KR20230059825A - Low-cost, high-performance Q500 bridge steel and production method - Google Patents

Low-cost, high-performance Q500 bridge steel and production method Download PDF

Info

Publication number
KR20230059825A
KR20230059825A KR1020237010904A KR20237010904A KR20230059825A KR 20230059825 A KR20230059825 A KR 20230059825A KR 1020237010904 A KR1020237010904 A KR 1020237010904A KR 20237010904 A KR20237010904 A KR 20237010904A KR 20230059825 A KR20230059825 A KR 20230059825A
Authority
KR
South Korea
Prior art keywords
steel
performance
cost
low
bridge
Prior art date
Application number
KR1020237010904A
Other languages
Korean (ko)
Inventor
이신 황
동위 자이
쥔 홍
예 딩
시앙 리
옌 가오
위엔위 장
Original Assignee
난징 아이론 앤드 스틸 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 난징 아이론 앤드 스틸 컴퍼니 리미티드 filed Critical 난징 아이론 앤드 스틸 컴퍼니 리미티드
Publication of KR20230059825A publication Critical patent/KR20230059825A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 저원가 고성능 Q500 교량강을 개시하고, 강철 생산 기술분야에 관한 것이며, 이의 화학 성분 및 질량 백분율은 C≤0.035%, Si: 0.31%~0.40%,Mn: 1.71%~1.80%, P≤0.015%, S≤0.0030%, Nb: 0.030%~0.050%, V: 0.020%~0.050%, Ti: 0.010%~0.018%, Cr: 0.70%~0.80%, Ni: 0.10%~0.20%, 잔여 Mo≤0.05%, Cu: 0.10%~0.20%, B≤0.0005%, N≤0.0005%, Al: 0.020%~0.050%이다. 항복 강도를 감소시킴과 동시에 제품의 인장 강도를 향상시켜 제품의 항복비를 효과적으로 감소시킨다.The present invention discloses low-cost, high-performance Q500 bridge steel and relates to the field of steel production technology, the chemical composition and mass percentage thereof being C≤0.035%, Si: 0.31%-0.40%, Mn: 1.71%-1.80%, P≤ 0.015%, S≤0.0030%, Nb: 0.030%~0.050%, V: 0.020%~0.050%, Ti: 0.010%~0.018%, Cr: 0.70%~0.80%, Ni: 0.10%~0.20%, remaining Mo ≤0.05%, Cu: 0.10% to 0.20%, B≤0.0005%, N≤0.0005%, Al: 0.020% to 0.050%. It effectively reduces the yield ratio of the product by reducing the yield strength and improving the tensile strength of the product at the same time.

Description

저원가 고성능 Q500 교량강 및 생산 방법Low-cost, high-performance Q500 bridge steel and production method

본 발명은 강철 생산 기술분야에 관한 것으로, 특히는 저원가 고성능 Q500 교량강 및 생산 방법에 관한 것이다.The present invention relates to the field of steel production technology, and more particularly to low-cost, high-performance Q500 bridge steel and production methods.

고성능 교량 강판 Q500은 도로교, 철도교, 도로-철도교에 널리 사용되고 있으며, 2010년 이후 중국의 교통 건설의 활발한 발전과 더불어 교량용 강이 지속적으로 증가하고 있는 배경에서, 넓은 경간의 Q500급 교량용 강에서 주로 사용하는 노멀라이징 강판의 경우, 노멀라이징 열처리 공정의 제련 공정 비용은 환적 비용을 포함하지 않더라도 200 위안이 넘으며, 노멀라이징 후 강판에는 성능 불안정, 용접 조인트의 낮은 충격 에너지, 박리 또는 용융각 용접 층상 파열 등의 품질 문제가 발생할 수 있다.High-performance bridge steel sheet Q500 is widely used in road bridges, railway bridges, and road-rail bridges. Since 2010, with the active development of China's transportation construction, in the background of the continuous increase in bridge steel, in the wide span Q500 grade bridge steel For the normalized steel sheet that is mainly used, the smelting process cost of the normalizing heat treatment process is more than 200 yuan, not including the transshipment cost. quality problems may occur.

상기 기술적 과제를 해결하기 위하여, 본 발명은 저원가 고성능 Q500 교량강을 제공한다.In order to solve the above technical problem, the present invention provides a low-cost and high-performance Q500 bridge steel.

상기 기술적 과제를 해결하기 위하여, 본 발명은 저원가 고성능 Q500 교량강을 제공하고, 이의 화학 성분 및 질량 백분율은 C≤0.035%, Si: 0.31%~0.40%, Mn: 1.71%~1.80%, P≤0.015%, S≤0.0030%, Nb: 0.030%~0.050%, V: 0.020%~0.050%, Ti: 0.010%~0.018%, Cr: 0.70%~0.80%, Ni: 0.10%~0.20%, 잔여 Mo≤0.05%, Cu: 0.10%~0.20%, B≤0.0005%, N≤0.0005%, Al: 0.020%~0.050%, 나머지는 Fe 및 불순물이다.In order to solve the above technical problem, the present invention provides a low-cost and high-performance Q500 bridge steel, the chemical composition and mass percentage of which are C ≤ 0.035%, Si: 0.31% ~ 0.40%, Mn: 1.71% ~ 1.80%, P ≤ 0.015%, S≤0.0030%, Nb: 0.030%~0.050%, V: 0.020%~0.050%, Ti: 0.010%~0.018%, Cr: 0.70%~0.80%, Ni: 0.10%~0.20%, remaining Mo ≤0.05%, Cu: 0.10% to 0.20%, B≤0.0005%, N≤0.0005%, Al: 0.020% to 0.050%, the rest being Fe and impurities.

