KR20230060607A - Chloride-based solid electrolyte, all-solid batteries and manufacturing method thereof - Google Patents

Chloride-based solid electrolyte, all-solid batteries and manufacturing method thereof Download PDF

Info

Publication number
KR20230060607A
KR20230060607A KR1020210144679A KR20210144679A KR20230060607A KR 20230060607 A KR20230060607 A KR 20230060607A KR 1020210144679 A KR1020210144679 A KR 1020210144679A KR 20210144679 A KR20210144679 A KR 20210144679A KR 20230060607 A KR20230060607 A KR 20230060607A
Authority
KR
South Korea
Prior art keywords
chloride
solid electrolyte
based solid
present
state battery
Prior art date
Application number
KR1020210144679A
Other languages
Korean (ko)
Inventor
박건호
김경수
조우석
유지상
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Priority to KR1020210144679A priority Critical patent/KR20230060607A/en
Publication of KR20230060607A publication Critical patent/KR20230060607A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Conductive Materials (AREA)

Abstract

The present invention relates to a chloride-based solid electrolyte, an all-solid battery, and a manufacturing method thereof capable of improving thermal stability and a side reaction with a cathode material. The present invention can provide the chloride-based solid electrolyte represented by the following chemical formula. By replacing some of chlorine ions (Cl^-) with oxygen ions (O^2-), the chloride-based solid electrolyte according to the present invention provides thermal and chemical stability while providing a stable structure and maintaining ion conductivity at a high temperature above 100 ℃ unlike a conventional chloride-based solid electrolyte. The chemical formula is Li_3+aMCl_6-bO_c, wherein M is at least one among Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Al, Y, In, Ga, Yb, Er, and Ce (-0.5 < a+b-2c < 0.5, 0 < c <= 0.3).

Description

염화물계 고체전해질, 전고체전지 및 그의 제조 방법{Chloride-based solid electrolyte, all-solid batteries and manufacturing method thereof}Chloride-based solid electrolyte, all-solid-state battery and manufacturing method thereof {Chloride-based solid electrolyte, all-solid batteries and manufacturing method thereof}

본 발명은 전고체전지에 관한 것으로, 더욱 상세하게는 열적 안정성과 양극재와의 부반응을 개선한 염화물계 고체전해질, 전고체전지 및 그의 제조 방법에 관한 것이다.The present invention relates to an all-solid-state battery, and more particularly, to a chloride-based solid electrolyte with improved thermal stability and side reaction with a cathode material, an all-solid-state battery, and a manufacturing method thereof.

전기자동차 및 대용량 전력 저장장치의 요구가 높아지면서 이를 충족시키기 위한 다양한 전지의 개발이 이루어져 왔다.As the demand for electric vehicles and large-capacity power storage devices increases, various batteries have been developed to meet them.

리튬 이차전지는 다양한 이차전지 중에서 에너지밀도 및 출력 특성이 가장 우수하여 널리 상용화되었다. 리튬 이차전지로는 유기용매를 포함하는 액체 타입의 전해질을 포함하는 리튬 이차전지(이하 '액체 타입 이차전지'라 함)가 주로 사용되고 있다.Lithium secondary batteries have been widely commercialized because they have the best energy density and output characteristics among various secondary batteries. As a lithium secondary battery, a lithium secondary battery (hereinafter referred to as a 'liquid type secondary battery') including a liquid-type electrolyte containing an organic solvent is mainly used.

하지만 액체 타입 이차전지는 액체전해질이 전극 반응에 의해 분해되어 전지의 팽창을 야기하고 액체전해질의 누출에 의한 발화의 위험성이 지적되고 있다. 이러한 액체 타입 이차전지의 문제점을 해소하기 위해서, 안정성이 우수한 고체전해질을 적용한 리튬 이차전지(이하 '전고체전지'라 함)가 주목받고 있다.However, in the liquid type secondary battery, the liquid electrolyte is decomposed by an electrode reaction, causing expansion of the battery, and the risk of ignition due to leakage of the liquid electrolyte has been pointed out. In order to solve the problems of such a liquid-type secondary battery, a lithium secondary battery (hereinafter referred to as 'all-solid-state battery') to which a solid electrolyte having excellent stability is applied is attracting attention.

고체전해질은 황화물계, 산화물계 및 염화물계로 나눌 수 있다. 황화물계 고체전해질이 산화물계 고체전해질과 비교하여 높은 리튬이온전도도를 가지고, 넓은 전압 범위에서 안정하기 때문에, 전고체전지용 고체전해질로 황화물계 고체전해질을 주로 사용하고 있다.Solid electrolytes can be divided into sulfide-based, oxide-based and chloride-based. Since sulfide-based solid electrolytes have higher lithium ion conductivity than oxide-based solid electrolytes and are stable in a wide voltage range, sulfide-based solid electrolytes are mainly used as solid electrolytes for all-solid-state batteries.

