentoxide nanorods
CN108780059A (en) Electrochemical sensor
EP2825874A1 (en) Electrochemical gas sensor comprising an anion-exchange membrane
Tiwari et al. Electrochemical Synthesis of Chitosan‐co‐polyaniline/WO3⋅ nH2O Composite Electrode for Amperometric Detection of NO2 Gas
Fernández-Ramos et al. Optical humidity sensor using methylene blue immobilized on a hydrophilic polymer
Zhang et al. Electrochemical response of mixed conducting perovskite enables low-cost high-efficiency hydrogen sensing
Tian et al. Trace level detection of hydrogen gas using birnessite-type manganese oxide
Hu et al. Amperometric sensor for the detection of hydrogen stable isotopes based on Pt nanoparticles confined within single-walled carbon nanotubes (SWNTs)
Naz et al. Solid state gas sensor
Wang et al. A Novel Electrochemical Sensor for Detection of Baicalein in Human Serum Based on DUT‐9/Mesoporous Carbon Composite