국가 교량 구조용 강 GB/T 714 표준을 깊이 연구한 후, 본 발명은 저탄소 마이크로 니오븀 티타늄 합금 교량 성분의 독특한 설계를 통해, 페라이트가 보다 많이 포함된 조직 구조를 얻어 제품의 연질 조직 형성을 촉진하고, 2차 압연 및 최종 압연 온도를 효과적으로 증가시키고 조직의 결정립 크기를 적절하게 변경하며, 수냉 조건을 통해 탄화물 및 크롬 원소의 변태를 촉진하여 항복 강도를 감소시킴과 동시에 제품의 인장 강도를 향상시켜 제품의 항복비를 효과적으로 낮춘다.After studying the National Bridge Structural Steel GB/T 714 standard in depth, the present invention achieves a structure structure containing more ferrite through the unique design of low carbon micro niobium titanium alloy bridge components, promoting the soft tissue formation of the product, It effectively increases the secondary rolling and final rolling temperature, appropriately changes the crystal grain size of the structure, and promotes the transformation of carbides and chromium elements through water cooling conditions to reduce the yield strength and improve the tensile strength of the product at the same time to improve the quality of the product. Effectively lowers the yield ratio.

본 발명에 의해 추가로 정의되는 기술적 해결수단은 다음과 같다.The technical solution further defined by the present invention is as follows.

전술한 저원가 고성능 Q500 교량강에서, 이의 화학 성분 및 질량 백분율은 C≤0.030%, Si: 0.31%~0.38%, Mn: 1.71%~1.77%, P≤0.013%, S≤0.0020%, Nb: 0.030%~0.040%, V: 0.020%~0.030%, Ti: 0.010%~0.016%, Cr: 0.70%~0.75%, Ni: 0.10%~0.15%, 잔여 Mo≤0.05%, Cu: 0.10%~0.15%, B≤0.0005%, N≤0.0005%, Al: 0.020%~0.050%, 나머지는 Fe 및 불순물이다.In the aforementioned low-cost and high-performance Q500 bridge steel, its chemical composition and mass percentage are C≤0.030%, Si: 0.31%~0.38%, Mn: 1.71%~1.77%, P≤0.013%, S≤0.0020%, Nb: 0.030 %~0.040%, V: 0.020%~0.030%, Ti: 0.010%~0.016%, Cr: 0.70%~0.75%, Ni: 0.10%~0.15%, remaining Mo≤0.05%, Cu: 0.10%~0.15% , B≤0.0005%, N≤0.0005%, Al: 0.020% to 0.050%, the rest being Fe and impurities.

전술한 저원가 고성능 Q500 교량강에서, 이의 화학 성분 및 질량 백분율은 C≤0.025%, Si: 0.33%~0.40%, Mn: 1.73%~1.80%, P≤0.012%, S≤0.0020%, Nb: 0.040%~0.050%, V: 0.030%~0.040%, Ti: 0.012%~0.018%, Cr: 0.75%~0.80%, Ni: 0.15%~0.20%, 잔여 Mo≤0.05%, Cu: 0.15%~0.20%, B≤0.0005%, N≤0.0005%, Al: 0.020%~0.050%, 나머지는 Fe 및 불순물이다.In the aforementioned low-cost and high-performance Q500 bridge steel, its chemical composition and mass percentage are C≤0.025%, Si: 0.33%~0.40%, Mn: 1.73%~1.80%, P≤0.012%, S≤0.0020%, Nb: 0.040 %~0.050%, V: 0.030%~0.040%, Ti: 0.012%~0.018%, Cr: 0.75%~0.80%, Ni: 0.15%~0.20%, remaining Mo≤0.05%, Cu: 0.15%~0.20% , B≤0.0005%, N≤0.0005%, Al: 0.020% to 0.050%, the rest being Fe and impurities.

전술한 저원가 고성능 Q500 교량강에서, 이의 화학 성분 및 질량 백분율은 C≤0.035%, Si: 0.31%~0.40%, Mn: 1.71%~1.80%, P≤0.015%, S≤0.0030%, Nb: 0.035%~0.045%, V: 0.040%~0.050%, Ti: 0.010%~0.018%, Cr: 0.73%~0.78%, Ni: 0.13%~0.18%, 잔여 Mo≤0.05%, Cu: 0.13%~0.18%, B≤0.0005%, N≤0.0005%, Al: 0.020%~0.050%, 나머지는 Fe 및 불순물이다.In the aforementioned low-cost and high-performance Q500 bridge steel, its chemical composition and mass percentage are C≤0.035%, Si: 0.31%~0.40%, Mn: 1.71%~1.80%, P≤0.015%, S≤0.0030%, Nb: 0.035 %~0.045%, V: 0.040%~0.050%, Ti: 0.010%~0.018%, Cr: 0.73%~0.78%, Ni: 0.13%~0.18%, Residual Mo≤0.05%, Cu: 0.13%~0.18% , B≤0.0005%, N≤0.0005%, Al: 0.020% to 0.050%, the rest being Fe and impurities.

전술한 저원가 고성능 Q500 교량강에서, 강판의 두께는 10~60mm이다.In the aforementioned low-cost, high-performance Q500 bridge steel, the thickness of the steel plate is 10 to 60 mm.

전술한 저원가 고성능 Q500 교량강에서, 강판의 미세조직은 다각형 페라이트와 20%~30%의 베이나이트를 포함한다.In the aforementioned low-cost, high-performance Q500 bridge steel, the microstructure of the steel sheet includes polygonal ferrite and 20% to 30% of bainite.