하지만 황화물계 고체전해질은 화학적 안정성이 상대적으로 산화물계 고체전해질보다 낮기 때문에, 전고체전지의 작동이 안정적이지 않다는 단점을 가지고 있다. 즉 황화물계 고체전해질은 잔존 L2S나 구조 내에 포함되어 있는 P2S7 가교황 등 여러 요인에 의해 대기 중 수분 또는 공정 상 유입되는 수분과 반응하기 쉬우며, 수분과의 반응 시 황화수소(H2S) 가스가 발생될 우려가 있기 때문에, 아르곤 가스 분위기의 글로브박스, 수분을 제거한 드라이룸 등의 환경에서 취급하고 있다. 황화물계 고체전해질은 수분과의 반응성이 높아 황화수소 가스의 발생으로 이온전도도가 저하되는 등의 제작 공정 상의 문제점을 갖고 있다.However, since the sulfide-based solid electrolyte has relatively lower chemical stability than the oxide-based solid electrolyte, the operation of the all-solid-state battery is not stable. That is, sulfide-based solid electrolytes easily react with moisture in the atmosphere or moisture introduced in the process due to various factors such as residual L 2 S or P 2 S 7 crosslinking sulfur contained in the structure, and when reacting with moisture, hydrogen sulfide (H 2 S) Because there is a possibility that gas may be generated, it is handled in an environment such as a glove box with an argon gas atmosphere or a dry room where moisture is removed. Sulfide-based solid electrolytes have high reactivity with moisture and have problems in the manufacturing process, such as deterioration in ionic conductivity due to the generation of hydrogen sulfide gas.

염화물계 고체전해질은 염화이온(Cl-)을 사용하기 때문에, 황화물계 고체전해질과 비교하여 향상된 고전압 안정성을 제공한다. 이로 인해 최근에는 염화물계 고체전해질에 대한 연구가 활발히 진행되고 있다.Since chloride-based solid electrolytes use chloride ions (Cl - ), they provide improved high voltage stability compared to sulfide-based solid electrolytes. For this reason, studies on chloride-based solid electrolytes have recently been actively conducted.

하지만 글래스 계열의 염화물계 고체전해질은 채용한 음이온의 특성상, 비교적 낮은 100℃ 이하의 온도에서도 결정화가 쉽게 일어나기 때문에, 이온전도도가 감소하는 문제가 있다. 그리고 염화물계 고체전해질은 일반적인 양극재와 낮은 온도에서 부반응을 일으키기 때문에, 열적 및 화학적 안정성이 떨어지는 문제점을 안고 있다.However, glass-based chloride-based solid electrolytes have a problem in that ionic conductivity decreases because crystallization easily occurs even at a relatively low temperature of 100° C. or less due to the characteristics of the anion employed. In addition, since the chloride-based solid electrolyte causes a side reaction with a general cathode material at a low temperature, it suffers from poor thermal and chemical stability.

공개특허공보 제2019-0079135호(2019.07.05.)Publication No. 2019-0079135 (2019.07.05.)

따라서 본 발명의 목적은 100℃ 이상의 고온에서도 구조적으로 안정하여 이온전도도를 유지하면서 열적 및 화학적 안정성을 제공하는 염화물계 고체전해질, 전고체전지 및 그의 제조 방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a chloride-based solid electrolyte, an all-solid-state battery, and a method for manufacturing the same, which are structurally stable even at a high temperature of 100° C. or higher and provide thermal and chemical stability while maintaining ionic conductivity.

본 발명의 다른 목적은 100℃ 이하의 온도에서 결정화로 인한 이온전도도가 감소하는 문제를 해소할 수 있는 염화물계 고체전해질, 전고체전지 및 그의 제조 방법을 제공하는 데 있다.Another object of the present invention is to provide a chloride-based solid electrolyte, an all-solid-state battery, and a manufacturing method thereof capable of solving the problem of decreasing ionic conductivity due to crystallization at a temperature of 100 ° C or less.

본 발명의 또 다른 목적은 양극재와의 부반응을 억제하여 열적 및 화학적 안정성을 제공하는 염화물계 고체전해질, 전고체전지 및 그의 제조 방법을 제공하는 데 있다.Another object of the present invention is to provide a chloride-based solid electrolyte, an all-solid-state battery, and a manufacturing method thereof, which provide thermal and chemical stability by suppressing side reactions with cathode materials.

상기 목적을 달성하기 위하여, 본 발명은 아래의 화학식으로 표현되는 염화물계 고체전해질을 제공한다.In order to achieve the above object, the present invention provides a chloride-based solid electrolyte represented by the following chemical formula.

[화학식][chemical formula]

Li3+aMCl6-bOc Li 3+a MCl 6-b O c

(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Al, Y, In, Ga, Yb, Er 및 Ce 중 적어도 하나, -0.5<a+b-2c<0.5, 0<c≤0.3)(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Al, Y, In, Ga, Yb, Er, and at least one of Ce, -0.5<a+b-2c<0.5, 0<c ≤0.3)

상기 M은 Y 일 수 있다.The M may be Y.

상기 b와 상기 c가 동일할 수 있다.The b and the c may be the same.

본 발명은 또한, LiCl, Li2O 및 금속(M)염화물을 볼밀링하여 제조되는 상기 화학식으로 표현되는 염화물계 고체전해질의 제조 방법을 제공한다.The present invention also provides a method for producing a chloride-based solid electrolyte represented by the above chemical formula prepared by ball milling LiCl, Li 2 O, and a metal (M) chloride.

상기 금속염화물은 YCl3을 포함할 수 있다.The metal chloride may include YCl 3 .

그리고 본 발명은 상기 화학식으로 표현되는 염화물계 고체전해질을 포함하는 전고체전지를 제공한다.And the present invention provides an all-solid-state battery including a chloride-based solid electrolyte represented by the above chemical formula.