본 발명의 다른 목적은 템퍼링 처리가 필요하지 않은 저원가 고성능 Q500 교량강의 생산 방법을 제공하는 것이며, 상기 생산 방법은,Another object of the present invention is to provide a method for producing low-cost and high-performance Q500 bridge steel that does not require tempering treatment, the production method comprising:

KR법으로 용철을 전처리하되, 전로에 들어가는 용철의 S<0.010%인 단계 S1;Step S1 in which molten iron is pretreated by the KR method, but S<0.010% of the molten iron entering the converter;

전처리된 용철은 찌꺼기를 깨끗이 제거한 후 전로에 넣고, 상하 결합 취입 방법으로 제련하는 단계 S2;Step S2 of smelting the pretreated molten iron by removing dregs, putting it into a converter, and using a top-and-bottom combined blowing method;

용강의 출강이 끝나면 RH로 보내어 진공 탈탄, 탈가스 및 개재물을 제거하되, 진공 시간은 20~30분(min)인 단계 S3;After the molten steel is tapped, it is sent to RH to remove vacuum decarburization, degassing and inclusions, but the vacuum time is 20 to 30 minutes (min) Step S3;

진공 처리된 용강을 LF로 보내어 정련 처리 및 탈산 합금화 작업을 진행하고, 합금화가 끝나면 칼슘 처리를 진행하여 용강을 정화하며, 정적 교반을 통해 용강의 순도를 향상시키는 단계 S4;Step S4 of sending the vacuum-treated molten steel to LF to perform refining and deoxidation alloying, and after alloying, calcium treatment to purify the molten steel and improve the purity of the molten steel through static stirring;

정련된 용강을 연속 주조기로 보내어 주조하되, 전자기 교반 및 동적 경압하(Dynamic Soft Reduction) 공정을 사용하며 인장 속도는 0.6~1.3m/min인 단계 S5;Step S5 of casting the refined molten steel by sending it to a continuous casting machine, using electromagnetic stirring and a dynamic soft reduction process, and having a tensile speed of 0.6 to 1.3 m/min;

표면 검사를 통과한 주조 빌릿을 가열로로 보내어 가열하되, 가열 온도는 1120~1140℃인 단계 S6;Sending the casting billet that passed the surface inspection to a heating furnace for heating, but the heating temperature is 1120 ~ 1140 ℃ Step S6;

TMCP 압연 공정으로 압연을 진행하되, 조압연 시작 온도는 1000~1100℃이고, 2차 시작 온도는 820~990℃로 제어되며, 최종 압연 온도는 820±20℃이고, 초고속 냉각으로 580~690℃까지 냉각하는 단계 S7;Rolling proceeds with the TMCP rolling process, but the rough rolling start temperature is 1000 ~ 1100 ℃, the secondary start temperature is controlled at 820 ~ 990 ℃, the final rolling temperature is 820 ± 20 ℃, ultra-high-speed cooling 580 ~ 690 ℃ Step S7 cooling until;

압연된 강판을 서냉 가마로 보내어 24시간 동안 서냉을 진행하는 단계 S8; 및Step S8 of sending the rolled steel sheet to an annealing kiln for slow cooling for 24 hours; and

적층 냉각된 강판을 냉간교정하여 강판의 평탄도를 제어하며, 전단, 마킹, 표면 검사, 흠집 검출을 진행한 후 입고하는 단계 S9;를 포함한다.Step S9 of controlling the flatness of the steel sheet by cold-calibrating the laminated cooled steel sheet, and carrying out shearing, marking, surface inspection, and flaw detection, and then storing the sheet.

본 발명은 다음과 같은 유익한 효과를 가진다.The present invention has the following advantageous effects.

(1) 본 발명은 중국 국가 표준 GB/T 714 구조용 교량강에 의거하여, 저탄소 마이크로 니오븀 티타늄 합금을 사용하여 제품의 유연성을 향상시키고, 고망간 원소를 사용하여 제품의 인장 강도를 높이고 제품의 양호한 항복비를 보장하며, Cu 원소를 사용하여 제품의 용접 성능을 향상시키고, Ni 원소를 사용하여 고등급 제품의 충격 성능을 향상시킴으로써, 성분 설계를 기반으로 TMCP 압연 기술로 기존의 TMCP+ 템퍼링 공정을 대체하여 제품의 제조 원가를 효과적으로 낮추고 기업의 경쟁력을 대폭 향상시킨다.(1) According to the Chinese National Standard GB/T 714 Structural Bridge Steel, the present invention uses low-carbon micro-niobium-titanium alloy to improve product flexibility, and uses high manganese element to increase product tensile strength and improve product quality. Replace the existing TMCP+ tempering process with TMCP rolling technology based on component design by ensuring yield ratio, improving welding performance of products using element Cu, and improving impact performance of high-grade products using element Ni. This effectively lowers the manufacturing cost of the product and greatly improves the competitiveness of the enterprise.

(2) 본 발명의 저온 오스테나이트화 기술은 초기 오스테나이트의 결정립 크기를 감소시켜 제품의 저온 충격 인성의 안정성을 보장한다.(2) The low-temperature austenitization technology of the present invention reduces the grain size of initial austenite to ensure stability of low-temperature impact toughness of the product.

(3) 본 발명은 2차 시작 온도 및 최종 압연 온도를 제어하고, 수냉 공정과 결합함으로써, 제품의 항복 강도를 효과적으로 낮추어 인장 강도의 안정성을 보장하고 제품의 항복비의 안정성을 안정화한다.(3) The present invention controls the secondary starting temperature and the final rolling temperature and combines with the water cooling process to effectively lower the yield strength of the product to ensure the stability of the tensile strength and stabilize the stability of the yield ratio of the product.

(4) 본 발명은 제어 냉각 공정을 제어하여 조직의 결정립 크기를 효과적으로 미세화하고, 2차 시작 온도 및 입수 온도를 통해 조직의 변태를 보장하여 다각형 페라이트 및 20~30%의 베이나이트를 부조직 형태로 얻으며, 강판 적층 냉각 및 냉간교정 공정을 통해 강판의 내부 응력을 효과적으로 제거하고 제품의 2차 가공 성능의 안정성을 향상시킨다.(4) The present invention effectively refines the crystal grain size of the structure by controlling the controlled cooling process, and ensures the transformation of the structure through the secondary starting temperature and the water temperature to convert polygonal ferrite and 20 to 30% of bainite into a substructure form. It effectively removes the internal stress of the steel plate and improves the stability of the secondary processing performance of the product through the steel plate lamination cooling and cold straightening process.

(5) 본 발명은 성분 및 공정 설계를 통해 제조 원가를 효과적으로 낮추고, 원가를 최초 강 제조 원가에서 300~500위안/톤 절감하여 시장 경쟁력을 효과적으로 향상시킨다.(5) The present invention effectively lowers the manufacturing cost through component and process design, and reduces the cost by 300 to 500 yuan/ton from the initial steel manufacturing cost, effectively improving market competitiveness.

도 1은 실시예 1을 통해 얻은 강판이 금속현미경 아래에서의 전형적인 조직 형태도이다.1 is a typical structure morphology of the steel sheet obtained in Example 1 under a metallographic microscope.

하기 실시예에서 제공하는 저원가 고성능 Q500 교량강의 화학 성분 및 질량 백분율은 표 1과 같다.Table 1 shows the chemical composition and mass percentage of the low-cost, high-performance Q500 bridge steel provided in the following examples.

표1 각 실시예에 따른 강판의 화학 성분(wt%)Table 1 Chemical composition (wt%) of the steel sheet according to each example

Figure pct00001
Figure pct00001

실시예 1Example 1

강판의 두께는 20mm이고, 생산 방법은 템퍼링 처리가 필요하지 않으며, 이하의 단계,The thickness of the steel sheet is 20mm, the production method does not require tempering treatment, the following steps,

KR법으로 용철을 전처리하되, 전로에 들어가는 용철의 S<0.010%인 단계 S1;Step S1 in which molten iron is pretreated by the KR method, but S<0.010% of the molten iron entering the converter;

전처리된 용철은 찌꺼기를 깨끗이 제거한 후 전로에 넣고, 상하 결합 취입 방법으로 제련하는 단계 S2;Step S2 of smelting the pretreated molten iron by removing dregs, putting it into a converter, and using a top-and-bottom combined blowing method;

용강의 출강이 끝나면 RH로 보내어 진공 탈탄, 탈가스 및 개재물을 제거하되, 진공 시간은 22분인 단계 S3;After the molten steel is tapped, it is sent to RH to remove vacuum decarburization, degassing, and inclusions, but the vacuum time is 22 minutes. Step S3;

진공 처리된 용강을 LF로 보내어 정련 처리 및 탈산 합금화 작업을 진행하고, 합금화가 끝나면 칼슘 처리를 진행하여 용강을 정화하며, 정적 교반을 통해 용강의 순도를 향상시키는 단계 S4;Step S4 of sending the vacuum-treated molten steel to LF to perform refining and deoxidation alloying, and after alloying, calcium treatment to purify the molten steel and improve the purity of the molten steel through static stirring;

정련된 용강을 연속 주조기로 보내어 주조하되, 전자기 교반 및 동적 경압하(Dynamic Soft Reduction) 공정을 사용하며 인장 속도는 1.1m/min인 단계 S5;Step S5 where the refined molten steel is sent to a continuous casting machine to be cast, using electromagnetic stirring and a dynamic soft reduction process, and a tensile speed of 1.1 m/min;

표면 검사를 통과한 주조 빌릿을 가열로로 보내어 가열하되, 가열 온도는 1126℃인 단계 S6;Sending the casting billet that passed the surface inspection to a heating furnace for heating, but the heating temperature is 1126 ℃ Step S6;

TMCP 압연 공정으로 압연을 진행하되, 조압연 시작 온도는 1098℃이고, 2차 시작 온도는 960℃로 제어되며, 최종 압연 온도는 838℃이고, 초고속 냉각으로 680℃까지 냉각하는 단계 S7;Rolling proceeds with the TMCP rolling process, the rough rolling start temperature is 1098 ° C, the secondary starting temperature is controlled to 960 ° C, the final rolling temperature is 838 ° C, and cooling to 680 ° C by ultra-high speed cooling Step S7;

압연된 강판을 서냉 가마로 보내어 24시간 동안 서냉을 진행하고, 적층 냉각을 통해 강판 내 유해 가스를 효과적으로 제거하고 강판의 내부 응력을 감소시키며 강판의 2차 가공 성능을 향상시키는 단계 S8; 및Step S8 of sending the rolled steel sheet to a slow cooling kiln for slow cooling for 24 hours, effectively removing harmful gases in the steel sheet through layer cooling, reducing internal stress of the steel sheet, and improving secondary processing performance of the steel sheet; and

적층 냉각된 강판을 냉간교정하여 강판의 평탄도를 제어하며, 전단, 마킹, 표면 검사, 흠집 검출을 진행한 후 입고하는 단계 S9;를 포함한다.Step S9 of controlling the flatness of the steel sheet by cold-calibrating the laminated cooled steel sheet, and carrying out shearing, marking, surface inspection, and flaw detection, and then storing the sheet.

실시예 2Example 2

강판의 두께는 33mm이고, 생산 방법은 템퍼링 처리가 필요하지 않으며, 이하의 단계,The thickness of the steel sheet is 33mm, the production method does not require tempering treatment, the following steps,

KR법으로 용철을 전처리하되, 전로에 들어가는 용철의 S<0.010%인 단계 S1;Step S1 in which molten iron is pretreated by the KR method, but S<0.010% of the molten iron entering the converter;

전처리된 용철은 찌꺼기를 깨끗이 제거한 후 전로에 넣고, 상하 결합 취입 방법으로 제련하는 단계 S2;Step S2 of smelting the pretreated molten iron by removing dregs, putting it into a converter, and using a top-and-bottom combined blowing method;

용강의 출강이 끝나면 RH로 보내어 진공 탈탄, 탈가스 및 개재물을 제거하되, 진공 시간은 26분인 단계 S3;Step S3 of vacuum decarburization, degassing, and removal of inclusions by sending the molten steel to RH after the tap is finished, but the vacuum time is 26 minutes;