상기 전고체전지는 고체전해질막, 양극, 음극 및 분리막을 포함한다.The all-solid-state battery includes a solid electrolyte membrane, an anode, a cathode, and a separator.

상기 염화물계 고체전해질은 상기 고체전해질막, 상기 양극, 상기 음극 및 상기 분리막 중에 적어도 하나에 포함된다.The chloride-based solid electrolyte is included in at least one of the solid electrolyte membrane, the anode, the cathode, and the separator.

상기 고체전해질막, 상기 양극, 상기 음극 및 상기 분리막 중에 적어도 하나에 포함되는 상기 염화물계 고체전해질은 다른 조성을 갖는 복수의 종이 사용될 수 있다.A plurality of species having different compositions may be used as the chloride-based solid electrolyte included in at least one of the solid electrolyte membrane, the anode, the cathode, and the separator.

상기 염화물계 고체전해질은 LiCl, Li2O 및 금속(M)염화물을 볼밀링으로 합성하여 제조할 수 있다.The chloride-based solid electrolyte may be prepared by synthesizing LiCl, Li 2 O, and a metal (M) chloride by ball milling.

그리고 본 발명에 따른 전고체전지는 Li3MCl6으로 표현되는 염화물계 고체전해질을 더 포함할 수 있다.In addition, the all-solid-state battery according to the present invention may further include a chloride-based solid electrolyte represented by Li 3 MCl 6 .

본 발명에 따른 염화물계 고체전해질은 염소이온(Cl-)의 일부를 산소이온(O2-)으로 치환함으로써, 기존 염화물계 고체전해질과는 달리 100℃ 이상의 고온에서도 구조적으로 안정하여 이온전도도를 유지하면서 열적 및 화학적 안정성을 제공한다.Unlike conventional chloride-based solid electrolytes, the chloride-based solid electrolyte according to the present invention replaces some of the chlorine ions (Cl - ) with oxygen ions (O 2- ), thereby maintaining ion conductivity by being structurally stable even at high temperatures of 100 ° C or higher. while providing thermal and chemical stability.

본 발명에 따른 염화물계 고체전해질은 100℃에서도 결정화가 일어나지 않기 때문에, 염화물계 고체전해질의 결정화로 인한 이온전도도가 감소하는 문제를 해소할 수 있다.Since the chloride-based solid electrolyte according to the present invention does not crystallize even at 100° C., it is possible to solve the problem of decrease in ionic conductivity due to crystallization of the chloride-based solid electrolyte.

본 발명에 따른 염화물계 고체전해질은 양극재와의 부반응을 억제할 수 있기 때문에, 향상된 열적 및 화학적 안정성을 제공한다. 이로 인해 본 발명에 따른 염화물계 고체전해질을 채용한 전고체전지는 고온작동이 가능하다.Since the chloride-based solid electrolyte according to the present invention can suppress side reactions with the cathode material, it provides improved thermal and chemical stability. As a result, the all-solid-state battery employing the chloride-based solid electrolyte according to the present invention can operate at high temperatures.

도 1은 본 발명에 따른 염화물계 고체전해질의 제조 방법에 따른 흐름도이다.
도 2는 실시예 및 비교예에 따른 염화물계 고체전해질의 X선 회절 분석 결과를 보여주는 그래프이다.
도 3은 실시예 및 비교예에 따른 염화물계 고체전해질의 100℃ 열처리 후 X선 회절 분석 결과를 보여주는 그래프이다.
1 is a flow chart according to a method for preparing a chloride-based solid electrolyte according to the present invention.
2 is a graph showing the results of X-ray diffraction analysis of chloride-based solid electrolytes according to Examples and Comparative Examples.
3 is a graph showing results of X-ray diffraction analysis after heat treatment at 100° C. of chloride-based solid electrolytes according to Examples and Comparative Examples.

하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 벗어나지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.It should be noted that in the following description, only parts necessary for understanding the embodiments of the present invention are described, and descriptions of other parts will be omitted without departing from the gist of the present invention.

이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in this specification and claims described below should not be construed as being limited to ordinary or dictionary meanings, and the inventors have appropriately used the concept of terms to describe their inventions in the best way. It should be interpreted as a meaning and concept consistent with the technical spirit of the present invention based on the principle that it can be defined in the following way. Therefore, the embodiments described in this specification and the configurations shown in the drawings are only preferred embodiments of the present invention, and do not represent all of the technical spirit of the present invention, so various equivalents that can replace them at the time of the present application. It should be understood that there may be variations and variations.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 염화물계 고체전해질의 제조 방법에 따른 흐름도이다.1 is a flow chart according to a method for preparing a chloride-based solid electrolyte according to the present invention.

도 1을 참조하면, 본 발명에 따른 염화물계 고체전해질의 제조 방법은 LiCl, Li2O 및 금속(M)염화물을 준비하는 단계(S10)와, LiCl, Li2O 및 금속(M)염화물을 볼밀링하여 아래의 화학식1로 표현되는 염화물계 고체전해질을 제조하는 단계(S20)를 포함한다.Referring to FIG. 1, the method for preparing a chloride-based solid electrolyte according to the present invention includes preparing LiCl, Li 2 O and metal (M) chloride (S10), LiCl, Li 2 O and metal (M) chloride. and ball milling to prepare a chloride-based solid electrolyte represented by Chemical Formula 1 below (S20).