진공 처리된 용강을 LF로 보내어 정련 처리 및 탈산 합금화 작업을 진행하고, 합금화가 끝나면 칼슘 처리를 진행하여 용강을 정화하며, 정적 교반을 통해 용강의 순도를 향상시키는 단계 S4;Step S4 of sending the vacuum-treated molten steel to LF to perform refining and deoxidation alloying, and after alloying, calcium treatment to purify the molten steel and improve the purity of the molten steel through static stirring;

정련된 용강을 연속 주조기로 보내어 주조하되, 전자기 교반 및 동적 경압하 공정을 사용하며 인장 속도는 0.9m/min인 단계 S5;Step S5 where the refined molten steel is sent to a continuous casting machine to be cast, using electromagnetic stirring and a dynamic light reduction process and a tensile speed of 0.9 m/min;

표면 검사를 통과한 주조 빌릿을 가열로로 보내어 가열하되, 가열 온도는 1133℃인 단계 S6;Sending the casting billet that has passed the surface inspection to a heating furnace for heating, but the heating temperature is 1133 ℃ Step S6;

TMCP 압연 공정으로 압연을 진행하되, 조압연 시작 온도는 1055℃이고, 2차 시작 온도는 855℃로 제어되며, 최종 압연 온도는 820℃이고, 초고속 냉각으로 630℃까지 냉각하는 단계 S7;Rolling proceeds with the TMCP rolling process, the rough rolling start temperature is 1055 ° C, the secondary starting temperature is controlled to 855 ° C, the final rolling temperature is 820 ° C, and cooling to 630 ° C by ultra-high speed cooling Step S7;

압연된 강판을 서냉 가마로 보내어 24시간 동안 서냉을 진행하고, 적층 냉각을 통해 강판 내 유해 가스를 효과적으로 제거하고 강판의 내부 응력을 감소시키며 강판의 2차 가공 성능을 향상시키는 단계 S8; 및Step S8 of sending the rolled steel sheet to a slow cooling kiln for slow cooling for 24 hours, effectively removing harmful gases in the steel sheet through layer cooling, reducing internal stress of the steel sheet, and improving secondary processing performance of the steel sheet; and

적층 냉각된 강판을 냉간교정하여 강판의 평탄도를 제어하며, 전단, 마킹, 표면 검사, 흠집 검출을 진행한 후 입고하는 단계 S9;를 포함한다.Step S9 of controlling the flatness of the steel sheet by cold-calibrating the laminated cooled steel sheet, and carrying out shearing, marking, surface inspection, and flaw detection, and then storing the sheet.

실시예 3Example 3

강판의 두께는 50mm이고, 생산 방법은 템퍼링 처리가 필요하지 않으며, 이하의 단계,The thickness of the steel sheet is 50 mm, the production method does not require tempering treatment, the following steps,

KR법으로 용철을 전처리하되, 전로에 들어가는 용철의 S<0.010%인 단계 S1;Step S1 in which molten iron is pretreated by the KR method, but S<0.010% of the molten iron entering the converter;

전처리된 용철은 찌꺼기를 깨끗이 제거한 후 전로에 넣고, 상하 결합 취입 방법으로 제련하는 단계 S2;Step S2 of smelting the pretreated molten iron by removing dregs, putting it into a converter, and using a top-and-bottom combined blowing method;

용강의 출강이 끝나면 RH로 보내어 진공 탈탄, 탈가스 및 개재물을 제거하되, 진공 시간은 28분인 단계 S3;After the molten steel is tapped, it is sent to RH to remove vacuum decarburization, degassing, and inclusions, but the vacuum time is 28 minutes. Step S3;

진공 처리된 용강을 LF로 보내어 정련 처리 및 탈산 합금화 작업을 진행하고, 합금화가 끝나면 칼슘 처리를 진행하여 용강을 정화하며, 정적 교반을 통해 용강의 순도를 향상시키는 단계 S4;Step S4 of sending the vacuum-treated molten steel to LF to perform refining and deoxidation alloying, and after alloying, calcium treatment to purify the molten steel and improve the purity of the molten steel through static stirring;

정련된 용강을 연속 주조기로 보내어 주조하되, 전자기 교반 및 동적 경압하 공정을 사용하며 인장 속도는 0.7m/min인 단계 S5;Step S5 where the refined molten steel is cast by sending it to a continuous casting machine, using electromagnetic agitation and a dynamic light reduction process, with a tensile speed of 0.7 m/min;

표면 검사를 통과한 주조 빌릿을 가열로로 보내어 가열하되, 가열 온도는 1139℃인 단계 S6;Sending the casting billet that has passed the surface inspection to a heating furnace for heating, but the heating temperature is 1139 ℃ Step S6;

TMCP 압연 공정으로 압연을 진행하되, 조압연 시작 온도는 1020℃이고, 2차 시작 온도는 828℃로 제어되며, 최종 압연 온도는 819℃이고, 초고속 냉각으로 596℃까지 냉각하는 단계 S7;Rolling proceeds with the TMCP rolling process, but the rough rolling start temperature is 1020 ° C, the secondary starting temperature is controlled to 828 ° C, the final rolling temperature is 819 ° C, and cooling to 596 ° C by ultra-high speed cooling Step S7;

압연된 강판을 서냉 가마로 보내어 24시간 동안 서냉을 진행하고, 적층 냉각을 통해 강판 내 유해 가스를 효과적으로 제거하고 강판의 내부 응력을 감소시키며 강판의 2차 가공 성능을 향상시키는 단계 S8; 및Step S8 of sending the rolled steel sheet to a slow cooling kiln for slow cooling for 24 hours, effectively removing harmful gases in the steel sheet through layer cooling, reducing internal stress of the steel sheet, and improving secondary processing performance of the steel sheet; and

적층 냉각된 강판을 냉간교정하여 강판의 평탄도를 제어하며, 전단, 마킹, 표면 검사, 흠집 검출을 진행한 후 입고하는 단계 S9;를 포함한다.Step S9 of controlling the flatness of the steel sheet by cold-calibrating the laminated cooled steel sheet, and carrying out shearing, marking, surface inspection, and flaw detection, and then storing the sheet.