[화학식 1][Formula 1]

Li3+aMCl6-bOc Li 3+a MCl 6-b O c

(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Al, Y, In, Ga, Yb, Er 및 Ce 중 적어도 하나, -0.5<a+b-2c<0.5, 0<c≤0.3)(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Al, Y, In, Ga, Yb, Er, and at least one of Ce, -0.5<a+b-2c<0.5, 0<c ≤0.3)

여기서 본 발명에 따른 염화물계 고체전해질의 제조 방법에 따른 전체 단계는 대기 중의 산소 또는 수분에 노출되지 않도록, 글로브박스 또는 드라이룸에서 진행하거나 불활성가스 분위기에 진행한다.Here, all steps according to the method for preparing a chloride-based solid electrolyte according to the present invention are performed in a glove box or dry room or in an inert gas atmosphere so as not to be exposed to oxygen or moisture in the air.

S10단계에서 금속염화물은 YCl3을 포함할 수 있다.In step S10, the metal chloride may include YCl 3 .

S20단계는 LiCl, Li2O 및 금속(M)염화물을 화학식1의 조성비를 갖도록 적정 몰비로 볼밀링용 용기에 볼과 함께 투입한 후, 볼밀링으로 합성하여 화학식1에 따른 염화물계 고체전해질을 제조한다. 볼밀링용 용기로는 지르코니아 재질의 용기가 사용될 수 있고, 볼로는 지르코니아 볼이 사용될 수 있다.In step S20, LiCl, Li 2 O, and metal (M) chloride are added together with balls in a ball milling container at an appropriate molar ratio so as to have a composition ratio of Formula 1, and then synthesized by ball milling to obtain a chloride-based solid electrolyte according to Formula 1. manufacture A container made of zirconia may be used as a container for ball milling, and a zirconia ball may be used as a bowl.

이와 같이 본 발명에 따른 제조 방법으로 제조된 염화물계 고체전해질은 Li3MCl6으로 표현되는 기존의 염화물계 고체전해질에서 염소이온(Cl-)의 일부가 산소이온(O2-)으로 치환된 조성을 갖는다. 이러한 본 발명에 따른 염화물계 고체전해질은 화학식 1로 표현할 수 있다.As such, the chloride-based solid electrolyte prepared by the manufacturing method according to the present invention has a composition in which some of the chlorine ions (Cl - ) are replaced with oxygen ions (O 2- ) in the existing chloride-based solid electrolyte represented by Li 3 MCl 6 . have The chloride-based solid electrolyte according to the present invention can be represented by Chemical Formula 1.

염소이온(Cl-)의 일부가 산소이온(O2-)으로 치환되기 때문에, 염소이온(Cl-) 대신에 치환되는 산소이온(O2-)의 함량(c)은 소실되는 염소이온(Cl-)의 함량(b)와 동일할 수 있다. 즉 b=c 일 수 있다.Since some of the chlorine ions (Cl - ) are replaced by oxygen ions (O 2- ), the content (c) of oxygen ions (O 2- ) replaced by chlorine ions (Cl - ) is lost. - It may be the same as the content (b) of ). That is, it may be b=c.

볼밀링 과정에서, 본 발명에 따른 염화물계 고체전해질은 Li3MCl6으로 표현되는 기존의 염화물계 고체전해질과 비교하여 리튬이 가감될 수 있다. 예컨대 염소이온(Cl-) 대신에 치환되는 산소이온(O2-)의 함량(c)과 동일하게 리튬이온이 추가될 수 있다. 즉 a=b=c 일 수 있다.During the ball milling process, the chloride-based solid electrolyte according to the present invention may contain more or less lithium compared to the conventional chloride-based solid electrolyte represented by Li 3 MCl 6 . For example, lithium ions may be added in the same manner as the content (c) of oxygen ions (O 2- ) to be substituted instead of chlorine ions (Cl ). That is, a=b=c.

S20단계에서 금속염화물로 YCl3을 사용하는 경우, 제조되는 염화물계 고체전해질은 LiCl-Li2O-YCl3으로 표현하거나, Li3+aYCl6-bOc으로 표현할 수 있다.When YCl 3 is used as the metal chloride in step S20, the prepared chloride-based solid electrolyte can be expressed as LiCl-Li 2 O-YCl 3 or Li 3+a YCl 6-b O c .

본 발명의 제조 방법으로 제조된 염화물계 고체전해질은 글래스 계열의 염화물계 고체전해질이다.The chloride-based solid electrolyte prepared by the manufacturing method of the present invention is a glass-based chloride-based solid electrolyte.

본 발명에 따른 염화물계 고체전해질은 전고체전지에 사용된다. 전고체전지는 고체전해질막, 양극, 음극 및 분리막을 포함한다. 여기서 염화물계 고체전해질은 고체전해질막, 양극, 음극 및 분리막 중에 적어도 하나에 포함된다. 고체전해질막, 양극, 음극 및 분리막 중에 적어도 하나에 포함되는 본 발명에 따른 염화물계 고체전해질은 다른 조성을 갖는 복수의 종이 함께 사용될 수 있다. 예컨대 양극 또는 음극과 같은 전극은 활물질, 바인더, 도전재 및 고체전해질을 포함할 수 있다. 전극에 포함되는 고체전해질은 본 발명에 따른 염화물계 고체전해질을 포함하고, 해당 염화물계 고체전해질은 다른 조성을 갖는 복수의 종이 함께 사용될 수 있다.The chloride-based solid electrolyte according to the present invention is used in an all-solid-state battery. An all-solid-state battery includes a solid electrolyte membrane, an anode, a cathode, and a separator. Here, the chloride-based solid electrolyte is included in at least one of a solid electrolyte membrane, an anode, a cathode, and a separator. The chloride-based solid electrolyte according to the present invention included in at least one of the solid electrolyte membrane, anode, cathode, and separator may be used together with a plurality of species having different compositions. For example, an electrode such as an anode or a cathode may include an active material, a binder, a conductive material, and a solid electrolyte. The solid electrolyte included in the electrode includes the chloride-based solid electrolyte according to the present invention, and the chloride-based solid electrolyte may be used together with a plurality of species having different compositions.

본 발명에 따른 전고체전지는 고체전해질막, 양극, 음극 및 분리막 중에 적어도 하나에 본 발명에 따른 염화물계 고체전해질가 사용되고, 본 발명에 따른 염화물계 고체전해질과 함께 Li3MCl6으로 표현되는 기존의 염화물계 고체전해질이 함께 사용될 수 있다.In the all-solid-state battery according to the present invention, the chloride-based solid electrolyte according to the present invention is used for at least one of a solid electrolyte membrane, an anode, a cathode, and a separator, and the conventional chloride represented by Li 3 MCl 6 together with the chloride-based solid electrolyte according to the present invention A solid electrolyte may be used together.

본 발명의 제조 방법으로 제조된 염화물계 고체전해질은 Li3MCl6으로 표현되는 고체전해질에서 염소이온(Cl-)의 일부가 산소이온(O2-)으로 치환된 화학적 조성을 갖는다.The chloride-based solid electrolyte prepared by the manufacturing method of the present invention has a chemical composition in which some of the chlorine ions (Cl ) are replaced with oxygen ions (O 2− ) in the solid electrolyte represented by Li 3 MCl 6 .

이와 같이 본 발명에 따른 염화물계 고체전해질은 염소이온(Cl-)의 일부를 산소이온(O2-)으로 치환함으로써, Li3MCl6의 기존 염화물계 고체전해질과는 달리 100℃ 이상의 고온에서도 구조적으로 안정하여 이온전도도를 유지하면서 열적 및 화학적 안정성을 제공한다.As described above, the chloride-based solid electrolyte according to the present invention replaces some of the chlorine ions (Cl - ) with oxygen ions (O 2- ), so that, unlike the existing chloride-based solid electrolytes of Li 3 MCl 6 , the structural , providing thermal and chemical stability while maintaining ionic conductivity.

본 발명에 따른 염화물계 고체전해질은 100℃에서도 결정화가 일어나지 않기 때문에, 염화물계 고체전해질의 결정화로 인한 이온전도도가 감소하는 문제를 해소할 수 있다.Since the chloride-based solid electrolyte according to the present invention does not crystallize even at 100° C., it is possible to solve the problem of decrease in ionic conductivity due to crystallization of the chloride-based solid electrolyte.

그리고 본 발명에 따른 염화물계 고체전해질은 양극재와의 부반응을 억제할 수 있기 때문에, 향상된 열적 및 화학적 안정성을 제공한다. 이로 인해 본 발명에 따른 염화물계 고체전해질을 채용한 전고체전지는 고온작동이 가능하다.In addition, since the chloride-based solid electrolyte according to the present invention can suppress side reactions with the cathode material, it provides improved thermal and chemical stability. As a result, the all-solid-state battery employing the chloride-based solid electrolyte according to the present invention can operate at high temperatures.

[실시예 및 비교예][Examples and Comparative Examples]

이와 같은 본 발명의 제조 방법으로 제조된 염화물계 고체전해질의 전기전도도, 열적 및 화학적 안정성을 확인하기 위해서 아래와 같이 실시예 및 비교예에 따른 염화물계 고체전해질을 제조하였다.In order to confirm the electrical conductivity, thermal and chemical stability of the chloride-based solid electrolyte prepared by the manufacturing method of the present invention, chloride-based solid electrolytes according to Examples and Comparative Examples were prepared as follows.

비교예1Comparative Example 1

출발물질 LiCl, YCl3를 3:1의 몰비로 지르코니아 재질의 용기에 5mm의 지름을 가지는 지로코니아 볼을 함께 투입한 뒤 10시간 동안 볼밀링하여 비교예1에 따른 염화물계 고체전해질을 제조하였다.A chloride-based solid electrolyte according to Comparative Example 1 was prepared by adding the starting materials LiCl and YCl 3 together with zirconia balls having a diameter of 5 mm in a zirconia container at a molar ratio of 3:1, followed by ball milling for 10 hours.

실시예1-6Example 1-6

출발물질 LiCl, Li2O, YCl3를 표 1에 따른 몰비로 지로코니아 재질의 용기에 5mm의 지름을 가지는 지르코니아 볼을 함께 투입한 뒤 10시간 동안 볼밀링하여 실시예1-6에 따른 염화물계 고체전해질을 제조하였다.The starting materials LiCl, Li 2 O, and YCl 3 were added together with zirconia balls having a diameter of 5 mm in a zirconia container at a molar ratio according to Table 1, followed by ball milling for 10 hours to obtain a chloride system according to Examples 1-6. A solid electrolyte was prepared.