각 실시예에 따른 역학적 성능은 표2와 같다.The mechanical performance according to each embodiment is shown in Table 2.

표 2 각 실시예에 따른 강판의 역학적 성능Table 2 Mechanical performance of the steel sheet according to each example

Figure pct00002
Figure pct00002

도 1에서 볼 수 있듯이, 강판 조직은 덩어리 모양의 페라이트를 위주로 하고 소량의 베이나이트를 함유하며, 조직이 균일, 미세하고 조밀하여 제품의 고강도, 저항복비, 높은 인성, 쉬운 용접, 피로 저항 등 성능에 유리하다.As can be seen in Figure 1, the structure of the steel sheet is mainly composed of lumpy ferrite and contains a small amount of bainite, and the structure is uniform, fine and dense, resulting in high strength, low yield ratio, high toughness, easy welding, fatigue resistance, etc. advantageous to

상기 내용을 요약하면, 본 발명은 TMCP 압연 기술을 사용하고, 짧은 공정 및 저원가 제조 방법을 응용하여 강판의 내부 응력을 효과적으로 제거함으로써 용접에 용이하고 인성이 높으며 품질이 안정적인 고성능 교량 강판에 대한 교량 공장의 요구를 충족한다. 원가 최적화를 통해 제품의 제조 원가를 효과적으로 절감하고 기업의 경쟁력을 높이며 기업의 제조 이윤율을 향상시킨다.Summarizing the above, the present invention uses TMCP rolling technology and applies a short process and low-cost manufacturing method to effectively remove the internal stress of steel sheets, thereby providing a bridge factory for high-performance bridge steel sheets that are easy to weld, have high toughness, and have stable quality. meet the needs of Through cost optimization, it effectively reduces the manufacturing cost of products, enhances the competitiveness of enterprises, and improves the enterprise's manufacturing profit rate.

상술한 실시예 외에도 본 발명은 다른 실시형태를 가질 수 있다. 등가 대체 또는 동등한 변환에 의해 형성된 기술적 해결수단도 모두 본 발명의 특허청구범위에 포함된다.In addition to the above-described embodiments, the present invention may have other embodiments. All technical solutions formed by equivalent substitution or equivalent transformation are included in the claims of the present invention.

Claims (7)