실시예1-6에 따른 염화물계 고체전해질에 있어서, 염소이온(Cl-) 대신에 치환되는 산소이온(O2-)의 함량(c)은 0.03≤c≤0.3이고, a=b=c이다. 즉 a+b-2c=0 이다. 이러한 실시예1-6에 따른 염화물계 고체전해질은 Li3+3xYCl6-3xO3x(3x=c)으로 표현할 수 있다.In the chloride-based solid electrolyte according to Example 1-6, the content (c) of oxygen ions (O 2- ) substituted instead of chlorine ions (Cl ) is 0.03≤c≤0.3, and a=b=c . That is, a+b-2c=0. The chloride-based solid electrolyte according to Examples 1-6 can be expressed as Li 3+3x YCl 6-3x O 3x (3x=c).

화학식chemical formula 보관전 이온전도도
(S/cm, 25℃)-A
Ionic conductivity before storage
(S/cm, 25℃)-A
보관 후 이온전도도
(S/cm, 25℃-B)
Ionic conductivity after storage
(S/cm, 25℃-B)
이온전도도 유지율
(%)-B/A
Ionic conductivity retention rate
(%)-B/A
비교예1Comparative Example 1 Li3YCl6 Li 3 YCl 6 4.0*10^-44.0*10^-4 3.7*10^-53.7*10^-5 9.259.25 실시예1Example 1 Li3.075YCl5.925O0.075 Li 3.075 YCl 5.925 O 0.075 3.0*10^-43.0*10^-4 1.6*10^-41.6*10^-4 53.3353.33 실시예2Example 2 Li3.150YCl5.850O0.150 Li 3.150 YCl 5.850 O 0.150 2.6*10^-42.6*10^-4 2.9*10^-42.9*10^-4 111.54111.54 실시예3Example 3 Li3.225YCl5.775O0.225 Li 3.225 YCl 5.775 O 0.225 1.4*10^-41.4*10^-4 1.4*10^-41.4*10^-4 100.00100.00 실시예4Example 4 Li3.300YCl5.700O0.300 Li 3.300 YCl 5.700 O 0.300 1.4*10^-41.4*10^-4 1.9*10^-41.9*10^-4 135.71135.71 실시예5Example 5 Li3.375YCl5.625O0.375 Li 3.375 YCl 5.625 O 0.375 1.4*10^-41.4*10^-4 1.6*10^-41.6*10^-4 156.25156.25 실시예6Example 6 Li3.450YCl5.550O0.450 Li 3.450 YCl 5.550 O 0.450 1.1*10^-41.1*10^-4 4.3*10^-54.3*10^-5 39.0939.09

비교예1, 실시예1-6에 따른 염화물계 고체전해질에 대해서, 이온전도도는 교류-임피던스법을 통해 측정하였다. 열적 안정성을 확인하기 위해서, 진공 100℃에서 12시간 동안 열처리 한 뒤 X-선 회절 분석 및 이온전도도를 측정하였으며, 그 결과는 도 2, 도 3 및 표 1과 같다.For the chloride-based solid electrolytes according to Comparative Example 1 and Examples 1-6, ion conductivities were measured through an AC-impedance method. In order to confirm thermal stability, after heat treatment at 100 ° C. for 12 hours in a vacuum, X-ray diffraction analysis and ionic conductivity were measured, and the results are shown in FIGS. 2, 3 and Table 1.

도 2는 실시예 및 비교예에 따른 염화물계 고체전해질의 X선 회절 분석 결과를 보여주는 그래프이다. 그리고 도 3은 실시예 및 비교예에 따른 염화물계 고체전해질의 100℃ 열처리 후 X선 회절 분석 결과를 보여주는 그래프이다.2 is a graph showing the results of X-ray diffraction analysis of chloride-based solid electrolytes according to Examples and Comparative Examples. And Figure 3 is a graph showing the results of X-ray diffraction analysis after 100 ℃ heat treatment of the chloride-based solid electrolyte according to Examples and Comparative Examples.

도 2, 도 3 및 표 1을 참조하면, 실시예1-6에 따른 염화물계 고체전해질은 X선 회전 분석을 수행한 결과 삼방정계(trigonal) Li3YCl6와 유사한 결정구조를 가지는 것을 확인할 수 있었다.Referring to FIGS. 2, 3 and Table 1, it can be confirmed that the chloride-based solid electrolyte according to Examples 1-6 has a crystal structure similar to that of trigonal Li 3 YCl 6 as a result of X-ray rotation analysis. there was.

비교예1에 따른 염화물계 고체전해질은 상온 이온전도도가 4.0ㅧ10^-4 S/cm 로 측정되었으며, 진공 100℃로 열처리한 후에는 3.7ㅧ10^-5 S/cm으로 감소하였다. 따라서 비교예1에 따른 염화물계 고체전해질의 이온전도도 유지율은 9.25%로 계산되었다.The ion conductivity of the chloride-based solid electrolyte according to Comparative Example 1 was measured as 4.0 × 10^-4 S/cm at room temperature, and after heat treatment in a vacuum of 100 °C, it decreased to 3.7 × 10^-5 S/cm. Therefore, the ionic conductivity retention rate of the chloride-based solid electrolyte according to Comparative Example 1 was calculated to be 9.25%.

이와 같이 비교예1에 따른 염화물계 고체전해질의 이온전도도 유지율이 낮은 이유는 100℃의 상대적인 저온에서도 결정화가 일어나는 경향성에 따른 결과로 판단된다.As such, the reason why the ion conductivity retention rate of the chloride-based solid electrolyte according to Comparative Example 1 is low is determined to be the result of the tendency for crystallization to occur even at a relatively low temperature of 100 °C.

실시예1-6에 따른 염화물계 고체전해질은 상온 이온전도도 및 진공 100℃로 열처리한 후 이온전도도는 표 1과 같다. 실시예1-6에 따른 염화물계 고체전해질의 이온전도도 유지율은 53.33 내지 156.25%로 계산되었다.The ionic conductivity of the chloride-based solid electrolyte according to Examples 1-6 after heat treatment at room temperature and vacuum at 100 ° C is shown in Table 1. The ionic conductivity retention rate of the chloride-based solid electrolyte according to Examples 1-6 was calculated to be 53.33 to 156.25%.

실시예1-6에 따른 염화물계 고체전해질은, 도 2 및 도 3에 도시된 바와 같이, 진공 100℃로 열처리한 뒤에도 결정화가 일어나지 않았다.As shown in FIGS. 2 and 3, the chloride-based solid electrolyte according to Examples 1-6 did not undergo crystallization even after heat treatment in a vacuum of 100° C.

이로 인해 실시예1-6에 따른 염화물계 고체전해질은 이온전도도 유지율이 53.33% 이상임을 확인할 수 있었다. 더욱이 실시예2에 따른 염화물계 고체전해질은 111.54%의 높은 이온전도도 유지율을 갖는 것을 확인할 수 있었다.As a result, it was confirmed that the chloride-based solid electrolyte according to Examples 1-6 had an ionic conductivity retention rate of 53.33% or more. Furthermore, it was confirmed that the chloride-based solid electrolyte according to Example 2 had a high ionic conductivity retention rate of 111.54%.

이와 같이 실시예1-6에 따른 염화물계 고체전해질이 비교예1에 따른 염화물계 고체전해질과 비교하여 100℃에서도 결정화가 일어나지 않기 때문에, 양호한 이온전도도 유지율을 나타낸다.As described above, since the chloride-based solid electrolyte according to Examples 1-6 does not crystallize even at 100 ° C. compared to the chloride-based solid electrolyte according to Comparative Example 1, it shows good ion conductivity retention.

한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.On the other hand, the embodiments disclosed in this specification and drawings are only presented as specific examples to aid understanding, and are not intended to limit the scope of the present invention. In addition to the embodiments disclosed herein, it is obvious to those skilled in the art that other modifications based on the technical idea of the present invention can be implemented.

Claims (12)

아래의 화학식으로 표현되는 염화물계 고체전해질.
[화학식]
Li3+aMCl6-bOc
(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Al, Y, In, Ga, Yb, Er 및 Ce 중 적어도 하나, -0.5<a+b-2c<0.5, 0<c≤0.3)
A chloride-based solid electrolyte represented by the chemical formula below.
[chemical formula]
Li 3+a MCl 6-b O c
(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Al, Y, In, Ga, Yb, Er, and at least one of Ce, -0.5<a+b-2c<0.5, 0<c ≤0.3)
제1항에 있어서,
상기 M은 Y인 것을 특징으로 하는 염화물계 고체전해질.
According to claim 1,
The chloride-based solid electrolyte, characterized in that M is Y.
제1항에 있어서,
상기 b와 상기 c가 동일한 것을 특징으로 하는 염화물계 고체전해질.
According to claim 1,
A chloride-based solid electrolyte, characterized in that b and c are the same.
LiCl, Li2O 및 금속(M)염화물을 볼밀링하여 제조되는 아래의 화학식으로 표현되는 염화물계 고체전해질의 제조 방법.
[화학식]
Li3+aMCl6-bOc
(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Al, Y, In, Ga, Yb, Er 및 Ce 중 적어도 하나, -0.5<a+b-2c<0.5, 0<c≤0.3)
A method for producing a chloride-based solid electrolyte represented by the following chemical formula prepared by ball milling LiCl, Li 2 O, and a metal (M) chloride.
[chemical formula]
Li 3+a MCl 6-b O c
(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Al, Y, In, Ga, Yb, Er, and at least one of Ce, -0.5<a+b-2c<0.5, 0<c ≤0.3)
제4항에 있어서,
상기 금속염화물은 YCl3을 포함하는 것을 특징으로 하는 염화물계 고체전해질의 제조 방법.
According to claim 4,
The metal chloride is a method for producing a chloride-based solid electrolyte, characterized in that it comprises YCl 3 .
제4항에 있어서,
상기 b와 상기 c가 동일한 것을 특징으로 하는 염화물계 고체전해질의 제조 방법.
According to claim 4,
A method for producing a chloride-based solid electrolyte, characterized in that b and c are the same.
아래의 화학식으로 표현되는 염화물계 고체전해질을 포함하는 전고체전지.
[화학식]
Li3+aMCl6-bOc
(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Al, Y, In, Ga, Yb, Er 및 Ce 중 적어도 하나, -0.5<a+b-2c<0.5, 0<c≤0.3)
An all-solid-state battery comprising a chloride-based solid electrolyte represented by the following chemical formula.
[chemical formula]
Li 3+a MCl 6-b O c
(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Al, Y, In, Ga, Yb, Er, and at least one of Ce, -0.5<a+b-2c<0.5, 0<c ≤0.3)
제7항에 있어서,
상기 전고체전지는 고체전해질막, 양극, 음극 및 분리막을 포함하고,
상기 염화물계 고체전해질은 상기 고체전해질막, 상기 양극, 상기 음극 및 상기 분리막 중에 적어도 하나에 포함되는 것을 특징으로 하는 전고체전지.
According to claim 7,
The all-solid-state battery includes a solid electrolyte membrane, an anode, a cathode, and a separator,
The all-solid-state battery, characterized in that the chloride-based solid electrolyte is included in at least one of the solid electrolyte membrane, the positive electrode, the negative electrode, and the separator.
제7항에 있어서,
상기 고체전해질막, 상기 양극, 상기 음극 및 상기 분리막 중에 적어도 하나에 포함되는 상기 염화물계 고체전해질은 다른 조성을 갖는 복수의 종이 사용되는 것을 특징으로 하는 전고체전지.
According to claim 7,
An all-solid-state battery, characterized in that a plurality of species having different compositions are used for the chloride-based solid electrolyte included in at least one of the solid electrolyte membrane, the positive electrode, the negative electrode, and the separator.
제7항에 있어서,
상기 염화물계 고체전해질은 LiCl, Li2O 및 금속(M)염화물을 볼밀링으로 합성하여 제조한 것을 특징으로 하는 전고체전지.
According to claim 7,
The chloride-based solid electrolyte is an all-solid-state battery, characterized in that prepared by synthesizing LiCl, Li 2 O and metal (M) chloride by ball milling.
제10항에 있어서,
상기 금속염화물은 YCl3을 포함하는 것을 특징으로 하는 전고체전지.
According to claim 10,
The metal chloride is an all-solid-state battery, characterized in that it comprises YCl 3 .
제7항에 있어서,
Li3MCl6으로 표현되는 염화물계 고체전해질을 더 포함하는 것을 특징으로 하는 전고체전지.
According to claim 7,
An all-solid-state battery further comprising a chloride-based solid electrolyte represented by Li 3 MCl 6 .
KR1020210144679A 2021-10-27 2021-10-27 Chloride-based solid electrolyte, all-solid batteries and manufacturing method thereof KR20230060607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210144679A KR20230060607A (en) 2021-10-27 2021-10-27 Chloride-based solid electrolyte, all-solid batteries and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210144679A KR20230060607A (en) 2021-10-27 2021-10-27 Chloride-based solid electrolyte, all-solid batteries and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20230060607A true KR20230060607A (en) 2023-05-08