저원가 고성능 Q500 교량강에 있어서,
이의 화학 성분 및 질량 백분율은 C≤0.035%, Si: 0.31%~0.40%, Mn: 1.71%~1.80%, P≤0.015%, S≤0.0030%, Nb: 0.030%~0.050%, V: 0.020%~0.050%, Ti: 0.010%~0.018%, Cr: 0.70%~0.80%, Ni: 0.10%~0.20%, 잔여 Mo≤0.05%, Cu: 0.10%~0.20%, B≤0.0005%, N≤0.0005%, Al: 0.020%~0.050%, 나머지는 Fe 및 불순물인 것을 특징으로 하는 저원가 고성능 Q500 교량강.
In low-cost, high-performance Q500 bridge steel,
Its chemical composition and mass percentage are C≤0.035%, Si: 0.31%~0.40%, Mn: 1.71%~1.80%, P≤0.015%, S≤0.0030%, Nb: 0.030%~0.050%, V: 0.020% ~0.050%, Ti: 0.010%~0.018%, Cr: 0.70%~0.80%, Ni: 0.10%~0.20%, Residual Mo≤0.05%, Cu: 0.10%~0.20%, B≤0.0005%, N≤0.0005 Low-cost, high-performance Q500 bridge steel, characterized in that %, Al: 0.020% to 0.050%, the rest being Fe and impurities.
제1항에 있어서,
이의 화학 성분 및 질량 백분율은 C≤0.030%, Si: 0.31%~0.38%, Mn: 1.71%~1.77%, P≤0.013%, S≤0.0020%, Nb: 0.030%~0.040%, V: 0.020%~0.030%, Ti: 0.010%~0.016%, Cr: 0.70%~0.75%, Ni: 0.10%~0.15%, 잔여 Mo≤0.05%, Cu: 0.10%~0.15%, B≤0.0005%, N≤0.0005%, Al: 0.020%~0.050%, 나머지는 Fe 및 불순물인 것을 특징으로 하는 저원가 고성능 Q500 교량강.
According to claim 1,
Its chemical composition and mass percentage are C≤0.030%, Si: 0.31%~0.38%, Mn: 1.71%~1.77%, P≤0.013%, S≤0.0020%, Nb: 0.030%~0.040%, V: 0.020% ~0.030%, Ti: 0.010%~0.016%, Cr: 0.70%~0.75%, Ni: 0.10%~0.15%, remaining Mo≤0.05%, Cu: 0.10%~0.15%, B≤0.0005%, N≤0.0005 Low-cost, high-performance Q500 bridge steel, characterized in that %, Al: 0.020% to 0.050%, the rest being Fe and impurities.
제1항에 있어서,
이의 화학 성분 및 질량 백분율은 C≤0.025%, Si: 0.33%~0.40%, Mn: 1.73%~1.80%, P≤0.012%, S≤0.0020%, Nb: 0.040%~0.050%, V: 0.030%~0.040%, Ti: 0.012%~0.018%, Cr: 0.75%~0.80%, Ni: 0.15%~0.20%, 잔여 Mo≤0.05%, Cu: 0.15%~0.20%, B≤0.0005%, N≤0.0005%, Al: 0.020%~0.050%, 나머지는 Fe 및 불순물인 것을 특징으로 하는 저원가 고성능 Q500 교량강.
According to claim 1,
Its chemical composition and mass percentage are C≤0.025%, Si: 0.33%~0.40%, Mn: 1.73%~1.80%, P≤0.012%, S≤0.0020%, Nb: 0.040%~0.050%, V: 0.030% ~0.040%, Ti: 0.012%~0.018%, Cr: 0.75%~0.80%, Ni: 0.15%~0.20%, Residual Mo≤0.05%, Cu: 0.15%~0.20%, B≤0.0005%, N≤0.0005 Low-cost, high-performance Q500 bridge steel, characterized in that %, Al: 0.020% to 0.050%, the rest being Fe and impurities.
제1항에 있어서,
이의 화학 성분 및 질량 백분율은 C≤0.035%, Si: 0.31%~0.40%, Mn: 1.71%~1.80%, P≤0.015%, S≤0.0030%, Nb: 0.035%~0.045%, V: 0.040%~0.050%, Ti: 0.010%~0.018%, Cr: 0.73%~0.78%, Ni: 0.13%~0.18%, 잔여 Mo≤0.05%, Cu: 0.13%~0.18%, B≤0.0005%, N≤0.0005%, Al: 0.020%~0.050%, 나머지는 Fe 및 불순물인 것을 특징으로 하는 저원가 고성능 Q500 교량강.
According to claim 1,
Its chemical composition and mass percentage are C≤0.035%, Si: 0.31%~0.40%, Mn: 1.71%~1.80%, P≤0.015%, S≤0.0030%, Nb: 0.035%~0.045%, V: 0.040% ~0.050%, Ti: 0.010%~0.018%, Cr: 0.73%~0.78%, Ni: 0.13%~0.18%, remaining Mo≤0.05%, Cu: 0.13%~0.18%, B≤0.0005%, N≤0.0005 Low-cost, high-performance Q500 bridge steel, characterized in that %, Al: 0.020% to 0.050%, the rest being Fe and impurities.
제1항에 있어서,
강판의 두께는 10~60mm인 것을 특징으로 하는 저원가 고성능 Q500 교량강.
According to claim 1,
Low-cost, high-performance Q500 bridge steel, characterized in that the thickness of the steel plate is 10 to 60 mm.
제1항에 있어서,
강판의 미세조직은 다각형 페라이트와 20%~30%의 베이나이트를 포함하는 것을 특징으로 하는 저원가 고성능 Q500 교량강.
According to claim 1,
Low-cost, high-performance Q500 bridge steel, characterized in that the microstructure of the steel sheet contains polygonal ferrite and 20% to 30% bainite.
저원가 고성능 Q500 교량강의 생산 방법에 있어서,
제1항 내지 제6항 중 어느 한 항에 응용되며, 템퍼링 처리가 필요하지 않고; 이하의 단계,
KR법으로 용철을 전처리하되, 전로에 들어가는 용철의 S<0.010%인 단계 S1;
전처리된 용철은 찌꺼기를 깨끗이 제거한 후 전로에 넣고, 상하 결합 취입 방법으로 제련하는 단계 S2;
용강의 출강이 끝나면 RH로 보내어 진공 탈탄, 탈가스 및 개재물을 제거하되, 진공 시간은 20~30분(min)인 단계 S3;
진공 처리된 용강을 LF로 보내어 정련 처리 및 탈산 합금화 작업을 진행하고, 합금화가 끝나면 칼슘 처리를 진행하여 용강을 정화하며, 정적 교반을 통해 용강의 순도를 향상시키는 단계 S4;
정련된 용강을 연속 주조기로 보내어 주조하되, 전자기 교반 및 동적 경압하(Dynamic Soft Reduction) 공정을 사용하며 인장 속도는 0.6~1.3m/min인 단계 S5;
표면 검사를 통과한 주조 빌릿을 가열로로 보내어 가열하되, 가열 온도는 1120~1140℃인 단계 S6;
TMCP 압연 공정으로 압연을 진행하되, 조압연 시작 온도는 1000~1100℃이고, 2차 시작 온도는 820~990℃로 제어되며, 최종 압연 온도는 820±20℃이고, 초고속 냉각으로 580~690℃까지 냉각하는 단계 S7;
압연된 강판을 서냉 가마로 보내어 24시간 동안 서냉을 진행하는 단계 S8; 및
적층 냉각된 강판을 냉간교정하여 강판의 평탄도를 제어하며, 전단, 마킹, 표면 검사, 흠집 검출을 진행한 후 입고하는 단계 S9;를 포함하는 것을 특징으로 하는 저원가 고성능 Q500 교량강의 생산 방법.
In the production method of low-cost high-performance Q500 bridge steel,
Applied to any one of claims 1 to 6, tempering treatment is not required; the steps below,
Step S1 in which molten iron is pretreated by the KR method, but S<0.010% of the molten iron entering the converter;
Step S2 of smelting the pretreated molten iron by removing dregs, putting it into a converter, and using a top-and-bottom combined blowing method;
After the molten steel is tapped, it is sent to RH to remove vacuum decarburization, degassing and inclusions, but the vacuum time is 20 to 30 minutes (min) Step S3;
Step S4 of sending the vacuum-treated molten steel to the LF to perform refining and deoxidation alloying, and after alloying, calcium treatment to purify the molten steel and improve the purity of the molten steel through static stirring;
Step S5 of casting the refined molten steel by sending it to a continuous casting machine, using electromagnetic stirring and a dynamic soft reduction process, and having a tensile speed of 0.6 to 1.3 m/min;
Sending the casting billet that passed the surface inspection to a heating furnace for heating, but the heating temperature is 1120 ~ 1140 ℃ Step S6;
Rolling proceeds with the TMCP rolling process, the rough rolling start temperature is 1000 ~ 1100 ℃, the secondary start temperature is controlled at 820 ~ 990 ℃, the final rolling temperature is 820 ± 20 ℃, ultra-high-speed cooling 580 ~ 690 ℃ Step S7 cooling until;
Step S8 of sending the rolled steel sheet to an annealing kiln for slow cooling for 24 hours; and
A method for producing low-cost, high-performance Q500 bridge steel, characterized in that it comprises a step S9 of cold-calibrating the laminated cooled steel sheet to control the flatness of the steel sheet, and then carrying out shearing, marking, surface inspection, and flaw detection.
KR1020237010904A 2020-09-29 2020-11-04 Low-cost, high-performance Q500 bridge steel and production method KR20230059825A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202011046299.6 2020-09-29
CN202011046299.6A CN112210719A (en) 2020-09-29 2020-09-29 Low-cost high-performance Q500 bridge steel and production method thereof
PCT/CN2020/126498 WO2022067961A1 (en) 2020-09-29 2020-11-04 Low-cost high-performance q500 bridge steel and production method therefor

Publications (1)

Publication Number Publication Date
KR20230059825A true KR20230059825A (en) 2023-05-03

Family

ID=74051375

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237010904A KR20230059825A (en) 2020-09-29 2020-11-04 Low-cost, high-performance Q500 bridge steel and production method

Country Status (4)

Country Link
JP (1) JP2023542427A (en)
KR (1) KR20230059825A (en)
CN (1) CN112210719A (en)
WO (1) WO2022067961A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025879B (en) * 2021-02-01 2022-03-01 南京钢铁股份有限公司 Weather-resistant bridge steel and smelting method thereof
CN115627415B (en) * 2022-09-28 2024-04-16 山东钢铁集团日照有限公司 Hot-rolled strip steel for low-cost thick-specification high-strength tubular pile and preparation method thereof
CN115717222A (en) * 2022-11-16 2023-02-28 包头钢铁(集团)有限责任公司 Production method of steel for V-N alloying A350LF6 flange
CN116516250A (en) * 2023-04-26 2023-08-01 南京钢铁股份有限公司 Low-cost bridge steel and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169591A (en) * 2004-12-16 2006-06-29 Kobe Steel Ltd Non-heat treated steel plate with high yield strength
JP5073396B2 (en) * 2007-07-20 2012-11-14 新日本製鐵株式会社 Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
CN101619423A (en) * 2008-06-30 2010-01-06 鞍钢股份有限公司 Steel plate for high-strength high-toughness low-yield easily-welding structure and method for manufacturing same
CN102828117A (en) * 2012-09-03 2012-12-19 南京钢铁股份有限公司 Low-yield ratio high-intensity hot-rolled double-phase steel plate and production method thereof
CN106811704A (en) * 2015-12-02 2017-06-09 鞍钢股份有限公司 Yield strength 500MPa grades of low yield strength ratio bridge steel and its manufacture method
CN106282789B (en) * 2016-08-15 2018-02-02 山东钢铁股份有限公司 A kind of special thick TMCP types Q420qE bridge steels of low-carbon and its manufacture method
KR101899682B1 (en) * 2016-12-22 2018-09-17 주식회사 포스코 Steel having high strength and low-temperature impact toughness and method for manufacturing the same
CN108624744B (en) * 2018-05-11 2020-02-18 鞍钢股份有限公司 Q500qE bridge steel plate and production method thereof

Also Published As

Publication number Publication date
WO2022067961A1 (en) 2022-04-07
CN112210719A (en) 2021-01-12
JP2023542427A (en) 2023-10-06

Similar Documents

Publication Publication Date Title
CN109338035B (en) Steel for wind driven generator gear box bearing and production method thereof
CN107475620B (en) Low-temperature pressure container quenching and tempering type A537Cl2 steel plate and its production method
KR20230059825A (en) Low-cost, high-performance Q500 bridge steel and production method
KR20230059826A (en) Low-cost, high-performance Q370qE-HPS bridge steel and production method
CN102732792B (en) Steel with thickness no lower than 100mm used in vessel in hydrogen environment, and production method thereof
CN105908086B (en) A kind of special thick low-alloy steel plate of low compression ratio and its manufacture method
CN108070789B (en) Ultrafine grain super-thick steel with yield strength not less than 480MPa and preparation method thereof
CN109338215B (en) High-strength steel plate with thickness of 8-25 mm and low yield ratio for tank car and manufacturing method thereof
CN102011047A (en) Production method of steel plate for pressure vessel with low cost and high performance
CN106811700A (en) A kind of think gauge acid-resisting X60MS hot-rolled coils and its manufacture method
WO2020038244A1 (en) 80mm-thick low-cost fh420 marine steel plate and manufacturing method therefor
JP2024515134A (en) Steel for high temperature carburizing gear shaft and manufacturing method of the steel
WO2024027526A1 (en) Extra-thick q500qe bridge steel plate and production method therefor
CN108660377A (en) The preparation method of seamless steel pipe and seamless steel pipe
CN112226687B (en) Rack steel plate with low rolling compression ratio and manufacturing method thereof
CN111485167A (en) Hot-rolled round steel for rare earth microalloyed 25MnCrNiMoA coupler yoke and production method thereof
JP2023519992A (en) 355 MPa grade cold-resistant hot-rolled H-beam steel for marine engineering and its production method
CN102268615A (en) Engineering steel material with excellent core low-temperature impact toughness and lamellar tearing resisting performance and production method thereof
WO2019029533A1 (en) Cast steel, preparation method for cast steel and use of cast steel
CN111304532B (en) Heat-resistant austenitic stainless steel and preparation method thereof
CN114134398A (en) Expansion-fracture connecting rod steel with yield ratio of 0.70-0.80 and manufacturing method thereof
CN115261746B (en) Super-thick Q420qE bridge steel plate and production method thereof
CN102732802B (en) Boiler-steam-drum-use steel with thickness no lower than 80mm, and production method thereof
CN109487046A (en) A kind of high-intensity and high-tenacity ship steel EH550 slab and its production method
CN114182166B (en) 390 MPa-grade low-alloy corrosion-resistant steel and preparation method thereof