Family

ID=86381675

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210144679A KR20230060607A (en) 2021-10-27 2021-10-27 Chloride-based solid electrolyte, all-solid batteries and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR20230060607A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190079135A (en) 2017-12-27 2019-07-05 현대자동차주식회사 A nitrogen doped sulfide-based solid electrolyte for all solid state battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190079135A (en) 2017-12-27 2019-07-05 현대자동차주식회사 A nitrogen doped sulfide-based solid electrolyte for all solid state battery

Similar Documents

Publication Publication Date Title
US8591603B2 (en) Method for producing all solid lithium battery
WO2016104702A1 (en) Sulfide-based solid electrolyte for lithium ion cell, and solid electrolyte compound
CN105304976A (en) Lithium-air battery with cathode separated from free lithium ion
KR102228383B1 (en) Solid electrolytes and all-solid batteries comprising the same
WO2020113786A1 (en) Electrolyte for lithium-air battery or lithium-copper battery
KR102292653B1 (en) A method for producing sulfide-based solid electrolyte
KR102403927B1 (en) Chloride-based solid electrolyte, all-solid batteries and manufacturing method thereof
US20220098039A1 (en) Method for producing sulfide solid electrolyte
KR20180126251A (en) Air electrode for all-solid lithium air battery and method for producing thereof
De Luna et al. All-solid lithium-sulfur batteries: Present situation and future progress
KR102657469B1 (en) Chloride-based solid electrolyte, all-solid batteries and manufacturing method thereof
KR20230060607A (en) Chloride-based solid electrolyte, all-solid batteries and manufacturing method thereof
KR102401475B1 (en) Sulfide-based solid electrolyte for lithium ion batteries
JP2020061326A (en) Solid electrolyte
US20230420732A1 (en) Chloride-based solid electrolyte, all-solid-state battery including the same, and method for preparing the same
US8685592B2 (en) Inorganic proton conductor for an electrochemical device and method of preparing the inorganic proton conductor
KR102421196B1 (en) Chloride-based solid electrolyte, all-solid batteries and manufacturing method thereof
KR102269019B1 (en) Solid electrolytes and all-solid batteries comprising the same
KR20230172051A (en) Chloride-based solid electrolyte, all-solid batteries and manufacturing method thereof
KR20220069203A (en) Method for producing a sulfide-based solid electrolyte using an ester-based organic solvent, a sulfide-based solid electrolyte and all-solid batteries prepared by the method
US20230420729A1 (en) Solid-state electrolyte material and solid-state battery utilizing the same
JP2019160510A (en) Sulfide solid electrolyte
KR102399077B1 (en) Lithium sulfur carbon composite, sulfide-based carbon composite solid electrolyte, cathode and all-solid-state battery using the same
KR20220097560A (en) Active material coated with solid electrolyte, electrode, and all-solid battery using the same
KR102180352B1 (en) Sulfide glass ceramic, process for producing the same, and all-solid secondary battery containing the solid electrolyte

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application